FN Clarivate Analytics Web of Science VR 1.0 PT J AU Endler, PC Ludtke, R Heckmann, C Zausner, C Lassnig, H Scherer-Pongratz, W Haidvogl, M Frass, M AF Endler, PC Ludtke, R Heckmann, C Zausner, C Lassnig, H Scherer-Pongratz, W Haidvogl, M Frass, M TI Pretreatment with thyroxine (10(-8) parts by weight) enhances a 'curative' effect of homeopathically prepared thyroxine (10(-13)) on lowland frogs SO FORSCHENDE KOMPLEMENTARMEDIZIN UND KLASSISCHE NATURHEILKUNDE LA English DT Article DE amphibia; metamorphosis; hormone hyperstimulation; thyroxine; homeopathic dilution; hormesis; inverse effect; curative effect AB We studied the influence of a moderate homeopathically prepared thyroxine dilution (final concentration in the basin water 10(-13) parts by weight) on the metamorphosis of lowland Rana temporaria which had been hyperstimulated with thyroxine. Two groups of animals were pre-treated by immersing them in a molecular thyroxine dilution (10(-8) parts by weight). This pretreatment speeds up development, as is well known. In accordance with the homeopathic/isopathic idea of detoxication or cure, the same hormone was then diluted and agitated in successive steps for further treatment. This homeopathically prepared dilution was administered at 24-hour intervals to one of the groups. An analogously prepared blank solution was used for the control group. Our hypothesis, which was derived from earlier studies, was that animals treated with the test solution would metamorphose more slowly than the control animals, i.e. that the homeopathically prepared thyroxine would have a 'curative' effect. In this new series of experiments this hypothesis was examined by 3 independent researchers. In the experiments carried out by 2 of the 3 researchers the number of animals that reached the four-legged stage at defined points in time was smaller in the group treated with homeopathically prepared thyroxine. In the third laboratory no difference was found between the groups. However, the overall inhibiting effect was statistically significant and more pronounced than in earlier, less promising studies and in parallel experiments in which nonprestimulated animals had been used. Other studies carried out by the 3 researchers involved animals from highland biotopes, where the natural environment probably induces a greater sensitivity towards thyroxine or higher thyroxine levels. These animals reacted to the homeopathically prepared thyroxine with a slowing down of metamorphosis, even when they had not been prestimulated with a molecular dose of the hormone. This effect was observed in all 3 laboratories and is consistent with the results of previous studies. C1 K&V Carstens Stiftung, Essen, Germany. Univ Vienna, Inst Zool, A-1090 Vienna, Austria. Bundesanstalt Vet Med Untersuchungen, Graz, Austria. Ludwig Boltzman Inst Homoopathie, Graz, Austria. C3 University of Vienna; Ludwig Boltzmann Institute RP Endler, PC (corresponding author), Petrifelderstr 4, A-8042 Graz, Austria. EM lab@inter-uni.net CR ALEX J, 2002, THESIS U TUBINGEN Baumgartner S, 1998, FORSCH KOMPLEMENTMED, V5, P27, DOI 10.1159/000021071 Berezin A A, 1994, ULTRA HIGH DILUTION, P137 COX DR, 1972, J R STAT SOC B, V34, P187 DELGIUDICE E, COHERENT ELECTRODYNA, P89 DELLMOUR F, 1996, DURCH AHNLICHES HEIL, P97 ENDLER PC, 1994, VET HUM TOXICOL, V36, P56 ENDLER PC, 1995, VET HUM TOXICOL, V37, P259 ENDLER PC, 2003, HOMEOPATHY EXPEDITIO ENDLER PC, 1998, EXPEDITION HOMOPATHI ENDLER PC, 1996, DURCH AHNLICHES HEIL, P203 ENDLER PC, 1991, BERLIN J RES HOM, V1, P151 GERASSIMOS S, 1998, HOMOEPOATHY CRITICAL, P153 Gosner K. L., 1960, Herpetologica, V16, P183 HECKMANN C, 1997, THESIS U TUBINGEN HERKOVITS J, 1993, COMMUNICATIONES BIOL, V7, P70 HORNUNG J, 1996, FORSCH KOMPLEMENTMED, V3, P91 KAVARAINEN A, 1992, MESOSCOPIC THEORY MA LAUPPERT E, 1997, HIGH DILUTION EFFECT Roth C, 1991, BERLIN J RES HOM, V1, P111 SCHULTE J, BIOINFORMATION QUANT, P45 SCHULTE J, 1998, FUNDAMENTAL RES ULTR VANWIJK R, 1998, HOMEOPATHY CRITICAL, P180 Walach H, 1996, WIEN KLIN WOCHENSCHR, V108, P654 WEIL MR, 1986, GEN COMP ENDOCR, V62, P8, DOI 10.1016/0016-6480(86)90088-2 Zausner C, 2002, PERFUSION-GERMANY, V15, P268 ZAUSNERLUKITSCH C, 2001, THESIS U WIEN NR 27 TC 21 Z9 22 U1 0 U2 1 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1424-7364 J9 FORSCH KOMP KLAS NAT JI Forsch. Komplementmed. Klass. Naturheilkd. PD JUN PY 2003 VL 10 IS 3 BP 137 EP 142 DI 10.1159/000072211 PG 6 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA 702MC UT WOS:000184226800004 PM 12853720 DA 2023-03-13 ER PT J AU Araujo, SD Paparella, S Dondi, D Bentivoglio, A Carbonera, D Balestrazzi, A AF Araujo, Susana de Sousa Paparella, Stefania Dondi, Daniele Bentivoglio, Antonio Carbonera, Daniela Balestrazzi, Alma TI Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE hormesis; ionizing radiation; magnetic field; microwaves; seed germination; seed vigor; ultraviolet radiation ID ELECTRON-PARAMAGNETIC-RESONANCE; UV-C RADIATION; MAGNETIC-FIELD; X-RAYS; MOLECULAR MOBILITY; GAMMA-IRRADIATION; DNA-REPAIR; ELECTROMAGNETIC-FIELDS; ULTRAVIOLET-RADIATION; THERMAL NEUTRONS AB In the context of seed technology, the use of physical methods for increasing plant production offers advantages over conventional treatments based on chemical substances. The effects of physical invigoration treatments in seeds can be now addressed at multiple levels, ranging from morpho-structural aspects to changes in gene expression and protein or metabolite accumulation. Among the physical methods available, "magneto-priming" and irradiation with microwaves (MWs) or ionizing radiations (IRs) are the most promising pre-sowing seed treatments. "Magneto-priming" is based on the application of magnetic fields and described as an eco-friendly, cheap, non-invasive technique with proved beneficial effects on seed germination, vigor and crop yield. IRs, as gamma-rays and X-rays, have been widely regarded as a powerful tool in agricultural sciences and food technology. Gamma -rays delivered at low dose have showed to enhance germination percentage and seedling establishment, acting as an actual 'priming' treatment. Different biological effects have been observed in seeds subjected to MWs and X-rays but knowledge about their impact as seed invigoration agent or stimulatory effects on germination need to be further extended. Ultraviolet (UV) radiations, namely UV-A and UV-C have shown to stimulate positive impacts on seed health, germination, and seedling vigor. For all mentioned physical treatments, extensive fundamental and applied research is still needed to define the optimal dose, exposition time, genotype- and environment-dependent irradiation conditions. Electron paramagnetic resonance has an enormous potential in seed technology not fully explored to monitor seed invigoration treatments and/or identifying the best suitable irradiation dose or time-point to stop the treatment. The present manuscript describes the use of physical methods for seed invigoration, while providing a critical discussion on the constraints and advantages. The future perspectives related to the use of these approaches to address the need of seed technologists, producers and trade markers will be also highlighted. C1 [Araujo, Susana de Sousa] Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Plant Cell Technol Lab, P-2780156 Oeiras, Portugal. [Araujo, Susana de Sousa; Paparella, Stefania; Carbonera, Daniela; Balestrazzi, Alma] Univ Pavia, Dept Biol & Biotechnol L Spallanzani, Via Palestro 3, I-27100 Pavia, Italy. [Dondi, Daniele; Bentivoglio, Antonio] Univ Pavia, Dept Chem, Via Palestro 3, I-27100 Pavia, Italy. C3 Universidade Nova de Lisboa; University of Pavia; University of Pavia RP Araujo, SD (corresponding author), Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Plant Cell Technol Lab, P-2780156 Oeiras, Portugal.; Araujo, SD (corresponding author), Univ Pavia, Dept Biol & Biotechnol L Spallanzani, Via Palestro 3, I-27100 Pavia, Italy. EM saraujo@itqb.unl.pt RI Araújo, Susana S/A-5482-2009; Balestrazzi, Alma/AAF-2974-2020 OI Araújo, Susana S/0000-0003-2823-088X; Balestrazzi, Alma/0000-0003-2003-4120 FU University of Pavia; CAROLO Foundation [2013-1727]; Fundacao para a Ciencia e a Tecnologia (Lisbon, Portugal) [UID/Multi/04551/2013, SFRH/BPD/108032/2015] FX This work was supported by grants from University of Pavia. SA has been awarded by a research contract funded by CAROLO Foundation (Action 3, Code 2013-1727) - Integrated Project Advanced Priming Technologies for the Lombardy Agro-Seed Industry-PRIMTECH.' The financial support from Fundacao para a Ciencia e a Tecnologia (Lisbon, Portugal) is acknowledged through research unit "GREEN-it: Bioresources for Sustainability" (UID/Multi/04551/2013), as well as, SA postdoctoral grant (SFRH/BPD/108032/2015). CR Abdel-Hady M. S., 2008, Australian Journal of Basic and Applied Sciences, V2, P401 Afzal I, 2012, INT AGROPHYS, V26, P335, DOI 10.2478/v10247-012-0047-1 Ahmad M, 2007, PLANTA, V225, P615, DOI 10.1007/s00425-006-0383-0 Al-Enezi N. A., 2012, Emirates Journal of Food and Agriculture, V24, P415 Aladjadjiyan A., 2010, Romanian Journal of Biophysics, V20, punpaginated Aladjadjiyan A, 2012, INT TECH PLOVDIV BUL, P145, DOI [10.5772/32039, DOI 10.5772/32039] Anand A, 2012, INDIAN J BIOCHEM BIO, V49, P63 Arena C, 2014, ACTA ASTRONAUT, V104, P419, DOI 10.1016/j.actaastro.2014.05.005 Baby SM, 2011, PLANT SIGNAL BEHAV, V6, P1635, DOI 10.4161/psb.6.11.17720 Balakhnina T, 2015, ACTA PHYSIOL PLANT, V37, DOI 10.1007/s11738-015-1802-2 Balestrazzi A, 2011, J PLANT PHYSIOL, V168, P706, DOI 10.1016/j.jplph.2010.10.008 Banik S, 2003, BIORESOURCE TECHNOL, V87, P155, DOI 10.1016/S0960-8524(02)00169-4 BEARD BH, 1958, GENETICS, V43, P728 Belyavskaya NA, 2004, ADV SPACE RES-SERIES, V34, P1566, DOI 10.1016/j.asr.2004.01.021 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Benedict HM, 1934, PLANT PHYSIOL, V9, P173, DOI 10.1104/pp.9.1.173 Bhardwaj J, 2012, PLANT PHYSIOL BIOCH, V57, P67, DOI 10.1016/j.plaphy.2012.05.008 Bilalis DJ, 2012, ELECTROMAGN BIOL MED, V31, P143, DOI 10.3109/15368378.2011.624660 Bless AA, 1938, PLANT PHYSIOL, V13, P209, DOI 10.1104/pp.13.1.209 Borzouei A, 2010, PAK J BOT, V42, P2281 Brown JE, 2001, CROP PROT, V20, P873, DOI 10.1016/S0261-2194(01)00037-0 Buitink J, 2000, P NATL ACAD SCI USA, V97, P2385, DOI 10.1073/pnas.040554797 Buitink J, 1998, PLANT PHYSIOL, V118, P531, DOI 10.1104/pp.118.2.531 Buitink J, 1999, BIOPHYS J, V76, P3315, DOI 10.1016/S0006-3495(99)77484-9 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 CALDECOTT RS, 1952, P NATL ACAD SCI USA, V38, P804, DOI 10.1073/pnas.38.9.804 Celestino C, 2000, ELECTRO MAGNETOBIOL, V19, P115, DOI 10.1081/JBC-100100302 Choudhary KK, 2014, ECOTOX ENVIRON SAFE, V100, P178, DOI 10.1016/j.ecoenv.2013.10.032 Confalonieri M, 2014, PLANT CELL TISS ORG, V116, P187, DOI 10.1007/s11240-013-0395-y da Silva JAT, 2016, PROTOPLASMA, V253, P231, DOI 10.1007/s00709-015-0820-7 De Micco V, 2014, SCI WORLD J, DOI 10.1155/2014/428141 de Souza A, 2006, BIOELECTROMAGNETICS, V27, P247, DOI 10.1002/bem.20206 Dubey A. K., 2007, Progressive Agriculture, V7, P46 Edmondson JL, 2014, J APPL ECOL, V51, P880, DOI 10.1111/1365-2664.12254 Efthimiadou A, 2014, SCI WORLD J, DOI 10.1155/2014/369745 Einset J, 2015, MUTAGENESIS, V30, P45, DOI 10.1093/mutage/geu054 Esnault MA, 2010, ENVIRON EXP BOT, V68, P231, DOI 10.1016/j.envexpbot.2010.01.007 Fae M, 2014, PLANT CELL REP, V33, P1071, DOI 10.1007/s00299-014-1595-6 Fan XT, 2003, J AGR FOOD CHEM, V51, P1231, DOI 10.1021/jf020600c Farkas J, 2011, TRENDS FOOD SCI TECH, V22, P121, DOI 10.1016/j.tifs.2010.04.002 Farokh P., 2010, Research Journal of Environmental Sciences, V4, P70 Ghodbane S, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/602987 Gicquel M, 2012, PLANT SCI, V195, P106, DOI 10.1016/j.plantsci.2012.06.015 Golovina EA, 1997, PLANT PHYSIOL, V114, P383, DOI 10.1104/pp.114.1.383 Guajardo-Flores D, 2014, CEREAL CHEM, V91, P276, DOI 10.1094/CCHEM-08-13-0172-R Hamid N., 2011, PAKISTAN J CHEM, V1, P164, DOI [10.15228/2011.v01.i04.p04, DOI 10.15228/2011.V01.I04.P04] Hegazi A.Z., 2010, J HORT FOR, V2, P38 Heisler GM, 2003, AGR FOREST METEOROL, V120, P3, DOI 10.1016/j.agrformet.2003.08.007 Hernandez-Aguilar C., 2009, ACTA AGROPHYS, V14, P7 Hideg E, 2013, TRENDS PLANT SCI, V18, P107, DOI 10.1016/j.tplants.2012.09.003 Hollosy F, 2002, MICRON, V33, P179, DOI 10.1016/S0968-4328(01)00011-7 Hussain S, 2015, SCI REP-UK, V5, DOI 10.1038/srep08101 Irfaq M., 2001, J BIOL SCI, V1, P935 Iuliana C., 2013, Scientific Papers: Animal Science and Biotechnologies, V46, P185 Jakubowski T., 2010, AGR ENG, V6, P57 Javed N, 2011, PHOTOCHEM PHOTOBIOL, V87, P1354, DOI 10.1111/j.1751-1097.2011.00990.x Jayasanka SMDH, 2014, ENVIRON REV, V22, P220, DOI 10.1139/er-2013-0061 Jayawardena SD, 1988, BIO NEWS, V4, P22 Knox OGG, 2013, CROP PROT, V50, P12, DOI 10.1016/j.cropro.2013.03.009 Kotwaliwale N, 2014, J FOOD SCI TECH MYS, V51, P1, DOI 10.1007/s13197-011-0485-y Kovacs E, 2002, MICRON, V33, P199, DOI 10.1016/S0968-4328(01)00012-9 Kovalchuk I, 2007, MUTAT RES-FUND MOL M, V624, P101, DOI 10.1016/j.mrfmmm.2007.04.009 Krylov AV., 1960, PLANT PHYSIOL, V7, P156 Kurdziel M, 2015, J PLANT PHYSIOL, V183, P95, DOI 10.1016/j.jplph.2015.05.018 Labanowska M, 2016, J PLANT PHYSIOL, V190, P54, DOI 10.1016/j.jplph.2015.10.011 Labanowska M, 2012, J PLANT PHYSIOL, V169, P1234, DOI 10.1016/j.jplph.2012.04.020 Leprince O, 1998, PLANT PHYSIOL, V118, P1253, DOI 10.1104/pp.118.4.1253 LEPRINCE O, 1990, NEW PHYTOL, V116, P573, DOI 10.1111/j.1469-8137.1990.tb00541.x LEPRINCE O, 1995, PHYSIOL PLANTARUM, V94, P233, DOI 10.1111/j.1399-3054.1995.tb05306.x Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Macovei A, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/676934 Maffei ME, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00445 MAHERCHANDANI N, 1975, RADIAT BOT, V15, P439, DOI 10.1016/0033-7560(75)90018-6 Maity JP, 2005, RADIAT PHYS CHEM, V74, P391, DOI 10.1016/j.radphyschem.2004.08.005 MAJEED A, 2010, INT J BIOL SCI ENG, V1, P147 Marcu D, 2013, J BIOL PHYS, V39, P625, DOI 10.1007/s10867-013-9322-z Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Minisi F. A., 2013, American-Eurasian Journal of Agricultural & Environmental Sciences, V13, P696 Mitchell LM, 1997, SOC STUD SCI, V27, P221, DOI 10.1177/030631297027002002 Mokobia CE, 2005, J RADIOL PROT, V25, P181, DOI 10.1088/0952-4746/25/2/006 Moussa HR, 2006, RUSS J PLANT PHYSL+, V53, P193, DOI 10.1134/S1021443706020075 Ouhibi C, 2014, PLANT PHYSIOL BIOCH, V83, P126, DOI 10.1016/j.plaphy.2014.07.019 Paparella S, 2015, PLANT CELL REP, V34, P1281, DOI 10.1007/s00299-015-1784-y Perez-Torres E, 2015, PLANT CELL ENVIRON, V38, P2318, DOI 10.1111/pce.12548 Poinapen D, 2013, J PLANT PHYSIOL, V170, P1251, DOI 10.1016/j.jplph.2013.04.016 Pretty JN, 2006, ENVIRON SCI TECHNOL, V40, P1114, DOI 10.1021/es051670d PRIESTLEY DA, 1985, PHYSIOL PLANTARUM, V64, P88, DOI 10.1111/j.1399-3054.1985.tb01217.x Qi WC, 2015, ECOTOX ENVIRON SAFE, V115, P243, DOI 10.1016/j.ecoenv.2015.02.026 Ragonnaud M, 2013, EU SEED PLANT REPROD Rajendra P, 2005, ELECTROMAGN BIOL MED, V24, P39, DOI 10.1081/JBC-200055058 Reddy K. V., 2012, Research Journal of Seed Science, V5, P106 Reddy MVB, 1998, J AGR ENG RES, V71, P113, DOI 10.1006/jaer.1998.0305 Reddy MVB, 1995, J MICROWAVE POWER EE, V30, P199 Sacande M, 2001, J EXP BOT, V52, P919, DOI 10.1093/jexbot/52.358.919 SAHIN Hasan, 2014, Journal of Biosystems Engineering, V39, P304 Sahu ID, 2013, BIOCHEMISTRY-US, V52, P5967, DOI 10.1021/bi400834a Scialabba A, 2002, ACTA BOT GALLICA, V149, P113, DOI 10.1080/12538078.2002.10515947 Shaukat SS, 2013, PAK J BOT, V45, P779 Shine MB, 2011, BIOELECTROMAGNETICS, V32, P474, DOI 10.1002/bem.20656 Siddiqui A, 2011, PAK J BOT, V43, P2221 SJODIN J, 1962, HEREDITAS, V48, P565 SMIRNOV AI, 1992, J PLANT PHYSIOL, V140, P447, DOI 10.1016/S0176-1617(11)80823-0 SMITH L, 1950, J HERED, V41, P125, DOI 10.1093/oxfordjournals.jhered.a106107 Soran ML, 2014, J PLANT PHYSIOL, V171, P1436, DOI 10.1016/j.jplph.2014.06.013 Steffen-Heins A, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00015 Talei D, 2013, SCI WORLD J, DOI 10.1155/2013/408026 Uhlenbeck GE, 1926, NATURE, V117, P264, DOI 10.1038/117264a0 Vashisth A, 2010, J PLANT PHYSIOL, V167, P149, DOI 10.1016/j.jplph.2009.08.011 Velazquez-Marti B, 2006, BIOSYST ENG, V93, P365, DOI 10.1016/j.biosystemseng.2006.01.005 Ventura L, 2012, PLANT PHYSIOL BIOCH, V60, P196, DOI 10.1016/j.plaphy.2012.07.031 Vian A, 2006, PLANT SIGNAL BEHAV, V1, P67, DOI 10.4161/psb.1.2.2434 Weil J. A., 2006, ELECT PARAMAGNETIC R Wolff Silje A., 2014, Life-Basel, V4, P189, DOI 10.3390/life4020189 YAGYU P, 1957, GENETICS, V42, P222 Zaka R, 2002, MUTAT RES-GEN TOX EN, V517, P87, DOI 10.1016/S1383-5718(02)00056-6 Zavoisky E, 1945, J PHYS-USSR, V9, P245 Zeeman P., 1897, NATURE, V55, P347, DOI [10.1038/055347a0, DOI 10.1038/055347A0] NR 118 TC 83 Z9 88 U1 3 U2 57 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD MAY 12 PY 2016 VL 7 AR 646 DI 10.3389/fpls.2016.00646 PG 12 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA DL9PG UT WOS:000375974600002 PM 27242847 OA gold, Green Published DA 2023-03-13 ER PT J AU Zhang, AA Xu, L Liu, ZQ Zhang, JB Zhao, KJ Han, LL AF Zhang, Aonan Xu, Ling Liu, Ziqi Zhang, Jiabo Zhao, Kuijun Han, Lanlan TI Effects of Acetamiprid at Low and Median Lethal Concentrations on the Development and Reproduction of the Soybean Aphid Aphis glycines SO INSECTS LA English DT Article DE neonicotinoid; hormesis; life table; survival rate; population ID MYZUS-PERSICAE; LEPIDOPTERA-NOCTUIDAE; INSECTICIDES; POPULATIONS; EXPRESSION; PARAMETERS; MANAGEMENT; RESISTANCE AB Simple Summary We conducted a study on the effects of LC50 and LC30 acetamiprid on the growth and development of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae). We found that exposure to acetamiprid at LC50 significantly extended the mean generation time, adult pre-ovipositional period, and total pre-reproduction period compared to the control, whereas exposure to acetamiprid at LC30 significantly shortened these periods. Acetamiprid at LC50 treatment significantly decreased the growth rate compared with the LC30 treatment. In addition, this study also found that low lethal concentration of acetamiprid could advance the occurrence of a reproductive peak, which could help us understand the major occurrence period of soybean aphids under acetamiprid stress. The present study provides reference data that could facilitate the exploration of the effects of acetamiprid on A. glycines in the field. The soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) is a major pest of soybean and poses a serious threat to soybean production. Studies on the effect of acetamiprid on the life table parameters of A. glycines, provide important information for the effective management of this pest. We found that exposure to acetamiprid at LC50 significantly extended the mean generation time, adult pre-reproductive period, and total pre-reproduction period compared with the control, whereas exposure to acetamiprid at LC30 significantly shortened these periods. Exposure to acetamiprid at both LC30 and LC50 significantly decreased the fecundity of the female adult, net reproductive rate, intrinsic rate of increase, and finite rate of increase compared with the control. The probability of attaining the adult stage was 0.51, 0.38, and 0.86 for a newly born nymph from the LC30 acetamiprid treatment group, LC50 acetamiprid treatment group, and control group, respectively. Acetamiprid at both LC50 and LC30 exerted stress effects on A. glycines, with the LC50 treatment significantly decreased the growth rate compared with the LC30 treatment. The present study provides reference data that could facilitate the exploration of the effects of acetamiprid on A. glycines in the field. C1 [Zhang, Aonan; Xu, Ling; Liu, Ziqi; Zhang, Jiabo; Zhao, Kuijun; Han, Lanlan] Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China. C3 Northeast Agricultural University - China RP Han, LL (corresponding author), Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China. EM zan826319@163.com; 18846918117@163.com; zan8261314@163.com; zhangjiabo_1020@163.com; kjzhao@163.com; hanll_neau@aliyun.com OI Zhang, Aonan/0000-0003-4510-0892 FU Heilongjiang Science Foundation Project [C2018011]; Special Fund for the Construction of Modern Agricultural Industry Technology Systems [CARS-04]; Research and Development of Technology and Products on Nature, Enemy Insects Prevention and Control [2017YFD0201000] FX This research was funded by Heilongjiang Science Foundation Project (grant number C2018011), Special Fund for the Construction of Modern Agricultural Industry Technology Systems (grant number CARS-04) and the Research and Development of Technology and Products on Nature, Enemy Insects Prevention and Control (grant number 2017YFD0201000). CR Aseperi AK, 2020, J ENVIRON MANAGE, V276, DOI 10.1016/j.jenvman.2020.111329 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H, 2020, TWOSEX MSCHART COMPU Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936 Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7 Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Fenner K, 2013, SCIENCE, V341, P752, DOI 10.1126/science.1236281 GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Han WS, 2019, ECOTOXICOLOGY, V28, P399, DOI 10.1007/s10646-019-02030-4 Hanson AA, 2017, J ECON ENTOMOL, V110, P2235, DOI 10.1093/jee/tox235 Hopper KR, 2017, BIOL CONTROL, V115, P55, DOI 10.1016/j.biocontrol.2017.09.004 Jan MT, 2015, CROP PROT, V78, P247, DOI 10.1016/j.cropro.2015.09.020 Liu LL, 2016, FLA ENTOMOL, V99, P292, DOI 10.1653/024.099.0221 Lu ZT, 2021, PESTIC BIOCHEM PHYS, V174, DOI 10.1016/j.pestbp.2021.104824 Mahmoodi L, 2020, J ECON ENTOMOL, V113, P2713, DOI 10.1093/jee/toaa193 Menger J, 2020, J ECON ENTOMOL, V113, P932, DOI 10.1093/jee/toz351 Mokbel El-Sayed Mohammad Soliman, 2018, Journal of Plant Protection Research, V58, P328, DOI 10.24425/jppr.2018.124641 Paula DP, 2020, PESTIC BIOCHEM PHYS, V164, P100, DOI 10.1016/j.pestbp.2019.12.012 Ragsdale DW, 2011, ANNU REV ENTOMOL, V56, P375, DOI 10.1146/annurev-ento-120709-144755 Ragsdale DW, 2004, ANN ENTOMOL SOC AM, V97, P204, DOI 10.1603/0013-8746(2004)097[0204:SABINA]2.0.CO;2 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Somar RO, 2019, CROP PROT, V124, DOI 10.1016/j.cropro.2019.104850 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tuan SJ, 2014, J ECON ENTOMOL, V107, P897, DOI 10.1603/EC13435 Ullah F, 2021, PESTIC BIOCHEM PHYS, V171, DOI 10.1016/j.pestbp.2020.104729 Ullah F, 2020, PESTIC BIOCHEM PHYS, V170, DOI 10.1016/j.pestbp.2020.104687 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Zhao YH, 2018, PESTIC BIOCHEM PHYS, V148, P93, DOI 10.1016/j.pestbp.2018.04.003 Zhou C, 2020, J INSECT SCI, V20, DOI 10.1093/jisesa/ieaa099 NR 37 TC 1 Z9 1 U1 10 U2 26 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-4450 J9 INSECTS JI Insects PD JAN PY 2022 VL 13 IS 1 AR 87 DI 10.3390/insects13010087 PG 12 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA YO0KY UT WOS:000747638600001 PM 35055930 OA gold, Green Published DA 2023-03-13 ER PT J AU Kolb, H Kempf, K Rohling, M Lenzen-Schulte, M Schloot, NC Martin, S AF Kolb, Hubert Kempf, Kerstin Roehling, Martin Lenzen-Schulte, Martina Schloot, Nanette C. Martin, Stephan TI Ketone bodies: from enemy to friend and guardian angel SO BMC MEDICINE LA English DT Review ID CALORIE-KETOGENIC DIET; LOW-FAT DIET; LOW-DENSITY-LIPOPROTEIN; BETA-HYDROXYBUTYRATE; LOW-CARBOHYDRATE; OXIDATIVE STRESS; FUEL METABOLISM; WEIGHT-LOSS; MITOCHONDRIAL BIOGENESIS; LIPID-PEROXIDATION AB During starvation, fasting, or a diet containing little digestible carbohydrates, the circulating insulin levels are decreased. This promotes lipolysis, and the breakdown of fat becomes the major source of energy. The hepatic energy metabolism is regulated so that under these circumstances, ketone bodies are generated from beta-oxidation of fatty acids and secreted as ancillary fuel, in addition to gluconeogenesis. Increased plasma levels of ketone bodies thus indicate a dietary shortage of carbohydrates. Ketone bodies not only serve as fuel but also promote resistance to oxidative and inflammatory stress, and there is a decrease in anabolic insulin-dependent energy expenditure. It has been suggested that the beneficial non-metabolic actions of ketone bodies on organ functions are mediated by them acting as a ligand to specific cellular targets. We propose here a major role of a different pathway initiated by the induction of oxidative stress in the mitochondria during increased ketolysis. Oxidative stress induced by ketone body metabolism is beneficial in the long term because it initiates an adaptive (hormetic) response characterized by the activation of the master regulators of cell-protective mechanism, nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, and AMP-activated kinase. This results in resolving oxidative stress, by the upregulation of anti-oxidative and anti-inflammatory activities, improved mitochondrial function and growth, DNA repair, and autophagy. In the heart, the adaptive response to enhanced ketolysis improves resistance to damage after ischemic insults or to cardiotoxic actions of doxorubicin. Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors may also exert their cardioprotective action via increasing ketone body levels and ketolysis. We conclude that the increased synthesis and use of ketone bodies as ancillary fuel during periods of deficient food supply and low insulin levels causes oxidative stress in the mitochondria and that the latter initiates a protective (hormetic) response which allows cells to cope with increased oxidative stress and lower energy availability. Keywords Ketogenic diet, Ketone bodies, Beta hydroxybutyrate, Insulin, Obesity, Type 2 diabetes, Inflammation, Oxidative stress, Cardiovascular disease, SGLT2, Hormesis C1 [Kolb, Hubert; Schloot, Nanette C.; Martin, Stephan] Univ Duesseldorf, Fac Med, Moorenstr 5, D-40225 Dusseldorf, Germany. [Kolb, Hubert; Kempf, Kerstin; Roehling, Martin; Martin, Stephan] Duesseldorf Catholic Hosp Grp, West German Ctr Diabet & Hlth, Hohensandweg 37, D-40591 Dusseldorf, Germany. [Lenzen-Schulte, Martina] Redakt Deutsch Arzteblatt, Reinhardtstr 34, D-10117 Berlin, Germany. RP Kempf, K (corresponding author), Duesseldorf Catholic Hosp Grp, West German Ctr Diabet & Hlth, Hohensandweg 37, D-40591 Dusseldorf, Germany. EM kerstin.kempf@wdgz.de CR Abdelmegeed MA, 2004, J PHARMACOL EXP THER, V310, P728, DOI 10.1124/jpet.104.066522 Ahmed K, 2009, J BIOL CHEM, V284, P21928, DOI 10.1074/jbc.M109.019455 Al-Zaid NS, 2007, ACTA CARDIOL, V62, P381, DOI 10.2143/AC.62.4.2022282 American Diabetes Association, 2019, Diabetes Care, V42, pS46, DOI 10.2337/dc19-S005 Anderson EJ, 2007, J BIOL CHEM, V282, P31257, DOI 10.1074/jbc.M706129200 Arab HH, 2021, CHEM-BIOL INTERACT, V335, DOI 10.1016/j.cbi.2021.109368 Arencibia-Albite F, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04204 Athinarayanan SJ, 2019, FRONT ENDOCRINOL, V10, DOI 10.3389/fendo.2019.00348 Aubert G, 2016, CIRCULATION, V133, P698, DOI 10.1161/CIRCULATIONAHA.115.017355 Bae HR, 2016, ONCOTARGET, V7, P66444, DOI 10.18632/oncotarget.12119 Baird L, 2020, MOL CELL BIOL, V40, DOI 10.1128/MCB.00099-20 Bedi KC, 2016, CIRCULATION, V133, P706, DOI 10.1161/CIRCULATIONAHA.115.017545 Bhanpuri NH, 2018, CARDIOVASC DIABETOL, V17, DOI 10.1186/s12933-018-0698-8 Bishop NA, 2007, NATURE, V447, P545, DOI 10.1038/nature05904 Bonora BM, 2020, CURR DIABETES REP, V20, DOI 10.1007/s11892-020-01307-x Brand-Miller J, 2009, J AM COLL NUTR, V28, p446S, DOI 10.1080/07315724.2009.10718110 Brehm BJ, 2003, J CLIN ENDOCR METAB, V88, P1617, DOI 10.1210/jc.2002-021480 Cadenas S, 2018, FREE RADICAL BIO MED, V117, P76, DOI 10.1016/j.freeradbiomed.2018.01.024 Cahill GF, 2006, ANNU REV NUTR, V26, P1, DOI 10.1146/annurev.nutr.26.061505.111258 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Chen H, 2020, CARDIOVASC DRUG THER, V34, P443, DOI 10.1007/s10557-020-06978-y Choi YJ, 2020, NUTRIENTS, V12, DOI 10.3390/nu12072005 Chriett S, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36941-9 Clarke K, 2012, REGUL TOXICOL PHARM, V63, P401, DOI 10.1016/j.yrtph.2012.04.008 Cohen CW, 2018, J NUTR, V148, P1253, DOI 10.1093/jn/nxy119 Coleman V, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20901-4 Cunha GM, 2020, FRONT ENDOCRINOL, V11, DOI 10.3389/fendo.2020.00607 Dabke P, 2020, NUTRIENTS, V12, DOI 10.3390/nu12082379 Daly ME, 2006, DIABETIC MED, V23, P15, DOI 10.1111/j.1464-5491.2005.01760.x Dansinger ML, 2005, JAMA-J AM MED ASSOC, V293, P43, DOI 10.1001/jama.293.1.43 Deng QH, 2015, J CELL BIOCHEM, V116, P1070, DOI 10.1002/jcb.25062 Di Lorenzo C, 2019, NUTRIENTS, V11, DOI 10.3390/nu11081742 Duncan SH, 2008, INT J OBESITY, V32, P1720, DOI 10.1038/ijo.2008.155 Duncan SH, 2007, APPL ENVIRON MICROB, V73, P1073, DOI 10.1128/AEM.02340-06 Elamin M, 2017, FRONT MOL NEUROSCI, V10, DOI 10.3389/fnmol.2017.00377 Evans M, 2017, J PHYSIOL-LONDON, V595, P2857, DOI 10.1113/JP273185 Falkenhain K, 2021, AM J CLIN NUTR, V114, P1455, DOI 10.1093/ajcn/nqab212 Fei YQ, 2020, FRONT NEUROL, V11, DOI 10.3389/fneur.2020.592514 Ferrannini E, 2016, DIABETES CARE, V39, P1108, DOI 10.2337/dc16-0330 Ferrannini E, 2016, DIABETES, V65, P1190, DOI 10.2337/db15-1356 Ferrannini G, 2021, DIABETES RES CLIN PR, V175, DOI 10.1016/j.diabres.2021.108796 Fischer T, 2018, J NUTR METAB, V2018, DOI 10.1155/2018/9812806 Flores-Guerrero JL, 2021, EUR J CLIN INVEST, V51, DOI 10.1111/eci.13468 Fuehrlein BS, 2004, J CLIN ENDOCR METAB, V89, P1641, DOI 10.1210/jc.2003-031796 Gano LB, 2014, J LIPID RES, V55, P2211, DOI 10.1194/jlr.R048975 Gardner CD, 2007, JAMA-J AM MED ASSOC, V297, P969, DOI 10.1001/jama.297.9.969 Gerber PA, 2012, CURR OPIN CLIN NUTR, V15, P381, DOI 10.1097/MCO.0b013e3283545a6d Gershuni Victoria M, 2018, Curr Nutr Rep, V7, P97, DOI 10.1007/s13668-018-0235-0 Goday A, 2016, NUTR DIABETES, V6, DOI 10.1038/nutd.2016.36 Grammatikopoulou MG, 2020, ADV NUTR, V11, P1583, DOI 10.1093/advances/nmaa073 Guo QH, 2019, ACTA HISTOCHEM, V121, P455, DOI 10.1016/j.acthis.2019.03.009 Hallberg SJ, 2018, DIABETES THER, V9, P583, DOI 10.1007/s13300-018-0373-9 Han YM, 2020, EXP MOL MED, V52, P548, DOI 10.1038/s12276-020-0415-z Bjorkman SH, 2021, ANTIOXID REDOX SIGN, V35, P252, DOI 10.1089/ars.2020.8220 Hasan-Olive MM, 2019, NEUROCHEM RES, V44, P22, DOI 10.1007/s11064-018-2588-6 Hawley SA, 2016, DIABETES, V65, P2784, DOI 10.2337/db16-0058 Ho KL, 2021, CARDIOVASC RES, V117, P1178, DOI 10.1093/cvr/cvaa143 Hoong CWS, 2021, ENDOCRINOLOGY, V162, DOI 10.1210/endocr/bqab079 Horton JL, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.124079 Hyde PN, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.128308 Izuta Y, 2018, AGING CELL, V17, DOI 10.1111/acel.12699 Jabekk PT, 2010, NUTR METAB, V7, DOI 10.1186/1743-7075-7-17 Jain SK, 1999, DIABETES, V48, P1850, DOI 10.2337/diabetes.48.9.1850 Jain SK, 1998, FREE RADICAL BIO MED, V25, P1083, DOI 10.1016/S0891-5849(98)00140-3 Jensen NJ, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21228767 Johnstone AM, 2008, AM J CLIN NUTR, V87, P44, DOI 10.1093/ajcn/87.1.44 JONES AW, 1993, J ANAL TOXICOL, V17, P182, DOI 10.1093/jat/17.3.182 Kalantar-Zadeh K, 2021, LANCET Kanikarla-Marie P, 2015, CELL PHYSIOL BIOCHEM, V35, P364, DOI 10.1159/000369702 Kanner J, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090797 Kashiwaya Y, 2010, J BIOL CHEM, V285, P25950, DOI 10.1074/jbc.M110.138198 Kimura I, 2011, P NATL ACAD SCI USA, V108, P8030, DOI 10.1073/pnas.1016088108 Kolb H, 2020, BMC MED, V18, DOI 10.1186/s12916-020-01688-6 Kolb H, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1225-1 Koyani CN, 2020, PHARMACOL RES, V158, DOI 10.1016/j.phrs.2020.104870 Laffel L, 1999, DIABETES-METAB RES, V15, P412, DOI 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8 Lee JY, 2021, DIABETES METAB J, V45, P921, DOI 10.4093/dmj.2020.0187 Lee SH, 2019, BMB REP, V52, P24, DOI 10.5483/BMBRep.2019.52.1.290 Leng WL, 2019, ANN TRANSL MED, V7, DOI 10.21037/atm.2019.09.03 Ley RE, 2006, NATURE, V444, P1022, DOI 10.1038/4441022a Li CG, 2019, CARDIOVASC DIABETOL, V18, DOI 10.1186/s12933-019-0816-2 Liu Y., 2020, FRONT PHARMACOL, V11 Longo VD, 2014, CELL METAB, V19, P181, DOI 10.1016/j.cmet.2013.12.008 Lu Y, 2018, NEUROSCI LETT, V683, P13, DOI 10.1016/j.neulet.2018.06.016 Lyons L, 2020, EPILEPSIA, V61, P1261, DOI 10.1111/epi.16543 Martin-McGill KJ, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001903.pub4 McPherson PAC, 2012, J PHYSIOL BIOCHEM, V68, P141, DOI 10.1007/s13105-011-0112-4 Meroni E, 2018, NUTRIENTS, V10, DOI 10.3390/nu10020250 Merry TL, 2016, J PHYSIOL-LONDON, V594, P5195, DOI 10.1113/JP271957 Milder JB, 2010, NEUROBIOL DIS, V40, P238, DOI 10.1016/j.nbd.2010.05.030 Miles JM, 2007, HORM METAB RES, V39, P726, DOI 10.1055/s-2007-990273 Miller VJ, 2018, J NUTR METAB, V2018, DOI 10.1155/2018/5157645 Mizuno Y, 2017, METABOLISM, V77, P65, DOI 10.1016/j.metabol.2017.08.005 Moreno B, 2016, ENDOCRINE, V54, P681, DOI 10.1007/s12020-016-1050-2 Moreno B, 2014, ENDOCRINE, V47, P793, DOI 10.1007/s12020-014-0192-3 Moriconi E, 2021, NUTRIENTS, V13, DOI 10.3390/nu13030758 Murashige D, 2020, SCIENCE, V370, P364, DOI 10.1126/science.abc8861 Muscogiuri G, 2021, OBESITY FACTS, V14, P222, DOI 10.1159/000515381 Nasser S, 2020, WORLD J DIABETES, V11, P584, DOI 10.4239/wjd.v11.i12.584 Neal B, 2017, NEW ENGL J MED, V377, P644, DOI 10.1056/NEJMoa1611925 NEVILLE MC, 1991, AM J CLIN NUTR, V54, P81, DOI 10.1093/ajcn/54.1.81 Norwitz NG, 2021, FRONT PSYCHIATRY, V12, DOI 10.3389/fpsyt.2021.598119 Otsuki A, 2020, ARCH PHARM RES, V43, P275, DOI 10.1007/s12272-019-01193-2 Owen O E, 1979, Adv Exp Med Biol, V111, P169 OWEN OE, 1971, J CLIN INVEST, V50, P1536, DOI 10.1172/JCI106639 Packer M, 2020, CIRC-HEART FAIL, V13, DOI 10.1161/CIRCHEARTFAILURE.120.007197 Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105 Perissiou M, 2020, NUTRIENTS, V12, DOI 10.3390/nu12020482 Perticone M, 2019, MOLECULES, V24, DOI 10.3390/molecules24132499 Piche ME, 2018, J CLIN ENDOCR METAB, V103, P25, DOI 10.1210/jc.2017-01517 Puchalska P, 2017, CELL METAB, V25, P262, DOI 10.1016/j.cmet.2016.12.022 Qin S, 2016, MOL NUTR FOOD RES, V60, P1731, DOI 10.1002/mnfr.201501017 Ren CZ, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.664181 Rondanelli M, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.662591 Rosenstock J, 2015, DIABETES CARE, V38, P1638, DOI 10.2337/dc15-1380 Saasa V, 2019, DIAGNOSTICS, V9, DOI 10.3390/diagnostics9040224 Sabatino J, 2020, CARDIOVASC DIABETOL, V19, DOI 10.1186/s12933-020-01040-5 Sajoux I, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102368 Samaha FF, 2003, NEW ENGL J MED, V348, P2074, DOI 10.1056/NEJMoa022637 SATO K, 1995, FASEB J, V9, P651, DOI 10.1096/fasebj.9.8.7768357 Scheen AJ, 2020, NAT REV ENDOCRINOL, V16, P556, DOI 10.1038/s41574-020-0392-2 Shi XX, 2016, J DAIRY RES, V83, P442, DOI 10.1017/S0022029916000546 Shi XX, 2014, CELL PHYSIOL BIOCHEM, V33, P920, DOI 10.1159/000358664 Shimazu T, 2010, CELL METAB, V12, P654, DOI 10.1016/j.cmet.2010.11.003 Shoar S, 2021, AM J CARDIOVASC DIS, V11, P262 Snorek M, 2012, PHYSIOL RES, V61, P567, DOI 10.33549/physiolres.932338 Soto-Mota A, 2019, REGUL TOXICOL PHARM, V109, DOI 10.1016/j.yrtph.2019.104506 Srivastava S, 2012, FASEB J, V26, P2351, DOI 10.1096/fj.11-200410 St-Pierre J, 2002, J BIOL CHEM, V277, P44784, DOI 10.1074/jbc.M207217200 Sun XD, 2020, DIABETES, V69, P1292, DOI 10.2337/db19-0991 Taggart AKP, 2005, J BIOL CHEM, V280, P26649, DOI 10.1074/jbc.C500213200 Taylor R, 2019, LANCET DIABETES ENDO, V7, P726, DOI 10.1016/S2213-8587(19)30076-2 Taylor SI, 2015, J CLIN ENDOCR METAB, V100, P2849, DOI 10.1210/jc.2015-1884 Tebay LE, 2015, FREE RADICAL BIO MED, V88, P108, DOI 10.1016/j.freeradbiomed.2015.06.021 Thirupathi A, 2017, J PHYSIOL BIOCHEM, V73, P487, DOI 10.1007/s13105-017-0576-y Truby H, 2006, BMJ-BRIT MED J, V332, P1309, DOI 10.1136/bmj.38833.411204.80 Tsushima M, 2020, ARCH PHARM RES, V43, P286, DOI 10.1007/s12272-019-01188-z Unoki T, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020545 Veech RL, 2017, IUBMB LIFE, V69, P305, DOI 10.1002/iub.1627 Verma Subodh, 2018, JACC Basic Transl Sci, V3, P575, DOI 10.1016/j.jacbts.2018.07.006 Volek JS, 2008, PROG LIPID RES, V47, P307, DOI 10.1016/j.plipres.2008.02.003 Westman EC, 2006, INT J CARDIOL, V110, P212, DOI 10.1016/j.ijcard.2005.08.034 Wiers CE, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abf6780 Winters-van Eekelen E, 2021, EUR J CLIN NUTR, V75, P588, DOI 10.1038/s41430-020-00778-1 Wiviott SD, 2019, NEW ENGL J MED, V380, P347, DOI 10.1056/NEJMoa1812389 Xie ZY, 2016, MOL CELL, V62, P194, DOI 10.1016/j.molcel.2016.03.036 Yang YM, 2010, WORLD J GASTROENTERO, V16, P3731, DOI 10.3748/wjg.v16.i30.3731 Ye YM, 2017, CARDIOVASC DRUG THER, V31, P119, DOI 10.1007/s10557-017-6725-2 Yin JX, 2019, AGING-US, V11, P4579, DOI 10.18632/aging.102070 Yin JX, 2015, J CEREBR BLOOD F MET, V35, P1783, DOI 10.1038/jcbfm.2015.123 Youm YH, 2015, NAT MED, V21, P263, DOI 10.1038/nm.3804 Yu YS, 2018, EUR J PHARMACOL, V829, P121, DOI 10.1016/j.ejphar.2018.04.019 Zhang XY, 2020, CARDIOL RES PRACT, V2020, DOI 10.1155/2020/5695723 Zhou H, 2018, REDOX BIOL, V15, P335, DOI 10.1016/j.redox.2017.12.019 Zinman B, 2016, NEW ENGL J MED, V374, P1094, DOI 10.1056/NEJMc1600827 Zou ZT, 2002, AM J PHYSIOL-HEART C, V283, pH1968, DOI 10.1152/ajpheart.00250.2002 NR 156 TC 36 Z9 37 U1 6 U2 19 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1741-7015 J9 BMC MED JI BMC Med. PD DEC 9 PY 2021 VL 19 IS 1 AR 313 DI 10.1186/s12916-021-02185-0 PG 15 WC Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA XL5FF UT WOS:000728169500001 PM 34879839 OA Green Published, gold DA 2023-03-13 ER PT J AU Requeson, E Osuna, D Santiago, AD Sosa, T AF Requeson, Elena Osuna, Dolores del Rosario Santiago, Ana Sosa, Teresa TI Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic Compounds Present in Cistus ladanifer SO AGRONOMY-BASEL LA English DT Article DE phytotoxicity; phenolic compounds; allelopathy; hormetic effect; Cistus ladanifer; bioherbicides ID ESSENTIAL OIL; HORMESIS; GERMINATION; GROWTH; ALLELOCHEMICALS; ACIDS; L.; PHYTOTOXICITY; SENSITIVITY; ALLELOPATHY AB A large number of studies of Cistus ladanifer highlight this Mediterranean shrub as a source of the phenolic compounds responsible for the allelopathic potential of this species. There are few phenolic compounds present in C. ladanifer that have not yet been studied. The objective of this work was to evaluate the activity of estragole and 2-isopropylphenol on filter paper and soil on monocotyledons (Allium cepa) and dicotyledons (Lactuca sativa). The results showed that when the test was carried out on paper, the germination and the growth of the L. sativa was strongly inhibited by 2 isopropylphenol and estragole. 2 isopropylphenol showed an IC50 on the germination of 0.7 mM and 0.1 mM on the germination rate, 0.4 mM on the size of radicle and 0.3 mM on the size of hypocotyl. Estragole showed an IC50 on the germination rate of 1.5 mM and 1.1 mM on the size of hypocotyl. The effects of these pure compounds on A. cepa were lower, and when the assays were performed on the soil, they were dissipated. The mixture of these compounds on A. cepa had 0.6 mM IC50 for the length hypocotyl on paper and 1.1 mM for the length of the radicle on soil. The mixture on L. sativa also inhibited the length of the radicle with an IC50 of 0.6 mM. On the other hand, it was also observed that estragole stimulated the growth of the A. cepa radicle length on soil, showing a hormetic effect with an EC50 of 0.1 mM. In conclusion, it can be said that for a species to be allelopathic in nature, it is essential to verify the effect of its possible allelochemicals on the target species, on the soil in which they will exert their action and at the concentrations found in their usual environment, in addition to taking into account the interaction with other compounds present in the medium. C1 [Requeson, Elena; Sosa, Teresa] Univ Extremadura, Fac Sci, Dept Plant Biol Ecol & Earth Sci, Badajoz 06006, Spain. [Osuna, Dolores; del Rosario Santiago, Ana] Ctr Sci & Technol Res Extremadura CICYTEX, Dept Crop Protect, Badajoz 06187, Spain. C3 Universidad de Extremadura RP Sosa, T (corresponding author), Univ Extremadura, Fac Sci, Dept Plant Biol Ecol & Earth Sci, Badajoz 06006, Spain. EM erequeso@alumnos.unex.es; mariadolores.osuna@juntaex.es; anarosario.santiago@juntaex.es; tesosa@unex.es OI Sosa, Teresa/0000-0002-1571-3770 FU Regional Government of Extremadura; European Regional Development Fund [GR18078, IB18105] FX This research was funded by the Regional Government of Extremadura and the European Regional Development Fund, grants number GR18078 and IB18105. CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 [Anonymous], NATL CTR BIOTECHNOLO [Anonymous], 2012, 112691 ISO Arango M.C., 2013, PRODUCTOS NATURALES Ashraf M., 2007, SARHAD J AGRIC, V23, P321 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 Belz RG, 2009, J CHEM ECOL, V35, P1137, DOI 10.1007/s10886-009-9698-1 Bhowmik PC, 2003, CROP PROT, V22, P661, DOI 10.1016/S0261-2194(02)00242-9 Blanco Y., 2006, Cultivos Tropicales, V27, P5 Blum U, 1999, CRIT REV PLANT SCI, V18, P673, DOI 10.1016/S0735-2689(99)00396-2 Bouhaouel I, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9070345 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Castroviejo S., 2001, FLORA IBERICA PLANTA Chaves N, 1998, J CHROMATOGR A, V799, P111, DOI 10.1016/S0021-9673(97)01042-X Chaves N, 2016, ALLELOPATHY J, V38, P113 Chaves N, 2001, J CHEM ECOL, V27, P623, DOI 10.1023/A:1010388905923 Chaves N, 2001, J CHEM ECOL, V27, P611, DOI 10.1023/A:1010336921853 Cheema Z. A., 2001, International Journal of Agriculture and Biology, V3, P515 Chiapusio G, 1997, J CHEM ECOL, V23, P2445, DOI 10.1023/B:JOEC.0000006658.27633.15 Committee on Herbal Medicinal Products (HMPC), EMEAHMPC1372122005 Dayan FE, 2009, BIOORGAN MED CHEM, V17, P4022, DOI 10.1016/j.bmc.2009.01.046 DESAI SM, 1990, ENVIRON TOXICOL CHEM, V9, P473, DOI 10.1002/etc.5620090409 Dias AS, 2005, ALLELOPATHY J, V16, P1 Dorota S., 2013, ALLELOCHEMICALS BIOH, P517, DOI [10.5772/56185, DOI 10.5772/56185] ECHA Search for Chemicals, 1 METH 4 2 PROP BENZ EINHELLIG FA, 1995, ACS SYM SER, V582, P1 Fraternale D, 2015, NAT PROD COMMUN, V10, P1469 Ghimire BK, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9101313 Guy I., 1996, Journal of Essential Oil Research, V8, P455 Haugland E, 1996, J CHEM ECOL, V22, P1845, DOI 10.1007/BF02028508 Herranz JM, 2006, PLANT ECOL, V184, P259, DOI 10.1007/s11258-005-9071-6 Hura T, 2006, ACTA PHYSIOL PLANT, V28, P537, DOI 10.1007/s11738-006-0049-3 INDERJIT, 1992, J CHEM ECOL, V18, P713, DOI 10.1007/BF00994609 Inderjit, 2003, CRIT REV PLANT SCI, V22, P221, DOI 10.1080/713610857 Irfan-ur-Rauf Tak, 2014, African Journal of Plant Science, V8, P72 Jamil M, 2009, AGRON SUSTAIN DEV, V29, P475, DOI 10.1051/agro/2009007 Kapanen A, 2001, ECOTOX ENVIRON SAFE, V49, P1, DOI 10.1006/eesa.2000.1927 Kaya C., 2009, V44, P45 Khan EA, 2015, PAK J BOT, V47, P735 KUITERS AT, 1989, J CHEM ECOL, V15, P467, DOI 10.1007/BF01014693 KUULUVAINEN T, 1994, ANN ZOOL FENN, V31, P35 LEHMAN ME, 1994, J CHEM ECOL, V20, P1773, DOI 10.1007/BF02059898 Lehman ME, 1999, J CHEM ECOL, V25, P1517, DOI 10.1023/A:1020828630638 LI HH, 1993, J CHEM ECOL, V19, P1775, DOI 10.1007/BF00982307 Liu De Li, 2003, Nonlinearity Biol Toxicol Med, V1, P37, DOI 10.1080/15401420390844456 LIU DL, 1993, J CHEM ECOL, V19, P2231, DOI 10.1007/BF00979660 Macias FA, 2007, PEST MANAG SCI, V63, P327, DOI 10.1002/ps.1342 Macias Francisco A., 2008, Phytochemistry Reviews, V7, P179, DOI 10.1007/s11101-007-9062-4 Malato-Beliz J., 1992, STATE ART VEGETATION, V75 MULLER C. H., 1970, Biochemical co-evolution. Proceedings of the twenty-ninth annual Biology Colloquium, April 26-27, 1968., P13 MULLER CH, 1968, B TORREY BOT CLUB, V95, P225, DOI 10.2307/2483669 Oliveros A.D.J., 2011, CIENCIA, V19, P187 Organization of Economical Cooperation and Development (OECD), 1984, GUID TEST CHEM, V208, P15 PROKSCH P, 1980, Z NATURFORSCH C, V35, P201 Regino J.M.B., 1987, ESTUDO DA PARTE VOLA, P81 Rice E. L., 1984, Allelopathy. Ruiz J., 1981, MATORRALES TRATADO M, V2, P501 Sosa T, 2010, PLANT SOIL, V337, P51, DOI 10.1007/s11104-010-0504-1 Tena C, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10061136 Van Agteren M.H., 1998, HDB BIODEGRADATION B Verdeguer M, 2012, NAT PROD RES, V26, P1602, DOI 10.1080/14786419.2011.592835 Vernin G., 1993, Journal of Essential Oil Research, V5, P563 Vina S., 2013, PRODUCTOS NATURALES Vyvyan JR, 2002, TETRAHEDRON, V58, P1631, DOI 10.1016/S0040-4020(02)00052-2 WANG WC, 1991, WATER AIR SOIL POLL, V59, P381, DOI 10.1007/BF00211845 Wang Xuezheng, 2007, Frontiers of Agriculture in China, V1, P58, DOI 10.1007/s11703-007-0010-2 Warnecke H.-U., 1978, DRAGOCO REP, V9, P192 Yu JQ, 2003, BIOCHEM SYST ECOL, V31, P129, DOI 10.1016/S0305-1978(02)00150-3 NR 71 TC 1 Z9 1 U1 0 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4395 J9 AGRONOMY-BASEL JI Agronomy-Basel PD MAY PY 2022 VL 12 IS 5 AR 1139 DI 10.3390/agronomy12051139 PG 14 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA 1S8WH UT WOS:000804324200001 OA gold DA 2023-03-13 ER PT J AU Gallagher, MT Reisinger, AJ AF Gallagher, Morgan T. Reisinger, Alexander J. TI Effects of ciprofloxacin on metabolic activity and algal biomass of urban stream biofilms SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Ecosystem function; Antibiotics; Pharmaceuticals; Biofilm; Metabolism; Ciprofloxacin ID PERSONAL CARE PRODUCTS; WATER TREATMENT PLANTS; FLUOROQUINOLONE ANTIBIOTICS; DOSE RESPONSES; PHARMACEUTICALS; HORMESIS; TRANSPORT; TOXICITY; SURFACE; AGENTS AB Pharmaceuticals and personal care products (PPCPs), such as the commonly prescribed antibiotic ciprofloxacin, are present and persistent in freshwaters, yet their effects on aquatic ecosystem functions at environmentally-relevant concentrations are rarely explored. Stream biofilms provide multiple functions in stream ecosystems, but their functional response to PPCP contaminants such as ciprofloxacin is unclear. To establish the effect of ciprofloxacin on aquatic biofilms, we colonized biofilms in situ on tiles (n = 80) at four sites along an urban stream in Gainesville, Florida, including two sites above and two sites below a wastewater treatment plant (WWTP). We then incubated the tiles and associated biofilms in the laboratory for 6 d exposing biofilms to either 0, 0.01, 0.1, or 1.0 mu g/L (target concentrations) of ciprofloxacin. At the end of the 6 d laboratory exposure, we quantified gross primary production (GPP), respiration (R), and biomass (as chlorophyll a) of biofilms, and calculated response ratios for each response. All response metrics were significantly differed across sites (p < 0.01). Ciprofloxacin significantly decreased GPP (p < 0.05) regardless of treatment concentration, most notably at the site immediately below the WWTP, where there was no measurable GPP on any ciprofloxacin-treated biofilms. In contrast, respiration (R) was not significantly affected by ciprofloxacin, despite an apparent increase in R at the WWTP site. However, the WWTP site R was significantly different from the most upstream and downstream sites (p < (moo but was not significantly different from a nearby site upstream of the WWTP (p > 0.05). These results indicate that chronic exposure to ciprofloxacin through WWTP effluent can alter ecosystem functions performed by biofilms, which can have consequences for higher trophic levels and stream processes. By quantifying biofilm metabolic responses to ciprofloxacin exposure, this study supports the concept that pharmaceuticals and personal care products can induce sub-lethal effects on ecological processes at environmentally-relevant concentrations. (C) 2018 Elsevier B.V. All rights reserved. C1 [Gallagher, Morgan T.] Virginia Tech, Sch Plant & Environm Sci, Blacksburg, VA 24061 USA. [Reisinger, Alexander J.] Univ Florida, Soil & Water Sci Dept, Gainesville, FL 32611 USA. C3 Virginia Polytechnic Institute & State University; State University System of Florida; University of Florida RP Reisinger, AJ (corresponding author), 2181 McCarty Hall A, Gainesville, FL 32611 USA. EM mtg3@vt.edu; reisingera@ufl.edu OI Reisinger, Alexander/0000-0003-4096-2637 FU University of Florida; USDA-NIFA [FLA-SWS-005731] FX This research was supported by a Summer Undergraduate Research Fellowship at the University of Florida awarded to MTG and USDA-NIFA funds provided to AIR through REEport project #FLA-SWS-005731. This manuscript was improved by the anonymous comments of one reviewer. We thank Lindsey Kelly for help in the field and lab, Patrick Inglett and Sophia Barbour for the use of their spectrophotometer, Dan Snow and the Water Sciences Laboratory at Nebraska for completing ciprofloxacin samples. CR [Anonymous], 2018, R LANG ENV STAT COMP Batt AL, 2006, ENVIRON POLLUT, V142, P295, DOI 10.1016/j.envpol.2005.10.010 Bernhardt ES, 2017, FRONT ECOL ENVIRON, V15, P84, DOI 10.1002/fee.1450 Bradley PM, 2016, ENVIRON SCI TECH LET, V3, P243, DOI 10.1021/acs.estlett.6b00170 Brooks BW, 2006, HYDROBIOLOGIA, V556, P365, DOI 10.1007/s10750-004-0189-7 Brown D, 2015, J ENVIRON QUAL, V44, P299, DOI 10.2134/jeq2014.08.0334 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Chonova T, 2018, ENVIRON SCI POLLUT R, V25, P9254, DOI 10.1007/s11356-017-0024-0 Costello DM, 2016, FRESHWATER BIOL, V61, P2129, DOI 10.1111/fwb.12641 CUMMINS KW, 1974, BIOSCIENCE, V24, P631, DOI 10.2307/1296676 Dantas G, 2008, SCIENCE, V320, P100, DOI 10.1126/science.1155157 Daughton CG, 1999, ENVIRON HEALTH PERSP, V107, P907, DOI 10.2307/3434573 Eguchi K, 2004, CHEMOSPHERE, V57, P1733, DOI 10.1016/j.chemosphere.2004.07.017 Fatta-Kassinos D, 2011, ANAL BIOANAL CHEM, V399, P251, DOI 10.1007/s00216-010-4300-9 Fick J, 2009, ENVIRON TOXICOL CHEM, V28, P2522, DOI 10.1897/09-073.1 Fu L, 2017, CHEMOSPHERE, V168, P217, DOI 10.1016/j.chemosphere.2016.10.043 Gibs J, 2013, SCI TOTAL ENVIRON, V458, P107, DOI 10.1016/j.scitotenv.2013.03.076 Glassmeyer ST, 2005, ENVIRON SCI TECHNOL, V39, P5157, DOI 10.1021/es048120k Gurbay A, 2007, TOXICOLOGY, V229, P54, DOI 10.1016/j.tox.2006.09.016 Henjum MB, 2010, J ENVIRON MONITOR, V12, P225, DOI [10.1039/B912544B, 10.1039/b912544b] Hicks LA, 2015, CLIN INFECT DIS, V60, P1308, DOI 10.1093/cid/civ076 Thuy HTT, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-1940-y Hubicka U, 2013, CHEM CENT J, V7, DOI 10.1186/1752-153X-7-133 Joss A, 2006, WATER RES, V40, P1686, DOI 10.1016/j.watres.2006.02.014 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j Kostich MS, 2014, ENVIRON POLLUT, V184, P354, DOI 10.1016/j.envpol.2013.09.013 Kummerer K, 2003, J ANTIMICROB CHEMOTH, V52, P5, DOI 10.1093/jac/dkg293 Liao XB, 2016, ENVIRON SCI POLLUT R, V23, P7911, DOI 10.1007/s11356-016-6054-1 Martins N, 2012, ECOTOXICOLOGY, V21, P1167, DOI 10.1007/s10646-012-0871-x Massey LB, 2010, ECOL ENG, V36, P930, DOI 10.1016/j.ecoleng.2010.04.009 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Michael I, 2013, WATER RES, V47, P957, DOI 10.1016/j.watres.2012.11.027 Monteiro SC, 2010, REV ENVIRON CONTAM T, V202, P53, DOI 10.1007/978-1-4419-1157-5_2 Novo A, 2010, APPL MICROBIOL BIOT, V87, P1157, DOI 10.1007/s00253-010-2583-6 Pal A, 2010, SCI TOTAL ENVIRON, V408, P6062, DOI 10.1016/j.scitotenv.2010.09.026 Pico Y, 2007, ANAL BIOANAL CHEM, V387, P1287, DOI 10.1007/s00216-006-0843-1 Dinh QT, 2017, CHEMOSPHERE, V168, P483, DOI 10.1016/j.chemosphere.2016.10.106 Reisinger AJ, 2016, FRESHW SCI, V35, P474, DOI 10.1086/685829 Richmond EK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06822-w Richmond EK, 2017, ELEMENTA-SCI ANTHROP, V5, DOI 10.1525/elementa.252 Robinson AA, 2005, ENVIRON TOXICOL CHEM, V24, P423, DOI 10.1897/04-210R.1 Rodriguez-Mozaz S, 2015, WATER RES, V69, P234, DOI 10.1016/j.watres.2014.11.021 Rosi EJ, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2041 Rosi-Marshall EJ, 2015, J HAZARD MATER, V282, P18, DOI 10.1016/j.jhazmat.2014.06.062 Rosi-Marshall EJ, 2013, ECOL APPL, V23, P583, DOI 10.1890/12-0491.1 Sabater S, 2007, ANAL BIOANAL CHEM, V387, P1425, DOI 10.1007/s00216-006-1051-8 Sabater S, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.3389/fenvs.2016.00014 Sallach JB, 2015, ENVIRON POLLUT, V197, P269, DOI 10.1016/j.envpol.2014.11.018 Shaw L, 2015, ENVIRON CHEM, V12, P301, DOI 10.1071/EN14141 SORGEL F, 1991, AM J MED, V91, pS51, DOI 10.1016/0002-9343(91)90312-L Steinman AD, 2017, METHODS IN STREAM ECOLOGY, VOL 1: ECOSYSTEM STRUCTURE, 3RD EDITION, P223, DOI 10.1016/B978-0-12-416558-8.00012-3 Topp E, 2008, SCI TOTAL ENVIRON, V396, P52, DOI 10.1016/j.scitotenv.2008.02.011 Williams RT, 2005, HUMAN PHARM ASSESSIN Wilson BA, 2003, ENVIRON SCI TECHNOL, V37, P1713, DOI 10.1021/es0259741 Yang YY, 2017, WATER RES, V123, P258, DOI 10.1016/j.watres.2017.06.054 Zhang YL, 2009, SCI TOTAL ENVIRON, V407, P3702, DOI 10.1016/j.scitotenv.2009.02.013 Zoorob R, 2016, ANTIMICROB AGENTS CH, V60, P5527, DOI 10.1128/AAC.00528-16 Zorita S, 2008, J SEP SCI, V31, P3117, DOI 10.1002/jssc.200800301 NR 61 TC 10 Z9 10 U1 6 U2 113 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 1 PY 2020 VL 706 AR 135728 DI 10.1016/j.scitotenv.2019.135728 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA KB3CF UT WOS:000506376300051 PM 31940730 OA Bronze DA 2023-03-13 ER PT J AU Chen, X Wang, XR Gu, XY Jiang, Y Ji, R AF Chen, Xian Wang, Xiaorong Gu, Xueyuan Jiang, Yang Ji, Rong TI Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Cadmium; Earthworms; Oxidative stress biomarkers; Species-specific sensitivity; Subcellular distribution ID BIOMARKER RESPONSES; TOXICITY; COPPER; BIOACCUMULATION; ACCUMULATION; FIELD; CD; METALLOTHIONEIN; DETOXIFICATION; PARAMETERS AB Soil toxicological tests are commonly performed using Eisenia fetida as the standard earthworm species, but it is tolerant to a wide range of pollutants. Therefore, the inclusion of susceptible species is crucial for the accurate estimation of soil contamination. In this study, we examined the sensitivity to soil cadmium (Cd) of anecic Metaphire guillelmi and epigeic E. fetida by measuring multiple indexes of oxidative stress. Using subcellular partitioning analysis, we further elucidated the inherent mechanism underlying the species-specific sensitivity of the two earthworm species. Among the battery of biochemical indexes, reactive oxygen species and protein carbonyl groups served as sensitive biomarkers. According to their respective response thresholds, M. guillelmi was more sensitive than E fetida and they differed in their dose-response relationships. In E. fetida, the activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), exhibited a hormesis-like U-shaped dose-response relationship, while in M. guillelmi SOD, glutathione peroxidase (an analogue of CAT) and GST showed an inverted U-shaped relationship. The concentrations of Cd in the subcellular fractions and whole body of the earthworms well fit (R-2 > 0.9) a saturation model versus bioavailable Cd concentrations determined by the diffusive gradients in thin films technique. Despite the lower accumulation capacity of M. guillelmi, the Cd-binding capacity (Cures) of its subcellular heat-stable protein fraction, the so-called biologically detoxified metal pool, was 2.7 times lower than that of E. fetida, whereas the Cd binding affinity (logK) of its heat-denatured protein fraction, i.e. the metal-sensitive fraction, was 3.0 times higher, which accounted for the high susceptibility of M. guillelmi to soil Cd. Our results suggest that because of their sensitivity, as exemplified by M guillelmi, native earthworm species should be taken into account in soil risk assessments to avoid underestimation of the toxicity of various pollutants. (C) 2016 Elsevier B.V. All rights reserved. C1 [Chen, Xian; Wang, Xiaorong; Gu, Xueyuan; Jiang, Yang; Ji, Rong] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Sch Environm, 163 Xianlin Ave, Nanjing 210023, Peoples R China. [Chen, Xian] Jiangsu Univ Technol, Sch Chem & Environm Engn, 1801 Zhongwu Ave, Changzhou 213001, Peoples R China. C3 Nanjing University; Jiangsu University of Technology RP Ji, R (corresponding author), Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Sch Environm, 163 Xianlin Ave, Nanjing 210023, Peoples R China. EM ji@nju.edu.cn RI Ji, Rong/E-5473-2011; wang, xiao/HGB-7081-2022; Gu, Xueyuan/F-5775-2013 OI Ji, Rong/0000-0002-1724-5253; wang, xiao/0000-0002-4088-3341; Gu, Xueyuan/0000-0002-8521-3667 FU National Natural Science Foundation of China (NSFC) [21237001, 41571130061]; Department of Science and Technology of Jiangsu Province [BE2015708] FX This work was supported by the National Natural Science Foundation of China (NSFC) (grant no. 21237001, 41571130061) and the Department of Science and Technology of Jiangsu Province (BE2015708). The DGT devices were kindly provided by Dr. Jun Luo in Nanjing University. CR Ardestani MM, 2014, ENVIRON POLLUT, V195, P133, DOI 10.1016/j.envpol.2014.08.020 Aslund MLW, 2012, ENVIRON SCI TECHNOL, V46, P1111, DOI 10.1021/es202327k Beaumelle L, 2014, ENVIRON POLLUT, V191, P182, DOI 10.1016/j.envpol.2014.04.021 Bernard E, 2015, ECOTOX ENVIRON SAFE, V114, P273, DOI 10.1016/j.ecoenv.2014.04.024 Borgmann U, 2004, ENVIRON POLLUT, V131, P469, DOI 10.1016/j.envpol.2004.02.010 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Campana O, 2015, ENVIRON SCI TECHNOL, V49, P1806, DOI 10.1021/es505005y Sinhorin VDG, 2014, ECOTOX ENVIRON SAFE, V106, P181, DOI 10.1016/j.ecoenv.2014.04.040 Givaudan N, 2014, ENVIRON POLLUT, V192, P9, DOI 10.1016/j.envpol.2014.05.001 Gu JQ, 2016, CHEMOSPHERE, V145, P431, DOI 10.1016/j.chemosphere.2015.11.106 HAMILTON SJ, 1987, T AM FISH SOC, V116, P551, DOI 10.1577/1548-8659(1987)116<551:EOMMAA>2.0.CO;2 Huang RX, 2009, ENVIRON SCI TECHNOL, V43, P3688, DOI 10.1021/es900061t KUROSHIMA R, 1995, COMP BIOCHEM PHYS C, V110, P95, DOI 10.1016/0742-8413(94)00066-J Li B, 2016, SCI TOTAL ENVIRON, V542, P427, DOI 10.1016/j.scitotenv.2015.10.100 Li ZY, 2014, SCI TOTAL ENVIRON, V468, P843, DOI 10.1016/j.scitotenv.2013.08.090 Luo J, 2014, ENVIRON SCI TECHNOL, V48, P7305, DOI 10.1021/es500173e Maboeta MS, 2004, ENVIRON RES, V96, P95, DOI 10.1016/S0013-9351(03)00138-5 Niyogi S, 2004, ENVIRON SCI TECHNOL, V38, P6177, DOI 10.1021/es0496524 Organization for Economic Co-operation and Development (OECD), 2004, GUID TEST CHEM EARTH Pauwels M, 2013, ENVIRON POLLUT, V179, P343, DOI 10.1016/j.envpol.2013.05.005 Pelosi C, 2013, CHEMOSPHERE, V90, P895, DOI 10.1016/j.chemosphere.2012.09.034 Qi YC, 2010, ENVIRON SCI TECHNOL, V44, P323, DOI 10.1021/es902899n Qiu H, 2014, ECOTOXICOLOGY, V23, P21, DOI 10.1007/s10646-013-1147-9 Qiu H, 2013, ENVIRON SCI TECHNOL, V47, P4796, DOI 10.1021/es305240n Sivakumar S, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4742-9 Sturzenbaum SR, 2004, ENVIRON SCI TECHNOL, V38, P6283, DOI 10.1021/es049822c Taylor LN, 2003, ENVIRON TOXICOL CHEM, V22, P2159, DOI 10.1897/02-256 Tsyusko OV, 2012, ENVIRON POLLUT, V171, P249, DOI 10.1016/j.envpol.2012.08.003 USEPA (United states Environmental Protection Agency), 1996, 3050B USEPA Velki M, 2014, ECOTOX ENVIRON SAFE, V104, P110, DOI 10.1016/j.ecoenv.2014.02.006 Velki M, 2013, ARCH ENVIRON CON TOX, V65, P498, DOI 10.1007/s00244-013-9930-4 Vijver MG, 2006, ENVIRON TOXICOL CHEM, V25, P807, DOI 10.1897/05-128R.1 Vijver MG, 2003, SOIL BIOL BIOCHEM, V35, P125, DOI 10.1016/S0038-0717(02)00245-6 Wallace WG, 2000, ENVIRON TOXICOL CHEM, V19, P962, DOI 10.1002/etc.5620190425 Wallace WG, 2003, MAR ECOL PROG SER, V249, P183, DOI 10.3354/meps249183 Wang F, 2014, ENVIRON POLLUT, V186, P241, DOI 10.1016/j.envpol.2013.12.012 Wang J, 2015, ENVIRON POLLUT, V204, P264, DOI 10.1016/j.envpol.2015.05.006 Wang MJ, 2008, ENVIRON SCI TECHNOL, V42, P940, DOI 10.1021/es0719273 Williams PN, 2012, ENVIRON SCI TECHNOL, V46, P8009, DOI 10.1021/es301195h Xie XC, 2011, ECOTOXICOLOGY, V20, P993, DOI 10.1007/s10646-011-0645-x Zaltauskaite J, 2014, ECOTOX ENVIRON SAFE, V103, P9, DOI 10.1016/j.ecoenv.2014.01.036 Zhang LJ, 2014, J HAZARD MATER, V273, P239, DOI 10.1016/j.jhazmat.2014.03.018 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 NR 44 TC 73 Z9 73 U1 4 U2 137 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 1 PY 2017 VL 574 BP 300 EP 306 DI 10.1016/j.scitotenv.2016.09.059 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA ED7ZA UT WOS:000389090100030 PM 27639467 DA 2023-03-13 ER PT J AU Atta, B Rizwan, M Sabir, AM Gogi, MD Farooq, MA Jamal, A AF Atta, Bilal Rizwan, Muhammad Sabir, Arshed Makhdoom Gogi, Muhammad Dildar Farooq, Muhammad Asif Jamal, Abdullah TI Lethal and sublethal effects of clothianidin, imidacloprid and sulfoxaflor on the wheat aphid,Schizaphis graminum(Hemiptera: Aphididae) and its coccinellid predator,Coccinella septempunctata SO INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE LA English DT Article DE Schizaphis graminum; Coccinella septempunctata; Lethal effects; Sublethal effects; Repellency; Imidacloprid; Clothianidin; Sulfoxaflor ID INSECTICIDE-INDUCED HORMESIS; LIFE TABLE PARAMETERS; PLUTELLA-XYLOSTELLA; SYSTEMIC INSECTICIDES; RHOPALOSIPHUM-PADI; BROWN PLANTHOPPER; FEEDING-BEHAVIOR; APHIS-GOSSYPII; IMPACT; COLEOPTERA AB The use of pesticides for greenbug,Schizaphis graminumin wheat not only can manage the pest population but also can influence its predator,Coccinella septempunctata. Acute and chronic effects of imidacloprid, clothianidin and sulfoxaflor onS. graminumand its predator,C. septempunctatawere investigated. The results showed that LC(50)of imidacloprid, clothianidin and sulfoxaflor toS. graminumat 48 h was 9.80, 34.29 and 4.40 ml a.i. L-1, respectively, while LC(50)of imidacloprid, clothianidin and sulfoxaflor toC. septempunctataat 48 h was 107.80, 49.52 and 379.26 ml a.i. L-1. Sulfoxaflor and clothianidin were found the most toxic toS. graminumandC. septempunctata, respectively. Tested sublethal doses (LC(10)and LC30) of all insecticides had significant effects on percent repellency of bothS. graminumandC. septempunctata. Sulfoxaflor and clothianidin proved the most repellent toS. graminum(67.00 +/- 2.03% at LC(10)and 86.20 +/- 1.62% at LC30) andC. septempunctata(50.60 +/- 2.81% at LC(10)and 60.00 +/- 3.26% at LC30), respectively. Sublethal doses also demonstrated significant and the lowest percentage reduction in feeding byC. septempunctataonS. graminumin sulfoxaflor treatment (LC10: 4.13 +/- 0.61%; LC30: 5.26 +/- 0.69%). Additionally, sublethal doses reduced body-weight ofC. septempunctataadults emerged from its treated grubs. These results revealed that sublethal doses of sulfoxaflor, imidacloprid and clothianidin negatively affected the biological activities ofS. graminumandC. septempunctataas compared to control. Hence it can be concluded that more attention should be paid towards strategic application of these chemicals as a part of an integrated pest management program for an agro-ecosystem exhibiting maximum activity of coccinelid-predators. Overall, sulfoxaflor proved more appropriate for use againstS. graminuminC. septempunctatamanipulated agro-ecosystem. However,C. septempunctatacompatible integration-strategy for field-application of sulfoxaflor should be devised to enhance its effectiveness againstS. graminumand selectivity againstC. septempunctata. C1 [Atta, Bilal; Rizwan, Muhammad; Sabir, Arshed Makhdoom] Rice Res Inst, Kala Shah Kaku, Punjab, Pakistan. [Gogi, Muhammad Dildar] Univ Agr Faisalabad, Dept Entomol, Integrated Pest Management Lab, Faisalabad, Punjab, Pakistan. [Farooq, Muhammad Asif] Univ Agr Faisalabad, Dept Entomol, Vehari Campus, Faisalabad, Punjab, Pakistan. [Jamal, Abdullah] Univ Punjab, Inst Agr Sci, Dept Zool, Lahore, Pakistan. C3 University of Agriculture Faisalabad; University of Agriculture Faisalabad; University of Punjab RP Atta, B (corresponding author), Rice Res Inst, Kala Shah Kaku, Punjab, Pakistan. EM bilal.atta@aari.punjab.gov.pk; muhammad.rizwan@aari.punjab.gov.pk; dr.arshed.aari@punjab.gov.pk; drmdgogi1974@gmail.com; asiff06@hotmail.com; abdullahjamal712@gmail.com RI Gogi, Muhammad Dildar/AAE-4596-2019; Farooq, Muhammad Asif/AGQ-2591-2022 OI Gogi, Muhammad Dildar/0000-0001-9622-767X; Farooq, Muhammad Asif/0000-0001-5983-9327; Atta, Bilal/0000-0002-8000-0005; Rizwan, Muhammad/0000-0002-6103-4330 CR Akhtar M. S., 2002, Punjab University Journal of Zoology, V17, P14 Akhtar N, 2010, PAK J AGR RES, V23, P59 Alavanja MCR, 2004, ANNU REV PUBL HEALTH, V25, P155, DOI 10.1146/annurev.publhealth.25.101802.123020 Ali Arif, 2017, Science International (Lahore), V29, P1261 Amini Jam N., 2014, J CROP PROT, V3, P89 Atta B., 2015, Bulgarian Journal of Agricultural Science, V21, P367 Atta B, 2020, J INNOV SCI, V6, P1 Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler Babcock JM, 2011, PEST MANAG SCI, V67, P328, DOI 10.1002/ps.2069 Bacci L., 2018, Journal of Entomological and Acarological Research, V50, P51, DOI 10.4081/jear.2018.7836 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Chagnon M, 2015, ENVIRON SCI POLLUT R, V22, P119, DOI 10.1007/s11356-014-3277-x Charpentier G, 2014, ENVIRON SCI TECHNOL, V48, P4096, DOI 10.1021/es405331c Chen Xuewei, 2016, Ecotoxicology, V25, P1841 Costa Vitor, 2001, Molecular Aspects of Medicine, V22, P217, DOI 10.1016/S0098-2997(01)00012-7 Cui L, 2012, PEST MANAG SCI, V68, P1484, DOI 10.1002/ps.3333 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Danho M, 2002, J STORED PROD RES, V38, P259, DOI 10.1016/S0022-474X(01)00027-3 Daniels M, 2009, J INSECT PHYSIOL, V55, P758, DOI 10.1016/j.jinsphys.2009.03.002 de Castro AA, 2013, CHEMOSPHERE, V93, P1043, DOI 10.1016/j.chemosphere.2013.05.075 Deng ZZ, 2016, B ENTOMOL RES, V106, P378, DOI 10.1017/S000748531600002X Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Devine GJ, 1996, PESTIC SCI, V48, P57, DOI 10.1002/(SICI)1096-9063(199609)48:1<57::AID-PS435>3.0.CO;2-9 Ding JF, 2018, J ECON ENTOMOL, V111, P2809, DOI 10.1093/jee/toy254 El-Wakeil N, 2013, INSECTICIDES DEV SAF Fang Y, 2018, J INSECT SCI, V18, DOI 10.1093/jisesa/iey025 Fernandes MES, 2016, CHEMOSPHERE, V156, P45, DOI 10.1016/j.chemosphere.2016.04.115 FINNEY D J, 1971, P333 Franca S., 2017, BIOL CONTROL PEST VE, DOI DOI 10.5772/66461 Gerami S., 2005, Communications in Agricultural and Applied Biological Sciences, V70, P779 Gogi MD, 2006, PEST MANAG SCI, V62, P982, DOI 10.1002/ps.1273 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Hadi BAR, 2015, CROP PROT, V76, P100, DOI 10.1016/j.cropro.2015.07.002 Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282 He YX, 2012, ECOTOXICOLOGY, V21, P1291, DOI 10.1007/s10646-012-0883-6 Hirata K, 2016, J PESTIC SCI, V41, P87, DOI 10.1584/jpestics.J16-01 Inayat TP, 2011, INT J AGRIC BIOL, V13, P427 Inayatullah C, 1985, GREENBUG BIOTYPES RE Jiang JG, 2018, ECOTOX ENVIRON SAFE, V161, P208, DOI 10.1016/j.ecoenv.2018.05.076 Kajita H., 1979, Proceedings of the Association for Plant Protection of Kyushu, V25, P112 KOMBLAS KN, 1972, J ECON ENTOMOL, V65, P439, DOI 10.1093/jee/65.2.439 Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260 Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x Laurent FM, 2003, J AGR FOOD CHEM, V51, P8005, DOI 10.1021/jf034310n Lee CY., 2000, J BIOSCIENCE, V11, P107, DOI DOI 10.5772/66461 Li GuoYong, 2019, Acta Ecologica Sinica - International Journal, V39, P234, DOI 10.1016/j.chnaes.2018.09.001 Li WQ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204097 Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 Liu TF, 2019, J ECON ENTOMOL, V112, P2177, DOI 10.1093/jee/toz146 Lu Y, 2009, B ENTOMOL RES, V99, P611, DOI 10.1017/S0007485309006725 Lucas E, 2002, EUR J ENTOMOL, V99, P457, DOI 10.14411/eje.2002.058 Meikle WG, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168603 Gonalons C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140814 MENSAH RK, 1993, J AUST ENTOMOL SOC, V32, P327 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Mozaddedul HNM, 2002, PAK J BIOL SCI, V5, P915 Nauen R, 1998, ENTOMOL EXP APPL, V88, P287, DOI 10.1023/A:1003430331594 Ngwej LM, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2710-5 Pettersson J, 1971, INSECT SYST EVOL, V2, P6 Piiroinen S, 2014, J APPL ENTOMOL, V138, P149, DOI 10.1111/jen.12088 Piiroinen S, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-13 Plumb R.T., 1983, P185 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rizvi N. H., 1994, P PAK C ZOOL, V12, P285 Sadeghi A, 2009, J INSECT SCI, V9, DOI 10.1673/031.009.6501 Saleem M. S., 2018, Sarhad Journal of Agriculture, V34, P583 Saran RK, 2014, J ECON ENTOMOL, V107, P1878, DOI 10.1603/EC11393 Sarmad S. Amin, 2015, SCI AGR, V12, P105 Schwarz T, 2019, BIOCONTROL, V64, P323, DOI 10.1007/s10526-019-09931-7 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y Singh J.P., 2000, Shashpa, V7, P181 Sohn L, 2018, ECOTOXICOLOGY, V27, P900, DOI 10.1007/s10646-018-1950-4 Sohrabi F, 2013, CROP PROT, V45, P98, DOI 10.1016/j.cropro.2012.11.024 Sparks TC, 2013, PESTIC BIOCHEM PHYS, V107, P1, DOI 10.1016/j.pestbp.2013.05.014 Sparks TC, 2012, PESTIC BIOCHEM PHYS, V103, P159, DOI 10.1016/j.pestbp.2012.05.006 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221 Unal S, 2017, PAK J ZOOL, V49, P327, DOI 10.17582/journal.pjz/2017.49.1.327.330 Wang NX, 2016, PEST MANAG SCI, V72, P1467, DOI 10.1002/ps.4220 Watson GB, 2017, PESTIC BIOCHEM PHYS, V143, P90, DOI 10.1016/j.pestbp.2017.09.003 Xiao D, 2016, ECOTOXICOLOGY, V25, P1782, DOI 10.1007/s10646-016-1721-z Xiao D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128936 Xin JJ, 2019, J INTEGR AGR, V18, P1613, DOI [10.1016/S2095-3119(18)62094-5, 10.1016/s2095-3119(18)62094-5] Xu L, 2016, J ASIA-PAC ENTOMOL, V19, P683, DOI 10.1016/j.aspen.2016.06.013 Yu CH, 2014, ECOTOX ENVIRON SAFE, V110, P168, DOI 10.1016/j.ecoenv.2014.08.022 Zeng XY, 2016, J ECON ENTOMOL, V109, P1595, DOI 10.1093/jee/tow104 Zhu YM, 2011, J AGR FOOD CHEM, V59, P2950, DOI 10.1021/jf102765x NR 94 TC 8 Z9 8 U1 3 U2 24 PU SPRINGER INT PUBL AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1742-7584 EI 1742-7592 J9 INT J TROP INSECT SC JI Int. J. Trop. Insect Sci. PD MAR PY 2021 VL 41 IS 1 BP 345 EP 358 DI 10.1007/s42690-020-00212-w EA JUL 2020 PG 14 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA QK8TN UT WOS:000549218400001 DA 2023-03-13 ER PT J AU Urban, N Tsitsipatis, D Hausig, F Kreuzer, K Erler, K Stein, V Ristow, M Steinbrenner, H Klotz, LO AF Urban, Nadine Tsitsipatis, Dimitrios Hausig, Franziska Kreuzer, Katrin Erler, Katrin Stein, Vanessa Ristow, Michael Steinbrenner, Holger Klotz, Lars-Oliver TI Non-linear impact of glutathione depletion on C-elegans life span and stress resistance SO REDOX BIOLOGY LA English DT Article DE Glutathione; C. elegans; Aging; Stress resistance; Thiol; gamma-glutamylcysteine synthetase; Hormesis ID TRANSCRIPTION FACTOR NRF2; CAENORHABDITIS-ELEGANS; OXIDATIVE-STRESS; MENADIONE 2-METHYL-1,4-NAPHTHOQUINONE; ROS-GENERATOR; FACTOR SKN-1; LONGEVITY; DAF-16; REDOX; METABOLISM AB The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH) representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM), an alpha, beta-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1 mM. In contrast, low and moderate doses of DEM (10-100 mu M) increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100 mu M DEM, but not 1 mM DEM, whereas only 1 mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating gamma-glutamylcysteine synthetase (gcs-1) expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egglaying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly hatched and developing worms. C1 [Urban, Nadine; Tsitsipatis, Dimitrios; Hausig, Franziska; Kreuzer, Katrin; Erler, Katrin; Steinbrenner, Holger; Klotz, Lars-Oliver] Univ Jena, Inst Nutr, Dept Nutrigenom, D-07743 Jena, Germany. [Ristow, Michael] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Schwerzenbach Zurich, Schorenstr 16,Bldg SLA C7, Zurich, Switzerland. C3 Friedrich Schiller University of Jena; Swiss Federal Institutes of Technology Domain; ETH Zurich RP Klotz, LO (corresponding author), Univ Jena, Inst Nutr, Dept Nutrigenom, D-07743 Jena, Germany. EM lars-oliver.klotz@uni-jena.de RI Tsitsipatis, Dimitrios/J-9064-2019; Steinbrenner, Holger/AAD-6323-2019; Ristow, Michael/O-9858-2014; Klotz, Lars Oliver/AAC-5051-2019 OI Ristow, Michael/0000-0003-2109-2453; Klotz, Lars Oliver/0000-0002-1261-8911; Steinbrenner, Holger/0000-0003-2754-2435; Stein, Vanessa/0000-0001-6285-8553 FU Deutsche Forschungsgemeinschaft (DFG, Bonn, Germany) through Research Training Group "ProMoAge" [RTG 2155]; European Cooperation in Science and Technology (COST) Action [BM1203/EU-ROS]; Swiss National Science Foundation (Schweizerischer Nationalfonds) [SNF 31003A_156031]; NIH Office of Research Infrastructure Programs [P40 OD010440] FX This study was supported by Deutsche Forschungsgemeinschaft (DFG, Bonn, Germany) through Research Training Group "ProMoAge" (RTG 2155), by the European Cooperation in Science and Technology (COST) Action BM1203/EU-ROS to L.O.K., and the Swiss National Science Foundation (Schweizerischer Nationalfonds, SNF 31003A_156031) to M.R.; C. elegans strains were provided by the Caenorhabditis Genetics Center (CGC, University of Minnesota, USA), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). CR Abdelmohsen K, 2003, J BIOL CHEM, V278, P38360, DOI 10.1074/jbc.M306785200 An JH, 2003, GENE DEV, V17, P1882, DOI 10.1101/gad.1107803 Mora-Lorca JA, 2016, FREE RADICAL BIO MED, V96, P446, DOI 10.1016/j.freeradbiomed.2016.04.017 Barsyte D, 2001, FASEB J, V15, P627, DOI 10.1096/fj.99-0966com Bitto A, 2015, CSH PERSPECT MED, V5, DOI 10.1101/cshperspect.a025114 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 BRENNER S, 1974, GENETICS, V77, P71 BRUNMARK A, 1989, FREE RADICAL BIO MED, V7, P435, DOI 10.1016/0891-5849(89)90126-3 BUS JS, 1984, ENVIRON HEALTH PERSP, V55, P37, DOI 10.2307/3429690 Cascella R, 2014, FREE RADICAL BIO MED, V73, P127, DOI 10.1016/j.freeradbiomed.2014.05.004 Cebula M, 2015, ANTIOXID REDOX SIGN, V23, P823, DOI 10.1089/ars.2015.6378 Conradt B, 1998, CELL, V93, P519, DOI 10.1016/S0092-8674(00)81182-4 Crampton N, 2009, MOL BIOL CELL, V20, P5106, DOI 10.1091/mbc.E09-05-0397 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 ELLMAN GL, 1958, ARCH BIOCHEM BIOPHYS, V74, P443, DOI 10.1016/0003-9861(58)90014-6 Fraser AG, 2000, NATURE, V408, P325, DOI 10.1038/35042517 Greiss S, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-334 Hartwig K, 2009, GENES NUTR, V4, P59, DOI 10.1007/s12263-009-0113-x Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x Henderson ST, 2001, CURR BIOL, V11, P1975, DOI 10.1016/S0960-9822(01)00594-2 Higgins LG, 2011, CHEM-BIOL INTERACT, V192, P37, DOI 10.1016/j.cbi.2010.09.025 Hoffman S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088828 Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Isani G, 2014, BIOMOLECULES, V4, P435, DOI 10.3390/biom4020435 Kahn NW, 2008, BIOCHEM J, V409, P205, DOI 10.1042/BJ20070521 Klatt P, 2000, EUR J BIOCHEM, V267, P4928, DOI 10.1046/j.1432-1327.2000.01601.x Klaus V, 2010, ARCH BIOCHEM BIOPHYS, V496, P93, DOI 10.1016/j.abb.2010.02.002 Klotz LO, 2015, REDOX BIOL, V6, P51, DOI 10.1016/j.redox.2015.06.019 Klotz LO, 2014, MOLECULES, V19, P14902, DOI 10.3390/molecules190914902 KOSOWER NS, 1969, BIOCHEM BIOPH RES CO, V37, P593, DOI 10.1016/0006-291X(69)90850-X Leung MCK, 2008, TOXICOL SCI, V106, P5, DOI 10.1093/toxsci/kfn121 Lin K, 2001, NAT GENET, V28, P139, DOI 10.1038/88850 Lithgow GJ, 2002, MECH AGEING DEV, V123, P765, DOI 10.1016/S0047-6374(01)00422-5 Luersen K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060731 Garcia-Gimenez JL, 2013, ANTIOXID REDOX SIGN, V19, P1305, DOI 10.1089/ars.2012.5021 Markovic J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006413 MEISTER A, 1983, SCIENCE, V220, P472, DOI 10.1126/science.6836290 Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 NEUSCHWANDERTETRI BA, 1989, ANAL BIOCHEM, V179, P236, DOI 10.1016/0003-2697(89)90121-8 Oh SW, 2006, NAT GENET, V38, P251, DOI 10.1038/ng1723 Oliveira RP, 2009, AGING CELL, V8, P524, DOI 10.1111/j.1474-9726.2009.00501.x Park SK, 2009, AGING CELL, V8, P258, DOI 10.1111/j.1474-9726.2009.00473.x Plummer J L, 1981, Methods Enzymol, V77, P50 ROSS D, 1985, CHEM-BIOL INTERACT, V55, P177, DOI 10.1016/S0009-2797(85)80126-5 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Sies H, 1999, FREE RADICAL BIO MED, V27, P916, DOI 10.1016/S0891-5849(99)00177-X Stenvall J, 2011, P NATL ACAD SCI USA, V108, P1064, DOI 10.1073/pnas.1006328108 Stone JR, 2006, ANTIOXID REDOX SIGN, V8, P243, DOI 10.1089/ars.2006.8.243 Tebay LE, 2015, FREE RADICAL BIO MED, V88, P108, DOI 10.1016/j.freeradbiomed.2015.06.021 THOR H, 1982, J BIOL CHEM, V257, P2419 Tullet JMA, 2008, CELL, V132, P1025, DOI 10.1016/j.cell.2008.01.030 Zhang YQ, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0031849, 10.1371/journal.pone.0044465, 10.1371/journal.pone.0029519, 10.1371/journal.pone.0044593] NR 53 TC 43 Z9 43 U1 4 U2 17 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2213-2317 J9 REDOX BIOL JI Redox Biol. PD APR PY 2017 VL 11 BP 502 EP 515 DI 10.1016/j.redox.2016.12.003 PG 14 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA EQ6RY UT WOS:000398212000048 PM 28086197 OA gold, Green Published DA 2023-03-13 ER PT J AU Ceci, R Valls, MRB Duranti, G Dimauro, I Quaranta, F Pittaluga, M Sabatini, S Caserotti, P Parisi, P Parisi, A Caporossi, D AF Ceci, Roberta Valls, Maria Reyes Beltran Duranti, Guglielmo Dimauro, Ivan Quaranta, Federico Pittaluga, Monica Sabatini, Stefania Caserotti, Paolo Parisi, Paolo Parisi, Attilio Caporossi, Daniela TI Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training SO REDOX BIOLOGY LA English DT Article DE Explosive-type moderate intensity resistance training (EMRT); Graded maximal exercise test (GXT); Oxidative stress; HSPs; Apoptosis; Elderly ID PHYSICAL-ACTIVITY; FREE-RADICALS; DNA-DAMAGE; SKELETAL-MUSCLE; ANTIOXIDANT; MECHANISMS; PROTEINS; QUANTITATION; HORMESIS; BOUT AB We recently demonstrated that low frequency, moderate intensity, explosive-type resistance training (EMRT) is highly beneficial in elderly subjects towards muscle strength and power, with a systemic adaptive response of anti-oxidant and stress-induced markers. In the present study, we aimed to evaluate the impact of EMRT on oxidative stress biomarkers induced in old people (70-75 years) by a single bout of acute, intense exercise. Sixteen subjects randomly assigned to either a control, not exercising group (n=8) or a trained group performing EMRT protocol for 12-weeks (n =8), were submitted to a graded maximal exercise stress test (GXT) at baseline and after the 12-weeks of EMRT protocol, with blood samples collected before, immediately after, 1 and 24 h post-GXT test. Blood glutathione (GSH, GSSG, GSH/GSSG), plasma malonaldehyde (MDA), protein carbonyls and creatine kinase (CK) levels, as well as PBMCs cellular damage (Comet assay, apoptosis) and stress-protein response (Hsp70 and Hsp27 expression) were evaluated. The use of multiple biomarkers allowed us to confirm that EMRT per se neither affected redox homeostasis nor induced any cellular and oxidative damage. Following the GXT, the EMRT group displayed a higher GSH/GSSG ratio and a less pronounced increase in MDA, protein carbonyls and CK levels compared to control group. Moreover, we found that Hsp70 and Hsp27 proteins were induced after GXT only in EMRT group, while any significant modification within 2411 was detected in untrained group. Apoptosis rates and DNA damage did not show any significant variation in relation to EMRT and/or GXT. In conclusion, the adherence to an EMRT protocol is able to induce a cellular adaptation allowing healthy elderly trained subjects to cope with the oxidative stress induced by an acute exercise more effectively than the aged -matched sedentary subjects., 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Ceci, Roberta; Valls, Maria Reyes Beltran; Duranti, Guglielmo; Dimauro, Ivan; Pittaluga, Monica; Sabatini, Stefania; Parisi, Paolo; Caporossi, Daniela] Univ Rome Foro Italico, Unit Biol Genet & Biochem, I-00135 Rome, Italy. [Quaranta, Federico; Parisi, Attilio] Univ Rome Foro Italico, Dept Movement Human & Hlth Sci, Unit Internal Med, I-00135 Rome, Italy. [Caserotti, Paolo] Univ Southern Denmark, Dept Sports Sci & Clin Biomech, DK-5230 Odense M, Denmark. C3 Foro Italico University of Rome; Foro Italico University of Rome; University of Southern Denmark RP Ceci, R (corresponding author), Univ Rome Foro Italico, Unit Biol Genet & Biochem, Piazza Lauro De Bosis 15, I-00135 Rome, Italy. EM roberta.ceci@uniroma4.it RI Valls, Maria Reyes Beltran/ABG-7890-2020; Attilio, Parisi/ABA-1396-2021; Beltran-Valls, Maria Reyes/S-3673-2019; Dimauro, Ivan/AAG-1178-2019; Caporossi, Daniela/D-7434-2011 OI Valls, Maria Reyes Beltran/0000-0003-1749-9330; Dimauro, Ivan/0000-0003-0577-3144; Caporossi, Daniela/0000-0001-9628-0665; sabatini, stefania/0000-0001-6156-5185; Duranti, Guglielmo/0000-0002-1664-9387; PARISI, Attilio/0000-0003-2648-8406; quaranta, federico/0000-0002-6249-7513; Ceci, Roberta/0000-0002-8900-8839 FU University of Rome 'Foro Italico'; Lazio Regional Municipality [12650/2010] FX This work was supported by grants from the University of Rome 'Foro Italico' (Research 2009) to D.C. The Lazio Regional Municipality (Agreement CRUL-Lazio n. 12650/2010) supported the post-doc scholarship to ID. CR Albertini RJ, 2000, MUTAT RES-REV MUTAT, V463, P111, DOI 10.1016/S1383-5742(00)00049-1 ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548 Baird M.F., J NUTR META IN PRESS Beltran Valls M.R., AGE DORDR IN PRESS Caserotti P, 2008, SCAND J MED SCI SPOR, V18, P773, DOI 10.1111/j.1600-0838.2007.00732.x Choi Eun-Young, 2007, Nutr Res Pract, V1, P14, DOI 10.4162/nrp.2007.1.1.14 DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1 Elosua R, 2003, ATHEROSCLEROSIS, V167, P327, DOI 10.1016/S0021-9150(03)00018-2 Fagan JM, 1999, INT J BIOCHEM CELL B, V31, P751, DOI 10.1016/S1357-2725(99)00034-5 Falone S, 2010, PHYSIOL RES, V59, P953, DOI 10.33549/physiolres.931884 Fisher-Wellman Kelsey, 2009, Dyn Med, V8, P1, DOI 10.1186/1476-5918-8-1 Fittipaldi S, 2014, FREE RADICAL RES, V48, P52, DOI 10.3109/10715762.2013.835047 Fulle S, 2004, EXP GERONTOL, V39, P17, DOI 10.1016/j.exger.2003.09.012 Gomez-Cabrera MC, 2008, FREE RADICAL BIO MED, V44, P126, DOI 10.1016/j.freeradbiomed.2007.02.001 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Ji LL, 2001, ANN NY ACAD SCI, V928, P236 Khassaf M, 2003, J PHYSIOL-LONDON, V549, P645, DOI 10.1113/jphysiol.2003.040303 Knez WL, 2007, MED SCI SPORT EXER, V39, P283, DOI 10.1249/01.mss.0000246999.09718.0c Kowald A, 1996, MUTAT RES-DNAGING G, V316, P209, DOI 10.1016/S0921-8734(96)90005-3 Lovric J, 2008, PERIOD BIOL, V110, P63 McArdle A, 2002, AGEING RES REV, V1, P79, DOI 10.1016/S0047-6374(01)00368-2 MEHLEN P, 1995, J CELL BIOCHEM, V58, P248, DOI 10.1002/jcb.240580213 Mergener M, 2009, CLIN BIOCHEM, V42, P1648, DOI 10.1016/j.clinbiochem.2009.08.001 Musaro A, 2010, CURR OPIN CLIN NUTR, V13, P236, DOI 10.1097/MCO.0b013e3283368188 Muthusamy VR, 2012, FREE RADICAL BIO MED, V52, P366, DOI 10.1016/j.freeradbiomed.2011.10.440 Neubauer O, 2008, EXERC IMMUNOL REV, V14, P51 Pittaluga M, 2006, FREE RADICAL RES, V40, P607, DOI 10.1080/10715760600623015 Pittaluga M, 2013, FREE RADICAL RES, V47, P202, DOI 10.3109/10715762.2012.761696 Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029 Radak Z, 2013, ANTIOXID REDOX SIGN, V18, P1208, DOI 10.1089/ars.2011.4498 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Reddy VP, 2009, J ALZHEIMERS DIS, V16, P763, DOI 10.3233/JAD-2009-1013 Sen CK, 2000, AM J CLIN NUTR, V72, p653S, DOI 10.1093/ajcn/72.2.653S Simar D., 2004, J GERONTOL A-BIOL, V62A, P1413 SINGH NP, 1988, EXP CELL RES, V175, P184, DOI 10.1016/0014-4827(88)90265-0 Valko M, 2006, CHEM-BIOL INTERACT, V160, P1, DOI 10.1016/j.cbi.2005.12.009 Vina J., CURR PHARM IN PRESS Vina J, 2013, ANTIOXID REDOX SIGN, V19, P779, DOI 10.1089/ars.2012.5111 VOORRIPS LE, 1991, MED SCI SPORT EXER, V23, P974, DOI 10.1249/00005768-199108000-00015 Yu BP, 2006, MECH AGEING DEV, V127, P436, DOI 10.1016/j.mad.2006.01.023 NR 40 TC 46 Z9 47 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-2317 J9 REDOX BIOL JI Redox Biol. PY 2014 VL 2 BP 65 EP 72 DI 10.1016/j.redox.2013.12.004 PG 8 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA CD0MY UT WOS:000350769600010 PM 25460722 OA gold, Green Published DA 2023-03-13 ER PT J AU Du, SH Meng, FP Duan, WY Liu, QQ Li, H Peng, XL AF Du, Shuhao Meng, Fanping Duan, Weiyan Liu, Qunqun Li, Hao Peng, Xiaoling TI Oxidative stress responses in two marine diatoms during acute n-butyl acrylate exposure and the toxicological evaluation with the IBRv2 index SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE n-Butyl acrylate (nBA); Diatoms; Toxicity; Antioxidants; Integrated Biomarker Response Version 2(IBRv2) ID INTEGRATED BIOMARKER RESPONSE; SKELETONEMA-COSTATUM; TOXICITY; INHIBITION; ORGANISMS; DAMAGE AB n-Butyl acrylate (nBA), a typical hazardous and noxious substance (HNS), is the largest-volume acrylate ester used to produce various types of polymers. With the increasing volume of nBA subject to maritime transportation, its accidental leakage poses a great risk to the marine organisms. Therefore, it is necessary to evaluate the ecological risk of nBA in marine environments. In this study, two species of marine microalgae, Skeletonema costatum and Phaeodactylum tricornutum, were used to explore the toxic effects of nBA based on their growth, pigment content, and oxidative stress. The growth of each species was significantly inhibited by nBA, showing a 96 h-EC50 value of 2.23 mg/L for P. tricornutum and 8.19 mg/L for S. costatum, respectively. Although chlorophylls a and c exerted a hormesis effect in P. tricornutum, contents of pigments generally decreased at high concentrations. In P. tricornutum, all detected antioxidants (reduced glutathione, GSH; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) were stimulated at concentrations ranging from 1.50 to 3.82 mg/L. However, these elevations were not enough to reduce the oxidative damage caused by nBA, because the content of malondialdehyde (MDA) increased continuously during 96-h exposure. For S. costatum, the activities of only two antioxidants (GSH and CAT) were enhanced, which is enough to prevent the MDA content from rising, even at higher concentrations of nBA (5-10 mg/L). The Integrated Biomarker Response Version 2 (IBRv2) index that combines responses of the above five oxidative stress biomarkers, was not only correlated positively with nBA concentration but could also indicate the occurrence of oxidative stress caused by acute concentration of nBA. These findings showed that P. tricornutum was sensitive to nBA compared to S. costatum, and the IBRv2 index was an effective tool for evaluating ecotoxicological effects on marine micmalgae due to nBA spills. C1 [Du, Shuhao; Meng, Fanping; Duan, Weiyan; Liu, Qunqun; Li, Hao; Peng, Xiaoling] Ocean Univ China, Key Lab Marine Environm & Ecol, Minist Educ, Qingdao, Shandong, Peoples R China. [Du, Shuhao; Meng, Fanping; Duan, Weiyan; Liu, Qunqun; Li, Hao; Peng, Xiaoling] Ocean Univ China, Coll Environm Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China. C3 Ocean University of China; Ocean University of China RP Meng, FP (corresponding author), Ocean Univ China, Coll Environm Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China. EM mengfanping@ouc.edu.cn FU National Natural Science Foundation of China [42077335] FX This work was financially supported by the National Natural Science Foundation of China (Grant no. 42077335) . CR Abrahamson A, 2007, AGONISTS DISS ACTA Baag S, 2021, CHEMOSPHERE, V264, DOI 10.1016/j.chemosphere.2020.128512 Beghin M, 2021, ECOTOX ENVIRON SAFE, V221, DOI 10.1016/j.ecoenv.2021.112454 Blanco-Rayon E, 2021, ECOL INDIC, V130, DOI 10.1016/j.ecolind.2021.108028 Boberic G, 1998, CHEMOSPHERE, V37, P33, DOI 10.1016/S0045-6535(98)00036-8 Caliani I, 2021, ECOTOX ENVIRON SAFE, V208, DOI 10.1016/j.ecoenv.2020.111486 Cedre, 2007, CEDR SEARCH CAS INT Chen H, 2011, CHEMOSPHERE, V84, P664, DOI 10.1016/j.chemosphere.2011.03.032 China Water Transport Network, 2007, LEAK 931 TONS BUT AC Chinanews, 2014, CHINANEWS Couling DJ, 2006, GREEN CHEM, V8, P82, DOI [10.1039/b511333d, 10.1039/B511333D] Dou X, 2019, J OCEANOL LIMNOL, V37, P1342, DOI 10.1007/s00343-019-8205-y Duan WY, 2017, ENVIRON TOXICOL PHAR, V52, P170, DOI 10.1016/j.etap.2017.04.006 FINNEY D J, 1971, P333 Gao K, 2021, MAR POLLUT BULL, V166, DOI 10.1016/j.marpolbul.2021.112222 Gauthier MR, 2020, ALGAL RES, V52, DOI 10.1016/j.algal.2020.102104 GESAMP, 2013, REV GESAMP HAZ EV PR, V2nd GREIM H, 1995, CHEMOSPHERE, V31, P2637, DOI 10.1016/0045-6535(95)00136-V Guo JH, 2020, AQUAT TOXICOL, V219, DOI 10.1016/j.aquatox.2019.105376 Halliwell B., 2015, Free radicals in biology and medicine Huang D.R., 2014, J FISH RES BOARD CAN, V36, P294 International Maritime Organization (IMO), 2002, IMO REP STUD International Organization for Standardization (ISO), 2016, 102532016 ISO, V10253, P2016 JEFFREY SW, 1975, BIOCHEM PHYSIOL PFL, V167, P191, DOI 10.1016/s0015-3796(17)30778-3 Kalaji M., 2008, PHOTOCHEM RES PROG, V29, P439 KENT RA, 1995, ENVIRON TOXICOL CHEM, V14, P983, DOI [10.1897/1552-8618(1995)14[983:PASTAP]2.0.CO;2, 10.1002/etc.5620140609] Lee JW, 2019, FISH PHYSIOL BIOCHEM, V45, P873, DOI 10.1007/s10695-018-0584-z Li F, 2019, B ENVIRON CONTAM TOX, V103, P441, DOI 10.1007/s00128-019-02646-6 Liu Q, 2022, ENVIRON POLLUT, V295, DOI 10.1016/j.envpol.2021.118670 Liu WH, 2012, PLANT PHYSIOL BIOCH, V60, P165, DOI 10.1016/j.plaphy.2012.08.009 Livingstone DR, 2001, MAR POLLUT BULL, V42, P656, DOI 10.1016/S0025-326X(01)00060-1 Ma JX, 2018, ENVIRON TOXICOL, V33, P142, DOI 10.1002/tox.22499 Mao YF, 2021, ECOTOX ENVIRON SAFE, V222, DOI 10.1016/j.ecoenv.2021.112496 Marins MT, 2018, ECOTOX ENVIRON SAFE, V151, P191, DOI 10.1016/j.ecoenv.2018.01.021 Martins PLG, 2015, ECOTOX ENVIRON SAFE, V116, P84, DOI 10.1016/j.ecoenv.2015.03.003 MASTEN LW, 1994, ECOTOX ENVIRON SAFE, V27, P335, DOI 10.1006/eesa.1994.1027 McGowan T., 2013, ARCOPOL PLUS ACTIVIT Mu WJ, 2018, ENVIRON TOXICOL PHAR, V59, P152, DOI 10.1016/j.etap.2018.03.013 OECD -SID, 2002, SCREEN INF DAT SET N PAN, 2018, PAN PESTICIDE DATABA Parfomak P.W., 2005, DEFENSE ACQUISITION PubChem, 2021, BUT ACR Rocha ACS, 2016, SCI TOTAL ENVIRON, V542, P728, DOI 10.1016/j.scitotenv.2015.10.049 Samanta L, 2018, J UROLOGY, V200, P414, DOI 10.1016/j.juro.2018.03.009 Sanchez W, 2013, ENVIRON SCI POLLUT R, V20, P2721, DOI 10.1007/s11356-012-1359-1 Schmidt W, 2011, MAR POLLUT BULL, V62, P1389, DOI 10.1016/j.marpolbul.2011.04.043 Sebastiano M, 2022, CURR OPIN TOXICOL, V29, P25, DOI 10.1016/j.cotox.2022.01.002 USEPA, 2012, ECOLOGICAL EFFECTS T Wang H, 2020, J HAZARD MATER, V399, DOI 10.1016/j.jhazmat.2020.122847 Wang XF, 2021, ENVIRON SCI POLLUT R, V28, P60954, DOI 10.1007/s11356-021-15070-3 Yamano N, 2018, J PHOTOCH PHOTOBIO A, V358, P379, DOI 10.1016/j.jphotochem.2017.09.047 Yang S, 2002, AQUAT TOXICOL, V60, P33, DOI 10.1016/S0166-445X(01)00258-2 Zhang HX, 2018, ENVIRON POLLUT, V240, P549, DOI 10.1016/j.envpol.2018.04.126 Zhang L, 2022, CHEMOSPHERE, V286, DOI 10.1016/j.chemosphere.2021.131674 Zhang QQ, 2015, ENVIRON SCI TECHNOL, V49, P6772, DOI 10.1021/acs.est.5b00729 Zhang YQ, 2020, COMP BIOCHEM PHYS C, V233, DOI 10.1016/j.cbpc.2020.108764 Zhao YY, 2020, ENVIRON POLLUT, V264, DOI 10.1016/j.envpol.2020.114706 NR 57 TC 0 Z9 0 U1 12 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD JUL PY 2022 VL 240 AR 113686 DI 10.1016/j.ecoenv.2022.113686 EA MAY 2022 PG 9 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 3I4VI UT WOS:000832716100006 PM 35636239 OA gold DA 2023-03-13 ER PT J AU Wolz, M Schrader, A Muller, C AF Wolz, Marina Schrader, Alia Mueller, Caroline TI Direct and delayed effects of exposure to a sublethal concentration of the insecticide lambda-cyhalothrin on food consumption and reproduction of a leaf beetle SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Consumption; Pyrethroid; Persistence; Recovery; Reproduction; Sublethal concentration ID DETOXIFICATION ENZYME-ACTIVITY; BIOLOGICAL-CONTROL; FOLSOMIA-CANDIDA; PLANT-QUALITY; RESISTANCE; BIODIVERSITY; PESTICIDES; SURVIVAL; BEHAVIOR; DELTAMETHRIN AB Anthropogenic pollution such as the application of pesticides poses a major threat to many (non-target) organisms. However, little is known about the persistence of harmful effects or potential recovery in response to a period of exposure to a sublethal insecticide dose. Adults of the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), were either exposed to a sublethal concentration of the pyrethroid lambda-cyhalothrin for two weeks or kept unexposed as control. During, immediately after and at a delayed time after the exposure, consumption and reproduction, i.e., number of eggs laid and hatching success, were assessed. In addition, longtermeffects on unexposed offspring were investigated. Exposure to lambda-cyhalothrin reduced the consumption during the insecticide exposure, but led to compensatory feeding in females at a delayed time after exposure. The reproductive output of females was impaired during and directly after lambda-cyhalothrin exposure. At the delayed time point there was no clear evidence for a recovery, as the reproduction of heavier females was still negatively affected, while lighter females showed an enhanced reproduction. Persistent negative effects on unexposed offspring had been found when collected from parents directly after lambda-cyhalothrin exposure period. In contrast, in the present experiment neither negative effects on life-history traits nor on consumption were observed in unexposed offspring derived from parents at the delayed time after lambda-cyhalothrin exposure. Moreover, eggs of offspring from insecticide-exposed parents showed a higher hatching success than those of offspring of unexposed parents, which may indicate transgenerational hormesis. Our results highlight that lambda-cyhalothrin exposure has persistent negative effects on fitness parameters of the exposed generation. However, offspring may not be harmed if their parents had sufficient time to recover after such an insecticide exposure. Taken together, our study emphasises that the time-course of exposure to this anthropogenic pollution is crucial when determining the consequences on life-history. (C) 2020 Elsevier B.V. All rights reserved. C1 [Wolz, Marina; Schrader, Alia; Mueller, Caroline] Bielefeld Univ, Dept Chem Ecol, Univ Str 24, D-33615 Bielefeld, Germany. C3 University of Bielefeld RP Muller, C (corresponding author), Bielefeld Univ, Dept Chem Ecol, Univ Str 24, D-33615 Bielefeld, Germany. EM caroline.mueller@uni-bielefeld.de RI Muller, Caroline/G-5073-2011 OI Muller, Caroline/0000-0002-8447-534X CR Arena M, 2014, ECOTOXICOLOGY, V23, P324, DOI 10.1007/s10646-014-1190-1 Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356 Bantz A, 2018, CURR OPIN INSECT SCI, V30, P73, DOI 10.1016/j.cois.2018.09.008 Behmer ST, 2009, ANNU REV ENTOMOL, V54, P165, DOI 10.1146/annurev.ento.54.110807.090537 Behmer ST, 2005, FUNCT ECOL, V19, P55, DOI 10.1111/j.0269-8463.2005.00943.x Beketov MA, 2008, SCI TOTAL ENVIRON, V405, P96, DOI 10.1016/j.scitotenv.2008.07.001 Berner D, 2005, OIKOS, V111, P525, DOI 10.1111/j.1600-0706.2005.14144.x Ceuppens B, 2015, J PEST SCI, V88, P777, DOI 10.1007/s10340-015-0676-9 Conrad KF, 2006, BIOL CONSERV, V132, P279, DOI 10.1016/j.biocon.2006.04.020 Costa MA, 2014, ECOTOXICOLOGY, V23, P1399, DOI 10.1007/s10646-014-1282-y Crawley SE, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177410 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Despres L, 2007, TRENDS ECOL EVOL, V22, P298, DOI 10.1016/j.tree.2007.02.010 Feldlaufer MF, 2013, J ECON ENTOMOL, V106, P988, DOI 10.1603/EC12378 Finch S, 1997, ENTOMOL EXP APPL, V84, P165, DOI 10.1023/A:1003082529819 Franca S., 2017, BIOL CONTROL PEST VE, DOI DOI 10.5772/66461 Fritz LL, 2013, INT J TROP INSECT SC, V33, P178, DOI 10.1017/S1742758413000192 Geiger F, 2010, BASIC APPL ECOL, V11, P97, DOI 10.1016/j.baae.2009.12.001 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2006, PHYSIOL ENTOMOL, V31, P30, DOI 10.1111/j.1365-3032.2005.00479.x Hafeez M, 2020, SAUDI J BIOL SCI, V27, P77, DOI 10.1016/j.sjbs.2019.05.005 He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762 HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943 Huang Y, 2002, J STORED PROD RES, V38, P403, DOI 10.1016/S0022-474X(01)00042-X IRAC, 2020, IRAC MOD ACT CLASS O Kliot A, 2012, PEST MANAG SCI, V68, P1431, DOI 10.1002/ps.3395 Kohler HR, 2013, SCIENCE, V341, P759, DOI 10.1126/science.1237591 Lease HM, 2011, PHYSIOL ENTOMOL, V36, P29, DOI 10.1111/j.1365-3032.2010.00767.x Li XC, 2007, ANNU REV ENTOMOL, V52, P231, DOI 10.1146/annurev.ento.51.110104.151104 Liang X, 2015, INT J MOL SCI, V16, P2078, DOI 10.3390/ijms16012078 Liess M, 2006, ENVIRON TOXICOL CHEM, V25, P1326, DOI 10.1897/05-466R.1 Muller T, 2019, ENVIRON POLLUT, V247, P39, DOI 10.1016/j.envpol.2018.12.040 Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001 Muller T, 2019, J APPL ECOL, V56, P1528, DOI 10.1111/1365-2664.13398 Muller T, 2017, ENVIRON POLLUT, V230, P709, DOI 10.1016/j.envpol.2017.07.018 Muller T, 2016, J INSECT PHYSIOL, V88, P24, DOI 10.1016/j.jinsphys.2016.02.009 Nathan SS, 2007, PESTIC BIOCHEM PHYS, V88, P260, DOI 10.1016/j.pestbp.2006.12.004 Newbold T, 2016, SCIENCE, V353, P288, DOI 10.1126/science.aaf2201 Obermaier E, 1999, ENTOMOL EXP APPL, V92, P165, DOI 10.1023/A:1003709622409 Piiroinen S, 2014, J APPL ENTOMOL, V138, P149, DOI 10.1111/jen.12088 Qi SZ, 2020, SCI TOTAL ENVIRON, V700, DOI 10.1016/j.scitotenv.2019.134500 R Core Team, 2020, R LANGUAGE ENV STAT R Studio Team, 2019, RSTUDIO INT DEV R Rose D, 2006, PHYSIOL ENTOMOL, V31, P316, DOI 10.1111/j.1365-3032.2006.00525.x Samia RR, 2019, PEST MANAG SCI, V75, P694, DOI 10.1002/ps.5166 Shannag HK, 2015, J INSECT SCI, V15, DOI 10.1093/jisesa/iev134 Sharma A, 2019, SN APPL SCI, V1, DOI 10.1007/s42452-019-1485-1 SLANSKY F, 1992, ENTOMOL EXP APPL, V65, P171, DOI 10.1007/BF00221368 Spindola AF, 2013, B ENTOMOL RES, V103, P485, DOI 10.1017/S0007485313000072 Stapel JO, 2000, BIOL CONTROL, V17, P243, DOI 10.1006/bcon.1999.0795 Syngenta, 2016, FACT SHEET LAMBDA WG Szabo B, 2017, POL J ECOL, V65, P110, DOI 10.3161/15052249PJE2017.65.1.010 Tang WX, 2018, CHEMOSPHERE, V191, P990, DOI 10.1016/j.chemosphere.2017.10.115 Tran TT, 2018, EVOL APPL, V11, P906, DOI 10.1111/eva.12605 Tremmel M, 2014, PHYSIOL BEHAV, V129, P95, DOI 10.1016/j.physbeh.2014.02.030 Tremmel M, 2013, J INSECT PHYSIOL, V59, P840, DOI 10.1016/j.jinsphys.2013.05.009 Uddin MM, 2009, J APPL BOT FOOD QUAL, V82, P108 Vandegehuchte MB, 2014, MUTAT RES-GEN TOX EN, V764, P36, DOI 10.1016/j.mrgentox.2013.08.008 Venables W. N., 2002, MODERN APPL STAT S, V4th, DOI [10.1007/978-0-387-21706-2, DOI 10.1007/978-0-387-21706-2] Vyjayanthi N, 2002, ECOTOX ENVIRON SAFE, V53, P212, DOI 10.1006/eesa.2002.2229 Wang P, 2018, ENTOMOL EXP APPL, V166, P703, DOI 10.1111/eea.12702 Wheeler GS, 2001, ENTOMOL EXP APPL, V98, P225, DOI 10.1023/A:1018913129484 Wu-Smart J, 2016, SCI REP-UK, V6, DOI 10.1038/srep32108 Zortea T, 2015, CHEMOSPHERE, V122, P94, DOI 10.1016/j.chemosphere.2014.11.018 NR 65 TC 5 Z9 5 U1 6 U2 27 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 15 PY 2021 VL 760 AR 143381 DI 10.1016/j.scitotenv.2020.143381 EA JAN 2021 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA PS2TD UT WOS:000607779400048 PM 33172643 DA 2023-03-13 ER PT J AU Floris, I Appel, K Rose, T Lejeune, B AF Floris, Ilaria Appel, Kurt Rose, Thorsten Lejeune, Beatrice TI 2LARTH (R), a micro-immunotherapy medicine, exerts anti-inflammatory effects in vitro and reduces TNF-alpha, and IL-1 beta secretion SO JOURNAL OF INFLAMMATION RESEARCH LA English DT Article DE ultra-low doses; hormesis; chronic inflammation; rheumatic diseases ID GENE-EXPRESSION; BLOOD MONOCYTES; DOSE RESPONSES; INTERLEUKIN-1; INDUCTION; CELLS; MACROPHAGES; SEPARATION; SUCROSE AB Background: Tumor necrosis factor-alpha (TNF-alpha) and IL-1 beta are 2 pro-inflammatory cytokines known to be involved in rheumatic diseases. The therapeutic strategy used in micro-immunotherapy (MI) to reduce chronic inflammation and attenuate pain consists in mainly targeting these 2 cytokines. 2LARTH (R) is a sublingually administered medicine consisting of lactose-saccharose globules impregnated with ethanolic preparations of immune mediators and nucleic acids at ultra-low doses. Purpose: The aim of the study is to explore the effect of the MI medicine on TNF-alpha and IL-1 beta secretion in human primary enriched monocytes exposed to lipopolysaccharide (LPS). Materials and methods: Placebo and active globules were diluted in culture medium to test 5 lactose-saccharose globules concentrations (from 1.75 to 22 mM). Freshly isolated enriched monocytes from 6 healthy donors were treated with or without LPS (10 ng/mL), LPS+placebo, or LPS+ 2LARTH (R) for 24 hours. IL-1 beta, TNF-alpha, and IL-6 release were evaluated by ELISA. Results: The medicine has significantly decreased the level of IL-1 beta secretion compared with placebo at these concentrations: 22 mM (P<0.0001),11 mM (P=0.0086), 5.5 mM (P= 0.0254), and compared with untreated LPS control at these concentrations: 22 mM, 11 mM (P=0.0008), and 5.5 mM (P=0.002). The effect of active globules on the reduction of TNF-alpha release is significant compared with placebo at these concentrations: 22 mM (P=0.0018),11 mM (P=0.0005), 5.5 mM (P=0.0136), and compared with untreated LPS control at these concentrations: 22 mM (P=0.0021), 11 mM (P=0.0017), 5.5 mM (P=0.0052) and 2.25 mM (P=0.0196). Besides, IL-6 secretion decreased compared with placebo at 22 mM (P=0.0177) and 11 mM (P=0.0031). Conclusion: The results indicate that the tested product exerts significant anti-inflammatory effects on human LPS-stimulated monocytes. C1 [Floris, Ilaria] Labo Life France, Clin Affairs, Moutiers Sous Chantemerl, France. [Appel, Kurt] VivaCell Biotechnol GmbH, Denzlingen, Germany. [Rose, Thorsten; Lejeune, Beatrice] Labo Life Belgium, Clin Affairs, Gembloux, Belgium. RP Floris, I (corresponding author), Labo Life France, Rue Francois Bruneau, F-144000 Nantes, France. EM ilaria.floris@labolife.com OI Floris, Ilaria/0000-0003-4089-3133; Lejeune, Beatrice/0000-0001-9067-6116 FU Labo'Life France FX The authors would like to thank Anne Naedts for preparing and providing the placebo globules and Alain Lejeune for -providing and sending the medicine to VivaCell Biotechnology GmbH. This research study was funded by Labo'Life France. CR Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Chen X, 2016, SCI REP-UK, V6, DOI 10.1038/srep28423 DECOURCY K, 1991, EXP CELL RES, V192, P52, DOI 10.1016/0014-4827(91)90156-O DINARELLO CA, 1987, J IMMUNOL, V139, P1902 ENGLISH D, 1974, J IMMUNOL METHODS, V5, P249, DOI 10.1016/0022-1759(74)90109-4 Excellence NIfHaC, 2020, OST CAR MAN AD CLIN Floris I, 2018, J BIOL REG HOMEOS AG, V32, P37 Gane JM, 2016, J IMMUNOL RES, V2016, DOI 10.1155/2016/1079851 Guha M, 2001, CELL SIGNAL, V13, P85, DOI 10.1016/S0898-6568(00)00149-2 Higuchi T, 2015, J CELL BIOCHEM, V116, P609, DOI 10.1002/jcb.25012 KOVACS EJ, 1989, J IMMUNOL, V143, P3532 Marcum Zachary A, 2010, Ann Longterm Care, V18, P24 NOBLE PB, 1968, BLOOD, V31, P66, DOI 10.1182/blood.V31.1.66.66 O'Neil CK, 2012, AM J GERIATR PHARMAC, V10, P331, DOI 10.1016/j.amjopharm.2012.09.004 Parashar A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818774421 Rosso M, 2011, CRIT REV IMMUNOL, V31, P379, DOI 10.1615/CritRevImmunol.v31.i5.20 Schaible HG, 2014, ARTHRITIS RES THER, V16, DOI 10.1186/s13075-014-0470-8 Schett G, 2016, NAT REV RHEUMATOL, V12, P14, DOI 10.1038/nrrheum.2016.166 Schwartz A, 2017, REV ESPANOLA OZONOTE, V7, P17 Sommer C, 2004, NEUROSCI LETT, V361, P184, DOI 10.1016/j.neulet.2003.12.007 STRIETER RM, 1989, AM REV RESPIR DIS, V139, P335, DOI 10.1164/ajrccm/139.2.335 Thomas G., 2016, ADV INFECT DIS, V06, P7, DOI [DOI 10.4236/AID.2016.61002, 10.4236/aid.2016.61002] TOSATO G, 1990, BLOOD, V75, P1305, DOI 10.1182/blood.V75.6.1305.1305 van Laar Mart, 2012, Open Rheumatol J, V6, P320, DOI 10.2174/1874312901206010320 Weis S, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18061273 NR 27 TC 16 Z9 16 U1 1 U2 3 PU DOVE MEDICAL PRESS LTD PI ALBANY PA PO BOX 300-008, ALBANY, AUCKLAND 0752, NEW ZEALAND EI 1178-7031 J9 J INFLAMM RES JI J. Inflamm. Res. PY 2018 VL 11 BP 397 EP 405 DI 10.2147/JIR.S174326 PG 9 WC Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Immunology GA GY5MF UT WOS:000448620200001 PM 30464572 OA Green Submitted, gold, Green Published DA 2023-03-13 ER PT J AU Rey, B Degletagne, C Bodennec, J Monternier, PA Mortz, M Roussel, D Romestaing, C Rouanet, JL Tornos, J Duchamp, C AF Rey, Benjamin Degletagne, Cyril Bodennec, Jacques Monternier, Pierre-Axel Mortz, Mathieu Roussel, Damien Romestaing, Caroline Rouanet, Jean-Louis Tornos, Jeremy Duchamp, Claude TI Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus) SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Redox homeostasis; Oxidative stress; Penguin; Lipid composition; Hormesis; Mitochondria ID OXYGEN SPECIES PRODUCTION; AVIAN UNCOUPLING PROTEIN; SKELETAL-MUSCLE; OXIDATIVE STRESS; SUPEROXIDE-PRODUCTION; METABOLIC-RATE; THYROID STATUS; UP-REGULATION; LIFE-SPAN; MITOCHONDRIA AB Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure in diving birds. Initial immersions in cold-water may initiate an hormetic response triggering essential changes in the adaptive antioxidant response to marine life. (C) 2016 Elsevier Inc. All rights reserved. C1 [Rey, Benjamin] Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, Villeurbanne, France. [Rey, Benjamin] Univ Witwatersrand, Fac Hlth Sci, Sch Physiol, Brain Funct Res Grp, Johannesburg, South Africa. [Degletagne, Cyril; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude] Univ Lyon 1, CNRS, Lab Ecol Hydrosyst Nat & Anthropises, Villeurbanne, France. [Bodennec, Jacques] Univ Lyon 1, CNRS, Neurosci Res Ctr, Villeurbanne, France. [Degletagne, Cyril] Helmholtz Ctr Polar & Marine Res Funct Ecol, Alfred Wegener Inst, Bremerhaven, Germany. C3 Centre National de la Recherche Scientifique (CNRS); UDICE-French Research Universities; Universite Claude Bernard Lyon 1; VetAgro Sup; University of Witwatersrand; UDICE-French Research Universities; Universite Claude Bernard Lyon 1; Centre National de la Recherche Scientifique (CNRS); Centre National de la Recherche Scientifique (CNRS); UDICE-French Research Universities; Universite Claude Bernard Lyon 1; Helmholtz Association; Alfred Wegener Institute, Helmholtz Centre for Polar & Marine Research RP Rey, B (corresponding author), Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, Villeurbanne, France. EM benjamin.rey@univ-lyon1.fr; Cyril.degletagne@gmail.com; jacques.bodennec@univ-lyon1.fr; pierreaxel.monternier@gmail.com; mathieu.mortz@gmail.com; damien.roussel@univ-lyon1.fr; Caroline.romestaing@univ-lyon1.fr; jean-louis.rouanet@univ-lyon1.fr; jeremy.tornos@cefe.cnrs.fr; claude.duchamp@univ-lyon1.fr RI romestaing, caroline/O-8794-2017 OI romestaing, caroline/0000-0002-6877-9626; Tornos, Jeremy/0000-0002-8793-2518; Roussel, Damien/0000-0002-8865-5428 FU French Polar Institute (Institute Paul Emile Victor (IPEV) [131] FX We are very grateful to Dr. Doris Abele for providing constructive comments on the draft manuscript. This work was supported by grants from the French Polar Institute (Institute Paul Emile Victor (IPEV), programme no.131). CR AEBI H, 1984, METHOD ENZYMOL, V105, P121 Ali SS, 2010, J BIOL CHEM, V285, P32522, DOI 10.1074/jbc.M110.155432 BARRE H, 1986, AM J PHYSIOL, V251, pR456, DOI 10.1152/ajpregu.1986.251.3.R456 Bolstad BM, 2003, BIOINFORMATICS, V19, P185, DOI 10.1093/bioinformatics/19.2.185 Butler PJ, 1997, PHYSIOL REV, V77, P837, DOI 10.1152/physrev.1997.77.3.837 Cheng GJ, 2008, FREE RADICAL BIO MED, V45, P1682, DOI 10.1016/j.freeradbiomed.2008.09.009 Cherel Y, 2004, GEN COMP ENDOCR, V136, P398, DOI 10.1016/j.ygcen.2004.02.003 Christensen LL, 2015, ECOL EVOL, V5, P5096, DOI 10.1002/ece3.1771 Clanton TL, 2007, J APPL PHYSIOL, V102, P2379, DOI 10.1152/japplphysiol.01298.2006 Collin A, 2005, DOMEST ANIM ENDOCRIN, V29, P78, DOI 10.1016/j.domaniend.2005.02.007 Corsolini S, 2001, POLAR BIOL, V24, P365 Criscuolo F, 2005, P ROY SOC B-BIOL SCI, V272, P803, DOI 10.1098/rspb.2004.3044 Culik BM, 1996, J EXP BIOL, V199, P973 D'Autreaux B, 2007, NAT REV MOL CELL BIO, V8, P813, DOI 10.1038/nrm2256 Davies KJA, 2000, IUBMB LIFE, V50, P279, DOI 10.1080/15216540051081010 Degletagne C, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-344 DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915, DOI 10.1146/annurev.bi.63.070194.004411 Donmez G, 2010, AGING CELL, V9, P285, DOI 10.1111/j.1474-9726.2010.00548.x Froget G, 2004, J EXP BIOL, V207, P3917, DOI 10.1242/jeb.01232 Handrich Y, 1997, NATURE, V388, P64, DOI 10.1038/40392 He HQ, 2009, MOL IMMUNOL, V46, P2218, DOI 10.1016/j.molimm.2009.04.020 Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006 Jarmuszkiewicz W, 2015, FREE RADICAL BIO MED, V83, P12, DOI 10.1016/j.freeradbiomed.2015.02.012 Jenni-Eiermann S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097650 Kalmar B, 2009, ADV DRUG DELIVER REV, V61, P310, DOI 10.1016/j.addr.2009.02.003 Kultz D, 2005, ANNU REV PHYSIOL, V67, P225, DOI 10.1146/annurev.physiol.67.040403.103635 Mujahid A, 2007, FEBS LETT, V581, P3461, DOI 10.1016/j.febslet.2007.06.051 Pamplona R, 2011, AM J PHYSIOL-REG I, V301, pR843, DOI 10.1152/ajpregu.00034.2011 Raclot T, 1998, MAR BIOL, V132, P523, DOI 10.1007/s002270050418 Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029 Rey B., DATA BRIEF UNPUB Rey B, 2008, AM J PHYSIOL-REG I, V295, pR92, DOI 10.1152/ajpregu.00271.2007 Rey B, 2015, COMP BIOCHEM PHYS A, V183, P72, DOI 10.1016/j.cbpa.2015.01.012 Rey B, 2014, J EXP ZOOL PART A, V321, P415, DOI 10.1002/jez.1872 Rey B, 2013, J COMP PHYSIOL B, V183, P135, DOI 10.1007/s00360-012-0692-5 Rey Benjamin, 2010, BMC Physiology, V10, P5, DOI 10.1186/1472-6793-10-5 Rey B, 2010, J COMP PHYSIOL B, V180, P239, DOI 10.1007/s00360-009-0409-6 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Smyth GK, 2004, STAT APPL GENET MOL, V3, DOI [DOI 10.2202/1544-6115.1027, 10.2202/1544-6115.1027] St-Pierre J, 2002, J BIOL CHEM, V277, P44784, DOI 10.1074/jbc.M207217200 Stockard TK, 2005, J EXP BIOL, V208, P2973, DOI 10.1242/jeb.01687 Talbot DA, 2004, J PHYSIOL-LONDON, V558, P123, DOI 10.1113/jphysiol.2004.063768 Talbot DA, 2004, FEBS LETT, V556, P111, DOI 10.1016/S0014-5793(03)01386-3 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Tappel A L, 1978, Methods Enzymol, V52, P506 Teulier L, 2016, J COMP PHYSIOL B, V186, P639, DOI 10.1007/s00360-016-0975-3 Teulier L, 2012, P ROY SOC B-BIOL SCI, V279, P2464, DOI 10.1098/rspb.2011.2664 Thorson Philip H., 1994, P271 Vaisman N, 2008, AM J CLIN NUTR, V87, P1170, DOI 10.1093/ajcn/87.5.1170 van Dam RP, 2002, J EXP BIOL, V205, P3769 Vazquez-Medina JP, 2012, J COMP PHYSIOL B, V182, P741, DOI 10.1007/s00360-012-0652-0 Vazquez-Medina JP, 2006, COMP BIOCHEM PHYS C, V142, P198, DOI 10.1016/j.cbpc.2005.09.004 Wallace DC, 2005, ANNU REV GENET, V39, P359, DOI 10.1146/annurev.genet.39.110304.095751 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zenteno-Savin T, 2010, COMP BIOCHEM PHYS C, V152, P18, DOI 10.1016/j.cbpc.2010.02.007 Zhu PC, 2011, CANCER CELL, V19, P401, DOI 10.1016/j.ccr.2011.01.018 NR 57 TC 13 Z9 13 U1 0 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD AUG PY 2016 VL 97 BP 577 EP 587 DI 10.1016/j.freeradbiomed.2016.07.015 PG 11 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA DU0VZ UT WOS:000381924100052 PM 27449544 DA 2023-03-13 ER PT J AU Wang, JY Tan, LJ Ni, ZQ Zhang, N Li, Q Wang, JT AF Wang, Jiayin Tan, Liju Ni, Ziqi Zhang, Na Li, Qi Wang, Jiangtao TI Is hydrodynamic diameter the decisive factor?-Comparison of the toxic mechanism of nSiO2 and mPS on marine microalgae Heterosigma akashiwo SO AQUATIC TOXICOLOGY LA English DT Article DE Micro -; nano -particles; Microalgae; Heterosigma akashiwo; Photosynthetic systems; Oxidative damage; Toxic mechanism ID OXIDE NANOPARTICLES; FRESH-WATER; CHLAMYDOMONAS-REINHARDTII; TIO2 NANOPARTICLES; GROWTH-INHIBITION; OXIDATIVE STRESS; SILICA; SIO2; ZNO; CYTOTOXICITY AB To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Heterosigma akashiwo, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 1.5, 2, 5, 10 and 30 mg L-1) and mPS (1, 2, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. It was found that the hydrodynamic diameter of the particles seems to be one of the more important factors to influence the algae. nSiO2 and mPS with similar hydrodynamic diameters have the similar toxic mechanism on H. akashiwo, and the effects were dose-and time-dependent. High concentrations of micro-/nano-particles (MNPs) could inhibit the growth of algal cells, however, low concentrations of MNPs did not restrict or even promoted the growth of algae, known as "Hormesis" phenomenon. The 96 h-EC20 values of nSiO2 and mPS on H. akashiwo were 2.69 and 10.07 mg L-1, respectively, and chlorophyll fluorescence pa-rameters indicated that the microalgal photosynthetic system were inhibited. The hydrophilic surface of nSiO2 increased the likelihood of nSiO2 binding to the hydrophilic functional group of microalgae, which may account for the slightly stronger toxic effect of nSiO2 than mPS. The algae continued to produce reactive oxygen species (ROS) under stress conditions. Total protein (TP) levels reduced, and superoxide dismutase (SOD) and catalase (CAT) levels increased to maintain ROS levels in the cells. The decrease in adenosine triphosphate (ATPase) indicated an impact on cellular energy metabolism. Cell membrane damage, cytoplasm and organelle efflux under stress were confirmed by scanning and transmission electron microscopy (SEM and TEM) images. This study contributes to the understanding of the size effect of MNPs on the growth of marine microalgae. C1 [Wang, Jiayin; Tan, Liju; Ni, Ziqi; Zhang, Na; Li, Qi; Wang, Jiangtao] Ocean Univ China, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Peoples R China. C3 Ocean University of China RP Wang, JT (corresponding author), Ocean Univ China, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Peoples R China. EM jtwang@ouc.edu.cn FU National Natural Science Foundation of China; Key Technologies Research and Development Program; Natural Science Foundation of Shandong Province; [41876078]; [2019YFC1407802]; [ZR2018MD016] FX The study was financially supported by the National Natural Science Foundation of China [grant number 41876078] ; Key Technologies Research and Development Program [grant number 2019YFC1407802] ; Natural Science Foundation of Shandong Province [grant number ZR2018MD016] . CR Adams LK, 2006, WATER SCI TECHNOL, V54, P327, DOI 10.2166/wst.2006.891 Adams LK, 2006, WATER RES, V40, P3527, DOI 10.1016/j.watres.2006.08.004 Ahamed A, 2021, J HAZARD MATER, V404, DOI 10.1016/j.jhazmat.2020.124107 Blasco J, 2015, MAR ENVIRON RES, V111, P1, DOI 10.1016/j.marenvres.2015.10.001 Book F, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150893 Brunner TJ, 2006, ENVIRON SCI TECHNOL, V40, P4374, DOI 10.1021/es052069i Chen PY, 2012, ENVIRON SCI TECHNOL, V46, P12178, DOI 10.1021/es303303g Chen YX, 2020, J HAZARD MATER, V399, DOI 10.1016/j.jhazmat.2020.123092 Chtistophe M, 2006, CURR PHARM DESIGN, V12, P739, DOI 10.2174/138161206775474242 Deng CN, 2014, BIOL TRACE ELEM RES, V160, P268, DOI 10.1007/s12011-014-0039-z Deniel M, 2019, AQUAT TOXICOL, V217, DOI 10.1016/j.aquatox.2019.105311 Du XY, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.118027 Eriksen M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111913 Fu DD, 2019, AQUAT TOXICOL, V216, DOI 10.1016/j.aquatox.2019.105319 Fujiwara K, 2008, J ENVIRON SCI HEAL A, V43, P1167, DOI 10.1080/10934520802171675 Gong N, 2011, CHEMOSPHERE, V83, P510, DOI 10.1016/j.chemosphere.2010.12.059 Gunasekaran D, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104250 Hazeem LJ, 2020, MAR POLLUT BULL, V156, DOI 10.1016/j.marpolbul.2020.111278 Hazeem LJ, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9070914 Hong Y, 2009, AQUAT TOXICOL, V91, P262, DOI 10.1016/j.aquatox.2008.11.014 Huang WQ, 2021, ENVIRON POLLUT, V287, DOI 10.1016/j.envpol.2021.117626 Jambeck JR, 2015, SCIENCE, V347, P768, DOI 10.1126/science.1260352 Jiang ZY, 2014, BRAZ ARCH BIOL TECHN, V57, P595, DOI [10.1590/S1516-8913201401304, 10.1590/S1982-88372014000100018] Klaine SJ, 2008, ENVIRON TOXICOL CHEM, V27, P1825, DOI 10.1897/08-090.1 Lee SH, 2020, J HAZARD MATER, V389, DOI 10.1016/j.jhazmat.2020.122149 Li CH, 2021, CHEMOSPHERE, V274, DOI 10.1016/j.chemosphere.2021.129771 Li FM, 2015, AQUAT TOXICOL, V158, P1, DOI 10.1016/j.aquatox.2014.10.014 Li SX, 2020, SCI TOTAL ENVIRON, V714, DOI 10.1016/j.scitotenv.2020.136767 Li YQ, 2017, CHEM RES CHINESE U, V33, P107, DOI 10.1007/s40242-017-6246-3 Liu YH, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8020095 Liu ZQ, 2022, CHEMOSPHERE, V291, DOI 10.1016/j.chemosphere.2021.132941 Long M, 2017, ENVIRON POLLUT, V228, P454, DOI 10.1016/j.envpol.2017.05.047 Manzo S, 2015, ENVIRON SCI POLLUT R, V22, P15941, DOI 10.1007/s11356-015-4790-2 Maul J., 2007, ULLMANNS ENCY IND CH, V29, P475, DOI [10.1002/14356007.a21_615.pub2, DOI 10.1002/14356007.A21_615.PUB2] Miao LZ, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113300 Parsai T, 2022, ENVIRON POLLUT, V308, DOI 10.1016/j.envpol.2022.119626 Pereira MM, 2014, J NANOBIOTECHNOL, V12, DOI 10.1186/1477-3155-12-15 Pikula K, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23020990 Pikula K, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10030485 Salata OV, 2004, J Nanobiotechnology, V2, P3, DOI 10.1186/1477-3155-2-3 Samei M, 2019, ENVIRON SCI POLLUT R, V26, P2409, DOI 10.1007/s11356-018-3787-z Sendra M, 2017, CHEMOSPHERE, V179, P279, DOI 10.1016/j.chemosphere.2017.03.123 Sendra M, 2019, ENVIRON POLLUT, V249, P610, DOI 10.1016/j.envpol.2019.03.047 Sharma P, 2020, NANOIMPACT, V17, DOI 10.1016/j.impact.2019.100200 Song CF, 2020, SCI TOTAL ENVIRON, V723, DOI 10.1016/j.scitotenv.2020.138146 Sousa CA, 2019, AQUAT TOXICOL, V214, DOI 10.1016/j.aquatox.2019.105265 Taylor NS, 2016, NANOTOXICOLOGY, V10, P32, DOI 10.3109/17435390.2014.1002868 Thiagarajan V, 2021, AQUAT TOXICOL, V232, DOI 10.1016/j.aquatox.2021.105747 Thompson RC, 2009, PHILOS T R SOC B, V364, P2153, DOI 10.1098/rstb.2009.0053 Ugya AY, 2020, CHEM ECOL, V36, P174, DOI 10.1080/02757540.2019.1688308 Van Hoecke K, 2008, ENVIRON TOXICOL CHEM, V27, P1948, DOI 10.1897/07-634.1 Wang F, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9081534 Wang JY, 2022, ENVIRON SCI-NANO, V9, P3094, DOI 10.1039/d2en00246a Wang JY, 2011, TOXICOL IN VITRO, V25, P242, DOI 10.1016/j.tiv.2010.11.010 Wang SY, 2020, MAR POLLUT BULL, V158, DOI 10.1016/j.marpolbul.2020.111403 Wang SC, 2021, SCI TOTAL ENVIRON, V797, DOI 10.1016/j.scitotenv.2021.149180 Wayman C, 2021, ENVIRON SCI-PROC IMP, V23, DOI 10.1039/d0em00446d Xia B, 2015, SCI TOTAL ENVIRON, V508, P525, DOI 10.1016/j.scitotenv.2014.11.066 Xu J, 2011, ECOTOXICOLOGY, V20, P73, DOI 10.1007/s10646-010-0557-1 Yan Z, 2021, J WATER PROCESS ENG, V43, DOI 10.1016/j.jwpe.2021.102291 Yang WF, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110484 Yang WF, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117413 Zhang C, 2016, AQUAT TOXICOL, V178, P158, DOI 10.1016/j.aquatox.2016.07.020 Zhang Q, 2018, ENVIRON POLLUT, V243, P1106, DOI 10.1016/j.envpol.2018.09.073 Zhao T, 2020, MAR POLLUT BULL, V154, DOI 10.1016/j.marpolbul.2020.111074 NR 65 TC 1 Z9 1 U1 21 U2 21 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0166-445X EI 1879-1514 J9 AQUAT TOXICOL JI Aquat. Toxicol. PD NOV PY 2022 VL 252 AR 106309 DI 10.1016/j.aquatox.2022.106309 PG 12 WC Marine & Freshwater Biology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Marine & Freshwater Biology; Toxicology GA 5A0UW UT WOS:000862612600001 PM 36156355 DA 2023-03-13 ER PT J AU Glowacka, A Klikocka, H Onuch, J AF Glowacka, Aleksandra Klikocka, Hanna Onuch, Joanna TI CONTENT OF ZINC AND IRON IN COMMON BEAN SEEDS (PHASEOLUS VULGARIS L.) IN DIFFERENT WEED CONTROL METHODS SO JOURNAL OF ELEMENTOLOGY LA English DT Article DE herbicides; hormesis; micronutrients; bentazon; linuron; chlomazone; metribuzin ID CALCIUM CONTENT; ZN; HERBICIDES; MAGNESIUM; QUALITY; PLANTS; CU AB A field experiment was conducted in 2010-2012 on a private farm located in the village of Frankaraionka in the administrative district (powiat) of Zamosc, on brown soil with slightly acidic pH, and the average abundance of zinc and iron. The experiment was set up in a random split-plot design with four replications, with seven methods for controlling weed infestation: 1) no weeding control, 2) hand weeding control, 3) linuron (Afalon dyspersyjny 450 SC), 4) linuron + metribuzin (Afalon dyspersyjny 450 SC + Mistral 70 WG), 5) linuron + chlomazone (Harrier 295 ZC), 6) linuron + chlomazone + metribuzin (Harrier 295 ZC +Mistral 70 WG), 7) bentazon (Basagran 480 SL twice). The objective of the study was to determine the effect of weeding control methods on the content of iron and zinc in the seeds of cv. Jag Karlowy common bean (Phaseolus vulgaris L.). The highest seed yield, on average 29.39 dt ha(-1), was obtained on the plots where weeds were controlled by the application of the herbicides Harrier 295 ZC + Mistral 20 WG just after sowing. The lowest seed yield was harvested on unweeded plots -6.77 dt ha(-1) on average. Statistical analysis showed a significant effect of the weed control methods and the weather conditions in growing seasons on the content of iron and zinc in bean seeds. The lowest amount of zinc, an average of 36.11 mg kg(-1), was found in beans from unweeded plots. The use of the herbicides Afalon dyspersyjny 450 SC + Mistral 70 WG, Harrier 295 ZC and Harrier 295 ZC + Mistral 70 WG significantly increased the zinc content compared to the un weeded control and manual weeding. The highest iron concentration, on average 75.12 mg kg(-1), was observed in seeds from unweeded plots. Significantly less iron accumulated in beans from plots weeded manually and by application of the herbicides Harrier 295 ZC and Harrier 295 ZC + Mistral 70 WG. C1 [Glowacka, Aleksandra; Klikocka, Hanna] Univ Life Sci Lublin, Fac Agrobioengn, PL-20950 Lublin, Poland. [Onuch, Joanna] Univ Life Sci Lublin, Dept Management & Environm Protect, PL-20950 Lublin, Poland. C3 University of Life Sciences in Lublin; University of Life Sciences in Lublin RP Glowacka, A (corresponding author), Univ Life Sci Lublin, Fac Agrobioengn, Akad 13, PL-20950 Lublin, Poland. EM aleksandra.glowacka@up.lublin.pl RI Klikocka, Hanna/T-5290-2018; Głowacka, Aleksandra/U-2374-2018 OI Klikocka, Hanna/0000-0003-2472-9720; Głowacka, Aleksandra/0000-0003-2835-7426 CR Adomas B., 2007, ZESZ PROB POST NAUK, V522, P87 Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Beebe Stephen, 2000, Food and Nutrition Bulletin, V21, P387 Blair M, 2009, MOL BREEDING, V23, P197, DOI 10.1007/s11032-008-9225-z Bowszys T, 2009, J ELEMENTOL, V14, P23, DOI 10.5601/jelem.2009.14.1.03 Cakmak I, 2002, PLANT SOIL, V247, P3, DOI 10.1023/A:1021194511492 Carvalho LMJ, 2012, FOOD NUTR RES, V56, DOI 10.3402/fnr.v56i0.15618 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen DEVINE MD, 1990, WEED SCI, V38, P299, DOI 10.1017/S0043174500056563 Firatligil-Durmus E, 2010, J FOOD ENG, V99, P445, DOI 10.1016/j.jfoodeng.2009.08.005 Frossard E, 2000, J SCI FOOD AGR, V80, P861, DOI [10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P, 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P] GEIGER DR, 1990, WEED SCI, V38, P324, DOI 10.1017/S0043174500056599 GLOWACKA A, 2010, ROCZ NAUK, V12, P18 Glowacka A, 2013, J ELEMENTOL, V18, P211, DOI 10.5601/jelem.2013.18.2.02 Graham PH, 1997, FIELD CROP RES, V53, P131, DOI 10.1016/S0378-4290(97)00112-3 Gugala M, 2010, J ELEMENTOL, V15, P269, DOI 10.5601/jelem.2010.15.2.269-280 Hekmat S, 2008, CROP PROT, V27, P1491, DOI 10.1016/j.cropro.2008.07.008 Iqbal A, 2006, FOOD CHEM, V97, P331, DOI 10.1016/j.foodchem.2005.05.011 Kahlon TS, 2005, FOOD CHEM, V90, P241, DOI 10.1016/j.foodchem.2004.03.046 Klikocka H, 2013, ACTA SCI POL-HORTORU, V12, P41 Klikocka H, 2011, ACTA SCI POL-HORTORU, V10, P137 Korus J., 2005, ZYWN-NAUK TECHNOL JA, V4, P81 Labuda H, 2010, ACTA SCI POL-HORTORU, V9, P117 Lin LZ, 2008, FOOD CHEM, V107, P399, DOI 10.1016/j.foodchem.2007.08.038 Meyer MRM, 2013, FOOD CHEM, V136, P87, DOI 10.1016/j.foodchem.2012.07.105 Moraghan JT, 2002, PLANT SOIL, V246, P175, DOI 10.1023/A:1020616026728 Nchimbi-Msolla Susan, 2010, Asian Journal of Plant Sciences, V9, P455 Podleny J., 2005, ACTA AGROPHYS, V6, P213 Santalla M, 2001, EUPHYTICA, V121, P45, DOI 10.1023/A:1012080303872 Sikkema PH, 2008, CROP PROT, V27, P124, DOI 10.1016/j.cropro.2007.04.017 Soltani N, 2006, CROP PROT, V25, P476, DOI 10.1016/j.cropro.2005.08.002 Stepniak-Solyga P., 2003, ANN UMCS EE, V76, P175 Tryphone GM, 2010, AFR J AGR RES, V5, P738 VANHEEMST HDJ, 1985, AGR SYST, V18, P81, DOI 10.1016/0308-521X(85)90047-2 Whittaker P, 1998, AM J CLIN NUTR, V68, p442S, DOI 10.1093/ajcn/68.2.442S NR 35 TC 6 Z9 6 U1 0 U2 6 PU POLISH SOCIETY MAGNESIUM RESEARCH PI OLSZYTN PA UNIV WARMIA-MAZURY OLSZTYN, PLAC LODZKI 2, OLSZYTN, PLS 10-957, POLAND SN 1644-2296 J9 J ELEMENTOL JI J. Elem. PD JUN PY 2015 VL 20 IS 2 BP 293 EP 303 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA CL2AD UT WOS:000356745100004 DA 2023-03-13 ER PT J AU Wu, ZX Liu, QL Zhong, YD Xiao, PJ Yu, FX AF Wu, Zhaoxiang Liu, Qiaoli Zhong, Yongda Xiao, Pingjiang Yu, Faxin TI Additions of Liriodendron sino-americanum Leaf Powder Change Soil Quality, Improve Sarcandra glabra Growth, and Alter Microbial Community SO JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION LA English DT Article DE L; sino-americanum leaf litter; Microbial community; Medicinal plant; Interspecific interaction; Plant growth; Soil properties ID CHLOROPHYLL-A; L.; PHOTOSYNTHESIS; EXTRACTION; FUMIGATION; PLANTLETS; ALKALOIDS; NITROGEN; LEAVES; FUNGI AB The interspecific relationship of plants plays a significant role in the agroforestry ecosystem. Chemical compounds release from litter exudates and decomposition was an important form of plant interspecific interaction and induced a series of biological reaction in adjacent plants. The objectives of the present study are to examine the effects of Liriodendron sino-americanum leaf powder on soil quality, plant growth and second metabolites accumulation, and rhizosphere microbial community, taking Sarcandra glabra (Thunb.) Nakai saplings as the host plant. A pot experiment was carried out under greenhouse conditions. The experiment comprised three treatments (CK (no addition), C75 (7.5% dosage addition), and C100 (10% dosage addition)) laid down in a completely randomized design with three replicates. Plant growth, second metabolites, and chlorophyll content were evaluated. Soil properties were also studied after plants were harvested, and the rhizosphere microbial community was determined via high-throughput sequencing. The addition of L. sino-americanum leaf powder increased the soil quality significantly, including the index of pH, soil organic carbon, and available nutrients of nitrogen, phosphorus, and potassium. With the dosage increase of L. sino-americanum leaf powder, dry weight of plant shoot and root, chlorophyll b concentration, and plant height increased continuously; however, chlorophyll a and rosmarinic acid increased firstly and then decreased. Moreover, the structure and composition of the rhizosphere microbial community were affected by L. sino-americanum leaf powder, and the effects on microbial diversity presented as a hormesis effect in dose. Statistical analyses further revealed that rhizospheric microbial community composition in relative abundance was highly related to the organic matter promoted by the addition of L. sino-americanum leaf powder. L. sino-americanum leaf plays positive effects on the cultivation of Sarcandra glabra under the forest, through litter exudates and decomposition, suggesting that cultivativation of Sarcandra glabra under L. sino-americanum plantation will achieve great economic, ecological, and social benefits. C1 [Wu, Zhaoxiang; Liu, Qiaoli; Zhong, Yongda; Yu, Faxin] Jiangxi Acad Sci, Inst Biol Resources, Nanchang 330096, Jiangxi, Peoples R China. [Wu, Zhaoxiang; Liu, Qiaoli; Zhong, Yongda; Yu, Faxin] Key Lab Hort Plant Genet & Improvement Jiangxi Pr, Nanchang 330096, Jiangxi, Peoples R China. [Xiao, Pingjiang] Wugongshan Forestry Ctr, Jian 343212, Jiangxi, Peoples R China. RP Yu, FX (corresponding author), Jiangxi Acad Sci, Inst Biol Resources, Nanchang 330096, Jiangxi, Peoples R China.; Yu, FX (corresponding author), Key Lab Hort Plant Genet & Improvement Jiangxi Pr, Nanchang 330096, Jiangxi, Peoples R China. EM yufaxin@jxas.ac.cn FU National Natural Science Foundation of China [31960230]; Key Research & Development projects in Jiangxi Province [20192ACB60014] FX The study was financially supported by the National Natural Science Foundation of China (31960230) and Key Research & Development projects in Jiangxi Province (20192ACB60014). CR Abarenkov K, 2010, NEW PHYTOL, V186, P281, DOI 10.1111/j.1469-8137.2009.03160.x Ali A, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.697815 Bahram M, 2018, NATURE, V560, P233, DOI 10.1038/s41586-018-0386-6 Bergmann GT, 2011, SOIL BIOL BIOCHEM, V43, P1450, DOI 10.1016/j.soilbio.2011.03.012 BROOKES PC, 1985, SOIL BIOL BIOCHEM, V17, P837, DOI 10.1016/0038-0717(85)90144-0 Cao HJ, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/236539 Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303 Chinese Pharmacopoeia Commission [CPC], 2020, PHARMACOPOEIA PEOPLE CORNFIELD AH, 1960, NATURE, V187, P260, DOI 10.1038/187260a0 Graziose R, 2011, J ETHNOPHARMACOL, V133, P26, DOI 10.1016/j.jep.2010.08.059 Guo Lan-ping, 2004, Zhongguo Zhongyao Zazhi, V29, P615 Gyaneshwar P, 2002, PLANT SOIL, V245, P83, DOI 10.1023/A:1020663916259 Hoft M, 1996, OECOLOGIA, V107, P160, DOI 10.1007/BF00327899 Hua B, 2021, BIOTECHNOL LETT, V43, P655, DOI 10.1007/s10529-020-03046-1 Huang WW, 2020, GLOB ECOL CONSERV, V21, DOI 10.1016/j.gecco.2019.e00872 HUFFORD CD, 1975, J PHARM SCI-US, V64, P789, DOI 10.1002/jps.2600640512 Inderjit, 2001, PERSPECT PLANT ECOL, V4, P3, DOI 10.1078/1433-8319-00011 Kapoor R, 2002, J SCI FOOD AGR, V82, P339, DOI 10.1002/jsfa.1039 Kapoor R, 2002, WORLD J MICROB BIOT, V18, P459, DOI 10.1023/A:1015522100497 KIEFER DA, 1989, LIMNOL OCEANOGR, V34, P868, DOI 10.4319/lo.1989.34.5.0868 Killingbeck KT, 1996, ECOLOGY, V77, P1716, DOI 10.2307/2265777 Li H, 2019, INT J BIOL MACROMOL, V123, P957, DOI 10.1016/j.ijbiomac.2018.11.103 Li SH., 2008, JIANGSU AGR SCI, V3, P113, DOI [10.15889/j.issn.1002-1302.2008.03.032, DOI 10.15889/J.ISSN.1002-1302.2008.03.032] Li YB, 2019, SOIL BIOL BIOCHEM, V130, P33, DOI 10.1016/j.soilbio.2018.11.025 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 Liu JJ, 2016, BMC COMPLEM ALTERN M, V16, DOI 10.1186/s12906-016-1383-7 MAY FE, 1990, AUST J BOT, V38, P245, DOI 10.1071/BT9900245 Mushtaq MN, 2013, PLANT PHYSIOL BIOCH, V70, P374, DOI 10.1016/j.plaphy.2013.06.003 Nelson D. W., 1982, Methods of soil analysis. Part 2. Chemical and microbiological properties, P539 Nilsson RH, 2011, NEW PHYTOL, V191, P314, DOI 10.1111/j.1469-8137.2011.03755.x PORRA RJ, 1989, BIOCHIM BIOPHYS ACTA, V975, P384, DOI 10.1016/S0005-2728(89)80347-0 Pouryousef M, 2015, CROP PROT, V69, P60, DOI 10.1016/j.cropro.2014.12.004 Pruesse E, 2007, NUCLEIC ACIDS RES, V35, P7188, DOI 10.1093/nar/gkm864 Qiu MH, 2012, BIOL FERT SOILS, V48, P807, DOI 10.1007/s00374-012-0675-4 Qu XinJing, 2018, Journal of Anhui Agricultural University, V45, P861 Rajala T, 2012, FEMS MICROBIOL ECOL, V81, P494, DOI 10.1111/j.1574-6941.2012.01376.x SAEBO A, 1995, PLANT CELL TISS ORG, V41, P177, DOI 10.1007/BF00051588 Sowndhararajan K, 2017, SCI PHARM, V85, DOI 10.3390/scipharm85030033 Toussaint JP, 2007, MYCORRHIZA, V17, P291, DOI 10.1007/s00572-006-0104-3 van der Putten WH, 2013, J ECOL, V101, P265, DOI 10.1111/1365-2745.12054 Venugopalan A, 2015, BIOTECHNOL ADV, V33, P873, DOI 10.1016/j.biotechadv.2015.07.004 Wei SS, 2019, IND CROP PROD, V137, P367, DOI 10.1016/j.indcrop.2019.05.041 WU J, 1990, SOIL BIOL BIOCHEM, V22, P1167, DOI 10.1016/0038-0717(90)90046-3 Xie DJ, 2020, BMC PLANT BIOL, V20, DOI 10.1186/s12870-020-02685-w Xu QL, 2013, J AGR FOOD CHEM, V61, P7309, DOI 10.1021/jf4017652 Xue Li, 2003, Yingyong Shengtai Xuebao, V14, P1820 Yang AH, 2016, SCI REP-UK, V6, DOI 10.1038/srep25632 Yang LL, 2020, PHYTOCHEMISTRY, V177, DOI 10.1016/j.phytochem.2020.112434 Zahir A, 2014, APPL BIOCHEM BIOTECH, V174, P693, DOI 10.1007/s12010-014-1098-5 Zhang FuYun, 2005, Journal of Yunnan Agricultural University, V20, P697 [张启云 Zhang Qiyun], 2013, [中药新药与临床药理, Traditional Chinese Drug Research and Clinical Plarmacology], V24, P294 Zhao YaQi, 2016, Journal of Nanjing Forestry University (Natural Sciences Edition), V40, P76 Zheng LP, 2016, PLANT GROWTH REGUL, V80, P93, DOI 10.1007/s10725-016-0162-2 Zhou H, 2013, FOOD CHEM, V138, P2390, DOI 10.1016/j.foodchem.2012.12.027 Zhu WY, 2016, SCI REP-UK, V6, DOI 10.1038/srep34290 Zou HT, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153214 NR 56 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER INT PUBL AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0718-9508 EI 0718-9516 J9 J SOIL SCI PLANT NUT JI J. Soil Sci. Plant Nutr. PD DEC PY 2022 VL 22 IS 4 BP 4983 EP 4995 DI 10.1007/s42729-022-00975-w EA AUG 2022 PG 13 WC Plant Sciences; Environmental Sciences; Soil Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences; Environmental Sciences & Ecology; Agriculture GA 8J9QT UT WOS:000842719500001 DA 2023-03-13 ER PT J AU Acar, NV Dursun, A Aygun, D Cila, HEG Lay, I Gulbakan, B Ozgul, RK AF Acar, Nese Vardar Dursun, Ali Aygun, Damla Cila, H. Esra Gurses Lay, Incilay Gulbakan, Basri Ozgul, R. Koksal TI An investigation of different intracellular parameters for Inborn Errors of Metabolism: Cellular stress, antioxidant response and autophagy SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Inborn errors of metabolism; Oxidative stress; Reductive stress; Nrf2; Keap1; p62 pathway; Mitochondrial dysfunction; Autophagy ID OXIDATIVE STRESS; THERAPEUTIC INTERVENTION; METHYLMALONIC ACIDURIA; CARDIOMYOCYTE DEATH; REACTIVE OXYGEN; SMALL MOLECULES; IVA PATIENTS; VITAGENES; HORMESIS; DISORDERS AB Oxidative stress is associated with various disease pathologies including Inborn Errors of Metabolism (IEMs), among the most important causes of childhood morbidity and mortality. At least as much as oxidative stress in cells, reductive stress poses a danger to the disruption of cell homeostasis. p62/SQSTM1, protects cells from stress by activation of Nrf2/Keap1 and autophagy pathways. In this study, we tested the role of cellular stress, mitochondrial dysfunction and autophagy via Nrf2/Keap1/p62 pathway in the pathophysiology of three main groups of IEMs. Our results showed that antioxidant and oxidant capacity alone would not be sufficient to reflect the true clinical picture of these diseases. ATP, ROS and mitochondrial membrane potantial (MMP) measurements demonstrated increased cellular stress and bioenergetic imbalance in methylmalonic acidemia (MMA), indicating mild mitochondrial dysfunction. In isovaleric acidemia (IVA), no major change was detected in ATP, ROS and MMP values. Propionic acidemia (PA), mitochondrial diseases (MIT) and mucopolysaccharidosis IV (MPS IV) might point out mitohormesis to cope with chronic reductive stress. Induction of Nrf2/Keap1/p62 pathway and increased expression of HMOX1 were detected in all IEMs. LC3B-II and p62 expression results indicated an impaired autophagic flux in MIT and MPS IV and an induction of autophagic flux in MMA, PA and IVA, but also partial expression of Beclin1, enables autophagy activation, was detected in all IEMs. We conclude that individual diagnosis and treatments are of great importance in IEMs. In addition, we assume that the application of therapeutic antioxidant or preventive treatments without determining the cellular stress status in IEMs may disrupt the sensitive oxidant-antioxidant balance in the cell, leading to the potential to further disrupt the clinical picture, especially in patients with reductive stress. To the best of our knowledge, this is the first study to simultaneously relate IEMs with cellular stress, mitochondrial dysfunction, and autophagy. C1 [Acar, Nese Vardar; Dursun, Ali; Aygun, Damla; Cila, H. Esra Gurses; Gulbakan, Basri; Ozgul, R. Koksal] Hacettepe Univ, Fac Med, Inst Child Hlth, Dept Pediat Metab, Ankara, Turkey. [Lay, Incilay] Hacettepe Univ, Fac Med, Dept Med Biochem, Ankara, Turkey. C3 Hacettepe University; Hacettepe University RP Ozgul, RK (corresponding author), Hacettepe Univ, Fac Med, Inst Child Hlth, Dept Pediat Metab, Ankara, Turkey. EM rkozgul@hacettepe.edu.tr FU Hacettepe University Scientific Research Unit [THD-2019-17639] FX This study was supported by Hacettepe University Scientific Research Unit (Project No: THD-2019-17639) for doctoral thesis. CR Almeciga-Diaz CJ, 2019, J MED CHEM, V62, P6175, DOI 10.1021/acs.jmedchem.9b00428 Bellezza I., 2020, CELLULAR MOL LIFE SC, P1 Brasil S, 2015, CLIN GENET, V87, P576, DOI 10.1111/cge.12426 Calabrese V, 2014, J CELL COMMUN SIGNAL, V8, P369, DOI 10.1007/s12079-014-0253-7 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Cammarata A, 2019, BIOMED ENG, P90 Carretero A, 2020, FREE RADICAL RES, V54, P173, DOI 10.1080/10715762.2020.1735632 Consoli V, 2021, BIOMOLECULES, V11, DOI 10.3390/biom11040589 Cornelius C, 2013, HORM MOL BIOL CLIN I, V16, P73, DOI 10.1515/hmbci-2013-0051 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 de Keyzer Y, 2009, PEDIATR RES, V66, P91, DOI 10.1203/PDR.0b013e3181a7c270 Dodson M, 2019, ANNU REV PHARMACOL, V59, P555, DOI 10.1146/annurev-pharmtox-010818-021856 Donida B, 2017, MOL GENET METAB REP, V11, P46, DOI 10.1016/j.ymgmr.2017.04.005 Donida B, 2015, BBA-MOL BASIS DIS, V1852, P1012, DOI 10.1016/j.bbadis.2015.02.004 Ebrahimi-Fakhari D, 2016, BRAIN, V139, P317, DOI 10.1093/brain/awv371 El-Hattab AW, 2015, CLIN PERINATOL, V42, P413, DOI 10.1016/j.clp.2015.02.010 Erel O, 2004, CLIN BIOCHEM, V37, P277, DOI 10.1016/j.clinbiochem.2003.11.015 Erel O, 2005, CLIN BIOCHEM, V38, P1103, DOI 10.1016/j.clinbiochem.2005.08.008 Esparza-Molto PB, 2017, CELL MOL LIFE SCI, V74, P2151, DOI 10.1007/s00018-017-2462-8 Ezgu F, 2016, ADV CLIN CHEM, V73, P195, DOI 10.1016/bs.acc.2015.12.001 Fang CC, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/8495160 Fernandes CG, 2011, CELL MOL NEUROBIOL, V31, P775, DOI 10.1007/s10571-011-9675-4 Gallego-Villar L, 2014, BIOCHEM BIOPH RES CO, V452, P457, DOI 10.1016/j.bbrc.2014.08.091 Gallego-Villar L, 2013, J INHERIT METAB DIS, V36, P731, DOI 10.1007/s10545-012-9545-3 Garcia-Aguilar A, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01322 Ghosh N, 2011, FREE RADICAL RES, V45, P888, DOI 10.3109/10715762.2011.574290 Haberle J, 2018, ORPHANET J RARE DIS, V13, DOI 10.1186/s13023-018-0963-7 Ialongo C, 2017, CLIN BIOCHEM, V50, P356, DOI 10.1016/j.clinbiochem.2016.11.037 Kim JH, 2019, KIDNEY RES CLIN PRAC, V38, P318, DOI 10.23876/j.krcp.18.0152 Knerr I, 2012, J INHERIT METAB DIS, V35, P29, DOI 10.1007/s10545-010-9269-1 Kongara S, 2012, FRONT ONCOL, V2, DOI 10.3389/fonc.2012.00171 Lee J, 2012, BIOCHEM J, V441, P523, DOI 10.1042/BJ20111451 Li LL, 2015, CELL MOL NEUROBIOL, V35, P615, DOI 10.1007/s10571-015-0166-x Luciani A, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-14729-8 Lushchak VI, 2014, CHEM-BIOL INTERACT, V224, P164, DOI 10.1016/j.cbi.2014.10.016 Lushchak Volodymyr I, 2012, J Amino Acids, V2012, P736837, DOI 10.1155/2012/736837 Ma XC, 2015, MOL CELL BIOL, V35, P956, DOI 10.1128/MCB.01091-14 Ma XC, 2012, CIRCULATION, V125, P3170, DOI 10.1161/CIRCULATIONAHA.111.041814 Mancuso M, 2009, CURR MOL MED, V9, P1095, DOI 10.2174/156652409789839099 Matalonga L, 2017, J INHERIT METAB DIS, V40, P177, DOI 10.1007/s10545-016-0005-3 Mc Guire PJ, 2009, MOL GENET METAB, V98, P173, DOI 10.1016/j.ymgme.2009.06.007 Melo DR, 2011, J BIOENERG BIOMEMBR, V43, P39, DOI 10.1007/s10863-011-9330-2 Olsen RKJ, 2015, J INHERIT METAB DIS, V38, P703, DOI 10.1007/s10545-015-9861-5 Pall Martin L., 2015, Shengli Xuebao, V67, P1 Paz MV, 2016, EXPERT OPIN THER TAR, V20, P487, DOI 10.1517/14728222.2016.1101068 Peluso Ilaria, 2016, Patholog Res Int, V2016, P5480267, DOI 10.1155/2016/5480267 Perez-Torres I, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102098 Peris E, 2019, J BIOL CHEM, V294, P2340, DOI 10.1074/jbc.RA118.004253 Pesta D, 2017, CURR DIABETES REP, V17, DOI 10.1007/s11892-017-0867-2 Ribas GS, 2012, CELL MOL NEUROBIOL, V32, P77, DOI 10.1007/s10571-011-9736-8 Richard E, 2007, J PATHOL, V213, P453, DOI 10.1002/path.2248 Richard E, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/1246069 Ruppert T, 2015, HUM MOL GENET, V24, P7049, DOI 10.1093/hmg/ddv405 Sanchez-Martin P, 2018, J CELL SCI, V131, DOI 10.1242/jcs.222836 Saudubray J., 2016, INBORN METABOLIC DIS, V6th ed. Saudubray JM, 2018, PEDIATR CLIN N AM, V65, P179, DOI 10.1016/j.pcl.2017.11.002 Scherz-Shouval R, 2011, TRENDS BIOCHEM SCI, V36, P30, DOI 10.1016/j.tibs.2010.07.007 Schumann A, 2017, NOVEL INSIGHTS PATHO, P128 Scialo F, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00428 Shokolenko Inna N, 2014, World J Exp Med, V4, P46 Singh F, 2015, BBA-MOL CELL RES, V1853, P1574, DOI 10.1016/j.bbamcr.2015.03.006 Soiferman D, 2014, BIOCHIMIE, V100, P184, DOI 10.1016/j.biochi.2013.08.024 Stepien KM, 2017, J CLIN MED, V6, DOI 10.3390/jcm6070071 Suliman HB, 2017, JCI INSIGHT, V2, DOI 10.1172/jci.insight.89676 Surai PF, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8070235 Tebani A, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17071167 Teinert J, 2020, J INHERIT METAB DIS, V43, P51, DOI 10.1002/jimd.12084 Tonelli C, 2018, ANTIOXID REDOX SIGN, V29, P1727, DOI 10.1089/ars.2017.7342 Vasconcellos LR, 2018, CURR PHARM DESIGN, V24, P2311, DOI 10.2174/1381612824666180727100909 Victor K.A, 2016, EVALUATION MITOCHOND Wang XT, 2019, FREE RADICAL BIO MED, V136, P87, DOI 10.1016/j.freeradbiomed.2018.12.039 Ward C, 2016, BBA-MOL CELL BIOL L, V1861, P269, DOI 10.1016/j.bbalip.2016.01.006 Wible Daric J., 2018, Current Opinion in Toxicology, V7, P28, DOI 10.1016/j.cotox.2017.10.006 Xiao WS, 2020, ANTIOXID REDOX SIGN, V32, P1330, DOI 10.1089/ars.2019.7803 Yurdakok M., 2014, YENIDOGANDA KALITSAL NR 79 TC 2 Z9 2 U1 2 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD FEB 1 PY 2022 VL 179 BP 190 EP 199 DI 10.1016/j.freeradbiomed.2021.12.312 EA JAN 2022 PG 10 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA YW8BV UT WOS:000753639100006 PM 34974126 DA 2023-03-13 ER PT J AU Ermakov, AM Ermakova, ON Afanasyeva, VA Popov, AL AF Ermakov, Artem M. Ermakova, Olga N. Afanasyeva, Vera A. Popov, Anton L. TI Dose-Dependent Effects of Cold Atmospheric Argon Plasma on the Mesenchymal Stem and Osteosarcoma Cells In Vitro SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE cold atmospheric argon plasma; low-dose; normal and cancer cells; cells proliferation; necrosis; apoptosis; gene expression; oxidative stress ID PRESSURE PLASMA; NONTHERMAL PLASMA; HACAT KERATINOCYTES; OXIDATIVE STRESS; DNA-DAMAGE; APOPTOSIS; JET; EXPRESSION; INDUCTION; MOLECULES AB The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10-15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses. Using flow cytometry, we found that these effects are associated with cell cycle arrest and extended death of cancer cells by necrosis. Reactive oxygen species (ROS) formation was detected in both types of cells after 15 min of CAAP treatment. Evaluation of the genes' transcriptional activity showed that exposure to low doses of CAAP activates the expression of genes responsible for proliferation, DNA replication, and transition between phases of the cell cycle in MSCs. There was a decrease in the transcriptional activity of most of the studied genes in MNNG/HOS osteosarcoma cancer cells. However, increased transcription of osteogenic differentiation genes was observed in normal and cancer cells. The selective effects of low and high doses of CAAP treatment on cancer and normal cells that we found can be considered in terms of hormesis. The low dose of cold argon plasma irradiation stimulated the vital processes in stem cells due to the slight generation of reactive oxygen species. In cancer cells, the same doses evidently lead to the formation of oxidative stress, which was accompanied by a proliferation inhibition and cell death. The differences in the cancer and normal cells' responses are probably due to different sensitivity to exogenous oxidative stress. Such a selective effect of CAAP action can be used in the combined therapy of oncological diseases such as skin neoplasms, or for the removal of remaining cancer cells after surgical removal of a tumor. C1 [Ermakov, Artem M.; Ermakova, Olga N.; Afanasyeva, Vera A.; Popov, Anton L.] Russian Acad Sci, Inst Theoret & Expt Biophys, Pushchino 142290, Russia. [Popov, Anton L.] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia. C3 Russian Academy of Sciences; Pushchino Scientific Center for Biological Research (PSCBI) of the Russian Academy of Sciences; Institute of Theoretical & Experimental Biophysics; Russian Academy of Sciences; Kurnakov Institute of General & Inorganic Chemistry of the Russian Academy of Sciences RP Ermakov, AM (corresponding author), Russian Acad Sci, Inst Theoret & Expt Biophys, Pushchino 142290, Russia. EM ao_ermakovy@rambler.ru; beoluchi@yandex.ru; va_vera_afanaseva@mail.ru; antonpopovleonid@gmail.com RI Artem, Ermakov/A-3409-2014; Anton, Popov/N-5245-2015; Afanasyeva, Vera/ABH-1611-2021 OI Artem, Ermakov/0000-0001-7810-0675; Anton, Popov/0000-0003-2643-4846; FU Russian Foundation for Basic Research [20-33-70236]; Russian Federation [IE-138.2020.3] FX The work was funded by Russian Foundation for Basic Research, project number 20-33-70236. A.L.P. is grateful to the Grant from the President of the Russian Federation, project No. IE-138.2020.3. CR Azzariti A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40637-z Babaeva Natalia Yu, 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), DOI 10.1109/PLASMA.2013.6633301 Bekeschus S, 2016, CLIN PLASMA MED, V4, P19, DOI 10.1016/j.cpme.2016.01.001 Belousov VV, 2006, NAT METHODS, V3, P281, DOI 10.1038/NMETH866 Bernhardt T, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/3873928 Blackert S, 2013, J DERMATOL SCI, V70, P173, DOI 10.1016/j.jdermsci.2013.01.012 Brany D, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21082932 Chang JW, 2014, ARCH BIOCHEM BIOPHYS, V545, P133, DOI 10.1016/j.abb.2014.01.022 Choi JH, 2014, ARCH DERMATOL RES, V306, P635, DOI 10.1007/s00403-014-1463-9 Craighead S, 2020, J FOOD PROTECT, V83, P794, DOI 10.4315/0362-028X.JFP-19-442 Fiebrandt M, 2018, PLASMA PROCESS POLYM, V15, DOI 10.1002/ppap.201800139 Fridman G, 2008, PLASMA PROCESS POLYM, V5, P503, DOI 10.1002/ppap.200700154 Girard F, 2018, PHYS CHEM CHEM PHYS, V20, P9198, DOI [10.1039/C8CP00264A, 10.1039/c8cp00264a] Graves DB, 2014, PHYS PLASMAS, V21, DOI 10.1063/1.4892534 Gumbel D, 2017, ANTICANCER RES, V37, P1031, DOI 10.21873/anticanres.11413 Guo L, 2018, APPL ENVIRON MICROB, V84, DOI 10.1128/AEM.00726-18 Guo YL, 2010, STEM CELLS DEV, V19, P1321, DOI 10.1089/scd.2009.0313 Haertel B, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/761451 Haertel B, 2012, CELL BIOL INT, V36, P1217, DOI 10.1042/CBI20120139 Haertel B, 2011, EXP DERMATOL, V20, P282, DOI 10.1111/j.1600-0625.2010.01159.x Iida M, 2014, EUR J DERMATOL, V24, P392, DOI 10.1684/ejd.2014.2330 Izadjoo M, 2018, J WOUND CARE, V27, pS4, DOI 10.12968/jowc.2018.27.Sup9.S4 Kalghatgi S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016270 Kalghatgi S, 2010, ANN BIOMED ENG, V38, P748, DOI 10.1007/s10439-009-9868-x Kim CH, 2010, J BIOTECHNOL, V150, P530, DOI 10.1016/j.jbiotec.2010.10.003 Kim SJ, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/5381692 Kwon BS, 2016, PHYS BIOL, V13, DOI 10.1088/1478-3975/13/5/056001 Laroussi M., 2018, PLASMA, V1, P47, DOI [10.3390/plasma1010005, DOI 10.3390/PLASMA1010005] Laroussi M, 2009, IEEE T PLASMA SCI, V37, P714, DOI 10.1109/TPS.2009.2017267 Lee JH, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0150279 Liou GY, 2010, FREE RADICAL RES, V44, P479, DOI 10.3109/10715761003667554 Ma YH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091947 Metelmann HR, 2018, CLIN PLASMA MED, V9, P6, DOI 10.1016/j.cpme.2017.09.001 Morales-Ramirez P, 2013, RADIAT RES, V179, P669, DOI 10.1667/RR3223.1 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Nan YN, 2014, ASIAN PAC J CANCER P, V15, P3575, DOI 10.7314/APJCP.2014.15.8.3575 Park J, 2019, FREE RADICAL BIO MED, V134, P374, DOI 10.1016/j.freeradbiomed.2019.01.032 Park J, 2016, SCI REP-UK, V6, DOI 10.1038/srep39298 Privat-Maldonado A, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/9062098 Ptasinska S, 2010, PHYS CHEM CHEM PHYS, V12, P7779, DOI [10.1039/e001188f, 10.1039/c001188f] Raza MH, 2017, J CANCER RES CLIN, V143, P1789, DOI 10.1007/s00432-017-2464-9 Rutkowski R, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10040210 Schmidt A, 2019, THERANOSTICS, V9, P1066, DOI 10.7150/thno.29754 Schuster M, 2018, CLIN PLASMA MED, V10, P9, DOI 10.1016/j.cpme.2018.04.001 Selezneva II, 2006, B EXP BIOL MED+, V142, P119, DOI 10.1007/s10517-006-0308-8 Sensenig R, 2011, ANN BIOMED ENG, V39, P674, DOI 10.1007/s10439-010-0197-x Shashurin A, 2010, PLASMA PROCESS POLYM, V7, P294, DOI 10.1002/ppap.200900086 Shcherbo D, 2009, BMC BIOTECHNOL, V9, DOI 10.1186/1472-6750-9-24 Siu A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126313 Song H, 2010, STEM CELLS, V28, P555, DOI 10.1002/stem.302 Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Stoffels Eva, 2004, Critical Reviews in Biomedical Engineering, V32, P427, DOI 10.1615/CritRevBiomedEng.v32.i56.20 Sturn A, 2002, BIOINFORMATICS, V18, P207, DOI 10.1093/bioinformatics/18.1.207 Szili EJ, 2015, J PHYS D APPL PHYS, V48, DOI 10.1088/0022-3727/48/49/495401 Thiyagarajan M, 2014, BIOTECHNOL BIOENG, V111, P565, DOI 10.1002/bit.25114 Tuhvatulin AI, 2012, ACTA NATURAE, V4, P82, DOI 10.32607/20758251-2012-4-3-82-87 Utsumi F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081576 Vasilets V, 2013, APPL PLASMA SOURCES Volotskova O, 2012, SCI REP-UK, V2, DOI 10.1038/srep00636 von Woedtke T, 2019, IN VIVO, V33, P1011, DOI 10.21873/invivo.11570 Walk RM, 2013, J PEDIATR SURG, V48, P67, DOI 10.1016/j.jpedsurg.2012.10.020 Wang JK, 2017, CELL DEATH DIS, V8, DOI 10.1038/cddis.2017.272 Wang XQ, 2016, SCI REP-UK, V6, DOI 10.1038/srep35353 Wende K, 2014, CELL BIOL INT, V38, P412, DOI 10.1002/cbin.10200 Wu SJ, 2019, CANCER MED-US, V8, P2252, DOI 10.1002/cam4.2101 Yan DY, 2015, BIOINTERPHASES, V10, DOI 10.1116/1.4938020 Zhang XH, 2008, APPL PHYS LETT, V93, DOI 10.1063/1.2959735 NR 67 TC 5 Z9 5 U1 2 U2 12 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JUL PY 2021 VL 22 IS 13 AR 6797 DI 10.3390/ijms22136797 PG 20 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA TG0BK UT WOS:000671078200001 PM 34202684 OA gold, Green Published DA 2023-03-13 ER PT J AU Lu, P Obata, D Watanabe, T Mitsutake, K Abe, K Katsuki, S Akiyama, H Zhang, CH AF Lu, Peng Obata, Daichi Watanabe, Tetsuya Mitsutake, Kazunori Abe, Keisuke Katsuki, Sunao Akiyama, Hidenori Zhang, C. H. TI Influence of Intense Pulsed UV Irradiation on the Viability and Proliferation of HeLa Cells SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE HeLa cell; proliferation; pulsed ultraviolet (PUV) irradiation; viability ID DOUBLE-STRAND BREAKS; SINGLE-STRAND; VACUUM-UV; LIGHT; ACTIVATION; HORMESIS; DNA; DECONTAMINATION; INACTIVATION; EFFICIENCY AB This paper presents viability and proliferation response of HeLa cells to intense pulsed UV (PUV) irradiation. The PUV source was driven by a pulse current capillary discharge with discharge energy of 15 J and a repetition rate of 10 pulses per second. The measured UV spectral region is from 150 to 380 nm. After cell irradiation, dead cells were identified using a propidium iodide fluorescent molecular probe, and the cell death ratio was statistically analyzed using a flow cytometer. A cell viability curve against UV pulse number was created, which shows that the threshold of the significant increase in cell mortality is 600 pulses. The effective action spectral region was less than 300 nm. PUV irradiation lethality may be due to severe intracellular damage to DNA or the membrane, which induced the cell apoptosis. The Caspase-3 activation of HeLa cells was detected as a marker of apoptosis. HeLa cells exposed to 600 UV pulses begin to show an increasing level of Caspase-3 activation compared with the sham sample. A real-time cell imaging system was employed to monitor cell proliferation over 96 h. Quantitative cell growth was examined by measuring monolayer cell confluence, and the proliferative effect was found to be in the sublethal region, which demonstrates a hormetic response of HeLa cells to PUV irradiation: Irradiation with UV pulse number between 10 and 100 promotes cell growth. The average growth rate rose to about 1.4 times that of the sham control after exposure to 50 UV pulses. When the UV pulses number exceeds 100, the toxicity of PUV tends to be severe, inhibiting cell growth and raising the cell death rate. This UV pulse number dependence suggests an accumulating effect on the cells. Application of a small number of UV pulses may activate some protein kinases and signal pathways related to cell proliferation, such as c-Jun N-terminal kinases and extracellular signal-regulated protein kinases. Further studies will examine the level of specific protein expression and actual DNA damage. C1 [Lu, Peng; Obata, Daichi; Watanabe, Tetsuya; Mitsutake, Kazunori; Abe, Keisuke; Akiyama, Hidenori] Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan. [Lu, Peng; Zhang, C. H.] Harbin Inst Technol, Dept Elect Engn, Harbin 150001, Peoples R China. [Katsuki, Sunao] Kumamoto Univ, Bioelect Res Ctr, Kumamoto 8608555, Japan. C3 Kumamoto University; Harbin Institute of Technology; Kumamoto University RP Lu, P (corresponding author), Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan. EM lvp490@gmail.com RI Katsuki, Sunao/Q-7227-2019 OI Akiyama, Hidenori/0000-0002-9675-1209 FU Grants-in-Aid for Scientific Research [24700499] Funding Source: KAKEN CR Adler V, 1996, CARCINOGENESIS, V17, P2073, DOI 10.1093/carcin/17.9.2073 Anderson JG, 2000, IEEE T PLASMA SCI, V28, P83, DOI 10.1109/27.842870 Bohrerova Z, 2008, WATER RES, V42, P2975, DOI 10.1016/j.watres.2008.04.001 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Elmnasser N, 2007, CAN J MICROBIOL, V53, P813, DOI 10.1139/W07-042 Erofeev MV, 2006, IEEE T PLASMA SCI, V34, P1359, DOI 10.1109/TPS.2006.876503 Farrell HP, 2010, J APPL MICROBIOL, V108, P1494, DOI 10.1111/j.1365-2672.2009.04545.x Farrell H, 2011, J MICROBIOL METH, V84, P317, DOI 10.1016/j.mimet.2010.12.021 Fine F, 2004, J FOOD PROTECT, V67, P787, DOI 10.4315/0362-028X-67.4.787 Folkard M, 2002, RADIAT PROT DOSIM, V99, P147, DOI 10.1093/oxfordjournals.rpd.a006746 Fulda S., 2010, INT J CELL BIOL, V2010 HIEDA K, 1994, J RADIAT RES, V35, P104, DOI 10.1269/jrr.35.104 Jean J, 2011, FOOD MICROBIOL, V28, P568, DOI 10.1016/j.fm.2010.11.012 Karu Tiina, 1993, P203 Kim CS, 2007, J RADIAT RES, V48, P407, DOI 10.1269/jrr.07032 Koyyalamudi SR, 2011, J FOOD COMPOS ANAL, V24, P976, DOI 10.1016/j.jfca.2011.02.007 Pongprasert N., 2011, INT FOOD RES J, V18, P741 Rajkovic A, 2010, J FOOD ENG, V100, P446, DOI 10.1016/j.jfoodeng.2010.04.029 Rastogi RP, 2010, J NUCLEIC ACIDS, V2010, DOI 10.4061/2010/592980 Rosette C, 1996, SCIENCE, V274, P1194, DOI 10.1126/science.274.5290.1194 Schoenbach KH, 2002, IEEE T PLASMA SCI, V30, P293, DOI 10.1109/TPS.2002.1003873 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Somosy Z, 2000, MICRON, V31, P165, DOI 10.1016/S0968-4328(99)00083-9 Sosnin EA, 2004, IEEE T PLASMA SCI, V32, P1544, DOI 10.1109/TPS.2004.833401 Wang T, 2005, WATER RES, V39, P2921, DOI 10.1016/j.watres.2005.04.067 Winsor CP, 1932, P NATL ACAD SCI USA, V18, P1, DOI 10.1073/pnas.18.1.1 Yano K, 2009, J RADIAT RES, V50, P97, DOI 10.1269/jrr.08119 Zhang W, 2002, CELL RES, V12, P9, DOI 10.1038/sj.cr.7290105 ZWIETERING MH, 1990, APPL ENVIRON MICROB, V56, P1875 NR 30 TC 3 Z9 3 U1 2 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD AUG PY 2012 VL 40 IS 8 BP 2020 EP 2027 DI 10.1109/TPS.2012.2201961 PG 8 WC Physics, Fluids & Plasmas WE Science Citation Index Expanded (SCI-EXPANDED) SC Physics GA 992UW UT WOS:000307806400009 DA 2023-03-13 ER PT J AU Charles, MT Makhlouf, J Arul, J AF Charles, Marie Therese Makhlouf, Joseph Arul, Joseph TI Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit - II. Modification of fruit surface and changes in fungal colonization SO POSTHARVEST BIOLOGY AND TECHNOLOGY LA English DT Article DE cuticular wax; gray mold; UV-light; hormesis; Lycopersicon esculentum; postharvest; pre-storage treatment; scanning electron microscopy ID ULTRAVIOLET-RADIATION; CUTICULAR WAXES; FINE-STRUCTURE; LIGHT; GLOSS; MORPHOLOGY; RESPONSES; QUALITY; LEAVES; LIFE AB Effect of pre-storage treatment with hormic dose of UV-light and ripening on the changes in topography and fine structure of postharvest tomato fruit during storage was studied by scanning electron microscopy (SEM). Both ripening and UV-treatment induced significant structural modifications in tomato fruit surface. Flattening of cellular mounds associated with normal ripening process was more intense with UV-treatment, and the fruit surface was also more wrinkled with treatment. The formation of an operculum over broken trichomes was a common feature of ripened control fruit, while this structure was incompletely formed in the treated fruit. Surface of senescent control fruit was characterized by the presence of an amorphous epicuticular wax, which was quasi-absent on UV-treated fruit. Surface colonization of UV-treated fruit by Botrytis cinerea was also different from untreated control. Colonization was sparse on the treated fruit, although direct cuticle penetration as well as penetration through damaged trichomes was observed in both cases. Fewer adhesion structures (appressoria) were observed on UV-treated fruit than on non-irradiated control, suggesting that structural modification of the epicuticular wax induced by UV may be a factor affecting the ability of B. cinerea to attach to the treated fruit surface. This study shows that UV-treatment causes alteration in the amount of epicuticular wax and its ultrastructural arrangement, presumably due to changes in its chemical composition. These changes could affect light reflectance characteristics of the fruit surface, and possibly increase transpiration loss leading to changes in fruit appearance. Another consequence of UV-induced physical and chemical modifications of tomato fruit surface could be an improved ability of the tissue to resist infection by B. cinerea. However, the reduced colonization of the UV-treated fruit by the pathogen cannot be attributed solely to changes in surface topography. (c) 2007 Elsevier B.V. All fights reserved. C1 [Charles, Marie Therese; Makhlouf, Joseph; Arul, Joseph] Univ Laval, Hort Res Ctr, Ste Foy, PQ G1K 7P4, Canada. [Charles, Marie Therese; Makhlouf, Joseph; Arul, Joseph] Univ Laval, Dept Nutr & Food Sci, Ste Foy, PQ G1K 7P4, Canada. C3 Laval University; Laval University RP Arul, J (corresponding author), Univ Laval, Hort Res Ctr, Ste Foy, PQ G1K 7P4, Canada. EM joseph.arul@aln.ulaval.ca OI Charles, Marie Therese/0000-0001-7485-906X CR Arul J, 2001, PHYSICAL CONTROL METHODS IN PLANT PROTECTION, P146 Barnes JD, 1996, J EXP BOT, V47, P99, DOI 10.1093/jxb/47.1.99 BENHAMOU N, 1995, PLANTA, V197, P89, DOI 10.1007/BF00239944 BENYEHOSHUA S, 1992, J AGR FOOD CHEM, V40, P1217, DOI 10.1021/jf00019a029 BLANKE MM, 1986, GARTENBAUWISSENSCHAF, V51, P225 BRUNO SR, 2001, HDB NUTRACEUTICALS F, P157 CAMERON RJ, 1970, AUST J BOT, V18, P275, DOI 10.1071/BT9700275 Charles M. T., 1999, Phytopathology, V89, pS14 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P10, DOI 10.1016/j.postharvbio.2007.05.013 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P27, DOI 10.1016/j.postharvbio.2007.05.015 COREY KA, 1988, HORTSCIENCE, V23, P730 COREY KA, 1988, SCI HORTIC-AMSTERDAM, V34, P211, DOI 10.1016/0304-4238(88)90094-5 Cruickshank RH, 1995, J PHYTOPATHOL, V143, P519, DOI 10.1111/j.1439-0434.1995.tb00656.x DENNA DW, 1970, AUST J BIOL SCI, V23, P27, DOI 10.1071/BI9700027 GETZ S, 1983, PHYTOPATHOLOGY, V73, P39, DOI 10.1094/Phyto-73-39 Greenberg JT, 1996, P NATL ACAD SCI USA, V93, P12094, DOI 10.1073/pnas.93.22.12094 HUNT GM, 1980, PHYTOCHEMISTRY, V19, P1415, DOI 10.1016/0031-9422(80)80185-3 Jenks M. A., 1999, Horticultural Reviews, V23, P1, DOI 10.1002/9780470650752.ch1 JUNIPER BE, 1983, PLANT SURFACES, P83 Li L, 2004, PLANT CELL, V16, P126, DOI 10.1105/tpc.017954 LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868 Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7 MAHARAJ R, 1993, ANN M CHIC JUN MERCIER J, 1993, J PHYTOPATHOL, V139, P17, DOI 10.1111/j.1439-0434.1993.tb01397.x Nussinovitch A, 1996, J FOOD SCI, V61, P383, DOI 10.1111/j.1365-2621.1996.tb14199.x Nussinovitch A, 1996, FOOD SCI TECHNOL-LEB, V29, P184 Pezet R., 1996, Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, V28, P103 Prusky D, 1996, ANNU REV PHYTOPATHOL, V34, P413, DOI 10.1146/annurev.phyto.34.1.413 ROBBERECHT R, 1978, OECOLOGIA, V32, P277, DOI 10.1007/BF00345107 RODOV V, 1992, J AM SOC HORTIC SCI, V117, P788, DOI 10.21273/JASHS.117.5.788 Rozema J, 1997, TRENDS ECOL EVOL, V12, P22, DOI 10.1016/S0169-5347(96)10062-8 SCHUCH W, 1994, FOOD TECHNOL-CHICAGO, V48, P78 SINCLAIR R, 1970, AUST J BOT, V18, P261, DOI 10.1071/BT9700261 SKENE DS, 1963, ANN BOT-LONDON, V27, P581, DOI 10.1093/oxfordjournals.aob.a083871 STEINMULLER D, 1985, PLANTA, V164, P557, DOI 10.1007/BF00395975 WADE NL, 1993, J HORTIC SCI, V68, P637, DOI 10.1080/00221589.1993.11516395 WADE NL, 1993, J HORTIC SCI, V68, P409, DOI 10.1080/00221589.1993.11516368 Ward G, 1996, J FOOD SCI, V61, P973, DOI 10.1111/j.1365-2621.1996.tb10914.x WILSON CL, 1994, PLANT DIS, V78, P837, DOI 10.1094/PD-78-0837 WILSON LA, 1976, Z PFLANZENPHYSIOL, V77, P359, DOI 10.1016/S0044-328X(76)80009-8 NR 40 TC 36 Z9 44 U1 1 U2 34 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-5214 EI 1873-2356 J9 POSTHARVEST BIOL TEC JI Postharvest Biol. Technol. PD JAN PY 2008 VL 47 IS 1 BP 21 EP 26 DI 10.1016/j.postharvbio.2007.05.014 PG 6 WC Agronomy; Food Science & Technology; Horticulture WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Food Science & Technology GA 261KK UT WOS:000253077300003 DA 2023-03-13 ER PT J AU Andoh, T Chock, PB Murphy, DL Chiueh, CC AF Andoh, T Chock, PB Murphy, DL Chiueh, CC TI Role of the redox protein thioredoxin in cytoprotective mechanism evoked by (-)-deprenyl SO MOLECULAR PHARMACOLOGY LA English DT Article ID STRESS-INDUCED APOPTOSIS; MONOAMINE-OXIDASE-B; SUPEROXIDE-DISMUTASE; GLUTATHIONE-PEROXIDASE; PARKINSONS-DISEASE; OXIDATIVE STRESS; DOPAMINERGIC TOXICITY; DEPRENYL PROTECTS; NEUROTOXICITY; NEURONS AB Through the inhibition of monoamine oxidase type B (MAO-B), (-)-deprenyl (selegiline) prevents the conversion of 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the toxic metabolite 1-methyl-4- phenylpyridinium ion (MPP+) and also prevents the neurotoxicity in the dopaminergic neurons in animal models. Cumulative observations suggest that selegiline may also protect against MPP+-induced neurotoxicity, possibly through the induction of pro-survival genes. We have observed that thioredoxin (Trx) mediates the induction of mitochondrial manganese superoxide dismutase (MnSOD) and Bcl-2 during preconditioning-induced hormesis. We therefore investigated whether the redox protein Trx plays any role in the neuroprotective mechanism of selegiline against MPP+-induced cytotoxicity in human SH-SY5Y neuroblastoma cells and also in primary neuronal cultures of mouse midbrain dopaminergic neurons. After confirming that selegiline protects against MPP+-induced cytotoxicity, we observed further that selegiline, at 1 mu M or less, induced Trx for protection against oxidative injury caused by MPP+. The induction of Trx was blocked by protein kinase A (PKA) inhibitor and mediated by a PKA-sensitive phospho-activation of mitogen-activated protein (MAP) kinase Erk1/2 and the transcription factor c-Myc. Selegiline-induced Trx and associated neuroprotection were concomitantly blocked by the antisense against Trx mRNA, but not the sense or antisense mutant phosphothionate oligonucleotides, not only in human SH-SY5Y cells but also in mouse primary neuronal culture of midbrain dopaminergic neurons. Furthermore, the redox cycling of Trx may mediate the protective action of selegiline because the inhibition of Trx reductase by 1-chloro-2,4-dinitrobenzene ameliorated the effect of selegiline. Trx (1 mu M) consistently increased the expression of mitochondrial proteins MnSOD and Bcl-2, supporting cell survival (Andoh et al., 2002). In conclusion, without modifying MAO-B activity, selegiline augments the gene induction of Trx, leading to elevated expression of antioxidative MnSOD and antiapoptotic Bcl-2 proteins for protecting against MPP+-induced neurotoxicity. C1 Taipei Med Univ, Sch Pharm, Ctr Brain Dis & Aging, Taipei 110, Taiwan. NIMH, Clin Sci Lab, NIH, Bethesda, MD 20892 USA. NHLBI, Biochem Lab, NIH, Bethesda, MD 20892 USA. Toyama Med & Pharmaceut Univ, Dept Appl Pharmacol, Toyama, Japan. C3 Taipei Medical University; National Institutes of Health (NIH) - USA; NIH National Institute of Mental Health (NIMH); National Institutes of Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI); University of Toyama RP Chiueh, CC (corresponding author), Taipei Med Univ, Sch Pharm, Ctr Brain Dis & Aging, 250 Wu Xing St, Taipei 110, Taiwan. EM chiueh@tmu.edu.tw CR ABATE C, 1990, SCIENCE, V249, P1157, DOI 10.1126/science.2118682 Andoh T, 2003, J BIOL CHEM, V278, P885, DOI 10.1074/jbc.M209914200 Andoh T, 2002, ANN NY ACAD SCI, V962, P1, DOI 10.1111/j.1749-6632.2002.tb04051.x Andoh T, 2002, J BIOL CHEM, V277, P9655, DOI 10.1074/jbc.M110701200 Andrews AM, 1996, MOL PHARMACOL, V50, P1511 Bai J, 2002, NEUROSCI LETT, V321, P81, DOI 10.1016/S0304-3940(02)00058-7 Birkmayer W, 1983, Mod Probl Pharmacopsychiatry, V19, P170 BURNS RS, 1983, P NATL ACAD SCI-BIOL, V80, P4546, DOI 10.1073/pnas.80.14.4546 CARRILLO MC, 1991, LIFE SCI, V48, P517, DOI 10.1016/0024-3205(91)90466-O CHIUEH CC, 1994, ANN NY ACAD SCI, V738, P25 CHIUEH CC, 1988, ANN NY ACAD SCI, V515, P226, DOI 10.1111/j.1749-6632.1988.tb32990.x Chiueh CC, 2002, ADV BEHAV BIOL, V51, P447 COHEN G, 1984, EUR J PHARMACOL, V106, P209, DOI 10.1016/0014-2999(84)90700-3 DAVIS RJ, 1995, MOL REPROD DEV, V42, P459, DOI 10.1002/mrd.1080420414 Ebadi M, 2002, J NEUROSCI RES, V67, P285, DOI 10.1002/jnr.10148 Gille G, 2002, J NEURAL TRANSM, V109, P633, DOI 10.1007/s007020200052 HEIKKILA RE, 1991, NATURE, V311, P467 HEINONEN EH, 1991, ACTA NEUROL SCAND, V84, P44, DOI 10.1111/j.1600-0404.1991.tb05020.x Kang SW, 1998, J BIOL CHEM, V273, P6297, DOI 10.1074/jbc.273.11.6297 KITANI K, 1994, ANN NY ACAD SCI, V717, P60, DOI 10.1111/j.1749-6632.1994.tb12073.x Knoll J., 2000, Neurobiology (Budapest), V8, P179 Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7 Kordower JH, 2000, SCIENCE, V290, P767, DOI 10.1126/science.290.5492.767 Kunikowska G, 2002, BRAIN RES, V953, P1, DOI 10.1016/S0006-8993(02)03187-6 LEWITT PA, 1991, ACTA NEUROL SCAND, V84, P79, DOI 10.1111/j.1600-0404.1991.tb05025.x Moskovitz J, 1999, METHOD ENZYMOL, V300, P239 Murphy D L, 1983, Mod Probl Pharmacopsychiatry, V19, P287 MYTILINEOU C, 1985, J NEUROCHEM, V45, P1951, DOI 10.1111/j.1471-4159.1985.tb10556.x Rauhala P, 1998, FASEB J, V12, P165, DOI 10.1096/fasebj.12.2.165 Revuelta M, 1997, GLIA, V21, P204, DOI 10.1002/(SICI)1098-1136(199710)21:2<204::AID-GLIA4>3.3.CO;2-U Saitoh M, 1998, EMBO J, V17, P2596, DOI 10.1093/emboj/17.9.2596 Semkova I, 1996, EUR J PHARMACOL, V315, P19, DOI 10.1016/S0014-2999(96)00593-6 Shoulson I, 2002, ANN NEUROL, V51, P604, DOI 10.1002/ana.10191 SPRAGUE JE, 1995, J PHARMACOL EXP THER, V273, P667 TARIOT PN, 1987, PSYCHOPHARMACOLOGY, V91, P489, DOI 10.1007/BF00216016 Tatton W, 2003, J NEURAL TRANSM, V110, P509, DOI 10.1007/s00702-002-0827-z Tatton WG, 1996, J NEURAL TRANSM-SUPP, P45 VIZUETE ML, 1993, NEUROSCI LETT, V152, P113, DOI 10.1016/0304-3940(93)90496-8 WU RM, 1995, J NEURAL TRANSM-GEN, V100, P53, DOI 10.1007/BF01276865 Yang LC, 1998, J NEUROSCI, V18, P8145 NR 40 TC 22 Z9 26 U1 0 U2 6 PU AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3995 USA SN 0026-895X EI 1521-0111 J9 MOL PHARMACOL JI Mol. Pharmacol. PD NOV PY 2005 VL 68 IS 5 BP 1408 EP 1414 DI 10.1124/mol.105.012302 PG 7 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 977VZ UT WOS:000232832900021 PM 16099847 DA 2023-03-13 ER PT J AU Sachkova, AS Kovel, ES Churilov, GN Stom, DI Kudryasheva, NS AF Sachkova, Anna S. Kovel, Ekaterina S. Churilov, Grigoriy N. Stom, Devard, I Kudryasheva, Nadezhda S. TI Biological activity of carbonic nano-structurescomparison via enzymatic bioassay SO JOURNAL OF SOILS AND SEDIMENTS LA English DT Article DE Antioxidant activity; Bioactive compounds; Fullerenol; Humic substances; Toxicity; Reactive oxygen species ID HUMIC SUBSTANCES; DETOXIFICATION PROCESSES; BIOLUMINESCENCE; FLUORESCENCE; FULLERENES; HORMESIS AB PurposeThe aim of the work is to compare the biological activity of carbonic nano-structures of natural and artificial origination, namely, humic substances (HS) and fullerenols.Materials and methodsThe representative of the fullerenol group, C-60?(y)(OH)(x) where ?+x=20-22, was chosen. Enzyme-based luminescent bioassay was applied to evaluate toxicity and antioxidant properties of HS and fullerenol (F); chemiluminescent luminol method was used to study a content of reactive oxygen species (ROS) in the solutions. Toxicity of the bioactive compounds was evaluated using effective concentrations ?C-50; detoxification coefficients D-OxT were applied to study and compare antioxidant activity of the compounds. Antioxidant activity and ranges of active concentrations of the bioactive compounds were determined in model solutions of organic and inorganic oxidizers1,4-benzoquinone and potassium ferricianide.Results and discussionValues of ?C-50 revealed higher toxicity of HS than F (0.005 and 0.108gL(-1), respectively); detoxifying concentrations of F were found to be lower. Antioxidant ability of HS was demonstrated to be time-dependent; the 50-min preliminary incubation in oxidizer solutions was suggested as optimal for the detoxification procedure. On the contrary, F' antioxidant effect demonstrated independency on time. Antioxidant effect of HS did not depend on amphiphilic characteristics of the media (values of D-OxT were 1.3 in the solutions of organic and inorganic oxidizers), while this of F was found to depend: it was maximal (D-OxT=2.0) in solutions of organic oxidizer, 1,4-benzoquinone.ConclusionsBoth HS and F demonstrated toxicity and low-concentration antioxidant ability; however, quantitative characteristics of their effects were different. The differences were explained with HS polyfunctionality, higher ability to decrease ROS content, non-rigidity, and diffusion restrictions in their solutions. Antioxidant effect of the bioactive compounds was presumably attributed to catalytic redox activity of their -fragments. The paper demonstrates a high potential of luminescent enzymatic bioassay to study biological activity of nano-structures of natural and artificial origination. C1 [Sachkova, Anna S.] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia. [Kovel, Ekaterina S.; Kudryasheva, Nadezhda S.] FRC KSC SB RAS, Inst Biophys, Krasnoyarsk 660036, Russia. [Kovel, Ekaterina S.; Kudryasheva, Nadezhda S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. [Kovel, Ekaterina S.; Churilov, Grigoriy N.] FRC KSC SB RAS, Inst Phys, Krasnoyarsk 660036, Russia. [Stom, Devard, I] Irkutsk Natl Res Tech Univ, Irkutsk 664074, Russia. C3 Tomsk Polytechnic University; Russian Academy of Sciences; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Biophysics Institute, Siberian Branch, Russian Academy of Sciences; Siberian Federal University; Irkutsk National Research Technical University (INRTU) RP Sachkova, AS (corresponding author), Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia. EM as421@yandex.ru RI Sushko (Kovel), Ekaterina/AAG-8927-2020; Stom, Devard I/A-4144-2017 OI Sushko (Kovel), Ekaterina/0000-0002-4524-6413; Stom, Devard/0000-0001-9496-2961; Churilov, Grigory/0000-0003-2889-490X FU Russian Academy of Sciences [0356-2017-0017]; Russian Science Foundation [16-14-10115]; Russian Science Foundation [16-14-10115] Funding Source: Russian Science Foundation FX This work was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences, project 0356-2017-0017; PRAN-32, Program: "Nanostructures: physics, chemistry, biology, technological basis." Study of ROS involvement to antioxidant activity of humic substances was supported by the Russian Science Foundation, grant 16-14-10115. CR Abbas M, 2018, SCI TOTAL ENVIRON, V626, P1295, DOI 10.1016/j.scitotenv.2018.01.066 Alexandrova M, 2011, J ENVIRON RADIOACTIV, V102, P407, DOI 10.1016/j.jenvrad.2011.02.011 Anesio AM, 2005, APPL ENVIRON MICROB, V71, P6267, DOI 10.1128/AEM.71.10.6267-6275.2005 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Churilov GN, 2013, CARBON, V62, P389, DOI 10.1016/j.carbon.2013.06.022 Fedorova E, 2007, J PHOTOCH PHOTOBIO B, V88, P131, DOI 10.1016/j.jphotobiol.2007.05.007 Foley S, 2002, BIOCHEM BIOPH RES CO, V294, P116, DOI 10.1016/S0006-291X(02)00445-X Giachin G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0188308 Girotti S, 2008, ANAL CHIM ACTA, V608, P2, DOI 10.1016/j.aca.2007.12.008 Goncharova E.A., 2009, VESTN SIBGAU, V22, P90 Grebowski J, 2013, BBA-BIOMEMBRANES, V1828, P2007, DOI 10.1016/j.bbamem.2013.05.009 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Isakova VG, 2011, RUSS J APPL CHEM+, V84, P1165, DOI 10.1134/S107042721107007X Kratasyuk VA, 2015, COMB CHEM HIGH T SCR, V18, P952, DOI 10.2174/1386207318666150917100257 Kudryasheva N, 2002, ECOTOX ENVIRON SAFE, V53, P221, DOI 10.1006/eesa.2002.2214 Kudryasheva NS, 2015, ENVIRON SCI POLLUT R, V22, P155, DOI 10.1007/s11356-014-3459-6 Kudryasheva NS, 2017, PHOTOCHEM PHOTOBIOL, V93, P536, DOI 10.1111/php.12639 Kuznetsov A.M., 1996, BIOTEKHNOLOGIYA, V9, P57 Levinsky B, 2000, KORF POLIGRAF, P70 Li J, 2012, CARBON, V50, P460, DOI 10.1016/j.carbon.2011.08.073 Lipczynska-Kochany E, 2018, CHEMOSPHERE, V202, P420, DOI 10.1016/j.chemosphere.2018.03.104 Nemtseva EV, 2007, USP KHIM+, V76, P101 Orlov, 1997, SOROS ED ZH Perelomov LV, 2018, ECOTOX ENVIRON SAFE, V151, P178, DOI 10.1016/j.ecoenv.2018.01.018 Perminova IV, 2001, ENVIRON SCI TECHNOL, V35, P3841, DOI 10.1021/es001699b Petrov D, 2017, ENVIRON SCI TECHNOL, V51, P5414, DOI 10.1021/acs.est.7b00266 Piccolo A, 2001, SOIL SCI, V166, P810, DOI 10.1097/00010694-200111000-00007 Remmel' NN, 2003, B EXP BIOL MED+, V136, P209, DOI 10.1023/A:1026347830283 Richard C, 2009, ENVIRON CHEM LETT, V7, P61, DOI 10.1007/s10311-008-0136-3 Sachkova A S, 2017, Biochem Biophys Rep, V9, P1, DOI 10.1016/j.bbrep.2016.10.011 Tarasova AS, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4304-1 Tarasova AS, 2012, J PHOTOCH PHOTOBIO B, V117, P164, DOI 10.1016/j.jphotobiol.2012.09.020 Tarasova AS, 2011, ENVIRON TOXICOL CHEM, V30, P1013, DOI 10.1002/etc.472 Trubetskoj OA, 2009, WATER RESOUR, V36, P518, DOI 10.1134/S0097807809050042 Vanysek P, 1983, CRC HDB CHEM PHYS, V64, P156 Vetrova EV, 2007, PHOTOCH PHOTOBIO SCI, V6, P35, DOI 10.1039/b608152e Zheng YL, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603229 NR 38 TC 16 Z9 16 U1 1 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1439-0108 EI 1614-7480 J9 J SOIL SEDIMENT JI J. Soils Sediments PD JUN PY 2019 VL 19 IS 6 BP 2689 EP 2696 DI 10.1007/s11368-018-2134-9 PG 8 WC Environmental Sciences; Soil Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Agriculture GA IG3FH UT WOS:000473687600005 OA Green Submitted DA 2023-03-13 ER PT J AU Garcia-Angulo, P Alonso-Simon, A Encina, A Alvarez, JM Acebes, JL AF Garcia-Angulo, Penelope Alonso-Simon, Ana Encina, Antonio Alvarez, Jesus M. Acebes, Jose L. TI Cellulose Biosynthesis Inhibitors: Comparative Effect on Bean Cell Cultures SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE AE F150944; cell wall; cell cultures; cellulose biosynthesis-inhibitor (CBI) herbicides; CGA 325 ' 615; compound 1; dichlobenil; Phaseolus vulgaris L.; quinclorac; triazofenamide ID WALL MODIFICATIONS; QUINCLORAC; HERBICIDE; HABITUATION; HORMESIS; PROTEIN; TARGET; MICROTUBULES; MECHANISM; ALIGNMENT AB The variety of bioassays developed to evaluate different inhibition responses for cellulose biosynthesis inhibitors makes it difficult to compare the results obtained. This work aims (i) to test a single inhibitory assay for comparing active concentrations of a set of putative cellulose biosynthesis inhibitors and (ii) to characterize their effect on cell wall polysaccharides biosynthesis following a short-term exposure. For the first aim, dose-response curves for inhibition of dry-weight increase following a 30 days exposure of bean callus-cultured cells to these inhibitors were obtained. The compound concentration capable of inhibiting dry weight increase by 50% compared to control (I-50) ranged from subnanomolar (CGA 325'615) to nanomolar (AE F150944, flupoxam, triazofenamide and oxaziclomefone) and micromolar (dichlobenil, quinclorac and compound 1) concentrations. In order to gain a better understanding of the effect of the putative inhibitors on cell wall polysaccharides biosynthesis, the [C-14] glucose incorporation into cell wall fractions was determined after a 20 h exposure of cell suspensions to each inhibitor at their I-50 value. All the inhibitors tested decreased glucose incorporation into cellulose with the exception of quinclorac, which increased it. In some herbicide treatments, reduction in the incorporation into cellulose was accompanied by an increase in the incorporation into other fractions. In order to appreciate the effect of the inhibitors on cell wall partitioning, a cluster and Principal Component Analysis (PCA) based on the relative contribution of [C-14] glucose incorporation into the different cell wall fractions were performed, and three groups of compounds were identified. The first group included quinclorac, which increased glucose incorporation into cellulose; the second group consisted of compound 1, CGA 325'615, oxaziclomefone and AE F150944, which decreased the relative glucose incorporation into cellulose but increased it into tightly-bound cellulose fractions; and the third group, comprising flupoxam, triazofenamide and dichlobenil, decreased the relative glucose incorporation into cellulose and increased it into a pectin rich fraction. C1 [Garcia-Angulo, Penelope; Alonso-Simon, Ana; Encina, Antonio; Alvarez, Jesus M.; Acebes, Jose L.] Univ Leon, Dept Agr Engn & Sci, Plant Physiol Lab, E-24071 Leon, Spain. C3 Universidad de Leon RP Acebes, JL (corresponding author), Univ Leon, Dept Agr Engn & Sci, Plant Physiol Lab, E-24071 Leon, Spain. EM penelope.garcia@unileon.es; ana.alonso@unileon.es; a.encina@unileon.es; jmalvf@unileon.es; jl.acebes@unileon.es RI García-Angulo, Penélope/K-6451-2014; Acebes, José-Luis/ABF-1601-2021; Encina, Antonio/L-3016-2014; Acebes, José Luis/HLP-5487-2023; Acebes, José L/K-6634-2014 OI García-Angulo, Penélope/0000-0001-5517-2238; Acebes, José-Luis/0000-0002-0960-085X; Encina, Antonio/0000-0002-1559-1136; Alonso-Simon, Ana/0000-0002-4117-0159 FU Junta de Castilla y Leon [LE 48A07]; Spanish Ministry of Science and Innovation [CGL2008-02470, AGL2011-30545-C02-02] FX We wish to thank D. Phelps for correcting the English within the manuscript. We are grateful for the generous gifts of inhibitors to: Kreuz Klaus Eugen for CGA 325'615 and compound 1, Tsutomu Sato for flupoxam and triazofenamide, S. C. Fry and Ken Pallet for oxaziclomefone and Bernd Laber for AE F150944. This work was partly supported by grants from Junta de Castilla y Leon (LE 48A07) and the Spanish Ministry of Science and Innovation programs (CGL2008-02470 and AGL2011-30545-C02-02). CR Abdallah I, 2006, PESTIC BIOCHEM PHYS, V84, P38, DOI 10.1016/j.pestbp.2005.05.003 Alonso-Simon A, 2008, ANN BOT-LONDON, V101, P1329, DOI 10.1093/aob/mcn051 [Anonymous], 2001, STAT SOFTW VERS 6 0 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Coimbra M.A., 1996, PLANT CELL WALL ANAL, P19 Crowell EF, 2009, PLANT CELL, V21, P1141, DOI 10.1105/tpc.108.065334 DeBolt S, 2007, PLANT PHYSIOL, V145, P334, DOI 10.1104/pp.107.104703 DeBolt S, 2007, P NATL ACAD SCI USA, V104, P5854, DOI 10.1073/pnas.0700789104 DELMER DP, 1987, PLANT PHYSIOL, V84, P415, DOI 10.1104/pp.84.2.415 Diaz-Cacho P, 1999, PHYSIOL PLANTARUM, V107, P54, DOI 10.1034/j.1399-3054.1999.100108.x Dische Z, 1958, METHODS CARBOHYDRATE, V1, P475 Doblin MS, 2010, FUNCT PLANT BIOL, V37, P357, DOI 10.1071/FP09279 DUGGER WM, 1986, PLANT PHYSIOL, V81, P464, DOI 10.1104/pp.81.2.464 Encina A, 2002, PHYSIOL PLANTARUM, V114, P182, DOI 10.1034/j.1399-3054.2002.1140204.x Encina AE, 2001, PLANT SCI, V160, P331, DOI 10.1016/S0168-9452(00)00397-6 Grossmann K, 1998, WEED SCI, V46, P707, DOI 10.1017/S004317450008975X Grossmann K, 2000, TRENDS PLANT SCI, V5, P506, DOI 10.1016/S1360-1385(00)01791-X Grossmann K, 2001, Z NATURFORSCH C, V56, P559 Guerriero G, 2010, J INTEGR PLANT BIOL, V52, P161, DOI 10.1111/j.1744-7909.2010.00935.x Heim DR, 1998, PESTIC BIOCHEM PHYS, V59, P163, DOI 10.1006/pest.1998.2317 Himmelspach R, 2003, PLANT J, V36, P565, DOI 10.1046/j.1365-313X.2003.01906.x Hoffman JC, 1996, PESTIC BIOCHEM PHYS, V55, P49, DOI 10.1006/pest.1996.0034 Hofmannova J, 2008, J EXP BOT, V59, P3963, DOI 10.1093/jxb/ern250 Kiedaisch BM, 2003, PLANTA, V217, P922, DOI 10.1007/s00425-003-1071-y Kojima H, 2009, PESTIC BIOCHEM PHYS, V93, P58, DOI 10.1016/j.pestbp.2008.11.003 Kojima H, 2010, PESTIC BIOCHEM PHYS, V98, P359, DOI 10.1016/j.pestbp.2010.08.001 Koo SJ, 1997, PESTIC BIOCHEM PHYS, V57, P44, DOI 10.1006/pest.1997.2258 Kurek I, 2002, P NATL ACAD SCI USA, V99, P11109, DOI 10.1073/pnas.162077099 Acebes JL, 2010, BIOTECH AGR IND MED, P39 Melida H, 2010, MOL PLANT, V3, P842, DOI 10.1093/mp/ssq027 MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x Nakagawa N, 1998, PLANT CELL PHYSIOL, V39, P779, DOI 10.1093/oxfordjournals.pcp.a029434 O'Looney N, 2005, NEW PHYTOL, V168, P323, DOI 10.1111/j.1469-8137.2005.01501.x O'Looney N., 2005, ANN BOT, V96, P1 Parrish M.D., 2009, N CENTR WEED SOC P K Peng LC, 2002, SCIENCE, V295, P147, DOI 10.1126/science.1064281 Peng LC, 2001, PLANT PHYSIOL, V126, P981, DOI 10.1104/pp.126.3.981 Rajangam AS, 2008, PLANT PHYSIOL, V148, P1283, DOI 10.1104/pp.108.121913 Ringli C, 2010, PLANT PHYSIOL, V153, P1445, DOI 10.1104/pp.110.154518 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seifert GJ, 2010, PLANT PHYSIOL, V153, P467, DOI 10.1104/pp.110.153940 Sharples KR, 1998, PESTIC SCI, V54, P368, DOI 10.1002/(SICI)1096-9063(199812)54:4<368::AID-PS845>3.0.CO;2-6 Sunohara Y, 2008, PHYTOCHEMISTRY, V69, P2312, DOI 10.1016/j.phytochem.2008.06.012 Tresch S, 2003, PESTIC BIOCHEM PHYS, V75, P73, DOI 10.1016/S0048-3575(03)00013-0 UPDEGRAFF DM, 1969, ANAL BIOCHEM, V32, P420, DOI 10.1016/S0003-2697(69)80009-6 Vaughn KC, 2001, PROTOPLASMA, V216, P80, DOI 10.1007/BF02680135 Whistler R.L., 1963, METHODS CARBOHYDRATE, V3, P54 Wightman R, 2010, PLANT PHYSIOL, V153, P427, DOI 10.1104/pp.110.154666 Yoneda A, 2007, PLANT CELL PHYSIOL, V48, P1393, DOI 10.1093/pcp/pcm120 Yoneda A, 2010, PLANT J, V64, P657, DOI 10.1111/j.1365-313X.2010.04356.x NR 51 TC 12 Z9 16 U1 2 U2 36 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD MAR PY 2012 VL 13 IS 3 BP 3685 EP 3702 DI 10.3390/ijms13033685 PG 18 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA 917KQ UT WOS:000302174500068 PM 22489176 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Liu, Y Li, N Lou, YD Liu, YX Zhao, XD Wang, GG AF Liu, Yu Li, Na Lou, Yadi Liu, Yuxin Zhao, Xinda Wang, Guoguang TI Effect of water accommodated fractions of fuel oil on fixed carbon and nitrogen by microalgae: Implication by stable isotope analysis SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Oil spill; Platymonas helgolandica; Nitzschia closterium; Heterosigma akashiwo; Stable isotope; Carbon and nitrogen ID AROMATIC-HYDROCARBONS; NITZSCHIA-CLOSTERIUM; CRUDE-OIL; GROWTH; SPILL; CO2; PHOTOSYNTHESIS; CHLOROPHYLL; DIVERSITY; RESPONSES AB Effect of water accommodated fractions (WAF) of #180 fuel oil on fixed carbon and nitrogen in microalgae was studied by stable isotopes. Platymonas helgolandica, Heterosigma akashiwo and Nitzschia closterium were exposed to five WAF concentrations for 96 h. The delta C-13 value of microalgae was significantly lower than that of the control group, indicated that carbon was limited in the WAF concentrations. The delta C-13 value of microalgae appeared peak valley at 48 h in control group, corresponding to the enhanced capacity in carbon fixation during microalgae photosynthesis. The physiological acclimation capacity of microalgae was revealed by the occurrence time when the delta 13C value was in peak valley, and thus the physiological acclimation capacity of microalgae decreased in the order of Nitzschia closterium > Heterosigma akashiwo > Platymonas helgolandica. Principal component analysis (PCA) were applied to the delta 13C value in order to verify the "hormesis" phenomenon in microalgae. The delta 13C value could discriminate between stimulatory effects at low doses and inhibitory effects at high doses. In addition, the present study also investigated the effect of the nitrogen on microalgae growth. Because microalgae could still absorb the NO3-N and release of NO2-N and NH4-N in present study, the nitrogen cycle in microalgae was in the equilibrium status. The delta N-15 value in microalgae exhibited no obvious change with the increasing of WAF concentrations at the same time. However, due to the enrichment of nitrogen, the delta N-15 value first increased gradually with the time and finally was stable. Overall, the fractionation of carbon and nitrogen stable isotopes illustrated that the effect of carbon on the growth of microalgae was more prominent than nitrogen. Stable isotopes was used to investigate the influence of WAF on fixed carbon and nitrogen in microalgae growth, providing a fundamental theoretical guidance for risk assessment of marine ecological environment. C1 [Liu, Yu; Li, Na; Lou, Yadi; Liu, Yuxin; Zhao, Xinda; Wang, Guoguang] Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, Peoples R China. [Liu, Yu] Dalian Maritime Univ, Environm Informat Inst, Dalian, Peoples R China. C3 Dalian Maritime University; Dalian Maritime University RP Liu, Y; Wang, GG (corresponding author), Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, Peoples R China. EM ylsibo@foxmail.com; ggwang2018@126.com RI Wang, Guoguang/AAA-2629-2021; liu, yuxin/GRY-3592-2022 FU Innovative Talent Training Program [CXXM2019BS007]; Fundamental Research Funds for the Central Universities [3132019333, 3132019150] FX This study was supported by the Innovative Talent Training Program (grant number CXXM2019BS007) and the Fundamental Research Funds for the Central Universities (grant number 3132019333, 3132019150). We especially thank the National Marine Environmental Monitoring Center for providing P. helgolandica, H. akashiwo and N. closterium. CR Aksmann A, 2011, AQUAT TOXICOL, V104, P205, DOI 10.1016/j.aquatox.2011.04.017 Aksmann A, 2008, CHEMOSPHERE, V74, P26, DOI 10.1016/j.chemosphere.2008.09.064 Albert KR, 2011, J PLANT PHYSIOL, V168, P1550, DOI 10.1016/j.jplph.2011.02.011 Brekke C, 2005, REMOTE SENS ENVIRON, V95, P1, DOI 10.1016/j.rse.2004.11.015 Bretherton L, 2019, HARMFUL ALGAE, V86, P55, DOI 10.1016/j.hal.2019.05.008 Bretherton L, 2018, J PHYCOL, V54, P317, DOI 10.1111/jpy.12625 Bukata AR, 2007, ENVIRON SCI TECHNOL, V41, P1331, DOI 10.1021/es061414g Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Carrera-Martinez D, 2010, AQUAT TOXICOL, V97, P151, DOI 10.1016/j.aquatox.2009.12.016 Carvalho RN, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026985 COLLOS Y, 1982, LIMNOL OCEANOGR, V27, P528 Colman B, 2002, FUNCT PLANT BIOL, V29, P261, DOI 10.1071/PP01184 Del Vento S, 2002, ENVIRON TOXICOL CHEM, V21, P2099, DOI 10.1002/etc.5620211013 Denk TRA, 2017, SOIL BIOL BIOCHEM, V105, P121, DOI 10.1016/j.soilbio.2016.11.015 Dodds WK, 2000, ECOSYSTEMS, V3, P574, DOI 10.1007/s100210000050 Echeveste P, 2010, ENVIRON POLLUT, V158, P299, DOI 10.1016/j.envpol.2009.07.006 El-Dib MA, 2001, INT J ENVIRON HEAL R, V11, P189, DOI 10.1080/09603120020047582 Faksness LG, 2008, MAR POLLUT BULL, V56, P1746, DOI 10.1016/j.marpolbul.2008.07.001 Flood PJ, 2011, TRENDS PLANT SCI, V16, P327, DOI 10.1016/j.tplants.2011.02.005 Gilde K, 2012, ESTUAR COAST, V35, P853, DOI 10.1007/s12237-011-9473-8 GLIBERT PM, 1988, MAR ECOL PROG SER, V42, P303, DOI 10.3354/meps042303 Gonzalez JJ, 2006, MAR POLLUT BULL, V53, P250, DOI 10.1016/j.marpolbul.2005.09.039 Gruber N, 2008, NITROGEN IN THE MARINE ENVIRONMENT, 2ND EDITION, P1, DOI 10.1016/B978-0-12-372522-6.00001-3 Guieysse B, 2013, BIOGEOSCI DISCUSS, V10, P9739, DOI DOI 10.5194/BGD-10-9739-2013 Hook SE, 2012, AQUAT TOXICOL, V124, P139, DOI 10.1016/j.aquatox.2012.08.005 Hylland K, 2006, J TOXICOL ENV HEAL A, V69, P109, DOI 10.1080/15287390500259327 Kainz MJ, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P93, DOI 10.1007/978-0-387-89366-2_5 KARL DM, 2001, ENCY OCEANOGRAPHY, V4, P1876 Kennedy CJ, 2005, J EXP MAR BIOL ECOL, V323, P43, DOI 10.1016/j.jembe.2005.02.021 KRAUSE GH, 1991, ANNU REV PLANT PHYS, V42, P313, DOI 10.1146/annurev.pp.42.060191.001525 Kuypers MMM, 2018, NAT REV MICROBIOL, V16, P263, DOI 10.1038/nrmicro.2018.9 Li N, 2019, SCI TOTAL ENVIRON, V653, P1095, DOI 10.1016/j.scitotenv.2018.11.021 Li Y, 2017, J HAZARD MATER, V327, P28, DOI 10.1016/j.jhazmat.2016.12.029 Lou YD, 2019, ECOTOX ENVIRON SAFE, V177, P7, DOI 10.1016/j.ecoenv.2019.03.110 Mishra AK, 2015, AQUAT PR, V4, P435, DOI 10.1016/j.aqpro.2015.02.058 Ozhan K, 2014, ECOTOXICOLOGY, V23, P370, DOI 10.1007/s10646-014-1195-9 Pi YR, 2015, ENVIRON SCI-PROC IMP, V17, P877, DOI 10.1039/c5em00005j Racchetti E, 2017, AQUAT SCI, V79, P487, DOI 10.1007/s00027-016-0512-1 REDDIN A, 1981, MAR POLLUT BULL, V12, P339, DOI 10.1016/0025-326X(81)90107-7 Stepaniyan OV, 2008, RUSS J MAR BIOL, V34, P131, DOI 10.1134/S1063074008020077 Thyssen C, 2002, FUNCT PLANT BIOL, V29, P251, DOI 10.1071/PP01198 Toseland A, 2013, NAT CLIM CHANGE, V3, P979, DOI 10.1038/NCLIMATE1989 Whitney SM, 2015, P NATL ACAD SCI USA, V112, P3564, DOI 10.1073/pnas.1420536112 Yang B, 2017, BIOTECHNOL BIOFUELS, V10, DOI 10.1186/s13068-017-0916-8 Yu HT, 2002, J ENVIRON SCI HEAL C, V20, P149, DOI 10.1081/GNC-120016203 Zhang C, 2017, ENVIRON POLLUT, V220, P1282, DOI 10.1016/j.envpol.2016.11.005 NR 46 TC 7 Z9 8 U1 6 U2 41 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD JUN 1 PY 2020 VL 195 AR 110488 DI 10.1016/j.ecoenv.2020.110488 PG 9 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA LD0ZU UT WOS:000525762800017 PM 32200143 DA 2023-03-13 ER PT J AU Awoyemi, OM Subbiah, S Thompson, KN Velazquez, A Peace, A Mayer, GD AF Awoyemi, Olushola M. Subbiah, Seenivasan Thompson, Kelsey N. Velazquez, Anahi Peace, Angela Mayer, Gregory D. TI Trophic-Level Interactive Effects of Phosphorus Availability on the Toxicities of Cadmium, Arsenic, and Their Binary Mixture in Media-Exposed Scenedesmus acutus and Media and Dietary-Exposed Daphnia pulex SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SILVER NANOPARTICLES; METAL UPTAKE; MAGNA; ZINC; COPPER; ALGAE; BIOACCUMULATION; RESPONSES; NITROGEN; HORMESIS AB Various anthropogenic activities simultaneously alter essential mineral nutrients and contaminant content in the environment. Depending on essential nutrient conditions, the uptake and effects of contaminants in exposed organisms may be altered. The addressing of ecological risk assessment (ERA) of contaminant mixtures has proven difficult. Furthermore, most assessments involving single contaminant exposures do not consider the interaction of essential nutrients on toxicological end points. Hypotheses for toxicological effects of cadmium (Cd), arsenic (As), and their binary mixture (Cd/As-mix) include alteration under varying dietary and media phosphorus (P) conditions. However, interactive effects and effect size (eta(2)) are largely unknown. Here, we investigated the toxicities of Cd-, As-, and Cd/As-mix-treated media and diets on Scenedesmus acutus ( a primary producer) and Daphnia pulex (a primary consumer), under varied media and dietary P conditions [low (LP), median (MP), and optimum (COMBO)]. Our results showed significant (p < 0.05) interactive effects and concentration dependent growth inhibition of S. acutus. The toxicity (at day 7) of Cd against S. acutus was 2X, 11X, and 4X that of As in LP, MP, and COMBO conditions, respectively, while the joint toxicity effects of Cd/As-mix were partially additive in LP and COMBO, and synergistic in MP media. Furthermore, acute lethal toxicity (96 h) of Cd in D. pulex was, similar to 60X that of As, while Cd/As-mix joint toxicity was synergistic. Chronic toxicity (14 d) in D. pulex showed significant (p < 0.05) interaction of As and P-availability on survival, reproduction, and behavior (distance moved, velocity, acceleration and mobility), while Cd and P availability showed significant interactive effect on rotational behavior. Dose response effects of Cd, As, and Cd/As-mix in S. acutus and D. pulex were either monophasic or biphasic under varying nutrient conditions. This study provides empirical evidence of the interactive effects of media/dietary P and toxic metals (Cd, As, and Cd/As-mix) at environmentally relevant concentrations, emphasizing the need for consideration of such interactions during ERA. C1 [Awoyemi, Olushola M.; Subbiah, Seenivasan; Thompson, Kelsey N.; Velazquez, Anahi; Mayer, Gregory D.] Texas Tech Univ, Inst Environm & Human Hlth, Dept Environm Toxicol, Lubbock, TX 79416 USA. [Peace, Angela] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA. C3 Texas Tech University System; Texas Tech University; Texas Tech University System; Texas Tech University RP Awoyemi, OM (corresponding author), Texas Tech Univ, Inst Environm & Human Hlth, Dept Environm Toxicol, Lubbock, TX 79416 USA. EM doctoroma@yahoo.com RI Peace, Angela/AFR-4935-2022; Mayer, Gregory/A-8459-2017 OI AWOYEMI, OLUSHOLA/0000-0002-2093-0091; Mayer, Gregory/0000-0002-2652-9856 FU National Science Foundation (NSF) [NSF DMS-1615697]; Graduate School at Texas Tech University; Society of Environmental Toxicology and Chemistry (SETAC); SOT Toxicologists of African Origin Specialty Interest Group (TAO SIG); Society of Toxicology (SOT) FX This study was supported by National Science Foundation (NSF), Grant number NSF DMS-1615697. We wish to thank Dr. Kaz Surowiec (Manager, Mass Spectrometry Facility) at the Department of Chemistry and Biochemistry, Texas Tech University for assisting with elemental analysis of our samples using the CHNS/O analyzer. Also, we wish to thank Dr. Nathaniel Miller (Manager, Laser Ablation and ICP-MS Laboratory) at the Jackson School of Geosciences, The University of Texas at Austin for assisting with elemental (metals and nonmetals) analysis of or samples using ICP-MS. Finally, we appreciate the financial supports and research awards provided by the Graduate School at Texas Tech University, Society of Toxicology (SOT), Society of Environmental Toxicology and Chemistry (SETAC), and SOT Toxicologists of African Origin Specialty Interest Group (TAO SIG) to present parts of the findings of this study at national and international conferences. CR Acharya K, 2004, LIMNOL OCEANOGR, V49, P656, DOI 10.4319/lo.2004.49.3.0656 Ahmed H, 2011, WATER AIR SOIL POLL, V216, P547, DOI 10.1007/s11270-010-0552-4 Al-Homaidan AA, 2015, SAUDI J BIOL SCI, V22, P795, DOI 10.1016/j.sjbs.2015.06.010 Altenburger R, 2003, ENVIRON TOXICOL CHEM, V22, P1900, DOI 10.1897/01-386 Arce-Funck J, 2018, SCI TOTAL ENVIRON, V645, P1484, DOI 10.1016/j.scitotenv.2018.07.227 Awoyemi O.M., 2017, WORLD J AGR RES, V5, P47, DOI 10.12691/WJAR-5-3-4 Awoyemi O. M., 2017, COAL COMBUSTION GASI, V9, P42, DOI 10.4177/CCGP-D-14-00004.1 Beene LC, 2011, ZEBRAFISH, V8, P125, DOI 10.1089/zeb.2011.0701 Bownik A, 2017, SCI TOTAL ENVIRON, V601, P194, DOI 10.1016/j.scitotenv.2017.05.199 Cai XH, 1999, INT J PHYTOREMEDIAT, V1, P53, DOI 10.1080/15226519908500004 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Catarecha P, 2007, PLANT CELL, V19, P1123, DOI 10.1105/tpc.106.041871 Chekroun KB, 2013, J MAT ENV SCI, V4, P873 Cheng YY, 2019, TOXICOL APPL PHARM, V379, DOI 10.1016/j.taap.2019.114684 Conley DJ, 2009, SCIENCE, V323, P1014, DOI 10.1126/science.1167755 Crenier C, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00732 Danger M., 2013, ENCY AQUATIC ECOTOXI, P317 Das P, 2012, ENVIRON TOXICOL CHEM, V31, P122, DOI 10.1002/etc.716 De Borba BM, 2014, J CHROMATOGR A, V1369, P131, DOI 10.1016/j.chroma.2014.10.027 De Schamphelaere KAC, 2007, AQUAT TOXICOL, V81, P409, DOI 10.1016/j.aquatox.2007.01.002 Ellison MB, 2014, PEERJ, V2, DOI 10.7717/peerj.401 Elser JJ, 2016, INLAND WATERS, V6, P136, DOI 10.5268/IW-6.2.908 Erzinger D.-P., 2017, OPEN J ENV BIOL, V2 Feng TY, 2015, SCI REP-UK, V5, DOI 10.1038/srep10373 Fikirdesici S, 2012, TURK J ZOOL, V36, P543, DOI 10.3906/zoo-1006-36 French AD, 2017, INT J ENVIRON AN CH, V97, P499, DOI 10.1080/03067319.2017.1328060 Geffard O., 2008, ENVIRON TOXICOL CHEM, V27, P54 Held P., 2011, USE MULTIMODE MONOCH Hellweger FL, 2003, LIMNOL OCEANOGR, V48, P2275 Hood JM, 2014, FRESHW SCI, V33, P1093, DOI 10.1086/678693 Houserova P, 2007, ENVIRON POLLUT, V145, P185, DOI 10.1016/j.envpol.2006.03.027 Hughes MF, 2011, TOXICOL SCI, V123, P305, DOI 10.1093/toxsci/kfr184 Ieromina O, 2014, ENVIRON TOXICOL CHEM, V33, P621, DOI 10.1002/etc.2472 Jahan K, 2004, WASTE MANAGEMENT AND THE ENVIRONMENT II, P223 KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868 Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456 Kim Yoon-Jae, 2015, Dev Reprod, V19, P167, DOI 10.12717/DR.2015.19.4.167 Knodle R, 2012, BIOMOLECULES, V2, P282, DOI 10.3390/biom2020282 KONEMANN H, 1981, TOXICOLOGY, V19, P229, DOI 10.1016/0300-483X(81)90132-3 Kumar Manoj, 2012, Indian J Occup Environ Med, V16, P40, DOI 10.4103/0019-5278.99696 Lamai Chantana, 2005, ScienceAsia, V31, P121, DOI 10.2306/scienceasia1513-1874.2005.31.121 Lessard CR, 2012, SCI TOTAL ENVIRON, V421, P124, DOI 10.1016/j.scitotenv.2012.01.040 Li ML, 2012, ECOTOX ENVIRON SAFE, V83, P41, DOI 10.1016/j.ecoenv.2012.06.004 Luoma SN, 2005, ENVIRON SCI TECHNOL, V39, P1921, DOI 10.1021/es048947e Lyles RH, 2008, CONTEMP CLIN TRIALS, V29, P878, DOI 10.1016/j.cct.2008.05.009 Mason RP, 2000, ARCH ENVIRON CON TOX, V38, P283, DOI 10.1007/s002449910038 Mooney RJ, 2016, FRESHW SCI, V35, P873, DOI 10.1086/686699 Naddy RB, 2015, ENVIRON TOXICOL CHEM, V34, P809, DOI 10.1002/etc.2870 NALEWAJKO C, 1995, J PHYCOL, V31, P332, DOI 10.1111/j.0022-3646.1995.00332.x Norman BC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129328 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Nys C, 2017, ENVIRON SCI TECHNOL, V51, P4615, DOI 10.1021/acs.est.6b05688 Nys C, 2015, ENVIRON TOXICOL CHEM, V34, P1091, DOI 10.1002/etc.2902 Okamoto A, 2015, J APPL TOXICOL, V35, P824, DOI 10.1002/jat.3078 Perera P. C. T., 2016, ACHIEV LIFE SCI, V10, P144, DOI [10.1016/j, DOI 10.1016/J.ALS.2016.11.002, 10.1016/j.als.2016.11.002] Perez E, 2018, CHEMOSPHERE, V208, P991, DOI 10.1016/j.chemosphere.2018.06.063 Perez E, 2017, ENVIRON TOXICOL CHEM, V36, P2739, DOI 10.1002/etc.3830 Rai S, 2015, HDB ARSENIC TOXICOLO, P627, DOI [10.1016/B978-0-12-418688-0.00027-7, DOI 10.1016/B978-0-12-418688-0.00027-7] Rajamani S, 2014, PLANT PHYSIOL, V164, P1059, DOI 10.1104/pp.113.229765 Roberts TL, 2014, PROCEDIA ENGINEER, V83, P52, DOI 10.1016/j.proeng.2014.09.012 Rodgher S, 2020, WATER AIR SOIL POLL, V231, DOI 10.1007/s11270-019-4370-z Saibu Y, 2018, COMP BIOCHEM PHYS C, V211, P48, DOI 10.1016/j.cbpc.2018.05.009 Sarret G, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47183-8 Sbihi K., 2012, J MAT ENV SCI, V3, P497 Serra A, 2010, ECOTOXICOLOGY, V19, P770, DOI 10.1007/s10646-009-0454-7 Shaw JR, 2007, ENVIRON TOXICOL CHEM, V26, P1532, DOI 10.1897/06-389R.1 Shaw JR, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-477 Shaw JR, 2006, ENVIRON TOXICOL CHEM, V25, P182, DOI 10.1897/05-243R.1 SPRAGUE JB, 1965, J FISH RES BOARD CAN, V22, P425, DOI 10.1139/f65-042 Stanley JK, 2013, ENVIRON SCI TECHNOL, V47, P9424, DOI 10.1021/es401115q Tawfik DS, 2011, BIOCHEMISTRY-US, V50, P1128, DOI 10.1021/bi200002a USEPA, 2016, AQ LIF AMB WAT QUAL USEPA, 2002, EPA821R02013 Valko M, 2016, ARCH TOXICOL, V90, P1, DOI 10.1007/s00204-015-1579-5 Wang WX, 2001, ENVIRON POLLUT, V111, P233, DOI 10.1016/S0269-7491(00)00071-3 Webster RE, 2011, ENVIRON SCI TECHNOL, V45, P7489, DOI 10.1021/es200814c Xing W., 2008, ENVIRON TOXICOL, V25, P103 Yan CZ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0116099 Yoo-iam M, 2014, CHEM SPEC BIOAVAILAB, V26, P257, DOI 10.3184/095422914X14144332205573 Zeb B, 2017, APPL WATER SCI, V7, P2043, DOI 10.1007/s13201-016-0385-4 Zeng J, 2012, CHINESE SCI BULL, V57, P3790, DOI 10.1007/s11434-012-5337-2 Zhang R, 2012, FRESEN ENVIRON BULL, V21, P2891 NR 82 TC 6 Z9 6 U1 1 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 5 PY 2020 VL 54 IS 9 BP 5651 EP 5666 DI 10.1021/acs.est.9b07657 PG 16 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA LK1XK UT WOS:000530651900040 PM 32255616 DA 2023-03-13 ER PT J AU Hruby, M Cigler, P Kuzel, S AF Hruby, M Cigler, P Kuzel, S TI Contribution to understanding the mechanism of titanium action in plant SO JOURNAL OF PLANT NUTRITION LA English DT Article ID CAPSICUM-ANNUUM; TI(IV) AB The biological effects of titanium (Ti) in the form of Ti(IV)-ascorbate on oats (Avena sativa L. cv. Zlatak) were studied in hydroponic experiments on defined nutrient solutions, determining the influence (i) of the chemical form of nitrogen (N) in nutrient solution on the Ti effects on plants (nitrate and an ammonium salt (acetate) were the only N species used) and (ii) of various Ti concentrations in nutrient solution while changing the magnesium (Mg) concentration on the Ti, Mg, iron (Fe), and potassium (K) content in tops and roots, top and root dry weights, chlorophyll a and b content, top height, and root length. It was found that (i) Ti was beneficial for plants grown on the nitrate-containing nutrient solutions as compared to the ammonium-containing nutrient solutions where Ti results in inhibitory effects on plant health status (decrease of top and root dry weights, chlorophyll a and b contents, top height, and root length), therefore, it was deducted that the increase of nitrate reductase activity was mainly responsible for the Ti beneficial effect on plants and (ii) Ti increased the Fe, Mg, and Ti content in plant tissues and this effect was independent of N form in the nutrient solution, chlorophyll a and b content or plant health status. It is suggested that the biological effects of Ti (the synthesis of the Ti chelating alpha-hydroxy carboxylic acids (citric and malic), and ascorbic acid, the increase of the Fe and Mg contents in plant tissues, the increased nitrate reductase activity, the increased chlorophyll a and b biosynthesis, and the effects on the other enzymatic activities) are the defense mechanisms of the plant against Ti replacing some essential elements from their binding sites (probably mainly from the phosphate-based ones). These defense mechanisms are, in the case of the usual Ti application doses, much stronger than adequate for the elimination of the Ti toxic effects (this "paradox" effect called hormesis has already been described for lead (Pb) and its effect on the hemoglobin content in blood of animals and humans). C1 S Bohemian Univ, Fac Agr, Dept Gen Plant Prod, Eske Budjovice 37005, Czech Republic. Charles Univ, Fac Sci, Dept Organ Chem, Prague 12843 2, Czech Republic. C3 University of South Bohemia Ceske Budejovice; Charles University Prague RP Kuzel, S (corresponding author), S Bohemian Univ, Fac Agr, Dept Gen Plant Prod, Studentska 13, Eske Budjovice 37005, Czech Republic. RI Kuzel, Stanislav/D-9510-2016; Hruby, Martin/H-6479-2014; Cigler, Petr/B-1142-2012 OI Kuzel, Stanislav/0000-0002-4058-6240; Hruby, Martin/0000-0002-5075-261X; Cigler, Petr/0000-0003-0283-647X CR BENZIONI A, 1970, PLANT PHYSIOL, V23, P1037 CARVAJAL M, 1994, J HORTIC SCI BIOTECH, V69, P427, DOI 10.1080/14620316.1994.11516471 Carvajal M, 1998, J PLANT NUTR, V21, P655, DOI 10.1080/01904169809365433 CARVAJAL M, 1995, PHYTOCHEMISTRY, V35, P977 Cigler P, 1999, J PLANT NUTR, V22, P1241, DOI 10.1080/01904169909365709 DAOOD HG, 1988, J PLANT NUTR, V11, P505, DOI 10.1080/01904168809363818 DUMON JC, 1988, J PLANT PHYSIOL, V133, P203, DOI 10.1016/S0176-1617(88)80138-X FEHER M, 1984, ACTA AGRON HUNG, V33, P95 GIMENEZ J.L, 1990, P 3 S NAC NUTR MIN P, p123 Greenwood N. N., 1993, CHEM ELEMENTS HOAGLAND DR, 1939, WATER CULTURE METHOD, P347 KELEMEN G, 1993, FOOD STRUCT, V12, P67 KIMURA S, 1990, P 4 INT TRAC EL S, P325 KIRCHGESSNER K, 1986, SPURENELEMENTSYMP, P1006 KISS F, 1985, J PLANT NUTR, V8, P825, DOI 10.1080/01904168509363387 KLENER P, 1987, CHEMOTHERAPY COMPLEX, P263 Konishi K., 1936, J AGRI CHEM SOC, V12, P916, DOI [10.1271/nogeikagaku1924.12.328, DOI 10.1271/NOGEIKAGAKU1924.12.328] LopezMoreno JL, 1996, FERT RES, V43, P131, DOI 10.1007/BF00747692 MARTINEZSANCHEZ F, 1993, J PLANT NUTR, V16, P975, DOI 10.1080/01904169309364586 PAIS I, 1983, J PLANT NUTR, V6, P3, DOI 10.1080/01904168309363075 PORRA RJ, 1989, BIOCHIM BIOPHYS ACTA, V975, P384, DOI 10.1016/S0005-2728(89)80347-0 PROKES J, 1993, BASICS TOXICOLOGY, P46 SIMON L, 1990, NEW RESULTS RES HARD, P49 Simon L, 1988, NEW RESULTS RES HARD, P87 STANKOVIANSKY S, 1965, QUALITATIVE ANAL CHE, P256 NR 25 TC 65 Z9 67 U1 0 U2 28 PU MARCEL DEKKER INC PI NEW YORK PA 270 MADISON AVE, NEW YORK, NY 10016 USA SN 0190-4167 J9 J PLANT NUTR JI J. Plant Nutr. PY 2002 VL 25 IS 3 BP 577 EP 598 DI 10.1081/PLN-120003383 PG 22 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 537NM UT WOS:000174764700011 DA 2023-03-13 ER PT J AU Olivieri, F Prattichizzo, F Lattanzio, F Bonfigli, AR Spazzafumo, L AF Olivieri, Fabiola Prattichizzo, Francesco Lattanzio, Fabrizia Bonfigli, Anna Rita Spazzafumo, Liana TI Antifragility and antiinflammaging: Can they play a role for a healthy longevity? SO AGEING RESEARCH REVIEWS LA English DT Article DE Aging; Inflammaging; Hormesis; Longevity; Centenarians; Genetics; Epigenetics; Frailty ID METABOLIC MEMORY; TRANSGENERATIONAL INHERITANCE; CALORIC RESTRICTION; CELLULAR SENESCENCE; OLDEST-OLD; MORTALITY; INFLAMMATION; DISEASE; STRESS; AGE AB One of the most exciting challenges of the research on aging is to explain how the environmental factors interact with the genetic background to modulate the chances to reach the extreme limit of human life in healthy con-ditions. The complex epigenetic mechanisms can explain both the interaction between DNA and environmental factors, and the long-distance persistence of lifestyle effects, due to the so called "epigenetic memory". One of the most extensively investigated theories on aging focuses on the inflammatory responses, suggesting that the age -related progression of low-grade and therefore for long time subclinical, chronic, systemic, inflammatory process, named "inflammaging", could be the most relevant risk factor for the development and progression of the most common age-related diseases and ultimately of death. The results of many studies on long-lived people, espe-cially on centenarians, suggested that healthy old people can cope with inflammaging upregulating the antiin-flammaging responses. Overall, a genetic make-up coding for a strong antiinflammaging response and an age -related ability to remodel key metabolic pathways to cope with a plethora of antigens and stressors seem to be the best ways for reach the extreme limit of human lifespan in health status. In this scenario, we wondered if the antifragility concept, recently developed in the framework of business and risk analysis, could add some information to disentangle the heterogeneous nature of the aging process in human. The antifragility is the property of the complex systems to increase their performances because of high stress. Based on this theory we were wondering if some subjects could be able to modulate faster than others their epigenome to cope with a plethora of stressors during life, probably modulating the inflammatory and anti-inflammatory responses. In this framework, antifragility could share some common mechanisms with anti-inflammaging, modulating the ability to restrain the inflammatory responses, so that antifragility and antiinflammaging could be viewed as different pieces of the same puzzle, both impinging upon the chances to travel along the healthy aging trajectory. C1 [Olivieri, Fabiola] Univ Politecn Marche, Dept Clin & Mol Sci, DISCLIMO, Ancona, Italy. [Olivieri, Fabiola] IRCCS INRCA, Clin Med Lab & Precis, Ancona, Italy. [Prattichizzo, Francesco] IRCCS Multimed, PST, Via Fantoli 16-15, I-20138 Milan, Italy. [Lattanzio, Fabrizia; Bonfigli, Anna Rita; Spazzafumo, Liana] IRCCS INRCA, Sci Direct, Ancona, Italy. C3 Marche Polytechnic University; IRCCS INRCA; IRCCS Multimedica; IRCCS INRCA RP Olivieri, F (corresponding author), Univ Politecn Marche, Dept Clin & Mol Sci, DISCLIMO, Ancona, Italy.; Olivieri, F (corresponding author), IRCCS INRCA, Clin Med Lab & Precis, Ancona, Italy. EM f.olivieri@univpm.it RI Olivieri, Fabiola/K-6465-2016; Prattichizzo, Francesco/J-3046-2018 OI Olivieri, Fabiola/0000-0002-9606-1144; Prattichizzo, Francesco/0000-0002-2959-2658 FU Italian Ministry of Health (Ricerca Corrente); Universita Politecnica delle Marche FX This work was supported by the Italian Ministry of Health (Ricerca Corrente to IRCCS INRCA and IRCCS MultiMedica) and by Universita Politecnica delle Marche (RSA grant to FO) . CR Akushevich I, 2013, EXP GERONTOL, V48, P1395, DOI 10.1016/j.exger.2013.09.005 Anderson RM, 2009, TOXICOL PATHOL, V37, P47, DOI 10.1177/0192623308329476 Arai Y, 2015, EBIOMEDICINE, V2, P1549, DOI 10.1016/j.ebiom.2015.07.029 Aven T, 2015, RISK ANAL, V35, P476, DOI 10.1111/risa.12279 Avogaro A, 2020, DIABETES CARE, V43, P501, DOI 10.2337/dc19-1410 Barth E, 2019, AGING-US, V11, P8556, DOI 10.18632/aging.102345 Beker N, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2020.0094 Bekkering S, 2019, CELL METAB, V30, P1, DOI 10.1016/j.cmet.2019.05.014 Bekkering S, 2014, ARTERIOSCL THROM VAS, V34, P1731, DOI 10.1161/ATVBAHA.114.303887 Bell CG, 2010, BMC MED GENOMICS, V3, DOI 10.1186/1755-8794-3-33 Bender R, 1999, JAMA-J AM MED ASSOC, V281, P1498, DOI 10.1001/jama.281.16.1498 Bonafe M, 2009, MOL CELL ENDOCRINOL, V299, P118, DOI 10.1016/j.mce.2008.10.038 Bouma HR, 2010, VET IMMUNOL IMMUNOP, V136, P319, DOI 10.1016/j.vetimm.2010.03.016 Boyd A, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10092381 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2022, BIOGERONTOLOGY, V23, P381, DOI 10.1007/s10522-022-09964-z Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Capurso C, 2007, ANN HUM GENET, V71, P843, DOI 10.1111/j.1469-1809.2007.00368.x Chen Z, 2016, P NATL ACAD SCI USA, V113, pE3002, DOI 10.1073/pnas.1603712113 Chiappelli J, 2021, J AFFECT DISORDERS, V295, P711, DOI 10.1016/j.jad.2021.08.112 Childs BG, 2015, NAT MED, V21, P1424, DOI 10.1038/nm.4000 Cohen AA, 2020, MECH AGEING DEV, V191, DOI 10.1016/j.mad.2020.111316 Cohen AA, 2016, BIOGERONTOLOGY, V17, P205, DOI 10.1007/s10522-015-9584-x Cohen S, 2018, CIRCULATION, V137, P1334, DOI 10.1161/CIRCULATIONAHA.117.029138 Collado M, 2007, CELL, V130, P223, DOI 10.1016/j.cell.2007.07.003 Colman RJ, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4557 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Danchin A, 2011, GENES-BASEL, V2, P998, DOI 10.3390/genes2040998 de Cabo R, 2019, NEW ENGL J MED, V381, P2541, DOI 10.1056/NEJMra1905136 de Gonzalez AB, 2010, NEW ENGL J MED, V363, P2211, DOI 10.1056/NEJMoa1000367 Divangahi M, 2021, NAT IMMUNOL, V22, P2, DOI 10.1038/s41590-020-00845-6 Dunn GA, 2011, ENDOCRINOLOGY, V152, P2228, DOI 10.1210/en.2010-1461 Edgar L, 2021, CIRCULATION, V144, P961, DOI 10.1161/CIRCULATIONAHA.120.046464 Equihua M, 2020, PEERJ, V8, DOI 10.7717/peerj.8533 Fernandez-Oto C, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.048101 Ferrucci L, 2018, NAT REV CARDIOL, V15, P505, DOI 10.1038/s41569-018-0064-2 Franceschi C, 2000, ANN NY ACAD SCI, V908, P244 Franceschi C, 2007, MECH AGEING DEV, V128, P92, DOI 10.1016/j.mad.2006.11.016 Franceschi C, 2020, J AM COLL CARDIOL, V75, P968, DOI 10.1016/j.jacc.2019.12.032 Franceschi C, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00982 Fulop T, 2020, SEMIN IMMUNOPATHOL, V42, P521, DOI 10.1007/s00281-020-00818-9 Fulop T, 2016, BIOGERONTOLOGY, V17, P147, DOI 10.1007/s10522-015-9615-7 Fulop T, 2018, SEMIN IMMUNOL, V40, P17, DOI 10.1016/j.smim.2018.09.003 Furman D, 2019, NAT MED, V25, P1822, DOI 10.1038/s41591-019-0675-0 Godeau D, 2021, SCAND J WORK ENV HEA, V47, P408, DOI 10.5271/sjweh.3960 Gonzalez B, 2023, GEROSCIENCE, V45, P311, DOI 10.1007/s11357-022-00634-z Grajower MM, 2019, NUTRIENTS, V11, DOI 10.3390/nu11040873 Gurau F, 2018, AGEING RES REV, V46, P14, DOI 10.1016/j.arr.2018.05.001 Hauptmann Michael, 2020, Journal of the National Cancer Institute Monographs, P188, DOI 10.1093/jncimonographs/lgaa010 Heard E, 2014, CELL, V157, P95, DOI 10.1016/j.cell.2014.02.045 Hemmingsen B, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008143.pub3 Irizar PA, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02395-2 Johnstone SE, 2010, NAT REV GENET, V11, P806, DOI 10.1038/nrg2881 Kaati G, 2002, EUR J HUM GENET, V10, P682, DOI 10.1038/sj.ejhg.5200859 Kaempf JW, 2017, J PERINATOL, V37, P740, DOI 10.1038/jp.2017.7 Kato M, 2019, NAT REV NEPHROL, V15, P327, DOI 10.1038/s41581-019-0135-6 Kizer JR, 2011, J GERONTOL A-BIOL, V66, P1100, DOI 10.1093/gerona/glr098 Ko YA, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-10-r108 Kriete A, 2013, BIOSYSTEMS, V112, P37, DOI 10.1016/j.biosystems.2013.03.014 Kulminski AM, 2011, MECH AGEING DEV, V132, P195, DOI 10.1016/j.mad.2011.03.006 Li H, 2022, BIOMED RES INT, V2022, DOI 10.1155/2022/2810379 Li JY, 2018, PEERJ, V6, DOI 10.7717/peerj.4225 Lio D, 2004, J MED GENET, V41, P790, DOI 10.1136/jmg.2004.019885 Liu RT, 2015, J ABNORM PSYCHOL, V124, P80, DOI 10.1037/abn0000043 Longo VD, 2022, CELL, V185, P1455, DOI 10.1016/j.cell.2022.04.002 de Toda IM, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/4574276 Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 Matacchione G, 2020, AGEING RES REV, V61, DOI 10.1016/j.arr.2020.101074 Mathews JD, 2013, BMJ-BRIT MED J, V346, DOI 10.1136/bmj.f2360 Mehdi MM, 2021, ARCH GERONTOL GERIAT, V95, DOI 10.1016/j.archger.2021.104413 Miao F, 2014, DIABETES, V63, P1748, DOI 10.2337/db13-1251 Mladenov V, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22137118 Nagareddy PR, 2013, CELL METAB, V17, P695, DOI 10.1016/j.cmet.2013.04.001 Natarajan R, 2021, DIABETES, V70, P328, DOI 10.2337/dbi20-0030 Netea MG, 2020, NAT REV IMMUNOL, V20, P375, DOI 10.1038/s41577-020-0285-6 Neuman Y, 2006, PROG BIOPHYS MOL BIO, V92, P258, DOI 10.1016/j.pbiomolbio.2005.11.001 Olivieri F, 2018, MEDIAT INFLAMM, V2018, DOI 10.1155/2018/9076485 Orellana R, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02309 Ouyang WJ, 2011, ANNU REV IMMUNOL, V29, P71, DOI 10.1146/annurev-immunol-031210-101312 Pavlidis N, 2012, CRIT REV ONCOL HEMAT, V83, P145, DOI 10.1016/j.critrevonc.2011.09.007 Pawelec G, 2020, MECH AGEING DEV, V192, DOI 10.1016/j.mad.2020.111357 Iv LJP, 2022, NUTRITION, V99-100, DOI 10.1016/j.nut.2022.111629 Piraino S, 1996, BIOL BULL-US, V190, P302, DOI 10.2307/1543022 Prattichizzo F, 2020, METABOLISM, V110, DOI 10.1016/j.metabol.2020.154308 Prospero-Garcia OE, 2021, SOC NEUROSCI-UK, V16, P145, DOI 10.1080/17470919.2021.1876759 Rattan SIS, 2022, CURR OPIN TOXICOL, V29, P19, DOI 10.1016/j.cotox.2022.01.001 Rechavi O, 2014, CELL, V158, P277, DOI 10.1016/j.cell.2014.06.020 Rose SMSF, 2019, NAT MED, V25, P792, DOI 10.1038/s41591-019-0414-6 Ryu S, 2021, AGING CELL, V20, DOI 10.1111/acel.13362 Sakaniwa R, 2022, AGE AGEING, V51, DOI 10.1093/ageing/afac080 Salminen A, 2021, J MOL MED, V99, P1, DOI 10.1007/s00109-020-01988-7 Salminen A, 2012, CELL SIGNAL, V24, P835, DOI 10.1016/j.cellsig.2011.12.006 Salvioli S, 2006, FREE RADICAL RES, V40, P1303, DOI 10.1080/10715760600917136 Salvioli S, 2013, CURR PHARM DESIGN, V19, P1675 Sebastiani P, 2017, J GERONTOL A-BIOL, V72, P1453, DOI 10.1093/gerona/glx027 Singh V, 2020, INFLAMMATION, V43, P1589, DOI 10.1007/s10753-020-01242-9 Sivandzade F, 2019, REDOX BIOL, V21, DOI 10.1016/j.redox.2018.11.017 Spazzafumo L, 2013, AGE, V35, P419, DOI 10.1007/s11357-011-9348-8 Stegemann R, 2015, SEMIN CELL DEV BIOL, V43, P131, DOI 10.1016/j.semcdb.2015.04.007 Taleb NN, 2013, QUANT FINANC, V13, P1677, DOI 10.1080/14697688.2013.800219 Taleb N.N., 2012, ANTIFRAGILE THINGS G, P430 Taleb N.N., 2011, EDGE Taleb NN, 2013, NATURE, V494, P430, DOI 10.1038/494430e Thiagalingam S, 2020, BBA-REV CANCER, V1873, DOI 10.1016/j.bbcan.2020.188349 Tominaga K, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20205002 Torres GG, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms231810949 Vaiserman A, 2021, BIOGERONTOLOGY, V22, P145, DOI 10.1007/s10522-020-09908-5 Nguyen VK, 2021, LANCET HEALTH LONGEV, V2, pE651, DOI [10.1016/s2666-7568(21)00212-9, 10.1016/S2666-7568(21)00212-9] Walston JD, 2009, EXP GERONTOL, V44, P350, DOI 10.1016/j.exger.2009.02.004 Woodhead JST, 2021, BBA-GEN SUBJECTS, V1865, DOI 10.1016/j.bbagen.2021.130011 Yashin AI, 2001, J GERONTOL A-BIOL, V56, pB432, DOI 10.1093/gerona/56.10.B432 Yoon TK, 2022, DIABETES METAB J, V46, P402, DOI 10.4093/dmj.2022.0092 Zaccardi F, 2017, DIABETOLOGIA, V60, P240, DOI 10.1007/s00125-016-4162-6 Zimmet P, 2018, NAT REV ENDOCRINOL, V14, P738, DOI 10.1038/s41574-018-0106-1 NR 114 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD FEB PY 2023 VL 84 AR 101836 DI 10.1016/j.arr.2022.101836 EA DEC 2022 PG 9 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 8K6MP UT WOS:000923213600001 PM 36574863 DA 2023-03-13 ER PT J AU Zhang, TT Shi, M Yan, H Li, C AF Zhang, Tingting Shi, Mei Yan, Hao Li, Cheng TI Effects of Salicylic Acid on Heavy Metal Resistance in Eukaryotic Algae and Its Mechanisms SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE Cd2+ pollution; eutrophication; salicylic acid; S. obliquus; C. pyrenoidosa AB Heavy metal pollution and water eutrophication are still the main issues to be solved in the environmental field. To find a biological control method for Cd2+-contaminated water or combined eutrophication and Cd2+ pollution water, the effects of salicylic acid on heavy metal Cd2+ resistance in eukaryotic algae Scenedesmus obliquus and Chlorella pyrenoidosa and its mechanisms were studied. The results showed that the inhibition rates of 3.0 mg/L Cd2+ stress group at 96 h were 67.0% on S. obliquus and 61.4% on C. pyrenoidosa and their uptake of Cd2+ was 0.31 mg/g and 0.35 mg/g, respectively. When adding the different concentrations of salicylic acid while stressed by 3.0 mg/L Cd2+, the hormesis phenomenon of low dose stimulation and high dose inhibition could be seen, and the inhibition rates of 30 mg/L similar to 90 mg/L salicylic acid addition groups were significantly lower than those of the Cd2+ stress group alone, which were statistically significant (p < 0.05) and the absorption of Cd2+ was dramatically improved. Except for the 120 mg/L salicylic acid addition group, the chlorophyll fluorescence parameters (Fv/Fm and YII), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) activities of all the other concentration groups were significantly higher than those of the Cd2+ stress group alone, p < 0.05.; the algal cell morphology in low concentration groups (30 mg/L and 60 mg/L) was also less damaged than those in the Cd2+ stress group alone. These indicate that the low concentrations of salicylic acid can counteract or protect the algal cells from Cd2+ attack, the mechanisms, on the one hand, might be related to the chelation of heavy metals by salicylic acid, resulting in the decrease of the toxicity of Cd2+; on the other hand, low concentrations of salicylic acid can stimulate the growth of these two algae, improve their photosynthetic efficiency and antioxidant capacity, as well as maintain the relative integrity of algal morphological structure. C1 [Zhang, Tingting; Shi, Mei; Yan, Hao; Li, Cheng] Anhui Normal Univ, Sch Life Sci, Wuhu 241000, Peoples R China. C3 Anhui Normal University RP Zhang, TT (corresponding author), Anhui Normal Univ, Sch Life Sci, Wuhu 241000, Peoples R China. EM cyhztt@ahnu.edu.cn FU National Natural Science Foundation of China [41977402] FX The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 41977402). CR Ajitha V, 2021, ENVIRON SCI POLLUT R, V28, P32475, DOI 10.1007/s11356-021-12950-6 Zamora-Barrios CA, 2019, ENVIRON POLLUT, V249, P267, DOI 10.1016/j.envpol.2019.03.029 Chandrashekharaiah P, 2021, CHEMOSPHERE, V269, DOI 10.1016/j.chemosphere.2020.128755 Cheng SY, 2019, TRENDS BIOTECHNOL, V37, P1255, DOI 10.1016/j.tibtech.2019.04.007 Costa GB, 2019, ENVIRON EXP BOT, V167, DOI 10.1016/j.envexpbot.2019.103818 Danouche M, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104460 Danouche M, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e07609 Exposito N, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18031037 Fan ZQ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19106320 Guo B, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20122960 Guo WJ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19010608 Hu LiJing, 2017, Journal of Southern Agriculture, V48, P169 Huang JC, 2019, ENVIRON INT, V123, P96, DOI 10.1016/j.envint.2018.11.048 Imron MF, 2021, SUSTAIN ENVIRON RES, V31, DOI 10.1186/s42834-021-00088-6 Kadim MK, 2022, EMERG CONTAM, V8, P195, DOI 10.1016/j.emcon.2022.02.003 Lad A, 2022, LIFE-BASEL, V12, DOI 10.3390/life12030418 Li XM, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13060575 Liang Y, 2020, AQUAT ECOL, V54, P243, DOI 10.1007/s10452-019-09739-8 [刘吉祥 Liu Jixiang], 2021, [植物资源与环境学报, Journal of Plant Resources and Environment], V30, P10 Liu JX, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10122653 Liu Lu, 2014, China Environmental Science, V34, P478 Liu Weigan, 2022, Hupo Kexue, V34, P675, DOI 10.18307/2022.0226 Lu S.S., 2020, AGR TECHNOL EQUIP, V5, P9 Moreira VR, 2019, MICROCHEM J, V145, P119, DOI 10.1016/j.microc.2018.10.027 Nowicka B, 2022, ENVIRON SCI POLLUT R, V29, P16860, DOI 10.1007/s11356-021-18419-w Qin SY, 2022, ENVIRON SCI POLLUT R, V29, P34701, DOI 10.1007/s11356-021-17123-z Salama ES, 2019, WORLD J MICROB BIOT, V35, DOI 10.1007/s11274-019-2648-3 Suhani I, 2021, CURR OPIN TOXICOL, V27, P1, DOI 10.1016/j.cotox.2021.04.004 Tan KT, 2019, MICROBIOL-SGM, V165, P587, DOI 10.1099/mic.0.000776 Tarhan L, 2016, BIOL PLANTARUM, V60, P163, DOI 10.1007/s10535-015-0570-6 Wang F, 2022, CHEMOSPHERE, V298, DOI 10.1016/j.chemosphere.2022.134245 Wu GX, 2018, J GEN APPL MICROBIOL, V64, P42, DOI 10.2323/jgam.2017.06.001 Yan Hao, 2014, Wei Sheng Yan Jiu, V43, P290 You H.K., 2022, CHINA OILS FATS, DOI [10.19902/j.cnki.zgyz.1003-7969.220126, DOI 10.19902/J.CNKI.ZGYZ.1003-7969.220126] Zheng Yi, 2019, Environmental Science & Technology (China), V42, P31 Zhu L.Y., 2019, HUNAN AGR SCI, V5, P59 [朱志雄 Zhu Zhixiong], 2020, [海洋湖沼通报, Transactions of Oceanology and Limnology], P131 NR 37 TC 1 Z9 1 U1 9 U2 9 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD OCT PY 2022 VL 19 IS 20 AR 13415 DI 10.3390/ijerph192013415 PG 12 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 5R0ZP UT WOS:000874248600001 PM 36293995 OA Green Published, gold DA 2023-03-13 ER PT J AU Lourdes, GCM Stephane, D Maryline, CS AF Lourdes, Gil-Cardeza Maria Stephane, Declerck Maryline, Calonne-Salmon TI Impact of increasing chromium (VI) concentrations on growth, phosphorus and chromium uptake of maize plants associated to the mycorrhizal fungus Rhizophagus irregularis MUCL 41833 SO HELIYON LA English DT Article DE Arbuscular mycorrhizal fungi; Chromium(VI); Phosphorus dynamics; Chromium dynamics; Phyto-remediation ID ARBUSCULAR MYCORRHIZA; HEXAVALENT CHROMIUM; CONTAMINATED SOIL; TOXICITY; GLOMUS; ACCUMULATION; TRANSPORTER; REMEDIATION; RESPONSES AB Arbuscular mycorhizal fungi (AMF) associated to plants may represent a promising phyto-remediation avenue due to the widely documented role of these fungi in alleviation of numerous abiotic (e.g. heavy metals) stresses. In the present work, it was the objective to study the dynamics of inorganic phosphorus (Pi) and chromium (VI) (Cr(VI))and total Cr uptake by the plant-AMF associates Zea mays thorn R. irregularis MUCL 41833, under increasing (i.e. 0,0.1, 1 and 10 mg L-1) concentrations of Cr(VI). The plant-AMF associates were grown in a circulatory semi-hydroponiccultivation system under greenhouse conditions. We demonstrated that Cr(VI) had an hormesis effecton root colonization of maize. Indeed, at 0.1 and 1 mg L-1 Cr(VI), root colonization was increased by approximately 55% as compared to the control (i.e. in absence of Cr(VI) in the solution), while no difference was noticed at 10 mg L-1 Cr(VI) (P <= 0.05). However, this did not result in an increased uptake of Pi by the AMF-colonizedplants in presence of 0.1 mg L-1 Cr(VI) as compared to the AMF control in absence of Cr(VI) (P <= 0.05). Conversely, the presence of 1 mg L-1 Cr(VI) stimulated the Pi uptake by non-mycorrhizal plants, which absorbed 17% more Pi than their mycorrhizal counterparts (P <= 0.05). In addition, the non-mycorrhizal plants absorbed, in average, 8% more Cr(VI) than the mycorrhizal plants. Overall, our results prompt the hypothesis that in presence of AMF, the regulation of uptake of Cr(VI) and Pi by plant roots is done mostly by the fungus rather than the root cells. This regulated uptake of roots associated to AMF would indicate that the symbiosis could benefit the plants by providing a stable Pi uptake in a Cr(VI) polluted environment. C1 [Lourdes, Gil-Cardeza Maria] Univ Nacl Rosario, Inst Invest Cs Agr Rosario IICAR, Fac Cs Agr, CONICET,UNR, RA-2123 Campo Exp Villarino, Zavalla, Argentina. [Stephane, Declerck; Maryline, Calonne-Salmon] Catholic Univ Louvain, Earth & Life Inst, Mycol, 2 Box L7-05-06, B-1348 Louvain La Neuve, Belgium. C3 Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); National University of Rosario; Universite Catholique Louvain RP Lourdes, GCM (corresponding author), Univ Nacl Rosario, Inst Invest Cs Agr Rosario IICAR, Fac Cs Agr, CONICET,UNR, RA-2123 Campo Exp Villarino, Zavalla, Argentina. EM lourgilcardeza@gmail.com OI Calonne, Maryline/0000-0001-6241-6659 FU CONICET; Operational Directorate for Agriculture, Natural Resources and Environment (DGO3) [D31-1388-S1] FX M.L. Gil-Cardeza is a researcher at the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina). Her stay at UCL was financed by CONICET. M. Calonne-Salmon is financed by the Operational Directorate for Agriculture, Natural Resources and Environment (DGO3) (2018-2021) for the project MICROSOILSYSTEM: Reduction of chemical inputs by application of microbial consortia with bio-stimulant and bio-control effects adapted to soil functioning in conventional and conservation agriculture - D31-1388-S1). CR Ali H, 2013, CHEMOSPHERE, V91, P869, DOI 10.1016/j.chemosphere.2013.01.075 Arias JA, 2010, ENVIRON SCI TECHNOL, V44, P7272, DOI 10.1021/es1008664 Benjamin J.G., 2014, OPEN J SOIL SCI, V4, p151?160, DOI [10.4236/ojss.2014.44018, DOI 10.4236/OJSS.2014.44018] Brundrett MC, 2018, NEW PHYTOL, V220, P1108, DOI 10.1111/nph.14976 Calonne-Salmon M, 2018, MYCORRHIZA, V28, P761, DOI 10.1007/s00572-018-0861-9 Cornejo P, INTA ED ARGENTINA, pP407 Cranenbrouck S, 2005, SOIL BIOL, V4, P341 Davies FT, 2001, J PLANT PHYSIOL, V158, P777, DOI 10.1078/0176-1617-00311 de Oliveira LM, 2016, CHEMOSPHERE, V147, P36, DOI 10.1016/j.chemosphere.2015.12.088 Declerck S, 1998, MYCOLOGIA, V90, P579, DOI 10.2307/3761216 Dhal B, 2013, J HAZARD MATER, V250, P272, DOI 10.1016/j.jhazmat.2013.01.048 DODD JC, 1987, NEW PHYTOL, V107, P163, DOI 10.1111/j.1469-8137.1987.tb04890.x Fargasova A, 2012, ECOTOXICOLOGY, V21, P1476, DOI 10.1007/s10646-012-0901-8 Ferrol N, 2016, J EXP BOT, V67, P6253, DOI 10.1093/jxb/erw403 Fiorilli V, 2013, PLANTA, V237, P1267, DOI 10.1007/s00425-013-1842-z Galan E., 2008, MACLA REV SOC ESP MI, V10, P48 Garces-Ruiz M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01471 Gil-Cardeza ML, 2018, SCI TOTAL ENVIRON, V625, P1113, DOI 10.1016/j.scitotenv.2017.12.278 Gil-Cardeza ML, 2014, SCI TOTAL ENVIRON, V493, P828, DOI 10.1016/j.scitotenv.2014.06.080 Giovannetti M, 2014, NEW PHYTOL, V204, P609, DOI 10.1111/nph.12949 Guo W, 2013, APPL SOIL ECOL, V72, P85, DOI 10.1016/j.apsoil.2013.06.001 Hermans C, 2006, TRENDS PLANT SCI, V11, P610, DOI 10.1016/j.tplants.2006.10.007 Hoagland DR., 1950, CALIF AES C, V347, P32, DOI DOI 10.1016/S0140-6736(00)73482-9 Jagupilla SC, 2009, J HAZARD MATER, V168, P121, DOI 10.1016/j.jhazmat.2009.02.012 James BR, 1996, ENVIRON SCI TECHNOL, V30, pA248, DOI 10.1021/es962269h JAMES BR, 1995, ENVIRON SCI TECHNOL, V29, P2377, DOI 10.1021/es00009a033 Jarup L, 2003, BRIT MED BULL, V68, P167, DOI 10.1093/bmb/ldg032 Kalra A, 2013, ENV SCI, V13, P2098 Keymer A, 2017, ELIFE, V6, DOI [10.7554/eLife.29107.001, 10.7554/eLife.29107] Khan AG, 2001, ENVIRON INT, V26, P417, DOI 10.1016/S0160-4120(01)00022-8 Kleiman ID, 1997, ENVIRON POLLUT, V97, P131, DOI 10.1016/S0269-7491(97)00063-8 Krishnamoorthy R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128784 Labidi S, 2011, PHYTOCHEMISTRY, V72, P2335, DOI 10.1016/j.phytochem.2011.08.016 Gil-Cardeza ML, 2017, CHEMOSPHERE, V187, P27, DOI 10.1016/j.chemosphere.2017.08.079 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Luginbuehl LH, 2017, SCIENCE, V356, P1175, DOI 10.1126/science.aan0081 Maiti Saborni, 2012, Braz. J. Plant Physiol., V24, P203, DOI 10.1590/S1677-04202012000300007 Meier S, 2012, CRIT REV ENV SCI TEC, V42, P741, DOI 10.1080/10643389.2010.528518 Moon DH, 2009, J HAZARD MATER, V166, P27, DOI 10.1016/j.jhazmat.2008.09.079 Panda J, 2012, ENVIRON SCI POLLUT R, V19, P1809, DOI 10.1007/s11356-011-0702-2 Parniske M, 2008, NAT REV MICROBIOL, V6, P763, DOI 10.1038/nrmicro1987 Plenchette C, 1996, BIOL FERT SOILS, V21, P303, DOI 10.1007/BF00334907 Plouznikoff K, 2016, SIGNAL COMMUN PLANTS, P341, DOI 10.1007/978-3-319-42319-7_15 Qi YL, 2019, GLOB ECOL CONSERV, V18, DOI 10.1016/j.gecco.2019.e00606 Qian HF, 2013, CHEMOSPHERE, V93, P885, DOI 10.1016/j.chemosphere.2013.05.035 Schneider J, 2013, J HAZARD MATER, V262, P1105, DOI 10.1016/j.jhazmat.2012.09.063 SEN R, 1986, SOIL BIOL BIOCHEM, V18, P29, DOI 10.1016/0038-0717(86)90099-4 Shahid M, 2017, CHEMOSPHERE, V178, P513, DOI 10.1016/j.chemosphere.2017.03.074 Shanker AK, 2005, ENVIRON INT, V31, P739, DOI 10.1016/j.envint.2005.02.003 Smith FA, 2015, NEW PHYTOL, V205, P1381, DOI 10.1111/nph.13202 Taboada M.A., 2018, BIORREMEDIACION RECU, P12 Taiz L., 2010, PLANT PHYSIOL, P106 Walker C., 2005, INOCULUM, V56, P68 Wu SL, 2014, ENVIRON TOXICOL CHEM, V33, P2105, DOI 10.1002/etc.2661 Wu SL, 2019, SOIL ECOL LETT, V1, P94, DOI 10.1007/s42832-019-0015-9 Wu SL, 2016, J HAZARD MATER, V316, P34, DOI 10.1016/j.jhazmat.2016.05.017 Zarei M, 2010, ENVIRON POLLUT, V158, P2757, DOI 10.1016/j.envpol.2010.04.017 NR 57 TC 4 Z9 4 U1 10 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND EI 2405-8440 J9 HELIYON JI Heliyon PD JAN PY 2021 VL 7 IS 1 AR e05891 DI 10.1016/j.heliyon.2020.e05891 EA JAN 2021 PG 10 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA QH1NV UT WOS:000618044100008 PM 33474511 OA Green Published, gold DA 2023-03-13 ER PT J AU Dabney, BL Patino, R AF Dabney, Brittanie L. Patino, Reynaldo TI Low-dose stimulation of growth of the harmful alga, Prymnesium parvum, by glyphosate and glyphosate-based herbicides SO HARMFUL ALGAE LA English DT Article DE N-(phosphonomethyl) glycine; Phosphonate; Golden alga; HAB; Hormesis ID COMMUNITY STRUCTURE; RISK-ASSESSMENT; WATER; BLOOMS; IMPACT; ECOSYSTEM; EUTROPHICATION; CYANOBACTERIA; PRODUCTIVITY; INSECTICIDES AB Glyphosate-based herbicides (GBH) are widely used around the globe. While generally toxic to phototrophs, organic phosphorus in glyphosate can become available to glyphosate-resistant phytoplankton and contribute to algal bloom development. Few studies have examined the effects of GBH on growth of eukaryotic microalgae and information for the toxic bloom-forming haptophyte, Prymnesium parvum, is limited. Using a batch-culture system, this study examined the effects on P. parvum growth of a single application of Roundup Weed and Grass Killer Super Concentrate Plus (R) (Roundup SC), Roundup Weed and Grass Killer Ready-to-Use III (R) (Roundup RtU), and technical-grade glyphosate at low concentrations [0-1000 mu g glyphosate acid equivalent (ae) l(-1)]. Roundup formulations differ in the percent of glyphosate as active ingredient (Roundup SC, similar to 50%; Roundup RtU, 2%), allowing indirect evaluation of the influence of inactive ingredients. Roundup SC enhanced exponential growth rate at 10-1000 mu g glyphosate ae l-1, and a positive monotonic association was noted between Roundup SC concentration and early (pre-exponential growth) but not maximum cell density. Glyphosate and both Roundup formulations enhanced growth rate at 100 mu g glyphosate l(-1), but only Roundup SC and glyphosate significantly stimulated early and maximum density. This observation suggests the higher concentration of inactive ingredients and other compounds in Roundup RtU partially counteracts glyphosate-dependent growth stimulation. When phosphate concentration was varied while maintaining other conditions constant, addition of Roundup SC and glyphosate at 100 mu g l(-1) influenced growth more strongly than equivalent changes in phosphate-associated phosphorus. It appears, therefore, that low doses of glyphosate stimulate growth by mechanisms unrelated to the associated small increases in total phosphorus. In conclusion, glyphosate and GBH stimulate P. parvum growth at low, environmentally relevant concentrations. This finding raises concerns about the potential contribution to P. parvum blooms by glyphosate-contaminated runoff or by direct application of GBH to aquatic environments. C1 [Dabney, Brittanie L.] Texas Tech Univ, Dept Environm Toxicol, Lubbock, TX 79409 USA. [Dabney, Brittanie L.] Texas Tech Univ, Texas Cooperat Fish & Wildlife Res Unit, Lubbock, TX 79409 USA. [Patino, Reynaldo] US Geol Survey, Texas Cooperat Fish & Wildlife Res Unit, Lubbock, TX 79409 USA. [Patino, Reynaldo] Texas Tech Univ, Dept Nat Resources Management, Lubbock, TX 79409 USA. [Patino, Reynaldo] Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA. C3 Texas Tech University System; Texas Tech University; Texas Tech University System; Texas Tech University; United States Department of the Interior; United States Geological Survey; Texas Tech University System; Texas Tech University; Texas Tech University System; Texas Tech University RP Patino, R (corresponding author), US Geol Survey, Texas Cooperat Fish & Wildlife Res Unit, Lubbock, TX 79409 USA.; Patino, R (corresponding author), Texas Tech Univ, Dept Nat Resources Management, Lubbock, TX 79409 USA.; Patino, R (corresponding author), Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA. EM Reynaldo.patino@ttu.edu RI Dabney, Brittanie/ABC-7423-2020 FU U.S. Geological Survey, Texas Tech University; Texas Parks and Wildlife Department; Wildlife Management Institute; U.S. Fish and Wildlife Service; Texas Tech University FX Dr. Rick Relyea provided a detailed critique of an early draft of this manuscript. The Texas Cooperative Fish and Wildlife Research Unit is jointly supported by U.S. Geological Survey, Texas Tech University, Texas Parks and Wildlife Department, The Wildlife Management Institute, and U.S. Fish and Wildlife Service. This study was supported by Texas Tech University intramural funds. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. [SS] CR Anderson C. R., 2015, COASTAL MARINE HAZAR, P495, DOI [10.1016/b978-0-12-396483-0.00017-0, DOI 10.1016/B978-0-12-396483-0.00017-0] Anderson DM, 2002, ESTUARIES, V25, P704, DOI 10.1007/BF02804901 Battaglin WA, 2014, J AM WATER RESOUR AS, V50, P275, DOI 10.1111/jawr.12159 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Benbrook CM, 2016, ENVIRON SCI EUR, V28, DOI 10.1186/s12302-016-0070-0 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Brooks BW, 2010, J AM WATER RESOUR AS, V46, P45, DOI 10.1111/j.1752-1688.2009.00390.x Burkholder JM, 2008, HARMFUL ALGAE, V8, P77, DOI 10.1016/j.hal.2008.08.010 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Daouk S, 2013, ENVIRON TOXICOL CHEM, V32, P2035, DOI 10.1002/etc.2276 Dolger J, 2017, SCI REP-UK, V7, DOI 10.1038/srep39892 Drzyzga D, 2018, J APPL PHYCOL, V30, P299, DOI 10.1007/s10811-017-1231-2 Duke SO, 2018, PEST MANAG SCI, V74, P1027, DOI 10.1002/ps.4652 Fistarol GO, 2003, MAR ECOL PROG SER, V255, P115, DOI 10.3354/meps255115 Forlani G, 2008, PLANT CELL PHYSIOL, V49, P443, DOI 10.1093/pcp/pcn021 Gattas F, 2016, ENVIRON SCI POLLUT R, V23, P18869, DOI 10.1007/s11356-016-7005-6 Giesy JP, 2000, REV ENVIRON CONTAM T, V167, P35 Graneli E, 2003, HARMFUL ALGAE, V2, P135, DOI 10.1016/S1568-9883(03)00006-4 Graneli E, 2003, MAR ECOL PROG SER, V254, P49, DOI 10.3354/meps254049 Grube A, 2011, PESTICIDES IND SALES Guillard R. R. L., 1973, HDB PHYCOLOGICAL MET, P290 Guillard RR., 1975, CULTURE MARINE INVER, P29, DOI DOI 10.1007/978-1-4615-8714-9_3 Guyton KZ, 2015, LANCET ONCOL, V16, P490, DOI 10.1016/S1470-2045(15)70134-8 Hanke I, 2010, CHEMOSPHERE, V81, P422, DOI 10.1016/j.chemosphere.2010.06.067 Ho JC, 2017, J GREAT LAKES RES, V43, P221, DOI 10.1016/j.jglr.2017.04.001 Israel NMD, 2014, HARMFUL ALGAE, V39, P81, DOI 10.1016/j.hal.2014.06.012 Lipok J, 2007, ENZYME MICROB TECH, V41, P286, DOI 10.1016/j.enzmictec.2007.02.004 Lipok J, 2010, ECOTOX ENVIRON SAFE, V73, P1681, DOI 10.1016/j.ecoenv.2010.08.017 Lutz-Carrillo DJ, 2010, J AM WATER RESOUR AS, V46, P24, DOI 10.1111/j.1752-1688.2009.00388.x Mahler BJ, 2017, SCI TOTAL ENVIRON, V579, P149, DOI 10.1016/j.scitotenv.2016.10.236 Michaloudi E, 2009, J PLANKTON RES, V31, P301, DOI 10.1093/plankt/fbn114 Myers JP, 2016, ENVIRON HEALTH-GLOB, V15, DOI 10.1186/s12940-016-0117-0 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 O'Neil JM, 2012, HARMFUL ALGAE, V14, P313, DOI 10.1016/j.hal.2011.10.027 Perez GL, 2007, ECOL APPL, V17, P2310, DOI 10.1890/07-0499.1 Peruzzo PJ, 2008, ENVIRON POLLUT, V156, P61, DOI 10.1016/j.envpol.2008.01.015 Pizarro H, 2016, ENVIRON SCI POLLUT R, V23, P5143, DOI 10.1007/s11356-015-5748-0 Pollegioni L, 2011, FEBS J, V278, P2753, DOI 10.1111/j.1742-4658.2011.08214.x Qiu HM, 2013, J HAZARD MATER, V248, P172, DOI 10.1016/j.jhazmat.2012.12.033 Rashel RH, 2017, HARMFUL ALGAE, V66, P97, DOI 10.1016/j.hal.2017.05.010 Relyea RA, 2005, ECOL APPL, V15, P618, DOI 10.1890/03-5342 Roelke DL, 2016, HYDROBIOLOGIA, V764, P29, DOI DOI 10.1007/s10750-015-2273-6 Saxton MA, 2011, J GREAT LAKES RES, V37, P683, DOI 10.1016/j.jglr.2011.07.004 Schindler DW, 2006, LIMNOL OCEANOGR, V51, P356, DOI 10.4319/lo.2006.51.1_part_2.0356 SCHINDLER DW, 1987, CAN J FISH AQUAT SCI, V44, P6 Vera MS, 2012, ECOTOXICOLOGY, V21, P1805, DOI 10.1007/s10646-012-0915-2 Solomon KR, 2003, J TOXICOL ENV HEAL B, V6, P289, DOI 10.1080/10937400306468 Southard GM, 2010, J AM WATER RESOUR AS, V46, P14, DOI 10.1111/j.1752-1688.2009.00387.x Svendsen MBS, 2018, FISHES-BASEL, V3, DOI 10.3390/fishes3010011 Thompson DG, 2006, ECOL APPL, V16, P2022, DOI 10.1890/1051-0761(2006)016[2022:TIOIAH]2.0.CO;2 Tsui MTK, 2003, CHEMOSPHERE, V52, P1189, DOI 10.1016/S0045-6535(03)00306-0 Uronen P, 2005, MAR ECOL PROG SER, V299, P137, DOI 10.3354/meps299137 Van Bruggen AHC, 2018, SCI TOTAL ENVIRON, V616, P255, DOI 10.1016/j.scitotenv.2017.10.309 VanLandeghem MM, 2015, J AM WATER RESOUR AS, V51, P487, DOI 10.1111/jawr.12261 Vera MS, 2010, ECOTOXICOLOGY, V19, P710, DOI 10.1007/s10646-009-0446-7 Wang C., 2016, PLOS ONE, V11 Wehtje G, 2009, WEED TECHNOL, V23, P544, DOI 10.1614/WT-08-044.1 Wong PK, 2000, CHEMOSPHERE, V41, P177, DOI 10.1016/S0045-6535(99)00408-7 Wood A.M., 2005, ALGAL CULTURING TECH, P269, DOI DOI 10.1016/B978-012088426-1/50019-6 Yates BS, 2011, ECOTOXICOLOGY, V20, P2003, DOI 10.1007/s10646-011-0742-x NR 63 TC 18 Z9 22 U1 9 U2 89 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1568-9883 EI 1878-1470 J9 HARMFUL ALGAE JI Harmful Algae PD DEC PY 2018 VL 80 BP 130 EP 139 DI 10.1016/j.hal.2018.11.004 PG 10 WC Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Marine & Freshwater Biology GA HE7ME UT WOS:000453621000013 PM 30502805 DA 2023-03-13 ER PT J AU Duarte-Sierra, A Nadeau, F Angers, P Michaud, D Arul, J AF Duarte-Sierra, Arturo Nadeau, Francoise Angers, Paul Michaud, Dominique Arul, Joseph TI UV-C hormesis in broccoli florets: Preservation, phyto-compounds and gene expression SO POSTHARVEST BIOLOGY AND TECHNOLOGY LA English DT Article DE UV-C radiation; Broccoli; Preservation; Amino acids; Glucosinolates; Phenolic compounds; Phytochemicals ID ASCORBIC-ACID CONTENT; BRASSICA-OLERACEA; BOTRYTIS-CINEREA; PHYSIOLOGICAL-BASIS; INDUCED RESISTANCE; TOMATO FRUIT; ULTRAVIOLET-LIGHT; POSTHARVEST QUALITY; OXIDATIVE STRESS; VAR. ITALICA AB The effect of pre-storage exposure to ultra-violet radiation (UV-C) on preservation of broccoli (Brassica oleraceae var. Italica) florets and glucosinolates, phenolic acids and their precursor amino acids as well the expression of genes related to the biosynthetic pathways of glucosinolates and phenolic compounds in broccoli stored at 4 degrees C and 90-95% HR was investigated. The UV-C dose of 1.2 kJ m(-2) was found to be hormetic in delaying the yellowing and in lowering the weight loss of broccoli florets during storage. The time-averages over the storage period of both ascorbic acid titer and ORAC (oxygen radical absorbance capacity) value of the tissue exposed to hormetic dose of 1.2 kJ Im(-2) or a high dose of 3.0 kJ m(-2) were lower. The overexpression of genes (phenylalanine N-hydroxylase, tryptophan N-hydroxylase, dihomo-methionine N-hydroxylase and flavonoid monooxygenase) in UV-C exposed broccoli, hours after exposure (0 d), and that of chalcone synthase and coumarate ligase was observed on day 0, 2 and 4. The titers of glucosinolate-precursor amino acids, methionine, tryptophan and phenylalanine in tissue were dose-dependent, where the doses of 1.2 and 3.0 kJ m(-2) UV-C caused a decrease in their concentrations compared to the control. Hormetic dose of UV-C significantly increased the concentration of total glucobrassicins and 4-hydroxyglucobrassicin. In addition, UV-C treated florets with the dose of 1.2 or 3.0 kJ m(-2) contained a higher level of hydroxycinnamic acids in broccoli compared to the control during the storage. The results suggest that the application of hormetic dose of UV-C can be beneficial in maintaining not only the quality of broccoli florets, but also in enhancing the phyto-compounds during the low-temperature storage. C1 [Duarte-Sierra, Arturo; Nadeau, Francoise; Angers, Paul; Michaud, Dominique; Arul, Joseph] Laval Univ, Dept Food Sci & Hort Res Ctr, Quebec City, PQ G1V 0A6, Canada. [Duarte-Sierra, Arturo] Inst Tecnol Sonora, Dept Biotechnol & Food Sci, Obregon 85130, Sonora, Mexico. C3 Laval University RP Arul, J (corresponding author), Laval Univ, Dept Food Sci & Hort Res Ctr, Quebec City, PQ G1V 0A6, Canada. EM joseph.arul@fsaa.ulaval.ca OI Duarte-Sierra, Arturo/0000-0002-8215-9597 FU Natural Science and Engineering Research Council (NSERC); Quebec Ministry of Agriculture, Fisheries and Food (MAPAQ); National Council of Science and Technology of Mexico (CONACyT) FX This study was supported by the Natural Science and Engineering Research Council (NSERC) and the Quebec Ministry of Agriculture, Fisheries and Food (MAPAQ). Arturo Duarte-Sierra acknowledges the award of scholarship from the National Council of Science and Technology of Mexico (CONACyT). CR Abdel-Farid IB, 2010, BIOCHEM SYST ECOL, V38, P612, DOI 10.1016/j.bse.2010.07.008 Acosta-Estrada BA, 2014, FOOD CHEM, V152, P46, DOI 10.1016/j.foodchem.2013.11.093 Agati G, 2012, PLANT SCI, V196, P67, DOI 10.1016/j.plantsci.2012.07.014 Agrawal GK, 2003, BIOCHEM BIOPH RES CO, V310, P1073, DOI 10.1016/j.bbrc.2003.09.123 Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Arul J, 2001, PHYSICAL CONTROL METHODS IN PLANT PROTECTION, P146 Baka M, 1997, PHOTOCHEMICAL THERAP Barka EA, 2000, AUST J PLANT PHYSIOL, V27, P147 Barka EA, 2000, J AGR FOOD CHEM, V48, P667, DOI 10.1021/jf9906174 Martinez-Hernandez GB, 2011, POSTHARVEST BIOL TEC, V62, P327, DOI 10.1016/j.postharvbio.2011.06.015 BENYEHOSHUA S, 1992, J AGR FOOD CHEM, V40, P1217, DOI 10.1021/jf00019a029 Bintsis T, 2000, J SCI FOOD AGR, V80, P637, DOI 10.1002/(SICI)1097-0010(20000501)80:6<637::AID-JSFA603>3.0.CO;2-1 Boscaiu M, 2013, J PLANT ECOL, V6, P177, DOI 10.1093/jpe/rts017 Burg MB, 2008, J BIOL CHEM, V283, P7309, DOI 10.1074/jbc.R700042200 Cabello-Hurtado F, 2012, FOOD CHEM, V132, P1003, DOI 10.1016/j.foodchem.2011.11.086 Cartea ME, 2011, MOLECULES, V16, P251, DOI 10.3390/molecules16010251 Charles M. T., 2007, Stewart Postharvest Review, V3, P6, DOI 10.2212/spr.2007.3.6 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P10, DOI 10.1016/j.postharvbio.2007.05.013 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P21, DOI 10.1016/j.postharvbio.2007.05.014 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019 Charles MT, 2009, POSTHARVEST BIOL TEC, V51, P414, DOI 10.1016/j.postharvbio.2008.08.016 Crupi P, 2013, FOOD CHEM, V141, P802, DOI 10.1016/j.foodchem.2013.03.055 Diaz C, 2005, PLANT PHYSIOL, V138, P898, DOI 10.1104/pp.105.060764 Duarte-Sierra A, 2017, POSTHARVEST BIOL TEC, V128, P44, DOI 10.1016/j.postharvbio.2017.01.017 Fredericks IN, 2011, FOOD MICROBIOL, V28, P510, DOI 10.1016/j.fm.2010.10.018 Gergoff G, 2010, PLANT SCI, V178, P207, DOI 10.1016/j.plantsci.2009.12.003 GNANASEKHARAN V, 1992, J FOOD SCI, V57, P149, DOI 10.1111/j.1365-2621.1992.tb05444.x Gonda I, 2010, J EXP BOT, V61, P1111, DOI 10.1093/jxb/erp390 Gonzalez-Aguilar GA, 2007, POSTHARVEST BIOL TEC, V45, P108, DOI 10.1016/j.postharvbio.2007.01.012 Halkier BA, 2006, ANNU REV PLANT BIOL, V57, P303, DOI 10.1146/annurev.arplant.57.032905.105228 Joshi V, 2009, PLANT PHYSIOL, V151, P367, DOI 10.1104/pp.109.138651 Kaplan F, 2004, PLANT PHYSIOL, V136, P4159, DOI 10.1104/pp.104.052142 Katerova Z., 2013, GENET PLANT PHYSL, V2, P113 Klepacka J, 2011, PLANT FOOD HUM NUTR, V66, P64, DOI 10.1007/s11130-010-0205-1 Lee J, 2005, J AGR FOOD CHEM, V53, P9105, DOI 10.1021/jf051221x Lemoine ML, 2007, J SCI FOOD AGR, V87, P1132, DOI 10.1002/jsfa.2826 Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7 Maharaj R., 2010, Advances in Environmental Biology, V4, P308 Maharaj R, 2014, INNOV FOOD SCI EMERG, V21, P99, DOI 10.1016/j.ifset.2013.10.001 MAKHLOUF J, 1990, SCI HORTIC-AMSTERDAM, V42, P9, DOI 10.1016/0304-4238(90)90143-3 Mditshwa A, 2017, J FOOD SCI TECH MYS, V54, P3025, DOI 10.1007/s13197-017-2802-6 MERCIER J, 1993, J PHYTOPATHOL, V139, P17, DOI 10.1111/j.1439-0434.1993.tb01397.x MERCIER J, 1993, J PHYTOPATHOL, V137, P44, DOI 10.1111/j.1439-0434.1993.tb01324.x Mewis I, 2012, PLANT CELL PHYSIOL, V53, P1546, DOI 10.1093/pcp/pcs096 Nadeau F, 2012, ACTA HORTIC, V945, P145 Obata T, 2012, CELL MOL LIFE SCI, V69, P3225, DOI 10.1007/s00018-012-1091-5 Perkins-Veazie P, 2008, POSTHARVEST BIOL TEC, V47, P280, DOI 10.1016/j.postharvbio.2007.08.002 Pombo MA, 2011, POSTHARVEST BIOL TEC, V59, P94, DOI 10.1016/j.postharvbio.2010.08.003 Rangkadilok N, 2002, J AGR FOOD CHEM, V50, P7386, DOI 10.1021/jf0203592 REED DW, 1982, J AM SOC HORTIC SCI, V107, P417 Robbins RJ, 2005, J MED FOOD, V8, P204, DOI 10.1089/jmf.2005.8.204 Rybarczyk-Plonska A, 2016, POSTHARVEST BIOL TEC, V116, P16, DOI 10.1016/j.postharvbio.2015.12.010 Selmar D, 2013, PLANT CELL PHYSIOL, V54, P817, DOI 10.1093/pcp/pct054 Severo J, 2015, POSTHARVEST BIOL TEC, V102, P9, DOI 10.1016/j.postharvbio.2015.02.001 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Shama G, 2007, POSTHARVEST BIOL TEC, V44, P1, DOI 10.1016/j.postharvbio.2006.11.004 Sheng KL, 2018, POSTHARVEST BIOL TEC, V138, P74, DOI 10.1016/j.postharvbio.2018.01.002 Sonderby IE, 2010, TRENDS PLANT SCI, V15, P283, DOI 10.1016/j.tplants.2010.02.005 STAPLETON AE, 1992, PLANT CELL, V4, P1353, DOI 10.1105/tpc.4.11.1353 Stevens C, 1998, CROP PROT, V17, P75, DOI 10.1016/S0261-2194(98)80015-X Stevens C, 1996, CROP PROT, V15, P129, DOI 10.1016/0261-2194(95)00082-8 Stewart R. F., 2008, ENCY ECOLOGY, P2682, DOI [10.1016/B978-008045405-4.00417-1, DOI 10.1016/B978-008045405-4.00417-1] Techavuthiporn C, 2008, POSTHARVEST BIOL TEC, V47, P373, DOI 10.1016/j.postharvbio.2007.07.007 Textor S, 2009, PHYTOCHEM REV, V8, P149, DOI 10.1007/s11101-008-9117-1 Tiecher A, 2013, POSTHARVEST BIOL TEC, V86, P230, DOI 10.1016/j.postharvbio.2013.07.016 Tiwari BS, 2002, PLANT PHYSIOL, V128, P1271, DOI 10.1104/pp.010999 Vallejo F, 2003, J AGR FOOD CHEM, V51, P3029, DOI 10.1021/jf021065j Wang YX, 2011, AGR ECOSYST ENVIRON, V141, P271, DOI 10.1016/j.agee.2011.03.017 Wu J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04778-3 Xu YQ, 2017, J AGR FOOD CHEM, V65, P9970, DOI 10.1021/acs.jafc.7b04252 Yoshida A, 2010, FOOD SCI TECHNOL RES, V16, P215, DOI 10.3136/fstr.16.215 YYSTA L, 2006, POSTHARVEST BIOL TEC, V39, P204, DOI DOI 10.1016/J.POSTHARVBIO.2005.10.012 ZHUANG H, 1995, J AGR FOOD CHEM, V43, P2585, DOI 10.1021/jf00058a006 NR 73 TC 23 Z9 25 U1 6 U2 49 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-5214 EI 1873-2356 J9 POSTHARVEST BIOL TEC JI Postharvest Biol. Technol. PD NOV PY 2019 VL 157 AR 110965 DI 10.1016/j.postharvbio.2019.110965 PG 10 WC Agronomy; Food Science & Technology; Horticulture WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Food Science & Technology GA IW1VM UT WOS:000484758500007 DA 2023-03-13 ER PT J AU McGinnis, M Sun, CL Dudley, S Gan, J AF McGinnis, Michelle Sun, Chengliang Dudley, Stacia Gan, Jay TI Effect of low-dose, repeated exposure of contaminants of emerging concern on plant development and hormone homeostasis SO ENVIRONMENTAL POLLUTION LA English DT Article DE Contaminants of emerging concern; Plant uptake; Recycled water; Phytohormones; Phytotoxicity ID PERSONAL CARE PRODUCTS; WATER TREATMENT PLANTS; DETOXIFICATION MECHANISMS; HUMAN PHARMACEUTICALS; BIOSOLIDS; GROWTH; PPCPS; OXYTETRACYCLINE; METABOLITES; TRICLOSAN AB Treated wastewater is increasingly used to meet agriculture's water needs; however, treated wastewater contains numerous contaminants of emerging concern (CECs). With exposure and uptake of CECs, phytotoxicity and health of crop plants is of concern, but is poorly understood. This study evaluated the effect of low-dose, chronic exposure to a mixture of 10 CECs, including 4 antibiotics, 3 anti-inflammatory drugs, 1 antiepileptic, 1 beta-blocker, and 1 antimicrobial, on lettuce (Lactuca sativa) and cucumber (Cucumis sativa L.) plants. The CEC mixture was added in nutrient media at 1 to 20X of their typical levels in treated wastewater effluents. Biological endpoints including germination, growth, phytohormone homeostasis, and CEC bioaccumulation were determined. Exposure to the CEC mixture did not affect the germination rate of lettuce seeds, but stimulated root elongation and increased the root-to-shoot biomass ratio during a 7 d cultivation. A dose-dependent decrease in biomass was observed in cucumber seedling after a 30 d exposure, with the highest rate CEC treatment resulting in decreases of 51.2 +/- 20.9, 26.3 +/- 34.1, and 33.2 +/- 41.7% in the below-ground, above-ground, and total biomass, respectively. Levels of abscisic acid were significantly elevated (p < 0.05) in the leaves, but decreased (p < 0.05) in the roots. The dose-response of auxin was characterized by a hormesis effect. A significant 6-fold increase in the stem auxin level was observed at the 1X CEC rate, followed by a decrease to 2-fold the control at the 20X rate. Leaf auxin concentrations also significantly increased at the 1X CEC rate to 16-fold, followed by a decrease at the highest CEC rate. The results of this study suggeste that chronic exposure to low levels of CEC mixtures may compromise the fitness of plants, and the impairments are underlined by alterations in hormone balances. (C) 2019 Elsevier Ltd. All rights reserved. C1 [McGinnis, Michelle; Sun, Chengliang; Dudley, Stacia; Gan, Jay] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. [Dudley, Stacia] Univ Calif Riverside, Grad Program Environm Toxicol, Riverside, CA 92521 USA. C3 University of California System; University of California Riverside; University of California System; University of California Riverside RP Gan, J (corresponding author), Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. EM jgan@ucr.edu FU U.S. Environmental Protection Agency [835829]; USDA-National Institute of Food and Agriculture [2018-67019-27800] FX This research was supported by the U.S. Environmental Protection Agency (Grant No. 835829) and USDA-National Institute of Food and Agriculture (Award No. 2018-67019-27800). CR Ahammed G J, 2016, PLANT HORMONES CHALL, P1 [Anonymous], 2006, FRONT BIOL CHINA, DOI DOI 10.1007/S11515-006-0039-2 Archer E, 2017, CHEMOSPHERE, V174, P437, DOI 10.1016/j.chemosphere.2017.01.101 BATCHELDER AR, 1982, J ENVIRON QUAL, V11, P675, DOI 10.2134/jeq1982.00472425001100040023x Boyd GR, 2003, SCI TOTAL ENVIRON, V311, P135, DOI 10.1016/S0048-9697(03)00138-4 Burns EE, 2017, ENVIRON TOXICOL CHEM, V36, P2823, DOI 10.1002/etc.3842 Carter LJ, 2015, ENVIRON SCI TECHNOL, V49, P12509, DOI 10.1021/acs.est.5b03468 Christou A, 2018, ENVIRON INT, V114, P360, DOI 10.1016/j.envint.2018.03.003 Christou A, 2016, SCI TOTAL ENVIRON, V557, P652, DOI 10.1016/j.scitotenv.2016.03.054 Du LF, 2012, AGRON SUSTAIN DEV, V32, P309, DOI 10.1007/s13593-011-0062-9 Herklotz PA, 2010, CHEMOSPHERE, V78, P1416, DOI 10.1016/j.chemosphere.2009.12.048 Holling CS, 2012, J ENVIRON MONITOR, V14, P3029, DOI 10.1039/c2em30456b Jones-Lepp TL, 2007, ANAL BIOANAL CHEM, V387, P1173, DOI 10.1007/s00216-006-0942-z Kinney CA, 2006, ENVIRON TOXICOL CHEM, V25, P317, DOI 10.1897/05-187R.1 Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j Kostich MS, 2014, ENVIRON POLLUT, V184, P354, DOI 10.1016/j.envpol.2013.09.013 Li ZJ, 2011, AGR SCI CHINA, V10, P1545, DOI 10.1016/S1671-2927(11)60150-8 Lishman L, 2006, SCI TOTAL ENVIRON, V367, P544, DOI 10.1016/j.scitotenv.2006.03.021 Liu F, 2009, ENVIRON POLLUT, V157, P1636, DOI 10.1016/j.envpol.2008.12.021 Macherius A, 2014, J AGR FOOD CHEM, V62, P1001, DOI 10.1021/jf404784q Macherius A, 2012, ENVIRON SCI TECHNOL, V46, P10797, DOI 10.1021/es3028378 Miege C, 2009, ENVIRON POLLUT, V157, P1721, DOI 10.1016/j.envpol.2008.11.045 Munemasa S, 2015, CURR OPIN PLANT BIOL, V28, P154, DOI 10.1016/j.pbi.2015.10.010 Novak P. J., 2011, NEED NATL US RES PRO Ostonen I, 2007, PLANT BIOSYST, V141, P426, DOI 10.1080/11263500701626069 Prosser RS, 2015, ENVIRON INT, V75, P223, DOI 10.1016/j.envint.2014.11.020 Rogers HH, 1996, PLANT SOIL, V187, P229, DOI 10.1007/BF00017090 Schmidt W, 2015, ECOTOX ENVIRON SAFE, V112, P212, DOI 10.1016/j.ecoenv.2014.11.008 Sun CL, 2018, ENVIRON POLLUT, V234, P39, DOI 10.1016/j.envpol.2017.11.041 Tanoue R, 2012, J AGR FOOD CHEM, V60, P10203, DOI 10.1021/jf303142t Trapp S., 2009, ECOTOXICOLOGY MODELI, V2, P299, DOI [DOI 10.1007/978-1-4419-0197-2_, 10.1007/978-1-4419-0197-2_11, DOI 10.1007/978-1-4419-0197-2_11] UNESCO, 2012, MAN WAT UNC RISK MAN WAT UNC RISK Wani SH, 2016, CROP J, V4, P162, DOI 10.1016/j.cj.2016.01.010 Wu XQ, 2015, SCI TOTAL ENVIRON, V536, P655, DOI 10.1016/j.scitotenv.2015.07.129 Wu XQ, 2014, ENVIRON SCI TECHNOL, V48, P11286, DOI 10.1021/es502868k Wu XQ, 2013, ENVIRON INT, V60, P15, DOI 10.1016/j.envint.2013.07.015 NR 36 TC 13 Z9 13 U1 4 U2 95 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD SEP PY 2019 VL 252 BP 706 EP 714 DI 10.1016/j.envpol.2019.05.159 PN A PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA IT6SQ UT WOS:000483005500075 PM 31185360 OA Bronze, Green Submitted DA 2023-03-13 ER PT J AU Mels, CMC Schutte, AE Schutte, R Pretorius, PJ Smith, W Huisman, HW van der Westhuizen, FH Fourie, CMT van Rooyen, JM Kruger, R Louw, R Malan, NT Malan, L AF Mels, C. M. C. Schutte, A. E. Schutte, R. Pretorius, P. J. Smith, W. Huisman, H. W. van der Westhuizen, F. H. Fourie, C. M. T. van Rooyen, J. M. Kruger, R. Louw, R. Malan, N. T. Malan, L. TI 8-Oxo-7,8-dihydro-2 '-deoxyguanosine, reactive oxygen species and ambulatory blood pressure in African and Caucasian men: The SABPA study SO FREE RADICAL RESEARCH LA English DT Article DE 8-oxo-7,8-dihydro-2 '-deoxyguanosine; ambulatory blood pressure; reactive oxygen species; hormesis; ethnicity ID OXIDATIVE DNA-DAMAGE; RISK-FACTORS; ENDOTHELIAL DYSFUNCTION; ESSENTIAL-HYPERTENSION; ANTIOXIDANT STATUS; URINARY 8-OHDG; BY-PRODUCTS; STRESS; ATHEROSCLEROSIS; POPULATION AB Various studies indicate a relationship between increased oxidative stress and hypertension, resulting in increased DNA damage and consequent excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). The aim of this study was to compare urinary 8-oxodG levels in African and Caucasian men and to investigate the association between ambulatory blood pressure (BP) and pulse pressure (PP) with 8-oxodG in these groups. We included 98 African and 92 Caucasian men in the study and determined their ambulatory BP and PP. Biochemical analyses included, urinary 8-oxodG, reactive oxygen species (ROS) (measured as serum peroxides), ferric reducing antioxidant power (FRAP), total glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) activity. The African men had significantly higher systolic (SBP) and diastolic blood pressure (DBP) (both p < 0.001). Assessment of the oxidative stress markers indicated significantly lower 8-oxodG levels (p < 0.001) in the African group. The African men also had significantly higher ROS (p = 0.002) with concomitant lower FRAP (p < 0.001), while their GSH levels (p = 0.013) and GR activity (p < 0.001) were significantly higher. Single and partial regression analyses indicated a negative association between urinary 8-oxodG levels with SBP, DBP and PP only in African men. These associations were confirmed in multiple regression analyses (SBP: R-2 = 0.41; beta = -0.25; p = 0.002, DBP: R-2 = 0.30; beta = -0.21; p = 0.022, PP: R-2 = 0.30; beta = -0.19; p = 0.03). Our results revealed significantly lower urinary 8-oxodG in African men, accompanied by a negative association with BP and PP. We propose that this may indicate a dose-response relationship in which increased oxidative stress may play a central role in the up-regulation of antioxidant defence and DNA repair mechanisms C1 [Mels, C. M. C.; Schutte, A. E.; Schutte, R.; Smith, W.; Huisman, H. W.; Fourie, C. M. T.; van Rooyen, J. M.; Kruger, R.; Malan, N. T.; Malan, L.] North West Univ, Hypertens Africa Res Team, ZA-2520 Potchefstroom, South Africa. [Pretorius, P. J.; van der Westhuizen, F. H.; Louw, R.] North West Univ, Ctr Human Metabon, ZA-2520 Potchefstroom, South Africa. C3 North West University - South Africa; North West University - South Africa RP Mels, CMC (corresponding author), North West Univ, Hypertens Africa Res Team, Private Bag X6001, ZA-2520 Potchefstroom, South Africa. EM Carina.Mels@nwu.ac.za RI Smith, Wayne/HKE-7358-2023; Malan, Leone/Q-8187-2019; Schutte, Aletta E/E-5126-2018; van der Westhuizen, Francois H/E-6959-2011; Mels, Carina/K-3172-2013; Fourie, Carla/AAJ-6506-2020; Malan, Leoné/D-7203-2014; Kruger, Ruan/N-7618-2015; Malan, Leone/AFQ-8773-2022 OI Smith, Wayne/0000-0002-7101-7331; Malan, Leone/0000-0003-3187-2410; Schutte, Aletta E/0000-0001-9217-4937; van der Westhuizen, Francois H/0000-0002-7879-1776; Mels, Carina/0000-0003-0138-3341; Malan, Leoné/0000-0003-3187-2410; Kruger, Ruan/0000-0001-7680-2032; Huisman, Hugo/0000-0002-2114-4789; Louw, Roan/0000-0002-6542-8644 FU National Research Foundation; National Research Foundation Thuthuka [80643]; North-West University, Potchefstroom; Roche Products (Pty) Ltd, South Africa; Metabolic Syndrome Institute, France FX The Sympathetic Activity and Ambulatory Blood Pressure in Africans (SABPA) Study would not have been possible without the voluntary collaboration of the participants and the Department of Education, North-West Province, South Africa. We gratefully acknowledge the technical assistance of Mrs Tina Scholtz, Dr Szabolcs Peter and Sr Chrissie Lessing. This study was supported by the National Research Foundation; the National Research Foundation Thuthuka (80643); the North-West University, Potchefstroom; Roche Products (Pty) Ltd, South Africa and the Metabolic Syndrome Institute, France. CR Ahmad A, 2013, J CLIN DIAGN RES, V7, P987, DOI 10.7860/JCDR/2013/5829.3091 Benzie IFF, 1996, ANAL BIOCHEM, V239, P70, DOI 10.1006/abio.1996.0292 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 COCKCROFT DW, 1976, NEPHRON, V16, P31, DOI 10.1159/000180580 Elahi MM, 2009, OXID MED CELL LONGEV, V2, P259, DOI 10.4161/oxim.2.5.9441 Franco MCP, 2007, PEDIATR RES, V62, P204, DOI 10.1203/PDR.0b013e3180986d04 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Gao R, 2008, MOL CANCER THER, V7, P1246, DOI 10.1158/1535-7163.MCT-07-2206 Gray K, 2011, BIOCHEM PHARMACOL, V82, P693, DOI 10.1016/j.bcp.2011.06.025 Hayashi I, 2007, MUTAT RES-GEN TOX EN, V631, P55, DOI 10.1016/j.mrgentox.2007.04.006 Hinokio Y, 2002, DIABETOLOGIA, V45, P877, DOI 10.1007/s00125-002-0831-8 Hojo Y, 1997, J HUM HYPERTENS, V11, P665, DOI 10.1038/sj.jhh.1000515 Hu CW, 2004, RAPID COMMUN MASS SP, V18, P505, DOI 10.1002/rcm.1367 Huang HE, 2000, CANCER EPIDEM BIOMAR, V9, P647 (ISAK) ISftAoK, 2001, INT STANDARDS ANTHRO Jung O, 2004, CIRCULATION, V109, P1795, DOI 10.1161/01.CIR.0000124223.00113.A4 Kagota S, 2007, J CARDIOVASC PHARM, V50, P677, DOI 10.1097/FJC.0b013e3181583d80 KOHARA K, 1995, HYPERTENSION, V26, P808, DOI 10.1161/01.HYP.26.5.808 Kruger R, 2012, J HUM HYPERTENS, V26, P91, DOI 10.1038/jhh.2010.134 Lavi S, 2008, HYPERTENSION, V51, P127, DOI 10.1161/HYPERTENSIONAHA.107.099986 Mancia G, 2013, J HYPERTENS, V31, P1281, DOI 10.1097/01.hjh.0000431740.32696.cc Martinet W, 2002, CIRCULATION, V106, P927, DOI 10.1161/01.CIR.0000026393.47805.21 Morris AA, 2012, METAB SYNDR RELAT D, V10, P252, DOI 10.1089/met.2011.0117 Negishi H, 2001, J HYPERTENS, V19, P529, DOI 10.1097/00004872-200103001-00002 Negishi H, 2000, HYPERTENS RES, V23, P285, DOI 10.1291/hypres.23.285 Redon J, 2003, HYPERTENSION, V41, P1096, DOI 10.1161/01.HYP.0000068370.21009.38 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Rodrigo R, 2007, HYPERTENS RES, V30, P1159, DOI 10.1291/hypres.30.1159 Rybka J, 2011, CARDIOVASC TOXICOL, V11, P1, DOI 10.1007/s12012-010-9096-5 Saude EJ, 2007, METABOLOMICS, V3, P439, DOI 10.1007/s11306-007-0091-1 Schutte AE, 2012, INT J EPIDEMIOL, V41, P1114, DOI 10.1093/ije/dys106 Schutte R, 2009, AM J HYPERTENS, V22, P1154, DOI 10.1038/ajh.2009.158 Simic DV, 2006, J HUM HYPERTENS, V20, P149, DOI 10.1038/sj.jhh.1001945 Sliwa K, 2008, LANCET, V371, P915, DOI 10.1016/S0140-6736(08)60417-1 Subash P, 2010, INDIAN J CLIN BIOCHE, V25, P127, DOI 10.1007/s12291-010-0024-z Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001 van Rooyen JM, 2000, J HUM HYPERTENS, V14, P779, DOI 10.1038/sj.jhh.1001098 Wood RD, 2005, MUTAT RES-FUND MOL M, V577, P275, DOI 10.1016/j.mrfmmm.2005.03.007 Wu LL, 2004, CLIN CHIM ACTA, V339, P1, DOI 10.1016/j.cccn.2003.09.010 Zalba G, 2000, HYPERTENSION, V35, P1055, DOI 10.1161/01.HYP.35.5.1055 NR 40 TC 12 Z9 12 U1 0 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1071-5762 EI 1029-2470 J9 FREE RADICAL RES JI Free Radic. Res. PD NOV PY 2014 VL 48 IS 11 BP 1291 EP 1299 DI 10.3109/10715762.2014.951840 PG 9 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA AQ4LC UT WOS:000342767500003 PM 25096646 DA 2023-03-13 ER PT J AU Dickerson, AS Ransome, Y Karlsson, O AF Dickerson, Aisha S. Ransome, Yusuf Karlsson, Oskar TI Human prenatal exposure to polychlorinated biphenyls (PCBs) and risk behaviors in adolescence SO ENVIRONMENT INTERNATIONAL LA English DT Article DE Endocrine disrupting chemicals; Alcohol; Smoking; In utero; Polychlorinated biphenyls; Hormesis; Environmental contaminants ID PERSISTENT ORGANIC POLLUTANTS; LIPID-METABOLISM; BREAST-CANCER; CONGENERS; PREGNANCY; DOPAMINE; FETAL; BIRTH; ALCOHOL; SERUM AB Polychlorinated biphenyls (PCBs) are chemicals used in a variety of products before they were widely banned due to toxic effects in humans and wildlife. Because of continued persistence and ubiquity of these contaminants, risk of exposure to people living in industrialized countries is still high. Experimental research show that developmental exposure to PCB may alter function of brain pleasure centers and potentially influence disinhibitory behaviors, including tobacco and alcohol use. Yet, the potential effects of developmental PCB exposure on adolescent substance use have not been studied in humans. We used the Child Health and Development Studies (CHDS), a prospective birth cohort study in the Oakland and East Bay areas of California, to investigate associations between prenatal exposure to PCB congeners (66, 74, 99, 118, 138, 153, 170, 180, 187, and 203) and later disinhibitory behaviors in adolescents, specifically alcohol consumption and smoking, in a randomly selected sample (n = 554). Total prenatal PCB exposure was not associated with disinhibitory behaviors, among adolescents. However, the adjusted odds ratio (aOR) for being a current smoker, was higher in subjects within the third quartile of maternal PCB 66 exposure compared to those below the median (aOR = 1.93; 95% CI 1.05, 3.55). The aOR for drinking > 2 alcoholic beverages per week, were also higher for adolescents within the third (aOR = 1.46; 95% CI 0.86, 2.47) and fourth quartile of PCB 66 exposure (aOR = 1.39; 95% CI 0.83, 2.35), but the differences did not reach statistical significance. These results suggest that this specific PCB congener may play a role inducing neurodevelopmental alterations that could potentially increase the risk of becoming a long-term user of tobacco and possibly alcohol. There were no notable differences between magnitude or direction of effect between boys and girls. Future replicate analyses with larger longitudinal samples and animal experimental studies of potential underlying mechanisms are warranted. C1 [Dickerson, Aisha S.] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 665 Huntington Ave, Boston, MA 02215 USA. [Ransome, Yusuf] Yale Sch Publ Hlth, Dept Social & Behav Sci, 60 Coll St,LEPH 4th Floor, New Haven, CT 06510 USA. [Karlsson, Oskar] Stockholm Univ, Dept Environm Sci & Analyt Chem, Sci Life Lab, S-11418 Stockholm, Sweden. C3 Harvard University; Harvard T.H. Chan School of Public Health; Yale University; Stockholm University RP Karlsson, O (corresponding author), Stockholm Univ, Dept Environm Sci & Analyt Chem, Sci Life Lab, S-11418 Stockholm, Sweden. EM Oskar.Karlsson@aces.su.se RI Dickerson, Aisha S./AAF-5762-2020; Dickerson, Aisha/AAG-5444-2021 OI Dickerson, Aisha/0000-0003-3929-9540; Ransome, Yusuf/0000-0003-4170-2001 FU National Institute of Mental Health Sciences [K01-MH111374]; Swedish Research Council Vetenskapsradet; Swedish Research Council Formas; National Institutes of Health [T32 ES007069] FX We thank the CHDS families for their participation in this study. We acknowledge the late Jacob Yerushalmy who had the foresight to design and implement the CHDS; the late Barbara van den Berg, the second Director of the CHDS, whose steadfast allegiance and tireless efforts were responsible for granting the CHDS longevity; Barbara A. Cohn and Lauren Zimmermann for access to the CHDS data and assistance with file preparation. The National Institute of Mental Health Sciences (K01-MH111374, YR), the Swedish Research Council Vetenskapsradet (OK) and Swedish Research Council Formas (OK) are acknowledged for financial support. Dr. Aisha S. Dickerson was supported in part by a National Institutes of Health training grant T32 ES007069. The authors declare no conflict of interest. CR ALLEN JR, 1980, J TOXICOL ENV HEALTH, V6, P55, DOI 10.1080/15287398009529830 Altmann L, 2001, TOXICOL SCI, V61, P321, DOI 10.1093/toxsci/61.2.321 Aschengrau A, 2011, ENVIRON HEALTH-GLOB, V10, DOI 10.1186/1476-069X-10-102 Axelrad DA, 2009, ENVIRON RES, V109, P368, DOI 10.1016/j.envres.2009.01.003 Behforooz B, 2017, NEUROTOXICOL TERATOL, V64, P29, DOI 10.1016/j.ntt.2017.08.004 Bell MR, 2014, CURR OPIN PHARMACOL, V19, P134, DOI 10.1016/j.coph.2014.09.020 Berghuis SA, 2018, ENVIRON INT, V121, P13, DOI 10.1016/j.envint.2018.08.030 Bernard A, 2002, INT J TOXICOL, V21, P333, DOI 10.1080/10915810290096540 Bressan RA, 2005, ACTA PSYCHIAT SCAND, V111, P14, DOI 10.1111/j.1600-0447.2005.00540.x Brock JW, 1996, J ANAL TOXICOL, V20, P528, DOI 10.1093/jat/20.7.528 Carrico C, 2015, J AGR BIOL ENVIR ST, V20, P100, DOI 10.1007/s13253-014-0180-3 Centers for Disease Control and Prevention, 2002, MMWR-MORBID MORTAL W, V51, P1 Cohn BA, 2012, BREAST CANCER RES TR, V136, P267, DOI 10.1007/s10549-012-2257-4 Cohn BA, 2011, REPROD TOXICOL, V31, P290, DOI 10.1016/j.reprotox.2011.01.004 Davison A. N., 1968, APPLIED NEUROCHEMIST, P253 Dekoning EP, 2000, J EXPO ANAL ENV EPID, V10, P285, DOI 10.1038/sj.jea.7500090 Dunaway KW, 2016, CELL REP, V17, P3035, DOI 10.1016/j.celrep.2016.11.058 DuRant RH, 1999, ARCH PEDIAT ADOL MED, V153, P286 Fukata H, 2005, ENVIRON HEALTH PERSP, V113, P297, DOI 10.1289/ehp.7330 Gammon MD, 2002, CANCER EPIDEM BIOMAR, V11, P686 Gaum PM, 2017, ENVIRON HEALTH-GLOB, V16, DOI 10.1186/s12940-017-0316-3 Gennings C, 2013, ENVIRON HEALTH-GLOB, V12, DOI 10.1186/1476-069X-12-66 Glynn AW, 2000, SCI TOTAL ENVIRON, V263, P197, DOI 10.1016/S0048-9697(00)00703-8 Govarts E, 2012, ENVIRON HEALTH PERSP, V120, P162, DOI 10.1289/ehp.1103767 Gupta KK, 2016, ALCOHOL CLIN EXP RES, V40, P1594, DOI 10.1111/acer.13135 Harrad S, 2003, J ENVIRON MONITOR, V5, P224, DOI 10.1039/b211406b Herrera E, 2002, ENDOCRINE, V19, P43, DOI 10.1385/ENDO:19:1:43 Herrera E, 2014, CURR PHARM BIOTECHNO, V15, P24, DOI 10.2174/1389201015666140330192345 Hopf NB, 2009, SCI TOTAL ENVIRON, V407, P6109, DOI 10.1016/j.scitotenv.2009.08.035 Iacono WG, 2008, ANNU REV CLIN PSYCHO, V4, P325, DOI 10.1146/annurev.clinpsy.4.022007.141157 Johnson RA, 1998, AM J PUBLIC HEALTH, V88, P27, DOI 10.2105/AJPH.88.1.27 Keyes Katherine M, 2011, Ment Health Subst Use, V4, P22 Kezios K, 2017, REPROD TOXICOL, V71, P166, DOI 10.1016/j.reprotox.2017.02.015 Kezios KL, 2012, ENVIRON HEALTH-GLOB, V11, DOI 10.1186/1476-069X-11-49 King SM, 2009, ADDICTION, V104, P578, DOI 10.1111/j.1360-0443.2008.02469.x Kipping RR, 2012, J PUBLIC HEALTH-UK, V34, pI1, DOI 10.1093/pubmed/fdr122 Koob GF, 2009, PHARMACOPSYCHIATRY, V42, pS32, DOI 10.1055/s-0029-1216356 Lactation IoMUCiNSDPa, 1991, WHO BREASTF US NUTR Lagarde F, 2015, ENVIRON HEALTH-GLOB, V14, DOI 10.1186/1476-069X-14-13 Lombardo JP, 2018, ENVIRON POLLUT, V236, P334, DOI 10.1016/j.envpol.2018.01.072 Longnecker MP, 1999, ARCH ENVIRON HEALTH, V54, P110, DOI 10.1080/00039899909602244 Lovallo WR, 2006, INT J PSYCHOPHYSIOL, V59, P193, DOI 10.1016/j.ijpsycho.2005.10.006 Mariussen E, 2001, TOXICOLOGY, V159, P11, DOI 10.1016/S0300-483X(00)00374-7 Mccarthy MM, 2008, PHYSIOL REV, V88, P91, DOI 10.1152/physrev.00010.2007 Mitchell MM, 2012, ENVIRON MOL MUTAGEN, V53, P589, DOI 10.1002/em.21722 Moghaddam B, 2002, BIOL PSYCHIAT, V51, P775, DOI 10.1016/S0006-3223(01)01362-2 Nieuwenhuijsen MJ, 2013, ENVIRON HEALTH-GLOB, V12, DOI 10.1186/1476-069X-12-6 Olsson CA, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-010455 Park JS, 2008, CHEMOSPHERE, V70, P1676, DOI 10.1016/j.chemosphere.2007.07.049 Piazza PV, 1996, P NATL ACAD SCI USA, V93, P8716, DOI 10.1073/pnas.93.16.8716 Ribas-Fito N, 2001, J EPIDEMIOL COMMUN H, V55, P537, DOI 10.1136/jech.55.8.537 Rice D, 2000, ENVIRON HEALTH PERSP, V108, P511, DOI 10.2307/3454543 Roelens SA, 2005, ANN NY ACAD SCI, V1040, P454, DOI 10.1196/annals.1327.088 Rogers E, 2004, J CHROMATOGR B, V813, P269, DOI 10.1016/j.jchromb.2004.09.051 Rosenquist AH, 2017, ENVIRON HEALTH PERSP, V125, DOI [10.1289/EHP553, 10.1289/ehp553] Rouge-Pont F, 1998, EUR J NEUROSCI, V10, P3903, DOI 10.1046/j.1460-9568.1998.00438.x Seegal RF, 2005, TOXICOL SCI, V86, P125, DOI 10.1093/toxsci/kfi174 Sharot T, 2009, CURR BIOL, V19, P2077, DOI 10.1016/j.cub.2009.10.025 Tang ML, 2018, ENVIRON POLLUT, V237, P581, DOI 10.1016/j.envpol.2018.02.044 Tatsuta N, 2017, ENVIRON HEALTH PREV, V22, DOI 10.1186/s12199-017-0635-6 Tian YH, 2011, SYNAPSE, V65, P1032, DOI 10.1002/syn.20934 van den Berg B J, 1988, Paediatr Perinat Epidemiol, V2, P265 Van den Berg M, 1998, ENVIRON HEALTH PERSP, V106, P775, DOI 10.1289/ehp.98106775 Vizcaino E, 2014, ENVIRON INT, V65, P107, DOI 10.1016/j.envint.2014.01.004 Warner J, 2012, SCI TOTAL ENVIRON, V414, P81, DOI 10.1016/j.scitotenv.2011.10.044 WOLFF MS, 1993, JNCI-J NATL CANCER I, V85, P648, DOI 10.1093/jnci/85.8.648 Wolff MS, 1997, ENVIRON HEALTH PERSP, V105, P13, DOI 10.2307/3433043 Zimmer K., 2012, ACTA VET SCAND S1, V54, DOI [10.1186/1751-0147-54-S1-S17.(S17-S17), DOI 10.1186/1751-0147-54-S1-S17.(S17-S17)] Zimmer KE, 2009, J TOXICOL ENV HEAL A, V72, P164, DOI 10.1080/15287390802539004 NR 69 TC 15 Z9 15 U1 0 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD AUG PY 2019 VL 129 BP 247 EP 255 DI 10.1016/j.envint.2019.04.051 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology GA IB4KC UT WOS:000470239200025 PM 31146159 OA Green Accepted, gold DA 2023-03-13 ER PT J AU Trovato, A Siracusa, R Di Paola, R Scuto, M Ontario, ML Bua, O Di Mauro, P Toscano, MA Petralia, CCT Maiolino, L Serra, A Cuzzocrea, S Calabrese, V AF Trovato, A. Siracusa, R. Di Paola, R. Scuto, M. Ontario, M. L. Bua, Ornella Di Mauro, Paola Toscano, M. A. Petralia, C. C. T. Maiolino, L. Serra, A. Cuzzocrea, S. Calabrese, Vittorio TI Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer's disease pathogenesis SO IMMUNITY & AGEING LA English DT Article DE Lipoxin A4; Heat shock protein70; Heme Oxygenase-1; Nutritional mushrooms; Alzheimer's disease ID MILD COGNITIVE IMPAIRMENT; HEAT-SHOCK PROTEINS; MEDICINAL MUSHROOM; HORMESIS; ANTIOXIDANT; DIAGNOSIS; PATHWAY; CANCER; MODEL AB Background: There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses. Results: Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase -1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding. Conclusions: Conceivably, activation of LXA4 signaling and modulation of stress responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage. C1 [Trovato, A.; Scuto, M.; Ontario, M. L.; Bua, Ornella; Di Mauro, Paola; Toscano, M. A.; Petralia, C. C. T.; Maiolino, L.; Serra, A.; Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Viale Andrea Doria 6, I-95125 Catania, Italy. [Siracusa, R.; Di Paola, R.; Cuzzocrea, S.] Univ Messina, Dept Chem Biol Pharmaceut & Environm Sci, Messina, Italy. C3 University of Catania; University of Messina RP Calabrese, V (corresponding author), Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Viale Andrea Doria 6, I-95125 Catania, Italy. EM calabres@unict.it RI Trovato Salinaro, Angela/AAC-1326-2022; di paola, rosanna/U-4356-2019; Siracusa, Rosalba/AAC-3110-2022; Di Mauro, Paola/AAC-1502-2019; Calabrese, Vittorio/AAC-8157-2021; Bua, Rosaria Ornella/AAA-5755-2022 OI di paola, rosanna/0000-0001-6725-8581; Siracusa, Rosalba/0000-0001-7868-2505; Calabrese, Vittorio/0000-0002-0478-985X; Bua, Rosaria Ornella/0000-0002-3358-1564; TROVATO SALINARO, Angela/0000-0003-2377-858X; Cuzzocrea, Salvatore/0000-0001-6131-3690 CR Abdelmoaty S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075543 Buratti L, 2015, J ALZHEIMERS DIS, V45, P883, DOI 10.3233/JAD-143135 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese V, 2015, FREE RADICAL RES, V49, P511, DOI 10.3109/10715762.2015.1020799 CALABRESE V, 1988, BIOCHEM PHARMACOL, V37, P2287, DOI 10.1016/0006-2952(88)90595-3 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Candore G, 2006, ANN NY ACAD SCI, V1089, P516, DOI 10.1196/annals.1386.051 Castellani RJ, 2010, DM-DIS MON, V56, P484, DOI 10.1016/j.disamonth.2010.06.001 Castello MA, 2014, AGEING RES REV, V13, P10, DOI 10.1016/j.arr.2013.10.001 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-41 Cui T, 2003, BIOTECHNOL ADV, V21, P109, DOI 10.1016/S0734-9750(03)00002-8 da Silva AF, 2013, HUM EXP TOXICOL, V32, P647, DOI 10.1177/0960327112468173 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Di Bona D, 2014, CURR VASC PHARMACOL, V12, P674 Dunn HC, 2015, J ALZHEIMERS DIS, V43, P893, DOI 10.3233/JAD-141335 El Enshasy H, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/620451 Elsayed EA, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/805841 Feeney M. J., 2014, Nutrition Today, V49, P301 Hawkins KE, 2014, J NEUROCHEM, V129, P130, DOI 10.1111/jnc.12607 Jeong SC, 2013, INT J MED MUSHROOMS, V15, P251, DOI 10.1615/IntJMedMushr.v15.i3.30 Joshi YB, 2015, FRONT CELL NEUROSCI, V8, DOI 10.3389/fncel.2014.00436 Junn E, 2001, J NEUROCHEM, V78, P374, DOI 10.1046/j.1471-4159.2001.00425.x Komura DL, 2014, INT J BIOL MACROMOL, V70, P354, DOI 10.1016/j.ijbiomac.2014.06.007 Lin PY, 2013, MOL NEURODEGENER, V8, DOI 10.1186/1750-1326-8-43 Lindequist U, 2014, EVID-BASED COMPL ALT, V2014, DOI 10.1155/2014/806180 Martorana Adriana, 2012, Longev Healthspan, V1, P8, DOI 10.1186/2046-2395-1-8 McGeer Patrick L, 2002, Sci Aging Knowledge Environ, V2002, pre3, DOI 10.1126/sageke.2002.29.re3 Monro JA, 2003, ARCH ENVIRON HEALTH, V58, P533, DOI 10.3200/AEOH.58.8.533-537 Mori K, 2015, INT J MED MUSHROOMS, V17, P609, DOI 10.1615/IntJMedMushrooms.v17.i7.10 Mori K, 2011, BIOMED RES-TOKYO, V32, P67, DOI 10.2220/biomedres.32.67 Mori K, 2009, PHYTOTHER RES, V23, P367, DOI 10.1002/ptr.2634 Nagano M, 2010, BIOMED RES-TOKYO, V31, P231, DOI 10.2220/biomedres.31.231 Paterson R Russell M, 2014, Biomed J, V37, P357, DOI 10.4103/2319-4170.143502 Sulistio YA, 2016, MOL NEUROBIOL, V53, P905, DOI 10.1007/s12035-014-9063-4 Taylor JP, 2002, SCIENCE, V296, P1991, DOI 10.1126/science.1067122 Trovato A, 2016, NEUROTOXICOLOGY, V53, P350, DOI 10.1016/j.neuro.2015.09.012 Uhl GR, 1998, ANN NEUROL, V43, P555, DOI 10.1002/ana.410430503 Walton Emma L, 2014, Biomed J, V37, P339, DOI 10.4103/2319-4170.146538 Wang J, 2012, METAB BRAIN DIS, V27, P159, DOI 10.1007/s11011-012-9282-1 Wasser Solomon P, 2014, Biomed J, V37, P345, DOI 10.4103/2319-4170.138318 Wu J, 2011, BIOCHEM BIOPH RES CO, V408, P382, DOI 10.1016/j.bbrc.2011.04.013 Xu TT, 2012, ANTI-CANCER AGENT ME, V12, P1255, DOI 10.2174/187152012803833017 Yang FJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108525 NR 44 TC 50 Z9 50 U1 1 U2 30 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1742-4933 J9 IMMUN AGEING JI Immun. Ageing PD JUL 9 PY 2016 VL 13 AR 23 DI 10.1186/s12979-016-0078-8 PG 11 WC Geriatrics & Gerontology; Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology; Immunology GA DR9FT UT WOS:000380203200001 PM 27398086 OA gold, Green Published DA 2023-03-13 ER PT J AU Prosnier, L Loreau, M Hulot, FD AF Prosnier, Loic Loreau, Michel Hulot, Florence D. TI Modeling the direct and indirect effects of copper on phytoplankton-zooplankton interactions SO AQUATIC TOXICOLOGY LA English DT Article DE Ecotoxicology model; Prey-predator interaction; Copper; Eutrophication; Daphnia; Scenedesmus ID INDUCED COLONY FORMATION; DAPHNIA-MAGNA; POPULATION-DYNAMICS; FOOD CONCENTRATION; FEEDING-BEHAVIOR; SCENEDESMUS; COMMUNITY; TOXICITY; PLANKTON; BIOACCUMULATION AB Predicting the effects of pollution at the community level is difficult because of the complex impacts of ecosystem dynamics and properties. To predict the effects of copper on a plant-herbivore interaction in a freshwater ecosystem, we built a model that focuses on the interaction between an alga, Scenedesmus sp., and a herbivore, Daphnia sp. The model assumes logistic growth for Scenedesmus and a type II functional response for Daphnia. Internal copper concentrations in Scenedesmus and Daphnia are calculated using a biodynamic model. We include two types of direct effects of copper on Scenedesmus and Daphnia that results from hormesis: a deficiency effect at low concentration and a toxic effect at high concentration. We perform a numerical analysis to predict the combined effects of copper and nutrient enrichment on the Scenedesmus-Daphnia interaction. Results show three types of outcomes depending on copper concentration. First, low (4 mu g L-1) and high (50 mu g L-1) copper concentrations cause deficiency and toxicity, respectively, leading to the extinction of all populations; for less extreme concentrations (between 4 and 5 mu g L-1 and between 16.5 and 50 mu g L-1), only the consumer population becomes extinct. The two populations survive with intermediate concentrations. Second, when population dynamics present oscillations, copper has a stabilizing effect and reduces or suppresses oscillations. Third, copper, on account of its stabilizing effect, opposes the destabilizing effect of nutrient enrichment. Our model shows that (1) Daphnia is affected by copper at lower concentrations when community interactions are taken into account than when analyzed alone, and (2) counterintuitive effects may arise from the interaction between copper pollution and nutrient enrichment. Our model also suggests that single-value parameters such as NOEC and LOEC, which do not take community interactions into account to characterize pollutants effects, are unable to determine pollutant effects in complex ecosystems. More generally, our model underscores the importance of ecosystem-scale studies to predict the effects of pollutants. (C) 2015 Elsevier B.V. All rights reserved. C1 [Prosnier, Loic; Hulot, Florence D.] Univ Paris Sud, Lab Ecol Systemat & Evolut, UMR 8079, F-91405 Orsay, France. [Loreau, Michel] CNRS, Ctr Biodivers Theory & Modelling, Stn Ecol Expt, F-09200 Moulis, France. C3 AgroParisTech; Centre National de la Recherche Scientifique (CNRS); CNRS - Institute of Ecology & Environment (INEE); UDICE-French Research Universities; Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS) RP Prosnier, L (corresponding author), Univ Paris Sud, Lab Ecol Systemat & Evolut, UMR 8079, Bat 362, F-91405 Orsay, France. EM loic.prosnier@u-psud.fr RI Prosnier, Loïc/AAL-1215-2020; Prosnier, Loïc/F-2561-2015 OI Prosnier, Loïc/0000-0001-5576-3601; Prosnier, Loïc/0000-0001-5576-3601; Hulot, Florence D./0000-0002-8897-3987 FU PULSE project [ANR-2010-CEPL-010-04]; TULIP Laboratory of Excellence [ANR-10-LABX-41] FX This work was financially supported by the PULSE project ANR-2010-CEPL-010-04. ML was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41). FDH, ML, and LP would like to thank Nicolas Labrune who developed a previous version of the model and the referees for their comments. LP is also grateful to Nicolas Delpierre for the asymmetric double-sigmoid equation. CR Abrams PA, 1996, ECOLOGY, V77, P1125, DOI 10.2307/2265581 ATSDR, 1990, TOX PROF COPP BAIRD DJ, 1991, ECOTOX ENVIRON SAFE, V21, P257, DOI 10.1016/0147-6513(91)90064-V Berlow EL, 1999, ECOLOGY, V80, P2206, DOI 10.2307/176904 Berlow EL, 2004, J ANIM ECOL, V73, P585, DOI 10.1111/j.0021-8790.2004.00833.x Bossuyt BTA, 2003, COMP BIOCHEM PHYS C, V136, P253, DOI 10.1016/j.cca.2003.09.007 BRIAND F, 1978, NATURE, V273, P228, DOI 10.1038/273228a0 BURNS CW, 1968, LIMNOL OCEANOGR, V13, P675, DOI 10.4319/lo.1968.13.4.0675 Campfens J, 1997, ENVIRON SCI TECHNOL, V31, P577, DOI 10.1021/es960478w Clement B, 2004, CHEMOSPHERE, V55, P1429, DOI 10.1016/j.chemosphere.2003.10.065 CLEMENTS WH, 1992, CAN J FISH AQUAT SCI, V49, P1686, DOI 10.1139/f92-187 De Schamphelaere KAC, 2002, ENVIRON SCI TECHNOL, V36, P48, DOI 10.1021/es000253s DEMOTT WR, 1982, LIMNOL OCEANOGR, V27, P518, DOI 10.4319/lo.1982.27.3.0518 Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950 Fargasova A, 1999, CHEMOSPHERE, V38, P1165, DOI 10.1016/S0045-6535(98)00346-4 Fathi AA, 2000, BIOL PLANTARUM, V43, P99, DOI 10.1023/A:1026563232101 FERRANDO MD, 1993, COMP BIOCHEM PHYS C, V106, P327, DOI 10.1016/0742-8413(93)90141-7 Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4 Gutierrez MF, 2012, ECOTOXICOLOGY, V21, P428, DOI 10.1007/s10646-011-0803-1 Garay-Narvaez L, 2013, OIKOS, V122, P1247, DOI 10.1111/j.1600-0706.2012.00218.x GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008 HAVENS KE, 1994, ENVIRON POLLUT, V86, P259, DOI 10.1016/0269-7491(94)90166-X INGERSOLL C G, 1982, Environmental Toxicology and Chemistry, V1, P321, DOI 10.1897/1552-8618(1982)1[321:EODPDG]2.0.CO;2 Knops M, 2001, AQUAT TOXICOL, V53, P79, DOI 10.1016/S0166-445X(00)00170-3 KOIVISTO S, 1992, HYDROBIOLOGIA, V248, P125, DOI 10.1007/BF00006080 Kramer VJ, 2011, ENVIRON TOXICOL CHEM, V30, P64, DOI 10.1002/etc.375 LAMPERT W, 1989, HYDROBIOLOGIA, V188, P415, DOI 10.1007/BF00027809 Lebrun JD, 2012, ECOTOXICOLOGY, V21, P2022, DOI 10.1007/s10646-012-0955-7 Luoma SN, 2005, ENVIRON SCI TECHNOL, V39, P1921, DOI 10.1021/es048947e Lurling M, 2000, OIKOS, V88, P111, DOI 10.1034/j.1600-0706.2000.880113.x Manyin T, 2008, AQUAT TOXICOL, V88, P111, DOI 10.1016/j.aquatox.2008.03.012 MCCAULEY E, 1987, AM NAT, V129, P97, DOI 10.1086/284624 MCCAULEY E, 1988, AM NAT, V132, P383, DOI 10.1086/284859 McCauley E, 2008, NATURE, V455, P1240, DOI 10.1038/nature07220 MERTZ W, 1981, SCIENCE, V213, P1332, DOI 10.1126/science.7022654 Murdoch WW, 1998, ECOLOGY, V79, P1339, DOI 10.1890/0012-9658(1998)079[1339:PAADAN]2.0.CO;2 Muyssen BTA, 2007, ECOTOX ENVIRON SAFE, V68, P436, DOI 10.1016/j.ecoenv.2006.12.003 NISBET RM, 1991, THEOR POPUL BIOL, V40, P125, DOI 10.1016/0040-5809(91)90050-P Nomkoko ET, 2003, INORG CHEM COMMUN, V6, P335, DOI 10.1016/S1387-7003(02)00759-1 Nriagu J. O., 1979, COPPER ENV 1, P1 Paquin PR, 2002, COMP BIOCHEM PHYS C, V133, P3, DOI 10.1016/S1532-0456(02)00112-6 Pena-Castro JM, 2004, CHEMOSPHERE, V57, P1629, DOI 10.1016/j.chemosphere.2004.06.041 PORTER KG, 1973, NATURE, V244, P179, DOI 10.1038/244179a0 PORTER KG, 1982, LIMNOL OCEANOGR, V27, P935, DOI 10.4319/lo.1982.27.5.0935 Reynolds C., 2011, FRESHWATER REV, V4, P85, DOI [10.1608/FRJ-4.1.425, DOI 10.1608/FRJ-4.1.425] Rinke K, 2005, ECOL MODEL, V186, P326, DOI 10.1016/j.ecolmodel.2005.01.031 ROSENZWE.ML, 1971, SCIENCE, V171, P385, DOI 10.1126/science.171.3969.385 ROSENZWEIG ML, 1963, AM NAT, V97, P209, DOI 10.1086/282272 Roussel H, 2007, AQUAT TOXICOL, V81, P168, DOI 10.1016/j.aquatox.2006.12.006 Roy S, 2007, BIOSYSTEMS, V90, P151, DOI 10.1016/j.biosystems.2006.07.009 Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770 SANDMANN G, 1980, Z PFLANZENPHYSIOL, V98, P53, DOI 10.1016/S0044-328X(80)80219-4 Scharler Ursula M., 2005, P451 Shurin JB, 2006, P ROY SOC B-BIOL SCI, V273, P1, DOI 10.1098/rspb.2005.3377 STRAUSS SY, 1991, TRENDS ECOL EVOL, V6, P206, DOI 10.1016/0169-5347(91)90023-Q SULLIVAN BK, 1983, MAR BIOL, V77, P299, DOI 10.1007/BF00395819 Town RM, 2000, AQUAT SCI, V62, P252, DOI 10.1007/PL00001335 Traas Theo P., 1998, Aquatic Ecology, V32, P179, DOI 10.1023/A:1009920226083 Trudel M, 2001, ECOL APPL, V11, P517, DOI 10.1890/1051-0761(2001)011[0517:PMCIFU]2.0.CO;2 Untersteiner H, 2003, AQUAT TOXICOL, V65, P435, DOI 10.1016/S0166-445X(03)00157-7 den Brink PJ, 2006, HUM ECOL RISK ASSESS, V12, P645, DOI 10.1080/10807030500430559 van Holthoon FL, 2003, HYDROBIOLOGIA, V491, P241, DOI 10.1023/A:1024414515222 Van Veen E, 2002, ENVIRON TOXICOL CHEM, V21, P275, DOI 10.1897/1551-5028(2002)021<0275:SOCISE>2.0.CO;2 Villeneuve DL, 2011, ENVIRON TOXICOL CHEM, V30, P1, DOI 10.1002/etc.396 WINNER RW, 1976, J FISH RES BOARD CAN, V33, P1685, DOI 10.1139/f76-215 World Health Organization (WHO), 1998, ENV HLTH CRIT Wu XY, 2013, BIOCHEM SYST ECOL, V50, P286, DOI 10.1016/j.bse.2013.05.001 Yan H, 2002, CHEMOSPHERE, V49, P471, DOI 10.1016/S0045-6535(02)00285-0 NR 68 TC 18 Z9 19 U1 1 U2 107 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0166-445X EI 1879-1514 J9 AQUAT TOXICOL JI Aquat. Toxicol. PD MAY PY 2015 VL 162 BP 73 EP 81 DI 10.1016/j.aquatox.2015.03.003 PG 9 WC Marine & Freshwater Biology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Marine & Freshwater Biology; Toxicology GA CH2NA UT WOS:000353860700009 PM 25781394 OA Green Submitted DA 2023-03-13 ER PT J AU Kinoshita, A Wanibuchi, H Morimura, K Wei, M Shen, J Imaoka, S Funae, Y Fukushima, S AF Kinoshita, A Wanibuchi, H Morimura, K Wei, M Shen, J Imaoka, S Funae, Y Fukushima, S TI Phenobarbital at low dose exerts hormesis in rat hepatocarcinogenesis by reducing oxidative DNA damage, altering cell proliferation, apoptosis and gene expression SO CARCINOGENESIS LA English DT Article ID LIVER; STRESS; FOCI; CYTOCHROME-P-450; FORM; 8-HYDROXY-2'-DEOXYGUANOSINE; HEPATOCYTES; ENHANCEMENT; THRESHOLD; RESPONSES AB Our recent research indicated that phenobarbital (PB) may inhibit the development of N-diethylnitrosamine (DEN)-initiated pre-neoplastic lesions at low doses in a rat liver medium-term bioassay (Ito test), while high doses exhibit promoting activity. This raises the question of whether treatment with low doses of PB might reduce cancer risk. For clarification, male 6-week-old F344 rats were treated with PB at doses of 0, 2, 15 and 500 p.p.m. in the diet for 10 or 33 weeks after initiation of hepatocarcinogenesis with DEN. In a second, short-term experiment, animals were given PB at doses of 2, 4, 15, 60 and 500 p.p.m. for 8 days. Formation of glutathione S-transferase placental form (GST-P) positive foci and liver tumors was inhibited at 2 p.p.m. Generation of oxidative DNA damage marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG), cellular proliferation within the areas of GST-P positive foci and apoptosis in background liver parenchyma were suppressed. Suppression of 8-OHdG formation by PB at low dose might be related to the enhanced mRNA expression of 8-OHdG repair enzyme, oxoguanine glycosylase 1 (Ogg1). Moreover, as detected by cDNA microarray analysis, PB treatment at low dose enhanced mRNA expression of glutamic acid decarboxylase (GAD65), an enzyme involved in the synthesis of gamma-aminobutyric acid (GABA), and suppressed MAP kinase p38 and other intracellular kinases gene expression. On the contrary, when PB was applied at a high dose, GST-P positive foci numbers and areas, tumor multiplicity, hydroxyl radicals and 8-OHdG levels were greatly elevated with the increase in CYP2B1/2 and CYP3A2 mRNA, protein, activity and gene expression of GST, nuclear tyrosine phosphatase, NADPH- cytochrome P-450 reductase and guanine nucleotide binding protein G(O) alpha subunit. These results indicate that PB exhibits hormetic effect on rat hepatocarcinogenesis initiated with DEN by differentially altering cell proliferation, apoptosis and oxidative DNA damage at high and low doses. C1 Osaka City Univ, Dept Pathol, Sch Med, Abeno Ku, Osaka 5458585, Japan. Osaka City Univ, Dept Biol Chem, Sch Med, Abeno Ku, Osaka 5458585, Japan. C3 Osaka Metropolitan University; Osaka Metropolitan University RP Fukushima, S (corresponding author), Osaka City Univ, Dept Pathol, Sch Med, Abeno Ku, Asahi Machi 1-4-3, Osaka 5458585, Japan. EM fukuchan@med.osaka-cu.ac.jp CR Anderson E.L., 1983, RISK ANAL, V3, P277 Biju Mangatt P, 2002, J Biochem Mol Biol Biophys, V6, P209, DOI 10.1080/10258140290018667 Biju MP, 2001, HEPATOL RES, V21, P136, DOI 10.1016/S1386-6346(01)00092-4 BUTLER WH, 1978, J PATHOL, V125, P155, DOI 10.1002/path.1711250306 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CHOMCZYNSKI P, 1993, BIOTECHNIQUES, V15, P532 Christensen JG, 1999, MOL CARCINOGEN, V25, P273 Christensen JG, 1999, CARCINOGENESIS, V20, P1583, DOI 10.1093/carcin/20.8.1583 Denda A, 1995, TOXICOL LETT, V82-3, P413, DOI 10.1016/0378-4274(95)03492-7 Dhanasekaran N, 1998, BIOL SIGNAL RECEPT, V7, P109 DUTTON DR, 1989, ARCH BIOCHEM BIOPHYS, V268, P605, DOI 10.1016/0003-9861(89)90328-7 Erlitzki R, 2000, AM J PHYSIOL-GASTR L, V279, pG733, DOI 10.1152/ajpgi.2000.279.4.G733 FARBER E, 1987, ENVIRON HEALTH PERSP, V75, P65, DOI 10.2307/3430578 FELDMAN D, 1981, CANCER RES, V41, P2151 FRAGA CG, 1990, P NATL ACAD SCI USA, V87, P4533, DOI 10.1073/pnas.87.12.4533 FUNAE Y, 1985, BIOCHIM BIOPHYS ACTA, V842, P119, DOI 10.1016/0304-4165(85)90193-X Gonzalez-Angarita A, 2001, NORTHEAST NAT, V8, P3, DOI 10.1656/1092-6194(2001)8[3:AVHNHL]2.0.CO;2 Hagiwara A, 1996, CANCER LETT, V110, P155, DOI 10.1016/S0304-3835(96)04478-3 IMAIDA K, 1989, JPN J CANCER RES, V80, P326, DOI 10.1111/j.1349-7006.1989.tb02314.x Kasai H, 1997, MUTAT RES-REV MUTAT, V387, P147, DOI 10.1016/S1383-5742(97)00035-5 KASAI H, 1986, CARCINOGENESIS, V7, P1849, DOI 10.1093/carcin/7.11.1849 Kinoshita A, 2002, CARCINOGENESIS, V23, P341, DOI 10.1093/carcin/23.2.341 KITADA M, 1989, RES COMMUN CHEM PATH, V63, P175 KITAGAWA T, 1984, CARCINOGENESIS, V5, P1653, DOI 10.1093/carcin/5.12.1653 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 Klaunig JE, 1998, ENVIRON HEALTH PERSP, V106, P289, DOI 10.2307/3433929 KOLAJA KL, 1996, CARCINOGENESIS, V5, P67 Kondo S, 2000, CLIN CANCER RES, V6, P1394 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63 Lawrence J, 2000, EUR J COMBIN, V21, P3, DOI 10.1006/eujc.1999.0322 MAEKAWA A, 1992, CARCINOGENESIS, V13, P501, DOI 10.1093/carcin/13.3.501 MANJESHWAR S, 1994, CARCINOGENESIS, V15, P1963, DOI 10.1093/carcin/15.9.1963 MARTIN YC, 1996, ADV QUANTITAT STRUCT, V1, P1 MASON RP, 1994, ENVIRON HEALTH PERSP, V102, P33, DOI 10.2307/3432210 Nakae D, 1997, CANCER RES, V57, P1281 Nishikawa T, 2002, INT J CANCER, V100, P136, DOI 10.1002/ijc.10471 OMURA T, 1964, J BIOL CHEM, V239, P2370 PERAINO C, 1971, CANCER RES, V31, P1506 PERAINO C, 1980, CANCER RES, V40, P3268 PITOT HC, 1987, CARCINOGENESIS, V8, P1491, DOI 10.1093/carcin/8.10.1491 SHIBUTANI S, 1991, NATURE, V349, P431, DOI 10.1038/349431a0 SHIMADA M, 1989, ARCH BIOCHEM BIOPHYS, V270, P578, DOI 10.1016/0003-9861(89)90540-7 SOLT DB, 1977, AM J PATHOL, V88, P595 SONDERFAN AJ, 1987, ARCH BIOCHEM BIOPHYS, V255, P27, DOI 10.1016/0003-9861(87)90291-8 Sugimura K, 1997, NEPHRON, V75, P7, DOI 10.1159/000189492 Szabo G, 2000, NEUROSCIENCE, V100, P287, DOI 10.1016/S0306-4522(00)00275-X Ueda A, 2002, MOL PHARMACOL, V61, P1, DOI 10.1124/mol.61.1.1 Watanabe I, 1999, JPN J CANCER RES, V90, P188, DOI 10.1111/j.1349-7006.1999.tb00732.x WAXMAN DJ, 1990, BIOCHEM J, V271, P113, DOI 10.1042/bj2710113 NR 51 TC 63 Z9 64 U1 0 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0143-3334 EI 1460-2180 J9 CARCINOGENESIS JI Carcinogenesis PD AUG PY 2003 VL 24 IS 8 BP 1389 EP 1399 DI 10.1093/carcin/bgg079 PG 11 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA 710HU UT WOS:000184675400011 PM 12807726 OA Bronze DA 2023-03-13 ER PT J AU Jiang, Q Feng, MB Ye, CS Yu, X AF Jiang, Qi Feng, Mingbao Ye, Chengsong Yu, Xin TI Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Review DE HGT; ARGs; ARB; Contaminants from human activities; Water treatment processes ID DISINFECTION BY-PRODUCTS; OUTER-MEMBRANE VESICLES; SUB-INHIBITORY CONCENTRATIONS; WASTE-WATER; DRINKING-WATER; HUMAN HEALTH; SUBINHIBITORY CONCENTRATIONS; CONJUGATIVE TRANSFER; POSITIVE BACTERIA; METAL RESISTANCE AB Antibiotic resistance has created obstacles in the treatment of infectious diseases with antibiotics. The horizontal transfer of antibiotic resistance genes (ARGs) can exacerbate the dissemination of antibiotic resistance in water environments. In addition to antibiotic selective pressure, multiple non-antibiotic factors can affect the horizontal transfer of ARGs. Herein, we seek to comprehensively review the effects and relevant mechanisms of nonantibiotic factors on the horizontal transfer of ARGs in water environments, especially contaminants from human activities and water treatment processes. Four pathways have been identified to accomplish horizontal gene transfer (HGT), i.e., conjugation, transformation, transduction, and vesiduction. Changes in conjugative frequencies by non-antibiotic factors are mainly related to their concentrations, which conform to hormesis. Relevant mechanisms involve the alteration in cell membrane permeability, reactive oxygen species, SOS response, pilus, and mRNA expression of relevant genes. Transformation induced by extracellular DNA may be more vulnerable to non-antibiotic factors than other pathways. Except bacteriophage infection, the effects of non-antibiotic factors on transduction exhibit many similarities with that of conjugation. Given the secretion of membrane vesicles stimulated by non-antibiotic factors, their effects on vesiduction can be inferred. Furthermore, contaminants from human activities at sub-inhibitory or environmentally relevant concentrations usually promote HGT, resulting in further dissemination of antibiotic resistance. The horizontal transfer of ARGs is difficult to be inhibited by individual water treatment processes (e.g., chlorination, UV treatment, and photocatalysis) unless they attain sufficient intensity. Accordingly, the synergistic application containing two or more water treatment processes is recommended. Overall, we believe this review can elucidate the significance for risk assessments of contaminants from human activities and provide insights into the development of environment-friendly and cost-efficient water treatment processes to inhibit the horizontal transfer of ARGs. (c) 2021 Elsevier B.V. All rights reserved. C1 [Jiang, Qi; Feng, Mingbao; Ye, Chengsong; Yu, Xin] Xiamen Univ, Coll Environm & Ecol, Xiamen 361102, Peoples R China. C3 Xiamen University RP Yu, X (corresponding author), Xiamen Univ, Coll Environm & Ecol, Xiamen 361102, Peoples R China. EM xyu@xmu.edu.cn FU National Natural Science Foundation of China [41861144023, U2005206] FX This study was financially supported by the National Natural Science Foundation of China (grant nos. 41861144023 and U2005206). CR Abe K, 2020, FEMS MICROBIOL ECOL, V96, DOI 10.1093/femsec/fiaa031 Alekshun MN, 2007, CELL, V128, P1037, DOI 10.1016/j.cell.2007.03.004 Allen HK, 2010, NAT REV MICROBIOL, V8, P251, DOI 10.1038/nrmicro2312 Aminov RI, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00158 Andersson DI, 2014, NAT REV MICROBIOL, V12, P465, DOI 10.1038/nrmicro3270 Annett R, 2014, J APPL TOXICOL, V34, P458, DOI 10.1002/jat.2997 Anthony ET, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2019.113791 Augsburger N, 2019, ENVIRON SCI TECHNOL, V53, P10312, DOI 10.1021/acs.est.9b01206 Baharoglu Z, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003421 Baker-Austin C, 2006, TRENDS MICROBIOL, V14, P176, DOI 10.1016/j.tim.2006.02.006 Balcazar JL, 2018, CLIN MICROBIOL INFEC, V24, P447, DOI 10.1016/j.cmi.2017.10.010 Barancheshme F, 2018, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.02603 Beceiro A, 2013, CLIN MICROBIOL REV, V26, P185, DOI 10.1128/CMR.00059-12 Bellanger X, 2014, SCI TOTAL ENVIRON, V493, P872, DOI 10.1016/j.scitotenv.2014.06.070 Blokesch M, 2016, CURR BIOL, V26, pR1126, DOI 10.1016/j.cub.2016.08.058 Boto L, 2019, FEBS J, V286, P3959, DOI 10.1111/febs.15054 Bower CK, 1999, INT J FOOD MICROBIOL, V50, P33, DOI 10.1016/S0168-1605(99)00075-6 Boxall ABA, 2012, ENVIRON HEALTH PERSP, V120, P1221, DOI 10.1289/ehp.1104477 Brown L, 2015, NAT REV MICROBIOL, V13, P620, DOI 10.1038/nrmicro3480 Buffet-Bataillon S, 2012, INT J ANTIMICROB AG, V39, P381, DOI 10.1016/j.ijantimicag.2012.01.011 Cascales E, 2003, NAT REV MICROBIOL, V1, P137, DOI 10.1038/nrmicro753 Cen TY, 2020, ENVIRON INT, V138, DOI 10.1016/j.envint.2020.105544 Chang PH, 2017, ENVIRON SCI TECHNOL, V51, P6185, DOI 10.1021/acs.est.7b01120 Chen I, 2004, NAT REV MICROBIOL, V2, P241, DOI 10.1038/nrmicro844 Chen XF, 2019, WATER RES, V149, P282, DOI 10.1016/j.watres.2018.11.019 Colavecchio A, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01108 Crecchio C, 1998, SOIL BIOL BIOCHEM, V30, P1061, DOI 10.1016/S0038-0717(97)00248-4 Dalrymple OK, 2010, APPL CATAL B-ENVIRON, V98, P27, DOI 10.1016/j.apcatb.2010.05.001 de Almeida Maganha, TRENDS MICROBIOL, V29, P517 Ding CS, 2021, J HAZARD MATER, V405, DOI 10.1016/j.jhazmat.2020.124224 Dodd MC, 2012, J ENVIRON MONITOR, V14, P1754, DOI 10.1039/c2em00006g Domingues S, 2017, CURR OPIN MICROBIOL, V38, P16, DOI 10.1016/j.mib.2017.03.012 Domingues Sara, 2012, Mob Genet Elements, V2, P257 Dong HR, 2015, WATER RES, V79, P128, DOI 10.1016/j.watres.2015.04.038 Dong PY, 2019, ENVIRON INT, V125, P90, DOI 10.1016/j.envint.2019.01.050 Dunlop PSM, 2015, CATAL TODAY, V240, P55, DOI 10.1016/j.cattod.2014.03.049 Feng GQ, 2021, J HAZARD MATER, V420, DOI 10.1016/j.jhazmat.2021.126602 Frassinetti S, 2020, MICROB PATHOGENESIS, V147, DOI 10.1016/j.micpath.2020.104267 Gao SH, 2016, ENVIRON SCI TECHNOL, V50, P5305, DOI 10.1021/acs.est.6b00288 Giannakis S, 2016, APPL CATAL B-ENVIRON, V199, P199, DOI 10.1016/j.apcatb.2016.06.009 Grandclement C, 2017, WATER RES, V111, P297, DOI 10.1016/j.watres.2017.01.005 Guo MT, 2019, CHEMOSPHERE, V224, P827, DOI 10.1016/j.chemosphere.2019.03.004 Guo MT, 2017, CHEMOSPHERE, V183, P197, DOI 10.1016/j.chemosphere.2017.04.145 Guo MT, 2015, ENVIRON SCI TECHNOL, V49, P5771, DOI 10.1021/acs.est.5b00644 Haaber J, 2017, TRENDS MICROBIOL, V25, P893, DOI 10.1016/j.tim.2017.05.011 Hajipour MJ, 2012, TRENDS BIOTECHNOL, V30, P499, DOI 10.1016/j.tibtech.2012.06.004 Halden RU, 2005, ENVIRON SCI TECHNOL, V39, P1420, DOI 10.1021/es049071e Han X, 2020, ENVIRON SCI-NANO, V7, P1214, DOI 10.1039/c9en01279f Han Y, 2019, ENVIRON SCI POLLUT R, V26, P28352, DOI 10.1007/s11356-019-05673-2 Hasegawa H, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02365 He H, 2019, ENVIRON SCI TECHNOL, V53, P2013, DOI 10.1021/acs.est.8b04393 Hiller CX, 2019, SCI TOTAL ENVIRON, V685, P596, DOI 10.1016/j.scitotenv.2019.05.315 Horikoshi S, 2020, CATAL TODAY, V340, P334, DOI 10.1016/j.cattod.2018.10.020 Hu XJ, 2020, ENVIRON SCI TECH LET, V7, P421, DOI 10.1021/acs.estlett.0c00311 Hu XJ, 2019, ENVIRON SCI-NANO, V6, P1310, DOI 10.1039/c8en01447g Huang HN, 2019, WATER RES, V158, P383, DOI 10.1016/j.watres.2019.04.046 Huang H, 2019, APPL MICROBIOL BIOT, V103, P1115, DOI 10.1007/s00253-018-9511-6 Huddleston JR, 2014, INFECT DRUG RESIST, V7, P167, DOI 10.2147/IDR.S48820 Jebri S, 2021, J APPL MICROBIOL, V130, P688, DOI 10.1111/jam.14851 Ji QK, 2020, FRONT ENV SCI ENG, V14, DOI 10.1007/s11783-020-1287-0 Jiao YN, 2017, CHEMOSPHERE, V184, P53, DOI 10.1016/j.chemosphere.2017.05.149 Jin M, 2020, ISME J, V14, P1847, DOI 10.1038/s41396-020-0656-9 Jjemba PK, 2010, APPL ENVIRON MICROB, V76, P4169, DOI 10.1128/AEM.03147-09 Johnston C, 2014, NAT REV MICROBIOL, V12, P181, DOI 10.1038/nrmicro3199 Jong MC, 2020, ENVIRON SCI TECHNOL, V54, P14984, DOI 10.1021/acs.est.0c03714 Jutkina J, 2016, SCI TOTAL ENVIRON, V548, P131, DOI 10.1016/j.scitotenv.2016.01.044 Keeling PJ, 2008, NAT REV GENET, V9, P605, DOI 10.1038/nrg2386 Kikuchi Y, 1997, J PHOTOCH PHOTOBIO A, V106, P51, DOI 10.1016/S1010-6030(97)00038-5 Kim S, 2014, SCI TOTAL ENVIRON, V468, P813, DOI 10.1016/j.scitotenv.2013.08.100 Kitis M, 2004, ENVIRON INT, V30, P47, DOI 10.1016/S0160-4120(03)00147-8 Klumper U, 2015, ISME J, V9, P934, DOI 10.1038/ismej.2014.191 Kulkarni HM, 2015, MICROBIOL RES, V181, P1, DOI 10.1016/j.micres.2015.07.008 Lebaron P, 1993, Microb Releases, V2, P127 Lehtola MJ, 2006, WATER RES, V40, P2151, DOI 10.1016/j.watres.2006.04.010 Li G, 2018, EUR J SOIL SCI, V69, P196, DOI 10.1111/ejss.12518 Li GY, 2020, ENVIRON INT, V136, DOI 10.1016/j.envint.2020.105497 Li LG, 2017, ISME J, V11, P651, DOI 10.1038/ismej.2016.155 Li SN, 2021, J HAZARD MATER, V411, DOI 10.1016/j.jhazmat.2021.125148 Liao JQ, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.113045 Liao JQ, 2019, ENVIRON INT, V129, P333, DOI 10.1016/j.envint.2019.05.060 Lin WF, 2016, WATER RES, V91, P331, DOI 10.1016/j.watres.2016.01.020 Liu Y, 2020, MICROORGANISMS, V8, DOI 10.3390/microorganisms8081211 Lopatkin AJ, 2016, BIOESSAYS, V38, P1283, DOI 10.1002/bies.201600133 Lopatkin AJ, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.44, 10.1038/nmicrobiol.2016.44] LORENZ MG, 1994, MICROBIOL REV, V58, P563, DOI 10.1128/MMBR.58.3.563-602.1994 Lu J, 2020, SCI TOTAL ENVIRON, V713, DOI 10.1016/j.scitotenv.2020.136621 Lu J, 2020, WATER RES, V169, DOI 10.1016/j.watres.2019.115229 Lu J, 2018, ENVIRON INT, V121, P1217, DOI 10.1016/j.envint.2018.10.040 Luukkonen T, 2017, CRIT REV ENV SCI TEC, V47, P1, DOI 10.1080/10643389.2016.1272343 Lv L, 2014, ENVIRON SCI TECHNOL, V48, P8188, DOI 10.1021/es501646n Maertens H, 2019, POULTRY SCI, V98, P2972, DOI 10.3382/ps/pez185 Malato S, 2009, CATAL TODAY, V147, P1, DOI 10.1016/j.cattod.2009.06.018 Mantilla-Calderon D, 2019, ENVIRON SCI TECHNOL, V53, P6520, DOI 10.1021/acs.est.9b00692 Martinez JL, 2015, NAT REV MICROBIOL, V13, P116, DOI 10.1038/nrmicro3399 McCarthy AJ, 2012, FRONT CELL INFECT MI, V2, DOI 10.3389/fcimb.2012.00006 McDonnell G, 1999, CLIN MICROBIOL REV, V12, P147, DOI 10.1128/CMR.12.1.147 McInnes RS, 2020, CURR OPIN MICROBIOL, V53, P35, DOI 10.1016/j.mib.2020.02.002 Michael-Kordatou I, 2018, WATER RES, V129, P208, DOI 10.1016/j.watres.2017.10.007 Mishra S, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149174 Morikawa K, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003003 Muniesa M, 2013, FUTURE MICROBIOL, V8, P739, DOI 10.2217/fmb.13.32 Nadeem SF, 2020, CRIT REV MICROBIOL, V46, P578, DOI 10.1080/1040841X.2020.1813687 Tran NH, 2019, SCI TOTAL ENVIRON, V676, P252, DOI 10.1016/j.scitotenv.2019.04.160 Nguyen AQ, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.146964 Ngwenya N, 2013, REV ENVIRON CONTAM T, V222, P111, DOI 10.1007/978-1-4614-4717-7_4 Norman A, 2009, PHILOS T R SOC B, V364, P2275, DOI 10.1098/rstb.2009.0037 O'Neill J., 2016, Tackling drug-resistant infections globally: final report and recommendations Ochman H, 2000, NATURE, V405, P299, DOI 10.1038/35012500 Pal C, 2017, ADV MICROB PHYSIOL, V70, P261, DOI 10.1016/bs.ampbs.2017.02.001 Patangia DV, 2022, TRENDS MICROBIOL, V30, P47, DOI 10.1016/j.tim.2021.05.006 Penades JR, 2015, CURR OPIN MICROBIOL, V23, P171, DOI 10.1016/j.mib.2014.11.019 Perry JA, 2014, CURR OPIN MICROBIOL, V21, P45, DOI 10.1016/j.mib.2014.09.002 Pruden A, 2014, ENVIRON SCI TECHNOL, V48, P5, DOI 10.1021/es403883p Pu Q, 2021, ENVIRON INT, V152, DOI 10.1016/j.envint.2021.106453 Qiao M, 2018, ENVIRON INT, V110, P160, DOI 10.1016/j.envint.2017.10.016 Qiu ZG, 2015, NANOTOXICOLOGY, V9, P895, DOI 10.3109/17435390.2014.991429 Qiu ZG, 2012, P NATL ACAD SCI USA, V109, P4944, DOI 10.1073/pnas.1107254109 Reddy PAK, 2016, ENVIRON INT, V91, P94, DOI 10.1016/j.envint.2016.02.012 Richardson SD, 2007, MUTAT RES-REV MUTAT, V636, P178, DOI 10.1016/j.mrrev.2007.09.001 Rizzo L, 2013, SCI TOTAL ENVIRON, V447, P345, DOI 10.1016/j.scitotenv.2013.01.032 Rodriguez-Beltran J, 2021, NAT REV MICROBIOL, V19, P347, DOI 10.1038/s41579-020-00497-1 Rumbo C, 2011, ANTIMICROB AGENTS CH, V55, P3084, DOI 10.1128/AAC.00929-10 Sabra W, 2003, MICROBIOL-SGM, V149, P2789, DOI 10.1099/mic.0.26443-0 Salmond GPC, 2015, NAT REV MICROBIOL, V13, P777, DOI 10.1038/nrmicro3564 Sanganyado E, 2019, SCI TOTAL ENVIRON, V669, P785, DOI 10.1016/j.scitotenv.2019.03.162 Schwechheimer C, 2015, NAT REV MICROBIOL, V13, P605, DOI 10.1038/nrmicro3525 Seier-Petersen MA, 2014, J ANTIMICROB CHEMOTH, V69, P343, DOI 10.1093/jac/dkt370 Seiler C, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00399 Sharma VK, 2016, CHEMOSPHERE, V150, P702, DOI 10.1016/j.chemosphere.2015.12.084 Shi JH, 2019, ENVIRON SCI-NANO, V6, P2141, DOI 10.1039/c9en00068b SIMONSEN L, 1990, J GEN MICROBIOL, V136, P2319, DOI 10.1099/00221287-136-11-2319 Simpson DR, 2008, WATER RES, V42, P2839, DOI 10.1016/j.watres.2008.02.025 Singh R, 2019, J CLEAN PROD, V234, P1484, DOI 10.1016/j.jclepro.2019.06.243 Soler N, 2020, ENVIRON MICROBIOL, V22, P2457, DOI 10.1111/1462-2920.15056 Song L, 2018, 3 BIOTECH, V8, DOI 10.1007/s13205-018-1247-6 Song Z, 2021, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.616792 Sorensen SJ, 2005, NAT REV MICROBIOL, V3, P700, DOI 10.1038/nrmicro1232 Stanczak-Mrozek KI, 2017, J ANTIMICROB CHEMOTH, V72, P1624, DOI 10.1093/jac/dkx056 Starling V. M., SCI TOTAL ENVIRON, V786 Suez J, 2014, NATURE, V514, P181, DOI 10.1038/nature13793 Sun LH, 2020, ENVIRON ENG SCI, V37, P365, DOI 10.1089/ees.2019.0397 Tan QW, 2019, FRONT ENV SCI ENG, V13, DOI 10.1007/s11783-019-1120-9 Toyofuku M, 2019, NAT REV MICROBIOL, V17, P13, DOI 10.1038/s41579-018-0112-2 Uddin MJ, 2020, MICROORGANISMS, V8, DOI 10.3390/microorganisms8050670 Umar M, 2019, SCI TOTAL ENVIRON, V662, P923, DOI 10.1016/j.scitotenv.2019.01.289 von Wintersdorff CJH, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00173 Wagner ED, 2017, J ENVIRON SCI-CHINA, V58, P64, DOI 10.1016/j.jes.2017.04.021 Walsh TR, 2011, LANCET INFECT DIS, V11, P355, DOI 10.1016/S1473-3099(11)70059-7 Wang HC, 2020, WATER RES, V185, DOI 10.1016/j.watres.2020.116290 Wang HG, 2020, COLLOID SURFACE B, V185, DOI 10.1016/j.colsurfb.2019.110569 Wang HG, 2019, ECOTOX ENVIRON SAFE, V186, DOI 10.1016/j.ecoenv.2019.109781 Wang JL, 2022, CRIT REV ENV SCI TEC, V52, P571, DOI 10.1080/10643389.2020.1835124 Wang J, 2020, ENVIRON POLLUT, V262, DOI 10.1016/j.envpol.2020.114665 Wang MZ, 2018, ENVIRON POLLUT, V238, P291, DOI 10.1016/j.envpol.2018.03.024 Wang Q., ENVIRON POLLUT, V268 Wang Q, 2020, SCI TOTAL ENVIRON, V717, DOI 10.1016/j.scitotenv.2020.137055 Wang Q, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00864 Wang Q, 2015, ENVIRON SCI TECHNOL, V49, P8731, DOI 10.1021/acs.est.5b01129 Wang Q, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126784 Wang XL, 2018, NANOIMPACT, V10, P61, DOI 10.1016/j.impact.2017.11.006 Wang Y, 2021, ISME J, V15, P2493, DOI 10.1038/s41396-021-00945-7 Wang Y, 2020, ISME J, V14, P2179, DOI 10.1038/s41396-020-0679-2 Wang Y, 2019, ISME J, V13, P509, DOI 10.1038/s41396-018-0275-x WHO, 2014, ANT RES GLOB REP SUR Wu JW, 2020, SCI TOTAL ENVIRON, V723, DOI 10.1016/j.scitotenv.2020.137991 Xiao X, 2021, SCI TOTAL ENVIRON, V760, DOI 10.1016/j.scitotenv.2020.144040 Yin H.L., APPL CATAL B, V287 Yoon Y, 2018, ENVIRON SCI-WAT RES, V4, P1239, DOI [10.1039/c8ew00200b, 10.1039/C8EW00200B] Yu KQ, 2020, ENVIRON SCI TECHNOL, V54, P10012, DOI 10.1021/acs.est.0c01870 Yu ZG, 2021, ISME J, V15, P2117, DOI 10.1038/s41396-021-00909-x Zarei-Baygi A, 2021, BIORESOURCE TECHNOL, V319, DOI 10.1016/j.biortech.2020.124181 Zhang CQ, 2019, SCI TOTAL ENVIRON, V685, P419, DOI 10.1016/j.scitotenv.2019.05.074 Zhang GS, 2020, CHEMOSPHERE, V254, DOI 10.1016/j.chemosphere.2020.126831 Zhang HN, 2021, BIOENGINEERED, V12, P63, DOI 10.1080/21655979.2020.1862995 Zhang JY, 2020, BIORESOURCE TECHNOL, V295, DOI 10.1016/j.biortech.2019.122191 Zhang S, 2019, ENVIRON INT, V129, P478, DOI 10.1016/j.envint.2019.05.054 Zhang X, 2019, ENVIRON SCI TECHNOL, V53, P10732, DOI 10.1021/acs.est.9b03096 Zhang Y, 2018, ENVIRON POLLUT, V237, P74, DOI 10.1016/j.envpol.2018.01.032 Zhang Y, 2017, ENVIRON SCI TECHNOL, V51, P570, DOI 10.1021/acs.est.6b03132 Zheng Ji, 2018, Sci Total Environ, V612, P1, DOI 10.1016/j.scitotenv.2017.08.072 Zhong X, 2010, J THEOR BIOL, V262, P711, DOI 10.1016/j.jtbi.2009.10.013 Zhu B, 2006, WATER RES, V40, P3231, DOI 10.1016/j.watres.2006.06.040 Zhu L, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134236 Zhu YG, 2017, NAT MICROBIOL, V2, DOI 10.1038/nmicrobiol.2016.270 NR 184 TC 25 Z9 26 U1 75 U2 298 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 1 PY 2022 VL 806 AR 150568 DI 10.1016/j.scitotenv.2021.150568 EA OCT 2021 PG 19 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA WH4MS UT WOS:000707654600012 PM 34627113 DA 2023-03-13 ER PT J AU Janani, B Alarjani, KM Raju, LL Thomas, AM Das, A Khan, SS AF Janani, B. Alarjani, Khaloud Mohammed Raju, Lija L. Thomas, Ajith Mesmin Das, Arunava Khan, S. Sudheer TI A potent multifunctional Ag/Co-polyvinylpyrrolidone nanocomposite for enhanced detection of Cr(III) from environmental samples and its photocatalytic and antibacterial applications SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY LA English DT Article DE Ag/Co-polyvinylpyrrolidone nanocomposite; Trivalent chromiurn; Nanomolar; Photocatalytic; Antibacterial ID SILVER NANOPARTICLES; GOLD NANOPARTICLES; FLUORESCENT SENSOR; COLORIMETRIC DETECTION; CHROMOGENIC VESICLES; AQUEOUS DETECTION; CR(VI); CR3+; QUANTIFICATION; CHEMOSENSOR AB Trivalent chromium (Cr(III)) is considered to exhibit hormesis (bi-phasic dose-response) properly, where low dose be beneficial and high dose shows toxic effect. The present work describe the development of a bimetallic Ag/Co-polyvinylpyrrolidone nanocomposite (Ag/Co-PVP NPs) probe to detect and quantify Cr(III) ions from aqueous samples. The hydrodynamic size and zeta potential of the particle was determined to be 29 +/- 13 nm and -37.19 +/- 2.4 mV respectively. The interaction of Cr(III) with Ag/Co-PVP probe showed drastic change in colour of NPs from dark brown to pale yellow, with corresponding blue shift, tapering width and increased peak intensity. The probe showed high specificity towards Cr(III) among the tested metal ions. A linearity was observed between various dilutions of Cr(III) ions (10 to 50 nM) and the absorbance of Ag/Co-PVP NPs at 428 nm with R-2 value of 0.998. The minimum detectable limit of Cr(III) was calculated to be 0.6 nM. The influence of salinity, temperature and pH on detection was studied. The probe was found to detect Cr(III) at acidic pH effectively. Competitive metal ions did not interfere the detection of Cr(III). The water sample collected from Noyyal river was taken to estimate Cr(III) by using the prepared probe to ensure practical applicability. The sample contains 93 nM of Cr (III) that was cross verified with AAS analysis. Hence, it is understood that the reported probe can be used to detect Cr(III) selectively with high accuracy from aqueous samples. In addition, the particles also exhibited excellent photocatalytic activity under visible light. Ag/Co-PVP nanocomposites exhibited excellent antibacterial activity against both gram +ve (B. subtilis) and gram -ve (E. coli) bacteria. (C) 2020 Elsevier B.V. All rights reserved. C1 [Janani, B.; Das, Arunava; Khan, S. Sudheer] Bannari Amman Inst Technol, Dept Biotechnol, Nanobiotechnol Lab, Sathyamangalam, Tamil Nadu, India. [Alarjani, Khaloud Mohammed] King Saud Univ, Dept Bot & Microbiol, Coll Sci, Riyadh 11451, Saudi Arabia. [Raju, Lija L.] Mar Ivanios Coll, Dept Zool, Thiruvananthapuram, Kerala, India. [Thomas, Ajith Mesmin] St Xaviers Coll, Dept Bot & Biotechnol, Thiruvananthapuram, Kerala, India. C3 Bannari Amman Institute of Technology; King Saud University RP Khan, SS (corresponding author), Bannari Amman Inst Technol, Dept Biotechnol, Nanobiotechnol Lab, Sathyamangalam, Tamil Nadu, India. EM sudheerkhan@bitsathy.ac.in RI Khan, Sudheer/ABG-6209-2021; Das, Arunava/L-3356-2019; Alarjani, Khaloud Mohammed/AAX-4155-2021 OI Khan, Sudheer/0000-0002-9666-7672; Das, Arunava/0000-0002-0165-866X; Alarjani, Khaloud Mohammed/0000-0002-3762-1498 FU King Saud University, Riyadh, Saudi Arabia [RSP-2020/185] FX Authors sincerely thank the management of Bannari Amman Institute of Technology, Tamil Nadu for providing the necessary facilities for carrying out this work. The authors extend their appreciation to the Researchers supporting project number (RSP-2020/185) King Saud University, Riyadh, Saudi Arabia. CR Alijani S, 2020, CATALYSTS, V10, DOI 10.3390/catal10010011 Anderson RA, 1998, J AM COLL NUTR, V17, P548, DOI 10.1080/07315724.1998.10718802 Ashraf MA, 2020, CERAM INT, V46, P8379, DOI 10.1016/j.ceramint.2019.12.070 Barnhart J, 1997, J SOIL CONTAM, V6, P561, DOI 10.1080/15320389709383589 Bohrn U, 2013, SENSOR ACTUAT B-CHEM, V182, P58, DOI 10.1016/j.snb.2013.02.105 Boldeiu A, 2019, J PHOTOCH PHOTOBIO B, V197, DOI 10.1016/j.jphotobiol.2019.111519 Burridge K, 2011, J MATER CHEM, V21, P734, DOI 10.1039/c0jm02702b Cai YC, 2017, CERAM INT, V43, P1066, DOI 10.1016/j.ceramint.2016.10.041 Chen NY, 2020, CHEM ENG J, V387, DOI 10.1016/j.cej.2020.124079 Das A., 2013, COMPUTER SCI INFORM, P461 Devi TB, 2019, J IND ENG CHEM, V76, P160, DOI 10.1016/j.jiec.2019.03.032 Dhumale VA, 2012, MATER EXPRESS, V2, P311, DOI 10.1166/mex.2012.1082 Es-Souni M, 2008, ADV FUNCT MATER, V18, P3179, DOI 10.1002/adfm.200800354 Fakhri A, 2019, MATER RES EXPRESS, V6, DOI 10.1088/2053-1591/ab3bdb Fakhri A, 2019, J INORG ORGANOMET P, V29, P1119, DOI 10.1007/s10904-019-01074-7 Filinchuk Y, 2008, EUR J INORG CHEM, P3127, DOI 10.1002/ejic.200800053 He LL, 2018, APPL SURF SCI, V434, P265, DOI 10.1016/j.apsusc.2017.10.155 He SZ, 2019, ANAL METHODS-UK, V11, P5819, DOI 10.1039/c9ay02010a He XY, 2020, INT J BIOL MACROMOL, V143, P952, DOI 10.1016/j.ijbiomac.2019.09.155 Huang KW, 2008, ORG LETT, V10, P2557, DOI 10.1021/ol800778a Ismail M, 2018, PHYSICA E, V103, P367, DOI 10.1016/j.physe.2018.06.015 Jin WW, 2015, J NANOPART RES, V17, DOI 10.1007/s11051-015-3156-5 Jug K, 2009, J PHYS CHEM A, V113, P11651, DOI 10.1021/jp902532a Kadam AN, 2014, J MATER SCI-MATER EL, V25, P1887, DOI 10.1007/s10854-014-1816-3 Khan Z, 2016, J MOL LIQ, V222, P272, DOI 10.1016/j.molliq.2016.07.043 Kim YB, 2010, J APPL POLYM SCI, V116, P449, DOI 10.1002/app.31480 Konstantinou IK, 2004, APPL CATAL B-ENVIRON, V49, P1, DOI 10.1016/j.apcatb.2003.11.010 Leonardo C.G.D.S.R., 2017, J COLLOID INTERF SCI, V512, P792 Li H, 2012, RSC ADV, V2, P12413, DOI 10.1039/c2ra21590j Li N, 2014, LIGHT-SCI APPL, V3, DOI 10.1038/lsa.2014.107 Li S, 2017, COLLOID SURFACE A, V535, P215, DOI 10.1016/j.colsurfa.2017.09.028 Li ZX, 2011, TETRAHEDRON, V67, P7096, DOI 10.1016/j.tet.2011.07.008 Liu MH, 2000, REACT FUNCT POLYM, V44, P55, DOI 10.1016/S1381-5148(99)00077-2 Liu XH, 2008, CRYST GROWTH DES, V8, P1916, DOI 10.1021/cg701128b Losev VN, 2015, MICROCHEM J, V123, P84, DOI 10.1016/j.microc.2015.05.022 Lu M, 2020, J PHOTOCH PHOTOBIO B, V205, DOI 10.1016/j.jphotobiol.2020.111842 Maturana HA, 2000, POLYM BULL, V45, P425, DOI 10.1007/s002890070017 Mohapatra SK, 2008, LANGMUIR, V24, P11276, DOI 10.1021/la801253f Okoli CU, 2018, ULTRASON SONOCHEM, V41, P427, DOI 10.1016/j.ultsonch.2017.09.049 Radhu S, 2020, MATER TODAY-PROC, V25, P285, DOI 10.1016/j.matpr.2020.01.413 Rasheed T, 2019, J MOL LIQ, V296, DOI 10.1016/j.molliq.2019.111966 Rasheed T, 2019, COORDIN CHEM REV, V401, DOI 10.1016/j.ccr.2019.213065 Rasheed T, 2019, J MOL LIQ, V292, DOI 10.1016/j.molliq.2019.111425 Rasheed T, 2019, BIOCATAL AGR BIOTECH, V19, DOI 10.1016/j.bcab.2019.101154 Rasheed T, 2019, J MOL LIQ, V282, P489, DOI 10.1016/j.molliq.2019.03.048 Rasheed T, 2019, BIOCATAL AGRIC BIOTE, V17, P696, DOI 10.1016/j.bcab.2019.01.032 Rasheed T, 2019, J MOL LIQ, V274, P461, DOI 10.1016/j.molliq.2018.11.014 Rasheed T, 2019, J LUMIN, V208, P519, DOI 10.1016/j.jlumin.2019.01.032 Rasheed T, 2018, J MOL LIQ, V272, P440, DOI 10.1016/j.molliq.2018.09.112 Rasheed T, 2019, CHEM ENG J, V358, P101, DOI 10.1016/j.cej.2018.09.216 Rasheed T, 2018, SCI TOTAL ENVIRON, V640, P174, DOI 10.1016/j.scitotenv.2018.05.232 Rasheed T, 2018, SCI TOTAL ENVIRON, V615, P476, DOI 10.1016/j.scitotenv.2017.09.126 Reddy YVM, 2018, COLLOID SURFACE A, V546, P293, DOI 10.1016/j.colsurfa.2018.03.032 Salimi F, 2018, OPTIK, V158, P813, DOI 10.1016/j.ijleo.2018.01.006 Saluja P, 2012, TETRAHEDRON, V68, P8551, DOI 10.1016/j.tet.2012.08.022 Sankar M, 2012, CHEM SOC REV, V41, P8099, DOI 10.1039/c2cs35296f Saravanakumar K, 2020, POSTHARVEST BIOL TEC, V160, DOI 10.1016/j.postharvbio.2019.111039 Shanmugaraj K, 2020, SPECTROCHIM ACTA A, V236, DOI 10.1016/j.saa.2020.118281 Shkilnyy A, 2009, ANALYST, V134, P1868, DOI 10.1039/b905694g Sutka A, 2016, SOLID STATE SCI, V56, P54, DOI 10.1016/j.solidstatesciences.2016.04.008 Swaidan A, 2019, SENSOR ACTUAT B-CHEM, V294, P253, DOI 10.1016/j.snb.2019.05.052 Tokman N, 2004, TALANTA, V63, P699, DOI 10.1016/j.talanta.2003.12.018 Tomer VK, 2019, APPL MATER TODAY, V16, P193, DOI 10.1016/j.apmt.2019.05.010 Trindade ASN, 2015, FOOD CHEM, V185, P145, DOI 10.1016/j.foodchem.2015.03.118 Wang DP, 2010, TETRAHEDRON LETT, V51, P2545, DOI 10.1016/j.tetlet.2010.03.013 Wang H, 2015, ANALYST, V140, P5619, DOI 10.1039/c5an00736d Wang HX, 2020, J PHOTOCH PHOTOBIO B, V207, DOI 10.1016/j.jphotobiol.2020.111882 Wang M, 2013, DYES PIGMENTS, V97, P475, DOI 10.1016/j.dyepig.2013.02.005 Wang XK, 2015, COLLOID SURFACE A, V472, P57, DOI 10.1016/j.colsurfa.2015.02.033 Weerasinghe AJ, 2009, TETRAHEDRON LETT, V50, P6407, DOI 10.1016/j.tetlet.2009.08.025 WHO, 2003, CHOROM DRINK WAT WU Z, 2016, ANAL METHODS, V8, P7237 Xu ZC, 2007, J AM CHEM SOC, V129, P8698, DOI 10.1021/ja073057v Yu SJ, 2015, NANO LETT, V15, P6282, DOI 10.1021/acs.nanolett.5b03227 Zada S, 2018, ARTIF CELL NANOMED B, V46, pS471, DOI 10.1080/21691401.2018.1499663 Zhang DM, 2020, MACROMOL BIOSCI, V20, DOI 10.1002/mabi.202000036 Zhang L, 2016, ANAL CHIM ACTA, V947, P23, DOI 10.1016/j.aca.2016.10.011 Zhou ZG, 2008, CHEM COMMUN, P3387, DOI 10.1039/b801503a Zielinska-Jurek A, 2014, J NANOMATER, V2014, DOI 10.1155/2014/208920 NR 79 TC 14 Z9 14 U1 5 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1386-1425 EI 1873-3557 J9 SPECTROCHIM ACTA A JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. PD DEC 15 PY 2020 VL 243 AR 118766 DI 10.1016/j.saa.2020.118766 PG 10 WC Spectroscopy WE Science Citation Index Expanded (SCI-EXPANDED) SC Spectroscopy GA NZ1HV UT WOS:000576843400015 PM 32799187 DA 2023-03-13 ER PT J AU Sillen, WMA Thijs, S Abbamondi, GR Roche, RD Weyens, N White, JC Vangronsveld, J AF Sillen, Wouter M. A. Thijs, Sofie Abbamondi, Gennaro Roberto De la Torre Roche, Roberto Weyens, Nele White, Jason C. Vangronsveld, Jaco TI Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis SO MICROBIOME LA English DT Article DE Plant microbiome; Maize; Silver nanoparticles; Rhizosphere; Metatranscriptome; Phytopathogens ID AMMONIA-OXIDIZING BACTERIA; RHIZOSPHERE MICROBIOME; SILVER NANOPARTICLES; OXIDATIVE STRESS; PATHOGENIC FUNGI; OXALATE OXIDASE; BIOCONTROL; GROWTH; RESISTANCE; ARCHAEA AB Background The beneficial use of nanoparticle silver or nanosilver may be confounded when its potent antimicrobial properties impact non-target members of natural microbiomes such as those present in soil or the plant rhizosphere. Agricultural soils are a likely sink for nanosilver due to its presence in agrochemicals and land-applied biosolids, but a complete assessment of nanosilver's effects on this environment is lacking because the impact on the natural soil microbiome is not known. In a study assessing the use of nanosilver for phytopathogen control with maize, we analyzed the metatranscriptome of the maize rhizosphere and observed multiple unintended effects of exposure to 100 mg kg(-1)nanosilver in soil during a growth period of 117 days. Results We found several unintended effects of nanosilver which could interfere with agricultural systems in the long term. Firstly, the archaea community was negatively impacted with a more than 30% decrease in relative abundance, and as such, their involvement in nitrogen cycling and specifically, nitrification, was compromised. Secondly, certain potentially phytopathogenic fungal groups showed significantly increased abundances, possibly due to the negative effects of nanosilver on bacteria exerting natural biocontrol against these fungi as indicated by negative interactions in a network analysis. Up to 5-fold increases in relative abundance have been observed for certain possibly phytopathogenic fungal genera. Lastly, nanosilver exposure also caused a direct physiological impact on maize as illustrated by increased transcript abundance of aquaporin and phytohormone genes, overall resulting in a stress level with the potential to yield hormetically stimulated plant root growth. Conclusions This study indicates the occurrence of significant unintended effects of nanosilver use on corn, which could turn out to be negative to crop productivity and ecosystem health in the long term. We therefore highlight the need to include the microbiome when assessing the risk associated with nano-enabled agriculture. C1 [Sillen, Wouter M. A.; Thijs, Sofie; Abbamondi, Gennaro Roberto; Weyens, Nele; Vangronsveld, Jaco] Hasselt Univ, Ctr Environm Sci, Agoralaan,Bldg D, B-3590 Diepenbeek, Belgium. [Abbamondi, Gennaro Roberto] Natl Res Council Italy, Inst Biomol Chem, Via Campi Flegrei 34, I-80078 Naples, Italy. [De la Torre Roche, Roberto; White, Jason C.] Connecticut Agr Expt Stn, Dept Analyt Chem, 123 Huntington St, New Haven, CT 06504 USA. [Vangronsveld, Jaco] Marie Curie Sklodowska Univ, Fac Biol & Biotechnol, Dept Plant Physiol, Lublin, Poland. C3 Hasselt University; Connecticut Agricultural Experiment Station; Maria Curie-Sklodowska University RP Sillen, WMA (corresponding author), Hasselt Univ, Ctr Environm Sci, Agoralaan,Bldg D, B-3590 Diepenbeek, Belgium. EM wouter.sillen@uhasselt.be RI Abbamondi, Gennaro Roberto/B-9343-2014; Vangronsveld, Jaco/ABE-5907-2020 OI Abbamondi, Gennaro Roberto/0000-0003-4772-3989; Vangronsveld, Jaco/0000-0003-4423-8363; Sillen, Wouter/0000-0003-1903-7826 FU Hasselt University Bijzonder Onderzoeksfonds Methusalem Project [08M03VGRJ]; USDA [AFRI 2016-6702124985]; USDA Hatch [CONH00147] FX This work was supported by Hasselt University Bijzonder Onderzoeksfonds Methusalem Project 08M03VGRJ. JCW acknowledges USDA AFRI 2016-6702124985 and USDA Hatch CONH00147. W.S., S.T. and N.W. were research fellows and a postdoctoral fellow, respectively, of the Research Foundation-Flanders (FWO). CR [Anonymous], 2016, R LANG ENV STAT COMP Barka EA, 2016, MICROBIOL MOL BIOL R, V80, P1, DOI 10.1128/MMBR.00019-15 Beddow J, 2017, ENVIRON MICROBIOL, V19, P500, DOI 10.1111/1462-2920.13441 Berendsen RL, 2012, TRENDS PLANT SCI, V17, P478, DOI 10.1016/j.tplants.2012.04.001 Berg G, 2014, FRONT MICROBIOL, V5, DOI [10.3389/fmicb.2014.00491, 10.3389/fmicb.2014.00148] Bini E, 2010, FEMS MICROBIOL ECOL, V73, P1, DOI 10.1111/j.1574-6941.2010.00876.x Buchfink B, 2015, NAT METHODS, V12, P59, DOI 10.1038/nmeth.3176 Bull CT, 2002, PLANT DIS, V86, P889, DOI 10.1094/PDIS.2002.86.8.889 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Chaparro JM, 2014, ISME J, V8, P790, DOI 10.1038/ismej.2013.196 Chhipa H, 2017, ENVIRON CHEM LETT, V15, P15, DOI 10.1007/s10311-016-0600-4 Compant S, 2019, J ADV RES, V19, P29, DOI 10.1016/j.jare.2019.03.004 Dahm H, 2015, DENDROBIOLOGY, V74, P13, DOI 10.12657/denbio.074.002 Danish Consumer Counsil, NAN Davis MPA, 2013, METHODS, V63, P41, DOI 10.1016/j.ymeth.2013.06.027 Develey-Riviere MP, 2007, NEW PHYTOL, V175, P405, DOI 10.1111/j.1469-8137.2007.02130.x Dimkpa CO, 2013, ENVIRON SCI TECHNOL, V47, P1082, DOI 10.1021/es302973y Doolette CL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161979 El-Tarabily KA, 2006, SOIL BIOL BIOCHEM, V38, P1505, DOI 10.1016/j.soilbio.2005.12.017 Faust K, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002606 Franke S, 2007, PHYSIOLOGY AND BIOCHEMISTRY OF EXTREMOPHILES, P271 Gottschalk F, 2009, ENVIRON SCI TECHNOL, V43, P9216, DOI 10.1021/es9015553 Gupta A, 1999, NAT MED, V5, P183, DOI 10.1038/5545 Holden PA, 2016, ENVIRON SCI TECHNOL, V50, P6124, DOI 10.1021/acs.est.6b00608 Huson DH, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1004957 Ilic SB, 2007, MICROBIOLOGY+, V76, P421, DOI 10.1134/S0026261707040066 Kanehisa M, 2000, NUCLEIC ACIDS RES, V28, P27, DOI 10.1093/nar/28.1.27 Kopylova E, 2012, BIOINFORMATICS, V28, P3211, DOI 10.1093/bioinformatics/bts611 Lambkin DC, 2003, WATER AIR SOIL POLL, V144, P41, DOI 10.1023/A:1022949015848 Li XF, 2009, PLANT SOIL, V324, P209, DOI 10.1007/s11104-009-9947-7 Lin RZ, 2007, CHEMOSPHERE, V69, P89, DOI 10.1016/j.chemosphere.2007.04.041 Loh JV, 2009, INT WOUND J, V6, P32, DOI 10.1111/j.1742-481X.2008.00563.x Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8 Mahakham W, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08669-5 McMurdie PJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061217 Mendes R, 2013, FEMS MICROBIOL REV, V37, P634, DOI 10.1111/1574-6976.12028 Mertens J, 2009, ISME J, V3, P916, DOI 10.1038/ismej.2009.39 Minot S. S, 2015, ONE CODEX SENSITIVE, DOI [10.1101/027607, DOI 10.1101/027607] Mitchell A, 2015, NUCLEIC ACIDS RES, V43, pD213, DOI 10.1093/nar/gku1243 Nicol GW, 2006, TRENDS MICROBIOL, V14, P207, DOI 10.1016/j.tim.2006.03.004 Niemietz CM, 2002, FEBS LETT, V531, P443, DOI 10.1016/S0014-5793(02)03581-0 Nowack B, 2011, ENVIRON SCI TECHNOL, V45, P1177, DOI 10.1021/es103316q Pinton R, 2007, RHIZOSPHERE BIOCH OR Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pradas del Real AE, 2016, ENVIRON SCI TECHNOL, V50, P1759, DOI 10.1021/acs.est.5b04550 Qian HF, 2013, J ENVIRON SCI, V25, P1947, DOI 10.1016/S1001-0742(12)60301-5 Quast C, 2013, NUCLEIC ACIDS RES, V41, pD590, DOI 10.1093/nar/gks1219 Rho MN, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq747 Roche RD, 2018, NANOIMPACT, V11, P136, DOI 10.1016/j.impact.2018.07.001 Rodriguez PA, 2019, MOL PLANT, V12, P804, DOI 10.1016/j.molp.2019.05.006 Schluesener JK, 2013, ARCH TOXICOL, V87, P569, DOI 10.1007/s00204-012-1007-z Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303 Sillen WMA, 2015, SOIL BIOL BIOCHEM, V91, P14, DOI 10.1016/j.soilbio.2015.08.019 Spang A, 2010, TRENDS MICROBIOL, V18, P331, DOI 10.1016/j.tim.2010.06.003 Staehlin BM, 2016, GENOME BIOL EVOL, V8, P811, DOI 10.1093/gbe/evw031 Valentine DL, 2007, NAT REV MICROBIOL, V5, P316, DOI 10.1038/nrmicro1619 Vasileiadis S, 2012, MICROB ECOL, V64, P1028, DOI 10.1007/s00248-012-0081-3 Wan XQ, 2009, PHYSIOL PLANTARUM, V136, P30, DOI 10.1111/j.1399-3054.2009.01210.x Whipps JM, 2001, J EXP BOT, V52, P487, DOI 10.1093/jexbot/52.suppl_1.487 White JC, 2018, NAT NANOTECHNOL, V13, P627, DOI 10.1038/s41565-018-0223-y Woo EJ, 2000, NAT STRUCT BIOL, V7, P1036 Yin HQ, 2015, SCI REP-UK, V5, DOI 10.1038/srep14266 Zhang LM, 2012, ISME J, V6, P1032, DOI 10.1038/ismej.2011.168 NR 63 TC 14 Z9 14 U1 9 U2 50 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD SEP 9 PY 2020 VL 8 IS 1 AR 127 DI 10.1186/s40168-020-00904-y PG 17 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA NR4RP UT WOS:000571551800001 PM 32907632 OA Green Published, gold DA 2023-03-13 ER PT J AU Ng, LF Ng, LT van Breugel, M Halliwell, B Gruber, J AF Ng, Li Fang Ng, Li Theng van Breugel, Michiel Halliwell, Barry Gruber, Jan TI Mitochondrial DNA Damage Does Not Determine C. elegans Lifespan SO FRONTIERS IN GENETICS LA English DT Article DE mitochondrial DNA; DNA damage; lifespan; healthspan; aging; hormesis; quantitative PCR; radiation ID AGE-DEPENDENT INCREASES; OXIDATIVE DAMAGE; CAENORHABDITIS-ELEGANS; GAMMA-RADIATION; ENERGY-METABOLISM; HYDROGEN-SULFIDE; COMET ASSAY; DILATED CARDIOMYOPATHY; MASS-SPECTROMETRY; PROTEIN CARBONYL AB The mitochondrial free radical theory of aging (mFRTA) proposes that accumulation of oxidative damage to macromolecules in mitochondria is a causative mechanism for aging. Accumulation of mitochondrial DNA (mtDNA) damage may be of particular interest in this context. While there is evidence for age-dependent accumulation of mtDNA damage, there have been only a limited number of investigations into mtDNA damage as a determinant of longevity. This lack of quantitative data regarding mtDNA damage is predominantly due to a lack of reliable assays to measure mtDNA damage. Here, we report adaptation of a quantitative real-time polymerase chain reaction (qRT-PCR) assay for the detection of sequence-specific mtDNA damage in C. elegans and apply this method to investigate the role of mtDNA damage in the aging of nematodes. We compare damage levels in old and young animals and also between wild-type animals and long-lived mutant strains or strains with modifications in ROS detoxification or production rates. We confirm an age-dependent increase in mtDNA damage levels in C. elegans but found that there is no simple relationship between mtDNA damage and lifespan. MtDNA damage levels were high in some mutants with long lifespan (and vice versa). We next investigated mtDNA damage, lifespan and healthspan effects in nematode subjected to exogenously elevated damage (UV- or gamma-radiation induced). We, again, observed a complex relationship between damage and lifespan in such animals. Despite causing a significant elevation in mtDNA damage, gamma-radiation did not shorten the lifespan of nematodes at any of the doses tested. When mtDNA damage levels were elevated significantly using UV-radiation, nematodes did suffer from shorter lifespan at the higher end of exposure tested. However, surprisingly, we also found hormetic lifespan and healthspan benefits in nematodes treated with intermediate doses of UV-radiation, despite the fact that mtDNA damage in these animals was also significantly elevated. Our results suggest that within a wide physiological range, the level of mtDNA damage does not control lifespan in C. elegans. C1 [Ng, Li Fang; Ng, Li Theng; Gruber, Jan] Yale NUS Coll, Sci Div, Ageing Res Lab, Singapore, Singapore. [Ng, Li Theng] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Pharmacol, Singapore, Singapore. [Ng, Li Theng] Natl Univ Singapore, Life Sci Inst, Neurobiol Programme, Singapore, Singapore. [van Breugel, Michiel] Yale NUS Coll, Sci Div, Environm Sci Lab, Singapore, Singapore. [Halliwell, Barry; Gruber, Jan] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore. C3 Yale NUS College; National University of Singapore; National University of Singapore; Yale NUS College; National University of Singapore RP Gruber, J (corresponding author), Yale NUS Coll, Sci Div, Ageing Res Lab, Singapore, Singapore.; Gruber, J (corresponding author), Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore. EM yncjg@nus.edu.sg OI Halliwell, Barry/0000-0002-3560-7123 FU Ministry of Education Singapore [MOE2010-T2-2-048, MOE2014-T2-2-120] FX Financial assistance from the Ministry of Education Singapore (Grants MOE2010-T2-2-048 and MOE2014-T2-2-120) is also acknowledged. CR Adachi H, 1998, J GERONTOL A-BIOL, V53, pB240, DOI 10.1093/gerona/53A.4.B240 ADELMAN R, 1988, P NATL ACAD SCI USA, V85, P2706, DOI 10.1073/pnas.85.8.2706 AGARWAL S, 1994, P NATL ACAD SCI USA, V91, P12332, DOI 10.1073/pnas.91.25.12332 Alexeyev MF, 2004, CLIN SCI, V107, P355, DOI 10.1042/CS20040148 Alexeyev M, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a012641 ALLEN RG, 1982, MECH AGEING DEV, V20, P369, DOI 10.1016/0047-6374(82)90104-X AMES BN, 1993, P NATL ACAD SCI USA, V90, P7915, DOI 10.1073/pnas.90.17.7915 An J, 2011, BMC BIOCHEM, V12, DOI 10.1186/1471-2091-12-2 Bailly A, 2011, CURR CANCER RES, P101, DOI 10.1007/978-1-4419-8044-1_5 Balajee AS, 2000, GENE, V250, P15, DOI 10.1016/S0378-1119(00)00172-4 Bansal A, 2015, P NATL ACAD SCI USA, V112, pE277, DOI 10.1073/pnas.1412192112 Barja G, 2000, FASEB J, V14, P312, DOI 10.1096/fasebj.14.2.312 Bianchi L., 2006, WORMBOOK ONLINE REV Birch-Machin MA, 2006, CLIN EXP DERMATOL, V31, P548, DOI 10.1111/j.1365-2230.2006.02161.x Borek C, 2004, J NUTR, V134, p3207S, DOI 10.1093/jn/134.11.3207S Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2 Bratic I, 2010, BBA-BIOENERGETICS, V1797, P961, DOI 10.1016/j.bbabio.2010.01.004 BRITT AB, 1995, PLANT PHYSIOL, V108, P891, DOI 10.1104/pp.108.3.891 Brys K, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-91 Buisset-Goussen A, 2014, J ENVIRON RADIOACTIV, V137, P190, DOI 10.1016/j.jenvrad.2014.07.014 Cadet J, 1998, FREE RADICAL RES, V29, P541, DOI 10.1080/10715769800300581 Chaubey RC, 2001, MUTAT RES-GEN TOX EN, V490, P187, DOI 10.1016/S1383-5718(00)00166-2 Chung HC, 2001, TOXICOLOGY, V161, P79, DOI 10.1016/S0300-483X(01)00332-8 Cline SD, 2012, BBA-GENE REGUL MECH, V1819, P979, DOI 10.1016/j.bbagrm.2012.06.002 Collins AR, 2008, MUTAGENESIS, V23, P143, DOI 10.1093/mutage/gem051 Collins AR, 1996, ENVIRON HEALTH PERSP, V104, P465, DOI 10.2307/3432805 Cui HJ, 2012, CASE REP ONCOL MED, V2012, DOI 10.1155/2012/296286 Cummings S. R., 2007, Journal of Musculoskeletal & Neuronal Interactions, V7, P340 D'Orazio J, 2013, INT J MOL SCI, V14, P12222, DOI 10.3390/ijms140612222 David DC, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000450 DeLaAsuncion JG, 1996, FASEB J, V10, P333, DOI 10.1096/fasebj.10.2.8641567 Depuydt G, 2016, J GERONTOL A-BIOL, V71, P1553, DOI 10.1093/gerona/glv221 Dhawan A, 2009, ISSUES TOXICOL, V5, P151, DOI 10.1039/9781847559746-00151 Diffey BL, 2018, PHOTOCH PHOTOBIO SCI, V17, P1941, DOI 10.1039/c7pp00228a DIZDAROGLU M, 1992, MUTAT RES, V275, P331, DOI 10.1016/0921-8734(92)90036-O Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Dusinska M, 2008, MUTAGENESIS, V23, P191, DOI 10.1093/mutage/gen007 Edwards JG, 2009, MITOCHONDRION, V9, P31, DOI 10.1016/j.mito.2008.11.004 El-Brolosy MA, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006780 Elchuri S, 2005, ONCOGENE, V24, P367, DOI 10.1038/sj.onc.1208207 Essers PB, 2015, CELL REP, V10, P339, DOI 10.1016/j.celrep.2014.12.029 Flemming AJ, 2000, P NATL ACAD SCI USA, V97, P5285, DOI 10.1073/pnas.97.10.5285 Fong S, 2017, BIOGERONTOLOGY, V18, P189, DOI 10.1007/s10522-016-9672-6 FRAGA CG, 1990, P NATL ACAD SCI USA, V87, P4533, DOI 10.1073/pnas.87.12.4533 Gan W, 2012, FREE RADICAL BIO MED, V52, P1700, DOI 10.1016/j.freeradbiomed.2012.02.016 GEDIK CM, 1992, INT J RADIAT BIOL, V62, P313, DOI 10.1080/09553009214552161 GOVAN HL, 1990, NUCLEIC ACIDS RES, V18, P3823, DOI 10.1093/nar/18.13.3823 Gruber J, 2015, ANTIOXID REDOX SIGN, V23, P256, DOI 10.1089/ars.2014.6210 Gruber J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019444 HALLIWELL B, 1992, FREE RADICAL RES COM, V16, P75, DOI 10.3109/10715769209049161 HALLIWELL B, 1991, FEBS LETT, V281, P9, DOI 10.1016/0014-5793(91)80347-6 Halliwell B., 2015, FREE RADICAL BIO MED, DOI [10.1093/acprof:oso/9780198717478.001, DOI 10.1093/ACPROF:OSO/9780198717478.001] Hamilton ML, 2001, P NATL ACAD SCI USA, V98, P10469, DOI 10.1073/pnas.171202698 Hanawalt PC, 2002, ONCOGENE, V21, P8949, DOI 10.1038/sj.onc.1206096 HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x HARMAN D, 1981, P NATL ACAD SCI-BIOL, V78, P7124, DOI 10.1073/pnas.78.11.7124 HAYAKAWA M, 1993, MOL CELL BIOCHEM, V119, P95, DOI 10.1007/BF00926859 Hemminki K, 2001, IARC Sci Publ, V154, P69 HENNER WD, 1982, J BIOL CHEM, V257, P1750 Herndon LA, 2002, NATURE, V419, P808, DOI 10.1038/nature01135 Hinerfeld D, 2004, J NEUROCHEM, V88, P657, DOI 10.1046/j.1471-4159.2003.02195.x Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385 Honda Y, 2008, EXP GERONTOL, V43, P520, DOI 10.1016/j.exger.2008.02.009 Huang TT, 2001, FREE RADICAL BIO MED, V31, P1101, DOI 10.1016/S0891-5849(01)00694-3 Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006 Hunter SE, 2010, METHODS, V51, P444, DOI 10.1016/j.ymeth.2010.01.033 ISHII N, 1990, MUTAT RES, V237, P165, DOI 10.1016/0921-8734(90)90022-J Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331 Ishii T, 2011, BMB REP, V44, P298, DOI 10.5483/BMBRep.2011.44.5.298 JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 KALINOWSKI DP, 1992, NUCLEIC ACIDS RES, V20, P3485, DOI 10.1093/nar/20.13.3485 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942 Kokoszka JE, 2001, P NATL ACAD SCI USA, V98, P2278, DOI 10.1073/pnas.051627098 Lakshmanan LN, 2018, AGING CELL, V17, DOI 10.1111/acel.12814 Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8 Laws GM, 2001, MUTAT RES-FUND MOL M, V484, P3, DOI 10.1016/S0027-5107(01)00263-9 Lehmann G, 2008, REJUV RES, V11, P409, DOI 10.1089/rej.2008.0676 Lehmann Gilad, 2013, Frontiers in Genetics, V4, P111, DOI 10.3389/fgene.2013.00111 Lenaz G, 1998, BBA-BIOENERGETICS, V1366, P53, DOI 10.1016/S0005-2728(98)00120-0 Lenaz G, 2001, IUBMB LIFE, V52, P159, DOI 10.1080/15216540152845957 Leung MCK, 2013, BMC PHARMACOL TOXICO, V14, DOI 10.1186/2050-6511-14-9 LI YB, 1995, NAT GENET, V11, P376, DOI 10.1038/ng1295-376 Lim KS, 2006, FREE RADICAL BIO MED, V40, P1939, DOI 10.1016/j.freeradbiomed.2006.01.030 Lim KS, 2005, ANN NY ACAD SCI, V1042, P210, DOI 10.1196/annals.1338.023 Loft S, 1996, J MOL MED, V74, P297, DOI 10.1007/BF00207507 Mabon ME, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007937 MECOCCI P, 1993, ANN NEUROL, V34, P609, DOI 10.1002/ana.410340416 MECOCCI P, 1994, ANN NEUROL, V36, P747, DOI 10.1002/ana.410360510 Mecocci P, 1999, FREE RADICAL BIO MED, V26, P303, DOI 10.1016/S0891-5849(98)00208-1 Meyer JN, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-5-r70 Meyer JN, 2010, ECOTOXICOLOGY, V19, P804, DOI 10.1007/s10646-009-0457-4 Miller DL, 2007, P NATL ACAD SCI USA, V104, P20618, DOI 10.1073/pnas.0710191104 Min JH, 2003, RADIAT ENVIRON BIOPH, V42, P189, DOI 10.1007/s00411-003-0205-8 MITCHELL DL, 1989, PHOTOCHEM PHOTOBIOL, V49, P805, DOI 10.1111/j.1751-1097.1989.tb05578.x Modis K, 2013, FASEB J, V27, P601, DOI 10.1096/fj.12-216507 MOLE RH, 1984, BRIT J RADIOL, V57, P355, DOI 10.1259/0007-1285-57-677-355 Moskalev AA, 2013, AGEING RES REV, V12, P661, DOI 10.1016/j.arr.2012.02.001 Ng LT, 2018, BIOCHEM PHARMACOL, V149, P91, DOI 10.1016/j.bcp.2018.01.030 Olive PL, 2006, NAT PROTOC, V1, P23, DOI 10.1038/nprot.2006.5 Poovathingal SK, 2012, NUCLEIC ACIDS RES, V40, DOI 10.1093/nar/gkr1221 Qabazard B, 2014, ANTIOXID REDOX SIGN, V20, P2621, DOI 10.1089/ars.2013.5448 Reddy MV, 2000, REGUL TOXICOL PHARM, V32, P256, DOI 10.1006/rtph.2000.1430 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Roberts SB, 2006, PHYSIOL REV, V86, P651, DOI 10.1152/physrev.00019.2005 Santella RM, 1999, CANCER EPIDEM BIOMAR, V8, P733 Santos Janine H, 2002, Methods Mol Biol, V197, P159, DOI 10.1385/1-59259-284-8:159 Schaffer S, 2011, BIOGERONTOLOGY, V12, P195, DOI 10.1007/s10522-010-9310-7 Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653 Senoo-Matsuda N, 2003, J BIOL CHEM, V278, P22031, DOI 10.1074/jbc.M211377200 Senoo-Matsuda N, 2001, J BIOL CHEM, V276, P41553, DOI 10.1074/jbc.M104718200 Senturker S, 1999, FREE RADICAL BIO MED, V27, P370, DOI 10.1016/S0891-5849(99)00069-6 Serrano J, 1996, RAPID COMMUN MASS SP, V10, P1789, DOI 10.1002/(SICI)1097-0231(199611)10:14<1789::AID-RCM752>3.0.CO;2-6 SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771 Sobkowiak R, 2009, DRUG CHEM TOXICOL, V32, P252, DOI 10.1080/01480540902882184 Stadtman ER, 2006, FREE RADICAL RES, V40, P1250, DOI 10.1080/10715760600918142 Stiernagle Theresa, 2006, WormBook, P1 Strange K, 2007, NAT PROTOC, V2, P1003, DOI 10.1038/nprot.2007.143 STREHLER BL, 1977, TIME CELLS AGING Stuart Jeffrey A, 2014, Longev Healthspan, V3, P4, DOI 10.1186/2046-2395-3-4 Studer A, 2012, INT J PARASITOL, V42, P453, DOI 10.1016/j.ijpara.2012.02.014 Sudprasert W, 2006, INT J HYG ENVIR HEAL, V209, P503, DOI 10.1016/j.ijheh.2006.06.004 Syntichaki P, 2007, ANN NY ACAD SCI, V1119, P289, DOI 10.1196/annals.1404.001 Toren D, 2016, NUCLEIC ACIDS RES, V44, pD1262, DOI 10.1093/nar/gkv1187 Uno M, 2016, NPJ AGING MECH DIS, V2, DOI 10.1038/npjamd.2016.10 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 Van Raamsdonk JM, 2010, ANTIOXID REDOX SIGN, V13, P1911, DOI 10.1089/ars.2010.3215 Van Remmen H, 2003, PHYSIOL GENOMICS, V16, P29, DOI 10.1152/physiolgenomics.00122.2003 Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399 Vina J, 2007, IUBMB LIFE, V59, P249, DOI 10.1080/15216540601178067 von Zglinicki T, 2001, EXP GERONTOL, V36, P1049, DOI 10.1016/S0531-5565(01)00111-5 Walther DM, 2015, CELL, V161, P919, DOI 10.1016/j.cell.2015.03.032 Wang JQ, 2006, J NEUROCHEM, V96, P825, DOI 10.1111/j.1471-4159.2005.03615.x Yanai H, 2018, AGEING RES REV, V41, P18, DOI 10.1016/j.arr.2017.10.004 Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788 Yasuda K, 1999, J GERONTOL A-BIOL, V54, pB47, DOI 10.1093/gerona/54.2.B47 Yasuda K, 2006, MECH AGEING DEV, V127, P763, DOI 10.1016/j.mad.2006.07.002 NR 137 TC 9 Z9 10 U1 1 U2 17 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-8021 J9 FRONT GENET JI Front. Genet. PD APR 12 PY 2019 VL 10 AR 311 DI 10.3389/fgene.2019.00311 PG 17 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Genetics & Heredity GA HT3LG UT WOS:000464464700003 PM 31031801 OA Green Published, gold DA 2023-03-13 ER PT J AU Horowitz, M AF Horowitz, Michal TI Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics? SO FRONTIERS IN PHYSIOLOGY LA English DT Review DE heat acclimation; heat acclimation-mediated cross-tolerance; epigenetic mechanisms of gene expression; HSP72; HIF-1 alpha; attenuated Ca2+ overload injuries ID ISCHEMIC TOLERANCE; SEDENTARY HUMANS; HSP72; REPERFUSION; PERFORMANCE; RESPONSES; MEMORY; STRESS; INJURY; CYTOPROTECTION AB The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce "ON CALL" molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance-HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower "doses" of the stressor, which induce adaptation to higher "doses" of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1 alpha nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1 alpha and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the associated cellular and molecular mechanisms leading to HACT and its difference from short-acting cross-tolerance strategies will be discussed. C1 [Horowitz, Michal] Hebrew Univ Jerusalem, Fac Dent, Lab Environm Physiol, Jerusalem, Israel. C3 Hebrew University of Jerusalem RP Horowitz, M (corresponding author), Hebrew Univ Jerusalem, Fac Dent, Lab Environm Physiol, Jerusalem, Israel. EM m.horowitz@mail.huji.ac.il FU Israel Science Foundation - Academy of Science and Humanities; US-Israel Binational Fund FX The author's research has been supported over the years by the Israel Science Foundation, founded by the Israel Academy of Science and Humanities), and by the US-Israel Binational Fund. CR Adolph EF, 1964, HDB PHYSL 4, P27 Alexander-Shani R, 2017, AM J PHYSIOL-REG I, V312, pR753, DOI 10.1152/ajpregu.00461.2016 Assayag M, 2012, AM J PHYSIOL-REG I, V303, pR870, DOI 10.1152/ajpregu.00155.2012 Assayag M, 2010, CELL STRESS CHAPERON, V15, P651, DOI 10.1007/s12192-010-0178-x Bolli R, 2007, AM J PHYSIOL-HEART C, V292, pH19, DOI 10.1152/ajpheart.00712.2006 Brunt VE, 2016, J PHYSIOL-LONDON, V594, P5329, DOI 10.1113/JP272453 Brunt VE, 2016, J APPL PHYSIOL, V121, P716, DOI 10.1152/japplphysiol.00424.2016 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Canaana H., 2003, THESIS Cheung P, 2000, MOL CELL, V5, P905, DOI 10.1016/S1097-2765(00)80256-7 Chong KY, 2013, BIOCHEM BIOPH RES CO, V430, P774, DOI 10.1016/j.bbrc.2012.11.072 Cohen O., 2002, THESIS Cohen O, 2007, J APPL PHYSIOL, V103, P266, DOI 10.1152/japplphysiol.01351.2006 Das M, 2008, IUBMB LIFE, V60, P199, DOI 10.1002/iub.31 Ely Brett R, 2014, Temperature (Austin), V1, P107, DOI 10.4161/temp.29800 Eynan M, 2002, J APPL PHYSIOL, V93, P2095, DOI 10.1152/japplphysiol.00304.2002 Fregly MJ, 1996, HDB PHYSL ENV PHYSL, P3 Garrett AT, 2012, EUR J APPL PHYSIOL, V112, P1827, DOI 10.1007/s00421-011-2153-3 Gibson OR, 2016, CELL STRESS CHAPERON, V21, P1021, DOI 10.1007/s12192-016-0726-0 Gibson OR, 2015, J APPL PHYSIOL, V119, P889, DOI 10.1152/japplphysiol.00332.2015 Gidday JM, 2015, FRONT NEUROL, V6, DOI 10.3389/fneur.2015.00042 Horowitz M, 2004, J APPL PHYSIOL, V97, P1496, DOI 10.1152/japplphysiol.00306.2004 HOROWITZ M, 1983, COMP BIOCHEM PHYS A, V74, P945, DOI 10.1016/0300-9629(83)90374-2 Horowitz M, 1998, NEWS PHYSIOL SCI, V13, P218 Horowitz M., 2006, APS INT M COMP PHYS Horowitz M, 2016, J APPL PHYSIOL, V120, P702, DOI 10.1152/japplphysiol.00552.2015 Horowitz M, 2014, COMPR PHYSIOL, V4, P199, DOI 10.1002/cphy.c130025 Khoury Nathalie, 2016, J Neurol Neuromedicine, V1, P6 Kodesh E, 2011, AM J PHYSIOL-REG I, V301, pR1786, DOI 10.1152/ajpregu.00465.2011 Lee BJ, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00078 LEVI E, 1993, J APPL PHYSIOL, V75, P833, DOI 10.1152/jappl.1993.75.2.833 Levy E, 1997, AM J PHYSIOL-HEART C, V272, pH2085, DOI 10.1152/ajpheart.1997.272.5.H2085 Li P, 2015, ONCOL REP, V33, P3099, DOI 10.3892/or.2015.3911 Maloyan A, 2005, PHYSIOL GENOMICS, V23, P79, DOI 10.1152/physiolgenomics.00279.2004 Maloyan A, 1999, AM J PHYSIOL-REG I, V276, pR1506, DOI 10.1152/ajpregu.1999.276.5.R1506 Maloyan A, 2002, J APPL PHYSIOL, V93, P107, DOI 10.1152/japplphysiol.01122.2001 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Papandreou I, 2006, CELL METAB, V3, P187, DOI 10.1016/j.cmet.2006.01.012 Pollak A., 1998, J NORWEGIAN SOC C S2, V11, P74 Powers SK, 2014, PHYSIOLOGY, V29, P27, DOI 10.1152/physiol.00030.2013 Racinais S, 2017, AM J PHYSIOL-REG I, V312, pR101, DOI 10.1152/ajpregu.00431.2016 Saleh A, 2000, NAT CELL BIOL, V2, P476, DOI 10.1038/35019510 Schulz C, 2015, TRENDS CELL BIOL, V25, P265, DOI 10.1016/j.tcb.2014.12.001 SELYE H, 1961, AM J PATHOL, V38, P481 Semenza GL, 2011, BBA-MOL CELL RES, V1813, P1263, DOI 10.1016/j.bbamcr.2010.08.006 Shein NA, 2005, J CEREBR BLOOD F MET, V25, P1456, DOI 10.1038/sj.jcbfm.9600142 Storey KB, 2015, J EXP BIOL, V218, P150, DOI 10.1242/jeb.106369 Tetievsky A, 2008, PHYSIOL GENOMICS, V34, P78, DOI 10.1152/physiolgenomics.00215.2007 Tetievsky A, 2014, J APPL PHYSIOL, V117, P1262, DOI 10.1152/japplphysiol.00422.2014 Tetievsky A, 2010, J APPL PHYSIOL, V109, P1552, DOI 10.1152/japplphysiol.00469.2010 Thompson JW, 2013, NEUROTHERAPEUTICS, V10, P789, DOI 10.1007/s13311-013-0202-9 Umschweif G, 2014, J CEREBR BLOOD F MET, V34, P1381, DOI 10.1038/jcbfm.2014.93 WYNDHAM CH, 1976, J APPL PHYSIOL, V40, P779, DOI 10.1152/jappl.1976.40.5.779 Yacobi Assaf, 2014, Temperature (Austin), V1, P57, DOI 10.4161/temp.29719 Yamada PM, 2007, J APPL PHYSIOL, V103, P1196, DOI 10.1152/japplphysiol.00242.2007 Yellon DM, 2003, PHYSIOL REV, V83, P1113, DOI 10.1152/physrev.00009.2003 NR 57 TC 15 Z9 18 U1 2 U2 19 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-042X J9 FRONT PHYSIOL JI Front. Physiol. PD JUL 28 PY 2017 VL 8 AR 548 DI 10.3389/fphys.2017.00548 PG 10 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA FC0MF UT WOS:000406531800001 PM 28804462 OA Green Published, gold DA 2023-03-13 ER PT J AU Macias-Benitez, S Navarro-Torre, S Caballero, P Martin, L Revilla, E Castano, A Parrado, J AF Macias-Benitez, Sandra Navarro-Torre, Salvadora Caballero, Pablo Martin, Luis Revilla, Elisa Castano, Angelica Parrado, Juan TI Biostimulant Capacity of an Enzymatic Extract From Rice Bran Against Ozone-Induced Damage in Capsicum annum SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE ozone; ROS; rice bran; enzymatic extract; MAPK ID ACTIVATED PROTEIN-KINASE; GENE-EXPRESSION; GAMMA-ORYZANOL; OXIDATIVE STRESS; ANTIOXIDANT; ACID; TOCOTRIENOLS; TOLERANCE; CASCADES; HORMESIS AB Ozone is a destructive pollutant, damaging crops, and decreasing crop yield. Therefore, there is great interest in finding strategies to alleviate ozone-induced crop losses. In plants, ozone enters leaves through the stomata and is immediately degraded into reactive oxygen species (ROS), producing ROS stress in plants. ROS stress can be controlled by ROS-scavenging systems that include enzymatic or non-enzymatic mechanisms. Our research group has developed a product from rice bran, a by-product of rice milling which has bioactive molecules that act as an antioxidant compound. This product is a water-soluble rice bran enzymatic extract (RBEE) which preserves all the properties and improves the solubility of proteins and the antioxidant components of rice bran. In previous works, the beneficial properties of RBEE have been demonstrated in animals. However, to date, RBEE has not been used as a protective agent against oxidative damage in agricultural fields. The main goal of this study was to investigate the ability of RBEE to be used as a biostimulant by preventing oxidative damage in plants, after ozone exposure. To perform this investigation, pepper plants (Capsicum annuum) exposed to ozone were treated with RBEE. RBEE protected the ozone-induced damage, as revealed by net photosynthetic rate and the content of photosynthetic pigments. RBEE also decreased the induction of antioxidant enzyme activities in leaves (catalase, superoxide dismutase, and ascorbate peroxidase) due to ozone exposure. ROS generation is a common consequence of diverse cellular traumas that also activate the mitogen-activated protein kinase (MAPK) cascade. Thus, it is known that the ozone damages are triggered by the MAPK cascade. To examine the involvement of the MAPK cascade in the ozone damage CaMPK6-1, CaMPK6-2, and CaMKK5 genes were analyzed by qRT-PCR. The results showed the involvement of the MAPK pathway in both, not only in ozone damage but especially in its protection by RBEE. Taken together, these results support that RBEE protects plants against ozone exposure and its use as a new biostimulant could be proposed. C1 [Macias-Benitez, Sandra; Navarro-Torre, Salvadora; Caballero, Pablo; Martin, Luis; Revilla, Elisa; Castano, Angelica; Parrado, Juan] Univ Seville, Fac Farm, Dept Bioquim & Biol Mol, Seville, Spain. C3 University of Sevilla RP Parrado, J (corresponding author), Univ Seville, Fac Farm, Dept Bioquim & Biol Mol, Seville, Spain. EM parrado@us.es CR Afzal F, 2014, OXIDATIVE DAMAGE TO PLANTS: ANTIOXIDANT NETWORKS AND SIGNALING, P397, DOI 10.1016/B978-0-12-799963-0.00013-7 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Ahkami AH, 2017, RHIZOSPHERE-NETH, V3, P233, DOI 10.1016/j.rhisph.2017.04.012 Ahlfors R, 2004, PLANT J, V40, P512, DOI 10.1111/j.1365-313X.2004.02229.x Ainsworth EA, 2012, ANNU REV PLANT BIOL, V63, P637, DOI 10.1146/annurev-arplant-042110-103829 Archambault D.J., 2000, OZONE PROTECTION PLA, DOI [10.5962/bhl.title.115607, DOI 10.5962/BHL.TITLE.115607] ARNON DI, 1949, PLANT PHYSIOL, V24, P1, DOI 10.1104/pp.24.1.1 Avnery S, 2011, ATMOS ENVIRON, V45, P2297, DOI 10.1016/j.atmosenv.2011.01.002 Bail S, 2008, FOOD CHEM, V108, P1122, DOI 10.1016/j.foodchem.2007.11.063 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bigeard J, 2015, MOL PLANT, V8, P521, DOI 10.1016/j.molp.2014.12.022 Bortolin RC, 2016, ECOTOX ENVIRON SAFE, V129, P16, DOI 10.1016/j.ecoenv.2016.03.004 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Castagna A, 2009, ENVIRON POLLUT, V157, P1461, DOI 10.1016/j.envpol.2008.09.029 Chen JN, 2019, RSC ADV, V9, P40109, DOI 10.1039/c9ra08771k Colla G, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00448 Didyk NP, 2011, ACTA PHYSIOL PLANT, V33, P25, DOI 10.1007/s11738-010-0527-5 Dong CX, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109355 du Jardin P, 2015, SCI HORTIC-AMSTERDAM, V196, P3, DOI 10.1016/j.scienta.2015.09.021 Duarte B, 2015, PLANT PHYSIOL BIOCH, V97, P217, DOI 10.1016/j.plaphy.2015.10.015 ESTERBAUER H, 1990, METHOD ENZYMOL, V186, P407 Foyer CH, 2009, ANTIOXID REDOX SIGN, V11, P861, DOI 10.1089/ars.2008.2177 Franco D, 2007, BIORESOURCE TECHNOL, V98, P3506, DOI 10.1016/j.biortech.2006.11.012 Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016 Goufo P, 2014, FOOD SCI NUTR, V2, P75, DOI 10.1002/fsn3.86 Guo WL, 2012, GENET MOL RES, V11, P4063, DOI 10.4238/2012.September.10.5 Gurav RG, 2013, ENVIRON SCI POLLUT R, V20, P4532, DOI 10.1007/s11356-012-1405-z He M, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.562785 Hettenhausen C, 2015, INSECT SCI, V22, P157, DOI 10.1111/1744-7917.12128 HISCOX JD, 1979, CAN J BOT, V57, P1332, DOI 10.1139/b79-163 Kangasjarvi J, 2005, PLANT CELL ENVIRON, V28, P1021, DOI 10.1111/j.1365-3040.2005.01325.x Komis G, 2011, CURR OPIN PLANT BIOL, V14, P650, DOI 10.1016/j.pbi.2011.07.008 Lemus C, 2014, WHEAT AND RICE IN DISEASE PREVENTION AND HEALTH: BENEFITS, RISKS AND MECHANISMS OF WHOLE GRAINS IN HEALTH PROMOTION, P409, DOI 10.1016/B978-0-12-401716-0.00032-5 Li YH, 2008, FOOD CHEM, V106, P444, DOI 10.1016/j.foodchem.2007.04.067 Liu YK, 2017, REDOX BIOL, V11, P192, DOI 10.1016/j.redox.2016.12.009 Liu YK, 2012, PLANT CELL REP, V31, P1, DOI 10.1007/s00299-011-1130-y Liu ZQ, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00780 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lopez-Jurado J, 2020, ENVIRON EXP BOT, V171, DOI 10.1016/j.envexpbot.2019.103956 Mandal MK, 2012, PLANT CELL, V24, P1654, DOI 10.1105/tpc.112.096768 Massarolo KC, 2017, FOOD CHEM, V228, P43, DOI 10.1016/j.foodchem.2017.01.127 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Miles GP, 2005, ENVIRON POLLUT, V138, P230, DOI 10.1016/j.envpol.2005.04.017 Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016 Minatel IO, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17081107 Oszlanyi R, 2020, INT J BIOL MACROMOL, V161, P864, DOI 10.1016/j.ijbiomac.2020.06.050 Paredes-Paliz K, 2018, PLANT BIOLOGY, V20, P497, DOI 10.1111/plb.12693 Parrado J, 2006, FOOD CHEM, V98, P742, DOI 10.1016/j.foodchem.2005.07.016 Parrado J, 2003, EUR J NUTR, V42, P307, DOI 10.1007/s00394-003-0424-4 Perez-Palaciosa P, 2017, ENVIRON TECHNOL, V38, P2877, DOI 10.1080/09593330.2017.1281350 Perez-Ternero C, 2017, J FUNCT FOODS, V32, P58, DOI 10.1016/j.jff.2017.02.014 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Revilla E, 2013, FOOD CHEM, V136, P526, DOI 10.1016/j.foodchem.2012.08.044 Revilla E, 2009, FOOD RES INT, V42, P387, DOI 10.1016/j.foodres.2009.01.010 Rodriguez-Morgado B, 2015, ENVIRON TECHNOL, V36, P2217, DOI 10.1080/09593330.2015.1024760 Sachdev S, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10020277 Samajova O, 2013, BIOTECHNOL ADV, V31, P118, DOI 10.1016/j.biotechadv.2011.12.002 Samuel MA, 2000, PLANT J, V22, P367, DOI 10.1046/j.1365-313x.2000.00741.x Maria CS, 2016, J CEREAL SCI, V72, P54, DOI 10.1016/j.jcs.2016.09.010 Santa-Maria C, 2010, FOOD CHEM TOXICOL, V48, P83, DOI 10.1016/j.fct.2009.09.019 Sharma P., 2012, J BOT, V2012, P26, DOI [DOI 10.1155/2012/217037, 10.1155/2012/21703] Smekalova V, 2014, BIOTECHNOL ADV, V32, P2, DOI 10.1016/j.biotechadv.2013.07.009 Sofo A, 2015, INT J MOL SCI, V16, P13561, DOI 10.3390/ijms160613561 Vainonen JP, 2015, PLANT CELL ENVIRON, V38, P240, DOI 10.1111/pce.12273 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Xu J, 2015, TRENDS PLANT SCI, V20, P56, DOI 10.1016/j.tplants.2014.10.001 Xu S, 2017, NEW ZEAL J MAR FRESH, V51, P223, DOI 10.1080/00288330.2016.1197286 Xu ZM, 2001, J AGR FOOD CHEM, V49, P2077, DOI 10.1021/jf0012852 Yaeno T, 2004, PLANT J, V40, P931, DOI 10.1111/j.1365-313X.2004.02260.x Yakhin OI, 2017, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.02049 Zdunska K, 2018, SKIN PHARMACOL PHYS, V31, P332, DOI 10.1159/000491755 Zhang Y, 2019, BMC PLANT BIOL, V19, DOI 10.1186/s12870-019-2148-5 NR 74 TC 2 Z9 3 U1 1 U2 3 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD NOV 19 PY 2021 VL 12 AR 749422 DI 10.3389/fpls.2021.749422 PG 13 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA XJ0JW UT WOS:000726486800001 PM 34868133 DA 2023-03-13 ER PT J AU Gonzalez-Paramas, AM Brighenti, V Bertoni, L Marcelloni, L Ayuda-Duran, B Gonzalez-Manzano, S Pellati, F Santos-Buelga, C AF Gonzalez-Paramas, Ana M. Brighenti, Virginia Bertoni, Laura Marcelloni, Laura Ayuda-Duran, Begona Gonzalez-Manzano, Susana Pellati, Federica Santos-Buelga, Celestino TI Assessment of the In Vivo Antioxidant Activity of an Anthocyanin-Rich Bilberry Extract Using theCaenorhabditis elegansModel SO ANTIOXIDANTS LA English DT Article DE Vaccinium myrtillusL; ROS; thermal stress; insulin; IGF-1 signaling; DAF-16; HSF-1 ID VACCINIUM-MYRTILLUS L.; LIFE-SPAN; CAENORHABDITIS-ELEGANS; OXIDATIVE STRESS; METHYLATED METABOLITES; HEALTH-BENEFITS; FREE-RADICALS; RESISTANCE; BIOAVAILABILITY; POLYPHENOLS AB Anthocyanins have been associated with several health benefits, although the responsible mechanisms are not well established yet. In the present study, an anthocyanin-rich extract from bilberry (Vaccinium myrtillusL.) was tested in order to evaluate its capacity to modulate reactive oxygen species (ROS) production and resistance to thermally induced oxidative stress, using the nematodeCaenorhabditis elegansas an in vivo model. The assays were carried out with the wild-type N2 strain and the mutant strainsdaf-16(mu86)I andhsf-1(sy441), which were grown in the presence of two anthocyanin extract concentrations (5 and 10 mu g/mL in the culture medium) and further subjected to thermal stress. The treatment with the anthocyanin extract at 5 mu g/mL showed protective effects on the accumulation of ROS and increased thermal resistance inC. elegans, both in stressed and non-stressed young and aged worms. However, detrimental effects were observed in nematodes treated with 10 mu g/mL, leading to a higher worm mortality rate compared to controls, which was interpreted as a hormetic response. These findings suggested that the effects of the bilberry extract onC. elegansmight not rely on its direct antioxidant capacity, but other mechanisms could also be involved. Additional assays were performed in two mutant strains with loss-of-function for DAF-16 (abnormal DAuer Formation factor 16) and HSF-1 (Heat Shock Factor 1) transcription factors, which act downstream of the insulin/insulin like growth factor-1 (IGF-1) signaling pathway. The results indicated that the modulation of these factors could be behind the improvement in the resistance against thermal stress produced by bilberry anthocyanins in young individuals, whereas they do not totally explain the effects produced in worms in the post-reproductive development stage. Further experiments are needed to continue uncovering the mechanisms behind the biological effects of anthocyanins in living organisms, as well as to establish whether they fall within the hormesis concept. C1 [Gonzalez-Paramas, Ana M.; Ayuda-Duran, Begona; Gonzalez-Manzano, Susana; Santos-Buelga, Celestino] Univ Salamanca, Fac Farm, Unidad Nutr & Bromatol, Grp Invest Polifenoles, Campus Miguel de Unamuno, Salamanca 37007, Spain. [Brighenti, Virginia; Bertoni, Laura; Marcelloni, Laura; Pellati, Federica] Univ Modena & Reggio Emilia, Dept Life Sci, Via G Campi 103, I-41125 Modena, Italy. C3 University of Salamanca; Universita di Modena e Reggio Emilia RP Santos-Buelga, C (corresponding author), Univ Salamanca, Fac Farm, Unidad Nutr & Bromatol, Grp Invest Polifenoles, Campus Miguel de Unamuno, Salamanca 37007, Spain.; Pellati, F (corresponding author), Univ Modena & Reggio Emilia, Dept Life Sci, Via G Campi 103, I-41125 Modena, Italy. EM paramas@usal.es; virginia.brighenti@unimore.it; laurabertoni21@gmail.com; 186958@studenti.unimore.it; bego_ayuda@usal.es; susanagm@usal.es; federica.pellati@unimore.it; csb@usal.es RI Ayuda-Durán, Begoña/AAH-6908-2019; Santos-Buelga, Celestino/A-1071-2008; González-Paramás, Ana M/D-2229-2011; González-Paramás, Ana María/O-3771-2019 OI Ayuda-Durán, Begoña/0000-0001-9001-7399; Santos-Buelga, Celestino/0000-0001-6592-5299; González-Paramás, Ana M/0000-0001-5477-0703; González-Paramás, Ana María/0000-0001-5477-0703; Gonzalez Manzano, Susana/0000-0002-5739-515X FU Spanish Ministerio de Economia y Competitividad (MINECO) [AGL2015-64522-C2]; Fondo Europeo de Desarrollo Regional (FEDER)-Interreg Espana-Portugal Programme [0377_IBERPHENOL_6_E]; University of Modena and Reggio Emilia, Italy FX This research was funded by the Spanish Ministerio de Economia y Competitividad (MINECO Projects AGL2015-64522-C2) and Fondo Europeo de Desarrollo Regional (FEDER)-Interreg Espana-Portugal Programme (Project ref. 0377_IBERPHENOL_6_E). The research was also funded by the Departmental FAR2015 project "Innovative methods for the extraction and chromatographic analysis of bioactive polyphenols in berry fruits" (P.I. Prof. Federica Pellati) by the University of Modena and Reggio Emilia, Italy. CR Ancillotti C, 2016, FOOD CHEM, V204, P176, DOI 10.1016/j.foodchem.2016.02.106 [Anonymous], 2015, DRIED BILB FRUIT VAC Ayuda-Duran B, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8120585 Ayuda-Duran B, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0199483 Basu A, 2010, NUTR REV, V68, P168, DOI 10.1111/j.1753-4887.2010.00273.x Blackwell TK, 2015, FREE RADICAL BIO MED, V88, P290, DOI 10.1016/j.freeradbiomed.2015.06.008 Bruskov VI, 2002, NUCLEIC ACIDS RES, V30, P1354, DOI 10.1093/nar/30.6.1354 Burdulis D, 2009, ACTA POL PHARM, V66, P399 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Castro L, 2001, NUTRITION, V17, P161, DOI 10.1016/S0899-9007(00)00570-0 Chen W, 2013, J PHARM PHARMACOL, V65, P682, DOI 10.1111/jphp.12023 Chen W, 2013, J AGR FOOD CHEM, V61, P3047, DOI 10.1021/jf3054643 Chu W, 2011, HERBAL MED BIOMOLECU, P55, DOI DOI 10.1201/B10787-5 Czank C, 2013, AM J CLIN NUTR, V97, P995, DOI 10.3945/ajcn.112.049247 de Ferrars RM, 2014, MOL NUTR FOOD RES, V58, P490, DOI 10.1002/mnfr.201300322 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 Duenas M, 2013, PHARMACOL RES, V76, P41, DOI 10.1016/j.phrs.2013.07.001 Escribano-Bailon MT, 2002, METHODS IN POLYPHENOL ANALYSIS, P1 Espin S, 2016, FOOD CHEM, V194, P1073, DOI 10.1016/j.foodchem.2015.07.131 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Gonzalez-Manzano S, 2012, J AGR FOOD CHEM, V60, P8911, DOI 10.1021/jf3004256 Griffiths HR, 2005, REDOX REP, V10, P273, DOI 10.1179/135100005X83680 Habanova M, 2016, NUTR RES, V36, P1415, DOI 10.1016/j.nutres.2016.11.010 Halliwell B, 2008, ARCH BIOCHEM BIOPHYS, V476, P107, DOI 10.1016/j.abb.2008.01.028 Hope I. A., 1999, PRACTICAL APPROACH S Hopps E, 2010, NUTR METAB CARDIOVAS, V20, P72, DOI 10.1016/j.numecd.2009.06.002 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Kalt W, 2017, FOOD FUNCT, V8, P4563, DOI [10.1039/C7FO01074E, 10.1039/c7fo01074e] Kampkotter A, 2008, COMP BIOCHEM PHYS B, V149, P314, DOI 10.1016/j.cbpb.2007.10.004 Kampkotter A, 2007, TOXICOLOGY, V234, P113, DOI 10.1016/j.tox.2007.02.006 Kim GH, 2015, EXP NEUROBIOL, V24, P325, DOI 10.5607/en.2015.24.4.325 Lila MA, 2016, ANNU REV FOOD SCI T, V7, P375, DOI 10.1146/annurev-food-041715-033346 Magalhaes LM, 2008, ANAL CHIM ACTA, V613, P1, DOI 10.1016/j.aca.2008.02.047 McGhie TK, 2003, J AGR FOOD CHEM, V51, P4539, DOI 10.1021/jf026206w Meng J, 2017, REDOX BIOL, V11, P365, DOI 10.1016/j.redox.2016.12.026 Milbury PE, 2010, J AGR FOOD CHEM, V58, P3950, DOI 10.1021/jf903529m Murphy C.T., 2013, INSULIN INSULIN GROW Oliveira SR, 2012, J NEUROL SCI, V321, P49, DOI 10.1016/j.jns.2012.07.045 Peixoto H, 2016, J AGR FOOD CHEM, V64, P1283, DOI 10.1021/acs.jafc.5b05812 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Pires TCSP, 2020, CURR PHARM DESIGN, V26, P1917, DOI 10.2174/1381612826666200317132507 Pojer E, 2013, COMPR REV FOOD SCI F, V12, P483, DOI 10.1111/1541-4337.12024 Poole CF, 2003, TRAC-TREND ANAL CHEM, V22, P362, DOI 10.1016/S0165-9936(03)00605-8 Prencipe FP, 2014, J PHARMACEUT BIOMED, V89, P257, DOI 10.1016/j.jpba.2013.11.016 Prior RL, 2005, J AGR FOOD CHEM, V53, P4290, DOI 10.1021/jf0502698 Reis JF, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-1076-5 Santos-Buelga C., 2015, RECENT ADV MED CHEM, P10 Santos-Buelga Celestino, 2012, Methods Mol Biol, V864, P427, DOI 10.1007/978-1-61779-624-1_17 Saul N, 2011, J NAT PROD, V74, P1713, DOI 10.1021/np200011a Saul N, 2009, MECH AGEING DEV, V130, P477, DOI 10.1016/j.mad.2009.05.005 Smeriglio A, 2016, PHYTOTHER RES, V30, P1265, DOI 10.1002/ptr.5642 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Subash S, 2014, NEURAL REGEN RES, V9, P1557, DOI 10.4103/1673-5374.139483 Surco-Laos F, 2012, FOOD RES INT, V46, P514, DOI 10.1016/j.foodres.2011.10.014 Surco-Laos F, 2011, FOOD FUNCT, V2, P445, DOI 10.1039/c1fo10049a Talavera S, 2003, J NUTR, V133, P4178, DOI 10.1093/jn/133.12.4178 Talavera S, 2004, J NUTR, V134, P2275, DOI 10.1093/jn/134.9.2275 Tambara AL, 2018, FOOD CHEM TOXICOL, V120, P639, DOI 10.1016/j.fct.2018.07.057 Tang SY, 2010, BIOCHEM BIOPH RES CO, V394, P1, DOI 10.1016/j.bbrc.2010.02.137 Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001 Walker GA, 2001, J GERONTOL A-BIOL, V56, pB281, DOI 10.1093/gerona/56.7.B281 Wang H, 1999, FREE RADICAL BIO MED, V27, P612, DOI 10.1016/S0891-5849(99)00107-0 Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x Yan FJ, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/7956158 NR 65 TC 6 Z9 6 U1 1 U2 11 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3921 J9 ANTIOXIDANTS-BASEL JI Antioxidants PD JUN PY 2020 VL 9 IS 6 AR 509 DI 10.3390/antiox9060509 PG 16 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science & Technology GA MO0IV UT WOS:000551221900001 PM 32531930 OA Green Published, gold DA 2023-03-13 ER PT J AU Ye, F Zhang, YB Liu, Y Yamada, K Tso, JL Menjivar, JC Tian, JY Yong, WH Schaue, D Mischel, PS Cloughesy, TF Nelson, SF Liau, LM McBride, W Tso, CL AF Ye, Fei Zhang, Yibei Liu, Yue Yamada, Kazunari Tso, Jonathan L. Menjivar, Jimmy C. Tian, Jane Y. Yong, William H. Schaue, Doerthe Mischel, Paul S. Cloughesy, Timothy F. Nelson, Stanley F. Liau, Linda M. McBride, William Tso, Cho-Lea TI Protective Properties of Radio-Chemoresistant Glioblastoma Stem Cell Clones Are Associated with Metabolic Adaptation to Reduced Glucose Dependence SO PLOS ONE LA English DT Article ID DNA-DAMAGE RESPONSE; TUMOR-INITIATING CELLS; BREAST-CANCER CELLS; CALORIC RESTRICTION; LIFE-SPAN; ADAPTIVE RESPONSE; SIRT1; EXPRESSION; HORMESIS; SURVIVAL AB Glioblastoma stem cells (GSC) are a significant cell model for explaining brain tumor recurrence. However, mechanisms underlying their radiochemoresistance remain obscure. Here we show that most clonogenic cells in GSC cultures are sensitive to radiation treatment (RT) with or without temozolomide (TMZ). Only a few single cells survive treatment and regain their self-repopulating capacity. Cells re-populated from treatment-resistant GSC clones contain more clonogenic cells compared to those grown from treatment-sensitive GSC clones, and repeated treatment cycles rapidly enriched clonogenic survival. When compared to sensitive clones, resistant clones exhibited slower tumor development in animals. Upregulated genes identified in resistant clones via comparative expression microarray analysis characterized cells under metabolic stress, including blocked glucose uptake, impaired insulin/Akt signaling, enhanced lipid catabolism and oxidative stress, and suppressed growth and inflammation. Moreover, many upregulated genes highlighted maintenance and repair activities, including detoxifying lipid peroxidation products, activating lysosomal autophagy/ubiquitin-proteasome pathways, and enhancing telomere maintenance and DNA repair, closely resembling the anti-aging effects of caloric/glucose restriction (CR/GR), a nutritional intervention that is known to increase lifespan and stress resistance in model organisms. Although treatment-introduced genetic mutations were detected in resistant clones, all resistant and sensitive clones were subclassified to either proneural (PN) or mesenchymal (MES) glioblastoma subtype based on their expression profiles. Functional assays demonstrated the association of treatment resistance with energy stress, including reduced glucose uptake, fatty acid oxidation (FAO)-dependent ATP maintenance, elevated reactive oxygen species (ROS) production and autophagic activity, and increased AMPK activity and NAD(+) levels accompanied by upregulated mRNA levels of SIRT1/PGC-1 alpha axis and DNA repair genes. These data support the view that treatment resistance may arise from quiescent GSC exhibiting a GR-like phenotype, and suggest that targeting stress response pathways of resistant GSC may provide a novel strategy in combination with standard treatment for glioblastoma. C1 [Ye, Fei; Zhang, Yibei; Liu, Yue; Yamada, Kazunari; Tso, Jonathan L.; Menjivar, Jimmy C.; Tian, Jane Y.; Tso, Cho-Lea] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg Surg Oncol, Los Angeles, CA 90095 USA. [Ye, Fei] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Neurosurg, Wuhan 430074, Hubei, Peoples R China. [Zhang, Yibei] Xiamen Univ, Dept Orthoped, Zhongshan Hosp, Xiamen, Fujian, Peoples R China. [Yamada, Kazunari] Kyushu Univ Hosp, Dept Adv Mol & Cell Therapy, Higashi Ku, Fukuoka 812, Japan. [Yong, William H.; Mischel, Paul S.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA. [Schaue, Doerthe; McBride, William] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiat Oncol, Los Angeles, CA 90095 USA. [Cloughesy, Timothy F.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA. [Nelson, Stanley F.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA. [Liau, Linda M.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurosurg, Los Angeles, CA 90095 USA. [Yong, William H.; Schaue, Doerthe; Mischel, Paul S.; Cloughesy, Timothy F.; Nelson, Stanley F.; Liau, Linda M.; McBride, William; Tso, Cho-Lea] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA. C3 University of California System; University of California Los Angeles; University of California Los Angeles Medical Center; David Geffen School of Medicine at UCLA; Huazhong University of Science & Technology; Xiamen University; University of California System; University of California Los Angeles; University of California Los Angeles Medical Center; David Geffen School of Medicine at UCLA; University of California System; University of California Los Angeles; University of California Los Angeles Medical Center; David Geffen School of Medicine at UCLA; University of California System; University of California Los Angeles; University of California Los Angeles Medical Center; David Geffen School of Medicine at UCLA; University of California System; University of California Los Angeles; University of California Los Angeles Medical Center; David Geffen School of Medicine at UCLA; University of California System; University of California Los Angeles; University of California Los Angeles Medical Center; David Geffen School of Medicine at UCLA; UCLA Jonsson Comprehensive Cancer Center; University of California System; University of California Los Angeles RP Tso, CL (corresponding author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg Surg Oncol, Los Angeles, CA 90095 USA. EM ctso@mednet.ucla.edu RI Cloughesy, Timothy Francis/AGV-1013-2022; Nelson, Stanley F/D-4771-2009 OI Nelson, Stanley F/0000-0002-2082-3114; Yamada, Kazunari/0000-0002-3610-1802; Liau, Linda/0000-0002-4053-0052 FU American Cancer Society [RSG-07-109-01-CCE]; National Cancer Institute [1 R21 CA140912-01]; National Institute of Health [1DP2OD006444-01]; Bradley Zankel Foundation FX This work was supported by grants from the American Cancer Society (RSG-07-109-01-CCE), National Cancer Institute (1 R21 CA140912-01), National Institute of Health (1DP2OD006444-01), and the Bradley Zankel Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Annabi B, 2009, MOL CARCINOGEN, V48, P910, DOI 10.1002/mc.20541 Bao SD, 2006, NATURE, V444, P756, DOI 10.1038/nature05236 Bergamini E, 2007, ANN NY ACAD SCI, V1114, P69, DOI 10.1196/annals.1396.020 Bleau AM, 2009, CELL STEM CELL, V4, P226, DOI 10.1016/j.stem.2009.01.007 Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223 Cabelof DC, 2003, DNA REPAIR, V2, P295, DOI 10.1016/S1568-7864(02)00219-7 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Canto C, 2009, NATURE, V458, P1056, DOI 10.1038/nature07813 Chen D, 2005, SCIENCE, V310, P1641, DOI 10.1126/science.1118357 Chen RH, 2010, CANCER CELL, V17, P362, DOI 10.1016/j.ccr.2009.12.049 Chen ZH, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003316 Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 CRAWFORD DR, 1994, ENVIRON HEALTH PERSP, V102, P25, DOI 10.2307/3432208 Dimova EG, 2008, GENET MOL BIOL, V31, P396, DOI 10.1590/S1415-47572008000300002 Eramo A, 2006, CELL DEATH DIFFER, V13, P1238, DOI 10.1038/sj.cdd.4401872 Facchino S, 2010, J NEUROSCI, V30, P10096, DOI 10.1523/JNEUROSCI.1634-10.2010 Feinendegen LE, 1999, CR ACAD SCI III-VIE, V322, P245, DOI 10.1016/S0764-4469(99)80051-1 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Freije WA, 2004, CANCER RES, V64, P6503, DOI 10.1158/0008-5472.CAN-04-0452 Galli R, 2004, CANCER RES, V64, P7011, DOI 10.1158/0008-5472.CAN-04-1364 Gilbert CA, 2010, CANCER RES, V70, P6870, DOI 10.1158/0008-5472.CAN-10-1378 Hemmati HD, 2003, P NATL ACAD SCI USA, V100, P15178, DOI 10.1073/pnas.2036535100 Hsieh D, 2010, BIOCHEM BIOPH RES CO, V397, P367, DOI 10.1016/j.bbrc.2010.05.145 Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535 Komurov K, 2012, MOL SYST BIOL, V8, DOI 10.1038/msb.2012.25 Lagadec C, 2012, STEM CELLS, V30, P833, DOI 10.1002/stem.1058 Lee CK, 2000, NAT GENET, V25, P294, DOI 10.1038/77046 Lee JE, 2011, EXP GERONTOL, V46, P891, DOI 10.1016/j.exger.2011.07.009 Lewis KN, 2012, GERONTOLOGY, V58, P453, DOI 10.1159/000335966 Li Z, 2009, CANCER CELL, V15, P501, DOI 10.1016/j.ccr.2009.03.018 Liu QH, 2009, J NEURO-ONCOL, V94, P1, DOI 10.1007/s11060-009-9919-z Liu Y, 2011, MOL CANCER RES, V9, P1668, DOI 10.1158/1541-7786.MCR-10-0563 Lomonaco SL, 2009, INT J CANCER, V125, P717, DOI 10.1002/ijc.24402 Mao P, 2013, P NATL ACAD SCI USA, V110, P8644, DOI 10.1073/pnas.1221478110 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 McCord AM, 2009, CLIN CANCER RES, V15, P5145, DOI 10.1158/1078-0432.CCR-09-0263 Murat A, 2008, J CLIN ONCOL, V26, P3015, DOI 10.1200/JCO.2007.15.7164 Nakai E, 2009, CANCER INVEST, V27, P901, DOI 10.3109/07357900801946679 Palacios JA, 2010, J CELL BIOL, V191, P1299, DOI 10.1083/jcb.201005160 Pardo PS, 2011, J BIOL CHEM, V286, P2559, DOI 10.1074/jbc.M110.149153 Piccirillo SGM, 2006, NATURE, V444, P761, DOI 10.1038/nature05349 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rodgers JT, 2005, NATURE, V434, P113, DOI 10.1038/nature03354 Ropolo M, 2009, MOL CANCER RES, V7, P383, DOI 10.1158/1541-7786.MCR-08-0409 Safdie F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044603 Singh SK, 2004, NATURE, V432, P396, DOI 10.1038/nature03128 Stupp R, 2009, LANCET ONCOL, V10, P459, DOI 10.1016/S1470-2045(09)70025-7 Swindell WR, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-585 Vellanki S, 2009, NEOPLASIA, V11, P743, DOI 10.1593/neo.09436 Verhaak RGW, 2010, CANCER CELL, V17, P98, DOI 10.1016/j.ccr.2009.12.020 Wang JL, 2010, STEM CELLS, V28, P17, DOI 10.1002/stem.261 Wang RH, 2008, CANCER CELL, V14, P312, DOI 10.1016/j.ccr.2008.09.001 Yuan XP, 2004, ONCOGENE, V23, P9392, DOI 10.1038/sj.onc.1208311 NR 57 TC 45 Z9 47 U1 3 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 18 PY 2013 VL 8 IS 11 AR e80397 DI 10.1371/journal.pone.0080397 PG 16 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 256KH UT WOS:000327308500132 PM 24260384 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Merrill, RM Frutos, AM AF Merrill, Ray M. Frutos, Aaron M. TI Ecological Evidence for Lower Risk of Lymphoma with Greater Exposure to Sunlight and Higher Altitude SO HIGH ALTITUDE MEDICINE & BIOLOGY LA English DT Article DE altitude; blue light; lymphoma; sunlight exposure; vitamin D ID NON-HODGKIN-LYMPHOMA; AMBIENT ULTRAVIOLET-RADIATION; VITAMIN-D; CANCER-MORTALITY; CIGARETTE-SMOKING; SUBTYPES; COUNTIES; ASSOCIATION; ELEVATION AB Merrill, Ray M., and Aaron M. Frutos. Ecological evidence for lower risk of lymphoma with greater exposure to sunlight and higher altitude. High Alt Med Biol. 20:000-000, 2019. Introduction: Sunlight exposure increases vitamin D-related immune modulation and motility of T lymphocytes. Blue light exposure from the sun can stimulate immune function and help promote healthy circadian rhythm. Hence, greater sunlight exposure may lower the risk of Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Altitude may also lower the risk of these cancers through an oxygen-related mechanism, and because cosmic radiation has less shield from the atmosphere at higher levels, it allows for radiation hormesis. Methods: An ecological study design was used, with county-level lymphoma, sunlight, altitude, urban residency, poverty, smoking, obesity, and leisure-time physical inactivity data for 16 cancer registries (607 counties) in the contiguous United States, 2012-2016. Relative rate estimates were derived from two-level mixed effects Poisson regression models. Results: Higher rates of NHL are associated with being older, male, and white. Higher rates of Hodgkin lymphoma are associated with ages 20 years and older, male, and white or black. The risk of NHL or Hodgkin lymphoma is lower among those living in poverty. Urban residency, smoking, obesity, and physical inactivity are not associated with these cancers. Both increased sunlight exposure and higher altitude are simultaneously associated with lower rates of Hodgkin lymphoma and NHL in adjusted models. The inverse association between sunlight and NHL is more pronounced with higher altitude. The inverse association between sunlight and Hodgkin lymphoma is only in altitudes below 500 m. Conclusions: Greater sunlight exposure and higher altitude are simultaneously associated with lower rates of Hodgkin lymphoma and NHL. The inverse associations are dependent on altitude, with the relationship only in lower altitudes for Hodgkin lymphoma and more pronounced in higher altitude for NHL. C1 [Merrill, Ray M.; Frutos, Aaron M.] Brigham Young Univ, Dept Publ Hlth, Coll Life Sci, 2063 Life Sci Bldg, Provo, UT 84604 USA. C3 Brigham Young University RP Merrill, RM (corresponding author), Brigham Young Univ, Dept Publ Hlth, Coll Life Sci, 2063 Life Sci Bldg, Provo, UT 84604 USA. EM ray_merrill@byu.edu RI Frutos, Aaron/GWC-2043-2022 OI Frutos, Aaron Michael/0000-0001-6948-3918 CR American Cancer Society, 2018, HODGK LYMPH RISK FAC American Cancer Society, 2017, CANC FACTS FIG 2017 [Anonymous], 2016, GEOGR NAM INF SYST [Anonymous], 2012, US SUMMARY 2010 POPU [Anonymous], 2018, NONH LYMPH RISK FACT Baan R, 2009, LANCET ONCOL, V10, P1143, DOI 10.1016/S1470-2045(09)70358-4 Bertrand KA, 2011, CANCER CAUSE CONTROL, V22, P1731, DOI 10.1007/s10552-011-9849-x BOICE JD, 1992, CANCER RES, V52, pS5489 Borchmann S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14805-y Bowen EM, 2016, BRIT J CANCER, V114, P826, DOI 10.1038/bjc.2015.383 Burtscher M, 2014, AGING DIS, V5, P274, DOI 10.14336/AD.2014.0500274 Cahoon EK, 2015, INT J CANCER, V136, pE432, DOI 10.1002/ijc.29237 Centers for Disease Control and Prevention, 2016, COUNT DAT IND Centers for Disease Control and Prevention, 2017, WONDER Chang ET, 2011, BLOOD, V118, P1591, DOI 10.1182/blood-2011-02-336065 Clarke CA, 2005, CANCER EPIDEM BIOMAR, V14, P1441, DOI 10.1158/1055-9965.EPI-04-0567 Dal Maso L, 2006, CANCER EPIDEM BIOMAR, V15, P2078, DOI 10.1158/1055-9965.EPI-06-0308 de Sanjose S, 2004, CANCER EPIDEM BIOMAR, V13, P944 Deeb KK, 2007, NAT REV CANCER, V7, P684, DOI 10.1038/nrc2196 Drake MT, 2010, J CLIN ONCOL, V28, P4191, DOI 10.1200/JCO.2010.28.6674 Dwyer-Lindgren L, 2014, POPUL HEALTH METR, V12, DOI 10.1186/1478-7954-12-5 EB, 2018, ENCY BRITANNICA Etter JL, 2018, LEUKEMIA RES, V69, P7, DOI 10.1016/j.leukres.2018.03.014 Ferreri AJM, 2004, J NATL CANCER I, V96, P586, DOI 10.1093/jnci/djh102 GAIL MH, 1991, JNCI-J NATL CANCER I, V83, P695, DOI 10.1093/jnci/83.10.695 Gallagher JC, 2013, J CLIN ENDOCR METAB, V98, P1137, DOI 10.1210/jc.2012-3106 Grant WB, 2003, RECENT RESULTS CANC, V164, P371 Harris SS, 2006, J NUTR, V136, P1126, DOI 10.1093/jn/136.4.1126 Hart J, 2013, DOSE-RESPONSE, V11, P41, DOI 10.2203/dose-response.11-006.Hart Hart J, 2012, DOSE-RESPONSE, V10, P58, DOI 10.2203/dose-response.10-010.Hart Hart J, 2011, DOSE-RESPONSE, V9, P50, DOI 10.2203/dose-response.09-051.Hart Holick MF, 2007, J BONE MINER RES, V22, pV28, DOI 10.1359/JBMR.07S211 Holt PR, 2002, CANCER EPIDEM BIOMAR, V11, P113 Ingham R.R., 2011, BLOOD, V118, P5198, DOI [10.1182/blood.V118.21.5198.5198, DOI 10.1182/BLOOD.V118.21.5198.5198] International Society for Mountain Medicine, 2006, ALT TUT Kamper-Jorgensen M, 2013, ANN ONCOL, V24, P2245, DOI 10.1093/annonc/mdt218 Kelly JL, 2009, CANCER INVEST, V27, P942, DOI 10.3109/07357900902849632 Larsson SC, 2007, INT J CANCER, V121, P1564, DOI 10.1002/ijc.22762 Lecuit M, 2004, NEW ENGL J MED, V350, P239, DOI 10.1056/NEJMoa031887 Merrill RM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818769484 Moreno J, 2005, J STEROID BIOCHEM, V97, P31, DOI 10.1016/j.jsbmb.2005.06.012 MUELLER NE, 1992, CANCER RES S, V52, pS547 National Cancer Institute, 2018, QUALITY IMPROVEMENT National Cancer Institute, 2018, SEER REG National Cancer Institute DCCPS Surveillance Research Program, SURV EP END RES SEER Nelson RA, 1997, BRIT J CANCER, V76, P1532, DOI 10.1038/bjc.1997.590 PEARCE N, 1992, CANCER RES, V52, pS5496 Phan TX, 2016, SCI REP-UK, V6, DOI 10.1038/srep39479 Purdue MP, 2010, AM J EPIDEMIOL, V172, P58, DOI 10.1093/aje/kwq117 Savvidis C, 2012, MOL MED, V18, P1249, DOI 10.2119/molmed.2012.00077 Schollkopf C, 2008, BLOOD, V111, P5524, DOI 10.1182/blood-2007-08-109611 Thiersch M, 2018, HIGH ALT MED BIOL, V19, P116, DOI 10.1089/ham.2017.0061 Thorne J, 2008, P NUTR SOC, V67, P115, DOI 10.1017/S0029665108006964 United States Census Bureau, 2016, POV CENS BUR MEAS PO US Bureau of the Census, 2013, SMALL AR INC POV EST van der Rhee H, 2013, EUR J CANCER, V49, P1422, DOI 10.1016/j.ejca.2012.11.001 van Leeuwen MT, 2013, INT J CANCER, V133, P944, DOI 10.1002/ijc.28081 Wacker M, 2013, DERM-ENDOCRINOL, V5, DOI [10.4161/derm.24476, 10.4161/derm.24494] WEINBERG CR, 1987, RADIAT RES, V112, P381, DOI 10.2307/3577265 Youk AO, 2012, HIGH ALT MED BIOL, V13, P98, DOI 10.1089/ham.2011.1051 ZAHM SH, 1992, CANCER RES, V52, pS5485 ZIPPIN C, 1995, CANCER, V76, P2343, DOI 10.1002/1097-0142(19951201)76:11<2343::AID-CNCR2820761124>3.0.CO;2-# NR 62 TC 4 Z9 7 U1 1 U2 8 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1527-0297 EI 1557-8682 J9 HIGH ALT MED BIOL JI High Alt. Med. Biol. PD MAR 1 PY 2020 VL 21 IS 1 BP 37 EP 44 DI 10.1089/ham.2019.0054 EA NOV 2019 PG 8 WC Biophysics; Public, Environmental & Occupational Health; Sport Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biophysics; Public, Environmental & Occupational Health; Sport Sciences GA LB8RF UT WOS:000498725600001 PM 31765244 DA 2023-03-13 ER PT J AU Nunn, AVW Bell, JD Guy, GW AF Nunn, Alistair V. W. Bell, Jimmy D. Guy, Geoffrey W. TI Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe? SO NUTRITION & METABOLISM LA English DT Review ID ACTIVATED PROTEIN-KINASE; NF-KAPPA-B; TRANSCRIPTION FACTOR FOXO1; ENDOPLASMIC-RETICULUM STRESS; PROMOTES MITOCHONDRIAL BIOGENESIS; POLYUNSATURATED FATTY-ACIDS; HIGH-DENSITY-LIPOPROTEIN; VISCERAL ADIPOSE-TISSUE; NITRIC-OXIDE SYNTHASE; ACUTE-PHASE REACTANTS AB The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment. C1 [Nunn, Alistair V. W.; Bell, Jimmy D.] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, London W12 OHS, England. [Guy, Geoffrey W.] GW Pharmaceut, Porton Down, Dorset, England. C3 Imperial College London RP Nunn, AVW (corresponding author), Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, Du Cane Rd, London W12 OHS, England. EM alistair.nunn@btconnect.com; jimmy.bell@csc.mrc.ac.uk; gwg@gwpharm.com RI Nunn, Alistair/ABE-2462-2020 OI Bell, Jimmy/0000-0003-3804-1281 FU Medical Research Council [MC_U120061305] Funding Source: Medline; MRC [MC_U120061305] Funding Source: UKRI; Medical Research Council [MC_U120061305] Funding Source: researchfish CR Accurso A, 2008, NUTR METAB, V5, DOI 10.1186/1743-7075-5-9 Adler AS, 2007, GENE DEV, V21, P3244, DOI 10.1101/gad.1588507 Al-Mahroos F, 1998, DIABETES CARE, V21, P936, DOI 10.2337/diacare.21.6.936 Al-Mahroos F, 1999, J R SOC PROMO HEALTH, V119, P251, DOI 10.1177/146642409911900410 Alikhani M, 2005, J BIOL CHEM, V280, P12096, DOI 10.1074/jbc.M412171200 Allard JS, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003211 Andersson U, 2004, J BIOL CHEM, V279, P12005, DOI 10.1074/jbc.C300557200 Andrews ZB, 2008, NATURE, V454, P846, DOI 10.1038/nature07181 Anton S, 2007, CELL SIGNAL, V19, P378, DOI 10.1016/j.cellsig.2006.07.008 Arany Z, 2008, P NATL ACAD SCI USA, V105, P4721, DOI 10.1073/pnas.0800979105 Armstrong MB, 2001, AM J PHYSIOL-ENDOC M, V281, pE1197, DOI 10.1152/ajpendo.2001.281.6.E1197 Athanasiou A, 2007, BIOCHEM BIOPH RES CO, V364, P131, DOI 10.1016/j.bbrc.2007.09.107 Austenaa LMI, 2004, FASEB J, V18, P1255, DOI 10.1096/fj.03-1098fje Bandyopadhyay GK, 2005, DIABETES, V54, P2351, DOI 10.2337/diabetes.54.8.2351 Bao N, 2007, CIRC J, V71, P1622, DOI 10.1253/circj.71.1622 Bastie CC, 2004, DIABETES, V53, P2209, DOI 10.2337/diabetes.53.9.2209 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Bell RA, 2000, DIABETES CARE, V23, P1630, DOI 10.2337/diacare.23.11.1630 Bhatt DL, 2008, AM J CARDIOL, V101, p4D, DOI 10.1016/j.amjcard.2008.02.002 Bjorntorp P, 1999, DRUGS, V58, P13 Blundell JE, 2004, PHYSIOL BEHAV, V82, P21, DOI 10.1016/j.physbeh.2004.04.021 Bowles JT, 1998, MED HYPOTHESES, V51, P179, DOI 10.1016/S0306-9877(98)90079-2 Brady NR, 2004, BIOPHYS J, V87, P2022, DOI 10.1529/biophysj.103.035097 Brett PJ, 2008, CELL MICROBIOL, V10, P487, DOI 10.1111/j.1462-5822.2007.01063.x Briviba K, 2002, J NUTR, V132, P2814, DOI 10.1093/jn/132.9.2814 Brookes PS, 2004, AM J PHYSIOL-CELL PH, V287, pC817, DOI 10.1152/ajpcell.00139.2004 Brownlee M, 2001, NATURE, V414, P813, DOI 10.1038/414813a Bubici C, 2006, ONCOGENE, V25, P6731, DOI 10.1038/sj.onc.1209936 Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Buttner S, 2006, J CELL BIOL, V175, P521, DOI 10.1083/jcb.200608098 Byberg L, 2009, BRIT J SPORT MED, V43, P482, DOI 10.1136/bmj.b688 Carroll AM, 2004, BBA-PROTEINS PROTEOM, V1700, P145, DOI 10.1016/j.bbapap.2004.05.008 Carvalheira JBC, 2005, OBES RES, V13, P48, DOI 10.1038/oby.2005.7 Choi SL, 2001, BIOCHEM BIOPH RES CO, V287, P92, DOI 10.1006/bbrc.2001.5544 Cinti S, 2005, J LIPID RES, V46, P2347, DOI 10.1194/jlr.M500294-JLR200 Civitarese AE, 2007, PLOS MED, V4, P485, DOI 10.1371/journal.pmed.0040076 Coleman CI, 2008, CURR MED RES OPIN, V24, P1359, DOI 10.1185/030079908X292029 Cook SP, 2006, SWISS MED WKLY, V136, P103 Copeland RJ, 2008, AM J PHYSIOL-ENDOC M, V295, pE17, DOI 10.1152/ajpendo.90281.2008 Corton JC, 2005, J GERONTOL A-BIOL, V60, P1494, DOI 10.1093/gerona/60.12.1494 Corton JC, 2004, J BIOL CHEM, V279, P46204, DOI 10.1074/jbc.M406739200 COSGROVE JP, 1987, LIPIDS, V22, P299, DOI 10.1007/BF02533996 Cunningham JT, 2007, NATURE, V450, P736, DOI 10.1038/nature06322 Curioni C, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006162.pub2 Dandona P, 2005, CIRCULATION, V111, P1448, DOI 10.1161/01.CIR.0000158483.13093.9D Dandona Paresh, 2003, Clin Cornerstone, VSuppl 4, pS13 Dann SG, 2007, TRENDS MOL MED, V13, P252, DOI 10.1016/j.molmed.2007.04.002 Das SK, 2007, LIFE SCI, V81, P177, DOI 10.1016/j.lfs.2007.05.005 Daval M, 2006, J PHYSIOL-LONDON, V574, P55, DOI 10.1113/jphysiol.2006.111484 de la Monte SM, 2008, J GASTROEN HEPATOL, V23, pE477, DOI 10.1111/j.1440-1746.2008.05339.x De Souza CT, 2005, ENDOCRINOLOGY, V146, P4192, DOI 10.1210/en.2004-1520 Delerive P, 1999, J BIOL CHEM, V274, P32048, DOI 10.1074/jbc.274.45.32048 Demas GE, 2005, P ROY SOC B-BIOL SCI, V272, P1845, DOI 10.1098/rspb.2005.3126 DI MV, 2008, BRIT J PHARMACOL, V154, P915 DI MV, 2008, NAT NEUROSCI, V8, P585 Dowell P, 2003, J BIOL CHEM, V278, P45485, DOI 10.1074/jbc.M309069200 Doyon C, 2006, DIABETES, V55, P3403, DOI 10.2337/db06-0504 Du XL, 2003, J CLIN INVEST, V112, P1049, DOI 10.1172/JCI200318127 Dulloo AG, 2006, HORM RES, V65, P90, DOI 10.1159/000091512 Dunbar JA, 2008, DIABETES CARE, V31, P2368, DOI 10.2337/dc08-0175 Duncan B B, 2001, Sao Paulo Med J, V119, P122 Eaton SB, 1998, WORLD REV NUTR DIET, V83, P12 EATON SB, 1992, LIPIDS, V27, P814, DOI 10.1007/BF02535856 Echtay KS, 2007, FREE RADICAL BIO MED, V43, P1351, DOI 10.1016/j.freeradbiomed.2007.08.011 Eckardt K, 2009, DIABETOLOGIA, V52, P664, DOI 10.1007/s00125-008-1240-4 Eikelis N, 2005, EXP PHYSIOL, V90, P673, DOI 10.1113/expphysiol.2005.031385 Eizirik DL, 2008, ENDOCR REV, V29, P42, DOI 10.1210/er.2007-0015 Erol A, 2007, BIOESSAYS, V29, P811, DOI 10.1002/bies.20618 Erusalimsky JD, 2007, ARTERIOSCL THROM VAS, V27, P2524, DOI 10.1161/ATVBAHA.107.151167 Esposito K, 2008, INT J IMPOT RES, V20, P358, DOI 10.1038/ijir.2008.9 Essers MAG, 2004, EMBO J, V23, P4802, DOI 10.1038/sj.emboj.7600476 ESTERBAUER H, 1991, FREE RADICAL BIO MED, V11, P81, DOI 10.1016/0891-5849(91)90192-6 Esteve E, 2005, CLIN NUTR, V24, P16, DOI 10.1016/j.clnu.2004.08.004 Evans JL, 2002, ENDOCR REV, V23, P599, DOI 10.1210/er.2001-0039 Fehm HL, 2006, PROG BRAIN RES, V153, P129, DOI 10.1016/S0079-6123(06)53007-9 Fernandez-Real JM, 1999, DIABETOLOGIA, V42, P1367, DOI 10.1007/s001250051451 Flanagan DEH, 2000, EUR J CLIN INVEST, V30, P297 Franks PW, 2005, OBES RES, V13, P1476, DOI 10.1038/oby.2005.178 FREEDLAND ES, 2004, NUTR METAB, V4, P12 Frescas D, 2005, J BIOL CHEM, V280, P20589, DOI 10.1074/jbc.M412357200 Fridlyand LE, 2006, DIABETES OBES METAB, V8, P136, DOI 10.1111/j.1463-1326.2005.00496.x Fridlyand LE, 2006, MED HYPOTHESES, V67, P1034, DOI 10.1016/j.mehy.2006.04.057 Fujita K, 2006, CIRC J, V70, P1437, DOI 10.1253/circj.70.1437 Fulco M, 2008, CELL CYCLE, V7, P3669, DOI 10.4161/cc.7.23.7164 Furukawa S, 2004, J CLIN INVEST, V114, P1752, DOI [10.1172/JCI21625, 10.1172/JCI20042162S] Galli S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002379 Ghosh S, 2006, FREE RADICAL BIO MED, V41, P1413, DOI 10.1016/j.freeradbiomed.2006.07.021 Golay A, 2008, INT J OBESITY, V32, P61, DOI 10.1038/sj.ijo.0803695 Gomes AR, 2008, CELL CYCLE, V7, P3133, DOI 10.4161/cc.7.20.6920 Goude D, 2002, CLIN SCI, V102, P345, DOI 10.1042/cs1020345 Greer EL, 2007, J BIOL CHEM, V282, P30107, DOI 10.1074/jbc.M705325200 Gremlich S, 2005, ENDOCRINOLOGY, V146, P375, DOI 10.1210/en.2004-0667 Gross DN, 2008, ONCOGENE, V27, P2320, DOI 10.1038/onc.2008.25 Gu WD, 2008, ANESTHESIOLOGY, V108, P634, DOI 10.1097/ALN.0b013e3181672590 Guarente L, 2008, CELL, V132, P171, DOI 10.1016/j.cell.2008.01.007 Guarente L, 2006, NATURE, V444, P868, DOI 10.1038/nature05486 Guclu F, 2004, BIOMED PHARMACOTHER, V58, P614, DOI 10.1016/j.biopha.2004.09.005 Haag M, 2005, MED SCI MONITOR, V11, pRA359 Hadi HAR, 2005, VASC HEALTH RISK MAN, V1, P183 HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248 Haluzik MM, 2006, ENDOCRINOLOGY, V147, P4517, DOI 10.1210/en.2005-1624 Han DH, 2004, AM J PHYSIOL-ENDOC M, V286, pE347, DOI 10.1152/ajpendo.00434.2003 Handschin C, 2008, NATURE, V454, P463, DOI 10.1038/nature07206 Hanover JA, 2005, P NATL ACAD SCI USA, V102, P11266, DOI 10.1073/pnas.0408771102 Hansen M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040024 Haussmann MF, 2007, ADV PHYSIOL EDUC, V31, P110, DOI 10.1152/advan.00058.2006 HEYWOOD PF, 1977, AM J CLIN NUTR, V30, P1726, DOI 10.1093/ajcn/30.10.1726 Hilakivi-Clarke L, 2005, J NUTR, V135, p2946S, DOI 10.1093/jn/135.12.2946S Hirasawa A, 2005, NAT MED, V11, P90, DOI 10.1038/nm1168 Hirosumi J, 2002, NATURE, V420, P333, DOI 10.1038/nature01137 Hotamisligil GS, 2006, NATURE, V444, P860, DOI 10.1038/nature05485 Hotamisligil GS, 2005, DIABETES, V54, pS73, DOI 10.2337/diabetes.54.suppl_2.S73 Hou WK, 2007, CHINESE MED J-PEKING, V120, P1704, DOI 10.1097/00029330-200710010-00013 Housley MP, 2008, J BIOL CHEM, V283, P16283, DOI 10.1074/jbc.M802240200 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hu FB, 2003, AM J CLIN NUTR, V78, p544S, DOI 10.1093/ajcn/78.3.544S Hu MCT, 2004, CELL, V117, P225, DOI 10.1016/S0092-8674(04)00302-2 Huang HJ, 2007, J CELL SCI, V120, P2479, DOI 10.1242/jcs.001222 Hudson NJ, 2008, MED HYPOTHESES, V70, P693, DOI 10.1016/j.mehy.2007.05.042 Incerpi S, 2007, J PHARM PHARMACOL, V59, P1711, DOI 10.1211/jpp.59.12.0014 Ito E, 2004, BIOCHEM BIOPH RES CO, V324, P810, DOI 10.1016/j.bbrc.2004.08.238 Jager S, 2007, P NATL ACAD SCI USA, V104, P12017, DOI 10.1073/pnas.0705070104 Jbilo O, 2005, FASEB J, V19, P1567, DOI 10.1096/fj.04-3177fje Jebb SA, 2006, INT J OBESITY, V30, P1160, DOI 10.1038/sj.ijo.0803194 Jeong SK, 2008, J KOREAN MED SCI, V23, P789, DOI 10.3346/jkms.2008.23.5.789 Jimenez C, 2007, J EXP BOT, V58, P1001, DOI 10.1093/jxb/erl260 Kettawan A, 2007, J CLIN BIOCHEM NUTR, V40, P194, DOI 10.3164/jcbn.40.194 Khovidhunkit W, 2004, J LIPID RES, V45, P1169, DOI 10.1194/jlr.R300019-JLR200 Kim JY, 2007, J CLIN INVEST, V117, P2621, DOI 10.1172/JCI31021 Kim JE, 2004, DIABETES, V53, P2748, DOI 10.2337/diabetes.53.11.2748 Kitamura T, 2002, J CLIN INVEST, V110, P1839, DOI 10.1172/JCI200216857 Kitamura T, 2006, NAT MED, V12, P534, DOI 10.1038/nm1392 Klinge CM, 2005, J BIOL CHEM, V280, P7460, DOI 10.1074/jbc.M411565200 Kobayashi Tsuneo, 2005, Journal of Smooth Muscle Research, V41, P283, DOI 10.1540/jsmr.41.283 Kola B, 2005, J BIOL CHEM, V280, P25196, DOI 10.1074/jbc.C500175200 Kola B, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001797 Kraegen EW, 2006, AM J PHYSIOL-ENDOC M, V290, pE471, DOI 10.1152/ajpendo.00316.2005 Kutuk O, 2006, TOXICOL SCI, V90, P120, DOI 10.1093/toxsci/kfj055 Laferrere B, 2006, J CLIN ENDOCR METAB, V91, P2232, DOI 10.1210/jc.2005-0693 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Lai IR, 2008, TRANSPLANTATION, V85, P732, DOI 10.1097/TP.0b013e3181664e70 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lane N, 2008, NATURE, V453, P583, DOI 10.1038/453583a Lankin VZ, 2007, BIOCHEMISTRY-MOSCOW+, V72, P1081, DOI 10.1134/S0006297907100069 Lavrovsky Y, 2000, EXP GERONTOL, V35, P521, DOI 10.1016/S0531-5565(00)00118-2 Lee CH, 2006, P NATL ACAD SCI USA, V103, P3444, DOI 10.1073/pnas.0511253103 Lee JY, 2006, MOL CELLS, V21, P174 Lin JD, 2005, CELL, V120, P261, DOI 10.1016/j.cell.2004.11.043 Lin XY, 2004, J CLIN INVEST, V114, P908, DOI 10.1172/JCI22217 Lin Y, 2001, J BIOL CHEM, V276, P42077, DOI 10.1074/jbc.M107101200 Lin YL, 1997, MOL PHARMACOL, V52, P465, DOI 10.1124/mol.52.3.465 Linnane AW, 2007, BIOGERONTOLOGY, V8, P445, DOI 10.1007/s10522-007-9096-4 Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103 Luchsinger JA, 2007, ARCH NEUROL-CHICAGO, V64, P570, DOI 10.1001/archneur.64.4.570 Ma DWL, 2007, APPL PHYSIOL NUTR ME, V32, P341, DOI 10.1139/H07-036 Maassen JA, 2007, DIABETOLOGIA, V50, P2036, DOI 10.1007/s00125-007-0776-z Malcher-Lopes R, 2008, EUR J PHARMACOL, V583, P322, DOI 10.1016/j.ejphar.2007.12.033 Marcheselli VL, 2003, J BIOL CHEM, V278, P43807, DOI 10.1074/jbc.M305841200 Mastrocola R, 2005, J ENDOCRINOL, V187, P37, DOI 10.1677/joe.1.06269 Mathias S, 1998, BIOCHEM J, V335, P465, DOI 10.1042/bj3350465 Matsuzawa A, 2008, BBA-GEN SUBJECTS, V1780, P1325, DOI 10.1016/j.bbagen.2007.12.011 Mechoulam R, 2002, Sci STKE, V2002, pre5, DOI 10.1126/stke.2002.129.re5 Menon SG, 2007, ONCOGENE, V26, P1101, DOI 10.1038/sj.onc.1209895 Mercader J, 2006, ENDOCRINOLOGY, V147, P5325, DOI 10.1210/en.2006-0760 MODI N, 2009, PEDIAT RES IN PRESS Mootha VK, 2003, NAT GENET, V34, P267, DOI 10.1038/ng1180 Morris BJ, 2005, J HYPERTENS, V23, P1285, DOI 10.1097/01.hjh.0000173509.45363.dd Motaghedi R, 2008, OBESITY, V16, P1727, DOI 10.1038/oby.2008.309 Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 Musaiger AO, 2001, ANN HUM BIOL, V28, P346, DOI 10.1080/030144601300119151 Muzumdar R, 2008, AGING CELL, V7, P438, DOI 10.1111/j.1474-9726.2008.00391.x Nadanaciva S, 2007, TOXICOL APPL PHARM, V223, P277, DOI 10.1016/j.taap.2007.06.003 Nakae J, 2008, DIABETES, V57, P563, DOI 10.2337/db07-0698 Nakai J, 2002, NAT GENET, V32, P245, DOI 10.1038/ng890 Nakamura T, 2008, MOL CELL ENDOCRINOL, V281, P47, DOI 10.1016/j.mce.2007.10.007 Nakano H, 2006, CELL DEATH DIFFER, V13, P730, DOI 10.1038/sj.cdd.4401830 Nalam Roopa L, 2008, J Biol, V7, P23, DOI 10.1186/jbiol84 Narayan KMV, 2007, DIABETES CARE, V30, P1562, DOI 10.2337/dc06-2544 Narkar VA, 2008, CELL, V134, P405, DOI 10.1016/j.cell.2008.06.051 Navab M, 2004, J LIPID RES, V45, P993, DOI 10.1194/jlr.R400001-JLR200 Navarro A, 2007, AM J PHYSIOL-CELL PH, V292, pC670, DOI 10.1152/ajpcell.00213.2006 NEEL JV, 1962, AM J HUM GENET, V14, P353 Nemoto S, 2005, J BIOL CHEM, V280, P16456, DOI 10.1074/jbc.M501485200 Ni YG, 2007, P NATL ACAD SCI USA, V104, P20517, DOI 10.1073/pnas.0610290104 Niedemhofer LJ, 2008, INT J BIOCHEM CELL B, V40, P176, DOI 10.1016/j.biocel.2007.10.008 Nisoli E, 2005, SCIENCE, V310, P314, DOI 10.1126/science.1117728 Nunn Alistair V W, 2007, Nucl Recept, V5, P1 O'Sullivan SE, 2007, BRIT J PHARMACOL, V152, P576, DOI 10.1038/sj.bjp.0707423 Oak MH, 2006, BRIT J PHARMACOL, V149, P283, DOI 10.1038/sj.bjp.0706843 Ochoa JJ, 2007, J GERONTOL A-BIOL, V62, P1211, DOI 10.1093/gerona/62.11.1211 Oh SW, 2005, P NATL ACAD SCI USA, V102, P4494, DOI 10.1073/pnas.0500749102 Olsen GS, 2002, AM J PHYSIOL-ENDOC M, V283, pE965, DOI 10.1152/ajpendo.00118.2002 Packard C, 2002, INT J CLIN PRACT, V56, P761 Parsons PA, 2007, BIOGERONTOLOGY, V8, P613, DOI 10.1007/s10522-007-9101-y Parvinen K, 2005, ACTA BIOTHEOR, V53, P241, DOI 10.1007/s10441-005-2531-5 Pasquali R, 2008, INT J OBESITY, V32, P1764, DOI 10.1038/ijo.2008.129 Pickup JC, 1997, DIABETOLOGIA, V40, P1286, DOI 10.1007/s001250050822 PIETINEN P, 1988, ACTA MED SCAND, P169 Planavila A, 2005, CARDIOVASC RES, V65, P832, DOI 10.1016/j.cardiores.2004.11.011 Porte D, 2005, DIABETES, V54, P1264, DOI 10.2337/diabetes.54.5.1264 Prentice AM, 2003, BMJ-BRIT MED J, V327, P880, DOI 10.1136/bmj.327.7420.880 PSARRA AM, 2008, BIOCH BIOP IN PRESS Ramsey MR, 2006, NAT CELL BIOL, V8, P1213, DOI 10.1038/ncb1106-1213 Rasbach KA, 2008, J PHARMACOL EXP THER, V325, P536, DOI 10.1124/jpet.107.134882 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 RAZMARA A, 2008, J PHARM EXP THER Reagan LP, 2007, CURR OPIN PHARMACOL, V7, P633, DOI 10.1016/j.coph.2007.10.012 REAVEN GM, 1988, DIABETES, V37, P1595, DOI 10.2337/diabetes.37.12.1595 Reilly JM, 2000, BIOCHEM BIOPH RES CO, V277, P541, DOI 10.1006/bbrc.2000.3705 Reznick RM, 2006, J PHYSIOL-LONDON, V574, P33, DOI 10.1113/jphysiol.2006.109512 Rival Y, 2002, EUR J PHARMACOL, V435, P143, DOI 10.1016/S0014-2999(01)01589-8 Rivellese AA, 2003, BIOMED PHARMACOTHER, V57, P84, DOI 10.1016/S0753-3322(03)00003-9 Robert L, 2008, BIOGERONTOLOGY, V9, P119, DOI 10.1007/s10522-007-9122-6 Robinson Irina, 2006, Endocr Pract, V12, P576 Rohas LM, 2007, P NATL ACAD SCI USA, V104, P7933, DOI 10.1073/pnas.0702683104 RORIZ S, 2008, BIOCH BIOP IN PRESS Salih DAM, 2008, CURR OPIN CELL BIOL, V20, P126, DOI 10.1016/j.ceb.2008.02.005 Samuel VT, 2006, DIABETES, V55, P2042, DOI 10.2337/db05-0705 Sandstrom ME, 2006, J PHYSIOL-LONDON, V575, P251, DOI 10.1113/jphysiol.2006.110601 Sasaki J, 2008, CLIN THER, V30, P1089, DOI 10.1016/j.clinthera.2008.05.017 Schafer C, 2007, J LIPID RES, V48, P1550, DOI 10.1194/jlr.M600513-JLR200 Schieke SM, 2006, J BIOL CHEM, V281, P27643, DOI 10.1074/jbc.M603536200 Schmitz-Peiffer C, 1999, J BIOL CHEM, V274, P24202, DOI 10.1074/jbc.274.34.24202 Schrauwen P, 2004, DIABETES, V53, P1412, DOI 10.2337/diabetes.53.6.1412 Schrauwen P, 2002, J EXP BIOL, V205, P2275 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Schwartz MW, 2003, DIABETES, V52, P232, DOI 10.2337/diabetes.52.2.232 Shao HB, 2008, CR BIOL, V331, P433, DOI 10.1016/j.crvi.2008.03.011 Shay NF, 2005, ANNU REV NUTR, V25, P297, DOI 10.1146/annurev.nutr.25.050304.092639 Shi H, 2006, J CLIN INVEST, V116, P3015, DOI 10.1172/JCI28898 SIMON JA, 1995, AM J EPIDEMIOL, V142, P469, DOI 10.1093/oxfordjournals.aje.a117662 Singh U, 2008, AM J CARDIOL, V102, P321, DOI 10.1016/j.amjcard.2008.03.057 Sirikul B, 2006, AM J PHYSIOL-ENDOC M, V291, pE724, DOI 10.1152/ajpendo.00364.2005 Skerrett P J, 2003, Prev Cardiol, V6, P38, DOI 10.1111/j.1520-037X.2003.00959.x Skulachev VP, 1999, BIOCHEMISTRY-MOSCOW+, V64, P1418 Solinas G, 2007, CELL METAB, V6, P386, DOI 10.1016/j.cmet.2007.09.011 Spalding KL, 2008, NATURE, V453, P783, DOI 10.1038/nature06902 Spencer NFL, 1997, INT IMMUNOL, V9, P1581, DOI 10.1093/intimm/9.10.1581 Sreekumar R, 2007, INDIAN J MED RES, V125, P399 St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024 Stein DT, 1997, J CLIN INVEST, V100, P398, DOI 10.1172/JCI119546 Steinberg GR, 2007, CELL CYCLE, V6, P888, DOI 10.4161/cc.6.8.4135 Steiner MA, 2008, PSYCHONEUROENDOCRINO, V33, P54, DOI 10.1016/j.psyneuen.2007.09.008 Stoger R, 2008, BIOESSAYS, V30, P156, DOI 10.1002/bies.20700 Storlien L, 2004, P NUTR SOC, V63, P363, DOI 10.1079/PNS2004349 Storozhevykh TP, 2007, BMC NEUROSCI, V8, DOI 10.1186/1471-2202-8-84 Strazzullo P, 2007, HYPERTENSION, V49, P792, DOI 10.1161/01.HYP.0000259737.43916.42 Suliman HB, 2007, J CELL SCI, V120, P299, DOI 10.1242/jcs.03318 Suliman HB, 2004, CARDIOVASC RES, V64, P279, DOI 10.1016/j.cardiores.2004.07.005 Sullivan PG, 2004, ANN NEUROL, V55, P576, DOI 10.1002/ana.20062 Sun W, 2006, CIRCULATION, V114, P2655, DOI 10.1161/CIRCULATIONAHA.106.630194 Suwa M, 2006, J APPL PHYSIOL, V101, P1685, DOI 10.1152/japplphysiol.00255.2006 Szanto A, 2004, CELL DEATH DIFFER, V11, pS126, DOI 10.1038/sj.cdd.4401533 Taguchi A, 2008, ANNU REV PHYSIOL, V70, P191, DOI 10.1146/annurev.physiol.70.113006.100533 Takamura T, 2007, BIOCHEM BIOPH RES CO, V361, P379, DOI 10.1016/j.bbrc.2007.07.006 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Tedesco L, 2008, DIABETES, V57, P2028, DOI 10.2337/db07-1623 Tham DM, 2002, PHYSIOL GENOMICS, V11, P21, DOI 10.1152/physiolgenomics.00062.2002 Tsalouhidou S, 2006, J ANIM SCI, V84, P2818, DOI 10.2527/jas.2006-031 Tuncman G, 2006, P NATL ACAD SCI USA, V103, P10741, DOI 10.1073/pnas.0603509103 Urayama A, 2008, ENDOCRINOLOGY, V149, P3592, DOI 10.1210/en.2008-0008 Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038 Valerio A, 2006, J CLIN INVEST, V116, P2791, DOI [10.1172/JCI28570, 10.1172/JCI28570.] van der Poorten D, 2008, HEPATOLOGY, V48, P449, DOI 10.1002/hep.22350 VAN LF, 2003, J IMMUNOL, V170, P2932 Varady KA, 2007, J LIPID RES, V48, P2212, DOI 10.1194/jlr.M700223-JLR200 Varady KA, 2007, AM J CLIN NUTR, V86, P7, DOI 10.1093/ajcn/86.1.7 Vellai T, 2009, CELL DEATH DIFFER, V16, P94, DOI 10.1038/cdd.2008.126 Villegas R, 2004, NUTR METAB CARDIOVAS, V14, P233, DOI 10.1016/S0939-4753(04)80049-8 Viveros M. P., 2008, Endocrine Metabolic & Immune Disorders-Drug Targets, V8, P220, DOI 10.2174/187153008785700082 Volek Jeff S, 2005, Nutr Metab (Lond), V2, P31, DOI 10.1186/1743-7075-2-31 Wahba IM, 2007, CLIN J AM SOC NEPHRO, V2, P550, DOI 10.2215/CJN.04071206 Wajchenberg BL, 2000, ENDOCR REV, V21, P697, DOI 10.1210/er.21.6.697 Wallerath T, 2002, CIRCULATION, V106, P1652, DOI 10.1161/01.CIR.0000029925.18593.5C Wang CS, 2007, AM J EPIDEMIOL, V166, P196, DOI 10.1093/aje/kwm061 Wang HQ, 2002, AM J PHYSIOL-ENDOC M, V282, pE1352, DOI 10.1152/ajpendo.00230.2001 Wang MC, 2005, CELL, V121, P115, DOI 10.1016/j.cell.2005.02.030 Webb C, 2003, AM NAT, V161, P181, DOI 10.1086/345858 Weber K, 2002, ENDOCRINOLOGY, V143, P177, DOI 10.1210/en.143.1.177 Weigert C, 2004, J BIOL CHEM, V279, P23942, DOI 10.1074/jbc.M312692200 Weinkove D, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-1 Wijndaele K, 2009, EUR J CLIN NUTR, V63, P421, DOI 10.1038/sj.ejcn.1602944 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Woods SC, 2006, DIABETES, V55, pS114, DOI 10.2337/db06-S015 Wu CH, 2007, INT J OBESITY, V31, P1384, DOI 10.1038/sj.ijo.0803624 Xiao H, 2004, EXP BIOL MED, V229, P479, DOI 10.1177/153537020422900605 Xu HE, 1999, MOL CELL, V3, P397, DOI 10.1016/S1097-2765(00)80467-0 Ye JM, 2001, DIABETES, V50, P411, DOI 10.2337/diabetes.50.2.411 Yeh CH, 2001, DIABETES, V50, P1495, DOI 10.2337/diabetes.50.6.1495 Yin W, 2008, STROKE, V39, P3057, DOI 10.1161/STROKEAHA.108.520114 Yoon JH, 2005, YONSEI MED J, V46, P585, DOI 10.3349/ymj.2005.46.5.585 Young SE, 2006, DIABETES CARE, V29, P2688, DOI 10.2337/dc06-0915 Zang MW, 2006, DIABETES, V55, P2180, DOI 10.2337/db05-1188 Zhang BX, 2006, AM J PHYSIOL-CELL PH, V290, pC1321, DOI 10.1152/ajpcell.00335.2005 Zhang JD, 2006, BIOCHEM J, V397, P519, DOI 10.1042/BJ20050977 Zhang KZ, 2008, NATURE, V454, P455, DOI 10.1038/nature07203 Zhang Y, 2006, PHYSIOL BEHAV, V88, P249, DOI 10.1016/j.physbeh.2006.05.038 Zheng JB, 2000, BRIT J PHARMACOL, V130, P1115, DOI 10.1038/sj.bjp.0703397 Zhou JR, 2007, AM J CLIN NUTR, V86, p817S, DOI 10.1093/ajcn/86.3.817S Zimmer A, 1999, P NATL ACAD SCI USA, V96, P5780, DOI 10.1073/pnas.96.10.5780 Zimmet P, 2005, J ATHEROSCLER THROMB, V12, P295, DOI 10.5551/jat.12.295 Zomer AWM, 2000, J LIPID RES, V41, P1801 Zou MH, 2004, J BIOL CHEM, V279, P43940, DOI 10.1074/jbc.M404421200 2003, WORLD HLTH ORGAN TEC, V916, P149 NR 304 TC 49 Z9 51 U1 0 U2 11 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1743-7075 J9 NUTR METAB JI Nutr. Metab. PD APR 16 PY 2009 VL 6 AR 16 DI 10.1186/1743-7075-6-16 PG 26 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 449IS UT WOS:000266324700001 PM 19371409 OA gold, Green Published, Green Accepted DA 2023-03-13 ER PT J AU Shamseddin, A Crauste, C Durand, E Villeneuve, P Dubois, G Durand, T Vercauteren, J Veas, F AF Shamseddin, Aly Crauste, Celine Durand, Erwann Villeneuve, Pierre Dubois, Gregor Durand, Thierry Vercauteren, Joseph Veas, Francisco TI Resveratrol formulated with a natural deep eutectic solvent inhibits active matrix metalloprotease-9 in hormetic conditions SO EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY LA English DT Article DE Hormesis; MMP-9; Metalloproteases; nADES (natural deep eutectic solvents); Resveratrol ID DOSE-RESPONSE BIOLOGY; CLINICAL-TRIAL; METABOLISM; DELIVERY; SUPPLEMENTATION; TOXICITY; MEDIA; MMP-9; DNA AB Despite the promising anti-oxidant and anti-inflammatory effects of resveratrol (RES) on human health, pre-clinical and clinical studies are frequently disappointing, probably due to its low water-solubility and poor bioavailability. Even though a hormetic mode of action was clearly established for RES, the high doses commonly used to mitigate these issues, lead to adverse effects. Common hallmarks of multiple pathologies results from pathological-enhanced endothelial permeability due to both enhanced inflammation and matrix metalloprotease-9 (aMMP-9) activities. The main aim of this work was to optimize the RES capacity to inhibit aMMP-9 by using a new class of solvents, natural deep eutectic solvents (NADES) for a new RES formulation as compared with dimethyl-sulfoxide (DMSO). To obtain the appropriate NADES, 18 compounds combinations were prepared to select those exhibiting the optimized capacity to dissolve RES. The RES-NADES 1,2-propanediol:choline-chloride:water (PCW, 1:1:1 molar ratio) and compared with RES-DMSO for their aMMP-9-inhibitory capacities. Low concentrations of RES-NADES/PCW formulation exhibited both a biocompatible solubility and a strong increased aMMP-9-inhibitory activity, at least 10-fold, higher than RES-DMSO, reaching its hormetic mode of action. Following in vivo validations, some particular NADES could potentially be considered as the new generation of formulation for druggable compounds. Practical applications: Formulation of resveratrol in Natural Deep Eutectic solvents (NADES) optimizes its capacity to inhibit active matrix metalloprotease-9. The Resveratrol-NADES 1,2-propanediol:choline-was the most efficient and low concentrations exhibited both a biocompatible solubility and an increased aMMP-9-inhibitory activity, at least 10-fold, higher than RES-DMSO. Consequently, the NADES/PCW formulation allowed resveratrol to reach its hormetic mode of action. Following in vivo validations, some particular NADES could potentially be considered as the new generation of formulation for druggable compounds. C1 [Shamseddin, Aly; Dubois, Gregor; Veas, Francisco] Montpellier Univ, Mol Comparat Immunophysiopathol Lab LIPMC, UMR Minist Def, French Res Inst Dev IRD,Fac Pharm, Montpellier, France. [Crauste, Celine; Durand, Thierry; Vercauteren, Joseph] Montpellier Univ, CNRS, UMR 5247, Lab Pharmacognosy,Fac Pharm,IBMM,UM,ENSCM, F-34093 Montpellier, France. [Durand, Erwann; Villeneuve, Pierre] Int French Ctr Agron Res CIRAD, IATE, UMR, Montpellier, France. C3 Institut de Recherche pour le Developpement (IRD); Universite de Montpellier; Centre National de la Recherche Scientifique (CNRS); CNRS - Institute of Chemistry (INC); Ecole nationale superieure de chimie de Montpellier; Universite de Montpellier; Universite de Montpellier RP Vercauteren, J (corresponding author), Montpellier Univ, CNRS, UMR 5247, Lab Pharmacognosy,Fac Pharm,IBMM,UM,ENSCM, F-34093 Montpellier, France.; Veas, F (corresponding author), UMR Minist Def, Mol Comparat Immunophysiopathol Lab LIPMC, French Res Inst Dev IRD, Montpellier, France. EM jvercauteren@univ-montp1.fr; francisco.veas@ird.fr RI Durand, Erwann/ABE-9862-2020; Vercauteren, Joseph/AAF-7151-2019; Villeneuve, Pierre/C-1264-2008 OI Vercauteren, Joseph/0000-0002-0201-1235; DURAND, Erwann/0000-0002-0306-8081; Crauste, Celine/0000-0002-5714-8749; Villeneuve, Pierre/0000-0003-1685-1494 FU Misr University for Science and Technology (MUST), Egypt; IRD; CNRS; CIRAD, France FX This work has been funded by participation of the IRD, the CNRS, the CIRAD, France. AS has been a PhD fellow at IRD supported by Misr University for Science and Technology (MUST), Egypt and IRD. CR Abbott AP, 2004, J AM CHEM SOC, V126, P9142, DOI 10.1021/ja048266j Atanackovic M, 2009, COLLOID SURFACE B, V72, P148, DOI 10.1016/j.colsurfb.2009.03.029 Bansal SS, 2011, CANCER PREV RES, V4, P1158, DOI 10.1158/1940-6207.CAPR-10-0006 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Brasnyo P, 2011, BRIT J NUTR, V106, P383, DOI 10.1017/S0007114511000316 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P1034, DOI 10.1177/0960327110383641 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P977, DOI 10.1177/0960327110383623 Cho SJ, 2012, BRIT J NUTR, V108, P2166, DOI 10.1017/S0007114512000347 Choi YH, 2011, PLANT PHYSIOL, V156, P1701, DOI 10.1104/pp.111.178426 Dai YT, 2013, ANAL CHIM ACTA, V766, P61, DOI 10.1016/j.aca.2012.12.019 Delaunay JC, 2002, J CHROMATOGR A, V964, P123, DOI 10.1016/S0021-9673(02)00355-2 Durand E, 2013, GREEN CHEM, V15, P2275, DOI 10.1039/c3gc40899j Galvao J, 2014, FASEB J, V28, P1317, DOI 10.1096/fj.13-235440 Heeboll S, 2015, PHARMACOL RES, V95-96, P34, DOI 10.1016/j.phrs.2015.03.005 Leighton F, 1999, DRUG EXP CLIN RES, V25, P133 Luplerdlop N, 2006, EMBO REP, V7, P1176, DOI 10.1038/sj.embor.7400814 Magyar K, 2012, CLIN HEMORHEOL MICRO, V50, P179, DOI 10.3233/CH-2011-1424 Mamajanov I, 2010, ANGEW CHEM INT EDIT, V49, P6310, DOI 10.1002/anie.201001561 Marsac D, 2011, VIROL J, V8, DOI 10.1186/1743-422X-8-223 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Misse D, 2001, BLOOD, V98, P541, DOI 10.1182/blood.V98.3.541 MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4 Pan D, 2011, ANAL BIOCHEM, V411, P277, DOI 10.1016/j.ab.2011.01.015 Park SY, 2016, ONCOL REP, V35, P3248, DOI 10.3892/or.2016.4716 Ponzo V, 2014, J TRANSL MED, V12, DOI 10.1186/1479-5876-12-158 Poulsen MM, 2013, DIABETES, V62, P1186, DOI 10.2337/db12-0975 Pujara N, 2017, J COLLOID INTERF SCI, V488, P303, DOI 10.1016/j.jcis.2016.11.015 Ramalingam P, 2016, COLLOID SURFACE B, V139, P52, DOI 10.1016/j.colsurfb.2015.11.050 Richer S, 2014, NUTRIENTS, V6, P4404, DOI 10.3390/nu6104404 Scapagnini G, 2014, J CELL COMMUN SIGNAL, V8, P385, DOI 10.1007/s12079-014-0257-3 Scherer RL, 2008, CANCER METAST REV, V27, P679, DOI 10.1007/s10555-008-9152-9 Soo E, 2016, J COLLOID INTERF SCI, V462, P368, DOI 10.1016/j.jcis.2015.10.022 Summerlin N, 2015, INT J PHARMACEUT, V479, P282, DOI 10.1016/j.ijpharm.2015.01.003 Timmers S, 2011, CELL METAB, V14, P612, DOI 10.1016/j.cmet.2011.10.002 Visioli F, 2014, PHARMACOL RES, V90, P87, DOI 10.1016/j.phrs.2014.08.003 Weiz G, 2016, J MOL CATAL B-ENZYM, V130, P70, DOI 10.1016/j.molcatb.2016.04.010 Weksler BB, 2005, FASEB J, V19, P1872, DOI 10.1096/fj.04-3458fje Zhang YH, 1998, J IMMUNOL, V161, P3071 Zu YG, 2016, DRUG DELIV, V23, P981, DOI 10.3109/10717544.2014.924167 NR 41 TC 21 Z9 21 U1 3 U2 33 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1438-7697 EI 1438-9312 J9 EUR J LIPID SCI TECH JI Eur. J. Lipid Sci. Technol. PD NOV PY 2017 VL 119 IS 11 AR 1700171 DI 10.1002/ejlt.201700171 PG 9 WC Food Science & Technology; Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology; Nutrition & Dietetics GA FL9MY UT WOS:000414581100012 OA Green Submitted DA 2023-03-13 ER PT J AU Agathokleous, E Saitanis, CJ Burkey, KO Ntatsi, G Vougeleka, V Mashaheet, AM Pallides, A AF Agathokleous, Evgenios Saitanis, Costas J. Burkey, Kent O. Ntatsi, Georgia Vougeleka, Vasiliki Mashaheet, Alsayed M. Pallides, Andreas TI Application and further characterization of the snap bean S156/R123 ozone biomonitoring system in relation to ambient air temperature SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Conductance; Density; Diurnal pattem; Hormesis; Stoma ID PHASEOLUS-VULGARIS L.; ETHYLENE DIUREA EDU; CHLOROPHYLL FLUORESCENCE; TROPOSPHERIC O-3; EUROPEAN FORESTS; ABAXIAL STOMATA; MONITORING DATA; RISK-ASSESSMENT; CARBON-DIOXIDE; RESEARCH TOOL AB Increased mixing ratios of ground-level ozone (O-3) threaten individual plants, plant communities and ecosystems. In this sense, O-3 biomonitoring is of great interest The O-3 -sensitive 5156 and the O-3 -tolerant R123 genotypes of snap bean (Phaseolus vulgaris L) have been proposed as a potential tool for active biomonitoring of ambient O-3. In the present study, an O-3 biomonitoring was conducted, with the S156/R123 tool, along with a monitoring of O-3 and other environmental conditions in an urban area in Athens, Greece, during the growing seasons of 2012 and 2013. Plant yield was evaluated to assess the effectiveness of AOT40 in interpreting O-3 -induced phytotoxicity. Across the two genotypes, an approximately two times lower total number of pods - and consequently lower bulk mass of seeds - was found in 2012 than in 2013, although there was no significant difference in the final AOT40 between the two years. No significant differences were observed in the stomatal density or conductance between the two genotypes, whereas it was estimated that, in both genotypes, the abaxial leaf surface contributes 2.7 fold to O-3 intake in comparison to the adaxial one. By testing the role of ambient air temperature in outdoor plant environment chambers (OPECs), it was found that increased temperature limits mature pod formation and complicates interpretation of O-3 impacts in terms of S156/R123 yields ratios. This is the first study providing evidence for a hormetic response of plants to ambient air temperature. This study also points out the complexity of using yield as a measure of O-3 impact across different environments with the snap bean system, whereas visible foliar injury is more consistently related to O-3 effects. (C) 2016 Elsevier B.V. All rights reserved. C1 [Agathokleous, Evgenios] Hokkaido Univ, Sch Agr, Silviculture & Forest Ecol Studies, Sapporo, Hokkaido 0608689, Japan. [Saitanis, Costas J.; Vougeleka, Vasiliki] Agr Univ Athens, Lab Ecol & Environm Sci, Iera Odos 75, Athens, Greece. [Burkey, Kent O.; Mashaheet, Alsayed M.] USDA ARS, Plant Sci Res Unit, Raleigh, NC 27695 USA. [Ntatsi, Georgia] Agr Univ Athens, Lab Vegetable Prod, Iera Odos 75, Athens, Greece. [Mashaheet, Alsayed M.] Damanhour Univ, Fac Agr, Dept Plant Pathol, Damanhour, Egypt. [Pallides, Andreas] Minist Agr, Agr Res Inst, Plant Improvement Sect, CY-1678 Nicosia, Cyprus. C3 Hokkaido University; Agricultural University of Athens; United States Department of Agriculture (USDA); Agricultural University of Athens; Egyptian Knowledge Bank (EKB); Damanhour University RP Saitanis, CJ (corresponding author), Agr Univ Athens, Lab Ecol & Environm Sci, Iera Odos 75, Athens, Greece. EM evgenios_ag@hotmail.com; saitanis@aua.gr; kent.burkey@ars.usda.gov; gntatsi@aua.gr; a.mashaheet@damanhour.edu.eg; pallides@arinetari.gov.cy RI Saitanis, Costas J/N-7549-2017; Mashaheet, Alsayed/T-1376-2019; SAITANIS, Costas/AAK-6423-2021; Ntatsi, Georgia/I-3941-2019; Agathokleous, Evgenios/D-2838-2016 OI Saitanis, Costas J/0000-0001-6077-0806; Mashaheet, Alsayed/0000-0002-6952-3075; SAITANIS, Costas/0000-0001-6077-0806; Ntatsi, Georgia/0000-0002-9045-668X; Agathokleous, Evgenios/0000-0002-0058-4857; Vougeleka, Vasiliki/0000-0003-2944-9373; Pallides, Andreas/0000-0002-0732-9250 CR Agathokleous E, 2016, ENVIRON POLLUT, V213, P996, DOI 10.1016/j.envpol.2015.12.051 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-015-2715-9 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9 Agathokleous E, 2016, SCI TOTAL ENVIRON, V566, P841, DOI 10.1016/j.scitotenv.2016.05.122 Agathokleous E, 2015, J AGRIC METEOROL, V71, P185, DOI 10.2480/agrmet.D-14-00017 Agathokleous E, 2015, J AGRIC METEOROL, V71, P142, DOI 10.2480/agrmet.D-14-00008 Agathokleous E, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-2139-y Akimoto H, 2015, ATMOS ENVIRON, V102, P302, DOI 10.1016/j.atmosenv.2014.12.001 Anav A, 2016, GLOBAL CHANGE BIOL, V22, P1608, DOI 10.1111/gcb.13138 Anderson B., 1990, METHODOLOGICAL ERROR, P147 Besse JP, 2012, TRAC-TREND ANAL CHEM, V36, P113, DOI 10.1016/j.trac.2012.04.004 BOX GEP, 1964, J ROY STAT SOC B, V26, P211, DOI 10.1111/j.2517-6161.1964.tb00553.x Burkey KO, 2012, ENVIRON POLLUT, V166, P167, DOI 10.1016/j.envpol.2012.03.020 Burkey KO, 2005, J ENVIRON QUAL, V34, P1081, DOI 10.2134/jeq2004.0008 Bytnerowicz A, 2007, ENVIRON POLLUT, V147, P438, DOI 10.1016/j.envpol.2006.08.028 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Chameides W., 1992, SURFACE LEVEL OZONE Cohen J., 1988, STAT POWER ANAL BEHA, P590 De Marco A, 2015, ATMOS ENVIRON, V120, P182, DOI 10.1016/j.atmosenv.2015.08.071 Doche C, 2014, ATMOS CHEM PHYS, V14, P10589, DOI 10.5194/acp-14-10589-2014 Driscoll SP, 2006, J EXP BOT, V57, P381, DOI 10.1093/jxb/erj030 Eguchi N, 2006, J PLANT PHYSIOL, V163, P680, DOI 10.1016/j.jplph.2005.09.004 Elagoz V, 2006, ENVIRON POLLUT, V140, P395, DOI 10.1016/j.envpol.2005.08.024 Elagoz V, 2002, ENVIRON POLLUT, V120, P521, DOI 10.1016/S0269-7491(02)00205-1 Evans LS, 1996, ENVIRON EXP BOT, V36, P413, DOI 10.1016/S0098-8472(96)01027-1 Falla J, 2000, ENVIRON MONIT ASSESS, V64, P627, DOI 10.1023/A:1006385924945 Feng ZZ, 2015, ENVIRON POLLUT, V199, P42, DOI 10.1016/j.envpol.2015.01.016 Ferdinand JA, 2000, ENVIRON POLLUT, V108, P297, DOI 10.1016/S0269-7491(99)00078-0 Fiscus EL, 2012, J EXP BOT, V63, P2557, DOI 10.1093/jxb/err443 Flowers MD, 2007, ENVIRON EXP BOT, V61, P190, DOI 10.1016/j.envexpbot.2007.05.009 Fuhrer J, 1997, ENVIRON POLLUT, V97, P91, DOI 10.1016/S0269-7491(97)00067-5 GENTY B, 1989, BIOCHIM BIOPHYS ACTA, V990, P87, DOI 10.1016/S0304-4165(89)80016-9 Grulke NE, 2007, ENVIRON POLLUT, V146, P640, DOI 10.1016/j.envpol.2006.04.014 Grunhage L, 1999, ENVIRON POLLUT, V105, P163, DOI 10.1016/S0269-7491(99)00029-9 Heagle AS, 2002, J ENVIRON QUAL, V31, P2008, DOI 10.2134/jeq2002.2008 Hedges LV., 2014, STAT METHODS META AN Jud W, 2016, ATMOS CHEM PHYS, V16, P277, DOI 10.5194/acp-16-277-2016 KARENLAMPI L, 1996, CRITICAL LEVELS OZON Kiehl JT, 1997, B AM METEOROL SOC, V78, P197, DOI 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2 KIGEL J, 1991, CAN J PLANT SCI, V71, P1233, DOI 10.4141/cjps91-171 Klumpp A, 2006, ATMOS ENVIRON, V40, P7437, DOI 10.1016/j.atmosenv.2006.07.001 Koike T, 2013, DEV ENVIRONM SCI, V13, P371, DOI 10.1016/B978-0-08-098349-3.00017-7 Legge AH, 1995, J APPL BOT-ANGEW BOT, V69, P192 Malley CS, 2015, ATMOS CHEM PHYS, V15, P4025, DOI 10.5194/acp-15-4025-2015 Manning WJ, 2003, ENVIRON POLLUT, V126, P375, DOI 10.1016/S0269-7491(03)00240-9 Matyssek R, 2007, ENVIRON POLLUT, V146, P587, DOI 10.1016/j.envpol.2006.11.011 Matyssek R, 2004, ATMOS ENVIRON, V38, P2271, DOI 10.1016/j.atmosenv.2003.09.078 Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016 Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051 Paoletti E, 2007, ENVIRON POLLUT, V150, P85, DOI 10.1016/j.envpol.2007.06.037 Paoletti E, 2010, ENVIRON POLLUT, V158, P2664, DOI 10.1016/j.envpol.2010.04.024 Reinert RA, 2000, J AM SOC HORTIC SCI, V125, P222, DOI 10.21273/JASHS.125.2.222 Saitanis CJ, 2003, CHEMOSPHERE, V51, P913, DOI 10.1016/S0045-6535(03)00041-9 Saitanis CJ, 2015, J AGRIC METEOROL, V71, P55, DOI 10.2480/agrmet.D-14-00030 Salvatori E, 2013, ENVIRON EXP BOT, V87, P79, DOI 10.1016/j.envexpbot.2012.09.008 TURNER NC, 1970, NEW PHYTOL, V69, P647, DOI 10.1111/j.1469-8137.1970.tb02452.x Vaultier MN, 2015, ENVIRON EXP BOT, V114, P144, DOI [10.1016/j.envexpbot.2014.11.012, 10.] Villanyi V, 2013, CENT EUR J BIOL, V8, P386, DOI 10.2478/s11535-013-0140-2 Wang XN, 2016, J AGRIC METEOROL, V72, P95, DOI 10.2480/agrmet.D-14-00045 Wolf, 1986, METAANALYSIS QUANTIT Yamaguchi Masahiro, 2011, Asian Journal of Atmospheric Environment, V5, P65 NR 62 TC 10 Z9 11 U1 0 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 15 PY 2017 VL 580 BP 1046 EP 1055 DI 10.1016/j.scitotenv.2016.12.059 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA EM5LS UT WOS:000395353600103 PM 27993470 DA 2023-03-13 ER PT J AU Scott, BR AF Scott, Bobby R. TI Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE radiation; risk assessment; LNT; hormesis ID TRANSFORMATION IN-VITRO; ENERGY X-RAYS; NEOPLASTIC TRANSFORMATION; IONIZING-RADIATION; ADAPTIVE RESPONSE; CELLS AB Managing radiation risks typically involves establishing regulations that limit radiation exposure. The linear-no-threshold (LNT) dose-response model has been the traditional regulatory default assumption. According to the LNT model, for low a linear-energy-transfer (LET) radiation-induced stochastic effects (e.g., neoplastic transformation and cancer), the risk increases linearly without a threshold. Any radiation exposure is predicted to increase the number of cancer cases among a large population of people. Cancer risk extrapolation from high to low doses based on this model is widespread. Here, indirect evidence is provided that the excess cancer risk calculated at very low doses of low-LET radiation (e.g., around 1 mGy), based on extrapolating from high dose data for an irradiated human population using the LNT model, is likely a phantom excess risk. Indirect evidence is provided, suggesting that for brief exposures to low-LET radiation doses on the order of 1 mGy, that a decrease below the spontaneous level is many orders of magnitude more probable than for any increase in risk as would be predicted by extrapolating from high to low doses using the LNT model. Such a decrease is, however, not expected after exposure to high-LET alpha radiation. The risk reduction has been largely attributed to the induction of a protective apoptosis-mediated (PAM) process that selectively eliminates cells that contain genomic instability (e.g., mutant and neoplastically transformed cells). The PAM process appears to require a dose-rate-dependent stochastic threshold for activation whose minimum is estimated to possibly be as low as 0.01 mGy for X-rays and gamma rays. However, if the dose is too high (e.g., above 250mGy for brief exposure at a high rate to X-rays or gamma rays), the PAM process is not expected to be activated. For protracted exposure to X-rays or gamma rays, doses as high as 400 mGy (and possibly higher) may activate the PAM process. C1 [Scott, Bobby R.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. C3 Lovelace Respiratory Research Institute RP Scott, BR (corresponding author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA. EM bscott@LRRI.org OI Scott, Bobby/0000-0002-6806-3847 CR Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 Azzam EI, 2004, CURR CANCER DRUG TAR, V4, P53, DOI 10.2174/1568009043481641 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Chengappa KNR, 2004, CNS SPECTRUMS, V9, P6, DOI 10.1017/S109285290000434X Feinendegen LE., 2005, WORLD J NUCL MED, V4, P21 HIGSON DJ, 2004, OPER RAD SAFETY, V87, pS47 Hooker AM, 2004, RADIAT RES, V162, P447, DOI 10.1667/RR3228 Ko SJ, 2004, RADIAT RES, V162, P646, DOI 10.1667/RR3277 Redpath JL, 2003, INT J RADIAT BIOL, V79, P235, DOI 10.1080/0955300031000096306 Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2 Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott Scott BR, 2004, MUTAT RES-FUND MOL M, V568, P129, DOI 10.1016/j.mrfmmm.2004.06.051 SCOTT BR, 2005, DEP EN LOW DOS RAD R NR 13 TC 45 Z9 49 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2008 VL 27 IS 2 BP 163 EP 168 DI 10.1177/0960327107083410 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 310KG UT WOS:000256527200016 PM 18480143 DA 2023-03-13 ER PT J AU Mattson, MP Chan, SL Duan, WZ AF Mattson, MP Chan, SL Duan, WZ TI Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior SO PHYSIOLOGICAL REVIEWS LA English DT Review ID AMYLOID-BETA-PEPTIDE; AMYOTROPHIC-LATERAL-SCLEROSIS; PROTECTS HIPPOCAMPAL-NEURONS; PROSTATE APOPTOSIS RESPONSE-4; TRANSGENIC MOUSE MODEL; MANGANESE SUPEROXIDE-DISMUTASE; CORTICAL SYNAPTIC TERMINALS; CAUSES ALZHEIMERS-DISEASE; LONG-TERM POTENTIATION; EXTRACT EGB 761 AB Multiple molecular, cellular, structural, and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively, or they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. Multiple mechanisms are employed to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands and promote recovery of function after injury. The mechanisms include production of neurotrophic factors and cytokines, expression of various cell survival-promoting proteins (e. g., protein chaperones, antioxidant enzymes, Bcl-2 and inhibitor of apoptosis proteins), preservation of genomic integrity by telomerase and DNA repair proteins, and mobilization of neural stem cells to replace damaged neurons and glia. The aging process challenges such neuroprotective and neurorestorative mechanisms. Genetic and environmental factors superimposed upon the aging process can determine whether brain aging is successful or unsuccessful. Mutations in genes that cause inherited forms of Alzheimer's disease (amyloid precursor protein and presenilins), Parkinson's disease (alpha-synuclein and Parkin), and trinucleotide repeat disorders (huntingtin, androgen receptor, ataxin, and others) overwhelm endogenous neuroprotective mechanisms; other genes, such as those encoding apolipoprotein E-4, have more subtle effects on brain aging. On the other hand, neuroprotective mechanisms can be bolstered by dietary (caloric restriction and folate and antioxidant supplementation) and behavioral (intellectual and physical activities) modifications. At the cellular and molecular levels, successful brain aging can be facilitated by activating a hormesis response in which neurons increase production of neurotrophic factors and stress proteins. Neural stem cells that reside in the adult brain are also responsive to environmental demands and appear capable of replacing lost or dysfunctional neurons and glial cells, perhaps even in the aging brain. The recent application of modern methods of molecular and cellular biology to the problem of brain aging is revealing a remarkable capacity within brain cells for adaptation to aging and resistance to disease. C1 NIA, Neurosci Lab, Gerontol Res Ctr 4F01, Baltimore, MD 21224 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Mattson, MP (corresponding author), NIA, Neurosci Lab, Gerontol Res Ctr 4F01, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA. EM mattsonm@grc.nia.nih.gov RI Duan, Wenzhe/HJY-9687-2023; Mattson, Mark P/F-6038-2012 CR Abeliovich A, 2000, NEURON, V25, P239, DOI 10.1016/S0896-6273(00)80886-7 Adair JC, 2001, NEUROLOGY, V57, P1515, DOI 10.1212/WNL.57.8.1515 ALBIN RL, 1989, TRENDS NEUROSCI, V12, P366, DOI 10.1016/0166-2236(89)90074-X ALLSOPP TE, 1995, EUR J NEUROSCI, V7, P1266, DOI 10.1111/j.1460-9568.1995.tb01116.x Altar CA, 1999, TRENDS PHARMACOL SCI, V20, P59, DOI 10.1016/S0165-6147(99)01309-7 Ancolio K, 1997, J NEUROCHEM, V69, P2494, DOI 10.1046/j.1471-4159.1997.69062494.x Andreassen OA, 2001, NEUROBIOL DIS, V8, P479, DOI 10.1006/nbdi.2001.0406 Andreassen OA, 2001, EXP NEUROL, V168, P419, DOI 10.1006/exnr.2001.7633 Ashrafi K, 2000, GENE DEV, V14, P1872 Bartke A, 2001, J GERONTOL A-BIOL, V56, pB340, DOI 10.1093/gerona/56.8.B340 Bastianetto S, 2000, EUR J NEUROSCI, V12, P1882, DOI 10.1046/j.1460-9568.2000.00069.x BEAL MF, 1994, ANN NEUROL, V36, P882, DOI 10.1002/ana.410360613 Beal MF, 1998, BRAIN RES, V783, P109, DOI 10.1016/S0006-8993(97)01192-X Beere HM, 2000, NAT CELL BIOL, V2, P469, DOI 10.1038/35019501 Begley JG, 1999, J NEUROCHEM, V72, P1030, DOI 10.1046/j.1471-4159.1999.0721030.x Bell C, 2001, BRIT J PSYCHIAT, V178, P399, DOI 10.1192/bjp.178.5.399 BELL IR, 1990, BIOL PSYCHIAT, V27, P125, DOI 10.1016/0006-3223(90)90642-F BenAri Y, 1997, TRENDS NEUROSCI, V20, P523, DOI 10.1016/S0166-2236(97)01147-8 BertoniFreddari C, 1996, GERONTOLOGY, V42, P170 Betarbet R, 2000, NAT NEUROSCI, V3, P1301, DOI 10.1038/81834 Bjorklund A, 2000, NOVART FDN SYMP, V231, P7 BLACK JE, 1989, DEV PSYCHOBIOL, V22, P727, DOI 10.1002/dev.420220707 Blanc EM, 1997, J NEUROCHEM, V69, P570 Blass JP, 2000, ANN NY ACAD SCI, V924, P170 Bodnar AG, 1998, SCIENCE, V279, P349, DOI 10.1126/science.279.5349.349 Bottiglieri T, 1996, NUTR REV, V54, P382, DOI 10.1111/j.1753-4887.1996.tb03851.x Boutell JM, 1998, HUM MOL GENET, V7, P371, DOI 10.1093/hmg/7.3.371 BRATTSTROM L, 1992, EUR J CLIN INVEST, V22, P214, DOI 10.1111/j.1365-2362.1992.tb01829.x BRATTSTROM L, 1994, J INTERN MED, V236, P633, DOI 10.1111/j.1365-2796.1994.tb00856.x Brochu M, 2000, J Cardiopulm Rehabil, V20, P96, DOI 10.1097/00008483-200003000-00003 BRONNER LL, 1995, NEW ENGL J MED, V333, P1392, DOI 10.1056/NEJM199511233332106 Bruce-Keller AJ, 1999, ANN NEUROL, V45, P8, DOI 10.1002/1531-8249(199901)45:1<8::AID-ART4>3.0.CO;2-V Bui NT, 2001, J CELL BIOL, V152, P753, DOI 10.1083/jcb.152.4.753 Bullock R, 1995, ANN NY ACAD SCI, V765, P272, DOI 10.1111/j.1749-6632.1995.tb16584.x Butterfield DA, 1997, P NATL ACAD SCI USA, V94, P674, DOI 10.1073/pnas.94.2.674 Cakatay U, 2001, EXP GERONTOL, V36, P221, DOI 10.1016/S0531-5565(00)00197-2 Cameron HA, 1998, NEUROSCIENCE, V82, P349 Caruso C, 2001, MECH AGEING DEV, V122, P445, DOI 10.1016/S0047-6374(00)00255-4 Catto AJ, 2001, NEUROLOGY, V57, pS24, DOI 10.1212/WNL.57.suppl_2.S24 Chan SL, 2000, J BIOL CHEM, V275, P18195, DOI 10.1074/jbc.M000040200 Chan SL, 1999, J NEUROSCI RES, V57, P315, DOI 10.1002/(SICI)1097-4547(19990801)57:3<315::AID-JNR3>3.0.CO;2-# CHAN SL, IN PRESS NEUROMOL ME Chapman PF, 1999, NAT NEUROSCI, V2, P271, DOI 10.1038/6374 CHARTIERHARLIN MC, 1991, NATURE, V353, P844, DOI 10.1038/353844a0 Checkoway H, 1998, NEUROTOXICOLOGY, V19, P635 Chen M, 1997, FEBS LETT, V417, P163, DOI 10.1016/S0014-5793(97)01214-3 Chen ZT, 2001, HUM MOL GENET, V10, P433, DOI 10.1093/hmg/10.5.433 CHENG B, 1992, J NEUROSCI, V12, P1558 Cherny RA, 2001, NEURON, V30, P665, DOI 10.1016/S0896-6273(01)00317-8 Citron M, 2000, MOL MED TODAY, V6, P392, DOI 10.1016/S1357-4310(00)01759-7 Clarke R, 1998, ARCH NEUROL-CHICAGO, V55, P1449, DOI 10.1001/archneur.55.11.1449 Cohen-Salmon C, 1997, J PHYSIOL-PARIS, V91, P291, DOI 10.1016/S0928-4257(97)82409-6 Cooper B, 2001, BRIT J PSYCHIAT, V178, pS91, DOI 10.1192/bjp.178.40.s91 Cournil A, 2001, TRENDS GENET, V17, P233, DOI 10.1016/S0168-9525(01)02306-X Cucchiara B, 2001, J NEUROL SCI, V187, P81, DOI 10.1016/S0022-510X(01)00529-9 Culmsee C, 2001, J NEUROCHEM, V77, P220, DOI 10.1046/j.1471-4159.2001.00220.x da Costa CA, 2000, J BIOL CHEM, V275, P24065, DOI 10.1074/jbc.M002413200 Daniels J, 1998, HUM BIOL, V70, P281 Darnell RB, 1998, NEURON, V21, P947, DOI 10.1016/S0896-6273(00)80613-3 Davous P, 1998, EUR J NEUROL, V5, P219, DOI 10.1046/j.1468-1331.1998.530219.x De Benedictis G, 2000, ANN NY ACAD SCI, V908, P208 De Strooper B, 1999, NATURE, V398, P518, DOI 10.1038/19083 Del Dotto P, 2001, MOVEMENT DISORD, V16, P515, DOI 10.1002/mds.1112 DENG HX, 1993, SCIENCE, V261, P1047, DOI 10.1126/science.8351519 Diplock AT, 1997, FREE RADICAL RES, V26, P565, DOI 10.3109/10715769709097827 Dirnagl U, 1999, TRENDS NEUROSCI, V22, P391, DOI 10.1016/S0166-2236(99)01401-0 Duan W, 2002, J NEUROCHEM, V80, P101, DOI 10.1046/j.0022-3042.2001.00676.x DUAN W, IN PRESS ANN NEUROL Duan WZ, 1999, J NEUROSCI RES, V57, P195, DOI 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P Duan WZ, 1999, ANN NEUROL, V46, P587, DOI 10.1002/1531-8249(199910)46:4<587::AID-ANA6>3.3.CO;2-D Duan WZ, 1999, J NEUROCHEM, V72, P2312, DOI 10.1046/j.1471-4159.1999.0722312.x Duan WZ, 2001, J NEUROCHEM, V76, P619, DOI 10.1046/j.1471-4159.2001.00071.x Duan WZ, 2000, EXP NEUROL, V165, P1, DOI 10.1006/exnr.2000.7434 Dubal DB, 1998, J CEREBR BLOOD F MET, V18, P1253, DOI 10.1097/00004647-199811000-00012 Dubey A, 1996, ARCH BIOCHEM BIOPHYS, V333, P189, DOI 10.1006/abbi.1996.0380 Duff K, 1996, NATURE, V383, P710, DOI 10.1038/383710a0 DUYAO M, 1993, NAT GENET, V4, P387, DOI 10.1038/ng0893-387 Elkind MS, 1998, SEMIN NEUROL, V18, P429, DOI 10.1055/s-2008-1040896 Elward K, 1992, Clin Geriatr Med, V8, P35 Engelhardt M, 1998, MED SCI SPORT EXER, V30, P1123, DOI 10.1097/00005768-199807000-00016 Estus S, 1997, J NEUROSCI, V17, P7736 Evans DA, 1997, ARCH NEUROL-CHICAGO, V54, P1399, DOI 10.1001/archneur.1997.00550230066019 Fain JN, 2001, HUM MOL GENET, V10, P145, DOI 10.1093/hmg/10.2.145 Fassbender K, 2001, P NATL ACAD SCI USA, V98, P5856, DOI 10.1073/pnas.081620098 Fox KR, 1999, PUBLIC HEALTH NUTR, V2, P411, DOI 10.1017/S1368980099000567 Fredholm BB, 1999, PHARMACOL REV, V51, P83 Frydman J, 2001, ANNU REV BIOCHEM, V70, P603, DOI 10.1146/annurev.biochem.70.1.603 Fu WM, 1998, NEUROBIOL DIS, V5, P229, DOI 10.1006/nbdi.1998.0192 Fu WM, 2000, J MOL NEUROSCI, V14, P3, DOI 10.1385/JMN:14:1-2:003 Furukawa K, 1996, NATURE, V379, P74, DOI 10.1038/379074a0 Gage FH, 2000, SCIENCE, V287, P1433, DOI 10.1126/science.287.5457.1433 Gagne J, 1998, BRAIN RES, V799, P16, DOI 10.1016/S0006-8993(98)00451-X GAMES D, 1995, NATURE, V373, P523, DOI 10.1038/373523a0 Gary DS, 2001, J NEUROCHEM, V76, P1485, DOI 10.1046/j.1471-4159.2001.00173.x Gash DM, 1998, ANN NEUROL, V44, pS121, DOI 10.1002/ana.410440718 Gasparini L, 1998, FASEB J, V12, P17, DOI 10.1096/fasebj.12.1.17 Gething MJ, 1999, SEMIN CELL DEV BIOL, V10, P465, DOI 10.1006/scdb.1999.0318 Geula C, 1998, NAT MED, V4, P827, DOI 10.1038/nm0798-827 Gibson GE, 2000, NEUROCHEM INT, V36, P97, DOI 10.1016/S0197-0186(99)00114-X Glazner GW, 2000, EXP NEUROL, V161, P442, DOI 10.1006/exnr.1999.7242 Gokhan S, 2001, ANAT RECORD, V265, P142, DOI 10.1002/ar.1136 Gomez-Pinilla F, 1998, NEUROSCIENCE, V85, P53, DOI 10.1016/S0306-4522(97)00576-9 GOODMAN Y, 1994, EXP NEUROL, V128, P1, DOI 10.1006/exnr.1994.1107 Goodman YD, 1996, J NEUROCHEM, V66, P1836 GOODRICK CL, 1983, J GERONTOL, V38, P36, DOI 10.1093/geronj/38.1.36 Graham IM, 2000, CURR OPIN LIPIDOL, V11, P577, DOI 10.1097/00041433-200012000-00003 Grant W.B., 1997, ALZHEIMERS DIS REV, V2, P42 Grundman M, 2000, AM J CLIN NUTR, V71, p630S Guidetti C, 2001, J PHARM PHARMACOL, V53, P387, DOI 10.1211/0022357011775442 Guo Q, 1998, NAT MED, V4, P957, DOI 10.1038/nm0898-957 Guo Q, 1999, NAT MED, V5, P101, DOI 10.1038/4789 Guo Q, 1996, NEUROREPORT, V8, P379, DOI 10.1097/00001756-199612200-00074 Guo Q, 1997, J NEUROSCI, V17, P4212 Guo Q, 1999, J NEUROCHEM, V72, P1019, DOI 10.1046/j.1471-4159.1999.0721019.x Guo ZH, 2000, EXP NEUROL, V166, P173, DOI 10.1006/exnr.2000.7497 Guo ZH, 2000, J NEUROCHEM, V75, P314, DOI 10.1046/j.1471-4159.2000.0750314.x Guo ZH, 2000, J CEREBR BLOOD F MET, V20, P463, DOI 10.1097/00004647-200003000-00004 Guo ZH, 2000, CEREB CORTEX, V10, P50, DOI 10.1093/cercor/10.1.50 GURNEY ME, 1994, SCIENCE, V264, P1772, DOI 10.1126/science.8209258 Gurney ME, 1996, ANN NEUROL, V39, P147, DOI 10.1002/ana.410390203 Gutzmann H, 1998, J NEURAL TRANSM-SUPP, P301 Hackam AS, 1999, PHILOS T R SOC B, V354, P1047, DOI 10.1098/rstb.1999.0457 Hamilton ML, 2001, P NATL ACAD SCI USA, V98, P10469, DOI 10.1073/pnas.171202698 Hardy J, 1997, TRENDS NEUROSCI, V20, P154, DOI 10.1016/S0166-2236(96)01030-2 Haughey NJ, 2002, NEUROMOL MED, V1, P125, DOI 10.1385/NMM:1:2:125 Hayashi M, 2001, BRAIN RES, V918, P191, DOI 10.1016/S0006-8993(01)03002-5 Heijmans BT, 2000, EXP GERONTOL, V35, P865, DOI 10.1016/S0531-5565(00)00171-6 Hendrie HC, 2001, JAMA-J AM MED ASSOC, V285, P739, DOI 10.1001/jama.285.6.739 HENSLEY K, 1994, P NATL ACAD SCI USA, V91, P3270, DOI 10.1073/pnas.91.8.3270 Hodges S, 1999, BIOFACTORS, V9, P365, DOI 10.1002/biof.5520090237 Hodgson JG, 1999, NEURON, V23, P181, DOI 10.1016/S0896-6273(00)80764-3 HOYER S, 1995, DRUG AGING, V6, P210, DOI 10.2165/00002512-199506030-00004 Hoyer S, 1999, J NEURAL TRANSM, V106, P1171, DOI 10.1007/s007020050232 Hsiao K, 1996, SCIENCE, V274, P99, DOI 10.1126/science.274.5284.99 Huang XD, 1999, BIOCHEMISTRY-US, V38, P7609, DOI 10.1021/bi990438f Huh GS, 2000, SCIENCE, V290, P2155, DOI 10.1126/science.290.5499.2155 Hull M, 2000, EXPERT OPIN INV DRUG, V9, P671, DOI 10.1517/13543784.9.4.671 Huynh DP, 2001, DEV BRAIN RES, V130, P173, DOI 10.1016/S0165-3806(01)00234-6 Ickes BR, 2000, EXP NEUROL, V164, P45, DOI 10.1006/exnr.2000.7415 INGRAM DK, 1987, J GERONTOL, V42, P78, DOI 10.1093/geronj/42.1.78 Ingram DK, 2001, TRENDS NEUROSCI, V24, P305, DOI 10.1016/S0166-2236(00)01796-3 IP NY, 1993, J NEUROSCI, V13, P3394 Ishida A, 1997, NEUROREPORT, V8, P2133, DOI 10.1097/00001756-199707070-00009 Jacob S, 1999, FREE RADICAL BIO MED, V27, P309, DOI 10.1016/S0891-5849(99)00089-1 Jain KK, 2000, EXPERT OPIN INV DRUG, V9, P1397, DOI 10.1517/13543784.9.6.1397 Jana NR, 2001, HUM MOL GENET, V10, P1049, DOI 10.1093/hmg/10.10.1049 Jankowsky JL, 1999, MOL CELL NEUROSCI, V14, P273, DOI 10.1006/mcne.1999.0792 Jenner P, 1998, ANN NEUROL, V44, pS72, DOI 10.1002/ana.410440712 Jensen PH, 1999, EUR J NEUROSCI, V11, P3369, DOI 10.1046/j.1460-9568.1999.00754.x Jick H, 2000, LANCET, V356, P1627, DOI 10.1016/S0140-6736(00)03155-X Johansson BB, 1996, STROKE, V27, P324, DOI 10.1161/01.STR.27.2.324 Jones TA, 1999, J NEUROSCI, V19, P10153 Jones TA, 1997, NEUROBIOL LEARN MEM, V68, P13, DOI 10.1006/nlme.1997.3774 Joseph JA, 1999, J NEUROSCI, V19, P8114 Kaemmerer WF, 2001, NEUROSCIENCE, V103, P713, DOI 10.1016/S0306-4522(01)00017-3 Karaev A. L., 1993, Eksperimental'naya i Klinicheskaya Farmakologiya, V56, P55 Katzman Robert, 1994, Current Opinion in Neurobiology, V4, P703, DOI 10.1016/0959-4388(94)90013-2 Keller JN, 1997, J NEUROSCI RES, V50, P522, DOI 10.1002/(SICI)1097-4547(19971115)50:4<522::AID-JNR3>3.0.CO;2-G Keller JN, 1997, J NEUROCHEM, V69, P273 Keller JN, 1998, J NEUROSCI, V18, P4439 Keller JN, 1998, J NEUROSCI, V18, P687 KELLER JN, IN PRESS AGING RES R Kelly JF, 1996, P NATL ACAD SCI USA, V93, P6753, DOI 10.1073/pnas.93.13.6753 Kempermann G, 1997, NATURE, V386, P493, DOI 10.1038/386493a0 Kitada T, 1998, NATURE, V392, P605, DOI 10.1038/33416 Klapper W, 2001, J NEUROSCI RES, V64, P252, DOI 10.1002/jnr.1073 Kleim JA, 1997, J NEUROSCI, V17, P717 Klivenyi P, 1999, NAT MED, V5, P347, DOI 10.1038/6568 Kolb B, 1991, CEREB CORTEX, V1, P189, DOI 10.1093/cercor/1.2.189 Kruman II, 1999, EXP NEUROL, V160, P28, DOI 10.1006/exnr.1999.7190 Kruman II, 2002, J NEUROSCI, V22, P1752, DOI 10.1523/JNEUROSCI.22-05-01752.2002 Kruman II, 2000, J NEUROSCI, V20, P6920, DOI 10.1523/JNEUROSCI.20-18-06920.2000 KUBOVA H, 1995, EPILEPSIA, V36, P750, DOI 10.1111/j.1528-1157.1995.tb01611.x Kuhn HG, 1996, J NEUROSCI, V16, P2027 Kuhn W, 1998, EUR NEUROL, V40, P225, DOI 10.1159/000007984 Lane MA, 2000, EXP GERONTOL, V35, P533, DOI 10.1016/S0531-5565(00)00102-9 Lane MA, 2001, ANN NY ACAD SCI, V928, P287 LANNFELT L, 1994, NEUROSCI LETT, V168, P254, DOI 10.1016/0304-3940(94)90463-4 LEBEL CP, 1992, PROG NEUROBIOL, V38, P601, DOI 10.1016/0301-0082(92)90043-E Lebovitz HE, 1999, CLIN CHEM, V45, P1339 Lee CK, 2000, NAT GENET, V25, P294, DOI 10.1038/77046 Lee IM, 1999, STROKE, V30, P1, DOI 10.1161/01.STR.30.1.1 Lee J, 2000, EXP NEUROL, V166, P435, DOI 10.1006/exnr.2000.7512 Lee J, 1999, J NEUROSCI RES, V57, P48, DOI 10.1002/(SICI)1097-4547(19990701)57:1<48::AID-JNR6>3.0.CO;2-L Lee J, 2002, J NEUROCHEM, V80, P539, DOI 10.1046/j.0022-3042.2001.00747.x Lee J, 2000, J MOL NEUROSCI, V15, P99, DOI 10.1385/JMN:15:2:99 Lee M, 2001, J NEUROCHEM, V78, P209, DOI 10.1046/j.1471-4159.2001.00417.x Leissring MA, 2000, J CELL BIOL, V149, P793, DOI 10.1083/jcb.149.4.793 Levi F, 1999, EUR J CANCER, V35, P1912, DOI 10.1016/S0959-8049(99)00294-4 LEVITT AJ, 1992, ACTA PSYCHIAT SCAND, V86, P301, DOI 10.1111/j.1600-0447.1992.tb03270.x LI JC, 1985, BIOCHEM BIOPH RES CO, V129, P733, DOI 10.1016/0006-291X(85)91953-9 Li MW, 2000, SCIENCE, V288, P335, DOI 10.1126/science.288.5464.335 LI QX, 1995, J BIOL CHEM, V270, P14140, DOI 10.1074/jbc.270.23.14140 Li SH, 2000, HUM MOL GENET, V9, P2859, DOI 10.1093/hmg/9.19.2859 LIN LW, 1995, DRUG AGING, V6, P136, DOI 10.2165/00002512-199506020-00006 Lithgow CJ, 2000, BIOESSAYS, V22, P410, DOI 10.1002/(SICI)1521-1878(200005)22:5<410::AID-BIES2>3.0.CO;2-C Liu JL, 1998, J NEUROSCI, V18, P7768 Logroscino G, 1996, ANN NEUROL, V39, P89, DOI 10.1002/ana.410390113 LOWE J, 1994, J NEUROL SCI, V124, P38, DOI 10.1016/0022-510X(94)90175-9 LOWENSTEIN DH, 1991, NEURON, V7, P1053, DOI 10.1016/0896-6273(91)90349-5 Lu CB, 2001, DEV BRAIN RES, V131, P167, DOI 10.1016/S0165-3806(01)00237-1 MACDONALD ME, 1993, CELL, V72, P971, DOI 10.1016/0092-8674(93)90585-E MAESAKA JK, 1993, J AM GERIATR SOC, V41, P501, DOI 10.1111/j.1532-5415.1993.tb01885.x Malberg JE, 2000, J NEUROSCI, V20, P9104, DOI 10.1523/jneurosci.20-24-09104.2000 Margolis RL, 2001, ANN NEUROL, V50, P373, DOI 10.1002/ana.1312 Marini AM, 1998, J BIOL CHEM, V273, P29394, DOI 10.1074/jbc.273.45.29394 MARK RJ, 1995, J NEUROSCI, V15, P6239 Mark RJ, 1997, J NEUROSCI, V17, P1046 Mark RJ, 1997, J NEUROCHEM, V68, P255 Markesbery WR, 2001, CONT NEUROS, P21 Marquet A, 2001, VITAM HORM, V61, P51 Martinez M, 2000, BRAIN RES, V855, P100, DOI 10.1016/S0006-8993(99)02349-5 Masliah E, 2000, SCIENCE, V287, P1265, DOI 10.1126/science.287.5456.1265 Matsuoka Y, 2001, NEUROBIOL DIS, V8, P535, DOI 10.1006/nbdi.2001.0392 Matthews RT, 1999, EXP NEUROL, V157, P142, DOI 10.1006/exnr.1999.7049 Mattson M.P, 2002, DIET BRAIN CONNECTIO Mattson MP, 1999, J NEUROSCI RES, V58, P152, DOI 10.1002/(SICI)1097-4547(19991001)58:1<152::AID-JNR15>3.3.CO;2-M MATTSON MP, 1989, MECH AGEING DEV, V50, P103, DOI 10.1016/0047-6374(89)90010-9 MATTSON MP, 1989, BRAIN RES, V497, P402, DOI 10.1016/0006-8993(89)90289-8 Mattson MP, 2000, TRENDS NEUROSCI, V23, P511, DOI 10.1016/S0166-2236(00)01697-0 Mattson MP, 1997, J NEUROSCI RES, V49, P681, DOI 10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3 Mattson MP, 2001, J CLIN INVEST, V107, P247, DOI 10.1172/JCI11916 MATTSON MP, 1992, J NEUROSCI, V12, P376, DOI 10.1523/jneurosci.12-02-00376.1992 MATTSON MP, 1993, TRENDS NEUROSCI, V16, P409, DOI 10.1016/0166-2236(93)90009-B Mattson MP, 2000, NAT REV MOL CELL BIO, V1, P120, DOI 10.1038/35040009 Mattson MP, 1998, TRENDS NEUROSCI, V21, P53, DOI 10.1016/S0166-2236(97)01188-0 Mattson MP, 1997, PHYSIOL REV, V77, P1081, DOI 10.1152/physrev.1997.77.4.1081 Mattson MP, 1997, NEUROSCI BIOBEHAV R, V21, P193, DOI 10.1016/S0149-7634(96)00010-3 Mattson MP, 2002, NATURE, V415, P377, DOI 10.1038/415377a Mattson MP, 1998, BRAIN RES, V807, P167, DOI 10.1016/S0006-8993(98)00763-X Mattson MP, 1999, J NEUROCHEM, V73, P532, DOI 10.1046/j.1471-4159.1999.0730532.x MATTSON MP, 1995, J NEUROCHEM, V65, P1740 Mattson MP, 2001, BIOESSAYS, V23, P733, DOI 10.1002/bies.1103 MATTSON MP, 1992, EXP GERONTOL, V27, P29, DOI 10.1016/0531-5565(92)90027-W MATTSON MP, 1989, BRAIN RES, V478, P337, DOI 10.1016/0006-8993(89)91514-X MATTSON MP, IN PRESS AGING RES R MATTSON MP, 2001, TELOMERASE AGING DIS MATTSON MP, 1997, ADV CELL AGING GERON, V2, P299 Mayeux R, 1999, NEUROLOGY, V52, pA296 Mazzini L, 2001, J NEUROL SCI, V191, P139, DOI 10.1016/S0022-510X(01)00611-6 McCarty MF, 2001, MED HYPOTHESES, V57, P313, DOI 10.1054/mehy.2001.1320 McDonald JW, 1999, NAT MED, V5, P1410, DOI 10.1038/70986 McEwen BS, 2000, BIOL PSYCHIAT, V48, P721, DOI 10.1016/S0006-3223(00)00964-1 McGuffin P, 2000, Novartis Found Symp, V233, P243, DOI 10.1002/0470870850.ch15 MCLACHLAN DRC, 1991, LANCET, V337, P1304, DOI 10.1016/0140-6736(91)92978-B Mehler MF, 2000, DEV NEUROSCI-BASEL, V22, P74, DOI 10.1159/000017429 Mezey E, 2000, EUR J PHARMACOL, V405, P297, DOI 10.1016/S0014-2999(00)00561-6 Mohajeri MH, 1999, HUM GENE THER, V10, P1853, DOI 10.1089/10430349950017536 Morgan D, 2000, NATURE, V408, P982, DOI 10.1038/35050116 Morgan TE, 1999, NEUROSCIENCE, V89, P687, DOI 10.1016/S0306-4522(98)00334-0 Morrison BM, 1998, ANN NEUROL, V44, pS32, DOI 10.1002/ana.410440706 Moulton PL, 2001, PHYSIOL BEHAV, V73, P659, DOI 10.1016/S0031-9384(01)00510-8 MULLER U, 1995, J CEREBR BLOOD F MET, V15, P624 Munch G, 1997, BRAIN RES REV, V23, P134, DOI 10.1016/S0165-0173(96)00016-1 Murphy KPSJ, 2000, J NEUROSCI, V20, P5115 NELSON JF, 1995, NEUROBIOL AGING, V16, P837, DOI 10.1016/0197-4580(95)00072-M Ness J, 1999, GERIATRICS, V54, P33 Neufeld EJ, 1998, HEMATOL ONCOL CLIN N, V12, P1193, DOI 10.1016/S0889-8588(05)70049-6 Nilsberth C, 2001, NAT NEUROSCI, V4, P887, DOI 10.1038/nn0901-887 Nilsson M, 1999, J NEUROBIOL, V39, P569, DOI 10.1002/(SICI)1097-4695(19990615)39:4<569::AID-NEU10>3.0.CO;2-F Nitta A, 1999, J NEUROSCI RES, V57, P227, DOI 10.1002/(SICI)1097-4547(19990715)57:2<227::AID-JNR8>3.0.CO;2-E O'Kusky JR, 1999, BRAIN RES, V818, P468, DOI 10.1016/S0006-8993(98)01312-2 Ohsawa I, 1999, EUR J NEUROSCI, V11, P1907, DOI 10.1046/j.1460-9568.1999.00601.x Ona VO, 1999, NATURE, V399, P263, DOI 10.1038/20446 Orth M, 2001, AM J MED GENET, V106, P27, DOI 10.1002/ajmg.1425 OsterGranite ML, 1996, J NEUROSCI, V16, P6732 Ozawa T, 1997, PHYSIOL REV, V77, P425, DOI 10.1152/physrev.1997.77.2.425 Papaioannou N, 2001, AMYLOID, V8, P11, DOI 10.3109/13506120108993810 Paradis E, 1996, J NEUROSCI, V16, P7533 Parent A, 1999, NEUROBIOL DIS, V6, P56, DOI 10.1006/nbdi.1998.0207 Pasinelli P, 1998, P NATL ACAD SCI USA, V95, P15763, DOI 10.1073/pnas.95.26.15763 Pedersen WA, 2000, J NEUROCHEM, V74, P1426, DOI 10.1046/j.1471-4159.2000.0741426.x Pedersen WA, 1998, ANN NEUROL, V44, P819, DOI 10.1002/ana.410440518 Pedersen WA, 1999, EXP NEUROL, V155, P1, DOI 10.1006/exnr.1998.6890 Pedersen WA, 2000, FASEB J, V14, P913, DOI 10.1096/fasebj.14.7.913 Pedersen WA, 1999, J MOL NEUROSCI, V13, P159, DOI 10.1385/JMN:13:1-2:159 Pedersen WA, 2002, J NEUROSCI, V22, P404, DOI 10.1523/JNEUROSCI.22-02-00404.2002 Pedersen WA, 2001, NEUROBIOL DIS, V8, P492, DOI 10.1006/nbdi.2001.0395 Pedersen WA, 1999, BRAIN RES, V833, P117, DOI 10.1016/S0006-8993(99)01471-7 Pereira C, 1999, NEUROBIOL DIS, V6, P209, DOI 10.1006/nbdi.1999.0241 Perls T, 2000, RES PRO CEL, V29, P1 Perrig WJ, 1997, J AM GERIATR SOC, V45, P718, DOI 10.1111/j.1532-5415.1997.tb01476.x Petryniak MA, 1996, BIOCHEM J, V320, P957, DOI 10.1042/bj3200957 Piedrahita JA, 1999, NAT GENET, V23, P228, DOI 10.1038/13861 Pike CJ, 1999, J NEUROCHEM, V72, P1552, DOI 10.1046/j.1471-4159.1999.721552.x POGRIBNY IP, 1995, CARCINOGENESIS, V16, P2863, DOI 10.1093/carcin/16.11.2863 Polymeropoulos MH, 1997, SCIENCE, V276, P2045, DOI 10.1126/science.276.5321.2045 Polymeropoulos MH, 2000, ANN NY ACAD SCI, V920, P28 Prasad KN, 1999, CURR OPIN NEUROL, V12, P761, DOI 10.1097/00019052-199912000-00017 PREHN JHM, 1992, J CEREBR BLOOD F MET, V12, P78, DOI 10.1038/jcbfm.1992.10 Querfurth HW, 1997, J NEUROCHEM, V69, P1580 Radak Z, 2001, NEUROCHEM INT, V38, P17, DOI 10.1016/S0197-0186(00)00063-2 RALL SC, 1992, J INTERN MED, V231, P653, DOI 10.1111/j.1365-2796.1992.tb01254.x RAMASSAMY C, 1990, J PHARM PHARMACOL, V42, P785, DOI 10.1111/j.2042-7158.1990.tb07021.x Rami A, 1998, BRAIN RES, V788, P323, DOI 10.1016/S0006-8993(98)00041-9 Ranchon I, 1999, INVEST OPHTH VIS SCI, V40, P1191 Rao AVR, 2000, J AM COLL NUTR, V19, P563, DOI 10.1080/07315724.2000.10718953 Rao MS, 2001, MECH AGEING DEV, V122, P713, DOI 10.1016/S0047-6374(01)00224-X Ravaglia G, 2000, MECH AGEING DEV, V121, P251 Ravagnan L, 2001, NAT CELL BIOL, V3, P839, DOI 10.1038/ncb0901-839 Reddy PH, 1998, NAT GENET, V20, P198, DOI 10.1038/2510 Rissanen TH, 2001, BRIT J NUTR, V85, P749, DOI 10.1079/BJN2001357 Ritchie PD, 2000, J CLIN NEUROSCI, V7, P301, DOI 10.1054/jocn.1999.0198 ROBISON SH, 1987, ANN NEUROL, V21, P250, DOI 10.1002/ana.410210306 Roedter A, 2001, J COMP NEUROL, V432, P217, DOI 10.1002/cne.1098 Roghani M, 2001, BRAIN RES, V892, P211, DOI 10.1016/S0006-8993(00)03296-0 Rojas-Fernandez CH, 2001, PHARMACOTHERAPY, V21, P74, DOI 10.1592/phco.21.1.74.34437 Roman GC, 1996, J NEUROL NEUROSUR PS, V61, P131, DOI 10.1136/jnnp.61.2.131 ROSEN DR, 1993, NATURE, V362, P59, DOI 10.1038/362059a0 ROTH GS, 1994, ANN NY ACAD SCI, V719, P129, DOI 10.1111/j.1749-6632.1994.tb56824.x Russo-Neustadt A, 1999, NEUROPSYCHOPHARMACOL, V21, P679, DOI 10.1016/S0893-133X(99)00059-7 Saha AR, 2000, EUR J NEUROSCI, V12, P3073, DOI 10.1046/j.1460-9568.2000.00210.x SAITO S, 1994, J NEUROSCI RES, V39, P57, DOI 10.1002/jnr.490390108 Sapolsky RM, 1999, EXP GERONTOL, V34, P721, DOI 10.1016/S0531-5565(99)00047-9 Schapira AHV, 1999, BBA-BIOENERGETICS, V1410, P159, DOI 10.1016/S0005-2728(98)00164-9 Scheff SW, 2001, NEUROBIOL AGING, V22, P355, DOI 10.1016/S0197-4580(01)00222-6 Scheff SW, 1998, J NEUROPATH EXP NEUR, V57, P1146, DOI 10.1097/00005072-199812000-00006 SCHEFF SW, 1991, NEUROBIOL AGING, V12, P3, DOI 10.1016/0197-4580(91)90032-F Schenk D, 1999, NATURE, V400, P173, DOI 10.1038/22124 Schilling G, 2001, NEUROBIOL DIS, V8, P405, DOI 10.1006/nbdi.2001.0385 Schwab ME, 1998, NEWS PHYSIOL SCI, V13, P294 Schwaninger M, 1999, EPILEPSIA, V40, P345, DOI 10.1111/j.1528-1157.1999.tb00716.x Scott J M, 1998, J Cardiovasc Risk, V5, P223, DOI 10.1097/00043798-199808000-00003 Selhub J, 2000, AM J CLIN NUTR, V71, p614S Sennvik K, 2001, J NEUROSCI RES, V63, P429, DOI 10.1002/1097-4547(20010301)63:5<429::AID-JNR1038>3.0.CO;2-U SHAY KA, 1992, PSYCHOL AGING, V7, P15, DOI 10.1037/0882-7974.7.1.15 Shepherd J E, 2001, J Am Pharm Assoc (Wash), V41, P221 Shields DC, 1999, AM J HUM GENET, V64, P1045, DOI 10.1086/302310 Shimura H, 2000, NAT GENET, V25, P302, DOI 10.1038/77060 Shimura H, 2001, SCIENCE, V293, P263, DOI 10.1126/science.1060627 Shors TJ, 2001, NATURE, V410, P372, DOI 10.1038/35066584 Sinden JD, 2000, NOVART FDN SYMP, V231, P270, DOI 10.1002/0470870834.ch16 Singh RB, 1998, CARDIOVASC DRUG THER, V12, P347, DOI 10.1023/A:1007764616025 Sirotnak FM, 1999, ANNU REV NUTR, V19, P91, DOI 10.1146/annurev.nutr.19.1.91 Sloane JA, 1999, NEUROBIOL AGING, V20, P395, DOI 10.1016/S0197-4580(99)00066-4 Smith JD, 2000, ANN MED, V32, P118, DOI 10.3109/07853890009011761 SMITH MA, 1995, J NEUROSCI, V15, P1768, DOI 10.1523/JNEUROSCI.15-03-01768.1995 SMITHELLS RW, 1976, ARCH DIS CHILD, V51, P944, DOI 10.1136/adc.51.12.944 Snowdon DA, 1996, JAMA-J AM MED ASSOC, V275, P528, DOI 10.1001/jama.275.7.528 SOCCI DJ, 1995, BRAIN RES, V693, P88, DOI 10.1016/0006-8993(95)00707-W SOHAL RS, 1994, MECH AGEING DEV, V76, P215, DOI 10.1016/0047-6374(94)91595-4 Sonntag WE, 2000, J ANAT, V197, P575, DOI 10.1046/j.1469-7580.2000.19740575.x Sousa N, 2000, NEUROSCIENCE, V97, P253, DOI 10.1016/S0306-4522(00)00050-6 SOUTAR AK, 1992, J INTERN MED, V231, P633, DOI 10.1111/j.1365-2796.1992.tb01252.x SPENCER PS, 1993, SCIENCE, V262, P825, DOI 10.1126/science.8235599 St George-Hyslop PH, 2000, ANN NY ACAD SCI, V924, P1 STEWART J, 1989, NEUROBIOL AGING, V10, P669, DOI 10.1016/0197-4580(89)90003-1 Sullivan PG, 2000, ANN NEUROL, V48, P723, DOI 10.1002/1531-8249(200011)48:5<723::AID-ANA5>3.0.CO;2-W Sun Y, 2001, CELL, V104, P365, DOI 10.1016/S0092-8674(01)00224-0 Surtees R, 1997, PEDIATR RES, V42, P577, DOI 10.1203/00006450-199711000-00004 Sze JY, 2000, NATURE, V403, P560, DOI 10.1038/35000609 Tabrizi SJ, 2000, HUM MOL GENET, V9, P2683, DOI 10.1093/hmg/9.18.2683 Tanaka Y, 2001, HUM MOL GENET, V10, P919, DOI 10.1093/hmg/10.9.919 Tanigaki K, 2001, NEURON, V29, P45, DOI 10.1016/S0896-6273(01)00179-9 TOHGI H, 1993, J NEURAL TRANSM-PARK, V6, P119, DOI 10.1007/BF02261005 Turmaine M, 2000, P NATL ACAD SCI USA, V97, P8093, DOI 10.1073/pnas.110078997 Turnbull S, 2001, FREE RADICAL BIO MED, V30, P1163, DOI 10.1016/S0891-5849(01)00513-5 Uauy R, 1996, LIPIDS, V31, pS167, DOI 10.1007/BF02637071 van Dongen MCJM, 2000, J AM GERIATR SOC, V48, P1183, DOI 10.1111/j.1532-5415.2000.tb02589.x van Praag H, 1999, NAT NEUROSCI, V2, P266, DOI 10.1038/6368 vanBoxtel MPJ, 1997, MED SCI SPORT EXER, V29, P1357, DOI 10.1097/00005768-199710000-00013 vanRijzingen IMS, 1997, NEUROBIOL LEARN MEM, V67, P21, DOI 10.1006/nlme.1996.3735 Varadarajan S, 1999, BRAIN RES BULL, V50, P133, DOI 10.1016/S0361-9230(99)00093-3 Vatassery GT, 1999, AM J CLIN NUTR, V70, P793 Vaughan JR, 2001, ANN HUM GENET, V65, P111, DOI 10.1017/S0003480001008557 Veldman BAJ, 1998, CLIN NEUROL NEUROSUR, V100, P15, DOI 10.1016/S0303-8467(98)00009-2 Volles MJ, 2001, BIOCHEMISTRY-US, V40, P7812, DOI 10.1021/bi0102398 Vukosavic S, 2000, J NEUROSCI, V20, P9119 WAINFAN E, 1992, CANCER RES, V52, P2068 Walton M, 1999, J NEUROSCI RES, V58, P96 WANG GT, 1994, MOL CHEM NEUROPATHOL, V23, P191, DOI 10.1007/BF02815411 Weindruch R, 1997, NEW ENGL J MED, V337, P986, DOI 10.1056/NEJM199710023371407 Wesnes KA, 2000, PSYCHOPHARMACOLOGY, V152, P353, DOI 10.1007/s002130000533 Wiese S, 1999, NAT NEUROSCI, V2, P978, DOI 10.1038/14777 Williamson TL, 1998, P NATL ACAD SCI USA, V95, P9631, DOI 10.1073/pnas.95.16.9631 Wolkow CA, 2000, SCIENCE, V290, P147, DOI 10.1126/science.290.5489.147 Wolozin B, 1996, SCIENCE, V274, P1710, DOI 10.1126/science.274.5293.1710 WONG PC, 1995, NEURON, V14, P1105, DOI 10.1016/0896-6273(95)90259-7 Xia WM, 2000, NEUROBIOL DIS, V7, P673, DOI 10.1006/nbdi.2000.0322 XIE Z, 1993, BRAIN RES, V604, P173, DOI 10.1016/0006-8993(93)90365-T Yamada K, 1999, EUR J NEUROSCI, V11, P83, DOI 10.1046/j.1460-9568.1999.00408.x Yandava BD, 1999, P NATL ACAD SCI USA, V96, P7029, DOI 10.1073/pnas.96.12.7029 Yao ZX, 2001, BRAIN RES, V889, P181, DOI 10.1016/S0006-8993(00)03131-0 Yasui K, 2000, NEUROLOGY, V55, P437, DOI 10.1212/WNL.55.3.437 YING Z, 1993, J CEREBR BLOOD F MET, V13, P378, DOI 10.1038/jcbfm.1993.51 Yoo AS, 2000, NEURON, V27, P561, DOI 10.1016/S0896-6273(00)00066-0 YOSHINO Y, 1984, NEUROCHEM RES, V9, P387, DOI 10.1007/BF00963985 Young D, 1999, NAT MED, V5, P448, DOI 10.1038/7449 Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2 Yu ZF, 1999, EXP NEUROL, V155, P302, DOI 10.1006/exnr.1998.7002 Yu ZF, 1998, J NEUROSCI RES, V53, P613, DOI 10.1002/(SICI)1097-4547(19980901)53:5<613::AID-JNR11>3.0.CO;2-1 Yurek DM, 2001, BRAIN RES, V891, P228, DOI 10.1016/S0006-8993(00)03217-0 ZHAN SS, 1993, DEMENTIA, V4, P66, DOI 10.1159/000107299 Zhang B, 1997, J CELL BIOL, V139, P1307, DOI 10.1083/jcb.139.5.1307 Zhang L, 2001, NEUROSCI LETT, V312, P125, DOI 10.1016/S0304-3940(01)02205-4 Zhu HY, 1999, BRAIN RES, V842, P224, DOI 10.1016/S0006-8993(99)01827-2 Zhu HY, 2000, J NEUROCHEM, V75, P117, DOI 10.1046/j.1471-4159.2000.0750117.x Zoghbi HY, 2000, ANNU REV NEUROSCI, V23, P217, DOI 10.1146/annurev.neuro.23.1.217 Zuccato C, 2001, SCIENCE, V293, P493, DOI 10.1126/science.1059581 NR 399 TC 333 Z9 353 U1 2 U2 53 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0031-9333 EI 1522-1210 J9 PHYSIOL REV JI Physiol. Rev. PD JUL PY 2002 VL 82 IS 3 BP 637 EP 672 DI 10.1152/physrev.00004.2002 PG 36 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA 569AC UT WOS:000176576300003 PM 12087131 DA 2023-03-13 ER PT J AU Budeli, P Ekwanzala, MD Momba, MNB AF Budeli, Phumudzo Ekwanzala, Mutshiene Deogratias Momba, Maggy Ndombo Benteke TI Hormetic effect of 17 alpha-ethynylestradiol on activated sludge microbial community response SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE Hormesis; EE2 (17 alpha-ethynylestradiol); activated sludge microbiome; metagenomics ID DISRUPTING COMPOUNDS; BACTERIAL DIVERSITY; STEROID ESTROGENS; WATER; TRACKING; HORMONES; REMOVAL; IMPACT; PLANT; FATE AB Synthetic estrogen analogues are among the most potent estrogenic contaminants in effluents from wastewater treatment plants. Although its effects have been well elucidated in the feminization of male fish and interference with the endocrine systems in humans, it has not been fully explored in the activated sludge (AS) microbiome, particularly EE2 (17 alpha-ethynylestradiol). Therefore, in this study, the bacterial community shift in a 6-day laboratory-scale reactor in environmental (0, 5, 10, and 100 ng/L) and predictive elevated concentrations (5, 10, and 100 mg/L) of EE2 was investigated using culture-based and metagenomics approaches. Results showed significant changes (t-test, all p < 0.05) between initial and final physicochemical parameters (pH, DO, and EC). Although environmental concentrations showed a slight decrease in microbial counts (5.6 x 10(6) to 4.6 x 10(6) CFU/ml) after a 24-h incubation for the culturable approach, the predictive elevated concentrations (5 to 100 mg/L) revealed a drastic microbial counts reduction (5.6 x 10(6) to 8 x 10(2) CFU/ml). The metagenomic data analysis uncovered that bacterial communities in the control sample were dominated by Proteobacteria, followed by Bacteroidetes and Firmicutes. The taxonomic classification after exposure of microbial communities in various concentrations revealed significant differences in community composition between environmental concentration (Shannon indices between 2.58 to 3.68) and predictive elevated concentrations (Shannon indices between 2.24 and 2.84; t-test, all p < 0.05). The EE2 enriched seven OTUs were Novosphingobium, Cloacibacterium, Stenotrophomonas, Enterobacteriaceae_unclassified, Stenotrophomonas, Enterobacteriaceae_unclassified and Rhodobacteraceae_unclassified. These results were supported by a dehydrogenase activity (DHA) test, which demonstrated less (about 40%) DHA in predictive elevated concentrations than in environmental concentrations. Notwithstanding, these findings suggest that EE2 may possess potent hormetic effect as evidenced by promotion of microbiome richness and dehydrogenase activity of AS in lower EE2 doses. C1 [Budeli, Phumudzo; Momba, Maggy Ndombo Benteke] Tshwane Univ Technol, Dept Environm Water & Earth Sci, Pretoria, South Africa. [Ekwanzala, Mutshiene Deogratias] Univ Gothenburg, Inst Biomed, Dept Infect Dis, Gothenburg, Sweden. C3 Tshwane University of Technology; University of Gothenburg RP Momba, MNB (corresponding author), Tshwane Univ Technol, Dept Environm Water & Earth Sci, Pretoria, South Africa. EM mombamnb@tut.ac.za RI Ekwanzala, Mutshiene Deogratias/M-5710-2015 OI Ekwanzala, Mutshiene Deogratias/0000-0001-6881-1262 FU Department of Science of Technology; National Research Foundation, South Africa [UID87310]; SARChI Chair in Water Quality and Wastewater Management; Tshwane University of Technology, South Africa; NRF Freestanding, Innovation, Scarce Skill Development Fund and South Africa [UID108484] FX This research article received funding from the Department of Science of Technology and National Research Foundation, South Africa, through the SARChI Chair in Water Quality and Wastewater Management (grant number: UID87310) and the Tshwane University of Technology, South Africa. PB was funded by NRF Freestanding, Innovation, Scarce Skill Development Fund and South Africa (grant number: UID108484). CR Adeel M, 2017, ENVIRON INT, V99, P107, DOI 10.1016/j.envint.2016.12.010 Afgan E, 2018, NUCLEIC ACIDS RES, V46, pW537, DOI 10.1093/nar/gky379 Ahmed W, 2021, SCI TOTAL ENVIRON, V751, DOI 10.1016/j.scitotenv.2020.141475 Amin MM, 2018, CHINESE J CHEM ENG, V26, P1132, DOI 10.1016/j.cjche.2017.09.005 Aniyikaiye TE, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16071235 APHA-American Public Health Association, 2017, STANDARD METHODS EXA, V23 Basile T, 2011, IND ENG CHEM RES, V50, P8389, DOI 10.1021/ie101919v Batut B, 2018, CELL SYST, V6, P752, DOI 10.1016/j.cels.2018.05.012 Beck S, 2018, INT BIODETER BIODEGR, V127, P146, DOI 10.1016/j.ibiod.2017.11.020 Bhateria R, 2016, SUST WAT RESOUR MAN, V2, P161, DOI 10.1007/s40899-015-0014-7 Bik HM, 2014, BIORXIV, DOI [10.1101/009944, DOI 10.1101/009944] Budeli P, 2021, ENVIRON TECHNOL INNO, V21, DOI 10.1016/j.eti.2020.101248 Cai L, 2014, APPL MICROBIOL BIOT, V98, P3317, DOI 10.1007/s00253-013-5402-z Cole JR, 2009, NUCLEIC ACIDS RES, V37, pD141, DOI 10.1093/nar/gkn879 Cook MM, 2016, WATER-SUI, V8, DOI 10.3390/w8040128 Cui CW, 2006, ENVIRON MONIT ASSESS, V121, P409, DOI 10.1007/s10661-005-9139-8 Du BH, 2020, ENVIRON POLLUT, V267, DOI 10.1016/j.envpol.2020.115405 Edgar RC, 2011, BIOINFORMATICS, V27, P2194, DOI 10.1093/bioinformatics/btr381 Edokpayi J. N., 2017, Water quality, P401 Ekwanzala MD, 2020, ECOTOX ENVIRON SAFE, V197, DOI 10.1016/j.ecoenv.2020.110612 Ekwanzala MD, 2019, SCI TOTAL ENVIRON, V691, P80, DOI 10.1016/j.scitotenv.2019.06.533 Fang TY, 2019, CHEMOSPHERE, V215, P153, DOI 10.1016/j.chemosphere.2018.10.032 Fisher JC, 2015, APPL ENVIRON MICROB, V81, P7023, DOI 10.1128/AEM.01524-15 GORCHEV HG, 1984, WHO CHRON, V38, P104 Grady C.P.L., 2011, BIOL WASTEWATER TREA, V3rd ed. Hallgren P, 2014, ENVIRON TOXICOL CHEM, V33, P930, DOI 10.1002/etc.2528 Hellawell JM, 2012, BIOL INDICATORS FRES Hiltemann SD, 2019, GIGASCIENCE, V8, DOI 10.1093/gigascience/giy166 Kamika I, 2017, AMB EXPRESS, V7, DOI 10.1186/s13568-017-0365-6 Kamika I, 2013, BMC MICROBIOL, V13, DOI 10.1186/1471-2180-13-28 Kanama MK, 2018, J TOXICOL-US, V2018, DOI 10.1155/2018/3751930 Kibambe MG, 2020, J ENVIRON MANAGE, V260, DOI 10.1016/j.jenvman.2020.110135 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Lai KM, 2002, CRIT REV TOXICOL, V32, P113, DOI 10.1080/20024091064192 Li YM, 2011, WATER SCI TECHNOL, V63, P51, DOI 10.2166/wst.2011.008 Marti EJ, 2014, SCI TOTAL ENVIRON, V470, P1056, DOI 10.1016/j.scitotenv.2013.10.070 Mboyi AV, 2017, J ENVIRON SCI HEAL A, V52, P697, DOI 10.1080/10934529.2017.1301744 Meli K, 2016, SCI REP-UK, V6, DOI 10.1038/srep39176 Newton RJ, 2015, MBIO, V6, DOI 10.1128/mBio.02574-14 Pell M., 2006, J COMP PHYSIOL A, V192, P270, DOI [10.1016/B978-0-08-088504-9.00381-0, DOI 10.1016/B978-008045405-4.00317-7, DOI 10.1016/B978-0-08-088504-9.00381-0] Pessoa GP, 2014, SCI TOTAL ENVIRON, V490, P288, DOI 10.1016/j.scitotenv.2014.05.008 Pinto PIS, 2014, MAR DRUGS, V12, P4474, DOI 10.3390/md12084474 Rahman MF, 2009, J WATER HEALTH, V7, P224, DOI 10.2166/wh.2009.021 Samer M., 2015, WASTEWATER TREATMENT, DOI [10.5772/61250, DOI 10.5772/61250] Schloss PD, 2013, ISME J, V7, P457, DOI 10.1038/ismej.2012.102 Schloss PD, 2011, APPL ENVIRON MICROB, V77, P3219, DOI 10.1128/AEM.02810-10 Schloss PD, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000844 Schloss PD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008230 Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09 Shchegolkova NM, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00090 Silva CP, 2012, ENVIRON POLLUT, V165, P38, DOI 10.1016/j.envpol.2012.02.002 Skaperda Z, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23010049 Vilela CLS, 2018, ENVIRON POLLUT, V235, P546, DOI 10.1016/j.envpol.2017.12.098 Su JQ, 2015, ENVIRON SCI TECHNOL, V49, P7356, DOI 10.1021/acs.est.5b01012 Sumpter JP, 2013, ENVIRON TOXICOL CHEM, V32, P249, DOI 10.1002/etc.2084 Thiele-Bruhn S, 2005, CHEMOSPHERE, V59, P457, DOI 10.1016/j.chemosphere.2005.01.023 Ting YF, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-017-5890-x Unuofin JO, 2019, MOLECULES, V24, DOI 10.3390/molecules24112064 Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07 Wang XH, 2012, APPL ENVIRON MICROB, V78, P7042, DOI 10.1128/AEM.01617-12 Xu Y, 2019, ENVIRON SCI POLLUT R, V26, P9293, DOI 10.1007/s11356-019-04340-w Yang CZ, 2011, ENVIRON HEALTH PERSP, V119, P989, DOI 10.1289/ehp.1003220 Zhang C, 2016, CRIT REV ENV SCI TEC, V46, P1, DOI 10.1080/10643389.2015.1061881 Zhang XL, 2014, ECOTOX ENVIRON SAFE, V107, P313, DOI 10.1016/j.ecoenv.2014.06.010 NR 64 TC 0 Z9 0 U1 2 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD AUG 18 PY 2022 VL 13 AR 961736 DI 10.3389/fmicb.2022.961736 PG 13 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA 4F8FU UT WOS:000848746700001 PM 36060745 OA gold, Green Published DA 2023-03-13 ER PT J AU Bruckner, S Straub, L Neumann, P Williams, GR AF Bruckner, Selina Straub, Lars Neumann, Peter Williams, Geoffrey R. TI Synergistic and Antagonistic Interactions Between Varroa destructor Mites and Neonicotinoid Insecticides in Male Apis mellifera Honey Bees SO FRONTIERS IN ECOLOGY AND EVOLUTION LA English DT Article DE honey bee; drone; neonicotinoid; thiamethoxam; Varroa destructor; parasite; interaction ID CHRONIC EXPOSURE; DRONE; EVOLUTION; HORMESIS; HEALTH; BIODIVERSITY; INFESTATION; INFECTIONS; JACOBSONI; FIPRONIL AB Pressures from multiple, sometimes interacting, stressors can have negative consequences to important ecosystem-service providing species like the western honey bee (Apis mellifera). The introduced parasite Varroa destructor and the neonicotinoid class of insecticides each represent important, nearly ubiquitous biotic and abiotic stressors to honey bees, respectively. Previous research demonstrated that they can synergistically interact to negatively affect non-reproductive honey bee female workers, but no data exist on how concurrent exposure may affect reproductive honey bee males (drones). This is important, given that the health of reproductive females (queens), possibly because of poor mating, is frequently cited as a major driver of honey bee colony loss. To address this, known age cohorts of drones were obtained from 12 honey bee colonies-seven were exposed to field-relevant concentrations of two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) during development via supplementary pollen patties; five colonies received patties not spiked with neonicotinoids. Artificially emerged drones were assessed for natural V. destructor infestation, weighed, and then allocated to the following treatment groups: 1. Control, 2. V. destructor only, 3. Neonicotinoid only, and 4. Combined (both mites and neonicotinoid). Adult drones were maintained in laboratory cages alongside attendant workers (1 drone: 2 worker ratio) until they have reached sexual maturity after 14 days so sperm concentration and viability could be assessed. The data suggest that V. destructor and neonicotinoids interacted synergistically to negatively affect adult drone survival, but that they interacted antagonistically on emergence mass. Although sample sizes were too low to assess the effects of V. destructor and combined exposure on sperm quality, we observed no influence of neonicotinoids on sperm concentration or viability. Our findings highlight the diverse effects of concurrent exposure to stressors on honey bees, and suggest that V. destructor and neonicotinoids can severely affect the number of sexually mature adult drones available for mating. C1 [Bruckner, Selina; Williams, Geoffrey R.] Auburn Univ, Entomol & Plant Pathol, Auburn, AL 36849 USA. [Straub, Lars; Neumann, Peter] Univ Bern, Vetsuisse Fac, Inst Bee Hlth, Bern, Switzerland. [Straub, Lars; Neumann, Peter] Swiss Bee Res Ctr, Agroscope, Bern, Switzerland. C3 Auburn University System; Auburn University; University of Bern; Swiss Federal Research Station Agroscope RP Bruckner, S (corresponding author), Auburn Univ, Entomol & Plant Pathol, Auburn, AL 36849 USA. EM szb0130@auburn.edu RI Straub, Lars/AAP-2820-2020 OI Straub, Lars/0000-0002-2091-1499 FU USDA National Institute of Food and Agriculture Multi-state Hatch project [NC1173]; Alabama Agricultural Experiment Station; Foundation for Food and Agriculture Research Pollinator Health Fund [549003]; Swiss National Science Foundation [31003A_169751]; California State Beekeepers Association; Bundesamt fuer Umwelt (BAFU) [16.0091.PJ/R102- 1664]; Agroscope; Vinetum Foundation; USDA ARS Cooperative Agreement [6066-21000-001-02-S] FX This work was supported by the USDA National Institute of Food and Agriculture Multi-state Hatch project NC1173, the Alabama Agricultural Experiment Station, the Foundation for Food and Agriculture Research Pollinator Health Fund grant 549003, the USDA ARS Cooperative Agreement 6066-21000-001-02-S, the Swiss National Science Foundation Project 31003A_169751, and the California State Beekeepers Association. Additional support was provided by the Bundesamt fuer Umwelt (BAFU) to LS and PN (16.0091.PJ/R102- 1664), by Agroscope to LS and PN, and by the Vinetum Foundation to LS and PN. CR Alaux C, 2010, ENVIRON MICROBIOL, V12, P774, DOI 10.1111/j.1462-2920.2009.02123.x AOAC, 2007, OFFICIAL METHODS ANA Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678 Bird G, 2021, J APPL ECOL, V58, P997, DOI 10.1111/1365-2664.13811 Blackmon H, 2015, EVOLUTION, V69, P2971, DOI 10.1111/evo.12792 Blanken LJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1738 Bonmatin JM, 2015, ENVIRON SCI POLLUT R, V22, P35, DOI 10.1007/s11356-014-3332-7 Bonmatin J. M., 2007, Environmental fate and ecological effects of pesticides, P827 Botias C, 2015, ENVIRON SCI TECHNOL, V49, P12731, DOI 10.1021/acs.est.5b03459 Bowen-Walker PL, 2001, ENTOMOL EXP APPL, V101, P207, DOI 10.1023/A:1019254727879 Boyd PW, 2015, FRONT MAR SCI, V2, DOI 10.3389/fmars.2015.00009 Brandt A, 2016, J INSECT PHYSIOL, V86, P40, DOI 10.1016/j.jinsphys.2016.01.001 Brodschneider R, 2010, APIDOLOGIE, V41, P278, DOI 10.1051/apido/2010012 Bruckner S., 2019, 2018 2019 HONEY BEE Bubalo D, 2005, WIEN TIERARZTL MONAT, V92, P11 Butchart SHM, 2010, SCIENCE, V328, P1164, DOI 10.1126/science.1187512 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Carreck NL, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.4.03 Ciereszko A, 2017, APIDOLOGIE, V48, P211, DOI 10.1007/s13592-016-0466-2 Claudianos C, 2006, INSECT MOL BIOL, V15, P615, DOI 10.1111/j.1365-2583.2006.00672.x Collins AM, 2001, AM BEE J, V141, P590 Colwell MJ, 2017, ECOL EVOL, V7, P7243, DOI 10.1002/ece3.3178 Cook SC, 2019, INSECTS, V10, DOI 10.3390/insects10010018 Cote IM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2592 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dainat B, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032151 Delaplane KS, 2013, J APICULT RES, V52, DOI [10.3896/IBRA.1.52.4.12, 10.3896/IBRA.1.52.1.03] Delaplane KS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142985 Derecka K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068191 Di Prisco G, 2013, P NATL ACAD SCI USA, V110, P18466, DOI 10.1073/pnas.1314923110 Dietemann V, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.1.09 Duay P, 2003, APIDOLOGIE, V34, P61, DOI 10.1051/apido:2002052 Duay Pedro, 2002, Genetics and Molecular Research, V1, P227 Folt CL, 1999, LIMNOL OCEANOGR, V44, P864, DOI 10.4319/lo.1999.44.3_part_2.0864 Forfert N, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140337 Friedli A, 2020, CHEMOSPHERE, V242, DOI 10.1016/j.chemosphere.2019.125145 Fryday S., 2015, EFSA SUPPORT PUBL, V12, DOI [10.2903/sp.efsa.2015.EN-756, DOI 10.2903/SP.EFSA.2015.EN-756] FUCHS S, 1992, BEHAV ECOL SOCIOBIOL, V31, P429, DOI 10.1007/BF00170610 Geldmann J, 2014, CONSERV BIOL, V28, P1604, DOI 10.1111/cobi.12332 Gray A, 2020, J APICULT RES, V59, P744, DOI 10.1080/00218839.2020.1797272 Gray A, 2019, J APICULT RES, V58, P479, DOI 10.1080/00218839.2019.1615661 HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6 Harbo JR, 2005, J APICULT RES, V44, P21, DOI 10.1080/00218839.2005.11101141 Hatjina F, 2013, APIDOLOGIE, V44, P467, DOI 10.1007/s13592-013-0199-4 Havard T, 2020, DIVERSITY-BASEL, V12, DOI 10.3390/d12010007 Hay ME, 1996, ECOLOGY, V77, P1950, DOI 10.2307/2265799 Hayashi S, 2019, APIDOLOGIE, V50, P369, DOI 10.1007/s13592-019-00652-5 Kaunisto S, 2016, CURR OPIN INSECT SCI, V17, P55, DOI 10.1016/j.cois.2016.07.001 Koeniger N, 2007, APIDOLOGIE, V38, P606, DOI 10.1051/apido:2007060 Krupke CH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029268 Kulhanek K, 2017, J APICULT RES, V56, P328, DOI 10.1080/00218839.2017.1344496 LE CONTE Y, 1989, SCIENCE, V245, P638, DOI 10.1126/science.245.4918.638 Little CM, 2016, J APICULT RES, V54, P378, DOI 10.1080/00218839.2016.1159068 Long EY, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11629 Maher RL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43274-8 Medrzycki P, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.4.14 Minnameyer A, 2021, SCI TOTAL ENVIRON, V785, DOI 10.1016/j.scitotenv.2021.146955 Mitchell EAD, 2017, SCIENCE, V358, P109, DOI 10.1126/science.aan3684 Mogren CL, 2016, SCI REP-UK, V6, DOI 10.1038/srep29608 Morfin N, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229030 O'Donnell S, 2004, P ROY SOC B-BIOL SCI, V271, P979, DOI 10.1098/rspb.2004.2685 Pang SM, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.00868 Pettis JS, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147220 Pettis JS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070182 Piggott JJ, 2015, ECOL EVOL, V5, P1538, DOI 10.1002/ece3.1465 Pilling E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077193 Poulin R., 2007, EVOL ECOL, V2nd Ramsey SD, 2019, P NATL ACAD SCI USA, V116, P1792, DOI 10.1073/pnas.1818371116 Rangel J, 2019, APIDOLOGIE, V50, P759, DOI 10.1007/s13592-019-00684-x Retschnig G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085261 Rhodes JW, 2011, APIDOLOGIE, V42, P29, DOI 10.1051/apido/2010026 Rinderer TE, 1999, AM BEE J, V139, P134 Rosenkranz P, 2010, J INVERTEBR PATHOL, V103, pS96, DOI 10.1016/j.jip.2009.07.016 RUTTNER F., 1966, BEE WORLD, V47, P93 Sanchez-Bayo F, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094482 Sandrock C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103592 Schaafsma A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118139 Schluns H, 2005, ANIM BEHAV, V70, P125, DOI 10.1016/j.anbehav.2004.11.005 Siede R, 2018, ECOTOXICOLOGY, V27, P772, DOI 10.1007/s10646-018-1937-1 Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y Simone-Finstrom M, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2015.1007 Singla A, 2021, J APICULT RES, V60, P19, DOI 10.1080/00218839.2020.1825044 Siviter H, 2021, NATURE, V596, DOI 10.1038/s41586-021-03787-7 Steinhauer N, 2018, CURR OPIN INSECT SCI, V26, P142, DOI 10.1016/j.cois.2018.02.004 Stoner KA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039114 Straub L, 2021, J APPL ECOL, V58, P2515, DOI 10.1111/1365-2664.14000 Straub L, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61371-x Straub L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44207-1 Straub L, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0506 Sur Robin, 2003, Bulletin of Insectology, V56, P35 Tarpy DR, 2006, NATURWISSENSCHAFTEN, V93, P195, DOI 10.1007/s00114-006-0091-4 Tarpy DR, 2003, P ROY SOC B-BIOL SCI, V270, P99, DOI 10.1098/rspb.2002.2199 Tong Z, 2018, SCI TOTAL ENVIRON, V640, P1578, DOI 10.1016/j.scitotenv.2018.04.424 Traynor KS, 2020, TRENDS PARASITOL, V36, P592, DOI 10.1016/j.pt.2020.04.004 Tsvetkov N, 2017, SCIENCE, V356, P1395, DOI 10.1126/science.aam7470 van der Sluijs JP, 2015, ENVIRON SCI POLLUT R, V22, P148, DOI 10.1007/s11356-014-3229-5 Wilfert L, 2016, SCIENCE, V351, P594, DOI 10.1126/science.aac9976 Williams GR, 2015, SCI REP-UK, V5, DOI 10.1038/srep14621 Williams GR, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.1.04 Winston M.L., 1991, BIOL HONEY BEE Wood TJ, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0989 Wood TJ, 2017, ENVIRON SCI POLLUT R, V24, P17285, DOI 10.1007/s11356-017-9240-x Yaniz JL, 2020, BIOLOGY-BASEL, V9, DOI 10.3390/biology9070174 NR 104 TC 3 Z9 3 U1 2 U2 18 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 2296-701X J9 FRONT ECOL EVOL JI Front. Ecol. Evol. PD NOV 19 PY 2021 VL 9 AR 756027 DI 10.3389/fevo.2021.756027 PG 11 WC Ecology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA XJ0NB UT WOS:000726495100001 OA gold, Green Published DA 2023-03-13 ER PT J AU Cao, B Wu, J Xu, CL Chen, Y Xie, Q Ouyang, L Wang, JY AF Cao, Bing Wu, Jing Xu, Changlian Chen, Yan Xie, Qing Ouyang, Li Wang, Jingyu TI The Accumulation and Metabolism Characteristics of Rare Earth Elements in Sprague-Dawley Rats SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE rare earth elements; metabolism; SD rats; inductively coupled plasma-mass spectrometry ID ANIMAL HEALTH; LANTHANUM; HORMESIS; CERIUM; RISK AB The current study aims to investigate the influence of five rare earth elements (REEs) (i.e., lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and gadolinium (Gd)) on the growth of Sprague-Dawley (SD) rats, and to explore the accumulation characteristics of REEs in tissues and organs with different doses as well as the detoxification and elimination of high-dose REEs. Fifty healthy male SD rats (140 similar to 160 g) were randomly divided into five groups and four of them were given gavage of sodium citrate solution with REEs in different doses, one of which was the control group. Hair, blood, and bone samples along with specific viscera tissue samples from the spleen and the liver were collected for detection of REEs by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Treated rats expressed higher concentrations of REEs in the bones, the liver, and spleen samples than the control group (P < 0.05). Few differences were found in relative abundance of La, Ce, Pr, Nd, and Gd in the hair and the liver samples, although different administration doses were given. The relative abundance of Ce in bone samples was significantly lower in the low-dose group and control group, whereas the relative abundance of La and Pr in the bone samples were highest among all groups. Although in the REEs solution, which was given to rats in high-dose group, the La element had a higher relative abundance than Ce element, it ended up with higher Ce element relative abundance than La element in the spleen samples. REEs had a hormetic effect on body weight gain of SD rats. The accumulation of the measured REEs were reversible to low concentrations in the blood and hair, but non-reversible in the bones, the spleen, and the liver. Different tissues and organs can selectively absorb and accumulate REEs. Further inter-disciplinary studies about REEs are urgently needed to identify their toxic effects on both ecosystems and organisms. C1 [Cao, Bing] Southwest Univ, Natl Demonstrat Ctr Expt Psychol Educ, Minist Educ, Sch Psychol, Chongqing 400715, Peoples R China. [Cao, Bing] Southwest Univ, Natl Demonstrat Ctr Expt Psychol Educ, Minist Educ, Key Lab Cognit & Personal, Chongqing 400715, Peoples R China. [Wu, Jing; Xie, Qing; Ouyang, Li; Wang, Jingyu] Peking Univ, Med & Hlth Anal Ctr, Beijing 100191, Peoples R China. [Xu, Changlian] Sichuan Agr Univ, Coll Environm Sci, Chengdu 611130, Peoples R China. [Chen, Yan] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON M5T 3M7, Canada. [Xie, Qing; Ouyang, Li; Wang, Jingyu] Peking Univ, Sch Publ Hlth, Dept Lab Sci & Technol, Beijing 100191, Peoples R China. [Xie, Qing; Ouyang, Li; Wang, Jingyu] Peking Univ, Sch Publ Hlth, Vaccine Res Ctr, Beijing 100191, Peoples R China. C3 Southwest University - China; Southwest University - China; Peking University; Sichuan Agricultural University; University of Toronto; Peking University; Peking University RP Wang, JY (corresponding author), Peking Univ, Med & Hlth Anal Ctr, Beijing 100191, Peoples R China.; Wang, JY (corresponding author), Peking Univ, Sch Publ Hlth, Dept Lab Sci & Technol, Beijing 100191, Peoples R China.; Wang, JY (corresponding author), Peking Univ, Sch Publ Hlth, Vaccine Res Ctr, Beijing 100191, Peoples R China. EM bingcao@swu.edu.cn; wujingj@126.com; chinaxuchanglian@126.com; yann.chen@mail.utoronto.ca; Xieqing94@bjmu.edu.cn; ouyangli@bjmu.edu.cn; wjy@bjmu.edu.cn RI wang, jing/HJA-5384-2022 OI Xu, Chang-Lian/0000-0002-7275-8166 CR Abdelnour SA, 2019, SCI TOTAL ENVIRON, V672, P1021, DOI 10.1016/j.scitotenv.2019.02.270 Adeel M, 2019, ENVIRON INT, V127, P785, DOI 10.1016/j.envint.2019.03.022 Badri N, 2017, J TRACE ELEM MED BIO, V44, P349, DOI 10.1016/j.jtemb.2017.09.011 Bai Y, 2019, ENVIRON TOXICOL PHAR, V72, DOI 10.1016/j.etap.2019.103237 Benes B, 2000, Cent Eur J Public Health, V8, P117 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Carpenter D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129936 Cheng J, 2014, ENVIRON TOXICOL, V29, P837, DOI 10.1002/tox.21826 Damme NM, 2020, MAGN RESON MED, V83, P1930, DOI 10.1002/mrm.28060 Dressler VL, 2020, BIOL TRACE ELEM RES, V196, P153, DOI 10.1007/s12011-019-01907-z Du XY, 2011, SCI REP-UK, V1, DOI 10.1038/srep00145 Fan Guangqin, 2004, Wei Sheng Yan Jiu, V33, P23 Fang HQ, 2018, BIOMED ENVIRON SCI, V31, P363, DOI 10.3967/bes2018.047 Grawunder A, 2018, CHEMOSPHERE, V208, P614, DOI 10.1016/j.chemosphere.2018.05.137 Kim YS, 2017, TOX RESEARCH, V33, P239, DOI 10.5487/TR.2017.33.3.239 MacMillan GA, 2017, ENVIRON SCI-PROC IMP, V19, P1336, DOI [10.1039/c7em00082k, 10.1039/C7EM00082K] Massadeh A, 2010, BIOL TRACE ELEM RES, V133, P1, DOI 10.1007/s12011-009-8405-y Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Nakamura Y, 1997, FUND APPL TOXICOL, V37, P106, DOI 10.1006/faat.1997.2322 Nohmi T, 2017, GENES ENVIRON, V39, DOI 10.1186/s41021-016-0072-6 Pagano G, 2015, ENVIRON RES, V142, P215, DOI 10.1016/j.envres.2015.06.039 Pagano G, 2015, ECOTOX ENVIRON SAFE, V115, P40, DOI 10.1016/j.ecoenv.2015.01.030 Thomas PJ, 2014, CHEMOSPHERE, V96, P57, DOI 10.1016/j.chemosphere.2013.07.020 Tong SL, 2004, J ENVIRON SCI HEAL A, V39, P2517, DOI [10.1081/ESE-200026332, 10.1081/lesa-200026332] Wang B, 2017, ENVIRON POLLUT, V220, P837, DOI 10.1016/j.envpol.2016.10.066 Xiao HQ, 2005, TOXICOL LETT, V155, P247, DOI 10.1016/j.toxlet.2004.09.021 Zhang J.C., 2010, PROG NAT SCI, V4, P404 NR 28 TC 9 Z9 10 U1 2 U2 14 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD FEB PY 2020 VL 17 IS 4 AR 1399 DI 10.3390/ijerph17041399 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA KY2GF UT WOS:000522388500275 PM 32098119 OA Green Published, gold DA 2023-03-13 ER PT J AU Harmelin, JG Bishop, JDD Madurell, T Souto, J Jones, MES Zabala, M AF Harmelin, Jean-Georges Bishop, John D. D. Madurell, Teresa Souto, Javier Jones, Mary E. Spencer Zabala, Mikel TI Unexpected diversity of the genus Collarina Jullien, 1886 (Bryozoa, Cheilostomatida) in the NE Atlantic-Mediterranean region: new species and reappraisal of C. balzaci (Audouin, 1826) and C. fayalensis Harmelin, 1978 SO ZOOSYSTEMA LA English DT Article DE Biogeography; habitat distribution; bryozoans; cheilostomes; Cribrilinidae; disturbance bioindicators; new species ID SEA; PLIOCENE; HYPERPLASIA; COMMUNITY; HORMESIS; COMPLEX; GABES; GULF AB The genus Collarina Jullien, 1886 (Cribrilinidae Hincks, 1879) has until now been known from the Atlantic-Mediterranean region as just two species, C. balzaci (Audouin, 1826), synonym of Collarina cribrosa Jullien, 1886, type species of the genus, considered to be widely distributed from the northern British Isles to the SE Mediterranean, and C. fayalensis Harmelin, 1978 from the Macaronesian Isles. Abundant material collected in the Mediterranean and the NE Atlantic, coupled with examination of museum specimens, allowed better definition of the species-specific morphological features in this genus and some generic traits (ooecium formation, avicularia with nested cystids). Besides the redescription of C balzaci and C fayalensis, this study led to the description of four new species: C denticulata Harmelin, n. sp., recorded only in the Mediterranean, C. gautieri Harmelin, n. sp., present in both the NE Atlantic and the Mediterranean, C. macaronensis Harmelin, n. sp., from Madeira, Azores and Galicia, and C. speluncola Harmelin, n. sp., from the Mediterranean and the Gulf of Cadiz. A seventh morphotype (Collarina sp., from the Mediterranean, seemingly close to C speluncola Harmelin, n. sp., has been left unnamed pending the availability of more abundant material. It was proven that C. balzaci: 1) has often been confused with C. gautieri Harmelin, n. sp.; 2) is exclusively epiphytic (mainly on Posidonia oceanica (L.) Delile, 1813 and brown seaweeds), with life-cycle adapted to ephemeral hosts; 3) is widely distributed in the Mediterranean, but also present in the Canaries on seaweeds, and has probably been overlooked in similar habitats in other warm-temperate NE Atlantic localities; and 4) is able to proliferate dramatically on Posidonia leaves in association with diatoms under unusual environmental conditions (Gulf of Gabes, chemical disturbance). All Collarina species live in coastal areas, mostly at shallow depth, in shaded microhabitats: plants (C. balzaci), dark cave walls (C. speluncola Harmelin, n. sp.) and small hard substrates, e.g. shells, pebbles, and anthropogenic debris (all other species). C1 [Harmelin, Jean-Georges] Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France. [Bishop, John D. D.] Marine Biol Assoc UK, Citadel Hill Lab, Plymouth PL1 2PB, Devon, England. [Madurell, Teresa] CSIC, Inst Marine Sci ICM, Passeig Maritim de la Barceloneta 37-49, E-08003 Barcelona, Catalonia, Spain. [Souto, Javier] Univ Vienna, Geozentrum, Inst Palaontol, Althanstr 14, A-1090 Vienna, Austria. [Jones, Mary E. Spencer] Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England. [Zabala, Mikel] Univ Barcelona, Dept Ecol, Diagonal 645, E-08028 Barcelona, Catalonia, Spain. C3 UDICE-French Research Universities; Aix-Marseille Universite; Marine Biological Association United Kingdom; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro Mediterraneo de Investigaciones Marinas y Ambientales (CMIMA); CSIC - Instituto de Ciencias del Mar (ICM); University of Vienna; Natural History Museum London; University of Barcelona RP Harmelin, JG (corresponding author), Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France. EM jean-georges.harmelin@univ-amu.fr RI Souto, Javier/HLW-7120-2023; Madurell, Teresa/E-6721-2013 OI Madurell, Teresa/0000-0002-3971-6773 FU Austrian Science Fund (FWF) [AP28954-B29]; Austrian Science Fund (FWF) [P28954] Funding Source: Austrian Science Fund (FWF) FX We are grateful to J. Aristegui (ULPGC, Canaries) for selecting and sending specimens of C. balzaci from his thesis material, H. De Blauwe and O. Reverter-Gil (Univ. Santiago) for supplying SEM pictures, A. Ostrovsky (Univ. Vienna) for advice on ovicell structure, L. Beckniker (AMNH) and C. Gusso (Univ. Roma La Sapienza) for data on specimens, P. Lozouet and J. Mainguy (MNHN) for assistance during consultation of museum specimens, Sandrine Chenesseaux (IMBE, Marseille) for her help during SEM work of JGH, P. Lejeune (Marine Station of Stareso) and J. M. Dominici (Marine Reserve of Scandola) for diving facilities, M. Verlaque (MIO, Marseille) for algae identification.We thank A. Rosso and D. P. Gordon for their thorough review of the manuscript and useful comments. The work of Javier Souto was supported by the Austrian Science Fund (FWF, project number AP28954-B29). Sampling at Kerkennah Islands by JGH was made during a field survey managed by PIM Initiative (Conservatoire du Littoral, France) and APAL (Agence de Protection et d'Amenagement du Littoral, Tunisia). CR Abboud-Abi Saab M., 2004, GEOSCI J, V336, P1379 Allouc J, 2001, B SOC GEOL FR, V172, P765, DOI 10.2113/172.6.765 ALVAREZ J A, 1988, Miscellania Zoologica (Barcelona), V12, P347 Alvarez J. A., 1987, CUADERNOS INVESTIGAT, V11, P1 Aristegui Ruiz J., 1984, THESIS, Vi-iii, P1 Audouin J., 1826, DESCR GYPTE HIST NAT, V1, P225 Balduzzi A., 1983, Rapports et Proces-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee Monaco, V28, P137 Barroso M.G., 1919, B SOC ESPANOLA HIST, V19, P340 Ben ismail Dorsaf, 2007, Rapport du Congress de la CIESM, V38, P433 Bensoussan N, 2010, ESTUAR COAST SHELF S, V87, P431, DOI 10.1016/j.ecss.2010.01.008 Berning B., 2008, VA MUS NAT HIST SPEC, V15, P1 Berning B, 2017, EUR J TAXON, V347, P1, DOI 10.5852/ejt.2017.347 Bishop J.D.D., 1987, Bulletin of the British Museum (Natural History) Zoology, V53, P1 BISHOP J D D, 1986, Bulletin of Zoological Nomenclature, V43, P288 BISHOP JDD, 1994, ZOOL SCR, V23, P225, DOI 10.1111/j.1463-6409.1994.tb00387.x BISHOP JDD, 1988, J NAT HIST, V22, P747, DOI 10.1080/00222938800770481 BOCK P., 2018, WORLD LIST BRYOZOA Boury-Esnault N., 2001, Boletim do Museu Municipal do Funchal Suplemento, V6, P15 BUSK G, 1854, CATALOGUE MARINE POL, VI-VIII, P55 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 CALVET L., 1906, EXPEDITIONS SCI TRAV Calvet L., 1902, TRAV I ZOOL U MONTPE, V12, P1 Chimenz Gusso C., 2014, BIOL MAR MEDITERR, V21, P1 De Blauwe H., 2019, AUSTRALASIAN PALAEON, V5 De Blauwe H., 2009, MOSDIERTJES ZUIDELIJ De Blauwe Hans, 2006, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Biologie, V76, P125 Desrosiers C, 2013, ECOL INDIC, V32, P25, DOI 10.1016/j.ecolind.2013.02.021 Di Martino E., 2014, STUDI TRENTINI SC NA, V94, P79 Dick MH, 2005, INVERTEBR BIOL, V124, P344, DOI 10.1111/j.1744-7410.2005.00032.x Echalier G., 1951, TRAV STAT BIOL ROS S, V4, P1 El Kateb A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197731 El Zrelli R, 2017, ENVIRON SCI POLLUT R, V24, P22214, DOI 10.1007/s11356-017-9856-x El Zrelli R, 2015, MAR POLLUT BULL, V101, P922, DOI 10.1016/j.marpolbul.2015.10.047 Eugene C., 1978, THESIS Fehlauer-Ale KH, 2011, ZOOTAXA, P49, DOI 10.11646/zootaxa.2962.1.4 FERNANDEZPULPEI.E, 1996, NOVA ACTA CIENTIFICA, V6, P107 GAUTIER Y., 1953, RECUEIL DES TRAV STA MARINE ENDOUME, V9, P39 GAUTIER Y., 1952, BULL INST OCEANOGR [MONACO], V1008, P1 Gautier Y. V., 1958, Annali del Museo Civico di Storia Naturale di Genova, V70, P193 GAUTIER Y. V., 1958, ATTI SOC PELORITANA, V4, P45 Gautier YV, 1962, REC TRAV STAT MAR EN, V38, P1 Harmelin J.-G., 1978, Travaux Scientifiques du Parc National de Port-Cros, V4, P127 Harmelin JG, 2016, MEDITERR MAR SCI, V17, P417, DOI 10.12681/mms.1429 Harmelin J.-G., 1977, Travaux Scientifiques du Parc National de Port-Cros, V3, P143 Harmelin J.-G., 1976, MEMOIRES LINSTITUTE, V10, P1 Harmelin J-G, 1978, TETHYS, V8, P173 Harmelin Jean-Georges, 2006, V257, P73 Harmelin Jean-Georges, 2017, Travaux Scientifiques du Parc National de Port-Cros, V31, P105 HARMELIN JG, 1970, CAH BIOL MAR, V11, P77 HARMELIN JG, 1973, RAPPORTS COMMISSION, V21, P675 Hattour MJ, 2010, REV PARALIA, V3, P31 Hayward P, 1998, SYNOPSES BRIT FAUNA, P1 Hayward P.J., 1979, Synopses of the British Fauna New Series, P1 Hayward P.J., 1975, Documents Lab Geol Fac Sci Lyon Hors Ser, V3, P347 Hayward PJ, 2002, B AM MUS NAT HIST, P1 HAYWARD PJ, 1974, J NAT HIST, V8, P369, DOI 10.1080/00222937400770321 Heller C., 1867, VERHANDLUNGEN ZOOLOG, V17, P77 Hincks T., 1886, Annals of Natural History, V(5), P254 Hincks T, 1880, HIST BRIT MARINE POL, V2 Hincks T., 1880, HIST BRIT MARINE POL, V1 Hondt J.L. d', 2006, NOUVELLE DESCRIPTION, P1 Jullien J., 1886, B SOC ZOOLOGIQUE FRA, V11, P601 Kocak F, 2002, INDIAN J MAR SCI, V31, P235 Larwood G.P., 1962, B BRIT MUSEUM NATURA, V6 Lepoint G, 2014, CAH BIOL MAR, V55, P57 Lidgard S, 2012, EVOL ECOL, V26, P233, DOI 10.1007/s10682-011-9513-7 Marchio G., 1982, NATURALISTA SICILIAN, V3, P499 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moissette P., 2013, LECT NOTES EARTH SYS, V143, P187, DOI [DOI 10.1007/978-3-642-16411-8_13, 10.1007/978-3-642-16411-8_13] Moissette P, 2007, PALAIOS, V22, P200, DOI 10.2110/palo.2005.p05-141r Moissette P, 2016, GEOL MAG, V153, P61, DOI 10.1017/S0016756815000230 Norman A. M., 1909, Journal of the Linnean Society London Zoology, V30 Norman A. M., 1903, Annals of Natural History Ser 7, Vxii, P87 Ostrovsky A, 2013, EVOLUTION OF SEXUAL REPRODUCTION IN MARINE INVERTEBRATES: EXAMPLE OF GYMNOLAEMATE BRYOZOANS, P229, DOI 10.1007/978-94-007-7146-8_3 Pages-Escola M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-36094-9 Peres J.-M., 1964, NOUVEAU MANUEL BIONO Pergent G., 2012, MEDITERRANEAN SEAGRA PISANO E, 1985, MAR ECOL PROG SER, V27, P195, DOI 10.3354/meps027195 POWELL NA, 1970, J FISH RES BOARD CAN, V27, P2095, DOI 10.1139/f70-234 Prenant M., 1966, Faune de France, V68, P1 Prenant M., 1927, Trav Sta zool Roscoff, V6, P1 PULPEIRO E F, 1980, Investigacion Pesquera (Barcelona), V44, P119 Reverter O, 1996, J NAT HIST, V30, P1247, DOI 10.1080/00222939600770681 REVERTER O, 1995, CAH BIOL MAR, V36, P123 Reverter-Gil O, 2016, J NAT HIST, V50, P281, DOI 10.1080/00222933.2015.1062153 Rosso A, 2018, ZOOTAXA, V4524, P401, DOI 10.11646/zootaxa.4524.4.1 Rosso A, 2016, MEDITERR MAR SCI, V17, P567, DOI 10.12681/mms.1706 Rosso A., 1996, BIOL MARINA MEDITERR, V3, P58 Rosso A, 2015, B SOC PALEONTOL ITAL, V54, P91, DOI 10.4435/BSPI.2015.05 RYLAND J S, 1971, Irish Naturalists' Journal, V17, P65 Sammari C, 2006, CONT SHELF RES, V26, P338, DOI 10.1016/j.csr.2005.11.006 Savigny JC, 1817, HIST NATURELLE, P1 Souto J, 2010, J MAR BIOL ASSOC UK, V90, P1417, DOI 10.1017/S0025315409991640 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STRAUGHAN D, 1975, WATER AIR SOIL POLL, V5, P39, DOI 10.1007/BF00431577 Waters A. W., 1899, Journal of the Royal Microscopical Society, P6 Waters A. W., 1923, Annals & Magazine of Natural History Series 9, V12, P545 Waters AW., 1879, ANN MAG NAT HIST, V3, P192, DOI [10.1080/00222937908694085, DOI 10.1080/00222937908682488] Winston JE, 2013, ZOOTAXA, V3710, P101 Zabala M., 1988, Treballs del Museu de Zoologia, P1 Zabala M., 1986, FAUNA BRIOZOUS DELS NR 101 TC 0 Z9 0 U1 0 U2 3 PU PUBLICATIONS SCIENTIFIQUES DU MUSEUM, PARIS PI PARIS CEDEX 05 PA CP 39-57, RUE CUVIER, F-75231 PARIS CEDEX 05, FRANCE SN 1280-9551 EI 1638-9387 J9 ZOOSYSTEMA JI Zoosystema PD DEC PY 2018 VL 40 SI 1 BP 385 EP 418 DI 10.5252/zoosystema2019v41a21 PG 34 WC Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Zoology GA JC8US UT WOS:000489552200008 OA Green Submitted DA 2023-03-13 ER PT J AU Gurbay, A Gonthier, B Barret, L Favier, A Hincal, F AF Gurbay, Aylin Gonthier, Brigitte Barret, Luc Favier, Alain Hincal, Filiz TI Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by Vitamin E SO TOXICOLOGY LA English DT Article DE ciprofloxacin; central nervous system; Astrocytes; cytotoxicity; oxidative stress; hormesis ID CENTRAL-NERVOUS-SYSTEM; OXIDATIVE STRESS; IN-VITRO; QUINOLONE ANTIBIOTICS; GABA(A) RECEPTOR; TOXICITY; FLUOROQUINOLONES; APOPTOSIS; DAMAGE; BRAIN AB The aim of this study was to investigate the possible cytotoxic and oxidative stress inducing effects of ciprofloxacin (CPFX) on primary cultures of rat astrocytes. The cultured cells were incubated with various concentrations of CPFX (0.5-300 mg/l), and cytotoxicity was determined by neutral red (NR) and MTT assays. Survival profile of cells was biphasic in NR assay: CPFX did not cause any alteration at any concentration for 7 h, whereas <= 50 mg/l concentrations induced significant cell proliferation in incubation periods of 24, 48, 72, and 96 h. However, cell proliferation gradually decreased at higher concentrations, and 200 and 300 mg/l of CPFX exposure was found to be significantly (p < 0.05) cytotoxic at all time periods. With MTT assay, no alteration was noted for incubation period of 7 h, as observed with NR assay. But, cell viability decreased with similar to >= 50 mg/l CPFX exposure in all other time periods. Cell proliferation was only seen in 24 h of incubation with 0.5 and 5 mg/l CPFX. Vitamin E pretreatment of cell cultures were found to be providing complete protection against cytotoxicity of 300 mg/1 CPFX in 96 h incubation when measured with both NR and MTT assays. The SOD pretreatment was partially protective with NR assay, but no protection was noted when measured with MTT. A significant enhancement of lipid peroxidation was observed with the cytotoxic concentration of the drug, but total glutathione content and catalase activity of cells did not change. The data obtained in this study suggest that, in accordance with our previous results with fibroblast cells, CPFX-induced cytotoxicity is related to oxidative stress. And the biphasic effect of CPFX possibly resulted from the complex dose-dependent relationships between reactive oxygen species, cell proliferation, and cell viability. (c) 2006 Elsevier Ireland Ltd. All rights reserved. C1 Hacettepe Univ, Fac Pharm, Dept Toxicol, TR-06100 Ankara, Turkey. Hacettepe Univ, Fac Pharm, Dept Pharmaceut Technol, TR-06100 Ankara, Turkey. CEA, Fac Med Grenoble, UMR E UJF, ORSOX,Lab Oligoelements & Resistance Stress Oxyda, La Tronche, France. CEA, Dept Rech Fondamentale Matiere Condensee, Serv Chim Inorgan & Biol, Lab Lesions Acides Nucle, Grenoble, France. C3 Hacettepe University; Hacettepe University; CEA; Communaute Universite Grenoble Alpes; UDICE-French Research Universities; Universite Grenoble Alpes (UGA); CEA RP Gurbay, A (corresponding author), Hacettepe Univ, Fac Pharm, Dept Toxicol, TR-06100 Ankara, Turkey. EM Aylingurbay@hotmail.com; fhincal@tr.net RI gurbay, Aylin/AAF-7665-2020 OI gurbay, Aylin/0000-0002-8571-1092 CR AEBI H, 1984, METHOD ENZYMOL, V105, P121 AKAHANE K, 1993, ANTIMICROB AGENTS CH, V37, P1764, DOI 10.1128/AAC.37.9.1764 Akerboom T P, 1981, Methods Enzymol, V77, P373 BALL P, 1989, CLIN INVEST MED, V12, P28 BALL P, 1995, DRUG SAFETY, V13, P343, DOI 10.2165/00002018-199513060-00004 BASSARIS HP, 1986, P 1 INT CIPR WORKSH, P204 Blondeau JM, 1999, CLIN THER, V21, P3 BOLANOS JP, 1995, J NEUROCHEM, V64, P1965 BONDY SC, 1993, FREE RADICAL BIO MED, V14, P633, DOI 10.1016/0891-5849(93)90144-J BOOHER J, 1972, Neurobiology (Copenhagen), V2, P97 BORENFREUND E, 1985, TOXICOL LETT, V24, P119, DOI 10.1016/0378-4274(85)90046-3 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a CHRIST W, 1990, J ANTIMICROB CHEMOTH, V26, P219, DOI 10.1093/jac/26.suppl_B.219 CHRIST W, 1988, REV INFECTIOUS DI S1, V10, P141 COOKSON MR, 1994, TOXICOL IN VITRO, V8, P351, DOI 10.1016/0887-2333(94)90156-2 COYLE JT, 1993, SCIENCE, V262, P689, DOI 10.1126/science.7901908 DAVEY PG, 1988, J ANTIMICROB CHEMOTH, V22, P97, DOI 10.1093/jac/22.Supplement_C.97 DAVEY PG, 1994, ANTIMICROB AGENTS CH, V38, P1356, DOI 10.1128/AAC.38.6.1356 DEXTER DT, 1994, MOVEMENT DISORD, V9, P92, DOI 10.1002/mds.870090115 DODD PR, 1989, PHARMACOL TOXICOL, V64, P404, DOI 10.1111/j.1600-0773.1989.tb00676.x Drukarch B, 1998, FREE RADICAL BIO MED, V25, P217, DOI 10.1016/S0891-5849(98)00050-1 Emonet N, 1997, J PHOTOCH PHOTOBIO B, V40, P84, DOI 10.1016/S1011-1344(97)00041-9 Eysseric H, 1997, ALCOHOL CLIN EXP RES, V21, P1018, DOI 10.1111/j.1530-0277.1997.tb04247.x GERDING DN, 1989, REV INFECT DIS, V11, pS1046 Gootz T.D., 1990, 4 QUINOLONES ANTIBAC, P159, DOI [10.1007/978-1-4471-3449-7_11, DOI 10.1007/978-1-4471-3449-7_11] Gurbay A, 2006, NEUROTOXICOLOGY, V27, P6, DOI 10.1016/j.neuro.2005.05.007 Gurbay A, 2005, TOXICOL MECH METHOD, V15, P339, DOI 10.1080/153765291009877 Gurbay A, 2004, DRUG CHEM TOXICOL, V27, P233, DOI 10.1081/DCT-120037504 Gurbay A, 2002, HUM EXP TOXICOL, V21, P635, DOI 10.1191/0960327102ht305oa Gurbay A, 2001, FREE RADICAL BIO MED, V30, P1118, DOI 10.1016/S0891-5849(01)00508-1 HAYEM G, 1994, ANTIMICROB AGENTS CH, V38, P243, DOI 10.1128/AAC.38.2.243 Herold C, 2002, BRIT J CANCER, V86, P443, DOI 10.1038/sj.bjc.6600079 HINCAL F, 1995, INT C TOX SEATTL WAS, V7, P27 Hincal Filiz, 2003, Nonlinearity Biol Toxicol Med, V1, P481, DOI 10.1080/15401420390271083 Kawakami J, 1997, TOXICOL APPL PHARM, V145, P246, DOI 10.1006/taap.1997.8137 KUCERS A, 1997, USE ANTIBIOTICS Lawrence JW, 1996, MOL PHARMACOL, V50, P1178 LOWRY OH, 1951, J BIOL CHEM, V193, P265 MAKAR TK, 1994, J NEUROCHEM, V62, P45 MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4 Naora K, 1999, J PHARM PHARMACOL, V51, P609, DOI 10.1211/0022357991772718 OCALLAGHAN JP, 1995, NEUROCHEM INT, V26, P115, DOI 10.1016/0197-0186(94)00106-5 OCALLAGHAN JP, 1993, ANN NY ACAD SCI, V679, P195, DOI 10.1111/j.1749-6632.1993.tb18299.x Pentreath VW, 2000, HUM EXP TOXICOL, V19, P641, DOI 10.1191/096032700676221595 Peuchen S, 1997, PROG NEUROBIOL, V52, P261, DOI 10.1016/S0301-0082(97)00010-5 RICHARD MJ, 1992, CLIN CHEM, V38, P704 Robb SJ, 1998, BRAIN RES, V788, P125, DOI 10.1016/S0006-8993(97)01543-6 Schmuck G, 1998, ANTIMICROB AGENTS CH, V42, P1831, DOI 10.1128/AAC.42.7.1831 SHOPSIS C, 1984, ANAL BIOCHEM, V140, P104, DOI 10.1016/0003-2697(84)90139-8 Stahlmann R, 1999, DRUGS, V58, P37, DOI 10.2165/00003495-199958002-00007 SUBBARAO KV, 1990, J NEUROCHEM, V55, P342, DOI 10.1111/j.1471-4159.1990.tb08858.x Takuma K, 2004, PROG NEUROBIOL, V72, P111, DOI 10.1016/j.pneurobio.2004.02.001 WAGAI N, 1992, FREE RADICAL RES COM, V17, P387, DOI 10.3109/10715769209083143 WILLIAMS PD, 1991, TOXICOL LETT, V58, P23, DOI 10.1016/0378-4274(91)90186-A Wilson JX, 1997, CAN J PHYSIOL PHARM, V75, P1149, DOI 10.1139/cjpp-75-10-11-1149 WOLFF M, 1987, ANTIMICROB AGENTS CH, V31, P899, DOI 10.1128/AAC.31.6.899 WOLFSON JS, 1985, ANTIMICROB AGENTS CH, V28, P581, DOI 10.1128/AAC.28.4.581 NR 58 TC 38 Z9 40 U1 1 U2 17 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X EI 1879-3185 J9 TOXICOLOGY JI Toxicology PD JAN 5 PY 2007 VL 229 IS 1-2 BP 54 EP 61 DI 10.1016/j.tox.2006.09.016 PG 8 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 125TZ UT WOS:000243467000006 PM 17098346 DA 2023-03-13 ER PT J AU Sidhu, H O'Connor, G Kruse, J AF Sidhu, Harmanpreet O'Connor, George Kruse, Jason TI Plant toxicity and accumulation of biosolids-borne ciprofloxacin and azithromycin SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Phytotoxicity; Plant uptake; Antibiotics; Ciprofloxacin; Azithromycin; Biosolids ID PERSONAL CARE PRODUCTS; CROP PLANTS; PHYSICOCHEMICAL PROPERTIES; MUNICIPAL BIOSOLIDS; SOIL; PHARMACEUTICALS; WATER; HORMESIS; BIODEGRADATION; ENROFLOXACIN AB Trace organic chemicals (TOrCs) in land applied biosolids can cause phytotoxicities and contaminate human and animal food chains. Information on phytotoxicity and phytoaccumulation of environmentally relevant concentrations of two antibiotic TOrCs, ciprofloxacin (CIP) and azithromycin (AZ), from biosolids-amended soils is limited. Greenhouse studies were conducted to assess the plant toxicity and accumulation of a range of environmentally relevant concentrations of biosolids-borne CIP and AZ in biosolids-amended soils. Separate studies assessed phytotoxicity potential of soil-borne CIP and AZ (soils directly spiked with the target antibiotics without biosolids) at concentrations much greater than those of environmental relevance in biosolids-amended soils. Both the biosolids-borne and the soil-borne antibiotic studies involved three plants (radish (Raphanus sativus), lettuce (Lactuca sativa), and tall fescue grass (Festuca arundinacea)) of different morphologies, physiologies, and chemical exposure scenarios. Phytotoxicity and phytoaccumulation from the biosolids-borne antibiotics were minimal at environmentally relevant concentrations, even in sand. The separate phytotoxicity experiments involving the soil-borne antibiotics revealed no observed adverse effect concentration (NOAEC) of 3.2 mg kg(-1) (AZ) and 36.1 mg kg(-1) (CIP) for the three plants grown in soils mimicking typical agricultural soils. These NOAEC values are about 100-fold greater than the antibiotic concentrations expected in biosolids-amended soils. NOAEC values under an unrealistic worst-case where the antibiotics were directly spiked to sand (NOAEC = 3.2 mg kg(-1) for AZ; and >= 0.36 mg kg(-1) for CIP) were also greater than the environmentally relevant concentrations of the biosolids-borne antibiotics. The results suggest that land application of biosolids-borne CIP and AZ pose De minimis risks to plants. Point estimates of plant bioaccumulation factors (dry weight basis) were 0.01 (CIP) and 0.1 (AZ), suggesting minimal impacts of the target TOrCs on human and/or animal food chains. (C) 2018 Elsevier B.V. All rights reserved. C1 [Sidhu, Harmanpreet; O'Connor, George] Univ Florida, Soil & Water Sci Dept, Gainesville, FL 32611 USA. [Kruse, Jason] Univ Florida, Dept Environm Hort, Gainesville, FL 32611 USA. C3 State University System of Florida; University of Florida; State University System of Florida; University of Florida RP Sidhu, H (corresponding author), Univ Florida, 2181 McCarty Hall A, Gainesville, FL 32611 USA. EM hsidhu@ufl.edu OI Kruse, Jason/0000-0002-7383-9224; Sidhu, Harmanpreet/0000-0001-9359-3180 FU Water Research Foundation [TOBI2R15] FX This research was supported by the Water Research Foundation (Project #TOBI2R15). We thank Dr. Kuldip Kumar for procuring the biosolids and Dr. George Hochmuth for advice on planting, plant growth, and maintenance protocols. CR [Anonymous], 3501 USEPA OFF RES D [Anonymous], 3532 USEPA OFF RES D Aristilde L, 2013, ENVIRON TOXICOL CHEM, V32, P1467, DOI 10.1002/etc.2214 Aristilde L, 2010, ENVIRON SCI TECHNOL, V44, P1444, DOI 10.1021/es902665n Bartha B, 2010, ENVIRON SCI POLLUT R, V17, P1553, DOI 10.1007/s11356-010-0342-y Brown S. P., 2015, FLORIDA VEGETABLE GA Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Cardoza LA, 2005, WATER AIR SOIL POLL, V161, P383, DOI 10.1007/s11270-005-5550-6 Carmosini N, 2009, CHEMOSPHERE, V77, P813, DOI 10.1016/j.chemosphere.2009.08.003 Castela-Papin N, 1999, INT J PHARM, V182, P111, DOI 10.1016/S0378-5173(99)00073-3 Coleman JOD, 1997, TRENDS PLANT SCI, V2, P144, DOI 10.1016/S1360-1385(97)01019-4 Dodgen LK, 2013, ENVIRON POLLUT, V182, P150, DOI 10.1016/j.envpol.2013.06.038 DuarteDavidson R, 1996, SCI TOTAL ENVIRON, V185, P59, DOI 10.1016/0048-9697(96)05042-5 ECETOC, 2013, 117 ECETOC Eggen T, 2011, CHEMOSPHERE, V85, P26, DOI 10.1016/j.chemosphere.2011.06.041 Ericson JF, 2007, ENVIRON SCI TECHNOL, V41, P5803, DOI 10.1021/es063043+ GILLMAN GP, 1986, AUST J SOIL RES, V24, P61, DOI 10.1071/SR9860061 Girardi C, 2011, J HAZARD MATER, V198, P22, DOI 10.1016/j.jhazmat.2011.10.004 Gong WW, 2012, CHEMOSPHERE, V89, P825, DOI 10.1016/j.chemosphere.2012.04.064 Gottschall N, 2012, CHEMOSPHERE, V87, P194, DOI 10.1016/j.chemosphere.2011.12.018 Grote M, 2007, LANDBAUFORSCH VOLK, V57, P25 Huber C, 2012, J HAZARD MATER, V243, P250, DOI 10.1016/j.jhazmat.2012.10.023 Huber C, 2009, ENVIRON SCI POLLUT R, V16, P206, DOI 10.1007/s11356-008-0095-z Jones DL, 2006, SOIL BIOL BIOCHEM, V38, P991, DOI 10.1016/j.soilbio.2005.08.012 Kipper K., 2010, 2 INT C CHEM BIOL EN Lam MW, 2003, ENVIRON SCI TECHNOL, V37, P899, DOI 10.1021/es025902+ Lillenberg M., 2010, Agronomy Research, V8, P807 Maier MLV, 2018, CHEMOSPHERE, V190, P471, DOI 10.1016/j.chemosphere.2017.10.008 McClellan K, 2010, WATER RES, V44, P658, DOI 10.1016/j.watres.2009.12.032 McFarland JW, 1997, J MED CHEM, V40, P1340, DOI 10.1021/jm960436i Migliore L, 2003, CHEMOSPHERE, V52, P1233, DOI 10.1016/S0045-6535(03)00272-8 Miller EL, 2016, ENVIRON SCI TECHNOL, V50, P525, DOI 10.1021/acs.est.5b01546 Nowara A, 1997, J AGR FOOD CHEM, V45, P1459, DOI 10.1021/jf960215l OConnor GA, 1996, SCI TOTAL ENVIRON, V185, P71, DOI 10.1016/0048-9697(95)05043-4 Pannu MW, 2012, ENVIRON TOXICOL CHEM, V31, P2130, DOI 10.1002/etc.1930 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Prosser RS, 2015, ENVIRON INT, V75, P223, DOI 10.1016/j.envint.2014.11.020 ROSS DL, 1992, INT J PHARMACEUT, V88, P379, DOI 10.1016/0378-5173(92)90336-Z Sabourin L, 2012, SCI TOTAL ENVIRON, V431, P233, DOI 10.1016/j.scitotenv.2012.05.017 SCHROLL R, 1992, CHEMOSPHERE, V24, P97, DOI 10.1016/0045-6535(92)90571-8 Sidhu H. S., 2018, FATE RISK ASSESSMENT TAKACSNOVAK K, 1992, INT J PHARM, V79, P89, DOI 10.1016/0378-5173(92)90099-N *USEPA, 2005, EPA600R05055 USEPA, 1994, EPA600R94111 USEPA, 2007, 1694 USEPA USEPA, 1983, EPA600479020, V150, P1 USEPA, 2009, 822R08014 USEPA USEPA, 1993, 3512 USEPA OFF RES D Vasudevan D, 2009, GEODERMA, V151, P68, DOI 10.1016/j.geoderma.2009.03.007 Walters E, 2010, WATER RES, V44, P6011, DOI 10.1016/j.watres.2010.07.051 Wu CX, 2008, CHEMOSPHERE, V73, P511, DOI 10.1016/j.chemosphere.2008.06.026 Wu XQ, 2015, SCI TOTAL ENVIRON, V536, P655, DOI 10.1016/j.scitotenv.2015.07.129 NR 53 TC 25 Z9 25 U1 5 U2 94 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 15 PY 2019 VL 648 BP 1219 EP 1226 DI 10.1016/j.scitotenv.2018.08.218 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GX5QQ UT WOS:000447805500113 PM 30340267 DA 2023-03-13 ER PT J AU Gust, KA Chaitankar, V Ghosh, P Wilbanks, MS Chen, XF Barker, ND Pham, D Scanlan, LD Rawat, A Talent, LG Quinn, MJ Vulpe, CD Elasri, MO Johnson, MS Perkins, EJ McFarland, CA AF Gust, Kurt A. Chaitankar, Vijender Ghosh, Preetam Wilbanks, Mitchell S. Chen, Xianfeng Barker, Natalie D. Pham, Don Scanlan, Leona D. Rawat, Arun Talent, Larry G. Quinn, Michael J., Jr. Vulpe, Christopher D. Elasri, Mohamed O. Johnson, Mark S. Perkins, Edward J. McFarland, Craig A. TI Multiple environmental stressors induce complex transcriptomic responses indicative of phenotypic outcomes in Western fence lizard SO BMC GENOMICS LA English DT Article DE Multiple stressors; Reptiles; Genomics; Munitions; Malaria; Food limitation; Climate change; TNT; Immune response ID PLASMODIUM-MEXICANUM; CROSS-PRESENTATION; MALARIAL PARASITE; FATHEAD MINNOW; TOXICITY; 2,4,6-TRINITROTOLUENE; MECHANISMS; EXPOSURE; PROTEIN; SYSTEM AB Background: The health and resilience of species in natural environments is increasingly challenged by complex anthropogenic stressor combinations including climate change, habitat encroachment, and chemical contamination. To better understand impacts of these stressors we examined the individual- and combined-stressor impacts of malaria infection, food limitation, and 2,4,6-trinitrotoluene (TNT) exposures on gene expression in livers of Western fence lizards (WFL, Sceloporus occidentalis) using custom WFL transcriptome-based microarrays. Results: Computational analysis including annotation enrichment and correlation analysis identified putative functional mechanisms linking transcript expression and toxicological phenotypes. TNT exposure increased transcript expression for genes involved in erythropoiesis, potentially in response to TNT-induced anemia and/or methemoglobinemia and caused dose-specific effects on genes involved in lipid and overall energy metabolism consistent with a hormesis response of growth stimulation at low doses and adverse decreases in lizard growth at high doses. Functional enrichment results were indicative of inhibited potential for lipid mobilization and catabolism in TNT exposures which corresponded with increased inguinal fat weights and was suggestive of a decreased overall energy budget. Malaria infection elicited enriched expression of multiple immune-related functions likely corresponding to increased white blood cell (WBC) counts. Food limitation alone enriched functions related to cellular energy production and decreased expression of immune responses consistent with a decrease in WBC levels. Conclusions: Despite these findings, the lizards demonstrated immune resilience to malaria infection under food limitation with transcriptional results indicating a fully competent immune response to malaria, even under bio-energetic constraints. Interestingly, both TNT and malaria individually increased transcriptional expression of immune-related genes and increased overall WBC concentrations in blood; responses that were retained in the TNT x malaria combined exposure. The results demonstrate complex and sometimes unexpected responses to multiple stressors where the lizards displayed remarkable resiliency to the stressor combinations investigated. C1 [Gust, Kurt A.; Wilbanks, Mitchell S.; Perkins, Edward J.] US Army, Engineer Res & Dev Ctr, Environm Lab, Vicksburg, MS 39180 USA. [Chaitankar, Vijender] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA. [Ghosh, Preetam] Virginia Commonwealth Univ, Sch Engn, Richmond, VA 23284 USA. [Chen, Xianfeng] IFXworks LLC, 2915 Columbia Pike, Arlington, VA 22204 USA. [Barker, Natalie D.] Bennett Aerosp, Cary, NC 27511 USA. [Pham, Don; Scanlan, Leona D.] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94720 USA. [Pham, Don] Carlsbad Unified Sch Dist, Carlsbad, CA 92009 USA. [Scanlan, Leona D.] Calif Environm Protect Agcy, Dept Pesticide Regulat, Sacramento, CA 95812 USA. [Rawat, Arun] Sidra Med, North Campus, Doha 26999, Qatar. [Talent, Larry G.] Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA. [Quinn, Michael J., Jr.; Johnson, Mark S.; McFarland, Craig A.] US Army, Publ Hlth Ctr, Aberdeen Proving Ground, MD 21010 USA. [Vulpe, Christopher D.] Univ Florida, Coll Vet Med, Gainesville, FL 32610 USA. [Elasri, Mohamed O.] Univ Southern Mississippi, Dept Biol Sci, Hattiesburg, MS 39406 USA. C3 United States Department of Defense; United States Army; U.S. Army Corps of Engineers; U.S. Army Engineer Research & Development Center (ERDC); National Institutes of Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI); Virginia Commonwealth University; University of California System; University of California Berkeley; California Environmental Protection Agency; Sidra Medical & Research Center; Oklahoma State University System; Oklahoma State University - Stillwater; State University System of Florida; University of Florida; University of Southern Mississippi RP Gust, KA (corresponding author), US Army, Engineer Res & Dev Ctr, Environm Lab, Vicksburg, MS 39180 USA. EM kurt.a.gust@usace.army.mil RI Rawat, Arun/Q-2520-2019; Rawat, Arun/AAD-1534-2019; Johnson, Mark S./AAX-1357-2020; Vulpe, Chris/AAF-9170-2020; Rawat, Arun/ABD-6248-2021 OI Vulpe, Chris/0000-0001-5134-8929; Rawat, Arun/0000-0003-0540-2044; Ghosh, Preetam/0000-0003-3880-5886; Gust, Kurt/0000-0002-7244-3762 FU US Army Environmental Quality / Installations (EQ/I) research program; Genomic Signatures basic research project (Army 6.1) [09-27]; Impacts of MCs on Biological Networks applied research focus area [Army 6.2-6.3] FX This work was funded by the US Army Environmental Quality / Installations (EQ/I) research program. The core study was funded by the Genomic Signatures basic research project (Army 6.1, 09-27) with supplemental funding from the Impacts of MCs on Biological Networks applied research focus area (Army 6.2-6.3). The funding body had no role in the design of the study, data collection, analysis, or interpretation of data. CR ALARCON B, 1988, J BIOL CHEM, V263, P2953 Allen SJ, 1997, P NATL ACAD SCI USA, V94, P14736, DOI 10.1073/pnas.94.26.14736 ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2 Ankley GT, 2006, ENVIRON SCI TECHNOL, V40, P4055, DOI 10.1021/es0630184 Ayi K, 2008, NEW ENGL J MED, V358, P1805, DOI 10.1056/NEJMoa072464 Bandorowicz-Pikula J, 2012, DO ANNEXINS PARTICIP, V29 Barone R, 2007, CLIN LAB, V53, P321 Basha G, 2012, NAT IMMUNOL, V13, P237, DOI 10.1038/ni.2225 Bejon P, 2006, INFECT IMMUN, V74, P6331, DOI 10.1128/IAI.00774-06 BENNETT NT, 1993, AM J SURG, V165, P728, DOI 10.1016/S0002-9610(05)80797-4 Boyum A, 1996, SCAND J IMMUNOL, V43, P228, DOI 10.1046/j.1365-3083.1996.d01-32.x Cappadoro M, 1998, BLOOD, V92, P2527, DOI 10.1182/blood.V92.7.2527.2527_2527_2534 Collier ZA, 2016, REGUL TOXICOL PHARM, V75, P46, DOI 10.1016/j.yrtph.2015.12.014 CONBOY J, 1986, P NATL ACAD SCI USA, V83, P9512, DOI 10.1073/pnas.83.24.9512 Deng Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018605 DILLEY JV, 1982, J TOXICOL ENV HEALTH, V9, P565, DOI 10.1080/15287398209530188 DUNLAP KD, 1995, PHYSIOL ZOOL, V68, P608, DOI 10.1086/physzool.68.4.30166347 Eisen RJ, 2000, P ROY SOC B-BIOL SCI, V267, P793, DOI 10.1098/rspb.2000.1073 FARESE RV, 1995, P NATL ACAD SCI USA, V92, P1774, DOI 10.1073/pnas.92.5.1774 FRANCESCHINI G, 1981, METABOLISM, V30, P502, DOI 10.1016/0026-0495(81)90188-8 Fu C, 1998, IMMUNITY, V9, P93, DOI 10.1016/S1074-7613(00)80591-9 GILMANSHIN R, 1994, BIOCHEMISTRY-US, V33, P8225, DOI 10.1021/bi00193a008 Glickman MH, 2002, PHYSIOL REV, V82, P373, DOI 10.1152/physrev.00027.2001 Gong P, 2007, ENVIRON SCI TECHNOL, V41, P8195, DOI 10.1021/es0716352 GUGGENHEIM K, 1949, BLOOD, V4, P958, DOI 10.1182/blood.V4.8.958.958 Gust KA, 2018, AQUAT TOXICOL, V199, P138, DOI 10.1016/j.aquatox.2018.03.019 Gust KA, 2017, AQUAT TOXICOL, V190, P228, DOI 10.1016/j.aquatox.2017.07.004 Gust KA, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1798-4 Gust KA, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-591 Gust KA, 2011, ENVIRON TOXICOL CHEM, V30, P1852, DOI 10.1002/etc.558 Gust KA, 2009, TOXICOL SCI, V110, P168, DOI 10.1093/toxsci/kfp091 Hatefi Y, 1985, ENZYMES BIOL MEMBR, V4, P1 Hedges SB, 1999, SCIENCE, V283, P998, DOI 10.1126/science.283.5404.998 Hillier LW, 2004, NATURE, V432, P695, DOI 10.1038/nature03154 Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211 Huang XQ, 1999, GENOME RES, V9, P868, DOI 10.1101/gr.9.9.868 Joffre OP, 2012, NAT REV IMMUNOL, V12, P557, DOI 10.1038/nri3254 Jonckheere AI, 2012, J INHERIT METAB DIS, V35, P211, DOI 10.1007/s10545-011-9382-9 Kersten S, 2014, MOL METAB, V3, P354, DOI 10.1016/j.molmet.2014.02.002 Komaki G, 1997, AM J CLIN NUTR, V66, P147, DOI 10.1093/ajcn/66.1.147 Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559 Le Bon A, 2001, IMMUNITY, V14, P461, DOI 10.1016/S1074-7613(01)00126-1 Lima JD, 2016, FRONT IMMUNOL, V7, DOI 10.3389/fimmu.2016.00013 Lin HF, 1997, BLOOD, V90, P3962, DOI 10.1182/blood.V90.10.3962 Liu SK, 1999, CURR BIOL, V9, P67, DOI 10.1016/S0960-9822(99)80017-7 Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x Maroziene A, 2001, Z NATURFORSCH C, V56, P1157 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mcfarland CA, 2008, ENVIRON TOXICOL CHEM, V27, P1102, DOI 10.1897/07-312.1 McFarland CA, 2012, ECOTOXICOLOGY, V21, P2372, DOI 10.1007/s10646-012-0993-1 Nelson DL, 2000, CML LEHNINGER PRINCI Pertea G, 2003, BIOINFORMATICS, V19, P651, DOI 10.1093/bioinformatics/btg034 Pescador N, 2005, BIOCHEM J, V390, P189, DOI 10.1042/BJ20042121 Quinn MJ, 2007, ENVIRON TOXICOL CHEM, V26, P2202, DOI 10.1897/07-123R.1 Rawat A, 2010, PHYSIOL GENOMICS, V42, P219, DOI 10.1152/physiolgenomics.00022.2010 ROCK KL, 1994, CELL, V78, P761, DOI 10.1016/S0092-8674(94)90462-6 Saeed AI, 2003, BIOTECHNIQUES, V34, P374, DOI 10.2144/03342mt01 Schaible UE, 2007, PLOS MED, V4, P806, DOI 10.1371/journal.pmed.0040115 SCHALL JJ, 1995, J ANIM ECOL, V64, P177, DOI 10.2307/5753 SCHALL JJ, 1990, PARASITOL TODAY, V6, P264, DOI 10.1016/0169-4758(90)90188-A Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5 SMYTH MJ, 1991, J IMMUNOL, V146, P1921 Solomon S, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P1 Stevenson MM, 2004, NAT REV IMMUNOL, V4, P169, DOI 10.1038/nri1311 Warren WC, 2010, NATURE, V464, P757, DOI 10.1038/nature08819 Wilbanks MS, 2014, TOXICOL SCI, V141, P44, DOI 10.1093/toxsci/kfu104 Wintz H, 2006, TOXICOL SCI, V94, P71, DOI 10.1093/toxsci/kfl080 Xu DK, 2009, IMMUNITY, V30, P802, DOI 10.1016/j.immuni.2009.04.013 YU DTY, 1974, J CLIN INVEST, V53, P565, DOI 10.1172/JCI107591 Zhang WG, 1998, IMMUNITY, V9, P239, DOI 10.1016/S1074-7613(00)80606-8 NR 70 TC 6 Z9 6 U1 0 U2 17 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD DEC 5 PY 2018 VL 19 AR 877 DI 10.1186/s12864-018-5270-0 PG 20 WC Biotechnology & Applied Microbiology; Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity GA HD1LZ UT WOS:000452273000001 PM 30518325 OA Green Published, gold DA 2023-03-13 ER PT J AU Kuciel-Lewandowska, JM Pawlik-Sobecka, L Placzkowska, S Kokot, I Paprocka-Borowiz, M AF Kuciel-Lewandowska, Jadwiga M. Pawlik-Sobecka, Lilla Placzkowska, Sylwia Kokot, Izabela Paprocka-Borowiz, Malgorzata TI The assessment of the integrated antioxidant system of the body and the phenomenon of spa reaction in the course of radon therapy: A pilot study SO ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE LA English DT Article DE balneotherapy; radiation hormesis; total antioxidant status; radon water; spa reaction ID OXIDATIVE STRESS; HEALTH-CARE; RADIATION AB Background. Spa reaction is an adaptive response of an organism, emerging as a result of external factors. It is a positive element of spa therapy leading to metabolic changes, which are important for the body. The effect of these changes is an increase in immune activity and regenerative reactions of the body. The mechanism of the response is not fully known. Objectives. The aim of the study was to evaluate the changes observed in the field of the integrated antioxidant system of the body in the course of radon therapy, especially in reference to spa reaction. Material and methods. The study was conducted in the health resort in Swieradow-Zdroj. The observation regarded patients undergoing treatment with radon water. Before the treatment, after 5 and 18 days of treatment, the total antioxidant status (TAS) was evaluated with the use of a standard colorimetric assay. The study group consisted of 35 patients with degenerative joints and disc disease. The control group consisted of 15 people selected from the employees of the spa, also suffering from osteoarthritis, who did not undergo radon therapy (without contact with radon). Results. On the 5th day of the treatment, in both groups, the TAS increase was observed with significantly worse results in the control group. After the treatment, in the study group, an increase in TAS was observed, whereas in the control group, a significant decrease in the TAS concentration was noted. Conclusions. A beneficial effect of radon treatments on the growth of TAS in the body of the patients treated in the spa was demonstrated. The increase in the TAS concentration on the 5th day of treatment may indicate the relationship between these changes and the phenomenon of spa response. The changes are a result of low doses of ionizing radiation originating from radon dissolved in medicinal water, used in the course of the therapy. C1 [Kuciel-Lewandowska, Jadwiga M.; Paprocka-Borowiz, Malgorzata] Wroclaw Med Univ, Dept Physiotherapy, Wroclaw, Poland. [Pawlik-Sobecka, Lilla; Placzkowska, Sylwia; Kokot, Izabela] Wroclaw Med Univ, Dept Lab Diagnost, Wroclaw, Poland. C3 Wroclaw Medical University; Wroclaw Medical University RP Paprocka-Borowiz, M (corresponding author), Wroclaw Med Univ, Dept Physiotherapy, Wroclaw, Poland. EM malgorzata.paprocka-borowicz@umed.wroc.pl RI Paprocka-Borowicz, Małgorzata/T-9848-2018; Płaczkowska, Sylwia/AAY-9881-2021; Pawlik-Sobecka, Lilla/ABD-3349-2021; Kokot, Izabela/F-7843-2013; Paprocka-Borowicz, Małgorzata/ABC-5719-2021 OI Paprocka-Borowicz, Małgorzata/0000-0003-4296-7052; Pawlik-Sobecka, Lilla/0000-0002-9960-8205; Kokot, Izabela/0000-0002-3711-8614; Paprocka-Borowicz, Małgorzata/0000-0003-4296-7052; Placzkowska, Sylwia/0000-0002-1466-3820; Kuciel-Lewandowska, Jadwiga/0000-0002-7477-360X FU Polish Radon Cluster FX The study was financed within the framework of the Polish Radon Cluster. CR Belowska-Bien K., 2005, ADV CLIN EXP MED, V14, P132 Cuttler JM, 2009, DOSE-RESPONSE, V7, P52, DOI 10.2203/dose-response.08-024.Cuttler Czajka A., 2006, J MED SCI, V75, P582 Demczyszak I., 2009, POL BALN, V51, P57 Drobnik J, 2011, FAM MED PRIM CARE RE, V13, P103 Duarte TL, 2005, FREE RADICAL RES, V39, P671, DOI 10.1080/10715760500104025 Gorzenkowicz J., 2002, POLISH J COSMETOLOGY, V5, P90 Ishimori Y, 2011, RADIAT PROT DOSIM, V146, P31, DOI 10.1093/rpd/ncr100 Kalmus P, 2015, ACTA BALNEOL, V57, P97 Kochanski W., 2004, POLISH BALNEOLOGY J, V46, P49 Kraska A, 2012, MED PR, V63, P371 Makowski M, 2003, CLIN CANCER RES, V9, P5417 Mothersill Carmel, 2006, Dose-Response, V4, P283, DOI 10.2203/dose-response.06-111.Mothersill Opara EC, 2006, DM-DIS MON, V52, P183, DOI 10.1016/j.disamonth.2006.05.003 Pedzik A, 2008, DIAGN LAB, V44, P1 Puzanowska-Tarasiewicz H., 2009, POL MERK LEK, V27, P496 Rahman K., 2007, CLIN INTERV AGING, V2, P563 Reinisch N., 1999, RADON GESUNDHEIT, P75 Roessner A, 2008, PATHOL RES PRACT, V204, P511, DOI 10.1016/j.prp.2008.04.011 Ryszawa N, 2006, J PHYSIOL PHARMACOL, V57, P611 Sakoda A, 2013, RADIAT ENVIRON BIOPH, V52, P389, DOI 10.1007/s00411-013-0478-5 Samborski W, 2005, BALNEOL POL, V1-2, P14 SOTO J, 1999, RADON GESUNDHEIT, P63 Strzelczyk J, 2007, Dose Response, V5, P275, DOI 10.2203/dose-response.07-021.Strzelczyk Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman Wiktorowska-Owczarek A, 2010, POSTEP HIG MED DOSW, V64, P333 YAMAOKA K, 1991, FREE RADICAL BIO MED, V11, P299, DOI 10.1016/0891-5849(91)90127-O Zablocka A, 2008, POSTEP HIG MED DOSW, V62, P118 Zdrojewicz Z., 2004, ADV CLIN EXP MED, V13, P267 Zdrojewicz Zygmunt, 2004, Postepy Hig Med Dosw (Online), V58, P150 NR 30 TC 9 Z9 9 U1 0 U2 8 PU WROCLAW MEDICAL UNIV PI WROCLAW PA UL K MARCINKOWSKIEGO 2-6, WROCLAW, 50-368, POLAND SN 1899-5276 EI 2451-2680 J9 ADV CLIN EXP MED JI Adv. Clin. Exp. Med. PD OCT PY 2018 VL 27 IS 10 BP 1341 EP 1346 DI 10.17219/acem/69450 PG 6 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA GX3YQ UT WOS:000447663800002 PM 30085431 OA Green Submitted, gold DA 2023-03-13 ER PT J AU Glady, G AF Glady, Gilbert TI Clinical efficacy of implementing Bio Immune(G)ene MEDicine in the treatment of chronic asthma with the objective of reducing or removing effectively corticosteroid therapy: A novel approach and promising results SO EXPERIMENTAL AND THERAPEUTIC MEDICINE LA English DT Article DE asthma; respiratory hypersensitivity; eosinophils; immune system; Th1-Th2 balance; microRNAs; immunomodulation; sublingual immunotherapy; lung microbioma ID ALLERGIC AIRWAYS DISEASE; CELLS; INFLAMMATION; IMMUNOTHERAPY; ANTAGONISM; HORMESIS AB Asthma is one of the diseases that demonstrates a wide range of variation in its clinical expression, in addition to an important heterogeneity in the pathophysiological mechanisms present in each case. The ever-increasing knowledge of the molecular signalling routes and the development of the Bio Immune(G)ene Medicine [BI(G)MED] therapy in line with this knowledge has revealed a whole novel potential set of self-regulation biological molecules, that may be used to promote the physiological immunogenic self-regulation mechanisms and re-establish the homeostatic balance at a genomic, proteomic and cellular level. The aim of the present study is to demonstrate that the sublingual use of a therapeutic protocol based on BI(G) MED regulatory BIMUREGs in the treatment of chronic asthma may reduce or suppress corticosteroid therapy and avoid its harmful side effects which some patients suffer when using this treatment on a long-term basis. The clinical efficacy of BI(G)MED for chronic asthma was evaluated through a multi-centre study carried out in 2016 implementing a 6-month BI(G)MED treatment protocol for Bronchial Asthma. A total of 61 patients from private medical centres and of European countries including Germany, Austria, France, Belgium and Spain participated. The manuscript describes in detail the clinical efficacy of Bio Immune(G)ene regulatory BI(G)MED treatment protocol that allows the reduction or total removal of the corticosteroid dose in patients with chronic asthma. No adverse reactions were observed. The BI(G)MED regulatory therapy brings novel therapeutic possibilities as an effective and safe treatment of chronic asthma. BI(G)MED was demonstrated to significantly reduce asthma severity when parameter compositions were all analysed by categorical outcomes. Therefore, it is considered a good therapeutic alternative for patients who respond poorly to steroids. C1 [Glady, Gilbert] European Bio ImmuneGene Med Assoc, Internal Med, 1 Rue JF Kennedy, F-68000 Colmar, France. RP Glady, G (corresponding author), European Bio ImmuneGene Med Assoc, Internal Med, 1 Rue JF Kennedy, F-68000 Colmar, France. EM info@ebma-europe.com CR Assa'ad AH, 2013, J ALLERGY CLIN IMMUN, V132, P1097, DOI 10.1016/j.jaci.2013.08.036 Barrett NA, 2009, IMMUNITY, V31, P425, DOI 10.1016/j.immuni.2009.08.014 Brook PO, 2015, EPIGENOMICS-UK, V7, P1017, DOI 10.2217/epi.15.53 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calamita Z, 2006, ALLERGY, V61, P1162, DOI 10.1111/j.1398-9995.2006.01205.x Chen LS, 2012, CHIN J CANCER, V31, P564, DOI 10.5732/cjc.011.10444 Collison A, 2011, J ALLERGY CLIN IMMUN, V128, P160, DOI 10.1016/j.jaci.2011.04.005 Collison A, 2011, BMC PULM MED, V11, DOI 10.1186/1471-2466-11-29 Compalati E, 2014, CURR OPIN PULM MED, V20, P109, DOI 10.1097/MCP.0000000000000016 Deshpande DA, 2015, DRUG DEVELOP RES, V76, P286, DOI 10.1002/ddr.21267 Foster PS, 2013, IMMUNOL REV, V253, P198, DOI 10.1111/imr.12058 Kirchner B, 2012, TOP CURR CHEM, V307, P109, DOI 10.1007/128_2011_195 Kudo M, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00263 Li JJ, 2015, J ALLERGY CLIN IMMUN, V136, P462, DOI 10.1016/j.jaci.2014.11.044 Mattes J, 2009, P NATL ACAD SCI USA, V106, P18704, DOI 10.1073/pnas.0905063106 Melo C.A., 2013, NONCODING RNAS CANC, P5, DOI [10.1007/978-1-4614-8444-8_2, DOI 10.1007/978-1-4614-8444-8_2] Metz G, 2010, IMMUNOL ALLERGY CLIN, V30, P575, DOI 10.1016/j.iac.2010.08.003 Moreira AP, 2011, J CLIN INVEST, V121, P4420, DOI 10.1172/JCI44999 Moser Serena, 2014, Front Biosci (Elite Ed), V6, P46 Nakajima H, 2007, INT ARCH ALLERGY IMM, V142, P265, DOI 10.1159/000097357 Paliwal R, 2014, AAPS PHARMSCITECH, V15, P1527, DOI 10.1208/s12249-014-0177-9 Schrauwers A, 2013, SYNTHETISCHE BIOL ME Simpson LJ, 2014, NAT IMMUNOL, V15, P1162, DOI 10.1038/ni.3026 Stott B, 2013, J ALLERGY CLIN IMMUN, V132, P446, DOI 10.1016/j.jaci.2013.03.050 Taft RJ, 2010, J PATHOL, V220, P126, DOI 10.1002/path.2638 Winter JM, 2012, CURR OPIN BIOTECH, V23, P736, DOI 10.1016/j.copbio.2011.12.016 NR 27 TC 2 Z9 2 U1 1 U2 5 PU SPANDIDOS PUBL LTD PI ATHENS PA POB 18179, ATHENS, 116 10, GREECE SN 1792-0981 EI 1792-1015 J9 EXP THER MED JI Exp. Ther. Med. PD JUN PY 2018 VL 15 IS 6 BP 5133 EP 5140 DI 10.3892/etm.2018.6019 PG 8 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA GJ3FB UT WOS:000435174400077 PM 29805540 OA Green Published, gold DA 2023-03-13 ER PT J AU Hashmi, MZ Zhang, JY Li, BL Su, XM Tariq, M Ahmad, N Malik, RN Ullah, K Chen, C Shen, CF AF Hashmi, Muhammad Zaffar Zhang, Jingyu Li, Binglu Su, Xiaomei Tariq, Muhammad Ahmad, Najid Malik, Riffat Naseem Ullah, Kalim Chen, Chen Shen, Chaofeng TI Effects of structurally different noncoplanar and coplanar PCBs on HELF cell proliferation, cell cycle, and potential molecular mechanisms SO ENVIRONMENTAL TOXICOLOGY LA English DT Article DE PCBs; human lung cell proliferation; cytotoxic; cancer; CDK2; hormesis ID HEPATIC LIPID-PEROXIDATION; POLYCHLORINATED-BIPHENYLS; DEPENDENT KINASES; MEMBRANE-FLUIDITY; RESTRICTION POINT; BREAST-CANCER; DNA-DAMAGE; IN-VITRO; APOPTOSIS; CONGENERS AB Polychlorinated biphenyls (PCBs) are a group of chemicals that persist in the environment, indoors, and humans. Lung exposure to airborne and food contaminants, such as PCBs, may cause possible lung disorders, such as cancer. In the present study, we investigated the effects of structurally different lower chlorinated (4Cl), noncoplanar PCB40, and coplanar PCB77 on human lung fibroblast cell line (HELF) cell proliferation, cell cycle progression, and possible molecular mechanisms. Noncoplanar PCB40 and coplanar PCB77 exhibited concentration- and time-dependent biphasic dose-response effects on HELF cell proliferation. Noncoplanar PCB40 and coplanar PCB77 induced 23 and 45% cytotoxicity at higher concentrations than the control. The flow cytometry analysis showed that exposure to PCB40 caused a significant increase in time spent in the G1 phase but decreased length of the S phase in a concentration- and time-dependent manner, whereas PCB77 exposure decreased time spent in the G1 and S phases but increased time spent in the G2 phase. Western blot analysis indicated that PCB77 increased the expression of cyclin E, CDK2, p21, and caspase-9, while PCB40 decreased the expression of these proteins (except CDK2 and p21). An increase in CDK expression after exposure to PCB77 suggests that it may cause carcinogenic effects on HELF cells at higher doses. Our results also demonstrate that the different cytotoxic effects induced by coplanar and nonplanar PCBs were correlated with their structural characteristics; the coplanar congener was more cytotoxic than the nonplanar congener. The study elaborates threshold levels for these chemicals and suggests that the cytotoxicity mechanisms by which PCB congeners act on HELF cells depend on their planarity and chemical structures. Furthermore, the study will be important for developing antidotes to the adverse effects and risk assessment practices for PCBs. (c) 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1183-1190, 2017. C1 [Hashmi, Muhammad Zaffar; Zhang, Jingyu; Li, Binglu; Chen, Chen; Shen, Chaofeng] Zhejiang Univ, Dept Environm Engn, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. [Hashmi, Muhammad Zaffar; Ullah, Kalim] COMSATS Inst Informat Technol, Dept Meteorol, Islamabad, Pakistan. [Su, Xiaomei] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China. [Tariq, Muhammad] Zhejiang Univ, Inst Pharmacol & Toxicol, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China. [Ahmad, Najid] Dongbei Univ Finance & Econ, Sch Econ, Dalian, Peoples R China. [Malik, Riffat Naseem] Quaid I Azam Univ, Fac Biol Sci, Dept Environm Sci, Environm Biol & Ecotoxicol Lab, Islamabad, Pakistan. C3 Zhejiang University; COMSATS University Islamabad (CUI); Zhejiang Normal University; Zhejiang University; Dongbei University of Finance & Economics; Quaid I Azam University RP Hashmi, MZ; Shen, CF (corresponding author), Zhejiang Univ, Dept Environm Engn, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China.; Hashmi, MZ (corresponding author), COMSATS Inst Informat Technol, Dept Meteorol, Islamabad, Pakistan. EM ysxzt@zju.edu.cn; hashmi_qau@yahoo.com RI Zhang, Jing/GWZ-7332-2022; Hashmi, Muhammad Zaffar/F-3427-2015; ullah, kalim/I-5228-2015; Malik, Riffat Naseem/ABF-4886-2020 OI ullah, kalim/0000-0002-8449-6319; Malik, Riffat Naseem/0000-0003-4345-6000 FU TWAS-COMSTECH Research [15-384 RG/ENG/AS-C]; HEC Start Up Research, Pakistan [21-700/SRGP/RD/HEC/2015]; Chinese Government Scholarship, China FX Contract grant sponsor: TWAS-COMSTECH Research.; Contract grant number: 15-384 RG/ENG/AS-C.; Contract grant sponsor: HEC Start Up Research, Pakistan.; Contract grant number: 21-700/SRGP/R&D/HEC/2015.; Contract grant sponsor: Chinese Government Scholarship, China 2011-2015. CR Adams CIMC, 2016, CHEMOSPHERE, V154, P148, DOI 10.1016/j.chemosphere.2016.03.102 Ahmed MT, 2002, J HAZARD MATER, V89, P41, DOI 10.1016/S0304-3894(01)00283-7 Bergkvist C, 2008, FOOD CHEM TOXICOL, V46, P3360, DOI 10.1016/j.fct.2008.07.029 Blagosklonny MV, 2002, CELL CYCLE, V1, P103, DOI 10.4161/cc.1.2.108 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Chen YQ, 2006, INT J TOXICOL, V25, P341, DOI 10.1080/10915810600840859 Chen YX, 2010, J HAZARD MATER, V180, P773, DOI 10.1016/j.jhazmat.2010.04.041 Clare PM, 2001, J BIOL CHEM, V276, P48292, DOI 10.1074/jbc.M102034200 De S, 2010, ENVIRON INT, V36, P907, DOI 10.1016/j.envint.2010.05.011 Den Hond E, 2002, ENVIRON HEALTH PERSP, V110, P771, DOI 10.1289/ehp.02110771 Dutta SK, 2008, ENVIRON TOXICOL PHAR, V25, P218, DOI 10.1016/j.etap.2007.10.018 Eray M, 2001, CYTOMETRY, V43, P134, DOI 10.1002/1097-0320(20010201)43:2<134::AID-CYTO1028>3.0.CO;2-L Fadhel Z, 2002, TOXICOLOGY, V175, P15, DOI 10.1016/S0300-483X(02)00086-0 Faroon O., 2015, TOXICOL IND HLTH Ghosh S, 2010, ENVIRON INT, V36, P893, DOI 10.1016/j.envint.2010.06.010 Glauert HP, 2008, ENVIRON TOXICOL PHAR, V25, P247, DOI 10.1016/j.etap.2007.10.025 Golden R, 2009, CRIT REV TOXICOL, V39, P299, DOI 10.1080/10408440802291521 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Hashmi MZ, 2015, DOSE-RESPONSE, V1, P1 Hu DF, 2008, ENVIRON SCI TECHNOL, V42, P7873, DOI 10.1021/es801823r Katynski AL, 2004, COMP BIOCHEM PHYS C, V137, P81, DOI 10.1016/j.cca.2003.11.004 Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Lapenna S, 2009, NAT REV DRUG DISCOV, V8, P547, DOI 10.1038/nrd2907 Lehmann GM, 2015, ENVIRON HEALTH PERSP, V123, P109, DOI 10.1289/ehp.1408564 LEONI V, 1989, ECOTOX ENVIRON SAFE, V17, P1, DOI 10.1016/0147-6513(89)90002-X Li A, 2001, NAT CELL BIOL, V3, pE182, DOI 10.1038/35087119 Lin CH, 2009, TOXICOL LETT, V188, P11, DOI 10.1016/j.toxlet.2009.02.009 Maddika S, 2007, DRUG RESIST UPDATE, V10, P13, DOI 10.1016/j.drup.2007.01.003 Malumbres M, 2005, TRENDS BIOCHEM SCI, V30, P630, DOI 10.1016/j.tibs.2005.09.005 Malumbres M, 2001, NAT REV CANCER, V1, P222, DOI 10.1038/35106065 Malumbres M, 2009, NAT REV CANCER, V9, P153, DOI 10.1038/nrc2602 Millikan R, 2000, CANCER EPIDEM BIOMAR, V9, P1233 Morgan DO, 1997, ANNU REV CELL DEV BI, V13, P261, DOI 10.1146/annurev.cellbio.13.1.261 NORBURY C, 1992, ANNU REV BIOCHEM, V61, P441, DOI 10.1146/annurev.bi.61.070192.002301 Ptak A, 2011, TOXICOL IND HEALTH, V27, P315, DOI 10.1177/0748233710387003 Recio-Vega R, 2013, J APPL TOXICOL, V33, P906, DOI 10.1002/jat.2763 ROUCH DA, 1995, J IND MICROBIOL, V14, P132, DOI 10.1007/BF01569895 Ruiz P, 2008, TOXICOL LETT, V181, P51, DOI 10.1016/j.toxlet.2008.06.870 SAFE SH, 1994, CRIT REV TOXICOL, V24, P87, DOI 10.3109/10408449409049308 Sanchez-Alonso JA, 2003, TOXICOL LETT, V144, P337, DOI 10.1016/S0378-4274(03)00238-8 Segre M, 2002, TOXICOLOGY, V174, P163, DOI 10.1016/S0300-483X(02)00039-2 Tan YS, 2003, TOXICOL SCI, V76, P328, DOI 10.1093/toxsci/kfg233 Tilson HA, 1998, NEUROTOXICOLOGY, V19, P517 Tofighi R, 2011, TOXICOL SCI, V124, P192, DOI 10.1093/toxsci/kfr221 Wei W, 2012, ENVIRON TOXICOL, V27, P316, DOI 10.1002/tox.20649 Wethington DM, 2005, ENVIRON SCI TECHNOL, V39, P57, DOI 10.1021/es048902d Wu LN, 2014, J PHARM PHARMACOL, V66, P713, DOI 10.1111/jphp.12188 Yilmaz B, 2006, TOXICOLOGY, V217, P184, DOI 10.1016/j.tox.2005.09.008 ZETTERBERG A, 1995, CURR OPIN CELL BIOL, V7, P835, DOI 10.1016/0955-0674(95)80067-0 Zhang L, 2012, PLANTA MED, V78, P890, DOI 10.1055/s-0031-1298481 Zhou BBS, 2000, NATURE, V408, P433, DOI 10.1038/35044005 NR 51 TC 7 Z9 8 U1 7 U2 55 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1520-4081 EI 1522-7278 J9 ENVIRON TOXICOL JI Environ. Toxicol. PD APR PY 2017 VL 32 IS 4 BP 1183 EP 1190 DI 10.1002/tox.22315 PG 8 WC Environmental Sciences; Toxicology; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology; Water Resources GA EP7CE UT WOS:000397534500008 PM 27463516 DA 2023-03-13 ER PT J AU Lopez-Martinez, G Carpenter, JE Hight, SD Hahn, DA AF Lopez-Martinez, Giancarlo Carpenter, James E. Hight, Stephen D. Hahn, Daniel A. TI Anoxia-conditioning hormesis alters the relationship between irradiation doses for survival and sterility in the cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae) SO FLORIDA ENTOMOLOGIST LA English DT Article DE sterile insect technique; dose response; invasive species; inherited (F-1) sterility ID FRUIT-FLY DIPTERA; GAMMA-IRRADIATION; SEXUAL COMPETITIVENESS; F-1 STERILITY; CODLING MOTH; TEPHRITIDAE; NITROGEN; MALES; PUPAE; PERFORMANCE AB One of the most important components of a program that has a sterile insect technique (SIT) component is an appropriate irradiation dose. Knowing the organismal dose-response enables the selection of a dose that induces the highest level of sterility while preserving the sexual competitiveness and other desired qualities of the sterile insect. Finding this balance in Lepidoptera is crucial because of the use of inherited (F-1) sterility, where the irradiated parent must be competitive enough to mate while its offspring must be sterile. Manipulations of atmospheric oxygen content have been shown to be an effective way of lowering post-irradiation somatic damage while preserving sterility and improving sterile insect performance, particularly in fruit flies. In this study we tested the irradiation dose response of adults of the cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), and the effects of those doses on sterility, longevity, and F-1 performance, and whether a nitrogen conditioning-treatment (anoxia) prior to and during irradiation affected these metrics. We found that male and female fecundities were not impacted by dose or atmospheric treatment, but females were sterilized at lower doses than males. Eggs of irradiated parents took longer to hatch than those of unirradiated controls, and offspring of moths irradiated in anoxia lived longer in the absence of food and water. Anoxia conditioning rescued female fertility at intermediate doses but had no similar rescue effect on male fertility, which was always greater than female fertility at a given dose. Males generally lived longer than females and anoxia had a strong effect in lowering the male mortality rate and extending lifespan at a given dose. We show evidence that anoxia-conditioning prior to and during irradiation as part of a lepidopteran program with an SIT component could improve parental and larval performance and longevity. C1 [Lopez-Martinez, Giancarlo; Hahn, Daniel A.] Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA. [Lopez-Martinez, Giancarlo] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. [Carpenter, James E.] USDA ARS, Crop Protect & Management Res Unit, Tifton, GA 31793 USA. [Hight, Stephen D.] Florida A&M Univ, USDA ARS CMAVE, Tallahassee, FL 32308 USA. C3 State University System of Florida; University of Florida; New Mexico State University; United States Department of Agriculture (USDA); State University System of Florida; Florida A&M University; United States Department of Agriculture (USDA) RP Lopez-Martinez, G (corresponding author), Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA. EM gclopez@nmsu.edu RI Hight, Stephen/AAT-2763-2020; Lopez-Martinez, Giancarlo/AAE-8134-2020 OI Lopez-Martinez, Giancarlo/0000-0002-7937-5002 FU USDA-NIFA [2011-67012-30671]; USDA-APHIS [CA-12-8130-0159]; NIFA [2011-67012-30671, 688117] Funding Source: Federal RePORTER FX This work was part of the FAO/IAEA Coordinated Research Project on Increasing the Efficiency of Lepidoptera SIT by Enhanced Quality Control. This research was funded by USDA-NIFA 2011-67012-30671 to GLM and USDA-APHIS CA-12-8130-0159 to DAH. The authors wish to thank George Schneider, Suzanne Fraser, and Carl Gillis from the Florida Department of Agriculture and Consumer Services (FDACS-DPI) for providing irradiation assistance and expertize, and Robert Caldwell and Susan Drawdy from the USDA-ARS Crop Protection and Management Research Unit in Tifton, Georgia for providing us with cactus moths and transporting them from Tifton to Gainesville. Additionally we thank Sabrina A. White and Theodore R. Cogley for all their help setting up experiments, and monitoring longevity and egg hatch. This work also received substantial intellectual support from the FAO/IAEA Coordinated Research Project. CR ASHRAF M, 1975, J ECON ENTOMOL, V68, P838, DOI 10.1093/jee/68.6.838 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bakri A, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P233, DOI 10.1007/1-4020-4051-2_9 BAUER H, 1967, CHROMOSOMA, V22, P101, DOI 10.1007/BF00326724 Bloem KA, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P677, DOI 10.1007/1-4020-4051-2_26 Bloem S, 2001, ENVIRON ENTOMOL, V30, P763, DOI 10.1603/0046-225X-30.4.763 Boardman L, 2011, FRONT PHYSIOL, V2, DOI 10.3389/fphys.2011.00092 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calkins CO, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P269, DOI 10.1007/1-4020-4051-2_10 Carpenter JE, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P115, DOI 10.1007/1-4020-4051-2_5 Carpenter JE, 2001, FLA ENTOMOL, V84, P531, DOI 10.2307/3496384 Chidawanyika F, 2011, EVOL APPL, V4, P534, DOI 10.1111/j.1752-4571.2010.00168.x Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler DICKEL T S, 1991, Tropical Lepidoptera, V2, P117 *FAO IAEA USDA, 2003, MAN PROD QUAL CONTR Fisher K, 1997, J ECON ENTOMOL, V90, P1609, DOI 10.1093/jee/90.6.1609 Hight SD, 2005, ENVIRON ENTOMOL, V34, P850, DOI 10.1603/0046-225X-34.4.850 Ho DH, 2010, J EXP BIOL, V213, P3, DOI 10.1242/jeb.019752 HOOPER GHS, 1971, J ECON ENTOMOL, V64, P1364, DOI 10.1093/jee/64.6.1364 Klassen W, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P3, DOI 10.1007/1-4020-4051-2_1 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Gonalons CM, 2014, FLA ENTOMOL, V97, P1458, DOI 10.1653/024.097.0421 Minor RK, 2010, J GERONTOL A-BIOL, V65, P695, DOI 10.1093/gerona/glq042 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Nestel D, 2007, FLA ENTOMOL, V90, P80, DOI 10.1653/0015-4040(2007)90[80:EOPCOM]2.0.CO;2 NORTH DT, 1975, ANNU REV ENTOMOL, V20, P167, DOI 10.1146/annurev.en.20.010175.001123 OHINATA K, 1977, J ECON ENTOMOL, V70, P165, DOI 10.1093/jee/70.2.165 Parker A, 2007, FLA ENTOMOL, V90, P88, DOI 10.1653/0015-4040(2007)90[88:SITAMF]2.0.CO;2 Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026 Robinson AS, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P95, DOI 10.1007/1-4020-4051-2_4 Robinson AS, 2002, MUTAT RES-REV MUTAT, V511, P113, DOI 10.1016/S1383-5742(02)00006-6 ROBINSON AS, 1975, RADIAT RES, V61, P526, DOI 10.2307/3574127 Rull J., 2011, ENTOMOL EXP APPL, V142, P78, DOI DOI 10.1111/J.1570-7458.2011.01196.X SHARP J L, 1975, Journal of the Georgia Entomological Society, V10, P241 Tate CD, 2007, FLA ENTOMOL, V90, P537, DOI 10.1653/0015-4040(2007)90[537:IORDOT]2.0.CO;2 Terblanche JS, 2014, CURR OPIN INSECT SCI, V4, P60, DOI 10.1016/j.cois.2014.06.003 Vargas-Teran M, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P629, DOI 10.1007/1-4020-4051-2_24 Von Sonntag C., 1987, CHEM BASIS RAD BIOL Wakid A. F. M., 1973, Environmental Entomology, V2, P37, DOI 10.1093/ee/2.1.37 ZUMREOGLU A, 1979, J ECON ENTOMOL, V72, P173, DOI 10.1093/jee/72.2.173 NR 43 TC 16 Z9 16 U1 1 U2 21 PU FLORIDA ENTOMOLOGICAL SOC PI LUTZ PA 16125 E LAKE BURRELL DR, LUTZ, FL 33548 USA SN 0015-4040 EI 1938-5102 J9 FLA ENTOMOL JI Fla. Entomol. PD JUN PY 2016 VL 99 SI 1 BP 95 EP 104 DI 10.1653/024.099.sp113 PG 10 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA DU5JZ UT WOS:000382249300012 OA gold, Green Published DA 2023-03-13 ER PT J AU Klimova, EM Bozhkov, AI Lavinska, OV Drozdova, LA Kurhuzova, NI AF Klimova, Elena M. Bozhkov, Anatoly I. Lavinska, Olena, V Drozdova, Larisa A. Kurhuzova, Nataliia I. TI Low molecular weight cytotoxic components (DAMPs) form the post-COVID-19 syndrome SO IMMUNOBIOLOGY LA English DT Article DE post-COVID-19 syndrome; Immune-metabolic state; Cytotoxic components; Phagocytosis; The complement system; Autoantibodies ID NEUTROPHIL EXTRACELLULAR TRAPS; HUMAN MONOCYTES; INVOLVEMENT; ACTIVATION; COVID-19; HORMESIS; PROTEIN; HEALTH AB We studied the role of cytotoxic components (DAMPs) formed in the body of patients with COVID-19 in ensuring the long-term preservation of post-COVID-19 manifestations and the possibility of creating an experimental model by transferring DAMPs to rats. In patients with post-COVID-19 syndrome (PCS) 2 months after SARS-CoV-2 infection we determined the presence of cytotoxic components in the blood serum (Terasaki test, Dunaliella viridis test and content of DAMPs). In post-COVID-19 syndrome patients with a high content of serum cytotoxic oligopeptide fraction (selective group, n = 16) we determined the number of leukocytes, lymphocytes, neutrophil granulocytes and monocytes in the blood, the content of C-reactive protein (CRP), the concentration of C3 and C4 complement components and circulating immune complexes, the serum content of IL-6, IL-10, IL-18, TNF-alpha, phagocytic activity of neutrophils, presence of neutrophil traps and autoantibodies ANA.It has been shown that in patients with PCS, there are components with cytotoxicity in the blood serum, form specific immunopathological patterns, which are characterized by: an increased content of CRP, complement system components C3 and C4 and cytokines (TNF-alpha, IL-6, IL-10, IL-18) activation, the formation of a wide range of autoantibodies ANA, the low efficiency of endocytosis in oxygen-independent phagocytosis; their phagocytic activity reaches its functional limit, and against this background, activation of neutrophil traps occurs, which can contribute to further induction of DAMPs. This self-sustaining cell-killing activation provided long-term pres-ervation of PCS symptoms.The transfer of blood serum components from selective group patients with PCS to rats was accompanied by the appearance of cytotoxic components in them which induced sensitization and immunopathological reactions. Preventive administration of a biologically active substance with polyfunctional properties MF to experimental animals "corrected" the initial functional state of the body's immune-metabolic system and eliminated or facilitated immuno-inflammatory reactions. C1 [Klimova, Elena M.; Bozhkov, Anatoly I.; Lavinska, Olena, V; Kurhuzova, Nataliia I.] Kharkov Natl Univ, Dept Mol Biol & Biotechnol, 4 Pl Svobody, UA-61022 Kharkiv, Ukraine. [Klimova, Elena M.; Lavinska, Olena, V; Drozdova, Larisa A.] Natl Acad Med Sci Ukraine, Diagnost Lab Enzyme Immunoassay & Immunofluorescen, State Inst Zaycev VT Inst Gen & Urgent Surg, Balakireva Vyizd 1, UA-61103 Kharkiv, Ukraine. C3 Ministry of Education & Science of Ukraine; VN Karazin Kharkiv National University; National Academy of Medical Sciences of Ukraine RP Bozhkov, AI (corresponding author), Kharkov Natl Univ, Dept Mol Biol & Biotechnol, 4 Pl Svobody, UA-61022 Kharkiv, Ukraine. EM niibio@karazin.ua; elena.lavinskaya@ukr.net; n_i_kurguzova@ukr.net RI Klimova, Elena/HMP-6117-2023 FU National academy of medical sciences of Ukraine; [0121U113289] FX Funding This work is supported by the National academy of medical sciences of Ukraine (state registration No. 0121U113289) . CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Alhabbab R.Y., 2018, BASIC SEROLOGICAL TE, DOI [10.1007/978-3-319-77694-1_9, DOI 10.1007/978-3-319-77694-1_9] Antonio RC, 2021, MED CLIN-BARCELONA, V156, P35, DOI 10.1016/j.medcli.2020.08.001 BALLOU SP, 1992, CYTOKINE, V4, P361, DOI 10.1016/1043-4666(92)90079-7 Barciszewska AM, 2021, CHEM-BIOL INTERACT, V344, DOI 10.1016/j.cbi.2021.109501 Bartolini D, 2021, REDOX BIOL, V45, DOI 10.1016/j.redox.2021.102041 Boix V, 2022, MED CLIN-BARCELONA, V158, P178, DOI 10.1016/j.medcli.2021.10.002 Bozhkov AI, 2021, REGUL MECH BIOSYST, V12, P655, DOI 10.15421/022190 Bozhkov AI, 2017, ADV GERONTOL, V7, P41, DOI 10.1134/S2079057017010040 Bozhkov A.I., 2017, TRANSL BIOMED, V8, DOI [10.2167/2172-0479.1000107, DOI 10.2167/2172-0479.1000107] Carvalho-Schneider C, 2021, CLIN MICROBIOL INFEC, V27, P258, DOI 10.1016/j.cmi.2020.09.052 Chen D, 2021, DEV CELL, V56, P3250, DOI 10.1016/j.devcel.2021.10.006 Coperchini F, 2020, CYTOKINE GROWTH F R, V53, P25, DOI 10.1016/j.cytogfr.2020.05.003 Mesquita RD, 2021, WIEN KLIN WOCHENSCHR, V133, P377, DOI 10.1007/s00508-020-01760-4 de la Rica R, 2012, NAT NANOTECHNOL, V7, P821, DOI [10.1038/NNANO.2012.186, 10.1038/nnano.2012.186] Dhingra R, 2007, AM J MED, V120, P1054, DOI 10.1016/j.amjmed.2007.08.037 Di Martino M., 2020, CIR ESPAN, DOI [10.1016/j.ciresp.2020.04.029, DOI 10.1016/J.CIRESP.2020.04.029] Dicker AJ, 2018, J ALLERGY CLIN IMMUN, V141, P117, DOI 10.1016/j.jaci.2017.04.022 Djaharuddin I, 2021, GAC SANIT, V35, pS530, DOI 10.1016/j.gaceta.2021.10.085 Forneris F, 2012, CURR OPIN STRUC BIOL, V22, P333, DOI 10.1016/j.sbi.2012.04.001 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gioia M, 2020, BIOCHEM PHARMACOL, V182, DOI 10.1016/j.bcp.2020.114225 Gorchakov A.M., 2003, METOD KOMPLEKSNOJ OC, P15 Grasselli G, 2021, LANCET RESP MED, V9, pE5, DOI 10.1016/S2213-2600(20)30525-7 Gupta A, 2020, NAT MED, V26, P1017, DOI 10.1038/s41591-020-0968-3 Huang C, 2020, LANCET, V395, P496, DOI 10.1016/S0140-6736(20)30252-X Huang CL, 2021, LANCET, V397, P220, DOI 10.1016/S0140-6736(20)32656-8 Klimova E.M., 2016, TRANSL BIOMED, V7, P1, DOI [10.21767/2172-0479.100084, DOI 10.21767/2172-0479.100084] Kurguzova N.I., 2015, FUNGIDOL AM J BIOMED, V2, P25, DOI [10.11648/j.ajbls.s.2014020601.15, DOI 10.11648/J.AJBLS.S.2014020601.15] Lai CC, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105924 Land WG, 2021, GENES IMMUN, V22, P141, DOI 10.1038/s41435-021-00140-w Makni-Maalej K, 2013, BIOCHEM PHARMACOL, V85, P92, DOI 10.1016/j.bcp.2012.10.010 Maloney BE, 2020, CLIN IMMUNOL, V212, P5, DOI 10.1016/j.clim.2020.108351 Masjuk N.P., 1973, TEOD KIEV SCI, V372 Mulder K, 2021, IMMUNITY, V54, P1883, DOI 10.1016/j.immuni.2021.07.007 Muniz-Junqueira MI, 2003, CLIN DIAGN LAB IMMUN, V10, P1096, DOI 10.1128/CDLI.10.6.1096-1102.2003 Nalbandian A, 2021, NAT MED, V27, P601, DOI 10.1038/s41591-021-01283-z Naqvi I, 2022, BIOMATERIALS, V283, DOI 10.1016/j.biomaterials.2022.121393 Nilsson B, 2012, CLIN DEV IMMUNOL, DOI 10.1155/2012/962702 Papayannopoulos V, 2018, NAT REV IMMUNOL, V18, P134, DOI 10.1038/nri.2017.105 Parthasarathy U, 2022, BIOCHEM PHARMACOL, V195, DOI 10.1016/j.bcp.2021.114847 RIHA I, 1979, MOL IMMUNOL, V16, P489, DOI 10.1016/0161-5890(79)90075-0 Risitano AM, 2020, NAT REV IMMUNOL, V20, P343, DOI 10.1038/s41577-020-0320-7 Rodriguez-Morales AJ, 2020, TRAVEL MED INFECT DI, V34, DOI 10.1016/j.tmaid.2020.101623 Ferrando ES, 2022, CYTOKINE, V149, DOI 10.1016/j.cyto.2021.155727 Segal A W, 1973, Clin Sci, V44, p26P [Шитов А.Ю. Shitov A.Yu.], 2013, [Альманах клинической медицины, Almanac of Clinical Medicine, Al'manakh klinicheskoi meditsiny], P48 Sungnak W, 2020, NAT MED, V26, P681, DOI 10.1038/s41591-020-0868-6 TERASAKI PI, 1964, NATURE, V204, P998, DOI 10.1038/204998b0 Gibbs DV, 2022, CRIT CARE CLIN, V38, P491, DOI 10.1016/j.ccc.2022.03.003 Vaz AR, 2011, EXP NEUROL, V229, P381, DOI 10.1016/j.expneurol.2011.03.004 Wang C, 2020, LANCET, V395, P470, DOI 10.1016/S0140-6736(20)30185-9 Wang K, 2020, ECLINICALMEDICINE, V29-30, DOI 10.1016/j.eclinm.2020.100612 Wu J, 2020, NITRIC OXIDE-BIOL CH, V102, P39, DOI 10.1016/j.niox.2020.06.002 Zhang QG, 2022, BIOMED PHARMACOTHER, V148, DOI 10.1016/j.biopha.2022.112718 NR 55 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER GMBH PI MUNICH PA HACKERBRUCKE 6, 80335 MUNICH, GERMANY SN 0171-2985 EI 1878-3279 J9 IMMUNOBIOLOGY JI Immunobiology PD JAN PY 2023 VL 228 IS 1 AR 152316 DI 10.1016/j.imbio.2022.152316 EA DEC 2022 PG 14 WC Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Immunology GA 7P9NS UT WOS:000909024800001 PM 36565610 OA Green Published, hybrid DA 2023-03-13 ER PT J AU Lampiri, E Agrafioti, P Athanassiou, CG AF Lampiri, Evagelia Agrafioti, Paraskevi Athanassiou, Christos G. TI Delayed mortality, resistance and the sweet spot, as the good, the bad and the ugly in phosphine use SO SCIENTIFIC REPORTS LA English DT Article ID RHYZOPERTHA-DOMINICA COLEOPTERA; TRIBOLIUM-CASTANEUM HERBST; RED FLOUR BEETLE; INSECTICIDE-INDUCED HORMESIS; STORED-PRODUCT INSECTS; LESSER GRAIN BORER; SITOPHILUS-ORYZAE; BRAZILIAN POPULATIONS; DIAGNOSTIC INDICATOR; NATIONAL ANALYSIS AB Phosphine is the most commonly used gas for fumigation for durable commodities globally, but there is still inadequate information regarding its efficacy in conjunction with proper concentration monitoring. In a series of bioassays, insect mortality after specific exposure intervals to phosphine in selected species was examined, as well as the appearance of the so called "sweet spot". The species that were tested were: Oryzaephilus surinamensis (L.), Tribolium castaneum (Herbst), Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) with populations that had different levels of phosphine resistance. Evaluation was conducted by using the Phosphine Tolerance Test (PTT), with exposure of the adult stage for 15, 30, 60, 90, 150 and 300 min at 3000 ppm. At the end of these intervals (separate bioassays for each time interval), the insects were transferred to Petri dishes, in which recovery was recorded at different time intervals (2 h, 1, 2 and 7 days). The majority of susceptible populations of all species were instantly immobilized even in the shortest exposure period (15 min), in contrast with resistant populations that were active even after 300 min. After exposure to phosphine, populations and exposure time affected mortality of susceptible populations, whereas resistant populations recovered regardless of species and exposure time. Additional bioassays at the concentrations of 500, 1000, 2000 and 3000 ppm for 1, 3, 5, 20, 30 and 40 h showed the presence of the "sweet spot", i.e., decrease of mortality with the increase of concentration. In fact, for most of the tested species, the "sweet spot" appeared in 1000 and 2000 ppm at a 5-h exposure time, regardless of the level of resistance to phosphine. This observation is particularly important both in terms of the assessment of resistance and in the context of non-linear recovery at elevated concentrations, indicating the occurrence of strong hormetic reversals in phosphine efficacy. C1 [Lampiri, Evagelia; Athanassiou, Christos G.] Ctr Res & Technol, Inst Bioecon & Agritechnol IBO, Volos 38333, Magnesia, Greece. [Lampiri, Evagelia; Agrafioti, Paraskevi; Athanassiou, Christos G.] Univ Thessaly, Lab Entomol & Agr Zool, Dept Agr Crop Prod & Rural Environm, Phytokou Str, Nea Ionia 38446, Magnesia, Greece. C3 University of Thessaly RP Agrafioti, P (corresponding author), Univ Thessaly, Lab Entomol & Agr Zool, Dept Agr Crop Prod & Rural Environm, Phytokou Str, Nea Ionia 38446, Magnesia, Greece. EM agrafiot@agr.uth.gr OI Agrafioti, Paraskevi/0000-0001-5359-164X FU project NANOFUM - (European Union) [T2DGE-0917]; project NANOFUM - (Greek National Funds through the Operational Program Competitiveness, Entrepreneurship and Innovation - EPAnEK 2014-2020, NSRF 2014-2020, Ministry of Development Investments / Special Secretary for Management of ERDF and CF Sectoral Op FX This work was supported by the project NANOFUM T2DGE-0917 (co-funded by the European Union and Greek National Funds through the Operational Program Competitiveness, Entrepreneurship and Innovation - EPAnEK 2014-2020, NSRF 2014-2020, Ministry of Development & Investments / Special Secretary for Management of ERDF and CF Sectoral Operational Programmes). Action: Bilateral R & T cooperation between Greece and Germany. This paper reports the results of research only. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by CERTH/IBO. CR Afful E, 2018, J ECON ENTOMOL, V111, P463, DOI 10.1093/jee/tox284 Agrafioti P, 2019, J STORED PROD RES, V82, P40, DOI 10.1016/j.jspr.2019.02.004 Agrafioti P., 2018, 12 INT C WORK C STOR, P351 Agrafioti P, 2020, J STORED PROD RES, V89, DOI 10.1016/j.jspr.2020.101726 Agrafioti P, 2020, COMPUT ELECTRON AGR, V173, DOI 10.1016/j.compag.2020.105383 Agrafioti P, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142044 [Anonymous], 1975, FAO PLANT PROTECT B, V23, P12 Athanassiou CG, 2019, J STORED PROD RES, V82, P17, DOI 10.1016/j.jspr.2019.01.004 Athanassiou CG, 2019, J STORED PROD RES, V80, P28, DOI 10.1016/j.jspr.2018.10.004 Athanassiou CG, 2016, CROP PROT, V90, P177, DOI 10.1016/j.cropro.2016.08.017 Athanassiou CG, 2010, J ECON ENTOMOL, V103, P197, DOI 10.1603/EC09115 Bell CH, 2000, CROP PROT, V19, P563, DOI 10.1016/S0261-2194(00)00073-9 Bengston M, 1999, J ECON ENTOMOL, V92, P17, DOI 10.1093/jee/92.1.17 Benhalima H, 2004, J STORED PROD RES, V40, P241, DOI 10.1016/S0022-474X(03)00012-2 Brabec D, 2019, INSECTS, V10, DOI 10.3390/insects10050121 Casada M., 2018, P 12 INT WORK C STOR, P718 Cato AJ, 2017, J ECON ENTOMOL, V110, P1359, DOI 10.1093/jee/tox091 Chaudhry M. Q., 2000, Pesticide Outlook, V11, P88, DOI 10.1039/b006348g Chen Z, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121343 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Collins PJ, 2017, J STORED PROD RES, V70, P25, DOI 10.1016/j.jspr.2016.10.006 COLLINS PJ, 1990, PESTIC SCI, V28, P101, DOI 10.1002/ps.2780280112 Collins PJ, 2002, J ECON ENTOMOL, V95, P862, DOI 10.1603/0022-0493-95.4.862 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Daglish GJ, 2004, PEST MANAG SCI, V60, P822, DOI 10.1002/ps.866 Daglish GJ, 2002, PEST MANAG SCI, V58, P1015, DOI 10.1002/ps.532 Daglish GJ, 2018, J STORED PROD RES, V78, P45, DOI 10.1016/j.jspr.2018.06.003 Doganay I, 2018, J STORED PROD RES, V76, P1, DOI 10.1016/j.jspr.2017.10.003 Franco-Pereira AM, 2020, BIOMETRICAL J, V62, P1574, DOI 10.1002/bimj.201900272 Gautam SG, 2016, J ECON ENTOMOL, V109, P2525, DOI 10.1093/jee/tow221 Georgia B, 2018, J PEST SCI, V91, P1371, DOI 10.1007/s10340-018-0983-z Gourgouta M, 2021, J STORED PROD RES, V90, DOI 10.1016/j.jspr.2020.101737 Gourgouta M, 2019, J STORED PROD RES, V83, P103, DOI 10.1016/j.jspr.2019.05.001 Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hagstrum David W., 1999, Integrated Pest Management Reviews, V4, P127, DOI 10.1023/A:1009682410810 Holloway JC, 2016, J STORED PROD RES, V69, P129, DOI 10.1016/j.jspr.2016.07.004 Horn P, 2010, ACTA HORTIC, V880, P407, DOI 10.17660/ActaHortic.2010.880.48 Jagadeesan R, 2015, PEST MANAG SCI, V71, P1379, DOI 10.1002/ps.3940 Kaur R, 2015, HEREDITY, V115, P188, DOI 10.1038/hdy.2015.24 Kaur R, 2015, PEST MANAG SCI, V71, P1297, DOI 10.1002/ps.3926 Li L, 2014, J ECON ENTOMOL, V107, P601, DOI 10.1603/EC13354 LUCKEY TD, 1963, NATURE, V198, P263, DOI 10.1038/198263a0 Nayak M. K., 2015, Stewart Postharvest Review, V11, P3, DOI 10.2212/spr.2015.1.3 Nayak MK, 2008, PEST MANAG SCI, V64, P971, DOI 10.1002/ps.1586 Nayak MK, 2020, ANNU REV ENTOMOL, V65, P333, DOI 10.1146/annurev-ento-011019-025047 Nayak MK, 2017, J STORED PROD RES, V72, P35, DOI 10.1016/j.jspr.2017.03.004 Nayak MK, 2013, PEST MANAG SCI, V69, P48, DOI 10.1002/ps.3360 Opit GP, 2012, J ECON ENTOMOL, V105, P1107, DOI 10.1603/EC12064 Phillips TW, 2012, FUMIGATION STORED PR, P157 Pimentel MAG, 2009, J STORED PROD RES, V45, P71, DOI 10.1016/j.jspr.2008.09.001 PiMentel MAG, 2010, NEOTROP ENTOMOL, V39, P101, DOI 10.1590/S1519-566X2010000100014 Sakka M.K., 2018, P 12 INT WORKING C S, P1003 Sousa AH, 2009, J STORED PROD RES, V45, P241, DOI 10.1016/j.jspr.2009.04.003 Steuerwald R., 2006, Proceedings of the 9th International Working Conference on Stored-Product Protection, ABRAPOS, Passo Fundo, RS, Brazil, 15-18 October 2006, P306 Wang DX, 2006, J STORED PROD RES, V42, P207, DOI 10.1016/j.jspr.2005.02.001 Wilkin D. R., 1999, P 7 INT WORK C STOR, P444 WINKS RG, 1984, J STORED PROD RES, V20, P45, DOI 10.1016/0022-474X(84)90035-3 WINKS RG, 1985, J STORED PROD RES, V21, P25, DOI 10.1016/0022-474X(85)90056-6 WINKS RG, 1986, J STORED PROD RES, V22, P85, DOI 10.1016/0022-474X(86)90024-X Yao JX, 2019, J STORED PROD RES, V84, DOI 10.1016/j.jspr.2019.101524 NR 63 TC 4 Z9 4 U1 0 U2 6 PU NATURE PORTFOLIO PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 16 PY 2021 VL 11 IS 1 AR 3933 DI 10.1038/s41598-021-83463-y PG 16 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA QT6VP UT WOS:000626728100027 PM 33594183 OA Green Published, gold DA 2023-03-13 ER PT J AU Xu, YQ Liu, SS Li, K Wang, ZJ Xiao, QF AF Xu, Ya-Qian Liu, Shu-Shen Li, Kai Wang, Ze-Jun Xiao, Qian-Fen TI Polyethylene glycol 400 significantly enhances the stimulation of 2-phenoxyethanol on Vibrio qinghaiensis sp.-Q67 bioluminescence SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE 2-Phenoxyethanol; Polyethylene glycol 400 (PEG400); Hormesis; Toxicological interaction; Independent action ID PERSONAL CARE PRODUCTS; CONCENTRATION ADDITION; IONIC LIQUIDS; TOXICOLOGICAL INTERACTION; MIXTURE TOXICITY; RISK-ASSESSMENT; PHARMACEUTICALS; PREDICTION; PESTICIDES; FISCHERI AB Previous studies demonstrated long-term stimulation of some commercial personal care products (PCPs) on freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67 (Q67). However, whether a certain component can affect mixture's hormetic effect is still unknown. In this paper, two of ingredients in PCPs, 2-phenoxyethanol (PhE) and polyethylene glycol 400 (PEG400), were selected as object compounds to explore the relationship between concentration-response (CR) of mixtures and that of a single component. It was found that PEG400 has monotonic CR (MCR) on Q67 both at the short-term (0.25 h) and long-term (12 h) exposures while PhE has MCR at 0.25 h and hormetic CR (HCR) at 12 h. Here, the concentration-response curves (CRCs) of PEG400 at 0.25 and 12 h are overlapped each other and the CRCs of PEG400 are on the right of PhE. If the pEC(50) is taken as a toxic index, the toxicities of PEG400 at two times are basically the same, and those of PhE are the same, too, but PhE is twice as toxic as PEG400. For the mixtures of PEG400 and PhE, all rays except R1 have MCRs at 0.25 h while all rays have HCRs at 12 h where the higher the mixture ratio of PhE is, the more negative the maximum stimulation effect is. More importantly, the E-min values of all rays are more negative (1.79-3.17-fold) than that of PhE worked alone, which implies that the introduction of PEG400 significantly enhances stimulative effect of PhE. At 0.25 h, all binary mixture rays but R1 produce a low-concentration additive action and high-concentration synergism. At 12 h, all rays display additive action, antagonism, additive action, and synergism in turn when the concentration changes from low to high. The overall findings suggested toxicological interactions should be considered in the risk assessment of PCPs and their potential impacts on ecological balances. C1 [Xu, Ya-Qian; Liu, Shu-Shen; Li, Kai; Xiao, Qian-Fen] Tongji Univ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Minist Educ, Shanghai 200092, Peoples R China. [Liu, Shu-Shen; Wang, Ze-Jun; Xiao, Qian-Fen] Tone Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Liu, Shu-Shen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. C3 Tongji University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI liu, Shu-Shen/G-1617-2015; Wang, ZeJun/ABF-6412-2021 FU National Natural Science Foundation of China [21677113, 21437004]; Fundamental Research Funds for the Central Universities [22120180246] FX The authors are thankful to the National Natural Science Foundation of China (21677113, 21437004) and the Fundamental Research Funds for the Central Universities (22120180246) for their financial support. CR Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Arnold C, 2016, ENVIRON HEALTH PERSP, V124, pA188, DOI 10.1289/ehp.124-A188 Backhaus T, 2011, ENVIRON TOXICOL CHEM, V30, P2030, DOI 10.1002/etc.586 BRESLIN WJ, 1991, FUND APPL TOXICOL, V17, P466, DOI 10.1016/0272-0590(91)90198-D Can E, 2018, KAFKAS UNIV VET FAK, V24, P233, DOI 10.9775/kvfd.2017.18680 Cedergreen N, 2008, ENVIRON TOXICOL CHEM, V27, P1621, DOI [10.1897/07-474.1, 10.1897/07-474] CotreauBibbo MM, 1996, J PHARM SCI, V85, P1180, DOI 10.1021/js9601849 Daughton CG, 1999, ENVIRON HEALTH PERSP, V107, P907, DOI 10.2307/3434573 Dou RN, 2011, ENVIRON SCI POLLUT R, V18, P734, DOI 10.1007/s11356-010-0419-7 Engel A, 2012, MOL PHARMACEUT, V9, P2577, DOI 10.1021/mp3001815 Fan Y, 2017, RSC ADV, V7, P6080, DOI 10.1039/c6ra25843c Feng L, 2017, J HAZARD MATER, V327, P11, DOI 10.1016/j.jhazmat.2016.12.031 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Jonker MJ, 2005, ENVIRON TOXICOL CHEM, V24, P2701, DOI 10.1897/04-431R.1 Karthikraj R, 2017, SCI TOTAL ENVIRON, V593, P592, DOI 10.1016/j.scitotenv.2017.03.173 Larsson DGJ, 2007, J HAZARD MATER, V148, P751, DOI 10.1016/j.jhazmat.2007.07.008 Li K, 2018, ENVIRON POLLUT, V242, P872, DOI 10.1016/j.envpol.2018.06.107 Li T, 2017, ECOTOX ENVIRON SAFE, V144, P475, DOI 10.1016/j.ecoenv.2017.06.044 Liu L, 2015, ANAL METHODS-UK, V7, P9912, DOI 10.1039/c5ay01784j Liu SS, 2016, ENVIRON INT, V94, P396, DOI 10.1016/j.envint.2016.04.038 Liu SS, 2016, SCI BULL, V61, P52, DOI 10.1007/s11434-015-0925-6 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 Lu J, 2017, SCI TOTAL ENVIRON, V605, P1064, DOI 10.1016/j.scitotenv.2017.06.135 Ma BL, 2017, RSC ADV, V7, P2435, DOI 10.1039/c6ra26284h Mudra DR, 2010, J PHARM SCI-US, V99, P1016, DOI 10.1002/jps.21836 Musshoff U, 2000, ARCH TOXICOL, V74, P284, DOI 10.1007/s002040000111 Neale PA, 2017, CHEMOSPHERE, V173, P387, DOI 10.1016/j.chemosphere.2017.01.018 de Garcia SO, 2016, ECOTOXICOLOGY, V25, P141, DOI 10.1007/s10646-015-1576-8 Qu R, 2017, SCI REP-UK, V7, DOI 10.1038/srep43473 Qu R, 2016, RSC ADV, V6, P21012, DOI 10.1039/c5ra27096k Richardson BJ, 2005, MAR POLLUT BULL, V50, P913, DOI 10.1016/j.marpolbul.2005.06.034 Scognamiglio J, 2012, FOOD CHEM TOXICOL, V50, pS244, DOI 10.1016/j.fct.2011.10.030 Sharma BM, 2019, SCI TOTAL ENVIRON, V646, P1459, DOI 10.1016/j.scitotenv.2018.07.235 Starek-Swiechowicz B, 2012, PHARMACOL REP, V64, P166, DOI 10.1016/S1734-1140(12)70743-0 Temesi D, 2003, J PHARM SCI-US, V92, P2512, DOI 10.1002/jps.10514 Troutman JA, 2015, REGUL TOXICOL PHARM, V73, P530, DOI 10.1016/j.yrtph.2015.07.012 Wang MC, 2014, ACTA CHIM SINICA, V72, P56, DOI 10.6023/A13101034 Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007 Xu YQ, 2018, SCI TOTAL ENVIRON, V635, P432, DOI 10.1016/j.scitotenv.2018.04.023 Yu ZY, 2018, J HAZARD MATER, V342, P429, DOI 10.1016/j.jhazmat.2017.08.017 Zhang J, 2014, CHEMOSPHERE, V112, P420, DOI 10.1016/j.chemosphere.2014.05.007 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhu W. J., 1994, OCEANOL LIMNOL SIN, V25 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zhu Xiang-wei, 2009, China Environmental Science, V29, P113 Zhu XW, 2009, WATER RES, V43, P1731, DOI 10.1016/j.watres.2009.01.004 Zou XM, 2017, J HAZARD MATER, V322, P454, DOI 10.1016/j.jhazmat.2016.09.045 NR 48 TC 8 Z9 8 U1 5 U2 72 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD APR 30 PY 2019 VL 171 BP 240 EP 246 DI 10.1016/j.ecoenv.2018.12.087 PG 7 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA HM1NF UT WOS:000459217600027 PM 30612011 DA 2023-03-13 ER PT J AU Verhaag, EM Buist-Homan, M Koehorst, M Groen, AK Moshage, H Faber, KN AF Verhaag, Esther M. Buist-Homan, Manon Koehorst, Martijn Groen, Albert K. Moshage, Han Faber, Klaas Nico TI Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity SO PLOS ONE LA English DT Article ID ISOLATED RAT HEPATOCYTES; FARNESOID-X-RECEPTOR; SALT EXPORT PUMP; REPERFUSION INJURY; INDUCED APOPTOSIS; OBSTRUCTIVE CHOLESTASIS; MOLECULAR-MECHANISMS; OXIDATIVE STRESS; ACTIVATION; FXR AB Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1-50 mu M) of various bile acids, the superoxide donor menadione, TNF-alpha or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 mu M for 4 h), menadione (50 mu M, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro) ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-alpha potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM-or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration-and time-dependent. GCDCA-, CDCA-and GW4064-preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning. Conclusions Sub-toxic concentrations of bile acids in the range that occur under normal physiological conditions protect HepG2.rNtcp cells against GCDCA-induced apoptosis, which is independent of FXR-controlled changes in bile acid transport. C1 [Verhaag, Esther M.; Buist-Homan, Manon; Moshage, Han; Faber, Klaas Nico] Univ Groningen, Univ Med Ctr Groningen, Dept Gastroenterol & Hepatol, Ctr Liver Digest & Metab Dis, Groningen, Netherlands. [Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico] Univ Groningen, Univ Med Ctr Groningen, Ctr Liver Digest & Metab Dis, Dept Lab Med, Groningen, Netherlands. [Groen, Albert K.] Univ Groningen, Univ Med Ctr Groningen, Ctr Liver Digest & Metab Dis, Dept Pediat, NL-9700 AB Groningen, Netherlands. C3 University of Groningen; University of Groningen; University of Groningen RP Faber, KN (corresponding author), Univ Groningen, Univ Med Ctr Groningen, Dept Gastroenterol & Hepatol, Ctr Liver Digest & Metab Dis, Groningen, Netherlands.; Faber, KN (corresponding author), Univ Groningen, Univ Med Ctr Groningen, Ctr Liver Digest & Metab Dis, Dept Lab Med, Groningen, Netherlands. EM K.N.Faber@umcg.nl OI Koehorst, Martijn/0000-0001-6219-0901; Moshage, Han/0000-0002-4764-0246 CR Alchera E, 2010, WORLD J GASTROENTERO, V16, P6058, DOI 10.3748/wjg.v16.i48.6058 Ananthanarayanan M, 2001, J BIOL CHEM, V276, P28857, DOI 10.1074/jbc.M011610200 Beuers U, 2015, J HEPATOL, V62, pS25, DOI 10.1016/j.jhep.2015.02.023 BILLINGTON D, 1980, BIOCHEM J, V188, P321, DOI 10.1042/bj1880321 BOTLA R, 1995, J PHARMACOL EXP THER, V272, P930 Carini R, 2003, GASTROENTEROLOGY, V125, P1480, DOI 10.1016/j.gastro.2003.05.005 Conde de la Rosa L, 2006, J HEPATOL, V44, P918, DOI 10.1016/j.jhep.2005.07.034 Conde de la Rosa L, 2015, PHARM RES PERSPECT, V3, P2052 Copple BL, 2010, SEMIN LIVER DIS, V30, P195, DOI 10.1055/s-0030-1253228 Dawson PA, 2009, J LIPID RES, V50, P2340, DOI 10.1194/jlr.R900012-JLR200 Dijkstra G, 2004, J PATHOL, V204, P296, DOI 10.1002/path.1656 Dunning S, 2013, BBA-MOL BASIS DIS, V1832, P2027, DOI 10.1016/j.bbadis.2013.07.008 Fiorucci S, 2014, EXPERT OPIN THER TAR, V18, P1449, DOI 10.1517/14728222.2014.956087 Fischer S, 1996, CLIN CHIM ACTA, V251, P173, DOI 10.1016/0009-8981(96)06305-X Fotakis G, 2006, TOXICOL LETT, V160, P171, DOI 10.1016/j.toxlet.2005.07.001 Goodwin B, 2000, MOL CELL, V6, P517, DOI 10.1016/S1097-2765(00)00051-4 Gujral JS, 2003, HEPATOLOGY, V38, P355, DOI 10.1053/jhep.2003.50341 Gumpricht E, 2000, TOXICOL APPL PHARM, V164, P102, DOI 10.1006/taap.2000.8894 Hofmann AF, 1999, NEWS PHYSIOL SCI, V14, P24, DOI 10.1152/physiologyonline.1999.14.1.24 Karimian G, 2013, BBA-MOL BASIS DIS, V1832, P1922, DOI 10.1016/j.bbadis.2013.06.011 KOUNTOURAS J, 1984, BRIT J EXP PATHOL, V65, P305 Kullak-Ublick GA, 2000, CYTOTECHNOLOGY, V34, pB1, DOI 10.1023/A:1008152729133 Losada DM, 2014, ACTA CIR BRAS, V29, P61, DOI 10.1590/S0102-8650201400140012 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Meier PJ, 1995, AM J PHYSIOL-GASTR L, V269, pG801, DOI 10.1152/ajpgi.1995.269.6.G801 Palmeira CM, 2004, TOXICOLOGY, V203, P1, DOI 10.1016/j.tox.2004.06.001 Pellicoro A, 2007, ALIMENT PHARM THERAP, V26, P149, DOI 10.1111/j.1365-2036.2007.03522.x Plass JRM, 2002, HEPATOLOGY, V35, P589, DOI 10.1053/jhep.2002.31724 POPPER H, 1968, ANNU REV MED, V19, P39, DOI 10.1146/annurev.me.19.020168.000351 Qureshi WA, 1999, DIGEST DIS, V17, P49, DOI 10.1159/000016903 Rembacz KP, 2010, HEPATOLOGY, V52, P2167, DOI 10.1002/hep.23954 Rudic JS, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD000551.pub3 Schoemaker MH, 2004, HEPATOLOGY, V39, P1563, DOI 10.1002/hep.20246 Schoemaker MH, 2003, J HEPATOL, V39, P153, DOI 10.1016/S0168-8278(03)00214-9 SKREDE S, 1978, CLIN CHEM, V24, P1095 Sokol RJ, 2006, J PEDIATR GASTR NUTR, V43, pS4, DOI 10.1097/01.mpg.0000226384.71859.16 Sokol TJ, 2005, J PEDIATR GASTR NUTR, V41, P235, DOI 10.1097/01.MPG.0000170600.80640.88 Suyavaran A, 2015, INFLAMM RES, V64, P71, DOI 10.1007/s00011-014-0785-6 Vaquero J, 2013, BIOCHEM PHARMACOL, V86, P926, DOI 10.1016/j.bcp.2013.07.022 Vaquero J, 2013, BBA-MOL CELL RES, V1833, P2212, DOI 10.1016/j.bbamcr.2013.05.006 Wenniger LMD, 2010, DIGEST LIVER DIS, V42, P409, DOI 10.1016/j.dld.2010.03.015 Woolbright BL, 2015, TOXICOL APPL PHARM, V283, P168, DOI 10.1016/j.taap.2015.01.015 Woudenberg-Vrenken TE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071773 Yin DP, 1998, TRANSPLANTATION, V66, P152, DOI 10.1097/00007890-199807270-00002 Zhang RJ, 2014, J HEPATOL, V61, P1048, DOI 10.1016/j.jhep.2014.06.020 NR 45 TC 9 Z9 10 U1 0 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 7 PY 2016 VL 11 IS 3 AR e0149782 DI 10.1371/journal.pone.0149782 PG 16 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA DG3SL UT WOS:000371990100017 PM 26950211 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Pingitore, A Lima, GPP Mastorci, F Quinones, A Iervasi, G Vassalle, C AF Pingitore, Alessandro Pereira Lima, Giuseppina Pace Mastorci, Francesca Quinones, Alfredo Iervasi, Giorgio Vassalle, Cristina TI Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports SO NUTRITION LA English DT Review DE Diet; Nutrition; Exercise; Oxidative stress; Antioxidants ID ALPHA-LIPOIC ACID; POLYUNSATURATED FATTY-ACIDS; MEDITERRANEAN DIET; COENZYME Q(10); VITAMIN-E; ENDURANCE EXERCISE; FREE-RADICALS; DNA-DAMAGE; SUPPLEMENTATION; QUERCETIN AB Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. (C) 2015 Elsevier Inc. All rights reserved. C1 [Pingitore, Alessandro; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina] Fdn G Monasterio CNR Reg Toscana, Pisa, Italy. [Pingitore, Alessandro; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina] Italian Natl Res Council, Inst Clin Physiol, Pisa, Italy. [Pereira Lima, Giuseppina Pace] Univ Estadual Paulista, Botucatu UNESP, Dept Chem & Biochem, Sao Paulo, Brazil. C3 Consiglio Nazionale delle Ricerche (CNR); Universidade Estadual Paulista RP Vassalle, C (corresponding author), Fdn G Monasterio CNR Reg Toscana, Pisa, Italy. EM cristina.vassalle@ftgm.it RI Pingitore, Alessandro/K-1843-2018; lima, giuseppina GPPL/C-5995-2012 OI Pingitore, Alessandro/0000-0002-4049-184X; lima, giuseppina GPPL/0000-0002-1792-2605 CR Bloomer RJ, 2008, GENDER MED, V5, P218, DOI 10.1016/j.genm.2008.07.002 Boutant M, 2014, MOL METAB, V3, P5, DOI 10.1016/j.molmet.2013.10.006 Braakhuis AJ, 2014, EUR J SPORT SCI, V14, P160, DOI 10.1080/17461391.2013.785597 Brisswalter J, 2014, SPORTS MED, V44, P311, DOI 10.1007/s40279-013-0126-x Corbi G, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/728547 Dato S, 2013, INT J MOL SCI, V14, P16443, DOI 10.3390/ijms140816443 Davis JM, 2010, INT J SPORT NUTR EXE, V20, P56, DOI 10.1123/ijsnem.20.1.56 Davis JM, 2009, AM J PHYSIOL-REG I, V296, pR1071, DOI 10.1152/ajpregu.90925.2008 Dekany M, 2006, INT J SPORTS MED, V27, P112, DOI 10.1055/s-2005-865634 Diaz-Castro J, 2012, EUR J NUTR, V51, P791, DOI 10.1007/s00394-011-0257-5 Diel F., 2013, Voprosy Pitaniya, V82, P14 Falone S, 2010, PHYSIOL RES, V59, P953, DOI 10.33549/physiolres.931884 Fito M, 2007, ARCH INTERN MED, V167, P1195, DOI 10.1001/archinte.167.11.1195 Frei B, 2012, CRIT REV FOOD SCI, V52, P815, DOI 10.1080/10408398.2011.649149 Ghibu S, 2009, J CARDIOVASC PHARM, V54, P391, DOI 10.1097/FJC.0b013e3181be7554 Gomez-Cabrera MC, 2008, AM J CLIN NUTR, V87, P142, DOI 10.1093/ajcn/87.1.142 Goncalves MC, 2011, CLINICS, V66, P1537, DOI 10.1590/S1807-59322011000900005 Gonzalez-Gallego J, 2010, BRIT J NUTR, V104, pS15, DOI 10.1017/S0007114510003910 Henriksen EJ, 2006, FREE RADICAL BIO MED, V40, P3, DOI 10.1016/j.freeradbiomed.2005.04.002 Higashida K, 2011, AM J PHYSIOL-ENDOC M, V301, pE779, DOI 10.1152/ajpendo.00655.2010 Institute of Medicine, 2002, DIET REF INT EN CARB Jeukendrup A, 2014, SPORTS MED, V44, P25, DOI 10.1007/s40279-014-0148-z Kressler J, 2011, MED SCI SPORT EXER, V43, P2396, DOI 10.1249/MSS.0b013e31822495a7 Landaeta-Diaz L, 2013, EUR J PREV CARDIOL, V20, P555, DOI 10.1177/2047487312445000 Lass A, 2000, FASEB J, V14, P87, DOI 10.1096/fasebj.14.1.87 Lee IM, 2001, MED SCI SPORT EXER, V33, pS459, DOI 10.1097/00005768-200106001-00016 Leighton F, 1999, DRUG EXP CLIN RES, V25, P133 Lima GPP, 2011, INT J FOOD SCI TECH, V46, P1, DOI 10.1111/j.1365-2621.2010.02436.x Fernandez JM, 2012, CLIN SCI, V123, P361, DOI 10.1042/CS20110477 Marzocchella L, 2011, RECENT PATENTS INFLA, V5, P200, DOI 10.2174/187221311797264937 McGinley C, 2009, SPORTS MED, V39, P1011, DOI 10.2165/11317890-000000000-00000 Mickleborough TD, 2013, INT J SPORT NUTR EXE, V23, P83, DOI 10.1123/ijsnem.23.1.83 Milan SJ, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010391.pub2 Morales-Alamo D, 2014, FREE RADICAL RES, V48, P30, DOI 10.3109/10715762.2013.825043 Murase T, 2008, AM J PHYSIOL-REG I, V295, pR281, DOI 10.1152/ajpregu.00880.2007 Myburgh KH, 2014, SPORTS MED, V44, P57, DOI 10.1007/s40279-014-0151-4 Nieman DC, 2007, J INTERF CYTOK RES, V27, P1003, DOI 10.1089/jir.2007.0050 Nieman DC, 2007, MED SCI SPORT EXER, V39, P1561, DOI 10.1249/mss.0b013e318076b566 Nieman DC, 2009, INT J SPORT NUTR EXE, V19, P536, DOI 10.1123/ijsnem.19.5.536 Olholm J, 2010, INT J OBESITY, V34, P1546, DOI 10.1038/ijo.2010.98 Ortenblad N, 1997, AM J PHYSIOL-REG I, V272, pR1258, DOI 10.1152/ajpregu.1997.272.4.R1258 Ostman B, 2012, NUTRITION, V28, P403, DOI 10.1016/j.nut.2011.07.010 Oztasan N, 2004, EUR J APPL PHYSIOL, V91, P622, DOI 10.1007/s00421-003-1029-6 Perez-Lopez FR, 2009, MATURITAS, V64, P67, DOI 10.1016/j.maturitas.2009.07.013 Peternelj TT, 2011, SPORTS MED, V41, P1043, DOI 10.2165/11594400-000000000-00000 Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029 Stepanyan V, 2014, APPL PHYSIOL NUTR ME, V39, P1029, DOI 10.1139/apnm-2013-0566 Tomasello B, 2012, J MED FOOD, V15, P441, DOI 10.1089/jmf.2011.0173 Toro R, 2014, NUTR HOSP, V30, P1110, DOI 10.3305/nh.2014.30.5.7697 Urquiaga I, 2010, ATHEROSCLEROSIS, V211, P694, DOI 10.1016/j.atherosclerosis.2010.04.020 Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001 Vassalle C, 2002, CLIN CHEM LAB MED, V40, P802, DOI 10.1515/CCLM.2002.139 Vassalle C, 2015, ANTIOXIDANTS IN SPORT NUTRITION, P261 Vassalle C, 2014, BIOMARK MED, V8, P881, DOI [10.2217/bmm.13.152, 10.2217/BMM.13.152] Vassalle Cristina, 2008, V477, P31, DOI 10.1007/978-1-60327-517-0_3 Venditti P, 2014, FREE RADICAL RES, V48, P322, DOI 10.3109/10715762.2013.867959 Walsh NP, 2011, EXERC IMMUNOL REV, V17, P64 Wang XY, 1999, PROG LIPID RES, V38, P309, DOI 10.1016/S0163-7827(99)00008-9 WEBER C, 1994, INT J VITAM NUTR RES, V64, P311 Wilkinson M, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010749.pub2 Zembron-Lacny A, 2013, J PHYSIOL BIOCHEM, V69, P397, DOI 10.1007/s13105-012-0221-8 NR 61 TC 231 Z9 239 U1 17 U2 162 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0899-9007 EI 1873-1244 J9 NUTRITION JI Nutrition PD JUL-AUG PY 2015 VL 31 IS 7-8 BP 916 EP 922 DI 10.1016/j.nut.2015.02.005 PG 7 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA CL5KE UT WOS:000356998000003 PM 26059364 HC Y HP N DA 2023-03-13 ER PT J AU Sequeira, RV Khan, M Reid, DJ AF Sequeira, Richard V. Khan, Moazzem Reid, David J. TI Chemical control of the mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Australian cotton-Glasshouse assessments of insecticide efficacy SO AUSTRAL ENTOMOLOGY LA English DT Article DE cotton; efficacy; insecticides; management; mealybug; Phenacoccus solenopsis ID TINSLEY; MANAGEMENT; HORMESIS; THREAT; PESTS AB The efficacy of commercially available chemical insecticides and biopesticides on the cotton mealybug (CMB), Phenacoccus solenopsis, was evaluated in the glasshouse. Spirotetramat, sulfoxaflor and buprofezin were identified as key insecticides for use in integrated pest management (IPM) strategies aimed at controlling CMB without flaring other co-occurring pests. When used as a single application, spirotetramat and sulfoxaflor at the rate of 96 g (active ingredient, ha(-1)) provided variable control of CMB. Spirotetramat used in a double spray tactic (two sequential sprays, 14-15 days apart) without crop oil provided >= 80% control of adult CMB while the addition of oil (5% v/v) increased control to >= 90%. Clothianidin synergised the spirotetramat + oil combination and was identified as a potentially useful tank mix option for use in situations where a quick knockdown of high density and/or large infestation of CMB is required, or to treat high risk infestations in squaring or younger cotton when the abundance of beneficial insects is typically low. Sulfoxaflor used in a double spray tactic provided >= 90% control of adult CMB. The addition of Pulse (R) penetrant (0.5% v/v) to both options improved overall efficacy. Addition of crop oil to sulfoxaflor did not yield any tangible benefits. Spirotetramat and buprofezin were identified as important tools in managing situations where whitefly (Bemisia tabaci) is the primary pest management target, but CMB is also present in the crop. Buprofezin was effective on early instar mealybugs; this makes it an option for arresting CMB population growth while allowing the beneficial insect populations to increase. Sulfoxaflor was shown to be a useful option in situations where CMB is present along with key pests such as mirids (Creontiades spp.). Mealybugs are typically well controlled by naturally occurring beneficial insects without the need for insecticide use. Chemical insecticides for CMB control should be considered only as a last resort and deployed within the bounds of an IPM strategy. C1 [Sequeira, Richard V.] Dept Agr & Fisheries Crop & Food Sci, Emerald, Qld 4720, Australia. [Reid, David J.] Dept Agr & Fisheries Anim Sci, Rockhampton, Qld 4700, Australia. [Khan, Moazzem] Australian Plague Locust Commiss, Dept Agr & Water Resources, GPO Box 858, Canberra, ACT 2601, Australia. RP Sequeira, RV (corresponding author), Dept Agr & Fisheries Crop & Food Sci, Emerald, Qld 4720, Australia. EM richard.sequeira@daf.qld.gov.au FU Cotton Research and Development Corporation FX Funding to support this research was provided by the Cotton Research and Development Corporation. CR Abdullah NMM, 2006, PESTIC BIOCHEM PHYS, V84, P10, DOI 10.1016/j.pestbp.2005.03.011 Afzal M, 2009, P BELTW COTT C 2009, P1023 Aheer G. M., 2009, Journal of Agricultural Research (Lahore), V47, P47 Ben-Dov Y., 1994, A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. Charleston K., 2010, AUSTR COTTON GROWER, V31, P18 Cranshaw Whitney, 2000, Journal of Arboriculture, V26, P225 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Deepika Kalkal, 2014, Journal of Cotton Research and Development, V28, P101 Dhawan, 2007, INDIAN J ECOL, V34, P166 Dhawan A., 2009, J COTTON RES DEV, V23, P289 El-Zahi El-Zahi Saber, 2016, Journal of Plant Protection Research, V56, P111, DOI 10.1515/jppr-2016-0017 Fand BB, 2015, CROP PROT, V69, P34, DOI 10.1016/j.cropro.2014.12.001 Fand BB, 2014, ECOL MODEL, V288, P62, DOI 10.1016/j.ecolmodel.2014.05.018 Franco JC, 2009, BIORATIONAL CONTROL OF ARTHROPOD PESTS: APPLICATION AND RESISTANCE MANAGEMENT, P233, DOI 10.1007/978-90-481-2316-2_10 FUCHS TW, 1991, SOUTHWEST ENTOMOL, V16, P215 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Herron GA, 2002, AUSTR J ENTOMOLOGY, V41, P99 Hoj B., 2018, J ANIMAL SCI RES, V2, P1 Khan, 2014, DAQ1204 CRDC Khan M., 2012, Australian Cottongrower, V33, P22 Khan M, 2013, INT J STROKE, V8, P14, DOI 10.1111/j.1747-4949.2012.00878.x Miles M, 2011, DAQ1002 CRDC Miles M, 2010, RECENT EXPERIENCES M Morishita M., 2005, Annual Report of the Kansai Plant Protection Society, P123 Muthukirishnan N., 2005, Journal of Entomological Research, V29, P339 Nagrare VS, 2009, B ENTOMOL RES, V99, P537, DOI 10.1017/S0007485308006573 Nikam N.D., 2010, Karnataka Journal of Agricultural Sciences, V23, P649 Patel M. G., 2010, Karnataka Journal of Agricultural Sciences, V23, P14 Saeed Shafqat, 2007, Entomological Research, V37, P76, DOI 10.1111/j.1748-5967.2007.00047.x Saner D. V., 2013, International Journal of Plant Protection, V6, P405 Sequeira, 2017, AUSTR COTTONGROWER, V38, P20 Suroshe Sachin S., 2013, Journal of Biological Control, V27, P204 Tabashnik B.E., 1990, PESTICIDE RESISTANCE, P153 Vennila S, 2010, J INSECT SCI, V10, DOI 10.1673/031.010.11501 VSN International, 2013, GENSTAT WINDOWS Wang YP, 2010, AGR FOREST ENTOMOL, V12, P403, DOI 10.1111/j.1461-9563.2010.00490.x Williams D. J., 1992, Mealybugs of Central and South America. Wilson L, 2013, CROP PASTURE SCI, V64, P737, DOI 10.1071/CP13070 Wilson LJ, 2018, ANNU REV ENTOMOL, V63, P215, DOI 10.1146/annurev-ento-020117-043432 Zhao JZ, 2010, PEST MANAG SCI, V66, P1101, DOI 10.1002/ps.1985 NR 40 TC 5 Z9 6 U1 2 U2 11 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2052-1758 EI 2052-174X J9 AUSTRAL ENTOMOL JI Austral Entomol. PD MAY PY 2020 VL 59 IS 2 BP 375 EP 385 DI 10.1111/aen.12446 EA FEB 2020 PG 11 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA LS6RG UT WOS:000510968300001 OA Green Accepted DA 2023-03-13 ER PT J AU Esselun, C Theyssen, E Eckert, GP AF Esselun, Carsten Theyssen, Ellen Eckert, Gunter P. TI Effects of Urolithin A on Mitochondrial Parameters in a Cellular Model of Early Alzheimer Disease SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE metabolite; polyphenol; mitochondria; neurodegeneration; Alzheimer's; ellagitannin; urolithin; hormesis ID NUCLEAR RESPIRATORY FACTOR-2; OXIDATIVE STRESS; AUTOPHAGY; DYSFUNCTION; EXPRESSION; MITOPHAGY; TRANSCRIPTION; METABOLITES; CASCADES; DYNAMICS AB (1) Background: Ellagitannins are natural products occurring in pomegranate and walnuts. They are hydrolyzed in the gut to release ellagic acid, which is further metabolized by the microflora into urolithins, such as urolithin A (UA). Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegenerative diseases. In this study, we investigated the neuroprotective activity of the metabolite UA against mitochondrial dysfunction in a cellular model of early Alzheimer disease (AD). (2) Methods: In the present study we used SH-SY5Y-APP695 cells and its corresponding controls (SH-SY5Ymock) to assess UA's effect on mitochondrial function. Using these cells we investigated mitochondrial respiration (OXPHOS), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) production, autophagy and levels of reactive oxygen species (ROS) in cells treated with UA. Furthermore, we assessed UA's effect on the expression of genes related to mitochondrial bioenergetics, mitochondrial biogenesis, and autophagy via quantitative real-time PCR (qRT-PCR). (3) Results: Treatment of SH-SY5Y-APP695 cells suggests changes to autophagy corresponding with qRT-PCR results. However, LC3B-I, LC3B-II, and p62 levels were unchanged. UA (10 mu M) reduced MMP, and ATP-levels. Treatment of cells with UA (1 mu M) for 24 h did not affect ROS production or levels of A beta, but significantly increased expression of genes for mitochondrial biogenesis and OXPHOS. Mitochondrial Transcription Factor A (TFAM) expression was specifically increased in SH-SY5Y-APP695. Both cell lines showed unaltered levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1 alpha), which is commonly associated with mitochondrial biogenesis. Results imply that biogenesis might be facilitated by estrogen-related receptor (ESRR) genes. (4) Conclusion: Urolithin A shows no effect on autophagy in SH-SY5Y-APP695 cells and its effect on mitochondrial function is limited. Instead, data suggests that UA treatment induces hormetic effects as it induces transcription of several genes related to mitochondrial biogenesis. C1 [Esselun, Carsten; Theyssen, Ellen; Eckert, Gunter P.] Justus Liebig Univ Giessen, Biomed Res Ctr, Inst Nutr Sci, D-35392 Giessen, Germany. C3 Justus Liebig University Giessen RP Eckert, GP (corresponding author), Justus Liebig Univ Giessen, Biomed Res Ctr, Inst Nutr Sci, D-35392 Giessen, Germany. EM carsten.esselun@ernaehrung.uni-giessen.de; ellen.theyssen@ernaehrung.uni-giessen.de; eckert@uni-giessen.de OI Esselun, Carsten/0000-0003-1193-8347 CR Ahsan A, 2019, CNS NEUROSCI THER, V25, P976, DOI 10.1111/cns.13136 Albensi BC, 2019, INT REV NEUROBIOL, V145, P13, DOI 10.1016/bs.irn.2019.03.001 Andreux PA, 2019, NAT METAB, V1, P595, DOI 10.1038/s42255-019-0073-4 Barth S, 2010, J PATHOL, V221, P117, DOI 10.1002/path.2694 Bruni F, 2010, J BIOL CHEM, V285, P3939, DOI 10.1074/jbc.M109.044305 Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797 Casedas G, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9020177 DaSilva NA, 2019, NUTR NEUROSCI, V22, P185, DOI 10.1080/1028415X.2017.1360558 Deng YN, 2013, NEUROCHEM INT, V63, P1, DOI 10.1016/j.neuint.2013.04.005 Detmer SA, 2007, NAT REV MOL CELL BIO, V8, P870, DOI 10.1038/nrm2275 Esselun C, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/1652609 Farmer T, 2018, TRAFFIC, V19, P569, DOI 10.1111/tra.12573 Friedland-Leuner K, 2014, PROG MOL BIOL TRANSL, V127, P183, DOI 10.1016/B978-0-12-394625-6.00007-6 Gasperotti M, 2015, ACS CHEM NEUROSCI, V6, P1341, DOI 10.1021/acschemneuro.5b00051 Ghosh N, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-76564-7 Gnaiger E., 2020, BIOENERG COMMUN, V2020, P2 Gonzalez-Rodriguez A, 2014, CELL DEATH DIS, V5, DOI 10.1038/cddis.2014.162 Gonzalez-Sarrias A, 2017, J AGR FOOD CHEM, V65, P752, DOI 10.1021/acs.jafc.6b04538 Grewal R, 2020, EXP NEUROL, V328, DOI 10.1016/j.expneurol.2020.113248 Grimm A, 2016, BIOGERONTOLOGY, V17, P281, DOI 10.1007/s10522-015-9618-4 Hughes SD, 2014, J NEUROCHEM, V129, P426, DOI 10.1111/jnc.12646 Kim DI, 2017, CELL MOL NEUROBIOL, V37, P955, DOI 10.1007/s10571-016-0434-4 Kim KB, 2020, NUTR RES PRACT, V14, P3, DOI 10.4162/nrp.2020.14.1.3 Kukreja L, 2014, MOL NEURODEGENER, V9, DOI 10.1186/1750-1326-9-16 Larsen S, 2012, J PHYSIOL-LONDON, V590, P3349, DOI 10.1113/jphysiol.2012.230185 Lee HJ, 2021, CELL DEATH DIFFER, V28, P184, DOI 10.1038/s41418-020-0593-1 Li Q, 2017, CELL MOL NEUROBIOL, V37, P377, DOI 10.1007/s10571-016-0386-8 Liu CF, 2019, REJUV RES, V22, P191, DOI 10.1089/rej.2018.2066 Liu YJ, 2020, MECH AGEING DEV, V186, DOI 10.1016/j.mad.2020.111212 Manczak M, 2004, NEUROMOL MED, V5, P147, DOI 10.1385/NMM:5:2:147 Mizushima N, 2010, CELL, V140, P313, DOI 10.1016/j.cell.2010.01.028 Moreira PI, 2010, BBA-MOL BASIS DIS, V1802, P2, DOI 10.1016/j.bbadis.2009.10.006 Murugan S, 2016, ADV EXP MED BIOL, V899, P145, DOI 10.1007/978-3-319-26666-4_9 Naseri NN, 2019, NEUROSCI LETT, V705, P183, DOI 10.1016/j.neulet.2019.04.022 Navarro A, 2007, AM J PHYSIOL-CELL PH, V292, pC670, DOI 10.1152/ajpcell.00213.2006 Pakrashi S, 2020, NEUROCHEM RES, V45, P1962, DOI 10.1007/s11064-020-03061-8 Pinheiro L, 2019, CURR ALZHEIMER RES, V16, P418, DOI 10.2174/1567205016666190321163438 Poirier Y, 2019, CELL MOL LIFE SCI, V76, P1419, DOI 10.1007/s00018-019-03009-4 Quntanilla RA, 2020, CURR NEUROPHARMACOL, V18, P1076, DOI 10.2174/1570159X18666200525020259 Reddy PH, 2009, EXP NEUROL, V218, P286, DOI 10.1016/j.expneurol.2009.03.042 Rhein V, 2009, CELL MOL NEUROBIOL, V29, P1063, DOI 10.1007/s10571-009-9398-y Rouschop KMA, 2010, J CLIN INVEST, V120, P127, DOI 10.1172/JCI40027 Ryu D, 2016, NAT MED, V22, P879, DOI 10.1038/nm.4132 Sano M, 2007, J BIOL CHEM, V282, P25970, DOI 10.1074/jbc.M703634200 Scarpulla RC, 2002, BBA-GENE STRUCT EXPR, V1576, P1, DOI 10.1016/S0167-4781(02)00343-3 Scarpulla RC, 2012, BBA-GENE REGUL MECH, V1819, P1088, DOI 10.1016/j.bbagrm.2011.10.011 Scarpulla RC, 2011, BBA-MOL CELL RES, V1813, P1269, DOI 10.1016/j.bbamcr.2010.09.019 Shao D, 2010, MITOCHONDRION, V10, P516, DOI 10.1016/j.mito.2010.05.012 Singh BK, 2018, SCI SIGNAL, V11, DOI 10.1126/scisignal.aam5855 Son SM, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.09.039 Stefanatos R, 2018, FEBS LETT, V592, P743, DOI 10.1002/1873-3468.12902 Stefanova NA, 2019, J GERONTOL A-BIOL, V74, P33, DOI 10.1093/gerona/gly198 Stockburger C, 2018, J ALZHEIMERS DIS, V64, pS455, DOI 10.3233/JAD-179915 Stockburger C, 2014, J ALZHEIMERS DIS, V42, P395, DOI 10.3233/JAD-140381 Sun N, 2016, MOL CELL, V61, P654, DOI 10.1016/j.molcel.2016.01.028 Swaminathan B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115176 Swerdlow RH, 2018, J ALZHEIMERS DIS, V62, P1403, DOI 10.3233/JAD-170585 Swerdlow RH, 2014, BBA-MOL BASIS DIS, V1842, P1219, DOI 10.1016/j.bbadis.2013.09.010 Swerdlow RH, 2012, NEUROTOX RES, V22, P182, DOI 10.1007/s12640-011-9272-9 Tanida Isei, 2008, V445, P77, DOI 10.1007/978-1-59745-157-4_4 Tilokani L, 2018, ESSAYS BIOCHEM, V62, P341, DOI 10.1042/EBC20170104 Toney AM, 2019, OBESITY, V27, P612, DOI 10.1002/oby.22404 Twig G, 2008, BBA-BIOENERGETICS, V1777, P1092, DOI 10.1016/j.bbabio.2008.05.001 Wang T, 2015, MOL CELL BIOL, V35, P1281, DOI 10.1128/MCB.01156-14 Wang XL, 2014, BBA-MOL BASIS DIS, V1842, P1240, DOI 10.1016/j.bbadis.2013.10.015 Xiong YY, 2013, DOSE-RESPONSE, V11, P270, DOI 10.2203/dose-response.12-005.Gao Yang ZF, 2014, MOL CELL BIOL, V34, P3194, DOI 10.1128/MCB.00492-12 Yoo SM, 2018, MOL CELLS, V41, P18, DOI 10.14348/molcells.2018.2277 Yuan T, 2016, ACS CHEM NEUROSCI, V7, P26, DOI 10.1021/acschemneuro.5b00260 Zhang YZ, 2021, J ETHNOPHARMACOL, V272, DOI 10.1016/j.jep.2020.113628 Zhao WH, 2018, MOL CARCINOGEN, V57, P193, DOI 10.1002/mc.22746 Zhou FF, 2011, PROTEIN CELL, V2, P377, DOI 10.1007/s13238-011-1047-9 NR 72 TC 17 Z9 17 U1 1 U2 30 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD AUG PY 2021 VL 22 IS 15 AR 8333 DI 10.3390/ijms22158333 PG 19 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA TV8WR UT WOS:000681997000001 PM 34361099 OA gold, Green Published DA 2023-03-13 ER PT J AU Sharma, PK Raghubanshi, AS Shah, KV AF Sharma, Prashant K. Raghubanshi, Akhilesh S. Shah, Kavita TI Examining the uptake and bioaccumulation of molybdenum nanoparticles and their effect on antioxidant activities in growing rice seedlings SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Antioxidant; Bioaccumulation; Molybdenum; Nanoparticles; Rice; Translocation ID CERIUM OXIDE NANOPARTICLES; SILVER NANOPARTICLES; ENGINEERED NANOMATERIALS; TROPHIC TRANSFER; ZEA-MAYS; PLANTS; SOIL; PHYTOTOXICITY; ACCUMULATION; TRANSPORT AB The synthesized alpha-MoO3 and MoS2 NPs had nanosheet and nanoflower-like structures with crystallite size of 21.34 nm and 4.32 nm, respectively. The uptake, bioaccumulation, and impact of these two Mo-NPs were studied in rice (Oryza sativa L) cv. HUR 3022 seedlings exposed to 100, 500, and 1000 ppm concentrations in hydroponics for 10 days in the growth medium. The uptake of alpha-MoO3 and MoS2 NPs by rice exposed to 100 ppm concentrations of NPs led to the accumulation of 7.32 ppm/4.55 ppm and 1.84 ppm/1.19 ppm in roots/shoots, respectively, as compared to controls. Unlike MoO3, more accumulation of MoS2 in roots reflect less translocation of this NP from roots to shoots. Results suggest tissue-specific distribution of NPs in rice seedlings. The increased growth and elevated protein levels in rice seedlings at 100 ppm concentrations of nanoparticles imply a stimulation in the repair mechanism at low doses indicating hormesis. MoS2 NPs treatments led to increased chlorophyll a levels suggesting it to be non-compromising with photosynthetic process in rice. The high malondialdehyde levels and altered activities of antioxidant enzymes GPX, APX, and CAT in rice seedlings exposed to alpha-MoO3 or MoS2 NPs indicate oxidative imbalance. Between alpha-MoO3 and MoS2 NPs, the former shows toxic effects as reflected from the decreased levels of photosynthetic pigments at all concentrations; however, an activation of chloroplast ROS detoxification is evident in the presence of MoS2 NPs. The BCF > 1 for both alpha-MoO3 and MoS2 NPs and TF of 0.6-2.0 and 0.42-0.65 suggest the latter to be more environmentally safe. In conclusion, a100 ppm MoS2 NPs concentration has low translocation and less accumulation with no significant impact on growth of rice cv. HUR 3022 seedlings and appears to be environmentally safe for future applications. C1 [Sharma, Prashant K.; Raghubanshi, Akhilesh S.; Shah, Kavita] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India. C3 Banaras Hindu University (BHU) RP Shah, KV (corresponding author), Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India. EM prashant.evs@gmail.com; asr@bhu.ac.in; kavitashah@bhu.ac.in RI Raghubanshi, Akhilesh/GQA-4805-2022 OI SHAH, KAVITA/0000-0003-0464-6100; Sharma, Prashant Kumar/0000-0002-1789-3576 FU University Grants Commission, New Delhi; Design Innovation Centre, IIT BHU FX The authors are grateful to the University Grants Commission, New Delhi, for the fellowship to PKS and the Design Innovation Centre, IIT BHU, for the financial support. CR Aebi H, 1974, METHODS ENZYMATIC AN, V2nd, P673, DOI DOI 10.1016/B978-0-12-091302-2.50032-3 AGARWALA SC, 1978, CAN J BOT, V56, P1905, DOI 10.1139/b78-227 Ali K, 2019, EAI SPRINGER INNOVAT, P111, DOI 10.1007/978-3-319-93557-7_7 ARNON DI, 1949, PLANT PHYSIOL, V24, P1, DOI 10.1104/pp.24.1.1 Arnot JA, 2006, ENVIRON REV, V14, P257, DOI 10.1139/a06-005 Aslani F, 2014, SCI WORLD J, DOI 10.1155/2014/641759 Aziz N, 2015, LANGMUIR, V31, P11605, DOI 10.1021/acs.langmuir.5b03081 Balk J, 2005, TRENDS PLANT SCI, V10, P324, DOI 10.1016/j.tplants.2005.05.002 Barker A. V., 2015, Handbook of plant nutrition BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8 Burklew CE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034783 CAIRNS ALP, 1992, PLANT SOIL, V145, P295, DOI 10.1007/BF00010358 CARPITA NC, 1993, PLANT J, V3, P1, DOI 10.1111/j.1365-313X.1993.tb00007.x Chen GC, 2016, NANOTOXICOLOGY, V10, P1243, DOI 10.1080/17435390.2016.1202349 Chen SL, 2018, NANO ENERGY, V48, P560, DOI 10.1016/j.nanoen.2018.03.076 Cornelis G, 2014, CRIT REV ENV SCI TEC, V44, P2720, DOI 10.1080/10643389.2013.829767 Da Costa MVJ, 2016, PHOTOSYNTHETICA, V54, P110, DOI 10.1007/s11099-015-0167-5 Darlington TK, 2009, ENVIRON TOXICOL CHEM, V28, P1191, DOI 10.1897/08-341.1 Etxeberria E, 2009, PLANT SCI, V177, P341, DOI 10.1016/j.plantsci.2009.06.014 Faisal M, 2013, J HAZARD MATER, V250, P318, DOI 10.1016/j.jhazmat.2013.01.063 Gardea-Torresdey JL, 2014, ENVIRON SCI TECHNOL, V48, P2526, DOI 10.1021/es4050665 Ghosh M, 2005, ENVIRON POLLUT, V133, P365, DOI 10.1016/j.envpol.2004.05.015 Hajra A, 2017, ECOL ENV, V2, P77 Hawthorne J, 2014, ENVIRON SCI TECHNOL, V48, P13102, DOI 10.1021/es503792f HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 HEMEDA HM, 1990, J FOOD SCI, V55, P184, DOI 10.1111/j.1365-2621.1990.tb06048.x HOAGLAND D. R., 1938, Annual Report of the Smithsonian Institution, P461 Iversen TG, 2011, NANO TODAY, V6, P176, DOI 10.1016/j.nantod.2011.02.003 Jacquot JP, 1997, NEW PHYTOL, V136, P543, DOI 10.1046/j.1469-8137.1997.00784.x Judy JD, 2013, THESIS Khodakovskaya M, 2009, ACS NANO, V3, P3221, DOI 10.1021/nn900887m Khodakovskaya MV, 2011, P NATL ACAD SCI USA, V108, P1028, DOI 10.1073/pnas.1008856108 Kumar N, 2017, APPL SURF SCI, V396, P8, DOI 10.1016/j.apsusc.2016.11.027 Kumar R, 2014, CRIT REV ENV SCI TEC, V44, P1000, DOI 10.1080/10643389.2012.741314 Lee CW, 2010, ENVIRON TOXICOL CHEM, V29, P669, DOI 10.1002/etc.58 Levard C, 2012, ENVIRON SCI TECHNOL, V46, P6900, DOI 10.1021/es2037405 Li YD, 2018, J AGR FOOD CHEM, V66, P4013, DOI 10.1021/acs.jafc.7b05940 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Lv JT, 2019, ENVIRON SCI-NANO, V6, P41, DOI 10.1039/c8en00645h Ma CX, 2015, ENVIRON SCI TECHNOL, V49, P10117, DOI 10.1021/acs.est.5b02007 Ma CX, 2015, ENVIRON SCI TECHNOL, V49, P7109, DOI 10.1021/acs.est.5b00685 Ma XM, 2010, SCI TOTAL ENVIRON, V408, P3053, DOI 10.1016/j.scitotenv.2010.03.031 Majumdar S, 2015, ENVIRON SCI TECHNOL, V49, P13283, DOI 10.1021/acs.est.5b03452 Marschner H., 1986, Mineral nutrition of higher plants. McGrath SP, 2010, ENVIRON POLLUT, V158, P3085, DOI 10.1016/j.envpol.2010.06.030 Miralles P, 2012, ENVIRON SCI TECHNOL, V46, P9224, DOI 10.1021/es202995d Mirzajani F, 2013, ECOTOX ENVIRON SAFE, V88, P48, DOI 10.1016/j.ecoenv.2012.10.018 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Moore K, 1998, FREE RADICAL RES, V28, P659, DOI 10.3109/10715769809065821 Mukherjee A, 2014, METALLOMICS, V6, P132, DOI 10.1039/c3mt00064h Nahakpam S, 2011, PLANT GROWTH REGUL, V63, P23, DOI 10.1007/s10725-010-9508-3 NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867 Noori A, 2017, J NANOPART RES, V19, DOI 10.1007/s11051-016-3650-4 OADES JM, 1993, GEODERMA, V56, P377, DOI 10.1016/0016-7061(93)90123-3 Onelli E, 2008, J EXP BOT, V59, P3051, DOI 10.1093/jxb/ern154 Pagano L, 2016, ENVIRON SCI TECHNOL, V50, P7198, DOI 10.1021/acs.est.6b01816 Perez-de-Luque A, 2017, FRONT ENV SCI-SWITZ, V5, DOI 10.3389/fenvs.2017.00012 Pradhan S, 2017, J AGR FOOD CHEM, V65, P8279, DOI 10.1021/acs.jafc.7b02528 Prasad R, 2016, WIRES NANOMED NANOBI, V8, P316, DOI 10.1002/wnan.1363 Rana K, 2019, NANOSCIENCE FOR SUSTAINABLE AGRICULTURE, P25, DOI 10.1007/978-3-319-97852-9_2 Rico C.M., 2015, NANOTECHNOLOGY PLANT, P1 Rico CM, 2013, ENVIRON SCI TECHNOL, V47, P14110, DOI 10.1021/es4033887 Rico CM, 2013, ENVIRON SCI TECHNOL, V47, P5635, DOI 10.1021/es401032m Rico CM, 2011, J AGR FOOD CHEM, V59, P3485, DOI 10.1021/jf104517j Roco MC, 2005, J NANOPART RES, V7, P707, DOI 10.1007/s11051-005-3141-5 Rui MM, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00815 Sahle-Demessie E, 2016, NANOTECHNOLOGY, V27, DOI 10.1088/0957-4484/27/28/284003 Santos Ana R., 2010, Journal of Nanobiotechnology, V8, P24, DOI 10.1186/1477-3155-8-24 Scheffer F, 2002, TXB SOIL SCI, P593 Serag MF, 2011, ACS NANO, V5, P493, DOI 10.1021/nn102344t Servin AD, 2017, NANOTOXICOLOGY, V11, P98, DOI 10.1080/17435390.2016.1277274 Servin AD, 2013, ENVIRON SCI TECHNOL, V47, P11592, DOI 10.1021/es403368j Shah K, 2013, J PLANT BIOCHEM BIOT, V22, P103, DOI 10.1007/s13562-012-0116-3 Sharma PK, 2020, ENV NANOTECHNOL MONI, V14, P1 Singh P, 2014, ADV PLANT PHYSL, V15, P283 Tripathi DK, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.7789/fenvs.2016.00046 Tripathi DK, 2017, PLANT PHYSIOL BIOCH, V110, P2, DOI 10.1016/j.plaphy.2016.07.030 Van Dongen JT, 2003, ANN BOT-LONDON, V91, P729, DOI 10.1093/aob/mcg066 Vieira RF, 1998, J PLANT NUTR, V21, P2141, DOI 10.1080/01904169809365550 Walker TS, 2003, PLANT PHYSIOL, V132, P44, DOI 10.1104/pp.102.019661 Wang FY, 2016, CHEMOSPHERE, V147, P88, DOI 10.1016/j.chemosphere.2015.12.076 Wang P, 2016, TRENDS PLANT SCI, V21, P699, DOI 10.1016/j.tplants.2016.04.005 Wang X., 2012, J ENV ANAL TOXICOLOG, V2, P154, DOI DOI 10.4172/2161-0525.1000154 Yang K, 2010, CHEM REV, V110, P5989, DOI 10.1021/cr100059s Yue L, 2017, ENVIRON SCI-NANO, V4, P843, DOI 10.1039/c6en00487c Zahra Z, 2015, J AGR FOOD CHEM, V63, P6876, DOI 10.1021/acs.jafc.5b01611 Zakikhani H., 2014, Asian Journal of Crop Science, V6, P236, DOI 10.3923/ajcs.2014.236.244 Zhang YC, 2014, APPL CATAL B-ENVIRON, V144, P730, DOI 10.1016/j.apcatb.2013.08.006 Zhao LJ, 2015, ENVIRON SCI TECHNOL, V49, P2921, DOI 10.1021/es5060226 Zhao LJ, 2012, ACS NANO, V6, P9615, DOI 10.1021/nn302975u Zhao LJ, 2012, J HAZARD MATER, V225, P131, DOI 10.1016/j.jhazmat.2012.05.008 Zhao Y, 2017, J ALLOY COMPD, V726, P608, DOI 10.1016/j.jallcom.2017.07.327 NR 92 TC 8 Z9 8 U1 6 U2 35 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD MAR PY 2021 VL 28 IS 11 BP 13439 EP 13453 DI 10.1007/s11356-020-11511-7 EA NOV 2020 PG 15 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA QU0NH UT WOS:000589022300013 PM 33184789 DA 2023-03-13 ER PT J AU Sinkkonen, A AF Sinkkonen, A. TI Modelling the effect of autotoxicity on density-dependent phytotoxicity SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE allelopathy; autotoxicity; density-response experiments; hormesis; plant density ID SELF-THINNING RULE; CHEMICAL INTERFERENCE; ALFALFA AUTOTOXICITY; RESOURCE COMPETITION; BIOLOGICAL RESPONSE; PHENOLIC-ACIDS; BRASSICA-NAPUS; DOSE-RESPONSE; FIELD SOILS; ALLELOPATHY AB An established method to separate resource competition from chemical interference is cultivation of monospecific, even-aged stands. The stands grow at several densities and they are exposed to homogenously spread toxins. Hence, the dose received by individual plants is inversely related to stand density. This results in distinguishable alterations in dose-response slopes. The method is often recommended in ecological studies of allelopathy. However, many plant species are known to release autotoxic compounds. Often, the probability of autotoxicity increases as sowing density increases. Despite this, the possibility of autotoxicity is ignored when experiments including monospecific stands are designed and when their results are evaluated. In this paper, I model mathematically how autotoxicity changes the outcome of dose-response slopes as different densities of monospecific stands are grown on homogenously phytotoxic substrata. Several ecologically reasonable relations between plant density and autotoxin exposure are considered over a range of parameter values, and similarities between different relations are searched for. The models indicate that autotoxicity affects the outcome of density-dependent dose-response experiments. Autotoxicity seems to abolish the effects of other phytochemicals in certain cases, while it may augment them in other cases. Autotoxicity may alter the outcome of tests using the method of monospecific stands even if the dose of autotoxic compounds per plant is a fraction of the dose of non-autotoxic phytochemicals with similar allelopathic potential. Data from the literature support these conclusions. A faulty null hypothesis may be accepted if the autotoxic potential of a test species is overlooked in density-response experiments. On the contrary, if test species are known to be non-autotoxic, the method of monospecific stands does not need fine-tuning. The results also suggest that the possibility of autotoxicity should be investigated in many density-response bioassays that are made with even-aged plants, and that measure plant growth or germination. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Turku, Satakunta Environm Res Inst, Pori 28900, Finland. Univ Helsinki, Dept Biol & Environm Sci, Lahti 15140, Finland. C3 University of Turku; University of Helsinki RP Sinkkonen, A (corresponding author), Univ Turku, Satakunta Environm Res Inst, Konttorinkatu 1, Pori 28900, Finland. EM akisin@utu.fi OI sinkkonen, aki/0000-0002-6821-553X CR An M., 1996, Allelopathy Journal, V3, P33 An M, 2001, J CHEM ECOL, V27, P395, DOI 10.1023/A:1005692724885 AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671 An YJ, 2006, CHEMOSPHERE, V62, P1359, DOI 10.1016/j.chemosphere.2005.07.044 Asao T, 2003, SCI HORTIC-AMSTERDAM, V97, P389, DOI 10.1016/S0304-4238(02)00197-8 Bais HP, 2003, SCIENCE, V301, P1377, DOI 10.1126/science.1083245 Barazani O, 1999, CRIT REV PLANT SCI, V18, P741 Bastolla U, 2005, J THEOR BIOL, V235, P521, DOI 10.1016/j.jtbi.2005.02.005 Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 Belz RG, 2004, J CHEM ECOL, V30, P175, DOI 10.1023/B:JOEC.0000013190.72062.3d Blum U, 1999, CRIT REV PLANT SCI, V18, P673, DOI 10.1016/S0735-2689(99)00396-2 Blum U, 1996, J NEMATOL, V28, P259 Bonanomi G, 2005, OIKOS, V111, P311, DOI 10.1111/j.0030-1299.2005.13975.x BRADBURY JH, 1995, PHYTOCHEM ANALYSIS, V6, P268, DOI 10.1002/pca.2800060510 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Callaway RM, 2003, ECOLOGY, V84, P1115, DOI 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2 Canals RM, 2005, J THEOR BIOL, V235, P402, DOI 10.1016/j.jtbi.2005.01.020 Catana C, 2005, J CHEM INF MODEL, V45, P170, DOI 10.1021/ci049797u CHASE WR, 1991, J CHEM ECOL, V17, P1575, DOI 10.1007/BF00984689 Chen LC, 2005, ALLELOPATHY J, V15, P57 CHOESIN DN, 1991, AM J BOT, V78, P1083, DOI 10.2307/2444897 Chon SU, 2001, COMMUN SOIL SCI PLAN, V32, P1607, DOI 10.1081/CSS-100104216 Chon SU, 2000, AGRON J, V92, P715, DOI 10.2134/agronj2000.924715x Cipollini DF, 2001, J CHEM ECOL, V27, P593, DOI 10.1023/A:1010384805014 COUSENS R, 1993, OIKOS, V66, P347, DOI 10.2307/3544824 De Blois S, 2004, ENVIRON MANAGE, V33, P606, DOI 10.1007/s00267-004-0039-4 Ervin GN, 2000, AM J BOT, V87, P853, DOI 10.2307/2656893 Fitter A, 2003, SCIENCE, V301, P1337, DOI 10.1126/science.1089291 GAGLIARDO RW, 1992, J CHEM ECOL, V18, P1683, DOI 10.1007/BF02751095 Gibson DJ, 1999, J ECOL, V87, P1, DOI 10.1046/j.1365-2745.1999.00321.x Hamback PA, 2005, ECOL LETT, V8, P1057, DOI 10.1111/j.1461-0248.2005.00811.x Haramoto ER, 2004, RENEW AGR FOOD SYST, V19, P187, DOI 10.1079/RAF200490 HEDGE RS, 1992, AGRON J, V84, P940 Hierro JL, 2003, PLANT SOIL, V256, P29, DOI 10.1023/A:1026208327014 HIRANO SATORU, 1965, J BIOL OSAKA CITY UNIV, V16, P27 Inderjit, 2006, SOIL BIOL BIOCHEM, V38, P256, DOI 10.1016/j.soilbio.2005.05.004 Jasicka-Misiak I, 2005, PHYTOCHEMISTRY, V66, P1485, DOI 10.1016/j.phytochem.2005.04.005 Jennings JA, 2002, AGRON J, V94, P1104, DOI 10.2134/agronj2002.1104 Khanh TD, 2005, CROP PROT, V24, P421, DOI 10.1016/j.cropro.2004.09.020 Kitazawa H, 2005, J HORTIC SCI BIOTECH, V80, P677, DOI 10.1080/14620316.2005.11511997 Koricheva J, 2002, CHEMICAL ECOLOGY OF PLANTS: ALLELOPATHY IN AQUATIC AND TERRESTRIAL ECOSYSTEMS, P219 Kraus E, 2002, FUNCT PLANT BIOL, V29, P1465, DOI 10.1071/FP02063 Lehman ME, 1999, J CHEM ECOL, V25, P2585, DOI 10.1023/A:1020838611441 Li YM, 2003, PLANT SOIL, V249, P107, DOI 10.1023/A:1022527330401 Lin TJ, 1998, VET HUM TOXICOL, V40, P93 Liphadzi MS, 2003, PLANT SOIL, V257, P171, DOI 10.1023/A:1026294830323 MAHALL BE, 1992, ECOLOGY, V73, P2145, DOI 10.2307/1941462 Mallik AU, 2002, ALLELOPATHY: FROM MOLECULES TO ECOSYSTEMS, P289 MARTIN LD, 1994, CROP PROT, V13, P388, DOI 10.1016/0261-2194(94)90055-8 Mishra V, 2005, J BIOL CHEM, V280, P20712, DOI 10.1074/jbc.M500735200 NIEMEYER HM, 1988, PHYTOCHEMISTRY, V27, P3349, DOI 10.1016/0031-9422(88)80731-3 NILSSON MC, 1994, OECOLOGIA, V98, P1, DOI 10.1007/BF00326083 Nilsson MC, 1998, OIKOS, V81, P6, DOI 10.2307/3546462 Norsworthy JK, 2005, WEED SCI, V53, P515, DOI 10.1614/WS-04-208R Pellissier F, 1999, CRIT REV PLANT SCI, V18, P637, DOI 10.1016/S0735-2689(99)00394-9 Perry LG, 2005, J ECOL, V93, P1126, DOI 10.1111/j.1365-2745.2005.01044.x Ramseier D, 2005, J ECOL, V93, P502, DOI 10.1111/j.1365-2745.2005.00999.x Reigosa MJ, 1999, CRIT REV PLANT SCI, V18, P577, DOI [10.1016/S0735-2689(99)00392-5, 10.1080/07352689991309405] Sampietro DA, 2006, ALLELOPATHY J, V17, P33 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Schulz M, 1999, CHEMOECOLOGY, V9, P133, DOI 10.1007/s000490050044 Shann JR, 1995, ENVIRON HEALTH PERSP, V103, P13, DOI 10.2307/3432470 Singh HP, 1999, CRIT REV PLANT SCI, V18, P757, DOI 10.1016/S0735-2689(99)00399-8 Sinkkonen A, 2003, PLANT SOIL, V250, P315, DOI 10.1023/A:1022841503476 Sinkkonen A, 2001, J CHEM ECOL, V27, P1513, DOI 10.1023/A:1010329612753 Sinkkonen Aki, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P225, DOI 10.2201/nonlin.003.02.004 STOWE LG, 1979, J ECOL, V67, P1065, DOI 10.2307/2259228 Streibig JC, 1999, PESTIC SCI, V55, P137, DOI 10.1002/(SICI)1096-9063(199902)55:2<137::AID-PS885>3.0.CO;2-D THIJS H, 1994, ECOLOGY, V75, P1959, DOI 10.2307/1941600 Tseng MH, 2003, J CHEM ECOL, V29, P1269, DOI 10.1023/A:1023846010108 Vaughn SF, 1997, J CHEM ECOL, V23, P2107, DOI 10.1023/B:JOEC.0000006432.28041.82 Wardle DA, 1998, BIOL REV, V73, P305, DOI 10.1017/S0006323198005192 WEIDENHAMER JD, 1987, J CHEM ECOL, V13, P1481, DOI 10.1007/BF01012292 WEIDENHAMER JD, 1989, J APPL ECOL, V26, P613, DOI 10.2307/2404086 Weidenhamer JD, 2006, ALLELOPATHY: A PHYSIOLOGICAL PROCESS WITH ECOLOGICAL IMPLICATIONS, P85, DOI 10.1007/1-4020-4280-9_4 Weih M, 2004, CAN J FOREST RES, V34, P1369, DOI [10.1139/x04-090, 10.1139/X04-090] Weissinger WR, 2001, J FOOD PROTECT, V64, P442, DOI 10.4315/0362-028X-64.4.442 WELLER DE, 1991, ECOLOGY, V72, P747, DOI 10.2307/2937216 WELLER DE, 1987, ECOL MONOGR, V57, P23, DOI 10.2307/1942637 WESTOBY M, 1984, ADV ECOL RES, V14, P167, DOI 10.1016/S0065-2504(08)60171-3 Wu H, 2001, ANN APPL BIOL, V139, P1, DOI 10.1111/j.1744-7348.2001.tb00124.x Ye SF, 2004, PLANT SOIL, V263, P143, DOI 10.1023/B:PLSO.0000047721.78555.dc YODA KYOJI, 1963, J BIOL OSAKA CITY UNIV, V14, P107 NR 83 TC 29 Z9 32 U1 0 U2 24 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 EI 1095-8541 J9 J THEOR BIOL JI J. Theor. Biol. PD JAN 21 PY 2007 VL 244 IS 2 BP 218 EP 227 DI 10.1016/j.jtbi.2006.08.003 PG 10 WC Biology; Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 123AC UT WOS:000243267700005 PM 16989866 DA 2023-03-13 ER PT J AU Tsui, MTK Wang, WX AF Tsui, MTK Wang, WX TI Influences of maternal exposure on the tolerance and physiological performance of Daphnia magna under mercury stress SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Daphnia magna; maternal transfer; mercury tolerance; metallothionein-like proteins ID METAL CONCENTRATIONS; CADMIUM RESISTANCE; HEAVY-METALS; TOXICITY; METHYLMERCURY; ZN; CD; METALLOTHIONEIN; BIOACCUMULATION; PREEXPOSURE AB We examined the tolerance development to mercury (Hg) by a population of freshwater zooplankton (Daphnia magna) with different pre-exposure histories to Hg. The growth and reproductive performance of the F, offspring as affected by the maternal (F,) and offspring (F,) exposures was quantified. The F-0 daphnids exposed to 2.5 and 25 nM of Hg for 4 d and followed by 4 d of depuration had elevated levels of Mg and metal lothionein-like proteins (MTLPs), as well as higher tolerance to Hg toxicity than the control daphnids. The higher Hg tolerance may be attributed to the higher proportion of Hg partitioned to the MTLPs. Moreover, significant enhancement of Hg tolerance also was found in the F, offspring originating from the F0 mothers exposed to 25 nM of Hg, but there was no significant induction of MTLPs in these F, offspring when compared to the offspring from the control mothers. The Hg tissue concentrations in the F-1 neonates were approximately 25% of those in the F0 adults. However, there was similar Hg tolerance in the F-2 offspring originating from both the control and Hg-exposed F-0 mothers, indicating that the Hg tolerance in the daphnids disappeared two generations after Hg contamination. Further exposure of the F, offspring to different Hg concentrations (1.5 and 15 nM for 28 d) indicated that maternal exposure history did not affect their growth and reproductive performance, which solely were influenced by the offspring exposure. Unexpectedly, the F-1 offspring exposed to Hg had significantly higher final wet weights and reproductive rates than the control groups, suggesting the possibility of Hg hormesis. Furthermore, the maternal exposure had no effect on the Hg accumulation and the MTLP concentrations in the F-1 offspring. Therefore, we concluded that the Hg tolerance might disappear quickly once the Hg contamination was removed and the maternal exposure history was not important in determining the physiological performance and Hg accumulation of the subsequent generations. C1 Hong Kong Univ Sci & Technol, Dept Biol, Kowloon, Hong Kong, Peoples R China. C3 Hong Kong University of Science & Technology RP Wang, WX (corresponding author), Hong Kong Univ Sci & Technol, Dept Biol, Kowloon, Hong Kong, Peoples R China. EM wwang@ust.hk RI Tsui, Martin Tsz Ki/F-5029-2011; Wang, Wen-Xiong/E-7254-2011 OI Wang, Wen-Xiong/0000-0001-9033-0158 CR Blackmore G, 2002, ENVIRON SCI TECHNOL, V36, P989, DOI 10.1021/es0155534 BODAR CWM, 1990, AQUAT TOXICOL, V16, P33, DOI 10.1016/0166-445X(90)90075-Z BODAR CWM, 1988, P 3 INT C ENV CONT C, P79 Boisson F, 1998, MAR ENVIRON RES, V45, P325, DOI 10.1016/S0141-1136(97)00131-1 Bossuyt BTA, 2003, COMP BIOCHEM PHYS C, V136, P253, DOI 10.1016/j.cca.2003.09.007 Chen CY, 2000, LIMNOL OCEANOGR, V45, P1525, DOI 10.4319/lo.2000.45.7.1525 Croteau MN, 2002, ENVIRON TOXICOL CHEM, V21, P737, DOI 10.1897/1551-5028(2002)021<0737:MLMBPI>2.0.CO;2 Geffard A, 2001, BIOMARKERS, V6, P91, DOI 10.1080/13547500010000860 Kast-Hutcheson K, 2001, ENVIRON TOXICOL CHEM, V20, P502, DOI [10.1002/etc.5620200308, 10.1897/1551-5028(2001)020<0502:TFPIWE>2.0.CO;2] Lee E. T., 2003, STAT METHODS SURVIVA, V476 Levinton JS, 2003, P NATL ACAD SCI USA, V100, P9889, DOI 10.1073/pnas.1731446100 Lin HC, 2000, J FISH BIOL, V57, P239, DOI 10.1006/jfbi.2000.1339 Martinez DE, 1996, EVOLUTION, V50, P1339, DOI 10.1111/j.1558-5646.1996.tb02374.x Mason RP, 1996, ENVIRON SCI TECHNOL, V30, P1835, DOI 10.1021/es950373d Mouneyrac C, 2002, AQUAT TOXICOL, V57, P225, DOI 10.1016/S0166-445X(01)00201-6 Ng TYT, 2004, MAR ECOL PROG SER, V268, P161, DOI 10.3354/meps268161 Paterson MJ, 1998, ENVIRON SCI TECHNOL, V32, P3868, DOI 10.1021/es980343l Peake EB, 2004, ENVIRON TOXICOL CHEM, V23, P208, DOI 10.1897/02-610 ROESIJADI G, 1992, AQUAT TOXICOL, V22, P81, DOI 10.1016/0166-445X(92)90026-J Sarabia R, 1998, COMP BIOCHEM PHYS A, V120, P93, DOI 10.1016/S1095-6433(98)10015-6 SCHEUHAMMER AM, 1991, METHOD ENZYMOL, V205, P78 Shi DL, 2004, ENVIRON SCI TECHNOL, V38, P449, DOI 10.1021/es034801o SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x Stubblefield WA, 1999, ENVIRON TOXICOL CHEM, V18, P2875, DOI 10.1002/etc.5620181231 STUHLBACHER A, 1992, ARCH ENVIRON CON TOX, V22, P319 STUHLBACHER A, 1992, COMP BIOCHEM PHYS C, V101, P571, DOI 10.1016/0742-8413(92)90088-O Tsui MTK, 2004, ENVIRON TOXICOL CHEM, V23, P1504, DOI 10.1897/03-310 Tsui MTK, 2004, ENVIRON SCI TECHNOL, V38, P808, DOI 10.1021/es034638x Vidal DE, 2003, ENVIRON TOXICOL CHEM, V22, P2130, DOI 10.1897/02-407 Vidal DE, 2003, ARCH ENVIRON CON TOX, V45, P462, DOI 10.1007/s00244-003-2119-5 Wallace WG, 2003, MAR ECOL PROG SER, V249, P183, DOI 10.3354/meps249183 Watras Carl J., 1994, P137 WATRAS CJ, 1992, LIMNOL OCEANOGR, V37, P1313, DOI 10.4319/lo.1992.37.6.1313 Yu RQ, 2002, LIMNOL OCEANOGR, V47, P495, DOI 10.4319/lo.2002.47.2.0495 NR 34 TC 31 Z9 33 U1 1 U2 21 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD MAY PY 2005 VL 24 IS 5 BP 1228 EP 1234 DI 10.1897/04-190R.1 PG 7 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 919OJ UT WOS:000228627100029 PM 16111004 DA 2023-03-13 ER PT J AU Basavaraju, SR Easterly, CE AF Basavaraju, SR Easterly, CE TI Pathophysiological effects of radiation on atherosclerosis development and progression, and the incidence of cardiovascular complications SO MEDICAL PHYSICS LA English DT Review DE radiation treatment; atherosclerosis; Hodgkin's disease; breast cancer; coronary artery disease ID CORONARY-ARTERY DISEASE; INDUCED HEART-DISEASE; EXTERNAL-BEAM IRRADIATION; TRANSFORMING GROWTH FACTOR-BETA-1; INHIBITS NEOINTIMA FORMATION; VASCULAR ENDOTHELIAL-CELLS; IN-STENT RESTENOSIS; HODGKINS-DISEASE; BREAST-CANCER; BALLOON ANGIOPLASTY AB Radiation therapy while important in the management of several diseases, is implicated in the causation of atherosclerosis and other cardiovascular complications. Cancer and atherosclerosis go through the same stages of initiation, promotion, and complication, beginning with a mutation in a single cell. Clinical observations before the 1960s lead to the belief that the heart is relatively resistant to the doses of radiation used in radiotherapy. Subsequently, it was discovered that the heart is sensitive to radiation and many cardiac structures may be damaged by radiation exposure. A significantly higher risk of death due to ischemic heart disease has been reported for patients treated with radiation for Hodgkin's disease and breast cancer. Certain cytokines and growth factors, such as TGF-beta1 and IL-1 beta, may stimulate radiation-induced endothelial proliferation, fibroblast proliferation, collagen deposition, and fibrosis leading to advanced lesions of atherosclerosis. The treatment for radiation-induced ischemic heart disease includes conventional pharmacological therapy, balloon angioplasty, and bypass surgery. Endovascular irradiation has been shown to be effective in reducing restenosis-like response to balloon-catheter injury in animal models. Caution must be exercised when radiation therapy is combined with doxorubicin because there appears to be a synergistic toxic effect on the myocardium. Damage to endothelial cells is a central event in the pathogenesis of damage to the coronary arteries. Certain growth factors that interfere with the apoptotic pathway may provide new therapeutic strategies for reducing the risk of radiation-induced damage to the heart. Exposure to low level occupational or environmental radiation appears to pose no undue risk of atherosclerosis development or cardiovascular mortality. But, other radiation-induced processes such as the bystander effects, abscopal effects, hormesis, and individual variations in radiosensitivity may be important in certain circumstances. (C) 2002 American Association of Physicists in Medicine. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Bennett Coll, Dept Biol, Greensboro, NC 27401 USA. C3 United States Department of Energy (DOE); Oak Ridge National Laboratory; Bennett College RP Easterly, CE (corresponding author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. EM easterlyce@ornl.gov CR ABBAS MA, 1994, INT J CARDIOL, V44, P191, DOI 10.1016/0167-5273(94)90283-6 Albiero R, 2000, CIRCULATION, V101, P18, DOI 10.1161/01.CIR.101.1.18 American Heart Association, 2000, 2001 HEART STROK STA Amols HI, 1996, INT J RADIAT ONCOL, V36, P913, DOI 10.1016/S0360-3016(96)00301-X AMRONIM GD, 1965, ARCH PATHOL, V75, P219 ANNEST LS, 1983, J THORAC CARDIOV SUR, V85, P257 ANSCHER MS, 1990, RADIAT RES, V122, P77, DOI 10.2307/3577586 ANTONI G, 1986, J IMMUNOL, V137, P3201 APPLEFELD MM, 1983, AM J CARDIOL, V51, P1679, DOI 10.1016/0002-9149(83)90209-6 APPLEFELD MM, 1982, CANCER TREAT REP, V66, P1003 ARAKI S, 1990, BIOCHEM BIOPH RES CO, V168, P1194, DOI 10.1016/0006-291X(90)91155-L ARCHAMBEAU JO, 1984, RADIAT RES, V98, P37, DOI 10.2307/3576049 ARSENIAN MA, 1991, PROG CARDIOVASC DIS, V33, P299, DOI 10.1016/0033-0620(91)90022-E ASSCHER AW, 1961, LANCET, V1, P580 Behling UH, 1983, BENEFICIAL EFFECTS E, P127 BENDITT EP, 1973, P NATL ACAD SCI USA, V70, P1753, DOI 10.1073/pnas.70.6.1753 BERGQVIST D, 1987, SURG GYNECOL OBSTET, V165, P116 BOIVIN JF, 1992, CANCER, V69, P1241 BRADLEY EW, 1981, INT J RADIAT ONCOL, V7, P1103, DOI 10.1016/0360-3016(81)90169-3 BROSIUS FC, 1981, AM J MED, V70, P519, DOI 10.1016/0002-9343(81)90574-X BROWN PE, 1967, NATURE, V213, P363, DOI 10.1038/213363a0 Burger A, 1998, INT J RADIAT BIOL, V73, P401, DOI 10.1080/095530098142239 BYHARDT R, 1975, CANCER-AM CANCER SOC, V35, P795, DOI 10.1002/1097-0142(197503)35:3<795::AID-CNCR2820350335>3.0.CO;2-M Constine LS, 1997, INT J RADIAT ONCOL, V39, P897, DOI 10.1016/S0360-3016(97)00467-7 CORN BW, 1990, J CLIN ONCOL, V8, P741, DOI 10.1200/JCO.1990.8.4.741 DARTSCH PC, 1989, ATHEROSCLEROSIS, V80, P149, DOI 10.1016/0021-9150(89)90023-3 DOERING CW, 1988, CARDIOVASC RES, V22, P686, DOI 10.1093/cvr/22.10.686 DOHERTY DG, 1960, RAD PROTECTION RECOV, V7, P45 DOLLINGER MR, 1965, LANCET, V2, P246 Drab-Weiss EA, 1998, SHOCK, V10, P423, DOI 10.1097/00024382-199812000-00008 Eriksson F, 2000, RADIOTHER ONCOL, V55, P153, DOI 10.1016/S0167-8140(00)00166-3 Fajardo L F, 1999, Cardiovasc Radiat Med, V1, P108 FAJARDO LF, 1975, CANCER, V36, P904, DOI 10.1002/1097-0142(197509)36:3<904::AID-CNCR2820360311>3.0.CO;2-U FAJARDO LF, 1973, LAB INVEST, V29, P244 FAJARDO LF, 1976, RADIAT RES, V68, P177, DOI 10.2307/3574547 FAJARDO LF, 1968, ARCH PATHOL, V86, P512 FAJARDO LF, 1988, PATHOL ANNU, V23, P297 FISCHELL TA, 1994, CIRCULATION, V90, P2956, DOI 10.1161/01.CIR.90.6.2956 FISCHERDZOGA K, 1984, RADIAT RES, V99, P536, DOI 10.2307/3576328 FONKALSRUD EW, 1977, SURG GYNECOL OBSTET, V145, P395 FRASCA D, 1991, RADIAT RES, V128, P43, DOI 10.2307/3578065 FRASCA D, 1988, J IMMUNOL, V141, P2651 FUKS Z, 1994, CANCER RES, V54, P2582 Gassmann A, 1899, ROFO FORTSCHR RONTG, V2, P199 Gofman JW, 1999, RAD MED PROCEDURES P GOMEZ GA, 1983, CANCER TREAT REP, V67, P1099 GOTTDIENER JS, 1983, NEW ENGL J MED, V308, P569, DOI 10.1056/NEJM198303103081005 Gura T, 1998, SCIENCE, V281, P923 Gura T, 1998, SCIENCE, V281, P35, DOI 10.1126/science.281.5373.35 Gyenes G, 1998, RADIOTHER ONCOL, V48, P185, DOI 10.1016/S0167-8140(98)00062-0 Gyenes G, 1998, ACTA ONCOL, V37, P241, DOI 10.1080/028418698429522 HAIMOVITZFRIEDMAN A, 1994, CANCER RES, V54, P2591 HANCOCK SL, 1993, JAMA-J AM MED ASSOC, V270, P1949, DOI 10.1001/jama.270.16.1949 Handa N, 1999, J THORAC CARDIOV SUR, V117, P1136, DOI 10.1016/S0022-5223(99)70250-3 HANKS GE, 1969, AMER J ROENTGENOL RA, V105, P74, DOI 10.2214/ajr.105.1.74 HAYBITTLE JL, 1989, BRIT MED J, V298, P1611, DOI 10.1136/bmj.298.6688.1611 HEHRLEIN C, 1995, CIRCULATION, V92, P1570, DOI 10.1161/01.CIR.92.6.1570 HOST H, 1986, INT J RADIAT ONCOL, V12, P727, DOI 10.1016/0360-3016(86)90029-5 HUFF H, 1972, NEW ENGL J MED, V286, P780 JOHNSON, 2002, PRELIMINARY RESULTS JONES JM, 1989, CLIN RADIOL, V40, P204, DOI 10.1016/S0009-9260(89)80099-6 Kim HS, 2001, INT J RADIAT ONCOL, V51, P1058, DOI 10.1016/S0360-3016(01)02601-3 Kodama Kazunori, 1996, World Health Statistics Quarterly, V49, P7 KONDO S, 1994, EXP CELL RES, V213, P428, DOI 10.1006/excr.1994.1219 Kotzerke J, 2000, EUR J NUCL MED, V27, P223, DOI 10.1007/s002590050032 Koukourakis MI, 2002, ANTI-CANCER DRUG, V13, P181, DOI 10.1097/00001813-200203000-00001 Kruse JJCM, 2001, RADIOTHER ONCOL, V58, P303, DOI 10.1016/S0167-8140(00)00327-3 LAMBERTS HB, 1963, INT J RADIAT BIOL RE, V6, P343, DOI 10.1080/09553006314550461 Langley RE, 1997, BRIT J CANCER, V75, P666, DOI 10.1038/bjc.1997.119 LAWSON JA, 1985, J CARDIOVASC SURG, V26, P151 Leon MB, 2001, NEW ENGL J MED, V344, P250, DOI 10.1056/NEJM200101253440402 LINDSAY S, 1962, CIRC RES, V10, P51, DOI 10.1161/01.RES.10.1.51 Makkar R, 1998, J AM COLL CARDIOL, V31, p350A, DOI 10.1016/S0735-1097(97)85232-1 Marijianowski MMH, 1999, INT J RADIAT ONCOL, V44, P633, DOI 10.1016/S0360-3016(99)00038-3 Mayberg MR, 2000, RADIAT RES, V153, P153, DOI 10.1667/0033-7587(2000)153[0153:IORSMP]2.0.CO;2 MAZUR W, 1994, CIRCULATION, V90, P652 MCCREADY RA, 1983, SURGERY, V93, P306 MCENIERY PT, 1987, AM J CARDIOL, V60, P1020, DOI 10.1016/0002-9149(87)90345-6 MCGUIRT WF, 1992, ANN OTO RHINOL LARYN, V101, P222, DOI 10.1177/000348949210100305 MCREYNOLDS RA, 1976, AM J MED, V60, P39, DOI 10.1016/0002-9343(76)90531-3 MILL WB, 1984, INT J RADIAT ONCOL, V10, P2061, DOI 10.1016/0360-3016(84)90203-7 MILLION RR, 1963, RADIOLOGY, V80, P973, DOI 10.1148/80.6.973 Minotti G, 1999, FASEB J, V13, P199, DOI 10.1096/fasebj.13.2.199 MOLITERNO DJ, 2002, TXB CARDIOVASCULAR M, P1715 Mooteri SN, 1996, RADIAT RES, V145, P217, DOI 10.2307/3579177 MORGAN GW, 1985, INT J RADIAT ONCOL, V11, P1925, DOI 10.1016/0360-3016(85)90273-1 MORITZ MW, 1990, ARCH SURG-CHICAGO, V125, P1181 NENCIONI L, 1987, J IMMUNOL, V139, P800 NETA R, 1986, J IMMUNOL, V136, P2483 NETA R, 1988, BLOOD, V72, P1093 NIEMTZOW RC, 1985, CANC HEART, P232 NIKOL S, 1992, J CLIN INVEST, V90, P1582, DOI 10.1172/JCI116027 NYLANDER G, 1978, CANCER, V41, P2158, DOI 10.1002/1097-0142(197806)41:6<2158::AID-CNCR2820410613>3.0.CO;2-L OM A, 1992, AM HEART J, V124, P1598, DOI 10.1016/0002-8703(92)90078-A Park JS, 2001, ONCOGENE, V20, P3266, DOI 10.1038/sj.onc.1204258 PEARSON HES, 1957, P ROY SOC MED, V50, P516 PETTERSSON F, 1990, ACTA CHIR SCAND, V156, P367 PIEDBOIS P, 1990, RADIOTHER ONCOL, V17, P133, DOI 10.1016/0167-8140(90)90101-2 PIOVACCARI G, 1995, INT J CARDIOL, V49, P39, DOI 10.1016/0167-5273(95)02276-3 POPMA J, 2002, TXB CARDIOVASCULAR M, P1715 PRENTICE RT, 1965, LANCET, V2, P388 PUCK TT, 1957, J EXP MED, V106, P485, DOI 10.1084/jem.106.4.485 PURDIE JW, 1983, INT J RADIAT BIOL, V43, P517, DOI 10.1080/09553008314550611 Raizner AE, 2000, CIRCULATION, V102, P951, DOI 10.1161/01.CIR.102.9.951 Richardson DB, 1999, ENVIRON HEALTH PERSP, V107, P649, DOI 10.2307/3434457 Ridker PM, 1998, CIRCULATION, V97, P1671, DOI 10.1161/01.CIR.97.17.1671 Rijbroek A, 2000, Ned Tijdschr Geneeskd, V144, P353 RODEMANN HP, 1995, RADIOTHER ONCOL, V35, P83, DOI 10.1016/0167-8140(95)01540-W ROSS R, 1993, NATURE, V362, P801, DOI 10.1038/362801a0 Rubin D.B., 1998, RAD BIOL VASCULAR EN RUBIN DB, 1984, RADIAT RES, V99, P420, DOI 10.2307/3576384 SAMS A, 1965, INT J RADIAT BIOL RE, V9, P165, DOI 10.1080/09553006514550211 SAVLOV ED, 1969, OBSTET GYNECOL, V34, P345 SCHWARTZ RS, 1992, J AM COLL CARDIOL, V19, P1106, DOI 10.1016/0735-1097(92)90303-5 Serruys PW, 2000, CIRCULATION, V101, P3, DOI 10.1161/01.CIR.101.1.3 Shimizu Y, 1999, RADIAT RES, V152, P374, DOI 10.2307/3580222 SILVERBERG GD, 1978, CANCER-AM CANCER SOC, V41, P130, DOI 10.1002/1097-0142(197801)41:1<130::AID-CNCR2820410121>3.0.CO;2-X SINCLAIR WK, 1968, RADIAT RES, V33, P620, DOI 10.2307/3572419 SMITH REA, 1993, BRIT HEART J, V69, P483 STEWART JR, 1984, PROG CARDIOVASC DIS, V27, P173 STEWART JR, 1971, RADIOL CLIN N AM, V9, P511 STEWART JR, 1971, RADIOLOGY, V99, P403, DOI 10.1148/99.2.403 STEWART JR, 1989, FRONT RADIAT THER ON, V23, P302 Talbott EO, 2000, ENVIRON HEALTH PERSP, V108, P545, DOI 10.2307/3454617 Tazka D, 2000, BIOLOGIA, V55, P119 Teirstein PS, 2000, CIRCULATION, V101, P360, DOI 10.1161/01.CIR.101.4.360 TENET W, 1986, CATHETER CARDIO DIAG, V12, P169 TRACY GP, 1974, JAMA-J AM MED ASSOC, V228, P1660, DOI 10.1001/jama.228.13.1660 TRAVIS EL, 1985, RADIAT RES, V103, P219, DOI 10.2307/3576576 UPADHAYA BR, 1972, INDIAN J MED RES, V60, P403 VACHERON A, 1983, ANN CARDIOL ANGEIOL, V32, P465 Veeragandham RS, 1998, ANN THORAC SURG, V65, P1014, DOI 10.1016/S0003-4975(98)00082-4 Veinot JP, 1996, HUM PATHOL, V27, P766, DOI 10.1016/S0046-8177(96)90447-5 VERIN V, 1995, CIRCULATION, V92, P2284, DOI 10.1161/01.CIR.92.8.2284 Verin V, 2001, NEW ENGL J MED, V344, P243, DOI 10.1056/NEJM200101253440401 VESSELIN.D, 1968, J ATHEROSCLER RES, V8, P497, DOI 10.1016/S0368-1319(68)80105-X Virmani R, 1999, Cardiovasc Radiat Med, V1, P98, DOI 10.1016/S1522-1865(98)00010-9 Waksman R, 2000, CIRCULATION, V101, P2165, DOI 10.1161/01.CIR.101.18.2165 WAKSMAN R, 1995, CIRCULATION, V92, P3025, DOI 10.1161/01.CIR.92.10.3025 WAKSMAN R, 1995, CIRCULATION, V91, P1533, DOI 10.1161/01.CIR.91.5.1533 WAKSMAN R, 2002, TXB CARDIOVASCULAR M, P1715 WARD WF, 1983, RADIAT RES, V96, P294, DOI 10.2307/3576212 WARFIELD ME, 1990, RADIAT RES, V121, P63, DOI 10.2307/3577564 WEBER KT, 1989, J AM COLL CARDIOL, V13, P1637, DOI 10.1016/0735-1097(89)90360-4 WEINBERGER J, 1999, VASCULAR BRACHYTHERA, P521 WERNER MH, 1988, NEUROLOGY, V38, P1158, DOI 10.1212/WNL.38.7.1158 WIEDERMANN JG, 1995, J AM COLL CARDIOL, V25, P1451, DOI 10.1016/0735-1097(95)00010-2 WIEDERMANN JG, 1994, J AM COLL CARDIOL, V23, P1491, DOI 10.1016/0735-1097(94)90397-2 WINDHOLZ F, 1937, STRAHLENTHERAPIE, V59, P662 WIZENBERG MJ, 1972, CANCER-AM CANCER SOC, V29, P1455, DOI 10.1002/1097-0142(197206)29:6<1455::AID-CNCR2820290606>3.0.CO;2-8 NR 150 TC 115 Z9 121 U1 0 U2 13 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0094-2405 EI 2473-4209 J9 MED PHYS JI Med. Phys. PD OCT PY 2002 VL 29 IS 10 BP 2391 EP 2403 DI 10.1118/1.1509442 PG 13 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA 604XR UT WOS:000178646800023 PM 12408314 DA 2023-03-13 ER PT J AU Matta, L de Faria, CC De Oliveira, DF Andrade, IS Lima, NC Gregorio, BM Takiya, CM Ferreira, ACF Nascimento, JHM de Carvalho, DP Bartelt, A Maciel, L Fortunato, RS AF Matta, Leonardo de Faria, Caroline Coelho De Oliveira, Dahienne F. Andrade, Iris Soares Lima-Junior, Niedson Correia Gregorio, Bianca Martins Takiya, Cristina Maeda Freitas Ferreira, Andrea Claudia Nascimento, Jose Hamilton M. de Carvalho, Denise Pires Bartelt, Alexander Maciel, Leonardo Fortunato, Rodrigo Soares TI Exercise Improves Redox Homeostasis and Mitochondrial Function in White Adipose Tissue SO ANTIOXIDANTS LA English DT Article DE exercise; redox homeostasis; hormesis; adipose tissue ID NF-KAPPA-B; OXIDATIVE STRESS; DNA-DAMAGE; INSULIN-RESISTANCE; PHYSICAL-ACTIVITY; GENE-EXPRESSION; INFLAMMATION; PATHWAY; NRF2; MECHANISMS AB Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously shown that one aerobic exercise session was associated with increased expression of antioxidant and cytoprotective genes in white adipose tissue (WAT). In the present study, we evaluate the chronic effects of physical exercise on WAT redox homeostasis and mitochondrial function. Adult male Wistar rats were separated into two groups: a control group that did not exercise and a group that performed running exercise sessions on a treadmill for 30 min, 5 days per week for 9 weeks. Reactive oxygen species (ROS) generation, antioxidant enzyme activities, mitochondrial function, markers of oxidative stress and inflammation, and proteins related to DNA damage response were analyzed. In WAT from the exercise group, we found higher mitochondrial respiration in states I, II, and III of Complex I and Complex II, followed by an increase in ATP production, and the ROS/ATP ratio when compared to tissues from control rats. Regarding redox homeostasis, NADPH oxidase activity, protein carbonylation, and lipid peroxidation levels were lower in WAT from the exercise group when compared to control tissues. Moreover, antioxidant enzymatic activity, reduced glutathione/oxidized glutathione ratio, and total nuclear factor erythroid-2, like-2 (NFE2L2/NRF2) protein levels were higher in the exercise group compared to control. Finally, we found that exercise reduced the phosphorylation levels of H2AX histone (gamma H2AX), a central protein that contributes to genome stability through the signaling of DNA damage. In conclusion, our results show that chronic exercise modulates redox homeostasis in WAT, improving antioxidant capacity, and mitochondrial function. This hormetic remodeling of adipocyte redox balance points to improved adipocyte health and seems to be directly associated with the beneficial effects of exercise. C1 [Matta, Leonardo; de Faria, Caroline Coelho; De Oliveira, Dahienne F.; Andrade, Iris Soares; Lima-Junior, Niedson Correia; Takiya, Cristina Maeda; Freitas Ferreira, Andrea Claudia; Nascimento, Jose Hamilton M.; de Carvalho, Denise Pires; Maciel, Leonardo; Fortunato, Rodrigo Soares] Univ Fed Rio de Janeiro, Hlth Sci Ctr, Carlos Chagas Filho Inst Biophys, BR-21941590 Rio De Janeiro, Brazil. [Matta, Leonardo; Bartelt, Alexander] Ludwig Maximilians Univ Munchen, Klinikum Univ Munchen, Inst Cardiovasc Prevent, D-80539 Munich, Germany. [Matta, Leonardo; Bartelt, Alexander] Helmholtz Ctr Munich, Inst Diabet & Canc, D-85764 Munich, Germany. [Gregorio, Bianca Martins] Univ Estado Rio De Janeiro, Roberto Alcantara Gomes Inst Biol, Urogenital Res Unit, BR-20511010 Rio De Janeiro, Brazil. [Freitas Ferreira, Andrea Claudia; Maciel, Leonardo] Univ Fed Rio de Janeiro, Multidisciplinary Ctr Res Biol NUMPEX, Duque de Caxias Campus, BR-25250470 Rio De Janeiro, Brazil. C3 Universidade Federal do Rio de Janeiro; University of Munich; Helmholtz Association; Helmholtz-Center Munich - German Research Center for Environmental Health; Universidade do Estado do Rio de Janeiro; Universidade Federal do Rio de Janeiro RP Bartelt, A (corresponding author), Ludwig Maximilians Univ Munchen, Klinikum Univ Munchen, Inst Cardiovasc Prevent, D-80539 Munich, Germany.; Bartelt, A (corresponding author), Helmholtz Ctr Munich, Inst Diabet & Canc, D-85764 Munich, Germany. EM alexander.bartelt@med.uni-muenchen.de RI Carvalho, Denise P/H-6306-2012; de Faria, Caroline/T-8905-2018; Nascimento, Jose Hamilton/L-3722-2018; Fortunato, Rodrigo/F-2020-2014; /E-3415-2012 OI Carvalho, Denise P/0000-0001-6933-6424; de Faria, Caroline/0000-0003-4194-4510; Matta, Leonardo/0000-0002-3892-6330; Nascimento, Jose Hamilton/0000-0001-7052-254X; Fortunato, Rodrigo/0000-0003-3497-8173; Bartelt, Alexander/0000-0001-7840-3991; /0000-0001-7300-2718; Takiya, Christina/0000-0002-8019-628X FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ); Coordenacao de Aperfeicoamento de Pessoal de Nivel superior (CAPES); European Research Council (ERC) Starting Grant PROTEOFIT FX This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Coordenacao de Aperfeicoamento de Pessoal de Nivel superior (CAPES). A.B. was supported by the European Research Council (ERC) Starting Grant PROTEOFIT. CR Abreu CC, 2017, LIFE SCI, V188, P192, DOI 10.1016/j.lfs.2017.09.007 AEBI H, 1984, METHOD ENZYMOL, V105, P121 Arab HH, 2021, CHEM-BIOL INTERACT, V335, DOI 10.1016/j.cbi.2021.109368 Aronson D, 1997, J CLIN INVEST, V99, P1251, DOI 10.1172/JCI119282 Baird L, 2020, MOL CELL BIOL, V40, DOI 10.1128/MCB.00099-20 Bartelt A, 2014, NAT REV ENDOCRINOL, V10, P24, DOI 10.1038/nrendo.2013.204 Barzilai A, 2004, DNA REPAIR, V3, P1109, DOI 10.1016/j.dnarep.2004.03.002 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Braune J, 2017, J IMMUNOL, V198, P2927, DOI 10.4049/jimmunol.1600476 Breitzig M, 2016, AM J PHYSIOL-CELL PH, V311, pC537, DOI 10.1152/ajpcell.00101.2016 Cabrera ME, 1999, AM J PHYSIOL-REG I, V277, pR1522, DOI 10.1152/ajpregu.1999.277.5.R1522 Cai M, 2016, BRAIN BEHAV IMMUN, V57, P347, DOI 10.1016/j.bbi.2016.05.010 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Caldeira DDF, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.748261 Chen K, 2008, J CELL BIOL, V181, P1129, DOI 10.1083/jcb.200709049 Cinti S, 2000, METH MOL B, V155, P21 Crapo J D, 1978, Methods Enzymol, V53, P382 Daiber A, 2010, BBA-BIOENERGETICS, V1797, P897, DOI 10.1016/j.bbabio.2010.01.032 Dalleau S, 2013, CELL DEATH DIFFER, V20, P1615, DOI 10.1038/cdd.2013.138 de Meis L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009439 de Melo DG, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-10688-w Cordeiro LMD, 2019, J CELL BIOCHEM, V120, P18883, DOI 10.1002/jcb.29208 Den Hartigh LJ, 2017, ARTERIOSCL THROM VAS, V37, P466, DOI 10.1161/ATVBAHA.116.308749 DeVallance E, 2019, ANTIOXID REDOX SIGN, V31, P687, DOI 10.1089/ars.2018.7674 Dinkova-Kostova AT, 2015, FREE RADICAL BIO MED, V88, P179, DOI 10.1016/j.freeradbiomed.2015.04.036 Done AJ, 2016, REDOX BIOL, V10, P191, DOI 10.1016/j.redox.2016.10.003 Egan B, 2013, CELL METAB, V17, P162, DOI 10.1016/j.cmet.2012.12.012 Farhat F, 2015, REDOX REP, V20, P60, DOI 10.1179/1351000214Y.0000000105 Fathi R, 2020, LIFE SCI, V256, DOI 10.1016/j.lfs.2020.117958 Faude O, 2009, SPORTS MED, V39, P469, DOI 10.2165/00007256-200939060-00003 FLOHE L, 1984, METHOD ENZYMOL, V105, P114 Fortunato RS, 2008, J ENDOCRINOL, V198, P347, DOI 10.1677/JOE-08-0174 Fortunato RS, 2013, THYROID, V23, P111, DOI 10.1089/thy.2012.0142 FRIDOVICH I, 1995, ANNU REV BIOCHEM, V64, P97, DOI 10.1146/annurev.bi.64.070195.000525 Gedik N, 2017, ARCH MED SCI, V13, P448, DOI 10.5114/aoms.2016.61789 Giles ED, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00032 Goyal MM, 2010, PROTEIN CELL, V1, P888, DOI 10.1007/s13238-010-0113-z Graham KA, 2010, CANCER BIOL THER, V10, DOI 10.4161/cbt.10.3.12207 Gureev AP, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00435 Holmstrom KM, 2013, BIOL OPEN, V2, P761, DOI 10.1242/bio.20134853 Hotamisligil GS, 2017, NATURE, V542, P177, DOI 10.1038/nature21363 Jang Y, 2018, NEUROSCIENCE, V379, P292, DOI 10.1016/j.neuroscience.2018.03.015 Ji LL, 2016, FREE RADICAL BIO MED, V98, P113, DOI 10.1016/j.freeradbiomed.2016.02.025 Ji LL, 2004, FASEB J, V18, P1499, DOI 10.1096/fj.04-1846com Kasai S, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10020320 Kumari R, 2021, FRONT CELL DEV BIOL, V09, DOI 10.3389/fcell.2021.645593 Lassegue B, 2010, ARTERIOSCL THROM VAS, V30, P653, DOI 10.1161/ATVBAHA.108.181610 LEMONNIER D, 1972, J CLIN INVEST, V51, P2907, DOI 10.1172/JCI107115 Leopoldo AS, 2016, BRAZ J MED BIOL RES, V49, DOI 10.1590/1414-431X20155028 Liguori I, 2018, CLIN INTERV AGING, V13, P757, DOI 10.2147/CIA.S158513 Louzada RA, 2020, ANTIOXID REDOX SIGN, V33, P745, DOI 10.1089/ars.2019.7949 Luo S, 2009, REDOX REP, V14, P159, DOI 10.1179/135100009X392601 Maciel L, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00545 Magbanua MJM, 2014, CANCER CAUSE CONTROL, V25, P515, DOI 10.1007/s10552-014-0354-x Matta L, 2021, OXID MED CELL LONGEV, V2021, DOI 10.1155/2021/4593496 McKie GL, 2020, BIOCHEM J, V477, P1061, DOI 10.1042/BCJ20190466 Memme JM, 2021, J PHYSIOL-LONDON, V599, P803, DOI 10.1113/JP278853 Mendham AE, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60286-x Morgan MJ, 2011, CELL RES, V21, P103, DOI 10.1038/cr.2010.178 Muthusamy VR, 2012, FREE RADICAL BIO MED, V52, P366, DOI 10.1016/j.freeradbiomed.2011.10.440 No MH, 2020, PFLUG ARCH EUR J PHY, V472, P179, DOI 10.1007/s00424-020-02357-6 Norton K, 2010, J SCI MED SPORT, V13, P496, DOI 10.1016/j.jsams.2009.09.008 Palou M, 2009, CELL PHYSIOL BIOCHEM, V24, P547, DOI 10.1159/000257511 Palou M, 2010, J NUTR BIOCHEM, V21, P23, DOI 10.1016/j.jnutbio.2008.10.001 Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004 Powers SK, 2014, FREE RADICAL RES, V48, P43, DOI 10.3109/10715762.2013.825371 Radak Z, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P63, DOI 10.1016/B978-0-12-814253-0.00005-X Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Rahmanian N, 2021, DNA REPAIR, V108, DOI 10.1016/j.dnarep.2021.103243 Rai SR, 2021, CHEMISTRYSELECT, V6, P4566, DOI 10.1002/slct.202100773 Rezaei Sajjad, 2017, J Exerc Nutrition Biochem, V21, P26, DOI 10.20463/jenb.2017.0040 Richter EA, 2009, BIOCHEM J, V418, P261, DOI 10.1042/BJ20082055 Roberts FL, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10102639 Ruegsegger GN, 2018, CSH PERSPECT MED, V8, DOI 10.1101/cshperspect.a029694 Sahin K, 2016, J INFLAMM RES, V9, DOI 10.2147/JIR.S110873 Sakurai T, 2009, BIOCHEM BIOPH RES CO, V379, P605, DOI 10.1016/j.bbrc.2008.12.127 Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73 SCHRECK R, 1991, EMBO J, V10, P2247, DOI 10.1002/j.1460-2075.1991.tb07761.x Shanmugam G, 2019, FRONT CARDIOVASC MED, V6, DOI 10.3389/fcvm.2019.00068 Shimizu I, 2014, CELL METAB, V20, P967, DOI 10.1016/j.cmet.2014.10.008 Sies H, 2020, NAT REV MOL CELL BIO, V21, P363, DOI 10.1038/s41580-020-0230-3 Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037 Solmaz SRN, 2008, J BIOL CHEM, V283, P17542, DOI 10.1074/jbc.M710126200 Thyfault JP, 2020, DIABETOLOGIA, V63, P1464, DOI 10.1007/s00125-020-05177-6 Toppo S, 2008, ANTIOXID REDOX SIGN, V10, P1501, DOI 10.1089/ars.2008.2057 Townsend LK, 2020, AM J PHYSIOL-CELL PH, V318, pC137, DOI 10.1152/ajpcell.00313.2019 Trevellin E, 2014, DIABETES, V63, P2800, DOI 10.2337/db13-1234 Tsiloulis T, 2015, PROG MOL BIOL TRANSL, V135, P175, DOI 10.1016/bs.pmbts.2015.06.016 Vergoni B, 2016, DIABETES, V65, P3062, DOI 10.2337/db16-0014 Wang PY, 2012, CURR OPIN ONCOL, V24, P76, DOI 10.1097/CCO.0b013e32834de1d8 Webb R, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6030063 Wedell-Neergaard AS, 2019, CELL METAB, V29, P844, DOI 10.1016/j.cmet.2018.12.007 Wende AR, 2016, FREE RADICAL BIO MED, V100, P94, DOI 10.1016/j.freeradbiomed.2016.05.022 Zhang SXL, 2014, INT J OBESITY, V38, P619, DOI 10.1038/ijo.2013.139 Zhao XJ, 2013, EXP GERONTOL, V48, P869, DOI 10.1016/j.exger.2013.05.063 Zoladz JA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189456 Zorov DB, 2014, PHYSIOL REV, V94, P909, DOI 10.1152/physrev.00026.2013 NR 98 TC 0 Z9 0 U1 4 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3921 J9 ANTIOXIDANTS-BASEL JI Antioxidants PD SEP PY 2022 VL 11 IS 9 AR 1689 DI 10.3390/antiox11091689 PG 20 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science & Technology GA 4Q6CP UT WOS:000856169100001 PM 36139762 OA Green Published, gold DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Koike, T AF Agathokleous, Evgenios Kitao, Mitsutoshi Koike, Takayoshi TI Ethylenediurea (EDU) effects on hybrid larch saplings exposed to ambient or elevated ozone over three growing seasons SO JOURNAL OF FORESTRY RESEARCH LA English DT Article DE Air pollution; Ethylenediurea (EDU); Hormesis; Plant protection; Tropospheric ozone (o(3)); Larix gmelinii var. japonica x L. kaempferi ID LITTER DECOMPOSITION; JAPANESE LARCH; AIR-POLLUTION; PHOTOSYNTHETIC RESPONSES; CO2 ASSIMILATION; LEAF-LITTER; O-3; NITROGEN; GROWTH; CULTIVARS AB Ground-level ozone (O-3) pollution is a persistent environmental issue that can lead to adverse effects on trees and wood production, thus indicating a need for forestry interventions to mediate O-3 effects. We treated hybrid larch (Larix gmelinii var. japonica x L. kaempferi) saplings grown in nutrient-poor soils with 0 or 400 mg L-1 water solutions of the antiozonant ethylenediurea (EDU0, EDU400) and exposed them to ambient O-3 (AOZ; 08:00 - 18:00 approximate to 30 nmol mol(-1)) or elevated O-3 (EOZ; 08:00 - 18:00 approximate to 60 nmol mol(-1)) over three growing seasons. We found that EDU400 protected saplings against most effects of EOZ, which included extensive visible foliar injury, premature senescence, decreased photosynthetic pigment contents and altered balance between pigments, suppressed gas exchange and biomass production, and impaired leaf litter decay. While EOZ had limited effects on plant growth (suppressed stem diameter), it decreased the total number of buds per plant, an effect that was not observed in the first growing season. These results indicate that responses to EOZ might have implications to plant competitiveness, in the long term, as a result of decreased potential for vegetative growth. However, when buds were standardized per unit of branches biomass, EOZ significantly increased the number of buds per unit of biomass, suggesting a potentially increased investment to bud development, in an effort to enhance growth potential and competitiveness in the next growing season. EDU400 minimized most of these effects of EOZ, significantly enhancing plant health under O-3-induced stress. The effect of EDU was attributed mainly to a biochemical mode of action. Therefore, hybrid larch, which is superior to its parents, can be significantly improved by EDU under long-term elevated O-3 exposure, providing a perspective for enhancing afforestation practices. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Agathokleous, Evgenios; Koike, Takayoshi] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan. [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan. [Koike, Takayoshi] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China. C3 Nanjing University of Information Science & Technology; Hokkaido University; Forestry & Forest Products Research Institute - Japan; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES) RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China.; Agathokleous, E (corresponding author), Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan.; Agathokleous, E (corresponding author), Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Japan's Forestry and Forest Products Research Institute (FFPRI) [201802]; KAKENHI grant of the Japan Society for the Promotion of Science (JSPS) [JP17F17102]; Startup Foundation for Introducing Talent of Nanjing University of Information Science AMP; Technology (NUIST), Nanjing, China [003080] FX Project funding: This research was partly supported by grant #201802 of the Japan's Forestry and Forest Products Research Institute (FFPRI) and KAKENHI grant #JP17F17102 of the Japan Society for the Promotion of Science (JSPS). E.A. acknowledges support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080). CR Agathokleous E, 2017, ENVIRON SCI POLLUT R, V24, P6634, DOI 10.1007/s11356-017-8401-2 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2021, J FORESTRY RES, V32, P2047, DOI 10.1007/s11676-020-01223-6 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Agathokleous E, 2016, SCI TOTAL ENVIRON, V573, P1053, DOI 10.1016/j.scitotenv.2016.08.183 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9 Ashrafuzzaman M, 2018, PLANT CELL ENVIRON, V41, P2882, DOI 10.1111/pce.13423 Baldantoni D, 2013, ANN FOREST SCI, V70, P571, DOI 10.1007/s13595-013-0297-5 BARNES JD, 1992, ENVIRON EXP BOT, V32, P85, DOI 10.1016/0098-8472(92)90034-Y Bellini E, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8050122 BERG EE, 1994, CAN J FOREST RES, V24, P1144, DOI 10.1139/x94-151 Blande James D., 2021, Current Opinion in Environmental Science & Health, V19, P100228, DOI 10.1016/j.coesh.2020.100228 BOERNER REJ, 1995, PLANT SOIL, V170, P149, DOI 10.1007/BF02183063 Cieslik S, 2009, PLANT BIOLOGY, V11, P24, DOI 10.1111/j.1438-8677.2009.00262.x Diaz FMR, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11050534 Dong-Gyu K, 2015, J AGRIC METEOROL, V71, P239, DOI 10.2480/agrmet.D-14-00029 Eggink L L, 2001, BMC Plant Biol, V1, P2, DOI 10.1186/1471-2229-1-2 FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231 Fatima A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8040080 Feng ZZ, 2020, SCI TOTAL ENVIRON, V722, DOI 10.1016/j.scitotenv.2020.137958 Feng ZZ, 2019, ATMOS ENVIRON, V217, DOI 10.1016/j.atmosenv.2019.116945 Feng ZZ, 2019, SCI TOTAL ENVIRON, V654, P832, DOI 10.1016/j.scitotenv.2018.11.179 Feng ZZ, 2018, ENVIRON SCI POLLUT R, V25, P29208, DOI 10.1007/s11356-018-2782-8 Feng ZZ, 2010, ENVIRON POLLUT, V158, P3236, DOI 10.1016/j.envpol.2010.07.009 FENN ME, 1989, SOIL SCI SOC AM J, V53, P1560, DOI 10.2136/sssaj1989.03615995005300050044x Fiscus EL, 2005, PLANT CELL ENVIRON, V28, P997, DOI 10.1111/j.1365-3040.2005.01349.x Fu W, 2018, PEERJ, V6, DOI 10.7717/peerj.4453 Fu W, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9040474 Fuhrer J, 2016, ECOL EVOL, V6, P8785, DOI 10.1002/ece3.2568 Gao M, 2020, ATMOS CHEM PHYS, V20, P4399, DOI 10.5194/acp-20-4399-2020 Giovannelli A, 2019, FORESTS, V10, DOI 10.3390/f10050396 Givnish TJ, 2002, SILVA FENN, V36, P703, DOI 10.14214/sf.535 GOWER ST, 1990, BIOSCIENCE, V40, P818, DOI 10.2307/1311484 Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x Grulke NE, 2020, PLANT BIOLOGY, V22, P12, DOI 10.1111/plb.12971 Gupta, 2020, ENV ADV, V2, DOI DOI 10.1016/J.ENVADV.2020.100025 HEITMULLER H. -H., 1960, Silvae Genetica, V9, P65 HOWELL DC, 1982, EDUC PSYCHOL MEAS, V42, P9, DOI 10.1177/0013164482421002 Hu TJ, 2020, ENVIRON POLLUT, V258, DOI 10.1016/j.envpol.2019.113828 Izuta T., 2017, AIR POLLUTION IMPACT Ji DH, 2015, J AGRIC METEOROL, V71, P232, DOI 10.2480/agrmet.D-14-00027 Jiang LJ, 2018, J ENVIRON SCI, V64, P10, DOI 10.1016/j.jes.2017.07.002 Kaffer MI, 2019, ENVIRON POLLUT, V248, P471, DOI 10.1016/j.envpol.2019.01.130 Karnosky DF, 2007, ENVIRON POLLUT, V147, P489, DOI 10.1016/j.envpol.2006.08.043 Kinose Y, 2020, TREES-STRUCT FUNCT, V34, P445, DOI 10.1007/s00468-019-01927-1 Kitao M, 2015, ENVIRON POLLUT, V206, P133, DOI 10.1016/j.envpol.2015.06.034 Kitaoka S, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9101278 KNUDSON LL, 1977, PLANT PHYSIOL, V60, P606, DOI 10.1104/pp.60.4.606 Korner C, 2006, NEW PHYTOL, V172, P393, DOI 10.1111/j.1469-8137.2006.01886.x Koike T, 2013, DEV ENVIRONM SCI, V13, P371, DOI 10.1016/B978-0-08-098349-3.00017-7 Koike Takayoshi, 2012, Asian Journal of Atmospheric Environment, V6, P104 KORNER C, 1995, PLANT CELL ENVIRON, V18, P1101, DOI 10.1111/j.1365-3040.1995.tb00622.x Kurahashi A., 1988, Bulletin of the Tokyo University Forests, P1 Kurinobu S, 2015, EURASIAN J RES, V8-2, P127 Li P, 2019, SCI TOTAL ENVIRON, V665, P929, DOI 10.1016/j.scitotenv.2019.02.182 Li P, 2017, PLANT CELL ENVIRON, V40, P2369, DOI 10.1111/pce.13043 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 Lindroth RL, 2010, J CHEM ECOL, V36, P2, DOI 10.1007/s10886-009-9731-4 Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262 Lu CM, 2001, J EXP BOT, V52, P1805, DOI 10.1093/jexbot/52.362.1805 Manning WJ, 2011, ENVIRON POLLUT, V159, P3283, DOI 10.1016/j.envpol.2011.07.005 Mattila H, 2018, AOB PLANTS, V10, DOI 10.1093/aobpla/ply028 Matyssek R, 1986, TREE PHYSIOL, V2, P177, DOI 10.1093/treephys/2.1-2-3.177 Matyssek R, 2010, ENVIRON POLLUT, V158, P1990, DOI 10.1016/j.envpol.2009.11.033 Maximov, 2019, WATER CARBON DYNAMIC, DOI [10.1007/978-981-13-6317-7, DOI 10.1007/978-981-13-6317-7] Mills G, 2018, GLOBAL CHANGE BIOL, V24, P4869, DOI 10.1111/gcb.14381 Moura BB, 2018, ATMOS ENVIRON, V176, P252, DOI 10.1016/j.atmosenv.2017.12.039 Mrak T, 2020, PLANT SOIL, V450, P585, DOI 10.1007/s11104-020-04510-7 Mrak T, 2019, SCI TOTAL ENVIRON, V651, P1310, DOI 10.1016/j.scitotenv.2018.09.246 Mukherjee Arideep, 2021, Current Opinion in Environmental Science & Health, V19, P100220, DOI 10.1016/j.coesh.2020.10.008 Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010 Osawa A, 2010, ECOL STUD-ANAL SYNTH, V209, P1, DOI 10.1007/978-1-4020-9693-8 OVERALL JE, 1969, PSYCHOL BULL, V72, P311, DOI 10.1037/h0028109 OWENS JN, 1979, CAN J BOT, V57, P2673, DOI 10.1139/b79-317 OWENS JN, 1979, CAN J BOT, V57, P1557, DOI 10.1139/b79-194 Owens JN, 2008, REPROD BIOL W LARCH, V8 Pan L, 2020, B ENVIRON CONTAM TOX, V104, P682, DOI 10.1007/s00128-020-02832-x Pan L, 2019, ENVIRON SCI POLLUT R, V26, P30684, DOI 10.1007/s11356-019-05199-7 Pandey AK, 2019, CLIMATE, V7, DOI 10.3390/cli7020023 Paoletti E, 2009, ENVIRON POLLUT, V157, P1453, DOI 10.1016/j.envpol.2008.09.021 Parsons WFJ, 2004, GLOBAL CHANGE BIOL, V10, P1666, DOI 10.1111/j.1365-2486.2004.00851.x Parsons WFJ, 2008, ECOSYSTEMS, V11, P505, DOI 10.1007/s10021-008-9148-x POWELL GR, 1995, USDA INTERM, V319, P387 Proietti C, 2021, J FORESTRY RES, V32, P543, DOI 10.1007/s11676-020-01226-3 Rathore D, 2019, ENVIRON POLLUT, V244, P257, DOI 10.1016/j.envpol.2018.10.036 Ryu K, 2009, LANDSC ECOL ENG, V5, P99, DOI 10.1007/s11355-009-0063-x Sacchelli S, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80516-6 Saitanis CJ, 2001, CHEMOSPHERE, V42, P945, DOI 10.1016/S0045-6535(00)00158-2 Sakuraba Y, 2010, PLANT CELL PHYSIOL, V51, P1055, DOI 10.1093/pcp/pcq050 Salvatori E, 2017, FORESTS, V8, DOI 10.3390/f8090320 Sayyad-Amin P, 2016, J BIOL PHYS, V42, P601, DOI 10.1007/s10867-016-9428-1 Schmincke H-U., 2004, VOLCANISM, DOI [10.1007/978-3-642-18952-4, DOI 10.1007/978-3-642-18952-4] Schulze ED, 2019, PLANT ECOLOGY, 2ND EDITION, P1, DOI [10.1007/978-3-662-56233-8, 10.1007/978-3-662-56233-8_8] Shang B, 2018, ENVIRON POLLUT, V234, P136, DOI 10.1016/j.envpol.2017.11.056 Shinano T, 1996, PHOTOSYNTHETICA, V32, P409 Sicard P, 2020, J FORESTRY RES, V31, P1509, DOI 10.1007/s11676-020-01191-x SIEBER M, 1995, USDA INTERM, V319, P382 Singh AA, 2015, REV ENVIRON CONTAM T, V233, P129, DOI 10.1007/978-3-319-10479-9_4 Singh S, 2018, ECOTOX ENVIRON SAFE, V147, P1046, DOI 10.1016/j.ecoenv.2017.09.068 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Tisdale RH, 2021, SCI TOTAL ENVIRON, V766, DOI 10.1016/j.scitotenv.2020.144292 Tiwari S., 2018, MITIGATION OZONE STR, P167, DOI [10.1007/978-3-319-71873-6, DOI 10.1007/978-3-319-71873-6] Tiwari S, 2017, ENVIRON SCI POLLUT R, V24, P14019, DOI 10.1007/s11356-017-8859-y Ueno AC, 2020, PLANT CELL ENVIRON, V43, P2540, DOI 10.1111/pce.13859 Ueno AC, 2016, FUNCT ECOL, V30, P226, DOI 10.1111/1365-2435.12519 Unger N, 2020, NAT CLIM CHANGE, V10, P134, DOI 10.1038/s41558-019-0678-3 Usoltsev V. A., 2002, Eurasian Journal of Forest Research, V5, P55 van Heerwaarden LM, 2003, J ECOL, V91, P1060, DOI 10.1046/j.1365-2745.2003.00828.x Vitale M, 2019, WATER AIR SOIL POLL, V230, DOI 10.1007/s11270-019-4339-y Walker AP, 2014, ECOL EVOL, V4, P3218, DOI 10.1002/ece3.1173 Wang XN, 2018, SCI TOTAL ENVIRON, V618, P905, DOI 10.1016/j.scitotenv.2017.08.283 Xin Y, 2016, SCI TOTAL ENVIRON, V569, P1536, DOI 10.1016/j.scitotenv.2016.06.247 Xu S, 2019, J ENVIRON SCI, V84, P42, DOI 10.1016/j.jes.2019.04.018 Xu XB, 2020, ELEMENTA-SCI ANTHROP, V8, DOI 10.1525/elementa.409 Xu YS, 2021, ENVIRON POLLUT, V269, DOI 10.1016/j.envpol.2020.116137 Yue X, 2017, ATMOS CHEM PHYS, V17, P6073, DOI 10.5194/acp-17-6073-2017 Zhang PC, 2000, SCIENCE, V288, P2135, DOI 10.1126/science.288.5474.2135 Zhang XX, 2019, PLANT CELL ENVIRON, V42, P947, DOI 10.1111/pce.13405 Ziauka J., 2006, Baltic Forestry, V12, P141 NR 119 TC 6 Z9 6 U1 2 U2 10 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD FEB PY 2022 VL 33 IS 1 BP 117 EP 135 DI 10.1007/s11676-021-01352-6 EA MAY 2021 PG 19 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA YL7WH UT WOS:000654082000001 OA hybrid DA 2023-03-13 ER PT J AU Scott, BR AF Scott, BR TI A biological-based model that links genomic instability, bystander effects, and adaptive response SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE low-dose radiation; adaptive response; genomic instability; bystander effect; hormesis ID TRANSFORMATION IN-VITRO; NEOPLASTIC TRANSFORMATION; INDUCED APOPTOSIS; REACTIVE OXYGEN; INTERCELLULAR INDUCTION; CHROMOSOMAL INSTABILITY; UROTHELIAL EXPLANTS; EPITHELIAL-CELLS; DNA-DAMAGE; RADIATION AB This paper links genomic instability, bystander effects, and adaptive response in mammalian cell communities via a novel biological-based, dose-response model called NEOTRANS(3). The model is an extension of the NEOTRANS(2) model that addressed stochastic effects (genomic instability, mutations, and neoplastic transformation) associated with brief exposure to low radiation doses. With both models, ionizing radiation produces DNA damage in cells that can be associated with varying degrees of genomic instability. Cells with persistent problematic instability (PPI) are mutants that arise via misrepair of DNA damage. Progeny of PPI cells also have PPI and can undergo spontaneous neoplastic transformation. Unlike NEOTRANS(2), with NEOTRANS(3) newly induced mutant PPI cells and their neoplastically transformed progeny can be suppressed via our previously introduced protective apoptosis-mediated (PAM) process, which can be activated by low linear energy transfer (LET) radiation. However, with NEOTRANS(3) (which like NEOTRANS(2) involves cross-talk between nongenomically compromised [e.g., nontransformed, nonmutants] and genomically compromised [e.g., mutants, transformants, etc.] cells), it is assumed that PAM is only activated over a relatively narrow, dose-rate-dependent interval (D-PAM,D-off); where D-PAM is a small stochastic activation threshold, and D-off is the stochastic dose above which PAM does not occur. PAM cooperates with activated normal DNA repair and with activated normal apoptosis in guarding against genomic instability. Normal repair involves both error-free repair and misrepair components. Normal apoptosis and the error-free component of normal repair protect mammals by preventing the occurrence of mutant cells. PAM selectively removes mutant cells arising via the misrepair component of normal repair, selectively removes existing neoplastically transformed cells, and probably selectively removes other genomically compromised cells when it is activated. PAM likely involves multiple pathways to apoptosis, with the selected pathway depending on the type of cell to be removed, its cellular environment, and on the nature of the genomic damage. (C) 2004 Elsevier B.V. All rights reserved. C1 Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. C3 Lovelace Respiratory Research Institute RP Scott, BR (corresponding author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA. EM bscott@lrri.org OI Scott, Bobby/0000-0002-6806-3847 CR Ahmed MM, 2004, CURR CANCER DRUG TAR, V4, P43, DOI 10.2174/1568009043481704 ALBERT JH, 1988, J AM STAT ASSOC, V83, P1037, DOI 10.2307/2290133 [Anonymous], 1995, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411 [Anonymous], 1997, STOCHASTIC SIMULATIO Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 AZZAM EI, 1994, RADIAT RES, V138, pS28, DOI 10.2307/3578755 Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865 BAUER G, 1995, INT J ONCOL, V6, P1227 Bauer G, 2000, ANTICANCER RES, V20, P4115 Bauer G, 1996, HISTOL HISTOPATHOL, V11, P237 Belyakov OV, 2003, BRIT J CANCER, V88, P767, DOI 10.1038/sj.bjc.6600804 Belyakov OV, 2002, RADIAT PROT DOSIM, V99, P249, DOI 10.1093/oxfordjournals.rpd.a006775 BOND VP, 1988, INT J RADIAT BIOL, V53, P1, DOI 10.1080/09553008814550361 Brenner DJ, 2001, RADIAT RES, V155, P402, DOI 10.1667/0033-7587(2001)155[0402:TBEIRO]2.0.CO;2 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 CARLIN BP, 1996, BAYES EMPIRICAL METH Chipuk JE, 2004, SCIENCE, V303, P1010, DOI 10.1126/science.1092734 Engelmann I, 2000, ANTICANCER RES, V20, P2297 FEINENDEGEN LE, IN PRESS NONLINEARIT GELFAND AE, 1990, J AM STAT ASSOC, V85, P398, DOI 10.2307/2289776 Goldberg Z, 2002, INT J ONCOL, V21, P337 GOODHEAD DT, 1992, ADV RADIAT BIOL, V16, P7 Hei TK, 1997, P NATL ACAD SCI USA, V94, P3765, DOI 10.1073/pnas.94.8.3765 Hipp ML, 1997, ONCOGENE, V15, P791, DOI 10.1038/sj.onc.1201247 Ikushima T, 1996, MUTAT RES-FUND MOL M, V358, P193, DOI 10.1016/S0027-5107(96)00120-0 Iyer R, 2002, MUTAT RES-FUND MOL M, V503, P1, DOI 10.1016/S0027-5107(02)00068-4 Jeggo PA, 2002, RADIAT PROT DOSIM, V99, P117, DOI 10.1093/oxfordjournals.rpd.a006740 JURGENSMEIER JM, 1994, INT J ONCOL, V5, P525 Jurgensmeier JM, 1997, INT J CANCER, V71, P698, DOI 10.1002/(SICI)1097-0215(19970516)71:4<698::AID-IJC30>3.0.CO;2-5 JURGENSMEIER JM, 1994, CANCER RES, V54, P393 Kadhim MA, 1996, INT J RADIAT BIOL, V69, P167, DOI 10.1080/095530096145995 Kennedy CH, 1996, CARCINOGENESIS, V17, P1671, DOI 10.1093/carcin/17.8.1671 Kim SG, 2004, MOL BIOL CELL, V15, P420, DOI 10.1091/mbc.E03-04-0201 KLOKOV DY, 1997, RUSS J GENET, V33, P723 Kojima S, 1998, BBA-GEN SUBJECTS, V1381, P312, DOI 10.1016/S0304-4165(98)00043-9 Langer C, 1996, EXP CELL RES, V222, P117, DOI 10.1006/excr.1996.0015 Little JB, 1999, CR ACAD SCI III-VIE, V322, P127, DOI 10.1016/S0764-4469(99)80034-1 LITTLE JB, 1990, INT J RADIAT ONCOL, V19, P1425, DOI 10.1016/0360-3016(90)90354-M Lu J, 2004, AM J PHYSIOL-GASTR L, V286, pG340, DOI 10.1152/ajpgi.00182.2003 MARDER BA, 1993, MOL CELL BIOL, V13, P6667, DOI 10.1128/MCB.13.11.6667 MARTINS MB, 1993, MUTAT RES, V285, P229, DOI 10.1016/0027-5107(93)90111-R MATSUMOTO H, 2001, RADIAT RES, V155, P378 Morgan WF, 1996, RADIAT RES, V146, P247, DOI 10.2307/3579454 Mori E, 2004, CELL DEATH DIFFER, V11, P203, DOI 10.1038/sj.cdd.4401331 Mothersill C, 1998, MUTAGENESIS, V13, P421, DOI 10.1093/mutage/13.5.421 Mothersill C, 1997, INT J RADIAT BIOL, V71, P421, DOI 10.1080/095530097144030 Mothersill C, 1998, RADIAT RES, V149, P256, DOI 10.2307/3579958 NIKJOO H, 1999, RADIAT ENVIRON BIOPH, V28, P311 Panduri V, 2004, AM J PHYSIOL-LUNG C, V286, pL1220, DOI 10.1152/ajplung.00371.2003 Pant MC, 2003, CARCINOGENESIS, V24, P1961, DOI 10.1093/carcin/bgg172 Redpath JL, 2003, RADIAT RES, V159, P433, DOI 10.1667/0033-7587(2003)159[0433:LDRITF]2.0.CO;2 Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2 Redpath JL, 1998, RADIAT RES, V149, P517, DOI 10.2307/3579792 Rigaud O, 1996, MUTAT RES-FUND MOL M, V358, P127, DOI 10.1016/S0027-5107(96)00113-3 RITHIDECH K, 2000, OFF BIOL ENV RES DOE Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Schollnberger H, 2001, B MATH BIOL, V63, P865, DOI 10.1006/bulm.2001.0243 Schulze-Bergkamen H, 2004, SEMIN ONCOL, V31, P90, DOI 10.1053/j.seminoncol.2003.11.006 Scott Bobby R, 2003, Nonlinearity Biol Toxicol Med, V1, P93, DOI 10.1080/15401420390844492 Scott BR, 1997, RADIAT PROT DOSIM, V72, P105, DOI 10.1093/oxfordjournals.rpd.a032080 SCOTT BR, IN PRESS BIOL TOXICO SIVA DS, 1998, DATA ANAL BAYESIAN T Spiegelhalter D.J., 2003, WINBUGS VERSION 1 4 SYKES PJ, 2003, OFF BIOL ENV RES DOE Townsend PA, 2004, J BIOL CHEM, V279, P5811, DOI 10.1074/jbc.M302637200 Ward JF, 1998, CONT CANC RES, P65 Watjen W, 2004, BIOMETALS, V17, P65, DOI 10.1023/A:1024405119018 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 Wright EG, 1998, INT J RADIAT BIOL, V74, P681, DOI 10.1080/095530098140943 ZHOU PK, 1994, RADIAT ENVIRON BIOPH, V33, P211, DOI 10.1007/BF01212677 NR 70 TC 42 Z9 49 U1 0 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1386-1964 EI 1873-135X J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD DEC 2 PY 2004 VL 568 IS 1 BP 129 EP 143 DI 10.1016/j.mrfmmm.2004.06.051 PG 15 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 873VO UT WOS:000225309600014 PM 15530546 DA 2023-03-13 ER PT J AU Bozhkov, AI Bozhkov, AA Ponomarenko, IE Kurguzova, NI Akzhyhitov, RA Goltvyanskii, AV Klimova, EM Shapovalov, SO AF Bozhkov, A., I Bozhkov, A. A. Ponomarenko, I. E. Kurguzova, N., I Akzhyhitov, R. A. Goltvyanskii, A., V Klimova, E. M. Shapovalov, S. O. TI Elimination of the toxic effect of copper sulfate is accompanied by the normalization of liver function in fibrosis SO REGULATORY MECHANISMS IN BIOSYSTEMS LA English DT Article DE toxicity of copper sulfate; transferases; lipid hydroperoxides; aconitase; glutathione peroxidase; mitochondria; erythrocytes ID DIFFERENT STRATEGIES; HORMESIS; PATHOGENESIS; ADAPTATION; DISEASE; STRESS; YOUNG; RATS AB The search for biologically active compounds that regulate liver function in fibrosis is an urgent medical and biological problem. A working hypothesis was tested, according to which low molecular weight biologically active compounds from Pleurotus ostreatus and Sacharamirses cerevisiae are capable of exerting immunomodulatory and antitoxic effects after intoxication of the body with ions of heavy metals, in particular copper sulfate. Elimination of the toxic effect caused by copper sulfate can also ensure the normalization of liver function in various pathologies, in particular with liver fibrosis. When determining toxicity, a study was carried out on Wistar rats, and when studying the effect of low molecular weight biologically active compounds on liver function, clinical trials were carried out on volunteers. The activity of alanine aminotransferase, aspartate aminotransferase, actonitase and glutathione peroxidase, as well as the content of bilirubin and lipid hydroperoxides were determined. It was shown that preliminary administration of biologically active compounds to rats at a dose of 0.05 mL/100 g of body weight provided the formation in some animals (up to 80%) of resistance to the toxic effect of copper sulfate (dose 2.5 mg/100 g of body weight). Such stability is associated with a shift in the balance of "prooxidants-antioxidants" towards antioxidants. The data obtained in the clinic on volunteers with liver fibrosis and hepatitis also testify in favour of the membranotropic action of biologically active compounds. Biologically active compounds provided a decrease or complete restoration of the activity of transferases (ALT and AST) in the blood serum of these patients, with the exception of one patient out of 20 examined. Our experiment has shown the relationship between the elimination of toxicity to the action of copper sulfate and the normalization of liver function in patients. The results obtained indicate that it will be promising to use a complex of low molecular weight components from P. ostreatus and S. cerevisiae as an antidote and hepatoprotective agent. C1 [Bozhkov, A., I; Bozhkov, A. A.; Ponomarenko, I. E.; Kurguzova, N., I; Akzhyhitov, R. A.; Goltvyanskii, A., V; Klimova, E. M.; Shapovalov, S. O.] Kharkov Natl Univ, Pl Svobody 4, Kharkov, Ukraine. Rivne State Univ Humanities, Stepana Bandery St 12, UA-33028 Rivne, Ukraine. C3 Ministry of Education & Science of Ukraine; VN Karazin Kharkiv National University; Ministry of Education & Science of Ukraine; Rivne State University of Humanities RP Bozhkov, AI (corresponding author), Kharkov Natl Univ, Pl Svobody 4, Kharkov, Ukraine. EM niibio@karazin.ua; irchukmail@gmail.com RI Klimova, Elena/HMP-6117-2023 CR ASAKAWA T, 1980, LIPIDS, V15, P137, DOI 10.1007/BF02540959 Bozhkov AI, 2017, ADV GERONTOL, V7, P41, DOI 10.1134/S2079057017010040 Bozhkov A. I., 2017, Journal of Nutritional Therapeutics, V6, P11, DOI 10.6000/1929-5634.2017.06.01.2 Bozhkov A I, 2014, Adv Gerontol, V27, P72 Bozhkov A. I., 2016, ADV AGING RES, V5, P151 Bozhkov A. I., 2014, AM J BIOMEDICAL LIFE, V2, P5 Bozhkov A, 2010, INDIAN J EXP BIOL, V48, P679 Buchanan R, 2021, ADDICTION, V116, P1270, DOI 10.1111/add.15204 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Ebrahimi Hedyeh, 2016, Middle East J Dig Dis, V8, P166 Fahmy M. A., 2020, Pharmacognosy Journal, V12, P645, DOI 10.5530/pj.2020.12.96 FRANCAVILLA A, 1994, HEPATOLOGY, V20, P747, DOI 10.1016/0270-9139(94)90113-9 Gagliano N, 2007, DIGEST DIS, V25, P118, DOI 10.1159/000099475 Gao B, 2011, GASTROENTEROLOGY, V141, P1572, DOI 10.1053/j.gastro.2011.09.002 HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001 Hirsova P, 2016, HEPATOLOGY, V64, P2219, DOI 10.1002/hep.28814 Jaramillo-Juarez F, 2008, ANN HEPATOL, V7, P331, DOI 10.1016/S1665-2681(19)31833-2 KAMATH SA, 1972, ANAL BIOCHEM, V48, P53, DOI 10.1016/0003-2697(72)90169-8 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kesic S, 2016, SAUDI J BIOL SCI, V23, P584, DOI 10.1016/j.sjbs.2015.06.015 Klimova EM, 2018, ADV GERONTOL, V8, P284, DOI 10.1134/S2079057018040082 Kovaleva M. K., 2012, International Journal on Algae, V14, P44 Kurguzova N.I., 2015, FUNGIDOL AM J BIOMED, V2, P25, DOI [10.11648/j.ajbls.s.2014020601.15, DOI 10.11648/J.AJBLS.S.2014020601.15] Lakherwal D., 2014, INT J ENV RES DEV, V4 Lynes MA, 2007, ANN NY ACAD SCI, V1113, P159, DOI 10.1196/annals.1391.010 MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491 Mason C, 2010, REGEN MED, V5, P307, DOI 10.2217/RME.10.37 Michalopoulos GK, 1997, SCIENCE, V277, P1423 Myers RP, 2002, POLYMICROBIAL DISEASES, P51 Owojuyigbe O.S., 2020, J COMPLEMENT ALTERN, V31, P1, DOI [10.9734/ejmp/2020/v31i830255, DOI 10.9734/JOCAMR/2020/V9I230136] PAGLIA DE, 1967, J LAB CLIN MED, V70, P158 Parkinson A., 2008, CASARETT DOULLS TOXI, V7, P161 Piven OT, 2020, UKR J ECOL, V10, P415, DOI 10.15421/2020_117 Poordad FF, 2015, CURR MED RES OPIN, V31, P925, DOI 10.1185/03007995.2015.1021905 Puche JE, 2013, COMPR PHYSIOL, V3, P1473, DOI 10.1002/cphy.c120035 Rana A, 2019, TEX HEART I J, V46, P75, DOI 10.14503/THIJ-18-6749 Saito Z, 2016, BMC INFECT DIS, V16, DOI 10.1186/s12879-016-2000-6 Satapathy SK, 2015, ANN HEPATOL, V14, P789, DOI 10.5604/16652681.1171749 Sepanlou SG, 2020, LANCET GASTROENTEROL, V5, P245, DOI 10.1016/S2468-1253(19)30349-8 Shirani M., 2017, J NEPHROPHARMACOLOGY, V6, P38 Slivinska LG, 2021, UKR J ECOL, V11, P284, DOI 10.15421/2021_112 Thibault G, 2012, MOL CELL, V48, P16, DOI 10.1016/j.molcel.2012.08.016 Varghese S, 2003, J BACTERIOL, V185, P221, DOI 10.1128/JB.185.1.221-230.2003 Verma V. K., 2013, Journal of Pharmacy Research, V7, P647 Williams GM, 2002, TOXICOL PATHOL, V30, P41, DOI 10.1080/01926230252824699 Xu GB, 2018, EUR J MED CHEM, V145, P691, DOI 10.1016/j.ejmech.2018.01.011 NR 46 TC 1 Z9 1 U1 0 U2 0 PU OLES HONCHAR DNIPROPETROVSK NATL UNIV PI DNIPROPETROVSK PA PR-KT GAGARINA, 42, DNIPROPETROVSK, 49010, UKRAINE SN 2519-8521 EI 2520-2588 J9 REGUL MECH BIOSYST JI Regul. Mech. Biosyst. PY 2021 VL 12 IS 4 BP 655 EP 663 DI 10.15421/022190 PG 9 WC Biology WE Emerging Sources Citation Index (ESCI) SC Life Sciences & Biomedicine - Other Topics GA YW1GA UT WOS:000753167400012 OA gold DA 2023-03-13 ER PT J AU Svigruha, R Fodor, I Padisak, J Pirger, Z AF Svigruha, Reka Fodor, Istvan Padisak, Judit Pirger, Zsolt TI Progestogen-induced alterations and their ecological relevance in different embryonic and adult behaviours of an invertebrate model species, the great pond snail (Lymnaea stagnalis) SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Progestogen exposure; Lymnaea stagnalis; Developmental changes; Heartbeat; Locomotion; Feeding activity ID VERTEBRATE SEX STEROIDS; RECEIVING RIVER WATERS; ENDOCRINE DISRUPTORS; WASTE-WATER; ENVIRONMENTAL WATERS; TRACE ANALYSIS; CRITICAL-APPRAISAL; SEWAGE EFFLUENTS; TREATMENT PLANTS; DRINKING-WATER AB The presence of oral contraceptives (basically applying estrogens and/or progestogens) poses a challenge to animals living in aquatic ecosystems and reflects a rapidly growing concern worldwide. However, there is still a lack in knowledge about the behavioural effects induced by progestogens on the non-target species including molluscs. In the present study, environmental progestogen concentrations were summarised. Knowing this data, we exposed a well-established invertebrate model species, the great pond snail (Lymnaea stagnalis) to relevant equi-concentrations (1, 10, 100, and 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) for 21 days. Significant alterations were observed in the embryonic development time, heart rate, feeding, and gliding activities of the embryos as well as in the feeding and locomotion activity of the adult specimens. All of the mixtures accelerated the embryonic development time and the gliding activity. Furthermore, the 10, 100, and 500 ng L-1 mixtures increased the heart rate and feeding activity of the embryos. The 10, 100, and 500 ng L-1 mixtures affected the feeding activity as well as the 1, 10, and 100 ng L-1 mixtures influenced the locomotion of the adult specimens. The differences of these adult behaviours showed a biphasic response to the progestogen exposure; however, they changed approximately in the opposite way. In case of feeding activity, this dose-response phenomenon can be identified as a hormesis response. Based on the authors' best knowledge, this is the first study to investigate the non-reproductive effects of progestogens occurring also in the environment on molluscan species. Our findings contribute to the global understanding of the effects of human progestogens, as these potential disruptors can influence the behavioural activities of non-target aquatic species. Future research should aim to understand the potential mechanisms (e.g., receptors, signal pathways) of progestogens induced behavioural alterations. C1 [Svigruha, Reka; Padisak, Judit] Univ Pannonia, Dept Limnol, H-8200 Veszprem, Hungary. [Svigruha, Reka; Fodor, Istvan; Pirger, Zsolt] Ctr Ecol Res, Balaton Limnol Inst, Dept Expt Zool, NAP Adapt Neuroethol Res Grp, H-8237 Tihany, Hungary. C3 University of Pannonia; Eotvos Lorand Research Network; Hungarian Academy of Sciences; Hungarian Centre for Ecological Research; Hungarian Balaton Limnological Research Institute RP Pirger, Z (corresponding author), Ctr Ecol Res, Balaton Limnol Inst, Dept Expt Zool, NAP Adapt Neuroethol Res Grp, H-8237 Tihany, Hungary. EM pirger.zsolt@okologia.mta.hu RI Pirger, Zsolt/AAH-7907-2021 OI Fodor, Istvan/0000-0001-7817-421X; PIRGER, Zsolt/0000-0001-9039-6966 FU ELKH Centre for Ecological Research; National Brain Project [2017-1.2.1-NKP-2017-00002]; New National Excellence Program of the Ministry of Innovation and Technology [UNKP-19-3, OI-31-20338/2020] FX Open Access funding provided by ELKH Centre for Ecological Research. This work was supported by National Brain Project (No. 2017-1.2.1-NKP-2017-00002) and UNKP-19-3 New National Excellence Program of the Ministry of Innovation and Technology (No. OI-31-20338/2020). CR AHERNE GW, 1985, ECOTOX ENVIRON SAFE, V9, P79, DOI 10.1016/0147-6513(85)90037-5 Al-Odaini NA, 2010, J CHROMATOGR A, V1217, P6791, DOI 10.1016/j.chroma.2010.08.033 Alzieu C, 2000, SCI TOTAL ENVIRON, V258, P99, DOI 10.1016/S0048-9697(00)00510-6 Ammann AA, 2014, ANAL BIOANAL CHEM, V406, P7653, DOI 10.1007/s00216-014-8206-9 Amorim J, 2019, SCI TOTAL ENVIRON, V669, P11, DOI 10.1016/j.scitotenv.2019.03.035 Avar P, 2016, DRUG TEST ANAL, V8, P124, DOI 10.1002/dta.1829 Bengal E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21186480 Bhandari RK, 2015, GEN COMP ENDOCR, V214, P195, DOI 10.1016/j.ygcen.2014.09.014 Blackshear KK, 2017, J NEURO RES, V2017, P1 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Caldwell DJ, 2008, ENVIRON SCI TECHNOL, V42, P7046, DOI 10.1021/es800633q Can ZS, 2014, ENVIRON MONIT ASSESS, V186, P525, DOI 10.1007/s10661-013-3397-7 Chang H, 2008, J CHROMATOGR A, V1195, P44, DOI 10.1016/j.chroma.2008.04.055 Chang H, 2011, WATER RES, V45, P732, DOI 10.1016/j.watres.2010.08.046 Chang H, 2009, ENVIRON SCI TECHNOL, V43, P7691, DOI 10.1021/es803653j CSABA G, 1979, ACTA BIOL MED GER, V38, P1145 Das S, 2011, J HAZARD MATER, V185, P295, DOI 10.1016/j.jhazmat.2010.09.033 de Alda MJL, 2002, ANALYST, V127, P1299, DOI 10.1039/b207658f DeQuattro ZA, 2012, ENVIRON TOXICOL CHEM, V31, P851, DOI 10.1002/etc.1754 Di Cristo C., 2008, OPEN ZOOL J, V1, P29, DOI DOI 10.2174/1874336600801010029 Ducrot V, 2014, REGUL TOXICOL PHARM, V70, P605, DOI 10.1016/j.yrtph.2014.09.004 Ducrot V, 2010, ECOTOXICOLOGY, V19, P1312, DOI 10.1007/s10646-010-0518-8 Fan ZL, 2011, ENVIRON SCI TECHNOL, V45, P2725, DOI 10.1021/es103429c Fent K, 2015, ENVIRON INT, V84, P115, DOI 10.1016/j.envint.2015.06.012 Filla A, 2009, COMP BIOCHEM PHYS C, V149, P73, DOI 10.1016/j.cbpc.2008.07.004 Fodor I, 2020, MOL CELL ENDOCRINOL, V516, DOI 10.1016/j.mce.2020.110949 Fodor I, 2020, ELIFE, V9, DOI 10.7554/eLife.56962 Frankel TE, 2016, GEN COMP ENDOCR, V234, P161, DOI 10.1016/j.ygcen.2016.01.007 Giusti A, 2014, SCI TOTAL ENVIRON, V493, P147, DOI 10.1016/j.scitotenv.2014.05.130 Gomot A, 1998, ECOTOX ENVIRON SAFE, V41, P288, DOI 10.1006/eesa.1998.1711 Guzel EY, 2019, HUM ECOL RISK ASSESS, V25, P1980, DOI 10.1080/10807039.2018.1479631 Hastie T., 1986, STAT SCI, V1, P297, DOI [10.1214/ss/1177013604, DOI 10.1214/SS/1177013604] Huang B, 2015, ECOTOX ENVIRON SAFE, V112, P169, DOI 10.1016/j.ecoenv.2014.11.004 Hutchinson TH, 2002, TOXICOL LETT, V131, P75, DOI 10.1016/S0378-4274(02)00046-2 Islam R, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.114994 Jenkins RL, 2003, TOXICOL SCI, V73, P53, DOI 10.1093/toxsci/kfg042 Kashian DR, 2004, ENVIRON TOXICOL CHEM, V23, P1282, DOI 10.1897/03-372 KEMENES G, 1986, J EXP BIOL, V122, P113 Ketata I, 2008, COMP BIOCHEM PHYS C, V147, P261, DOI 10.1016/j.cbpc.2007.11.007 Khangarot BS, 2010, J HAZARD MATER, V179, P665, DOI 10.1016/j.jhazmat.2010.03.054 Kolodziej EP, 2007, ENVIRON SCI TECHNOL, V41, P3514, DOI 10.1021/es063050y Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j KOOIJMAN SAL, 2000, DYNAMIC ENERGY MASS Kuster M, 2009, ENVIRON INT, V35, P997, DOI 10.1016/j.envint.2009.04.006 Kuster M, 2008, J HYDROL, V358, P112, DOI 10.1016/j.jhydrol.2008.05.030 Labadie P, 2005, ENVIRON SCI TECHNOL, V39, P5113, DOI 10.1021/es048443g Lazennec G, 2001, J STEROID BIOCHEM, V77, P193, DOI 10.1016/S0960-0760(01)00060-7 Liu S, 2012, WATER RES, V46, P3754, DOI 10.1016/j.watres.2012.04.006 Liu S, 2011, J CHROMATOGR A, V1218, P1367, DOI 10.1016/j.chroma.2011.01.014 Liu SS, 2015, WATER RES, V77, P146, DOI 10.1016/j.watres.2015.03.022 Liu SS, 2014, ANAL BIOANAL CHEM, V406, P7299, DOI 10.1007/s00216-014-8146-4 Liu TT, 2013, ENVIRON MONIT ASSESS, V185, P4183, DOI 10.1007/s10661-012-2860-1 Liu ZH, 2011, SCI TOTAL ENVIRON, V409, P5149, DOI 10.1016/j.scitotenv.2011.08.047 Maasz G, 2019, SCI TOTAL ENVIRON, V677, P545, DOI 10.1016/j.scitotenv.2019.04.286 Maasz G, 2017, ECOTOX ENVIRON SAFE, V139, P9, DOI 10.1016/j.ecoenv.2017.01.020 MAROIS R, 1991, INVERTEBR REPROD DEV, V19, P139, DOI 10.1080/07924259.1991.9672167 Matthiessen P, 1998, ENVIRON TOXICOL CHEM, V17, P37, DOI 10.1002/etc.5620170106 Matthiessen Peter, 1998, EXS, V86, P319 Meshcheryakov V.N., 1990, P69 Morrill J.B., 1982, P399 Costa DDM, 2010, COMP BIOCHEM PHYS C, V151, P248, DOI 10.1016/j.cbpc.2009.11.002 Neale PA, 2015, ENVIRON SCI TECHNOL, V49, P14614, DOI 10.1021/acs.est.5b04083 OECD, 2016, TEST 243 LYMN STAGN Orlando EF, 2014, GEN COMP ENDOCR, V203, P241, DOI 10.1016/j.ygcen.2014.03.038 Pauwels B, 2008, J ENVIRON ENG-ASCE, V134, P933, DOI 10.1061/(ASCE)0733-9372(2008)134:11(933) Petrovic M, 2002, ENVIRON TOXICOL CHEM, V21, P2146, DOI 10.1897/1551-5028(2002)021<2146:EDISTP>2.0.CO;2 Pirger Z., 2018, BIOL RECOURCES WATER, P33 Pirger Z, 2020, BIORXIV, DOI 10.1101/2020.02.12.944553v2 Pirger Z, 2014, CURR BIOL, V24, P2018, DOI [10.1016/j.cub.2014.07.044, 10.1016/j.cub.2014.09.024] Postigo C, 2010, ENVIRON INT, V36, P75, DOI 10.1016/j.envint.2009.10.004 Pu C, 2008, ANAL CHIM ACTA, V628, P73, DOI 10.1016/j.aca.2008.08.034 Qiao YW, 2009, TALANTA, V80, P98, DOI 10.1016/j.talanta.2009.06.029 Salanki J, 2003, TOXICOL LETT, V140, P403, DOI 10.1016/S0378-4274(03)00036-5 Scott AP, 2018, GEN COMP ENDOCR, V265, P77, DOI 10.1016/j.ygcen.2018.04.005 Scott AP, 2013, STEROIDS, V78, P268, DOI 10.1016/j.steroids.2012.11.006 Scott AP, 2012, STEROIDS, V77, P1450, DOI 10.1016/j.steroids.2012.08.009 Shen XY, 2018, WATER RES, V133, P142, DOI 10.1016/j.watres.2018.01.030 Sitruk-Ware R, 2010, CONTRACEPTION, V82, P410, DOI 10.1016/j.contraception.2010.04.004 Tran TKA, 2019, ENVIRON POLLUT, V248, P1067, DOI 10.1016/j.envpol.2019.02.056 Tillmann M, 2001, ECOTOXICOLOGY, V10, P373, DOI 10.1023/A:1012279231373 Torres NH, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4626-z Tosti E, 2001, MOL REPROD DEV, V59, P97, DOI 10.1002/mrd.1011 VARAKSINA GS, 1992, BIOL MORYA-VLAD+, P77 Velicu M, 2009, ENVIRON MONIT ASSESS, V154, P349, DOI 10.1007/s10661-008-0402-7 Viglino L, 2008, TALANTA, V76, P1088, DOI 10.1016/j.talanta.2008.05.008 Voronezhskaya EE, 1999, J COMP NEUROL, V404, P285, DOI 10.1002/(SICI)1096-9861(19990215)404:3<285::AID-CNE1>3.0.CO;2-S Vulliet E, 2008, J CHROMATOGR A, V1210, P84, DOI 10.1016/j.chroma.2008.09.034 Vulliet E, 2007, ANAL BIOANAL CHEM, V387, P2143, DOI 10.1007/s00216-006-1084-z Vulliet E, 2011, ENVIRON POLLUT, V159, P2929, DOI 10.1016/j.envpol.2011.04.033 Wang CD, 2003, INVERTEBR REPROD DEV, V44, P89, DOI 10.1080/07924259.2003.9652559 Yang YY, 2012, ENVIRON SCI TECHNOL, V46, P2746, DOI 10.1021/es203896t Yost EE, 2014, ENVIRON SCI TECHNOL, V48, P11600, DOI 10.1021/es5025806 ZONNEVELD C, 1989, FUNCT ECOL, V3, P269, DOI 10.2307/2389365 Zou EM, 1997, ECOTOX ENVIRON SAFE, V38, P281, DOI 10.1006/eesa.1997.1589 Zrinyi Z, 2017, AQUAT TOXICOL, V190, P94, DOI 10.1016/j.aquatox.2017.06.029 NR 95 TC 8 Z9 8 U1 8 U2 30 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD NOV PY 2021 VL 28 IS 42 BP 59391 EP 59402 DI 10.1007/s11356-020-12094-z EA DEC 2020 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA WL2MQ UT WOS:000600827500001 PM 33349911 OA Green Accepted, hybrid, Green Published DA 2023-03-13 ER PT J AU Yu, TZ Dohl, J Wang, L Chen, YF Gasier, HG Deuster, PA AF Yu, Tianzheng Dohl, Jacob Wang, Li Chen, Yifan Gasier, Heath G. Deuster, Patricia A. TI Curcumin Ameliorates Heat-Induced Injury through NADPH Oxidase-Dependent Redox Signaling and Mitochondrial Preservation in C2C12 Myoblasts and Mouse Skeletal Muscle SO JOURNAL OF NUTRITION LA English DT Article DE antioxidant; apoptosis; heat stress; mitochondrial fission; mitochondrial fusion; myoblast; myofiber; NOX; curcumin ID OXYGEN SPECIES ROS; OXIDATIVE STRESS; S-NITROSYLATION; FISSION; HOMEOSTASIS; FUSION; CYTOTOXICITY; APOPTOSIS; AGENT; CELLS AB Background: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the mitochondrial electron transport chain are the primary sources of reactive oxygen species (ROS). Previous studies have shown that severe heat exposure damages mitochondria and causes excessive mitochondrial ROS production that contributes to the pathogenesis of heat-related illnesses. Objectives: We tested whether the antioxidant curcumin could protect against heat-induced mitochondrial dysfunction and skeletal muscle injury, and characterized the possible mechanism. Methods: Mouse C2C12 myoblasts and rat flexor digitorum brevis (FDB) myofibers were treated with 5 mu M curcumin; adultmale C57BL/6J mice received daily curcumin (15, 50, or 100mg/kg body weight) by gavage for 10 consecutive days. We compared ROS levels and mitochondrial morphology and function between treatment and nontreatment groups under unheated or heat conditions, and investigated the upstream mechanism and the downstream effect of curcumin-regulated ROS production. Results: In C2C12 myoblasts, curcumin prevented heat-induced mitochondrial fragmentation, ROS overproduction, and apoptosis (all P < 0.05). Curcumin treatment for 2 and 4 h at 37 degrees C induced increases in ROS levels by 42% and 59% (dihydroethidium-derived fluorescence), accompanied by increases in NADPH oxidase protein expression by 24% and 32%, respectively (all P < 0.01). In curcumin-treated cells, chemical inhibition and genetic knockdown of NADPH oxidase restored ROS to levels similar to those of controls, indicating NADPH oxidase mediates curcumin-stimulated ROS production. Moreover, curcumin induced ROS-dependent shifting of the mitochondrial fission-fusion balance toward fusion, and increases in mitochondrial mass by 143% and membrane potential by 30% (both P < 0.01). In rat FDB myofibers and mouse gastrocnemius muscles, curcumin preserved mitochondrial morphology and function during heat stress, and prevented heat-induced mitochondrial ROS overproduction and tissue injury (all P < 0.05). Conclusions: Curcumin regulates ROS hormesis favoring mitochondrial fusion/elongation, biogenesis, and improved function in rodent skeletal muscle. Curcumin may be an effective therapeutic target for heat-related illness and other mitochondrial diseases. C1 [Yu, Tianzheng; Dohl, Jacob; Chen, Yifan; Gasier, Heath G.; Deuster, Patricia A.] Uniformed Serv Univ Hlth Sci, F Edward Hebert Sch Med, Dept Mil & Emergency Med, Consortium Hlth & Mil Performance, Bethesda, MD 20814 USA. [Yu, Tianzheng; Dohl, Jacob] Henry M Jackson Fdn Adv Mil Med, Bethesda, MD 20817 USA. [Wang, Li] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA. [Gasier, Heath G.] Duke Univ, Ctr Hyperbar Med & Environm Physiol, Dept Anesthesiol, Sch Med, Durham, NC USA. C3 Uniformed Services University of the Health Sciences - USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc; University System of Maryland; University of Maryland Baltimore; Duke University RP Yu, TZ (corresponding author), Uniformed Serv Univ Hlth Sci, F Edward Hebert Sch Med, Dept Mil & Emergency Med, Consortium Hlth & Mil Performance, Bethesda, MD 20814 USA.; Yu, TZ (corresponding author), Henry M Jackson Fdn Adv Mil Med, Bethesda, MD 20817 USA. EM tianzheng.yu.ctr@usuhs.edu RI Deuster, Patricia A/G-3838-2015 OI Deuster, Patricia A/0000-0002-7895-0888; Chen, Yifan/0000-0003-1388-9200; Dohl, Jacob/0000-0002-9896-2552 FU US Department of Defense (DoD) Defense Health Program Nutritional and Dietary Supplement Working Group grant [HU0001-14-1-003]; NIH Office of Dietary Supplements grant [F1919759] FX Supported by US Department of Defense (DoD) Defense Health Program Nutritional and Dietary Supplement Working Group grant HU0001-14-1-003 and NIH Office of Dietary Supplements grant F1919759. CR Agnello M, 2008, CYTOTECHNOLOGY, V56, P145, DOI 10.1007/s10616-008-9143-2 Altenhofer S, 2015, ANTIOXID REDOX SIGN, V23, P406, DOI 10.1089/ars.2013.5814 Anand R, 2014, J CELL BIOL, V204, P919, DOI 10.1083/jcb.201308006 Angelova PR, 2018, FEBS LETT, V592, P692, DOI 10.1002/1873-3468.12964 Barik A, 2005, FREE RADICAL BIO MED, V39, P811, DOI 10.1016/j.freeradbiomed.2005.05.005 Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005 Bossy B, 2010, J ALZHEIMERS DIS, V20, pS513, DOI 10.3233/JAD-2010-100552 Casa DJ, 2015, J ATHL TRAINING, V50, P986, DOI 10.4085/1062-6050-50.9.07 Chen HC, 2003, J CELL BIOL, V160, P189, DOI 10.1083/jcb.200211046 Chen Y, 2018, ACTA PHYSIOL, V222, DOI 10.1111/apha.13015 Cheng AL, 2001, ANTICANCER RES, V21, P2895 Cho DH, 2009, SCIENCE, V324, P102, DOI 10.1126/science.1171091 Del Dotto V, 2018, BBA-BIOENERGETICS, V1859, P263, DOI 10.1016/j.bbabio.2018.01.005 Dohl J, 2018, LIFE SCI, V211, P238, DOI 10.1016/j.lfs.2018.09.041 Fang JG, 2005, J BIOL CHEM, V280, P25284, DOI 10.1074/jbc.M414645200 Ferreira LF, 2016, FREE RADICAL BIO MED, V98, P18, DOI 10.1016/j.freeradbiomed.2016.05.011 Gauer R, 2019, AM FAM PHYSICIAN, V99, P482 Holmstrom KM, 2014, NAT REV MOL CELL BIO, V15, P411, DOI 10.1038/nrm3801 Irrcher I, 2009, AM J PHYSIOL-CELL PH, V296, pC116, DOI 10.1152/ajpcell.00267.2007 Ishihara N, 2006, EMBO J, V25, P2966, DOI 10.1038/sj.emboj.7601184 Kang C, 2009, FREE RADICAL BIO MED, V47, P1394, DOI 10.1016/j.freeradbiomed.2009.08.007 Kim B, 2016, MOL CARCINOGEN, V55, P918, DOI 10.1002/mc.22332 Kunnumakkara AB, 2017, BRIT J PHARMACOL, V174, P1325, DOI 10.1111/bph.13621 Kunwar A, 2008, BBA-GEN SUBJECTS, V1780, P673, DOI 10.1016/j.bbagen.2007.11.016 Kunwar A, 2009, EUR J PHARMACOL, V611, P8, DOI 10.1016/j.ejphar.2009.03.060 Larasati YA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20179-6 Motterlini R, 2000, FREE RADICAL BIO MED, V28, P1303, DOI 10.1016/S0891-5849(00)00294-X Moustapha A, 2015, CELL DEATH DISCOV, V1, DOI 10.1038/cddiscovery.2015.17 Nelson KM, 2017, J MED CHEM, V60, P1620, DOI 10.1021/acs.jmedchem.6b00975 Nordberg J, 2001, FREE RADICAL BIO MED, V31, P1287, DOI 10.1016/S0891-5849(01)00724-9 Panchal HD, 2008, NEUROCHEM RES, V33, P1701, DOI 10.1007/s11064-008-9608-x Panchatcharam M, 2006, MOL CELL BIOCHEM, V290, P87, DOI 10.1007/s11010-006-9170-2 Perrone D, 2015, EXP THER MED, V10, P1615, DOI 10.3892/etm.2015.2749 Piantadosi CA, 2012, FREE RADICAL BIO MED, V53, P2043, DOI 10.1016/j.freeradbiomed.2012.09.014 Prasad S, 2014, CANCER RES TREAT, V46, P2, DOI 10.4143/crt.2014.46.1.2 Ray PD, 2012, CELL SIGNAL, V24, P981, DOI 10.1016/j.cellsig.2012.01.008 Riley K, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040580 Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Shoba G, 1998, PLANTA MED, V64, P353, DOI 10.1055/s-2006-957450 Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037 Sies H, 2015, REDOX BIOL, V4, P180, DOI 10.1016/j.redox.2015.01.002 Szklarz LKS, 2012, BBA-BIOENERGETICS, V1817, P1886, DOI 10.1016/j.bbabio.2012.05.001 Willems PHGM, 2015, CELL METAB, V22, P207, DOI 10.1016/j.cmet.2015.06.006 Yang YH, 2016, J CELL PHYSIOL, V231, P2570, DOI 10.1002/jcp.25349 Yoboue ED, 2012, INT J CELL BIOL Yoon Y, 2011, ANTIOXID REDOX SIGN, V14, P439, DOI 10.1089/ars.2010.3286 Youle RJ, 2012, SCIENCE, V337, P1062, DOI 10.1126/science.1219855 Yu TZ, 2019, J CELL PHYSIOL, V234, P13292, DOI 10.1002/jcp.28006 Yu TZ, 2019, J CELL PHYSIOL, V234, P6371, DOI 10.1002/jcp.27370 Yu TZ, 2018, LIFE SCI, V200, P6, DOI 10.1016/j.lfs.2018.02.031 Yu TZ, 2016, J PHYSIOL-LONDON, V594, P7419, DOI 10.1113/JP272885 Yu TZ, 2015, FRONT BIOSCI-LANDMRK, V20, P229, DOI 10.2741/4306 Yu TZ, 2014, J BIOL CHEM, V289, P34074, DOI 10.1074/jbc.M114.588616 Yu TZ, 2006, P NATL ACAD SCI USA, V103, P2653, DOI 10.1073/pnas.0511154103 Yu TZ, 2005, J CELL SCI, V118, P4141, DOI 10.1242/jcs.02537 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zorov DB, 2014, PHYSIOL REV, V94, P909, DOI 10.1152/physrev.00026.2013 Zschauer TC, 2013, ANTIOXID REDOX SIGN, V18, P1053, DOI 10.1089/ars.2012.4822 NR 58 TC 13 Z9 13 U1 4 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-3166 EI 1541-6100 J9 J NUTR JI J. Nutr. PD SEP 1 PY 2020 VL 150 IS 9 BP 2257 EP 2267 DI 10.1093/jn/nxaa201 PG 11 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA NM9UA UT WOS:000568434200007 PM 32692359 OA Green Published, hybrid DA 2023-03-13 ER PT J AU Yamaguchi, T Suzuki, T Arai, H Tanabe, S Atomi, Y AF Yamaguchi, Tetsuo Suzuki, Takayoshi Arai, Hideaki Tanabe, Shihori Atomi, Yoriko TI Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow SO AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY LA English DT Article DE fiber-type shift; PGC-1 alpha; myosin heavy chain; hormesis ID HUMAN SKELETAL-MUSCLE; GENE-EXPRESSION; OXIDATIVE-PHOSPHORYLATION; MYOSIN ISOFORMS; MYOGENIN; RAT; HYPERTHERMIA; METABOLISM; PROLIFERATION; CELLS AB Yamaguchi T, Suzuki T, Arai H, Tanabe S, Atomi Y. Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. Am J Physiol Cell Physiol 298: C140-C148, 2010. First published July 15, 2009; doi:10.1152/ajpcell.00050.2009.- Local hyperthermia has been widely used as physical therapy for a number of diseases such as inflammatory osteoarticular disorders, tendinitis, and muscle injury. Local hyperthermia is clinically applied to improve blood and lymphatic flow to decrease swelling of tissues (e. g., skeletal muscle). As for muscle repair following injury, the mechanisms underlying the beneficial effects of hyperthermia-induced muscle repair are unknown. In this study, we investigated the direct effects of continuous heat stress on the differentiation of cultured mammalian myoblasts. Compared with control cultures grown at 37 degrees C, incubation at 39 degrees C (continuous mild heat stress; CMHS) enhanced myotube diameter, whereas myotubes were poorly formed at 41 degrees C by primary human skeletal muscle culture cells, human skeletal muscle myoblasts (HSMMs), and C2C12 mouse myoblasts. In HSMMs and C2C12 cells exposed to CMHS, mRNA and protein levels of myosin heavy chain (MyHC) type I were increased compared with the control cultures. The mRNA level of MyHC IIx was unaltered in HSMMs and decreased in C2C12 cells, compared with cells that were not exposed to heat stress. These results indicated a fast-to-slow fiber-type shift in myoblasts. We also examined upstream signals that might be responsible for the fast-to-slow shift of fiber types. CMHS enhanced the mRNA and protein levels of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1 alpha in HSMMS and C2C12 cells but not the activities of MAPKs (ERK1/2 and p38 MAPK) in HSMMs and C2C12 cells. These data suggest that CMHS induces a fast-to-slow fiber-type shift of mammalian myoblasts through PGC-1 alpha. C1 [Yamaguchi, Tetsuo; Arai, Hideaki] Univ Tokyo, Grad Sch Arts & Sci, Dept Life Sci, Meguro Ku, Tokyo 1538902, Japan. [Suzuki, Takayoshi] Natl Inst Hlth Sci, Div Genet & Mutagenesis, Setagaya Ku, Tokyo, Japan. [Tanabe, Shihori] Natl Inst Hlth Sci, Div Cellular & Gene Therapy Prod, Setagaya Ku, Tokyo, Japan. [Atomi, Yoriko] Univ Tokyo, Dept Technol, Bunkyo Ku, Tokyo 1538902, Japan. C3 University of Tokyo; National Institute of Health Sciences - Japan; National Institute of Health Sciences - Japan; University of Tokyo RP Yamaguchi, T (corresponding author), Univ Tokyo, Grad Sch Arts & Sci, Dept Life Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan. EM tetsuo-yama@abeam.ocn.ne.jp; atomi@bio.c.u-tokyo.ac.jp RI Tanabe, Shihori/AAH-6584-2019; Atomi, Yoriko/AAF-4783-2019; SUZUKI, TAKAYOSHI/ABA-2386-2020 OI Tanabe, Shihori/0000-0003-3706-0616; Atomi, Yoriko/0000-0003-3808-6543; SUZUKI, TAKAYOSHI/0000-0002-2261-5263 CR Andres V, 1996, J CELL BIOL, V132, P657, DOI 10.1083/jcb.132.4.657 Aronson D, 1997, J BIOL CHEM, V272, P25636, DOI 10.1074/jbc.272.41.25636 Balagopal P, 2006, AM J PHYSIOL-ENDOC M, V290, pE530, DOI 10.1152/ajpendo.00412.2005 BORRELL RM, 1980, PHYS THER, V60, P1273, DOI 10.1093/ptj/60.10.1273 CALDERWOOD SK, 1988, RADIAT RES, V113, P414, DOI 10.2307/3577239 Casas F, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002501 Ekmark M, 2003, J PHYSIOL-LONDON, V548, P259, DOI 10.1113/jphysiol.2002.036228 Finck BN, 2006, J CLIN INVEST, V116, P615, DOI 10.1172/JCI27794 Frederiksen CM, 2008, DIABETOLOGIA, V51, P2068, DOI 10.1007/s00125-008-1122-9 Gaster M, 2001, APMIS, V109, P726, DOI 10.1034/j.1600-0463.2001.d01-139.x Hanson DF, 1997, ANN NY ACAD SCI, V813, P453, DOI 10.1111/j.1749-6632.1997.tb51733.x Hilber K, 1999, FEBS LETT, V455, P267, DOI 10.1016/S0014-5793(99)00903-5 Huard J, 2002, J BONE JOINT SURG AM, V84A, P822, DOI 10.2106/00004623-200205000-00022 Hughes SM, 1999, J CELL BIOL, V145, P633, DOI 10.1083/jcb.145.3.633 HUGHES SM, 1993, DEVELOPMENT, V118, P1137 Kelley DE, 2002, DIABETES, V51, P2944, DOI 10.2337/diabetes.51.10.2944 Kubis HP, 1997, P NATL ACAD SCI USA, V94, P4205, DOI 10.1073/pnas.94.8.4205 Lamba DA, 2006, P NATL ACAD SCI USA, V103, P12769, DOI 10.1073/pnas.0601990103 Lehman JF, 1990, KRUSENS HDB PHYS MED, P283 Lepock JR, 2003, INT J HYPERTHER, V19, P252, DOI 10.1080/0265673031000065042 Lin J, 2002, NATURE, V418, P797, DOI 10.1038/nature00904 Liu JX, 2003, J HISTOCHEM CYTOCHEM, V51, P175, DOI 10.1177/002215540305100206 Liu Y, 2003, J APPL PHYSIOL, V94, P2282, DOI 10.1152/japplphysiol.00830.2002 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Ludolph DC, 1995, FASEB J, V9, P1595, DOI 10.1096/fasebj.9.15.8529839 Martins KJB, 2006, J PHYSIOL-LONDON, V572, P281, DOI 10.1113/jphysiol.2005.103366 Meissner JD, 2007, J BIOL CHEM, V282, P7265, DOI 10.1074/jbc.M609076200 MIKKELSEN RB, 1991, CANCER RES, V51, P359 Mootha VK, 2003, NAT GENET, V34, P267, DOI 10.1038/ng1180 Moyer HR, 2008, INT J HYPERTHER, V24, P251, DOI 10.1080/02656730701772480 Murgia M, 2000, NAT CELL BIOL, V2, P142, DOI 10.1038/35004013 Naya FJ, 2000, J BIOL CHEM, V275, P4545, DOI 10.1074/jbc.275.7.4545 Park HG, 2005, CELL MOL LIFE SCI, V62, P10, DOI 10.1007/s00018-004-4208-7 Patti ME, 2003, P NATL ACAD SCI USA, V100, P8466, DOI 10.1073/pnas.1032913100 Pette D, 2000, MICROSC RES TECHNIQ, V50, P500, DOI 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7 Pilegaard H, 2003, J PHYSIOL-LONDON, V546, P851, DOI 10.1113/jphysiol.2002.034850 Putman CT, 2000, AM J PHYSIOL-CELL PH, V279, pC682, DOI 10.1152/ajpcell.2000.279.3.C682 Rokutan Kazuhito, 1998, Journal of Medical Investigation, V44, P137 SCHIAFFINO S, 1994, J APPL PHYSIOL, V77, P493, DOI 10.1152/jappl.1994.77.2.493 SCHLUTER JM, 1994, AM J PHYSIOL, V266, pC1699, DOI 10.1152/ajpcell.1994.266.6.C1699 Shi H, 2008, FASEB J, V22, P2990, DOI 10.1096/fj.07-097600 Shui CX, 2001, J BONE MINER RES, V16, P731, DOI 10.1359/jbmr.2001.16.4.731 Smith W, 1990, THERMAL AGENTS REHAB, P245 Tapscott SJ, 2005, DEVELOPMENT, V132, P2685, DOI 10.1242/dev.01874 Thelen MHM, 1998, BIOCHEM J, V329, P131 van der Poel C, 2007, AM J PHYSIOL-CELL PH, V293, pC133, DOI 10.1152/ajpcell.00052.2007 Vissing K, 2005, J APPL PHYSIOL, V99, P164, DOI 10.1152/japplphysiol.01172.2004 Wu H, 2002, SCIENCE, V296, P349, DOI 10.1126/science.1071163 Wust P, 1996, Recent Results Cancer Res, V142, P281 Xu XY, 2004, AM J PHYSIOL-CELL PH, V287, pC903, DOI 10.1152/ajpcell.00065.2004 Yamaguchi T, 2007, J GERONTOL A-BIOL, V62, P481, DOI 10.1093/gerona/62.5.481 NR 51 TC 67 Z9 74 U1 4 U2 20 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6143 EI 1522-1563 J9 AM J PHYSIOL-CELL PH JI Am. J. Physiol.-Cell Physiol. PD JAN PY 2010 VL 298 IS 1 BP C140 EP C148 DI 10.1152/ajpcell.00050.2009 PG 9 WC Cell Biology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Physiology GA 533LO UT WOS:000272825500016 PM 19605738 DA 2023-03-13 ER PT J AU Jiang, YH Liu, Y Zhang, J AF Jiang, Yunhan Liu, Ying Zhang, Jian TI Antibiotic contaminants reduced the treatment efficiency of UV-C on Microcystis aeruginosa through hormesis SO ENVIRONMENTAL POLLUTION LA English DT Article DE Combined pollution; Ultraviolet irradiation; Cyanobacterial control; Microcystins; Proteomic responses ID PERSONAL CARE PRODUCTS; CYANOBACTERIAL BLOOMS; RISK-ASSESSMENT; SURFACE-WATER; PHARMACEUTICALS; GROWTH; GENE; IRRADIATION; DIVERSITY; TOXICITY AB Antibiotic contaminants exert stimulatory hormetic effects in cyanobacteria at low (ng L-1) concentrations, which may interfere with the control of cyanobacterial bloom in aquatic environments exhibiting combined pollution. This study investigated the influence of a mixture of four popular antibiotics (sulfamethoxazole, amoxicillin, ciprofloxacin, and tetracycline) during the application of UV-C irradiation for controlling the bloom of Microcystis aeruginosa. In the absence of antibiotics, 100-500 mJ cm(-2) UV-C irradiation reduced cell density, growth rate, chlorophyll a content, F-v/F-m value and microcystin concentration in M. aeruginosa in a dose-dependent manner through the downregulation of proteins related to cell division, chlorophyll synthesis, photosynthesis and microcystin synthesis. UV-C irradiation stimulated microcystin release through the upregulation of the microcystin release regulatory protein (mcyH). The presence of 40 ng L-1 antibiotic mixture during UV-C treatment significantly reduced (p < 0.05) the treatment efficiency of 100-300 mJ cm(-2) UV-C on microcystin concentration, while 80 and 160 ng L-1 antibiotic mixture significantly reduced (p < 0.05) the treatment efficiency of 100-500 mJ cm(-2) UV-C on cell density and microcystin concentration. The antibiotic mixture alleviated the toxicity of UV-C on M. aeruginosa through a significant stimulation of photosynthetic activity (p < 0.05) and the upregulation of proteins involved in photosynthesis, biosynthesis, protein expression, and DNA repair. Microcystin release in UV-C-treated cyanobacterial cells was further stimulated by the antibiotic mixture through the upregulation of mcyH and four ATP-binding cassette transport proteins. The interference effects of antibiotic contaminants should be fully considered when UV-C is applied to control cyanobacterial bloom in antibiotic-polluted environments. In order to eliminate the interference effects of antibiotics, the concentration of each target antibiotic is suggested to be controlled below 5 ng L-1 before the application of UV-C irradiation. (C) 2020 Elsevier Ltd. All rights reserved. C1 [Jiang, Yunhan; Liu, Ying; Zhang, Jian] Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. C3 Shandong University RP Liu, Y (corresponding author), Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. EM liuying2010@sdu.edu.cn FU National Natural Science Foundation of China [51679130]; Fundamental Research Funds of Shandong University [2017WLJH35] FX This work was supported by National Natural Science Foundation of China (51679130) and partly by the Fundamental Research Funds of Shandong University (2017WLJH35). CR Aydin E, 2013, CHEMOSPHERE, V90, P2004, DOI 10.1016/j.chemosphere.2012.10.074 Azanu D, 2018, SCI TOTAL ENVIRON, V622, P293, DOI 10.1016/j.scitotenv.2017.11.287 Borderie F, 2014, INT BIODETER BIODEGR, V93, P118, DOI 10.1016/j.ibiod.2014.05.014 Bouaicha N, 2019, TOXINS, V11, DOI 10.3390/toxins11120714 Bouhaddada R, 2016, ENVIRON POLLUT, V216, P836, DOI 10.1016/j.envpol.2016.06.055 Chalifour A, 2016, CHEMOSPHERE, V164, P451, DOI 10.1016/j.chemosphere.2016.08.109 Charuaud L, 2019, J HAZARD MATER, V361, P169, DOI 10.1016/j.jhazmat.2018.08.075 Chen YQ, 2017, J HAZARD MATER, V322, P508, DOI 10.1016/j.jhazmat.2016.10.017 Fu L, 2017, CHEMOSPHERE, V168, P217, DOI 10.1016/j.chemosphere.2016.10.043 Gao QT, 2011, CHEMOSPHERE, V82, P346, DOI 10.1016/j.chemosphere.2010.10.010 Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211 Huang DW, 2009, NUCLEIC ACIDS RES, V37, P1, DOI 10.1093/nar/gkn923 Huisman J, 2018, NAT REV MICROBIOL, V16, P471, DOI 10.1038/s41579-018-0040-1 Junge W, 2019, Q REV BIOPHYS, V52, DOI 10.1017/S0033583518000112 Kasprzyk-Hordern B, 2008, WATER RES, V42, P3498, DOI 10.1016/j.watres.2008.04.026 Lin HJ, 2018, SCI TOTAL ENVIRON, V636, P975, DOI 10.1016/j.scitotenv.2018.04.267 Liu PL, 2017, NUCLEIC ACIDS RES, V45, P3944, DOI 10.1093/nar/gkx153 Liu Y, 2017, MOL ECOL, V26, P689, DOI 10.1111/mec.13934 Liu Y, 2016, WATER RES, V93, P141, DOI 10.1016/j.watres.2016.01.060 Martinez LF, 2013, MAR POLLUT BULL, V67, P152, DOI 10.1016/j.marpolbul.2012.11.019 Matafonova G, 2018, WATER RES, V132, P177, DOI 10.1016/j.watres.2017.12.079 Merel S, 2013, ENVIRON INT, V59, P303, DOI 10.1016/j.envint.2013.06.013 Mlouka A, 2004, J BACTERIOL, V186, P2355, DOI 10.1128/JB.186.8.2355-2365.2004 Tran NH, 2019, SCI TOTAL ENVIRON, V692, P157, DOI 10.1016/j.scitotenv.2019.07.092 de Garcia SO, 2013, SCI TOTAL ENVIRON, V444, P451, DOI 10.1016/j.scitotenv.2012.11.057 Ou H, 2012, WATER RES, V46, P1241, DOI 10.1016/j.watres.2011.12.025 Ou HS, 2011, DESALINATION, V272, P107, DOI 10.1016/j.desal.2011.01.014 Paerl HW, 2018, TOXINS, V10, DOI 10.3390/toxins10020076 Paerl HW, 2013, MICROB ECOL, V65, P995, DOI 10.1007/s00248-012-0159-y Pearson LA, 2004, APPL ENVIRON MICROB, V70, P6370, DOI 10.1128/AEM.70.11.6370-6378.2004 Peng X, 2017, PHOTOCHEM PHOTOBIOL, V93, P1073, DOI 10.1111/php.12726 Phukan T, 2019, ECOTOX ENVIRON SAFE, V181, P274, DOI 10.1016/j.ecoenv.2019.05.074 Phukan T, 2018, ECOTOX ENVIRON SAFE, V155, P171, DOI 10.1016/j.ecoenv.2018.02.066 Pinto AB, 2015, MAR POLLUT BULL, V96, P410, DOI 10.1016/j.marpolbul.2015.04.014 Pospisil P, 2012, BBA-BIOENERGETICS, V1817, P218, DOI 10.1016/j.bbabio.2011.05.017 Praveena SM, 2018, SCI TOTAL ENVIRON, V642, P230, DOI 10.1016/j.scitotenv.2018.06.058 Regel RH, 2002, AQUAT TOXICOL, V59, P209, DOI 10.1016/S0166-445X(01)00254-5 Schuurmans JM, 2018, HARMFUL ALGAE, V78, P47, DOI 10.1016/j.hal.2018.07.008 Sinha RP, 2002, PHOTOCH PHOTOBIO SCI, V1, P225, DOI 10.1039/b201230h STANIER RY, 1977, ANNU REV MICROBIOL, V31, P225, DOI 10.1146/annurev.mi.31.100177.001301 Su XM, 2018, ECOL INDIC, V89, P445, DOI 10.1016/j.ecolind.2017.11.042 Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003 Tao Y, 2018, J HAZARD MATER, V359, P281, DOI 10.1016/j.jhazmat.2018.07.052 Tao Y, 2010, CHEMOSPHERE, V78, P541, DOI 10.1016/j.chemosphere.2009.11.016 Vranakis I, 2014, J PROTEOMICS, V97, P88, DOI 10.1016/j.jprot.2013.10.027 Wan JJ, 2015, J HAZARD MATER, V283, P778, DOI 10.1016/j.jhazmat.2014.10.026 Xu MJ, 2019, ECOTOX ENVIRON SAFE, V175, P289, DOI 10.1016/j.ecoenv.2019.01.131 Yang M, 2019, SCI TOTAL ENVIRON, V658, P439, DOI 10.1016/j.scitotenv.2018.12.089 Zhang M, 2018, ECOTOX ENVIRON SAFE, V157, P134, DOI 10.1016/j.ecoenv.2018.03.052 NR 49 TC 12 Z9 12 U1 13 U2 73 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD JUN PY 2020 VL 261 AR 114193 DI 10.1016/j.envpol.2020.114193 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA LK8JQ UT WOS:000531106500038 PM 32088440 DA 2023-03-13 ER PT J AU Yuan, SQ Li, H Yang, CH Xie, WY Wang, YY Zhang, JF Cai, ZB Mao, ZL Xie, WB Lu, T AF Yuan, Shiqi Li, Huan Yang, Canhong Xie, Wenyi Wang, Yuanyuan Zhang, Jiafa Cai, Zibo Mao, Zhenlin Xie, Weibing Lu, Tianming TI DHA attenuates A beta-induced necroptosis through the RIPK1/RIPK3 signaling pathway in THP-1 monocytes SO BIOMEDICINE & PHARMACOTHERAPY LA English DT Article DE Alzheimer's disease; A beta 25-35; THP-1 cells; Docosahexaenoic acid (DHA); Necroptosis; MAPK; NF-kB ID ALZHEIMERS-DISEASE; CELL-DEATH; ACTIVATION; CLEARANCE; MICROGLIA; NECROSIS; KINASES; ACID; INFLAMMATION; CONTRIBUTES AB Monocytes play a crucial role in Alzheimer's disease (AD), and docosahexaenoic acid (DHA) has a neuroprotective effect for many neurodegenerative diseases. However, mechanisms that regulate monocyte and A beta protein interaction in AD and the effects of DHA on monocytes in the context of AD are not fully understood. The experiments were designed to further explore possible mechanisms of interaction between monocytes and A beta plaques. Another objective of this study was to investigate a potential mechanism for A beta-induced necroptosis involving the activation of MAPK and NF-kB signaling pathways in human THP-1 monocytes, as well as how these pathways might be modulated by DHA. Our findings indicate that A beta 25-35 has a "Hormesis" effect on cell viability and necroptosis in THP-1 cells, and A beta 25-35 influences THP-1 cells differentiation as analyzed by flow cytometry. Pretreatment of THP-1 monocytes with DHA effectively inhibited A beta-induced activation and markedly suppressed protein expression of necroptosis (RIPK1, RIPK3, MLKL) and pro-inflammatory cytokines (TNF-alpha, IL-1 beta, IL-6). Moreover, our findings indicate that A beta 25-35 activated the ERK1/2 and p38 signaling pathways, but not NF-kappa B/p65 signaling, while pre-treatment with DHA followed by A beta 25-35 treatment suppressed only ERK1/2 signaling. Further study revealed that the expression level of RIPK3 is reduced much more during coadministration with DHA and necrostatin-1 (NEC-1) than administration alone with either of them, indicating that DHA may have additional targets. Meanwhile, this finding indicates that DHA can prevent A beta-induced necroptosis of THP-1 cells via the RIPK1/RIPK3 signaling pathway. Our results also indicate that DHA treatment restored migration of THP-1 monocytes induced by A beta 25-35, and DHA treatment could be a promising new therapy for AD management. C1 [Yuan, Shiqi; Li, Huan; Yang, Canhong; Xie, Wenyi; Wang, Yuanyuan; Zhang, Jiafa; Cai, Zibo; Mao, Zhenlin; Lu, Tianming] Southern Med Univ, Affiliated Hosp 3, Dept Neurol, 183 Zhongshan Rd West, Guangzhou 510630, Peoples R China. [Xie, Weibing] Southern Med Univ, Judicial Identificat Ctr, 1023-1063,Shatai Rd South, Guangzhou 510515, Peoples R China. C3 Southern Medical University - China; Southern Medical University - China RP Lu, T (corresponding author), Southern Med Univ, Affiliated Hosp 3, Dept Neurol, 183 Zhongshan Rd West, Guangzhou 510630, Peoples R China. EM lutianming@139.com RI Yuan, Shiqi/GWZ-9264-2022 OI Yuan, Shiqi/0000-0002-2794-2546 FU Natural Science Foundation of Guangdong Province [2017A030313461]; Science and Technology Project of Guangzhou City [201803010010]; Medical Science and Technology Research Fund of Guangdong Province [A2018061]; Scientific Research Launch Project of Southern Medical University [PY2017N029]; Health Science and Technology Project of Guangzhou City [20191A010010] FX This work was supported by grants from Natural Science Foundation of Guangdong Province (Grant No. 2017A030313461), Science and Technology Project of Guangzhou City (201803010010), Medical Science and Technology Research Fund of Guangdong Province (A2018061), Scientific Research Launch Project of Southern Medical University (PY2017N029) and Health Science and Technology Project of Guangzhou City (20191A010010). CR Alexa A, 2015, P NATL ACAD SCI USA, V112, P2711, DOI 10.1073/pnas.1417571112 Alvarez SE, 2010, NATURE, V465, P1084, DOI 10.1038/nature09128 [Anonymous], FRONT PHARM Arthur JSC, 2013, NAT REV IMMUNOL, V13, P679, DOI 10.1038/nri3495 Belkouch M, 2016, J NUTR BIOCHEM, V38, P1, DOI 10.1016/j.jnutbio.2016.03.002 Busca A., 2014, J LEUKOCYTE BIOL, V96, P1011, DOI DOI 10.1189/jlb.1A0414-212R Caccamo A, 2017, NAT NEUROSCI, V20, P1236, DOI 10.1038/nn.4608 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chanput W, 2014, INT IMMUNOPHARMACOL, V23, P37, DOI 10.1016/j.intimp.2014.08.002 Cheng Y, 2016, NEUROSCI LETT, V632, P109, DOI 10.1016/j.neulet.2016.08.031 Crouse NR, 2009, BRAIN RES, V1254, P109, DOI 10.1016/j.brainres.2008.11.093 de Almagro MC, 2015, SEMIN CELL DEV BIOL, V39, P56, DOI 10.1016/j.semcdb.2015.02.002 Fao L, 2019, AGEING RES REV, V54, DOI 10.1016/j.arr.2019.100942 Festjens N, 2007, CELL DEATH DIFFER, V14, P400, DOI 10.1038/sj.cdd.4402085 Filipczak PT, 2016, CANCER RES, V76, P7130, DOI 10.1158/0008-5472.CAN-16-1052 Giri R, 2000, AM J PHYSIOL-CELL PH, V279, pC1772, DOI 10.1152/ajpcell.2000.279.6.C1772 Gordon S, 2005, NAT REV IMMUNOL, V5, P953, DOI 10.1038/nri1733 Halle M, 2015, J IMMUNOL METHODS, V424, P64, DOI 10.1016/j.jim.2015.05.002 Hanisch UK, 2007, NAT NEUROSCI, V10, P1387, DOI 10.1038/nn1997 Hawkes CA, 2009, P NATL ACAD SCI USA, V106, P1261, DOI 10.1073/pnas.0805453106 Hohsfield LA, 2015, EXP GERONTOL, V65, P8, DOI 10.1016/j.exger.2015.03.002 Jing L, 2018, CANCER LETT, V414, P136, DOI 10.1016/j.canlet.2017.10.047 Kaiser WJ, 2013, J BIOL CHEM, V288, P31268, DOI 10.1074/jbc.M113.462341 Kanou T, 2018, J HEART LUNG TRANSPL, V37, P1261, DOI 10.1016/j.healun.2018.04.005 Kim EK, 2015, ARCH TOXICOL, V89, P867, DOI 10.1007/s00204-015-1472-2 Kwon SH, 2015, NEUROSCIENCE, V304, P14, DOI 10.1016/j.neuroscience.2015.07.030 Lin QS, 2020, LAB INVEST, V100, P503, DOI 10.1038/s41374-019-0319-5 Linkermann A, 2014, NEW ENGL J MED, V370, P455, DOI 10.1056/NEJMra1310050 Liu N, 2017, NEUROSCI LETT, V651, P1, DOI 10.1016/j.neulet.2017.04.056 Majumdar A, 2008, NEUROBIOL AGING, V29, P707, DOI 10.1016/j.neurobiolaging.2006.12.001 Mawuenyega KG, 2010, SCIENCE, V330, P1774, DOI 10.1126/science.1197623 McLean FH, 2019, NUTR METAB, V16, DOI 10.1186/s12986-019-0387-y Michaud JP, 2013, CELL REP, V5, P646, DOI 10.1016/j.celrep.2013.10.010 Michaud JP, 2013, P NATL ACAD SCI USA, V110, P1941, DOI 10.1073/pnas.1215165110 Millucci L, 2010, CURR PROTEIN PEPT SC, V11, P54, DOI 10.2174/138920310790274626 Mincheva-Tasheva S, 2013, NEUROSCIENTIST, V19, P175, DOI 10.1177/1073858412444007 Moriwaki K, 2014, CYTOKINE GROWTH F R, V25, P167, DOI 10.1016/j.cytogfr.2013.12.013 Najjar M, 2016, IMMUNITY, V45, P46, DOI 10.1016/j.immuni.2016.06.007 Newton K, 2015, TRENDS CELL BIOL, V25, P347, DOI 10.1016/j.tcb.2015.01.001 Ofengeim D, 2017, P NATL ACAD SCI USA, V114, pE8788, DOI 10.1073/pnas.1714175114 Park SY, 2014, INT IMMUNOPHARMACOL, V19, P60, DOI 10.1016/j.intimp.2013.12.002 Qin SS, 2018, PHARMACOL RES, V133, P218, DOI 10.1016/j.phrs.2018.01.014 Querfurth HW, 2010, NEW ENGL J MED, V362, P329, DOI 10.1056/NEJMra0909142 Serrano-Pozo A, 2011, CSH PERSPECT MED, V1, DOI 10.1101/cshperspect.a006189 Shan B, 2018, GENE DEV, V32, P327, DOI 10.1101/gad.312561.118 Sun XQ, 1999, J BIOL CHEM, V274, P16871, DOI 10.1074/jbc.274.24.16871 Udan MLD, 2008, J NEUROCHEM, V104, P524, DOI 10.1111/j.1471-4159.2007.05001.x Upton JW, 2010, CELL HOST MICROBE, V7, P302, DOI 10.1016/j.chom.2010.03.006 Winblad B, 2016, LANCET NEUROL, V15, P455, DOI 10.1016/S1474-4422(16)00062-4 Wu XL, 2017, EUR J PHARM SCI, V110, P101, DOI 10.1016/j.ejps.2017.03.037 Xiong XY, 2016, PROG NEUROBIOL, V142, P23, DOI 10.1016/j.pneurobio.2016.05.001 Xu MJ, 2019, J ETHNOPHARMACOL, V237, P354, DOI 10.1016/j.jep.2019.02.046 Yang CH, 2016, J ALZHEIMERS DIS, V52, P391, DOI 10.3233/JAD-150949 Yuan JY, 2019, NAT REV NEUROSCI, V20, P19, DOI 10.1038/s41583-018-0093-1 Zhang M, 2013, NEUROTOX RES, V24, P64, DOI 10.1007/s12640-012-9361-4 Zhang YP, 2018, PROSTAG LEUKOTR ESS, V136, P85, DOI 10.1016/j.plefa.2017.07.003 Zuroff L, 2017, CELL MOL LIFE SCI, V74, P2167, DOI 10.1007/s00018-017-2463-7 NR 58 TC 11 Z9 12 U1 2 U2 13 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0753-3322 EI 1950-6007 J9 BIOMED PHARMACOTHER JI Biomed. Pharmacother. PD JUN PY 2020 VL 126 AR 110102 DI 10.1016/j.biopha.2020.110102 PG 12 WC Medicine, Research & Experimental; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine; Pharmacology & Pharmacy GA LE5UI UT WOS:000526785500023 PM 32199223 OA gold DA 2023-03-13 ER PT J AU Lim, S Ko, EJ Kang, YJ Baek, KW Ock, MS Song, KS Kang, HJ Keum, YS Hyun, JW Kwon, TK Nam, SY Cha, HJ Choi, YH AF Lim, Sangwook Ko, Eun-Ji Kang, Yun-Jeong Baek, Kyung-Wan Ock, Mee Sun Song, Kyoung Seob Kang, Hye-Joo Keum, Young-Sam Hyun, Jin Won Kwon, Taek Kyu Nam, Seon Young Cha, Hee-Jae Choi, Yung Hyun TI Effect of irradiation on cytokine secretion and nitric oxide production by inflammatory macrophages SO GENES & GENOMICS LA English DT Article DE Irradiation; Low-dose; High-dose; Proliferation; Inflammatory cytokines; NO ID IONIZING-RADIATION; CELLS; EXPRESSION; INDUCTION; HORMESIS; THERAPY; PAIN AB This study explored the effects of low-dose and high-dose irradiation on inflammatory macrophage cells, specifically inflammatory cytokine secretion and nitric oxide (NO) production after irradiation. To elucidate the effect of irradiation on active and inactive macrophages, we exposed LPS-treated or untreated murine monocyte/macrophage RAW 264.7 cell lines to low-dose to high-dose radiation (0.01-10 Gy). We analyzed the effects of irradiation on RAW 264.7 cell proliferation by MTT assays and analyzed cytokine secretion and NO production related to inflammation by ELISA assays. Low-to-high doses of radiation did not significantly affect the proliferation of LPS-treated or untreated RAW 264.7 cells. Pro-inflammatory cytokine IL-1 was generally increased in RAW 264.7 cells at 3 days after radiation. Especially, IL-1 was significantly increased in only high dose-irradiation (2 and 10 Gy irradiation) groups in LPS-untreated RAW 264.7 cells but increased in both low and high dose-irradiation groups (0.01-10 Gy) in LPS-treated RAW 264.7 cells at 3 days after irradiation. Whereas, the expression of IL-1 was prolonged in high-dose irradiation group at 5 days after irradiation. The production of anti-inflammatory cytokine IL-10 did not change significantly at 3 days after radiation but was significantly reduced at 5 days after 10 Gy radiation. The effect of irradiation on the secretion of IL-1 and IL-10 was not significantly different between RAW 264.7 cells treated or not treated with LPS. The effect of irradiation on NO secretion by RAW 264.7 cells showed a specific pattern. NO was produced after low-dose irradiation but reduced in a high-dose irradiation group at 3 days after irradiation. However, NO production was not changed after low-dose irradiation and reduced at 5 days after high-dose irradiation. These results showed that irradiation affected the inflammatory system and regulated NO production in both activated and inactivated macrophages through different regulation mechanisms, depending on irradiation dose. C1 [Lim, Sangwook] Kosin Univ, Dept Radiat Oncol, Coll Med, Busan, South Korea. [Ko, Eun-Ji; Kang, Yun-Jeong; Baek, Kyung-Wan; Ock, Mee Sun; Cha, Hee-Jae] Kosin Univ, Dept Parasitol & Genet, Coll Med, Busan, South Korea. [Ko, Eun-Ji] Pusan Natl Univ, Dept Biol Sci, Coll Nat Sci, Busan, South Korea. [Song, Kyoung Seob] Kosin Univ, Dept Physiol, Coll Med, Busan, South Korea. [Kang, Hye-Joo; Choi, Yung Hyun] Dong Eui Univ, Dept Biochem, Coll Oriental Med, Busan, South Korea. [Keum, Young-Sam] Dongguk Univ, Dept Pharm, Coll Pharm, Goyang, South Korea. [Hyun, Jin Won] Jeju Natl Univ, Sch Med, Dept Biochem, Jeju, South Korea. [Kwon, Taek Kyu] Keimyung Univ, Sch Med, Dept Immunol, Daegu, South Korea. [Nam, Seon Young] Korea Hydro & Nucl Power Co Ltd, Radiat Hlth Inst, Low Dose Radiat Res Team, Seoul, South Korea. C3 Pusan National University; Dong-Eui University; Dongguk University; Jeju National University; Keimyung University; Korea Hydro & Nuclear Power RP Cha, HJ (corresponding author), Kosin Univ, Dept Parasitol & Genet, Coll Med, Busan, South Korea.; Choi, YH (corresponding author), Dong Eui Univ, Dept Biochem, Coll Oriental Med, Busan, South Korea. EM hcha@kosin.ac.kr; choiyh@deu.ac.kr RI Cha, Hee-Jae/AFO-8772-2022; Baek, Kyung-Wan/N-2071-2018 OI Baek, Kyung-Wan/0000-0002-8445-3773; Ko, Eun-Ji/0000-0002-3758-1019 FU National Research Foundation; Korean Government [NRF-2013R1A1A4A01004996] FX This work was supported by a grant from the National Research Foundation, which is funded by the Korean Government (NRF-2013R1A1A4A01004996). CR Bjordal JM, 2006, PHOTOMED LASER SURG, V24, P158, DOI 10.1089/pho.2006.24.158 Bjordal JM, 2003, AUST J PHYSIOTHER, V49, P107, DOI 10.1016/S0004-9514(14)60127-6 Bortfeld T, 2011, BRIT J RADIOL, V84, P485, DOI 10.1259/bjr/86221320 Brenner DJ, 2003, P NATL ACAD SCI USA, V100, P13761, DOI 10.1073/pnas.2235592100 Cheda A, 2004, RADIAT RES, V161, P335, DOI 10.1667/RR3123 Guha M, 2001, CELL SIGNAL, V13, P85, DOI 10.1016/S0898-6568(00)00149-2 Hou DL, 2014, CANCER GENE THER, V21, P542, DOI 10.1038/cgt.2014.62 Ina Y, 2005, INT J RADIAT BIOL, V81, P721, DOI 10.1080/09553000500519808 Kopydlowski KM, 1999, J IMMUNOL, V163, P1537 Lowenstein CJ, 2004, J CELL SCI, V117, P2865, DOI 10.1242/jcs.01166 Matsuu-Matsuyama M, 2006, J RADIAT RES, V47, P1, DOI 10.1269/jrr.47.1 Pandey R, 2005, INT J RADIAT BIOL, V81, P801, DOI 10.1080/09553000500531886 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Ren HW, 2006, CELL IMMUNOL, V244, P50, DOI 10.1016/j.cellimm.2007.02.009 Schindl M, 1999, PHOTODERMATOL PHOTO, V15, P18, DOI 10.1111/j.1600-0781.1999.tb00047.x SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 NR 16 TC 1 Z9 1 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1976-9571 EI 2092-9293 J9 GENES GENOM JI Genes Genom. PD AUG PY 2016 VL 38 IS 8 BP 717 EP 722 DI 10.1007/s13258-016-0416-4 PG 6 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA DR2WT UT WOS:000379765300005 DA 2023-03-13 ER PT J AU Hackenberger, BK Velki, M Stepic, S Hackenberger, DK AF Hackenberger, Branimir K. Velki, Mirna Stepic, Sandra Hackenberger, Davorka K. TI The effect of formalin on acetylcholinesterase and catalase activities, and on the concentration of oximes, in the earthworm species Eisenia andrei SO EUROPEAN JOURNAL OF SOIL BIOLOGY LA English DT Article DE Earthworms; Formalin; Acetylcholinesterase; Oximes; Catalase; Biomonitoring ID FLAVIN-CONTAINING MONOOXYGENASE; CHOLINESTERASE ACTIVITY; OXIDATIVE STRESS; CEREBRAL-CORTEX; N-OXYGENATION; TRANS-OXIME; IN-VITRO; FORMALDEHYDE; TOXICOLOGY; EXPOSURE AB Formalin, the aqueous solution of formaldehyde, is used as a standard earthworm expellant. Since the possible biochemical effects of formalin to earthworms were not investigated, in the present study adult individuals of the earthworm species Eisenia andrei were exposed to sub-lethal concentrations of formalin in order to determine whether its usage as an expellant will influence the physiological status of the earthworms. In all experiments filter paper contact test was used and experiments were conducted under controlled laboratory conditions. Earthworms were exposed to 0.005, 0.01, 0.05, 0.1 and 0.2 mg ml(-1) of formalin for 5 min, 15 min, 30 min and 2 h, and the acetylcholinesterase (AChE) activity, catalase (CAT) activity and concentration of oximes were measured. As expected, the lowest AChE activity was measured at the highest concentration of formalin applied (0.2 mg ml(-1)). However, following a 2 h exposure to concentration of 0.01 mg ml(-1), the AChE activity increased up to 1.12 times the activity in the control. Similar results were obtained when concentration of oximes was measured: the lowest concentration of oximes occurred following 2 h exposure to the highest concentration (0.2 mg ml(-1)): and the highest concentration of oximes equating to 1.18 times increase relative to the control-occurred after a 2 h exposure at 0.01 mg ml(-1). Dose-response curves for AChE activity showed an inverted U-shape characteristic for hormesis and concentration of oximes indicate; a role in maintaining the normal AChE activity in the organism. Measurement of CAT activity measurement showed dose and time dependent induction, indicating the occurrence of oxidative stress. The obtained results showed formalin causes measurable effects on the metabolism of E. andrei, therefore the usage of formalin as an earthworm expellant is unsuitable for ecotoxicological research or biomonitoring. (C) 2012 Elsevier Masson SAS. All rights reserved. C1 [Hackenberger, Branimir K.; Velki, Mirna; Stepic, Sandra; Hackenberger, Davorka K.] Josip Juraj Strossmayer Univ Osijek, Dept Biol, Osijek 31000, Croatia. C3 University of JJ Strossmayer Osijek RP Hackenberger, BK (corresponding author), Josip Juraj Strossmayer Univ Osijek, Dept Biol, Trg Ljudevita Gaja 6, Osijek 31000, Croatia. EM hack@biologija.unios.hr; mirna.velki@gmail.com; sandra@biologija.unios.hr; davorka@biologija.unios.hr RI Hackenberger, Branimir K./H-9738-2018; Hackenberger, Branimir/AAT-6871-2021 OI Hackenberger, Branimir K./0000-0003-4317-2067; Hackenberger, Branimir/0000-0003-4317-2067; Hackenberger, Davorka/0000-0002-3315-7608; Velki, Mirna/0000-0003-1342-0138 FU Ministry for Science and Technology of the Republic of Croatia [285-0000000-3484]; firm Bioquant, Osijek, Croatia FX This work was supported by the Ministry for Science and Technology of the Republic of Croatia, Project No. 285-0000000-3484 and by the firm Bioquant, Osijek, Croatia. CR [Anonymous], 1985, EARTHWORMS THEIR ECO Bell-Parikh LC, 1999, J BIOL CHEM, V274, P23833, DOI 10.1074/jbc.274.34.23833 BOLT HM, 1987, J CANCER RES CLIN, V113, P305, DOI 10.1007/BF00397713 Bouche M, 1972, INRA PUBL ANN ZOOL E, P671 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Buncel E, 2002, J AM CHEM SOC, V124, P8766, DOI 10.1021/ja020379k Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Cashman JR, 1999, J PHARMACOL EXP THER, V288, P1251 Claiborne A., 1985, CRC HDB METHODS OXYG, P283 Coja T, 2008, ECOTOX ENVIRON SAFE, V71, P552, DOI 10.1016/j.ecoenv.2007.08.002 Collange B, 2010, ENVIRON POLLUT, V158, P2266, DOI 10.1016/j.envpol.2010.02.009 DALLAS CE, 1989, ENVIRON RES, V49, P50, DOI 10.1016/S0013-9351(89)80021-0 Day K.E., 1990, AQUAT TOXICOL, V18, P1001 Delwing D, 2003, METAB BRAIN DIS, V18, P79, DOI 10.1023/A:1021934803724 Eichinger E, 2007, ECOTOX ENVIRON SAFE, V67, P260, DOI 10.1016/j.ecoenv.2006.03.015 ELLMAN GL, 1961, BIOCHEM PHARMACOL, V7, P88, DOI 10.1016/0006-2952(61)90145-9 Fulton MH, 2001, ENVIRON TOXICOL CHEM, V20, P37, DOI [10.1897/1551-5028(2001)020<0037:AIIEFA>2.0.CO;2, 10.1002/etc.5620200104] FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 Gambi N, 2007, COMP BIOCHEM PHYS C, V145, P678, DOI 10.1016/j.cbpc.2007.03.002 Gulec M, 2006, MOL CELL BIOCHEM, V290, P61, DOI 10.1007/s11010-006-9165-z GUNN A, 1992, PEDOBIOLOGIA, V36, P65 Hackenberger BK, 2008, ECOTOX ENVIRON SAFE, V71, P583, DOI 10.1016/j.ecoenv.2007.11.008 International Agency for Research on Cancer Monographs, 2006, INT AGENCY RES CANC, V88, P478 ISO, 2006, 2361112006 ISO JOHNSON DP, 1968, ANAL CHEM, V40, P646, DOI 10.1021/ac60259a048 Kum C, 2007, EXP ANIM TOKYO, V56, P35, DOI 10.1538/expanim.56.35 Labrot F, 1996, BIOMARKERS, V1, P21, DOI 10.3109/13547509609079343 Lin J, 1997, J PHARMACOL EXP THER, V282, P1269 Lin J, 1997, CHEM RES TOXICOL, V10, P842, DOI 10.1021/tx970030o MCGEER EG, 1989, J NEUROSCI METH, V28, P235, DOI 10.1016/0165-0270(89)90042-3 Moraes BS, 2007, CHEMOSPHERE, V68, P1597, DOI 10.1016/j.chemosphere.2007.03.006 NAIK NT, 1963, Q J MICROSC SCI, V104, P89 Njoya HK, 2009, INT J INTEGR BIOL, V7, P160 Organization for Economic Cooperation and Development, 1984, GUID TEST CHEM EARTH, V207 PATOCKA J, 2005, J APPL BIOMED, V3, P91 Payne JF, 1996, MAR POLLUT BULL, V32, P225, DOI 10.1016/0025-326X(95)00112-Z Printes LB, 2004, ENVIRON TOXICOL CHEM, V23, P1241, DOI 10.1897/03-202 Reinecke SA, 2007, ECOTOX ENVIRON SAFE, V66, P244, DOI 10.1016/j.ecoenv.2005.10.006 Rodriguez-Castellanos L, 2007, ENVIRON TOXICOL CHEM, V26, P1992, DOI 10.1897/06-625R1.1 ROMBKE J, 2006, EUR J SOIL BIOL, V42, P62 Saito Y, 2005, TOXICOLOGY, V210, P235, DOI 10.1016/j.tox.2005.02.006 Schulpis KH, 1998, Z NATURFORSCH C, V53, P291 TAXI J, 1952, J PHYSIOL-PARIS, V44, P595 Teng S, 2001, CHEM-BIOL INTERACT, V130, P285, DOI 10.1016/S0009-2797(00)00272-6 Tsakiris S, 2006, PHARMACOL RES, V53, P1, DOI 10.1016/j.phrs.2005.07.006 Wyse ATS, 2004, NEUROCHEM RES, V29, P385, DOI 10.1023/B:NERE.0000013741.81436.e8 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 NR 48 TC 16 Z9 16 U1 0 U2 26 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1164-5563 J9 EUR J SOIL BIOL JI Eur. J. Soil Biol. PD MAY-JUN PY 2012 VL 50 BP 137 EP 143 DI 10.1016/j.ejsobi.2012.02.002 PG 7 WC Ecology; Soil Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Agriculture GA 948NJ UT WOS:000304509600022 DA 2023-03-13 ER PT J AU Iftikhar, A Hafeez, F Aziz, MA Hashim, M Naeem, A Yousaf, HK Saleem, MJ Hussain, S Hafeez, M Ali, Q Rehman, M Akhtar, S Marc, RA Syaad, KMA Mostafa, YS Saeed, FAA AF Iftikhar, Ayesha Hafeez, Faisal Aziz, Muhammad Asif Hashim, Muhammad Naeem, Afifa Yousaf, Hafiz Kamran Saleem, Muhammad Jawad Hussain, Sabir Hafeez, Muhammad Ali, Qurban Rehman, Muzammal Akhtar, Sumreen Marc, Romina Alina Syaad, Khalid M. Al Mostafa, Yassor Sabry Saeed, Fatimah A. Al TI Assessment of sublethal and transgenerational effects of spirotetramat, on population growth of cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae) SO FRONTIERS IN PHYSIOLOGY LA English DT Article DE cabbage aphid; population growth; spirotetramat; sublethal concentrations; transgenerational effects ID GREEN PEACH APHID; LIFE TABLE PARAMETERS; BIOLOGICAL TRAITS; INDUCED HORMESIS; COTTON APHID; AGE-STAGE; RED MITE; INSECTICIDE; REPRODUCTION; RESISTANCE AB The cabbage aphid (Brevicoryne brassicae L.) is a devastating pest of cruciferous crops causing economic damage worldwide and notably owing to its increasing resistance to commonly used pesticides. Such resistance prompts the development of integrated pest management (IPM) programs that include novel pesticides being effective against the aphids. Spirotetramat is a novel insecticide used against sap-sucking insect pests, particularly aphids. This study evaluated the toxicity of spirotetramat to adult apterous B. brassicae after 72 h using the leaf dipping method. According to the toxicity bioassay results, the LC50 value of spirotetramat to B. brassicae was 1.304 mgL(-1). However, the sublethal concentrations (LC5 and LC15) and transgenerational effects of this novel insecticide on population growth parameters were estimated using the age-stage, two-sex life table theory method. The sublethal concentrations (LC5; 0.125 mgL(-1) and LC15; 0.298 mgL(-1)) of spirotetramat reduced the adult longevity and fecundity of the parent generation (F-0). These concentrations prolonged the preadult developmental duration while decreasing preadult survival, adult longevity and reproduction of the F-1 generation. The adult pre-reproductive period was also extended by spirotetramat treatment groups. Subsequently, the population growth parameters such as the intrinsic rate of increase r, finite rate of increase lambda and net reproductive rate R (0) of the F-1 generation were decreased in spirotetramat treatment groups whereas, the mean generation time T of the F-1 generation was not affected when compared to the control. These results indicated the negative effect of sublethal concentrations of spirotetramat on the performance of B. brassicae by reducing its nymphal survival, extending the duration of some immature stages and suppressing the population growth of B. brassicae. Overall, we demonstrated that spirotetramat is a pesticide showing both sublethal activities, and transgenerational effects on cabbage aphid; it may be useful for implementation in IPM programs against this aphid pest. C1 [Iftikhar, Ayesha; Hafeez, Faisal; Naeem, Afifa; Saleem, Muhammad Jawad; Ali, Qurban] Entomol Res Inst, Ayub Agr Res Inst, Faisalabad, Pakistan. [Aziz, Muhammad Asif] Arid Agr Univ, Fac Crop & Food Sci, Dept Entomol, Rawalpindi, Pakistan. [Hashim, Muhammad] Univ Punjab, Fac Agr Sci, Dept Entomol, Lahore, Pakistan. [Yousaf, Hafiz Kamran] Univ Okara, Dept Zool, Okara, Pakistan. [Hussain, Sabir] Mir Chakar Khan Rind Univ, Dept Agr, Sibi, Pakistan. [Hafeez, Muhammad] Zhejiang Univ, Inst Insect Sci, State Key Lab Rice Biol, Hangzhou, Peoples R China. [Hafeez, Muhammad] Zhejiang Univ, Inst Insect Sci, Minist Agr Key Lab Mol Biol Crop Pathogensand Inse, Hangzhou, Peoples R China. [Rehman, Muzammal] Guangxi Univ, Coll Agr, Key Lab Plant Genet & Breeding, Nanning, Peoples R China. [Akhtar, Sumreen] Univ Punjab, Fac Basic Sci, Dept Zool, Lahore, Pakistan. [Marc, Romina Alina] King Khalid Univ, Coll Sci, Saudi Arabia Res Ctr Adv Mat Sci RCAMS, Dept Biol, Abha, Saudi Arabia. [Syaad, Khalid M. Al] King Khalid Univ, Fac Sci, Biol Dept, Abha, Saudi Arabia. [Mostafa, Yassor Sabry] King Khalid Univ, Coll Sci, Dept Biol, Abha, Saudi Arabia. C3 Arid Agriculture University; University of Punjab; Zhejiang University; Zhejiang University; Guangxi University; University of Punjab; King Khalid University; King Khalid University; King Khalid University RP Iftikhar, A (corresponding author), Entomol Res Inst, Ayub Agr Res Inst, Faisalabad, Pakistan.; Hafeez, M (corresponding author), Zhejiang Univ, Inst Insect Sci, State Key Lab Rice Biol, Hangzhou, Peoples R China.; Hafeez, M (corresponding author), Zhejiang Univ, Inst Insect Sci, Minist Agr Key Lab Mol Biol Crop Pathogensand Inse, Hangzhou, Peoples R China. EM aaishaiftkhr@yahoo.com; 0621598@zju.edu.cn OI naeem, afifa/0000-0003-3755-128X; Hussain, Sabir/0000-0002-3532-0907; Aziz, Muhammad Asif/0000-0001-9736-2902 FU King Khalid University, Abha, KSA [G.R.P/23/43] FX The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, KSA for funding this work through General Research Project under grant number (G.R.P/23/43). CR Abbas Qaisar, 2017, Journal of Entomology and Zoology Studies, V5, P1302 Ahmad M, 2013, J ECON ENTOMOL, V106, P954, DOI 10.1603/EC12233 Ahmed M, 2020, MOLECULES, V25, DOI 10.3390/molecules25092184 Akkopru EP, 2015, J ECON ENTOMOL, V108, P378, DOI 10.1093/jee/tov011 Anzabi SHM, 2014, ROM AGRIC RES, V31, P75 Arrese EL, 2001, INSECT BIOCHEM MOLEC, V31, P7, DOI 10.1016/S0965-1748(00)00102-8 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Babcock JM, 2011, PEST MANAG SCI, V67, P328, DOI 10.1002/ps.2069 Bashir Fozia, 2013, Journal of Entomological Research, V37, P83 Bruck E, 2009, CROP PROT, V28, P838, DOI 10.1016/j.cropro.2009.06.015 Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2018, TWOSEX MSCHART COMPU Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7 Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Dader B, 2017, INSECT SCI, V24, P929, DOI 10.1111/1744-7917.12470 Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Doker I, 2021, CROP PROT, V141, DOI 10.1016/j.cropro.2020.105488 Drobnjakovic T, 2021, BIOCONTROL SCI TECHN, V31, P604, DOI 10.1080/09583157.2021.1873248 Efron B., 1993, INTRO BOOTSTRAP, DOI [10.1007/978-1-4899-4541-9, DOI 10.1007/978-1-4899-4541-9, 10.1111/1467-9639.00050] Finney D.J., 1971, PROBIT ANAL Gong YH, 2016, ECOTOXICOLOGY, V25, P655, DOI 10.1007/s10646-016-1624-z Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Haddi K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156616 Hafeez M, 2022, FRONT PHYSIOL, V13, DOI 10.3389/fphys.2022.884447 Hafeez M, 2022, ENVIRON SCI POLLUT R, V29, P1746, DOI 10.1007/s11356-021-16974-w Hafeez M, 2021, PESTIC BIOCHEM PHYS, V174, DOI 10.1016/j.pestbp.2021.104802 Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282 He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762 Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256 Iftikhar A, 2020, ECOTOXICOLOGY, V29, P1017, DOI 10.1007/s10646-020-02159-7 Iga M, 2012, BIOL PHARM BULL, V35, P838, DOI 10.1248/bpb.35.838 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Jie ML, 2021, ENVIRON GEOCHEM HLTH, V43, P1941, DOI 10.1007/s10653-020-00776-z Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 Liang PZ, 2019, J ECON ENTOMOL, V112, P852, DOI 10.1093/jee/toy381 Liao X, 2019, CROP PROT, V118, P6, DOI 10.1016/j.cropro.2018.12.005 Lu YH, 2012, NATURE, V487, P362, DOI 10.1038/nature11153 Lv NN, 2021, ECOTOX ENVIRON SAFE, V212, DOI 10.1016/j.ecoenv.2021.111969 Mahmoodi L, 2020, J ECON ENTOMOL, V113, P2713, DOI 10.1093/jee/toaa193 Marcic D, 2012, EXP APPL ACAROL, V56, P113, DOI 10.1007/s10493-011-9500-2 Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064 Mostafiz MM, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10091313 Ouyang YL, 2012, PEST MANAG SCI, V68, P781, DOI 10.1002/ps.2326 Pan HS, 2014, J PEST SCI, V87, P731, DOI 10.1007/s10340-014-0610-6 Planes L, 2013, J PEST SCI, V86, P321, DOI 10.1007/s10340-012-0440-3 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rahmani S, 2013, CROP PROT, V54, P168, DOI 10.1016/j.cropro.2013.08.002 Roh HS, 2015, J PEST SCI, V88, P621, DOI 10.1007/s10340-014-0631-1 Salazar-Lopez NJ, 2016, INSECTICIDES RESISTANCE, P41, DOI 10.5772/61322 Sarhozaki Mehdi Taheri, 2014, Archives of Phytopathology and Plant Protection, V47, P508, DOI 10.1080/03235408.2013.813145 Saska P, 2016, SCI REP-UK, V6, DOI 10.1038/srep27801 Shang QL, 2012, CROP PROT, V31, P15, DOI 10.1016/j.cropro.2011.09.014 Shi DD, 2022, CROP PROT, V152, DOI 10.1016/j.cropro.2021.105863 Shi XB, 2011, PEST MANAG SCI, V67, P1528, DOI 10.1002/ps.2207 Shikano I, 2017, J CHEM ECOL, V43, P586, DOI 10.1007/s10886-017-0850-z Shonga E., 2021, SINET ETHIOP J SCI, V44, P27, DOI [10.4314/sinet.v44i1.3, DOI 10.4314/SINET.V44I1.3] Shonga E, 2021, INT J TROP INSECT SC, V41, P455, DOI 10.1007/s42690-020-00226-4 Software L., 2005, LEORA SOFTWARE Sohrabi F, 2011, CROP PROT, V30, P1190, DOI 10.1016/j.cropro.2011.05.004 Sohrabi F, 2013, CROP PROT, V45, P98, DOI 10.1016/j.cropro.2012.11.024 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221 Tuan SJ, 2014, PEST MANAG SCI, V70, P805, DOI 10.1002/ps.3618 Ullah F, 2020, PESTIC BIOCHEM PHYS, V170, DOI 10.1016/j.pestbp.2020.104687 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x Wang ZH, 2016, AUSTRAL ENTOMOL, V55, P235, DOI 10.1111/aen.12174 Xiang X, 2019, CROP PROT, V120, P97, DOI 10.1016/j.cropro.2019.02.016 Xiao D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128936 Yousaf HK, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34821-w Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357 Zhang P, 2014, PESTIC BIOCHEM PHYS, V111, P31, DOI 10.1016/j.pestbp.2014.04.003 Zhang Q, 2021, ENTOMOL GEN, V41, P111, DOI 10.1127/entomologia/2020/1104 Zhang Z, 2012, J INTEGR AGR, V11, P1145, DOI 10.1016/S2095-3119(12)60108-7 NR 86 TC 0 Z9 0 U1 4 U2 4 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-042X J9 FRONT PHYSIOL JI Front. Physiol. PD DEC 8 PY 2022 VL 13 AR 1014190 DI 10.3389/fphys.2022.1014190 PG 12 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA 7I5FW UT WOS:000903914600001 PM 36579021 OA Green Published, gold DA 2023-03-13 ER PT J AU Chahardoli, A Sharifan, H Karimi, N Kakavand, SN AF Chahardoli, Azam Sharifan, Hamidreza Karimi, Naser Kakavand, Shiva Najafi TI Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO(2)NPs) in Nigella arvensis L SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Antioxidative enzymes; Honnesis; Nigella arvensis; TiO(2)NPs; Translocation; Treatment ID ZINC-OXIDE NANOPARTICLES; TIO2 NANOPARTICLES; CEO2 NANOPARTICLES; PHYSICOCHEMICAL PROPERTIES; ENGINEERED NANOPARTICLES; SILVER NANOPARTICLES; ENZYME-ACTIVITIES; TOXICITY; PLANTS; IMPACT AB The extensive application of titanium dioxide nanopartides (TiO(2)NPs) in agro-industrial practices leads to their high accumulation in the environment or agricultural soils. However, their threshold and ecotoxicological impacts on plants are still poorly understood. In this study, the hormetic effects of TiO(2)NPs at a concentration range of 0-2500 mg/L on the growth, and biochemical and physiological behaviors of Nigella arvensis in a hydroponic system were examined for three weeks. The translocation of TiO(2)NPs in plant tissues was characterized through scanning and transmission electron microscopy (SEM and TEM). The bioaccumulation of total titanium (Ti) was quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Briefly, the elongation of roots and shoots and the total biomass growth were significantly promoted at 100 mg/L TiO(2)NPs . As the results indicated, TiO(2)NPs had a hormesis effect on the proline content, i.e., a stimulating effect at the low concentrations of 50 and 100 mg/L and an inhibiting effect in the highest concentration of 2500 mg/L. A biphasic dose-response was observed against TiO(2)NPs in shoot soluble sugar and protein contents. The inhibitory effects were detected at >= 1000 mg/L TiO(2)NPs, where the synthesis of chlorophylls and carotenoid was reduced. At 1000 mg/ L, TiO(2)NPs significantly promoted the cellular H2O2 generation, and increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Furthermore, it enhanced the total antioxidant content (TAC), total iridoid content (TIC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, the study revealed the physiological and biochemical alterations in a medicinal plant affected by TiO(2)NPs, which can help to use these NPs beneficially by eliminating their harmful effects. (C) 2021 Elsevier B.V. All rights reserved. C1 [Chahardoli, Azam; Karimi, Naser] Razi Univ, Fac Sci, Dept Biol, Kermanshah, Iran. [Sharifan, Hamidreza] Albany State Univ, Dept Nat Sci, Albany, GA 31705 USA. [Kakavand, Shiva Najafi] Kermanshah Univ Med Sci, Pharmaceut Sci Res Ctr, Hlth Inst, Kermanshah, Iran. C3 Razi University; University System of Georgia; Albany State University; Kermanshah University of Medical Sciences RP Chahardoli, A (corresponding author), Razi Univ, Fac Sci, Dept Biol, Kermanshah, Iran. EM a.chahardoli@razi.ac.ir RI Najafi, Shiva/ABA-9543-2020 OI Najafi, Shiva/0000-0002-4994-0533 CR Abdul Jalill R.DH., 2015, SCH ACAD J BIOSCI, V3, P254 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Ali S, 2021, J NANOMATER, V2021, DOI 10.1155/2021/6677616 Antisari LV, 2015, ENVIRON SCI POLLUT R, V22, P1841, DOI 10.1007/s11356-014-3509-0 ARNON DI, 1949, PLANT PHYSIOL, V24, P1, DOI 10.1104/pp.24.1.1 Auffan M, 2010, NANOMEDICINE-UK, V5, P999, DOI 10.2217/NNM.10.61 Baalousha M, 2016, ENVIRON SCI-NANO, V3, P323, DOI 10.1039/c5en00207a BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Castiglione MR, 2014, PROTOPLASMA, V251, P1471, DOI 10.1007/s00709-014-0649-5 Chahardoli A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60841-6 Clement L, 2013, CHEMOSPHERE, V90, P1083, DOI 10.1016/j.chemosphere.2012.09.013 Coman V, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9091248 DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017 Foltete AS, 2011, ENVIRON POLLUT, V159, P2515, DOI 10.1016/j.envpol.2011.06.020 Grande F, 2016, MINI-REV MED CHEM, V16, P762, DOI 10.2174/1389557516666160321114341 Haghighi M., 2014, Journal of Crop Science and Biotechnology, V17, P221, DOI 10.1007/s12892-014-0056-7 Hajra A, 2017, ENERGY ECOL ENVIRON, V2, P277, DOI 10.1007/s40974-017-0059-6 Hatami M, 2014, TURK J BIOL, V38, P130, DOI 10.3906/biy-1304-64 Hong FH, 2005, BIOL TRACE ELEM RES, V104, P249, DOI 10.1385/BTER:104:3:249 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Jakubiak M, 2014, MYCOL PROG, V13, P525, DOI 10.1007/s11557-013-0933-3 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jia G, 2005, ENVIRON SCI TECHNOL, V39, P1378, DOI 10.1021/es048729l Kassambara A., 2017, MULTIVARIATE ANAL, V170 Keller AA, 2014, ENVIRON SCI TECH LET, V1, P65, DOI 10.1021/ez400106t Krishnaraj C, 2012, PROCESS BIOCHEM, V47, P651, DOI 10.1016/j.procbio.2012.01.006 Larue C., 2011, P J PHYS C SER, V304, DOI DOI 10.1088/1742-6596/304/1/012057 Larue C, 2012, SCI TOTAL ENVIRON, V431, P197, DOI 10.1016/j.scitotenv.2012.04.073 Lee WM, 2012, CHEMOSPHERE, V86, P491, DOI 10.1016/j.chemosphere.2011.10.013 Lin DH, 2007, ENVIRON POLLUT, V150, P243, DOI 10.1016/j.envpol.2007.01.016 Liu H, 2017, ACS SUSTAIN CHEM ENG, V5, P3204, DOI 10.1021/acssuschemeng.6b02976 Liu RQ, 2015, SCI TOTAL ENVIRON, V514, P131, DOI 10.1016/j.scitotenv.2015.01.104 Lopez-Moreno ML, 2010, ENVIRON SCI TECHNOL, V44, P7315, DOI 10.1021/es903891g Lopez-Moreno ML, 2010, J AGR FOOD CHEM, V58, P3689, DOI 10.1021/jf904472e Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4 Ma YH, 2010, CHEMOSPHERE, V78, P273, DOI 10.1016/j.chemosphere.2009.10.050 Mishra S, 2006, CHEMOSPHERE, V65, P1027, DOI 10.1016/j.chemosphere.2006.03.033 Modarresi M, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04265 Moore MN, 2006, ENVIRON INT, V32, P967, DOI 10.1016/j.envint.2006.06.014 Morteza E, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-247 Navarro E, 2008, ECOTOXICOLOGY, V17, P372, DOI 10.1007/s10646-008-0214-0 Nogues S, 2000, J EXP BOT, V51, P1309, DOI 10.1093/jexbot/51.348.1309 Perez-de-Luque A, 2017, FRONT ENV SCI-SWITZ, V5, DOI 10.3389/fenvs.2017.00012 Pokhrel LR, 2013, SCI TOTAL ENVIRON, V452, P321, DOI 10.1016/j.scitotenv.2013.02.059 Raliya R, 2015, METALLOMICS, V7, P1584, DOI [10.1039/c5mt00168d, 10.1039/C5MT00168D] Raliya R, 2013, AGR RES, V2, P48, DOI 10.1007/s40003-012-0049-z Rao S, 2016, 3 BIOTECH, V6, DOI 10.1007/s13205-016-0550-3 Rico CM, 2013, ENVIRON SCI TECHNOL, V47, P14110, DOI 10.1021/es4033887 Rico CM, 2011, J AGR FOOD CHEM, V59, P3485, DOI 10.1021/jf104517j Samadi N., 2015, EUR J MED PLANTS, P1 Samadi N., 2014, INT J PLANT SOIL SCI, V3, P408, DOI [10.9734/ijpss/2014/7641, DOI 10.9734/IJPSS/2014/7641] Sami F, 2016, PLANT PHYSIOL BIOCH, V109, P54, DOI 10.1016/j.plaphy.2016.09.005 Sebesta M, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111833 Sergiev I., 1997, CR ACAD BULG SCI, V51, P121, DOI [10.1046/j.1365-3040.2001.00778.x, DOI 10.1046/J.1365-3040.2001.00778.X] Servin AD, 2013, ENVIRON SCI TECHNOL, V47, P11592, DOI 10.1021/es403368j Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sharifan H, 2020, ECOTOX ENVIRON SAFE, V191, DOI 10.1016/j.ecoenv.2020.110177 Sharifan H, 2019, ACS SUSTAIN CHEM ENG, V7, P16401, DOI 10.1021/acssuschemeng.9b03531 Sharifan H, 2018, ACS SUSTAIN CHEM ENG, V6, P13454, DOI 10.1021/acssuschemeng.8b03355 Sharma P, 2012, APPL BIOCHEM BIOTECH, V167, P2225, DOI 10.1007/s12010-012-9759-8 Song U, 2013, BIOL TRACE ELEM RES, V155, P93, DOI 10.1007/s12011-013-9765-x Song U, 2013, ECOTOX ENVIRON SAFE, V93, P60, DOI 10.1016/j.ecoenv.2013.03.033 Tan WJ, 2018, SCI TOTAL ENVIRON, V636, P240, DOI 10.1016/j.scitotenv.2018.04.263 Tan WJ, 2018, ENVIRON SCI-NANO, V5, P257, DOI 10.1039/c7en00985b Tarafdar JC, 2014, AGR RES, V3, P257, DOI 10.1007/s40003-014-0113-y Tassi E, 2017, PLANT PHYSIOL BIOCH, V110, P50, DOI 10.1016/j.plaphy.2016.09.013 Tripathi DK, 2017, PLANT PHYSIOL BIOCH, V110, P2, DOI 10.1016/j.plaphy.2016.07.030 Venkatachalam P, 2017, PLANT PHYSIOL BIOCH, V110, P118, DOI 10.1016/j.plaphy.2016.09.004 Weckx JEJ, 1996, PHYSIOL PLANTARUM, V96, P506, DOI 10.1111/j.1399-3054.1996.tb00465.x Yanik F, 2015, WATER AIR SOIL POLL, V226, DOI 10.1007/s11270-015-2566-4 Zhang DQ, 2015, CHEMOSPHERE, V120, P211, DOI 10.1016/j.chemosphere.2014.06.041 Zhao LJ, 2012, ACS NANO, V6, P9615, DOI 10.1021/nn302975u NR 75 TC 9 Z9 9 U1 10 U2 33 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 1 PY 2022 VL 806 AR 151222 DI 10.1016/j.scitotenv.2021.151222 EA NOV 2021 PN 3 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA YD2SS UT WOS:000740227100002 PM 34715233 DA 2023-03-13 ER PT J AU Harmelin, JG Bishop, JDD Madurell, T Souto, J Spencer Jones, ME Zabala, M AF Harmelin, Jean-Georges Bishop, John D. D. Madurell, Teresa Souto, Javier Spencer Jones, Mary E. Zabala, Mikel TI Unexpected diversity of the genus Collarina Jullien, 1886 (Bryozoa, Cheilostomatida) in the NE Atlantic-Mediterranean region: new species and reappraisal of C. balzaci (Audouin, 1826) and C. fayalensis Harmelin, 1978 SO ZOOSYSTEMA LA English DT Article DE Biogeography; habitat distribution; bryozoans; cheilostomes; Cribrilinidae; disturbance; bioindicators; new species ID SEA; PLIOCENE; HYPERPLASIA; COMMUNITY; HORMESIS; COMPLEX; GABES; GULF AB The genus Collarina Jullien, 1886 (Cribrilinidae Hincks, 1879) has until now been known from the Atlantic-Mediterranean region as just two species, C. balzaci (Audouin, 1826), synonym of Collarina cribrosa Jullien, 1886, type species of the genus, considered to be widely distributed from the northern British Isles to the SE Mediterranean, and C. fayalensis Harmelin, 1978 from the Macaronesian Isles. Abundant material collected in the Mediterranean and the NE Atlantic, coupled with examination of museum specimens, allowed better definition of the species-specific morphological features in this genus and some generic traits (ooecium formation, avicularia with nested cystids). Besides the redescription of C. balzaci and C. fayalensis, this study led to the description of four new species: C. denticulata Harmelin, n. sp., recorded only in the Mediterranean, C. gautieri Harmelin, n. sp., present in both the NE Atlantic and the Mediterranean, C. macaronensis Harmelin, n. sp., from Madeira, Azores and Galicia, and C. speluncola Harmelin, n. sp., from the Mediterranean and the Gulf of Cadiz. A seventh morphotype (Collarina sp., from the Mediterranean, seemingly close to C. speluncola Harmelin, n. sp., has been left unnamed pending the availability of more abundant material. It was proven that C. balzaci: 1) has often been confused with C. gautieri Harmelin, n. sp.; 2) is exclusively epiphytic (mainly on Posidonia oceanica (L.) Delile, 1813 and brown seaweeds), with life-cycle adapted to ephemeral hosts; 3) is widely distributed in the Mediterranean, but also present in the Canaries on seaweeds, and has probably been overlooked in similar habitats in other warm-temperate NE Atlantic localities; and 4) is able to proliferate dramatically on Posidonia leaves in association with diatoms under unusual environmental conditions (Gulf of Gabes, chemical disturbance). All Collarina species live in coastal areas, mostly at shallow depth, in shaded microhabitats: plants (C. balzaci), dark cave walls (C. speluncola Harmelin, n. sp.) and small hard substrates, e.g. shells, pebbles, and anthropogenic debris (all other species). C1 [Harmelin, Jean-Georges] Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France. [Bishop, John D. D.] Citadel Hill Lab, Marine Biol Assoc UK, Plymouth PL1 2PB, Devon, England. [Madurell, Teresa] Inst Marine Sci ICM CSIC, Passeig Maritim Barceloneta 37-49, E-08003 Barcelona, Catalonia, Spain. [Souto, Javier] Univ Vienna, Inst Palaontol, Geozentrum, Althanstr 14, A-1090 Vienna, Austria. [Spencer Jones, Mary E.] Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England. [Zabala, Mikel] Univ Barcelona UB, Dept Ecol, Diagonal 645, E-08028 Barcelona, Catalonia, Spain. C3 UDICE-French Research Universities; Aix-Marseille Universite; Marine Biological Association United Kingdom; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro Mediterraneo de Investigaciones Marinas y Ambientales (CMIMA); CSIC - Instituto de Ciencias del Mar (ICM); University of Vienna; Natural History Museum London; University of Barcelona RP Harmelin, JG (corresponding author), Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France. EM jean-georges.harmelin@univ-amu.fr FU Austrian Science Fund (FWF) [AP28954-B29] FX We are grateful to J. Aristegui (ULPGC, Canaries) for selecting and sending specimens of C. balzaci from his thesis material, H. De Blauwe and O. Reverter-Gil (Univ. Santiago) for supplying SEM pictures, A. Ostrovsky (Univ. Vienna) for advice on ovicell structure, L. Beckniker (AMNH) and C. Gusso (Univ. Roma La Sapienza) for data on specimens, P. Lozouet and J. Mainguy (MNHN) for assistance during consultation of museum specimens, Sandrine Chenesseaux (IMBE, Marseille) for her help during SEM work of JGH, P. Lejeune (Marine Station of Stareso) and J. M. Dominici (Marine Reserve of Scandola) for diving facilities, M. Verlaque (MIO, Marseille) for algae identification.We thank A. Rosso and D. P. Gordon for their thorough review of the manuscript and useful comments. The work of Javier Souto was supported by the Austrian Science Fund (FWF, project number AP28954-B29). Sampling at Kerkennah Islands by JGH was made during a field survey managed by PIM Initiative (Conservatoire du Littoral, France) and APAL (Agence de Protection et d'Amenagement du Littoral, Tunisia). CR Abboud-Abi Saab M., 2004, GEOSCI J, V336, P1379 Allouc J, 2001, B SOC GEOL FR, V172, P765, DOI 10.2113/172.6.765 ALVAREZ J A, 1988, Miscellania Zoologica (Barcelona), V12, P347 Alvarez J. A., 1987, CUADERNOS INVESTIGAT, V11, P1 Aristegui Ruiz J., 1984, THESIS, Vi-iii, P1 Audouin J., 1826, DESCR GYPTE HIST NAT, V1, P225 Balduzzi A., 1983, Rapports et Proces-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee Monaco, V28, P137 Barroso M.G., 1919, B SOC ESPANOLA HIST, V19, P340 Ben ismail Dorsaf, 2007, Rapport du Congress de la CIESM, V38, P433 Bensoussan N, 2010, ESTUAR COAST SHELF S, V87, P431, DOI 10.1016/j.ecss.2010.01.008 Berning B., 2008, VA MUS NAT HIST SPEC, V15, P1 Berning B, 2017, EUR J TAXON, V347, P1, DOI 10.5852/ejt.2017.347 Bishop J.D.D., 1987, Bulletin of the British Museum (Natural History) Zoology, V53, P1 BISHOP J D D, 1986, Bulletin of Zoological Nomenclature, V43, P288 BISHOP JDD, 1994, ZOOL SCR, V23, P225, DOI 10.1111/j.1463-6409.1994.tb00387.x BISHOP JDD, 1988, J NAT HIST, V22, P747, DOI 10.1080/00222938800770481 Bock P., 1886, COLLARINA JULLIEN Boury-Esnault N., 2001, Boletim do Museu Municipal do Funchal Suplemento, V6, P15 Busk G., 1854, CATALOGUE MARINE POL, VI-VIII, P55 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calvet L., 1902, TRAV I ZOOL U MONTPE, V12, P1 Calvet L., 1906, EXPEDITIONS SCI DOUB, P355 Chimenz Gusso C., 2014, BIOL MAR MEDITERR, V21, P1 De Blauwe H., 2019, AUSTRALASIAN PALAEON, V5 De Blauwe H, 2009, MOSDIERTJES ZUIDELIJ, P445 De Blauwe Hans, 2006, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Biologie, V76, P125 Desrosiers C, 2013, ECOL INDIC, V32, P25, DOI 10.1016/j.ecolind.2013.02.021 Di Martino E., 2014, STUDI TRENTINI SC NA, V94, P79 Dick MH, 2005, INVERTEBR BIOL, V124, P344, DOI 10.1111/j.1744-7410.2005.00032.x Echalier G., 1951, TRAV STAT BIOL ROS S, V4, P1 El Kateb A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197731 El Zrelli R, 2017, ENVIRON SCI POLLUT R, V24, P22214, DOI 10.1007/s11356-017-9856-x El Zrelli R, 2015, MAR POLLUT BULL, V101, P922, DOI 10.1016/j.marpolbul.2015.10.047 Eugene C., 1978, THESIS Fehlauer-Ale KH, 2011, ZOOTAXA, P49, DOI 10.11646/zootaxa.2962.1.4 FERNANDEZPULPEI.E, 1996, NOVA ACTA CIENTIFICA, V6, P107 GAUTIER Y., 1953, RECUEIL DES TRAV STA MARINE ENDOUME, V9, P39 GAUTIER Y., 1952, BULL INST OCEANOGR [MONACO], V1008, P1 Gautier Y. V., 1958, Annali del Museo Civico di Storia Naturale di Genova, V70, P193 GAUTIER Y. V., 1958, ATTI SOC PELORITANA, V4, P45 Gautier YV, 1962, REC TRAV STAT MAR EN, V38, P1 Harmelin J.-G., 1978, Travaux Scientifiques du Parc National de Port-Cros, V4, P127 Harmelin JG, 2016, MEDITERR MAR SCI, V17, P417, DOI 10.12681/mms.1429 Harmelin J.-G., 1977, Travaux Scientifiques du Parc National de Port-Cros, V3, P143 Harmelin J.-G., 1976, MEMOIRES LINSTITUTE, V10, P1 Harmelin J-G, 1978, TETHYS, V8, P173 Harmelin Jean-Georges, 2006, V257, P73 Harmelin Jean-Georges, 2017, Travaux Scientifiques du Parc National de Port-Cros, V31, P105 HARMELIN JG, 1970, CAH BIOL MAR, V11, P77 HARMELIN JG, 1973, RAPPORTS COMMISSION, V21, P675 Hattour MJ, 2010, REV PARALIA, V3, P31 Hayward P, 1998, SYNOPSES BRIT FAUNA, P1 Hayward P.J., 1979, Synopses of the British Fauna New Series, P1 Hayward P.J., 1975, Documents Lab Geol Fac Sci Lyon Hors Ser, V3, P347 Hayward PJ, 2002, B AM MUS NAT HIST, P1 HAYWARD PJ, 1974, J NAT HIST, V8, P369, DOI 10.1080/00222937400770321 Heller C., 1867, VERHANDLUNGEN ZOOLOG, V17, P77 Hincks T., 1886, Annals of Natural History, V(5), P254 Hincks T, 1880, HIST BRIT MARINE POL, V2 Hondt J.L. d', 2006, NOUVELLE DESCRIPTION, P1 Jullien J., 1886, B SOC ZOOLOGIQUE FRA, V11, P601 Kocak F, 2002, INDIAN J MAR SCI, V31, P235 Larwood G. P., 1962, Bulletin of the British Museum (Natural History) Geology, V6, P1 Lepoint G, 2014, CAH BIOL MAR, V55, P57 Lidgard S, 2012, EVOL ECOL, V26, P233, DOI 10.1007/s10682-011-9513-7 Marchio G., 1982, NATURALISTA SICILIAN, V3, P499 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moissette P., 2013, LECT NOTES EARTH SYS, V143, P187, DOI [DOI 10.1007/978-3-642-16411-8_13, 10.1007/978-3-642-16411-8_13] Moissette P, 2007, PALAIOS, V22, P200, DOI 10.2110/palo.2005.p05-141r Moissette P, 2016, GEOL MAG, V153, P61, DOI 10.1017/S0016756815000230 Norman A. M., 1909, Journal of the Linnean Society London Zoology, V30 Norman A. M., 1903, Annals of Natural History Ser 7, Vxii, P87 Ostrovsky A, 2013, EVOLUTION OF SEXUAL REPRODUCTION IN MARINE INVERTEBRATES: EXAMPLE OF GYMNOLAEMATE BRYOZOANS, P229, DOI 10.1007/978-94-007-7146-8_3 Pages-Escola M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-36094-9 Peres J.-M., 1964, NOUVEAU MANUEL BIONO Pergent G., 2012, MEDI TERRANEAN SEAGR PISANO E, 1985, MAR ECOL PROG SER, V27, P195, DOI 10.3354/meps027195 POWELL NA, 1970, J FISH RES BOARD CAN, V27, P2095, DOI 10.1139/f70-234 Prenant M., 1966, Faune de France, V68, P1 Prenant M., 1927, Trav Sta zool Roscoff, V6, P1 PULPEIRO E F, 1980, Investigacion Pesquera (Barcelona), V44, P119 Reverter O, 1996, J NAT HIST, V30, P1247, DOI 10.1080/00222939600770681 REVERTER O, 1995, CAH BIOL MAR, V36, P123 Reverter-Gil O, 2016, J NAT HIST, V50, P281, DOI 10.1080/00222933.2015.1062153 Rosso A, 2018, ZOOTAXA, V4524, P401, DOI 10.11646/zootaxa.4524.4.1 Rosso A, 2016, MEDITERR MAR SCI, V17, P567, DOI 10.12681/mms.1706 Rosso A., 1996, BIOL MARINA MEDITERR, V3, P58 Rosso A, 2015, B SOC PALEONTOL ITAL, V54, P91, DOI 10.4435/BSPI.2015.05 RYLAND J S, 1971, Irish Naturalists' Journal, V17, P65 Sammari C, 2006, CONT SHELF RES, V26, P338, DOI 10.1016/j.csr.2005.11.006 Savigny J. C., 1817, DESCRIPTION EGYPTE R Souto J, 2010, J MAR BIOL ASSOC UK, V90, P1417, DOI 10.1017/S0025315409991640 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STRAUGHAN D, 1975, WATER AIR SOIL POLL, V5, P39, DOI 10.1007/BF00431577 Waters A. W., 1899, Journal of the Royal Microscopical Society, P6 Waters A. W., 1923, Annals & Magazine of Natural History Series 9, V12, P545 Waters AW., 1879, ANN MAG NAT HIST, V3, P192, DOI [10.1080/00222937908694085, DOI 10.1080/00222937908682488] Winston JE, 2013, ZOOTAXA, V3710, P101 Zabala M., 1988, Treballs del Museu de Zoologia, P1 Zabala M., 1986, FAUNA BRIOZOUS DELS NR 100 TC 5 Z9 5 U1 0 U2 2 PU PUBLICATIONS SCIENTIFIQUES DU MUSEUM, PARIS PI PARIS CEDEX 05 PA CP 39-57, RUE CUVIER, F-75231 PARIS CEDEX 05, FRANCE SN 1280-9551 EI 1638-9387 J9 ZOOSYSTEMA JI Zoosystema PD SEP 26 PY 2019 VL 41 IS 21 BP 385 EP 418 PG 34 WC Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Zoology GA NJ3CA UT WOS:000565924300001 DA 2023-03-13 ER PT J AU Wong, MJ Liao, LH Berenbaum, MR AF Wong, Michael J. Liao, Ling-Hsiu Berenbaum, May R. TI Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera) SO PLOS ONE LA English DT Article ID OXIDATIVE STRESS; NEONICOTINOID INSECTICIDES; SYSTEMIC INSECTICIDES; PESTICIDE; EXPOSURE; DETOXIFICATION; HORMESIS; RISKS; METABOLISM; MECHANISMS AB Background The presence of the neonicotinoid imidacloprid in nectar, honey, pollen, beebread and beeswax has been implicated in declines worldwide in the health of the western honey bee Apis mellifera. Certain phytochemicals, including quercetin and p-coumaric acid, are ubiquitous in the honey bee diet and are known to upregulate cytochrome P450 genes encoding enzymes that detoxify insecticides. Thus, the possibility exists that these dietary phytochemicals interact with ingested imidacloprid to ameliorate toxicity by enhancing its detoxification. Approach Quercetin and p-coumaric acid were incorporated in a phytochemical-free artificial diet individually and together along with imidacloprid at a range of field-realistic concentrations. In acute toxicity bioassays, honey bee 24- and 48- hour imidacloprid LC50 values were determined in the presence of the phytochemicals. Additionally, chronic toxicity bioassays were conducted using varying concentrations of imidacloprid in diets with the phytochemicals to test impacts of phytochemicals on longevity. Results In acute toxicity bioassays, the phytochemicals had no effect on imidacloprid LC50 values. In chronic toxicity longevity bioassays, phytochemicals enhanced honey bee survival at low imidacloprid concentrations (15 and 45 ppb) but had a negative effect at higher concentrations (105 ppb and 135 ppb). p-Coumaric acid alone increased honey bee longevity at concentrations of 15 and 45 ppb imidacloprid (hazard ratio (HR): 0.83 and 0.70, respectively). Quercetin alone and in combination with p-coumaric acid similarly enhanced longevity at 45 ppb imidacloprid (HR: 0.81 and HR: 0.77, respectively). However, p-coumaric acid in combination with 105 ppb imidacloprid and quercetin in combination with 135 ppb imidacloprid increased honey bee HR by approximately 30% (HR: 1.33 and HR: 1.30, respectively). Conclusions The biphasic concentration-dependent response of honey bees to imidacloprid in the presence of two ubiquitous dietary phytochemicals indicates that there are limits to the protective effects of the natural diet of honey bees against neonicotinoids based on their own inherent toxicity. C1 [Wong, Michael J.; Liao, Ling-Hsiu; Berenbaum, May R.] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA. C3 University of Illinois System; University of Illinois Urbana-Champaign RP Liao, LH (corresponding author), Univ Illinois, Dept Entomol, Urbana, IL 61801 USA. EM liao19@illinois.edu RI Liao, LH/AAB-1547-2019 OI Liao, LH/0000-0003-1776-9564 FU National Honey Board; National Institute of Food and Agriculture [2017-67013] FX This work was funded by National Honey Board and National Institute of Food and Agriculture 2017-67013 to MB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Akdemir FNE, 2017, BIOMEDICINES, V5, DOI 10.3390/biomedicines5020018 Alkassab AT, 2017, J PLANT DIS PROTECT, V124, P1, DOI 10.1007/s41348-016-0041-0 Altaye SZ, 2010, J EXP BIOL, V213, P3311, DOI 10.1242/jeb.046953 Anand David Alexander Victor, 2016, Pharmacogn Rev, V10, P84, DOI 10.4103/0973-7847.194044 BAI DL, 1991, PESTIC SCI, V33, P197, DOI 10.1002/ps.2780330208 Berenbaum MR, 2016, J AGR FOOD CHEM, V64, P13, DOI 10.1021/acs.jafc.5b01067 Berenbaum MR, 2015, CURR OPIN INSECT SCI, V10, P51, DOI 10.1016/j.cois.2015.03.005 Blacquiere T, 2012, ECOTOXICOLOGY, V21, P973, DOI 10.1007/s10646-012-0863-x Bonvehi JS, 2001, J AGR FOOD CHEM, V49, P1848, DOI 10.1021/jf0012300 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Carreck NL, 2014, J APICULT RES, V53, P607, DOI 10.3896/IBRA.1.53.5.08 Ceksteryte V., 2006, Biologija, P28 Chagnon M, 2015, ENVIRON SCI POLLUT R, V22, P119, DOI 10.1007/s11356-014-3277-x Chaimanee V, 2016, J INSECT PHYSIOL, V89, P1, DOI 10.1016/j.jinsphys.2016.03.004 Costa LG, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2986796 COX DR, 1972, J R STAT SOC B, V34, P187 Cressey D, 2017, NATURE, V551, P156, DOI 10.1038/551156a Cresswell JE, 2011, ECOTOXICOLOGY, V20, P149, DOI 10.1007/s10646-010-0566-0 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler De Smet L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171529 Decourtye A, 2004, PESTIC BIOCHEM PHYS, V78, P83, DOI 10.1016/j.pestbp.2003.10.001 Decourtye A, 2003, PEST MANAG SCI, V59, P269, DOI 10.1002/ps.631 Delaplane K. S., 2000, CROP POLLINATION BEE Derecka K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068191 Dubecke A, 2011, FOOD ADDIT CONTAM A, V28, P348, DOI 10.1080/19440049.2010.541594 Duzguner V, 2012, PESTIC BIOCHEM PHYS, V104, P58, DOI 10.1016/j.pestbp.2012.06.011 Ekinci-Akdemir FN, 2017, J ANIM PLANT SCI-PAK, V27, P1560 Fairbrother A, 2014, ENVIRON TOXICOL CHEM, V33, P719, DOI 10.1002/etc.2527 Fischer DL, 2007, NEONICOTINOID INSECT, P1 Ge WL, 2015, J AGR FOOD CHEM, V63, P1856, DOI 10.1021/jf504895h Gheldof N, 2002, J AGR FOOD CHEM, V50, P3050, DOI 10.1021/jf0114637 GODFRAY HCJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI DOI 10.1098/RSPB.2015.1821 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guseman AJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148242 Haith DA, 2010, ENVIRON SCI TECHNOL, V44, P6496, DOI 10.1021/es101636y Hawthorne DJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026796 HOEKSTRA JA, 1991, ENVIRONMETRICS, V2, P139, DOI 10.1002/env.3770020203 Hoffmann EJ, 2012, J ECON ENTOMOL, V105, P67, DOI 10.1603/EC11251 Ince S, 2013, TOXICOL ENVIRON CHEM, V95, P318, DOI 10.1080/02772248.2013.764672 Iwasa T, 2004, CROP PROT, V23, P371, DOI 10.1016/j.cropro.2003.08.018 Jerkovic I, 2017, MOLECULES, V22, DOI 10.3390/molecules22111909 Johnson RM, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0031051, 10.1371/journal.pone.0033479] Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kaskoniene V, 2015, FOOD ANAL METHOD, V8, P1150, DOI 10.1007/s12161-014-9996-2 Klein AM, 2007, P ROY SOC B-BIOL SCI, V274, P303, DOI 10.1098/rspb.2006.3721 Kulhanek K, 2017, J APICULT RES, V56, P328, DOI 10.1080/00218839.2017.1344496 Lambin M, 2001, ARCH INSECT BIOCHEM, V48, P129, DOI 10.1002/arch.1065 Lee KP, 2007, J EXP BIOL, V210, P3236, DOI 10.1242/jeb.008060 Li XC, 2007, ANNU REV ENTOMOL, V52, P231, DOI 10.1146/annurev.ento.51.110104.151104 Liao LH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15066-5 Liao LH, 2017, INSECTS, V8, DOI 10.3390/insects8010022 Manjon C, 2018, CURR BIOL, V28, P1137, DOI 10.1016/j.cub.2018.02.045 Mao WF, 2017, P NATL ACAD SCI USA, V114, P2538, DOI 10.1073/pnas.1614864114 Mao WF, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500795 Mao W, 2013, P NATL ACAD SCI USA, V110, P8842, DOI 10.1073/pnas.1303884110 Mao WF, 2011, P NATL ACAD SCI USA, V108, P12657, DOI 10.1073/pnas.1109535108 Mao WF, 2009, COMP BIOCHEM PHYS B, V154, P427, DOI 10.1016/j.cbpb.2009.08.008 Morse RA, 2000, BEE CULT, V128, P1, DOI DOI 10.3896/IBRA.1.49.1.01 Mullin CA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009754 Pettis JS, 2012, NATURWISSENSCHAFTEN, V99, P153, DOI 10.1007/s00114-011-0881-1 Pisa LW, 2015, ENVIRON SCI POLLUT R, V22, P68, DOI 10.1007/s11356-014-3471-x Poquet Y, 2016, APIDOLOGIE, V47, P412, DOI 10.1007/s13592-016-0429-7 Schmuck R, 2001, PEST MANAG SCI, V57, P225, DOI 10.1002/ps.270 Schneider CW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030023 Seitz N, 2016, J APICULT RES, V54, P292, DOI 10.1080/00218839.2016.1153294 Shimanuki H., 2000, AGR HDB Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y Stoner KA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039114 Suchail S, 2004, PEST MANAG SCI, V60, P1056, DOI 10.1002/ps.895 Suchail S, 2001, ENVIRON TOXICOL CHEM, V20, P2482, DOI [10.1002/etc.5620201113, 10.1897/1551-5028(2001)020<2482:DBAACT>2.0.CO;2] Tapparo A, 2011, J ENVIRON MONITOR, V13, P1564, DOI 10.1039/c1em10085h Tomizawa M, 2005, ANNU REV PHARMACOL, V45, P247, DOI 10.1146/annurev.pharmtox.45.120403.095930 Tosi S, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1711 Tosi S, 2016, J INSECT PHYSIOL, V93-94, P56, DOI 10.1016/j.jinsphys.2016.08.010 Van Dijk TC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062374 vanEngelsdorp D, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006481 Vannette RL, 2015, SCI REP-UK, V5, DOI 10.1038/srep16224 Wheeler MW, 2006, ENVIRON TOXICOL CHEM, V25, P1441, DOI 10.1897/05-320R.1 Wu JY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014720 Yang EC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049472 Zwiener I, 2011, DTSCH ARZTEBL INT, V108, P163, DOI [10.3238/arztebl.2010.0163, 10.3238/arztebl.2011.0163] NR 82 TC 19 Z9 20 U1 1 U2 26 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 1 PY 2018 VL 13 IS 11 AR e0206625 DI 10.1371/journal.pone.0206625 PG 15 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA GZ0DG UT WOS:000449027600074 PM 30383869 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Mothersill, C Seymour, C AF Mothersill, Carmel Seymour, Colin TI Eco-systems biology-From the gene to the stream SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE Multiple stressors; Radiation; Low dose exposure; Biomarkers; Modeling complex effects ID INDUCED GENOMIC INSTABILITY; RADIATION-INDUCED STRESS; MITOCHONDRIAL DYSFUNCTION; DOSE RESPONSES; BYSTANDER; CELL; EXPOSURE; INDUCTION; HORMESIS; COMMUNICATION AB This review considers the implications for environmental health and ecosystem sustainability, of new developments in radiobiology and ecotoxicology. Specifically it considers how the non-targeted effects of low doses of radiation, which are currently being scrutinized experimentally, not only mirror similar effects from low doses of chemical stressors but may actually lead to unpredictable emergent effects at higher hierarchical levels. The position is argued that non-targeted effects are mechanistically important in coordinating phased hierarchical transitions (i.e. transitions which occur in a regulated sequence). The field of multiple stressors (both radiation and chemical) is highly complex and agents can interact in an additive, antagonist or synergistic manner. The outcome following low dose multiple stressor exposure also is impacted by the context in which the stressors are received, perceived or communicated by the organism or tissue. Modern biology has given us very sensitive methods to examine changes following stressor interaction with biological systems at several levels of organization but the translation of these observations to ultimate risk remains difficult to resolve. Since multiple stressor exposure is the norm in the environment, it is essential to move away from single stressor-based protection and to develop tools, including legal instruments, which will enable us to use response-based risk assessment. Radiation protection in the context of multiple stressors includes consideration of humans and non-humans as separate groups requiring separate assessment frameworks. This is because for humans, individual survival and prevention of cancer are paramount but for animals, it is considered sufficient to protect populations and cancer is not of concern. The need to revisit this position is discussed not only from the environmental perspective but also from the human health perspective because the importance of "pollution" (a generic term for multiple environmental stressors) as a cause of non-cancer disease is increasingly being recognized. Finally a way forward involving experimental assessment of biomarker performance to lead to a theoretical framework allowing modeling is suggested. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mothersill, Carmel; Seymour, Colin] McMaster Univ, Med Phys & Appl Radiat Sci Dept, Hamilton, ON L8S 4K1, Canada. C3 McMaster University RP Mothersill, C (corresponding author), McMaster Univ, Med Phys & Appl Radiat Sci Dept, Hamilton, ON L8S 4K1, Canada. EM mothers@mcmaster.ca FU Canada Research Chairs Programme; CANDU Owners Group; Bruce Power; EU FX We acknowledge financial support from the Canada Research Chairs Programme, CANDU Owners Group, Bruce Power and the EU NOTE Integrated Project. We also thank colleagues in the EU ERICA and PROTECT projects who have discussed many of the ideas in this paper with us. CR BARBER RC, 2006, RAD INDUCED TRANSGEN Barber RC, 2006, MUTAT RES-FUND MOL M, V598, P50, DOI 10.1016/j.mrfmmm.2006.01.009 Bilbo SD, 2002, P NATL ACAD SCI USA, V99, P4067, DOI 10.1073/pnas.062001899 Boonstra R, 2005, ENVIRON TOXICOL CHEM, V24, P334, DOI 10.1897/03-163R.1 Broome EJ, 1999, INT J RADIAT BIOL, V75, P681, DOI 10.1080/095530099140014 BROWN J, 2008, ASSESSING IMPACTS RA Burger J, 2007, J ENVIRON MANAGE, V85, P232, DOI 10.1016/j.jenvman.2006.10.005 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Chen S, 2008, BRIT J CANCER, V98, P1839, DOI 10.1038/sj.bjc.6604358 Coates PJ, 2005, J PATHOL, V205, P221, DOI 10.1002/path.1701 Coates PJ, 2004, MUTAT RES-FUND MOL M, V568, P5, DOI 10.1016/j.mrfmmm.2004.06.042 Daev E V, 2005, Zh Evol Biokhim Fiziol, V41, P319 Daev E V, 2007, Tsitologiia, V49, P696 Dahle Jostein, 2005, J Carcinog, V4, P11, DOI 10.1186/1477-3163-4-11 Dowling K, 2005, INT J RADIAT BIOL, V81, P89, DOI 10.1080/09553000400017606 Dudley SA, 2007, BIOLOGY LETT, V3, P435, DOI 10.1098/rsbl.2007.0232 Glaviano A, 2006, ONCOGENE, V25, P3424, DOI 10.1038/sj.onc.1209399 Gonzalez AJ, 2005, HEALTH PHYS, V89, P418, DOI 10.1097/01.HP.0000179340.57348.26 Hall DM, 2000, J APPL PHYSIOL, V89, P749, DOI 10.1152/jappl.2000.89.2.749 Harada T, 2008, INT J RADIAT BIOL, V84, P809, DOI 10.1080/09553000802360844 Hei TK, 2008, J PHARM PHARMACOL, V60, P943, DOI 10.1211/jpp.60.8.0001 HEROUT V, 1974, RUSS CHEM REV, V43, P196 Hoyes KP, 2000, INT J RADIAT BIOL, V76, P77, DOI 10.1080/095530000139032 Hoyes KP, 2001, RADIAT RES, V156, P488, DOI 10.1667/0033-7587(2001)156[0488:TEOPPC]2.0.CO;2 International Commission on Radiological Protection, 2003, ANN ICRP, V33, P201 Kashino G, 2007, J RADIAT RES, V48, P327, DOI 10.1269/jrr.07008 Kim GJ, 2006, MUTAGENESIS, V21, P361, DOI 10.1093/mutage/gel048 Kim GJ, 2006, CANCER RES, V66, P10377, DOI 10.1158/0008-5472.CAN-05-3036 Konopacka M, 2006, MUTAT RES-FUND MOL M, V593, P32, DOI 10.1016/j.mrfmmm.2005.06.017 Larsson CM, 2008, J ENVIRON RADIOACTIV, V99, P1364, DOI 10.1016/j.jenvrad.2007.11.019 Little JB, 2003, ONCOGENE, V22, P6978, DOI 10.1038/sj.onc.1206988 Liu ZF, 2006, RADIAT RES, V166, P19, DOI 10.1667/RR3580.1 Lord BI, 2002, MUTAT RES-FUND MOL M, V501, P13, DOI 10.1016/S0027-5107(02)00011-8 Lord BI, 1999, INT J RADIAT BIOL, V75, P801, DOI 10.1080/095530099139854 Lyng FM, 2006, INT J RADIAT BIOL, V82, P393, DOI 10.1080/09553000600803904 Maguire P, 2007, RADIAT RES, V167, P485, DOI 10.1667/RR0159.1 Miller C., 2006, LEGAL STUDIES, V26, P544 Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327 Morgan WF, 2003, RADIAT RES, V159, P567, DOI 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2 Morris RC, 2006, J ENVIRON RADIOACTIV, V87, P77, DOI 10.1016/j.jenvrad.2005.11.003 Mossman KL, 2001, HEALTH PHYS, V80, P263, DOI 10.1097/00004032-200103000-00009 Mothersill C, 1998, INT J RADIAT BIOL, V74, P673, DOI 10.1080/095530098140934 Mothersill C, 2007, J ENVIRON RADIOACTIV, V96, P20, DOI 10.1016/j.jenvrad.2007.01.025 Mothersill C, 2006, ENVIRON SCI TECHNOL, V40, P6859, DOI 10.1021/es061099y Mothersill C, 2006, EXP SUPPL, V96, P159 Mothersill C, 2007, ENVIRON SCI TECHNOL, V41, P3382, DOI 10.1021/es062978n Prasad KN, 2005, BRIT J RADIOL, V78, P485, DOI 10.1259/bjr/87552880 Prise KM, 2006, MUTAT RES-FUND MOL M, V597, P1, DOI 10.1016/j.mrfmmm.2005.06.034 Roberts JE, 2000, ANN NY ACAD SCI, V917, P435 Sakai K, 2006, YAKUGAKU ZASSHI, V126, P827, DOI 10.1248/yakushi.126.827 Salbu B, 2008, ENVIRON SCI TECHNOL, V42, P3441, DOI 10.1021/es7027394 SATO K, 1984, RADIAT RES, V98, P381, DOI 10.2307/3576245 Sawada Shoji, 2007, Med Confl Surviv, V23, P58, DOI 10.1080/13623690601084617 Sbarbati A, 2006, CELLS TISSUES ORGANS, V183, P206, DOI 10.1159/000096511 Schettino G, 2005, RADIAT RES, V163, P332, DOI 10.1667/RR3319 Seymour CB, 2000, RADIAT RES, V153, P508, DOI 10.1667/0033-7587(2000)153[0508:RCOBAT]2.0.CO;2 Surinov B P, 2001, Radiats Biol Radioecol, V41, P645 Tartier L, 2007, CANCER RES, V67, P5872, DOI 10.1158/0008-5472.CAN-07-0188 TILL JE, 1988, HEALTH PHYS, V55, P331, DOI 10.1097/00004032-198808000-00027 Yang EV, 2002, J NEUROIMMUNOL, V133, P144, DOI 10.1016/S0165-5728(02)00270-9 Yang G, 2008, RADIAT RES, V170, P372, DOI 10.1667/RR1324.1 Zhao WL, 2009, CURR MED CHEM, V16, P130, DOI 10.2174/092986709787002790 2009, ANN ICRP, V37 NR 65 TC 13 Z9 15 U1 0 U2 21 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1386-1964 EI 1873-135X J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD MAY 1 PY 2010 VL 687 IS 1-2 SI SI BP 63 EP 66 DI 10.1016/j.mrfmmm.2010.01.010 PG 4 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 597JK UT WOS:000277752900011 PM 20083127 DA 2023-03-13 ER PT J AU Ritchie, GD Rossi, J Nordholm, AF Still, KR Carpenter, RL Wenger, GR Wright, DW AF Ritchie, GD Rossi, J Nordholm, AF Still, KR Carpenter, RL Wenger, GR Wright, DW TI Effects of repeated exposure to JP-8 jet fuel vapor on learning of simple and difficult operant tasks by rats SO JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES LA English DT Article ID INHALATION EXPOSURE; TEMPORAL DISCRIMINATION; POSTNATAL EXPOSURE; ORGANIC-SOLVENTS; TERM EXPOSURE; PARA-XYLENE; N-HEXANE; WORKERS; TOLUENE; BRAIN AB Groups of 16 Sprague-Dawley rats each were exposed by whole-body inhalation methods to JP-8 jet fuel at the highest vapor concentration without formation of aerosol (1000 +/- 10% mg/m(3)); to 50% of this concentration (500 +/- 10% mg/m(3)); or to treated room air (70 +/- 3 L/min) for 6 h/d, 5 d/wk, for 6 wk (180 h). Although two subjects died of apparent kidney complications during the study, no other change in the health status of exposed rats was observed, including rate of weight gain. Following a 65-d period of rest, rats were evaluated for their capacity to learn and perform a series of operant tasks. These tasks ranged in difficulty from learning of a simple food-reinforced lever pressing response, to learning a task in which subjects were required to emit up to four-response chains of pressing three different levers (e.g., press levers C, R, L, then C). It was shown that repeated exposure to 1000 mg/m(3) JP-8 vapor induced significant deficits in acquisition or performance of moderately difficult or difficult tasks, but not simple learning tasks, as compared to those animals exposed to 500 mg/m(3). Learning/performance of complex tasks by the 500-mg/m(3) exposure group generally exceeded the performance of control animals, while learning by the 1000-mg/m(3) group was nearly always inferior to controls, indicating possible "neurobehavioral" hormesis. These findings appear consistent with some previously reported data for operant performance following acute exposure to certain hydrocarbon constituents of JP-8 (i.e., toluene, xylenes). There has, however, been little previously published research demonstrating long-term learning effects for repeated hydrocarbon fuel exposures. Examination of regional brain tissues from vapor-exposed rats indicated significant changes in levels of dopamine in the cerebral cortex and DOPAC in the brainstem, measured as long as 180 d postexposure, as compared to controls. C1 Geocenters Inc, Wright Patterson AFB, OH USA. Naval Hlth Res Ctr, Detachment Toxicol, Neurobehav Effects Lab, Wright Patterson AFB, OH USA. Univ Arkansas Med Sci, Dept Pharmacol & Toxicol, Little Rock, AR 72205 USA. C3 United States Department of Defense; United States Navy; Naval Medical Research Center (NMRC); Naval Health Research Center (NHRC); University of Arkansas System; University of Arkansas Medical Sciences RP Ritchie, GD (corresponding author), NRHCTD, 2612 5th St,Bldg 433, Wright Patterson AFB, OH 45433 USA. EM glenn.ritchie@wpafb.af.mil CR ANDERSSON K, 1981, TOXICOL APPL PHARM, V60, P535, DOI 10.1016/0041-008X(81)90340-9 *ARMBR AV GROUP, 1998, WORLD JET FUEL ALM BUFFALO EA, 1993, PHARMACOL BIOCHEM BE, V46, P733, DOI 10.1016/0091-3057(93)90570-J BUSHNELL PJ, 1988, NEUROTOXICOL TERATOL, V10, P569, DOI 10.1016/0892-0362(88)90094-3 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Colotla V A, 1979, Neurobehav Toxicol, V1 Suppl 1, P113 EVANS EB, 1991, NEUROSCI BIOBEHAV R, V15, P233, DOI 10.1016/S0149-7634(05)80003-X FERGUSON SA, 1993, PHARMACOL BIOCHEM BE, V45, P107, DOI 10.1016/0091-3057(93)90093-9 GEIST CR, 1983, PERCEPT MOTOR SKILL, V57, P1083, DOI 10.2466/pms.1983.57.3f.1083 GLEASON CC, 1979, JAPCA J AIR WASTE MA, V29, P1243, DOI 10.1080/00022470.1979.10470922 Gralewicz S, 2001, NEUROTOXICOLOGY, V22, P79, DOI 10.1016/S0161-813X(00)00003-6 GREGERSEN P, 1984, AM J IND MED, V5, P201, DOI 10.1002/ajim.4700050305 Grosch JW, 1996, AM J IND MED, V30, P623, DOI 10.1002/(SICI)1097-0274(199611)30:5<623::AID-AJIM11>3.0.CO;2-5 GUPTA BN, 1990, J SOC OCCUP MED, V40, P94 HANNINEN H, 1976, Scandinavian Journal of Work Environment and Health, V2, P240 Harris DT, 2000, TOXICOL IND HEALTH, V16, P78, DOI 10.1191/074823300678827681 Harris DT, 1997, TOXICOL IND HEALTH, V13, P559, DOI 10.1177/074823379701300501 Henz K., 1998, SURVEY JET FUELS PRO HILLEFORSBERGLUND M, 1995, TOXICOLOGY, V100, P185, DOI 10.1016/0300-483X(95)03084-S HINNERS RG, 1968, ARCH ENVIRON HEALTH, V16, P194, DOI 10.1080/00039896.1968.10665043 HOLM S, 1987, SCAND J WORK ENV HEA, V13, P438, DOI 10.5271/sjweh.2016 HONMA T, 1983, Industrial Health, V21, P143 IKEDA T, 1993, ENVIRON RES, V63, P70, DOI 10.1006/enrs.1993.1128 KIM C, 1987, J CHROMATOGR, V386, P25 KIM MS, 2000, TOXICOLOGIST, V54, P359 Kishi R, 1986, Sangyo Igaku, V28, P101 KNAVE B, 1976, Scandinavian Journal of Work Environment and Health, V2, P152 KNAVE B, 1978, SCAND J WORK ENV HEA, V4, P19, DOI 10.5271/sjweh.2725 KNAVE B, 1979, ACTA PSYCHIAT SCAND, V60, P39, DOI 10.1111/j.1600-0447.1979.tb00263.x KNAVE B, 1976, ADVERSE EFFECTS ENV, V2, P149 Maruff P, 1998, BRAIN, V121, P1903, DOI 10.1093/brain/121.10.1903 Mattie DR, 1995, TOXICOL IND HEALTH, V11, P423, DOI 10.1177/074823379501100405 MATTIE DR, 1991, TOXICOL PATHOL, V19, P77, DOI 10.1177/019262339101900201 Mayorga AJ, 2000, BEHAV BRAIN RES, V109, P59, DOI 10.1016/S0166-4328(99)00165-5 MINDUS P, 1978, ACTA PSYCHIAT SCAND, P53 MIYAGAWA M, 1995, NEUROTOXICOL TERATOL, V17, P657, DOI 10.1016/0892-0362(95)02008-X MIYAKE H, 1983, NEUROBEH TOXICOL TER, V5, P541 MORROW LA, 1992, NEUROPSYCHOLOGIA, V30, P911, DOI 10.1016/0028-3932(92)90035-K MORROW LA, 1999, SOLVENTS NEUROPHYSIO NG TP, 1990, NEUROTOXICOL TERATOL, V12, P661, DOI 10.1016/0892-0362(90)90082-N NILSEN OG, 1988, PHARMACOL TOXICOL, V62, P259, DOI 10.1111/j.1600-0773.1988.tb01884.x Nordholm AF, 1999, J TOXICOL ENV HEAL A, V56, P471, DOI 10.1080/009841099157935 ODKVIST LM, 1987, SCAND AUDIOL, V16, P75, DOI 10.3109/01050398709042159 ODKVIST LM, 1983, OTOLARYNGOL HEAD NEC, V159, P326 PAULE MG, 1990, NEUROTOXICOL TERATOL, V12, P413, DOI 10.1016/0892-0362(90)90002-T PEZZOLI G, 1990, BRAIN RES, V531, P355, DOI 10.1016/0006-8993(90)90801-H *PHILL CHEM CO, 1995, JP 8 AV TURB FUEL MA Pise VM, 1998, J TOXICOL ENV HEAL A, V54, P193 Pleil JD, 2000, ENVIRON HEALTH PERSP, V108, P183, DOI 10.2307/3454432 Popke EJ, 2000, ALCOHOL, V20, P187, DOI 10.1016/S0741-8329(99)00081-6 Popke EJ, 2000, PHARMACOL BIOCHEM BE, V65, P247, DOI 10.1016/S0091-3057(99)00205-1 PRYOR GT, 1982, NEUROBEH TOXICOL TER, V4, P71 PRYOR GT, 1983, NEUROBEH TOXICOL TER, V5, P91 Ritchie GD, 2001, J TOXICOL ENV HEAL B, V4, P223, DOI 10.1080/109374001301419728 RITCHIE GD, 1995, FIRE POLYM, V2, P344 Robbins TW, 2000, EXP BRAIN RES, V133, P130, DOI 10.1007/s002210000407 Robledo RF, 2000, TOXICOL PATHOL, V28, P656, DOI 10.1177/019262330002800504 Rossi J, 2001, J TOXICOL ENV HEAL A, V63, P397, DOI 10.1080/152873901300343452 SCHULZE GE, 1988, J PHARMACOL EXP THER, V245, P178 SCHULZE GE, 1991, PHARMACOL BIOCHEM BE, V38, P77, DOI 10.1016/0091-3057(91)90592-P Shigeta S, 1979, Sangyo Igaku, V21, P68 Smith LB, 1997, J OCCUP ENVIRON MED, V39, P623, DOI 10.1097/00043764-199707000-00007 STRUWE G, 1983, ACTA PSYCHIAT SCAND, V67, P55, DOI 10.1111/j.1600-0447.1983.tb00942.x TILSON HA, 1980, NEUROTOXICOL TERATOL, V2, P101 Tsai SY, 1997, ENVIRON RES, V73, P146, DOI 10.1006/enrs.1997.3704 Ullrich SE, 1999, TOXICOL SCI, V52, P61, DOI 10.1093/toxsci/52.1.61 VONEULER G, 1994, NEUROTOXICOLOGY, V15, P621 Wada H, 1999, NEUROTOXICOL TERATOL, V21, P709, DOI 10.1016/S0892-0362(99)00033-1 Wada H, 1997, NEUROTOXICOL TERATOL, V19, P399, DOI 10.1016/S0892-0362(97)00028-7 WADA H, 1989, NEUROTOXICOL TERATOL, V11, P265, DOI 10.1016/0892-0362(89)90069-X Warren DA, 1998, NEUROTOXICOL TERATOL, V20, P143, DOI 10.1016/S0892-0362(97)00096-2 You L, 2000, J TOXICOL ENV HEAL A, V60, P331, DOI 10.1080/00984100050030118 You L, 1998, J TOXICOL ENV HEAL A, V54, P285 NR 74 TC 28 Z9 28 U1 0 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1528-7394 EI 1087-2620 J9 J TOXICOL ENV HEAL A JI J. Toxicol. Env. Health Part A PD NOV 9 PY 2001 VL 64 IS 5 BP 385 EP 415 DI 10.1080/152873901753170731 PG 31 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 490BE UT WOS:000172029700002 PM 11700005 DA 2023-03-13 ER PT J AU Muzik, O Diwadkar, VA AF Muzik, Otto Diwadkar, Vaibhav A. TI Hierarchical control systems for the regulation of physiological homeostasis and affect: Can their interactions modulate mood and anhedonia? SO NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS LA English DT Review DE Cognitive control of autonomic NS; Stress-induced analgesia; Outcome expectancy affect modulation; Endocannabinoids and endorphins; Cold exposure; Periaqueductal gray ID MAJOR DEPRESSIVE DISORDER; DOPAMINE TRANSPORTER BINDING; MIDBRAIN PERIAQUEDUCTAL GRAY; INNATE IMMUNE-RESPONSE; PREFRONTAL CORTEX; NERVOUS-SYSTEM; BASAL GANGLIA; RESTING-STATE; BRAIN; REWARD AB Predominant concepts assert that conscious willful processes do not assert a significant influence on autonomic functions associated with physiological homeostasis (e.g., thermal regulation). The singular purpose of this review is to promote a reappraisal of concepts regarding the circumscribed role of hierarchical control systems. To effect this reappraisal, we assess the interaction between top-down and bottom-up regulatory mechanisms, specifically by highlighting the intersection between the "physiological" (specifically thermoregulatory pathways) and the "psychological" (specifically mood/anhedonia related processes). This reappraisal suggests that the physiological and psychological processes can interact in unanticipated ways, and is grounded in multiple lines of recent experimental evidence. For example, behavioral techniques that through a combination of hormesis (forced breathing, cold exposure) and meditation appear to exert unusual effects on homeostatic function (cold tolerance) and suppression of aberrant auto-immune responses. The molecular correlates of these effects (the putative release of endogenous cannabinoids and endorphins) may exert salutary effects on mood/anhedonia, even more significant than those exerted by cognitive behavioral techniques or meditation alone. By focusing on this interaction, we present a putative mechanistic model linking physiology with psychology, with particular implications for disturbances of mood/anhedonia. We suggest that volitional changes in breathing patterns can activate primary control centers for descending pain/cold stimuli in periaqueductal gray, initiating a stress-induced analgesic response mediated by endocannabinoid/endorphin release. The analgesic effects, and the feelings of euphoria generated by endocannbinoid release are prolonged via a top-down "outcome expectancy" control mechanism regulated by cortical areas. By focusing on modification strategies that principally target homeostatic function (but may also exert ancillary effects on mood), we articulate a novel framework for how hierarchical control systems for the regulation of physiological homeostasis and affect interact. This interaction may allow practitioners of focused modification strategies to assert increased control over key components of the affective system, allowing for viable treatment approaches for patients with disturbances of mood/anhedonia. C1 [Muzik, Otto] Wayne State Univ, Sch Med, Dept Pediat, Detroit, MI 48201 USA. [Diwadkar, Vaibhav A.] Wayne State Univ, Sch Med, Dept Psychiat & Behav Neurosci, Detroit, MI 48201 USA. C3 Wayne State University; Wayne State University RP Muzik, O (corresponding author), Wayne State Univ, Sch Med, Dept Pediat, Detroit, MI 48201 USA. EM omuzik@med.wayne.edu CR Alcaro A, 2011, NEUROSCI BIOBEHAV R, V35, P1805, DOI 10.1016/j.neubiorev.2011.03.002 Altier N, 1999, LIFE SCI, V65, P2269, DOI 10.1016/S0024-3205(99)00298-2 Banks SJ, 2007, SOC COGN AFFECT NEUR, V2, P303, DOI 10.1093/scan/nsm029 BEHBEHANI MM, 1995, PROG NEUROBIOL, V46, P575, DOI 10.1016/0301-0082(95)00009-K Benarroch EE, 2008, NEUROLOGY, V71, P217, DOI 10.1212/01.wnl.0000318225.51122.63 Benedetti F, 2005, J NEUROSCI, V25, P10390, DOI 10.1523/JNEUROSCI.3458-05.2005 Benedetti F, 2013, PHYSIOL REV, V93, P1207, DOI 10.1152/physrev.00043.2012 BENSON H, 1990, BEHAV MED, V16, P90, DOI 10.1080/08964289.1990.9934596 Berman RM, 2009, CNS SPECTRUMS, V14, P197, DOI 10.1017/S1092852900020216 Binder JR, 1999, J COGNITIVE NEUROSCI, V11, P80, DOI 10.1162/089892999563265 Bishop SJ, 2009, NAT NEUROSCI, V12, P92, DOI 10.1038/nn.2242 Bortolanza M, 2010, NEUROBIOL LEARN MEM, V94, P229, DOI 10.1016/j.nlm.2010.05.011 Capuron L, 2012, ARCH GEN PSYCHIAT, V69, P1044, DOI 10.1001/archgenpsychiatry.2011.2094 Casey BJ, 2000, BIOL PSYCHOL, V54, P241, DOI 10.1016/S0301-0511(00)00058-2 Chang CH, 2014, BIOL PSYCHIAT, V76, P223, DOI 10.1016/j.biopsych.2013.09.020 Chernoloz O, 2009, PSYCHOPHARMACOLOGY, V206, P335, DOI 10.1007/s00213-009-1611-7 Colloca L, 2005, NAT REV NEUROSCI, V6, P545, DOI 10.1038/nrn1705 Colloca L, 2009, PAIN, V144, P28, DOI 10.1016/j.pain.2009.01.033 Corcoran L, 2015, INT REV NEUROBIOL, V125, P203, DOI 10.1016/bs.irn.2015.10.003 Covey DP, 2017, NEUROPHARMACOLOGY, V124, P52, DOI 10.1016/j.neuropharm.2017.04.033 Craig AD, 2002, NAT REV NEUROSCI, V3, P655, DOI 10.1038/nrn894 Dantzer R, 2000, AUTON NEUROSCI-BASIC, V85, P60, DOI 10.1016/S1566-0702(00)00220-4 Dantzer R, 1998, ANN NY ACAD SCI, V840, P586, DOI 10.1111/j.1749-6632.1998.tb09597.x Dantzer R, 2008, NAT REV NEUROSCI, V9, P46, DOI 10.1038/nrn2297 Dantzer R, 2007, BRAIN BEHAV IMMUN, V21, P153, DOI 10.1016/j.bbi.2006.09.006 De la Fuente-Fernandez R, 2006, J NEURAL TRANSM-SUPP, P415 de la Fuente-Fernandez R, 2004, BIOL PSYCHIAT, V56, P67, DOI 10.1016/j.biopsych.2003.11.019 De la Fuente-Fernandez R, 2002, EVAL HEALTH PROF, V25, P387, DOI 10.1177/0163278702238052 de la Fuente-Fernandez R, 2009, PARKINSONISM RELAT D, V15, pS72, DOI 10.1016/S1353-8020(09)70785-0 DHAENEN HA, 1994, BIOL PSYCHIAT, V35, P128, DOI 10.1016/0006-3223(94)91202-5 Dinarello CA, 2004, J ENDOTOXIN RES, V10, P201, DOI 10.1179/096805104225006129 Dowlati Y, 2010, BIOL PSYCHIAT, V67, P446, DOI 10.1016/j.biopsych.2009.09.033 Dremencov E, 2009, J PSYCHIATR NEUROSCI, V34, P223 Drevets WC, 2008, BRAIN STRUCT FUNCT, V213, P93, DOI 10.1007/s00429-008-0189-x Drysdale AT, 2017, NAT MED, V23, P28, DOI 10.1038/nm.4246 Dunn AJ, 2006, CLIN NEUROSCI RES, V6, P52, DOI 10.1016/j.cnr.2006.04.002 Epstein HT, 2001, BRAIN COGNITION, V45, P44, DOI 10.1006/brcg.2000.1253 Felger Jennifer C, 2019, Handb Exp Pharmacol, V250, P255, DOI 10.1007/164_2018_166 Felger JC, 2012, FRONT NEUROENDOCRIN, V33, P315, DOI 10.1016/j.yfrne.2012.09.003 Fiorillo CD, 2003, SCIENCE, V299, P1898, DOI 10.1126/science.1077349 Friston KJ, 2011, BRAIN CONNECT, V1, P13, DOI 10.1089/brain.2011.0008 Frith CD, 2006, NEURON, V50, P531, DOI 10.1016/j.neuron.2006.05.001 Funk CD, 2001, SCIENCE, V294, P1871, DOI 10.1126/science.294.5548.1871 Fuster JM, 2001, NEURON, V30, P319, DOI 10.1016/S0896-6273(01)00285-9 Gertsch Jurg, 2018, Med Cannabis Cannabinoids, V1, P60, DOI 10.1159/000489291 Gomez TMD, 1996, NEUROSCI LETT, V214, P5 Gordon I, 1996, EUR J PHARMACOL, V298, P27, DOI 10.1016/0014-2999(95)00770-9 Goyal M, 2014, JAMA INTERN MED, V174, P357, DOI 10.1001/jamainternmed.2013.13018 Gradin VB, 2011, BRAIN, V134, P1751, DOI 10.1093/brain/awr059 Greenberg T, 2015, AM J PSYCHIAT, V172, P881, DOI 10.1176/appi.ajp.2015.14050594 Haroon E, 2012, NEUROPSYCHOPHARMACOL, V37, P137, DOI 10.1038/npp.2011.205 Herrero JL, 2018, J NEUROPHYSIOL, V119, P145, DOI 10.1152/jn.00551.2017 Herwig U, 2010, NEUROIMAGE, V50, P734, DOI 10.1016/j.neuroimage.2009.12.089 IKAWA K, 1994, NEUROSCI LETT, V167, P37, DOI 10.1016/0304-3940(94)91022-7 Irwin MR, 2007, BRAIN BEHAV IMMUN, V21, P374, DOI 10.1016/j.bbi.2007.01.010 Julian MD, 2003, NEUROSCIENCE, V119, P309, DOI 10.1016/S0306-4522(03)00070-8 Kato M, 2013, CNS DRUGS, V27, pS11, DOI 10.1007/s40263-012-0029-7 Kaufling J, 2009, J COMP NEUROL, V513, P597, DOI 10.1002/cne.21983 KILBOURN MR, 1992, EUR J PHARMACOL, V216, P109, DOI 10.1016/0014-2999(92)90216-Q Killingsworth MA, 2010, SCIENCE, V330, P932, DOI 10.1126/science.1192439 Kong LT, 2013, J PSYCHIATR NEUROSCI, V38, P417, DOI 10.1503/jpn.120117 Kox M, 2014, P NATL ACAD SCI USA, V111, P7379, DOI 10.1073/pnas.1322174111 Kox M, 2012, PSYCHOSOM MED, V74, P489, DOI 10.1097/PSY.0b013e3182583c6d Kozhevnikov M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058244 Kumar P, 2008, BRAIN, V131, P2084, DOI 10.1093/brain/awn136 Lammel S, 2011, NEURON, V70, P855, DOI 10.1016/j.neuron.2011.03.025 Lanotte M, 2005, BRAIN BEHAV IMMUN, V19, P500, DOI 10.1016/j.bbi.2005.06.004 LeDoux JE, 2017, P NATL ACAD SCI USA, V114, pE2016, DOI 10.1073/pnas.1619316114 Lee S, 2016, J ANAL SCI TECHNOL, V7, DOI 10.1186/s40543-016-0093-6 Lenz JD, 2013, BEHAV BRAIN RES, V255, P44, DOI 10.1016/j.bbr.2013.04.018 Lidstone SC, 2010, ARCH GEN PSYCHIAT, V67, P857, DOI 10.1001/archgenpsychiatry.2010.88 Llorca P., 2015, EUR PSYCHIAT, V30, DOI [10.1016/S0924-9338(15)31881-2, DOI 10.1016/S0924-9338(15)31881-2] Lupica CR, 2005, NEUROPHARMACOLOGY, V48, P1105, DOI 10.1016/j.neuropharm.2005.03.016 Maes M, 1999, ADV EXP MED BIOL, V461, P25 Majer M, 2008, BRAIN BEHAV IMMUN, V22, P870, DOI 10.1016/j.bbi.2007.12.009 Mannino M, 2015, PHYS LIFE REV, V15, P107, DOI 10.1016/j.plrev.2015.09.002 Mashour GA, 2013, P NATL ACAD SCI USA, V110, P10357, DOI 10.1073/pnas.1301188110 MATSUDA LA, 1993, J COMP NEUROL, V327, P535, DOI 10.1002/cne.903270406 Mayberg HS, 2003, NEUROIMAG CLIN N AM, V13, P805, DOI 10.1016/S1052-5149(03)00104-7 Mayberg HS, 2002, AM J PSYCHIAT, V159, P728, DOI 10.1176/appi.ajp.159.5.728 McCabe C, 2009, PSYCHOPHARMACOLOGY, V205, P667, DOI 10.1007/s00213-009-1573-9 McDougall SJ, 2015, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00440 Melis M, 2007, CURR NEUROPHARMACOL, V5, P268, DOI 10.2174/157015907782793612 Meyer JH, 2001, NEUROREPORT, V12, P4121, DOI 10.1097/00001756-200112210-00052 Millan MJ, 2002, PROG NEUROBIOL, V66, P355, DOI 10.1016/S0301-0082(02)00009-6 Miller AH, 2016, NAT REV IMMUNOL, V16, P22, DOI 10.1038/nri.2015.5 Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167 Mooneyham BW, 2013, CAN J EXP PSYCHOL, V67, P11, DOI 10.1037/a0031569 Munte TF, 2008, FRONT NEUROSCI-SWITZ, V2, P72, DOI 10.3389/neuro.01.006.2008 Muzik O, 2018, NEUROIMAGE, V172, P632, DOI 10.1016/j.neuroimage.2018.01.067 Muzik O, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00640 Muzik O, 2016, HUM BRAIN MAPP, V37, P3188, DOI 10.1002/hbm.23233 Nagarkatti P, 2009, FUTURE MED CHEM, V1, P1333, DOI 10.4155/FMC.09.93 Nutt D, 2007, J PSYCHOPHARMACOL, V21, P461, DOI 10.1177/0269881106069938 Ochsner KN, 2005, TRENDS COGN SCI, V9, P242, DOI 10.1016/j.tics.2005.03.010 Oleson EB, 2012, NEURON, V73, P360, DOI 10.1016/j.neuron.2011.11.018 Panksepp J, 2005, CONSCIOUS COGN, V14, P30, DOI 10.1016/j.concog.2004.10.004 Panksepp Jaak, 2010, Dialogues Clin Neurosci, V12, P533 PARK AY, 2018, SOC COGN AFFECT NEUR, V6, DOI DOI 10.14814/PHY2.13904 Pessoa L, 2018, CURR OPIN BEHAV SCI, V19, P19, DOI 10.1016/j.cobeha.2017.09.005 Pessoa L, 2015, BEHAV BRAIN SCI, V38, DOI 10.1017/S0140525X14000120 Phan KL, 2005, BIOL PSYCHIAT, V57, P210, DOI 10.1016/j.biopsych.2004.10.030 Price CJ, 2005, COGN NEUROPSYCHOL, V22, P262, DOI 10.1080/02643290442000095 PRISCO S, 1995, BRIT J PHARMACOL, V116, P1923, DOI 10.1111/j.1476-5381.1995.tb16684.x Raison CL, 2006, TRENDS IMMUNOL, V27, P24, DOI 10.1016/j.it.2005.11.006 Reppucci CJ, 2016, BRAIN STRUCT FUNCT, V221, P2937, DOI 10.1007/s00429-015-1081-0 RIZVI TA, 1991, J COMP NEUROL, V303, P121, DOI 10.1002/cne.903030111 Robinson OJ, 2012, AM J PSYCHIAT, V169, P152, DOI 10.1176/appi.ajp.2011.11010137 Rolls ET, 2008, NEUROIMAGE, V41, P1504, DOI 10.1016/j.neuroimage.2008.03.005 Roychowdhury SM, 1996, NEUROSCIENCE, V74, P863, DOI 10.1016/0306-4522(96)00180-7 Rush AJ, 2006, AM J PSYCHIAT, V163, P1905, DOI 10.1176/appi.ajp.163.11.1905 Russo SJ, 2013, NAT REV NEUROSCI, V14, P609, DOI 10.1038/nrn3381 Sarasombath Pichaya, 2002, Hawaii Med J, V61, P57 Sarchiapone M, 2006, PSYCHIAT RES-NEUROIM, V147, P243, DOI 10.1016/j.pscychresns.2006.03.001 Satpute AB, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01860 Schafer SM, 2018, PROG NEUROBIOL, V160, P101, DOI 10.1016/j.pneurobio.2017.10.008 Schneeberger M, 2014, J ENDOCRINOL, V220, pT25, DOI 10.1530/JOE-13-0398 Schooler JW, 2011, TRENDS COGN SCI, V15, P319, DOI 10.1016/j.tics.2011.05.006 Schultz W, 1998, J NEUROPHYSIOL, V80, P1, DOI 10.1152/jn.1998.80.1.1 Schultz W, 2016, DIALOGUES CLIN NEURO, V18, P23 Smallwood J, 2011, COGNITION EMOTION, V25, P1481, DOI 10.1080/02699931.2010.545263 Smallwood J, 2012, BRAIN RES, V1428, P60, DOI 10.1016/j.brainres.2011.03.072 Smallwood J, 2009, EMOTION, V9, P271, DOI 10.1037/a0014855 Strigo IA, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2016.0010 Stuss DT, 2003, BRAIN, V126, P2363, DOI 10.1093/brain/awg237 Tobler PN, 2005, SCIENCE, V307, P1642, DOI 10.1126/science.1105370 Tremblay LK, 2002, ARCH GEN PSYCHIAT, V59, P409, DOI 10.1001/archpsyc.59.5.409 Vinckier F, 2017, EUR PSYCHIAT, V44, P1, DOI 10.1016/j.eurpsy.2017.02.485 Wood Patrick B, 2008, Expert Rev Neurother, V8, P781, DOI 10.1586/14737175.8.5.781 Wu X., 2007, NEUROPHARMACOLOGY, V39, P391 Yadid G, 2008, PROG BRAIN RES, V172, P265, DOI 10.1016/S0079-6123(08)00913-8 NR 131 TC 12 Z9 12 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-7634 EI 1873-7528 J9 NEUROSCI BIOBEHAV R JI Neurosci. Biobehav. Rev. PD OCT PY 2019 VL 105 BP 251 EP 261 DI 10.1016/j.neubiorev.2019.08.015 PG 11 WC Behavioral Sciences; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Behavioral Sciences; Neurosciences & Neurology GA JA1JO UT WOS:000487573500023 PM 31442518 DA 2023-03-13 ER PT J AU Van Voorhies, WA Castillo, HA Thawng, CN Smith, GB AF Van Voorhies, Wayne A. Castillo, Hugo A. Thawng, Cung N. Smith, Geoffrey B. TI The Phenotypic and Transcriptomic Response of the Caenorhabditis elegans Nematode to Background and Below-Background Radiation Levels SO FRONTIERS IN PUBLIC HEALTH LA English DT Article DE low radiation; biological response; c; elegans; deep biosphere; major sperm protein ID OOCYTE MEIOTIC MATURATION; IONIZING-RADIATION; EXPOSURE; GENES; LONGEVITY; HORMESIS; PROTEIN; STRESS; GROWTH; CELLS AB Studies of the biological effects of low-level and below-background radiation are important in understanding the potential effects of radiation exposure in humans. To study this issue we exposed the nematode Caenorhabditis elegans to average background and below-background radiation levels. Two experiments were carried-out in the underground radiation biology laboratory at the Waste Isolation Pilot Plant (WIPP) in New Mexico USA. The first experiment used naive nematodes with data collected within 1 week of being placed underground. The second experiment used worms that were incubated for 8 months underground at below background radiation levels. Nematode eggs were placed in two incubators, one at low radiation (ca.15.6 nGy/hr) and one supplemented with 2 kg of natural KCl (ca. 67.4 nGy/hr). Phenotypic variables measured were: (1) egg hatching success (2) body size from larval development to adulthood, (3) developmental time from egg to egg laying adult, and (4) egg laying rate of young adult worms. Transcriptome analysis was performed on the first experiment on 72 h old adult worms. Within 72 h of being underground, there was a trend of increased egg-laying rate in the below-background radiation treatment. This trend became statistically significant in the group of worms exposed to below-background radiation for 8 months. Worms raised for 8 months in these shielded conditions also had significantly faster growth rates during larval development. Transcriptome analyses of 72-h old naive nematode RNA showed significant differential expression of genes coding for sperm-related proteins and collagen production. In the below-background radiation group, the genes for major sperm protein (msp, 42% of total genes) and sperm-related proteins (7.5%) represented 49.5% of the total genes significantly up-regulated, while the majority of down-regulated genes were collagen (col, 37%) or cuticle-related (28%) genes. RT-qPCR analysis of target genes confirmed transcriptomic data. These results demonstrate that exposure to below-background radiation rapidly induces phenotypic and transcriptomic changes in C. elegans within 72 h of being brought underground. C1 [Van Voorhies, Wayne A.; Thawng, Cung N.; Smith, Geoffrey B.] New Mexico State Univ, Mol Biol Program, Las Cruces, NM 88003 USA. [Van Voorhies, Wayne A.; Thawng, Cung N.; Smith, Geoffrey B.] New Mexico State Univ, Biol Dept, Las Cruces, NM 88003 USA. [Castillo, Hugo A.] Embry Riddle Aeronaut Univ, Human Factors & Behav Neurobiol Dept, Daytona Beach, FL USA. C3 New Mexico State University; New Mexico State University; Embry-Riddle Aeronautical University RP Van Voorhies, WA (corresponding author), New Mexico State Univ, Mol Biol Program, Las Cruces, NM 88003 USA.; Van Voorhies, WA (corresponding author), New Mexico State Univ, Biol Dept, Las Cruces, NM 88003 USA. EM wavanvoo@nmsu.edu RI Thawng, Cung Nawl/HHZ-5624-2022 OI Thawng, Cung Nawl/0000-0003-3785-0917 FU U.S. Department of Energy (DOE) Office of Environmental Management [DE-EM0002423]; agency of the United States Government FX These results are based upon work supported by the U.S. Department of Energy (DOE) Office of Environmental Management under award number DE-EM0002423. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process or service by trade names, trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement. The views and the opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. CR Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496 Angelo G, 2009, SCIENCE, V326, P954, DOI 10.1126/science.1178343 [Anonymous], 1991, Ann ICRP, V21, P1 BEGUET B, 1972, EXP GERONTOL, V7, P207, DOI 10.1016/0531-5565(72)90027-7 BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x BYERLY L, 1976, DEV BIOL, V51, P23, DOI 10.1016/0012-1606(76)90119-6 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Carbone MC, 2009, RADIAT ENVIRON BIOPH, V48, P189, DOI 10.1007/s00411-008-0208-6 Castillo H, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196472 Castillo H, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00177 Castillo H, 2016, INT J RADIAT BIOL, V92, P169 Castillo H, 2015, INT J RADIAT BIOL, V91, P749, DOI 10.3109/09553002.2015.1062571 Choppin G, 2002, RADIOCHEMISTRY NUCL Cnossen I, 2007, J GEOPHYS RES-PLANET, V112, DOI 10.1029/2006JE002784 Cui FM, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325818820981 Elmore E, 2008, RADIAT RES, V169, P311, DOI 10.1667/RR1199.1 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 HARTMAN PS, 1982, GENETICS, V102, P159 Hendry JH, 2009, J RADIOL PROT, V29, pA29, DOI 10.1088/0952-4746/29/2A/S03 HODGKIN J, 1991, P ROY SOC B-BIOL SCI, V246, P19, DOI 10.1098/rspb.1991.0119 Holdorf AD, 2020, GENETICS, V214, P279, DOI 10.1534/genetics.119.302919 JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 Jung SK, 2015, ENVIRON SCI TECHNOL, V49, P2477, DOI 10.1021/es5056462 Kaletsky R, 2019, CROSS KINGDOM RECOGN, P97888, DOI [10.1101/697888, DOI 10.1101/697888] Katz JI, 2016, INT J RADIAT BIOL, V92, P169, DOI 10.3109/09553002.2016.1135265 Kawanishi M, 2012, J RADIAT RES, V53, P404, DOI 10.1269/jrr.11145 Klosin A, 2017, SCIENCE, V356, P316, DOI 10.1126/science.aah6412 Kuwabara PE, 2003, GENE DEV, V17, P155, DOI 10.1101/gad.1061103 L'Hernault SW, 1997, C ELEGANS, P271 Lampe N, 2017, EVOL APPL, V10, P658, DOI 10.1111/eva.12491 Maremonti E, 2019, SCI TOTAL ENVIRON, V695, DOI 10.1016/j.scitotenv.2019.133835 McGovern M, 2007, BMC DEV BIOL, V7, DOI 10.1186/1471-213X-7-41 Miller MA, 2001, SCIENCE, V291, P2144, DOI 10.1126/science.1057586 Miller MA, 2003, GENE DEV, V17, P187, DOI 10.1101/gad.1028303 Moller AP, 2013, BIOL REV, V88, P226, DOI 10.1111/j.1469-185X.2012.00249.x Morciano P, 2018, RADIAT RES, V190, P217, DOI 10.1667/RR15083.1 Okazaki R, 2007, RADIAT RES, V167, P51, DOI 10.1667/RR0623.1 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Pender CL, 2018, ELIFE, V7, DOI 10.7554/eLife.36828 Pfaffl MW, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.9.e36 Pfaffl MW, 2004, BIOTECHNOL LETT, V26, P509, DOI 10.1023/B:BILE.0000019559.84305.47 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Reimand J, 2007, NUCLEIC ACIDS RES, V35, pW193, DOI 10.1093/nar/gkm226 Riddle Donald L., 1997, V33, P1 Satta L, 2002, RADIAT ENVIRON BIOPH, V41, P217, DOI 10.1007/s00411-002-0159-2 SATTA L, 1995, MUTAT RES LETT, V347, P129, DOI 10.1016/0165-7992(95)00031-3 Schafer WR, 2005, WORMBOOK ONLINE REV Schwarz EM, 2012, P NATL ACAD SCI USA, V109, P16246, DOI 10.1073/pnas.1203045109 Smith Geoffrey Battle, 2011, Health Phys, V100, P263, DOI 10.1097/HP.0b013e318208cd44 Stiernagle Theresa, 2006, WormBook, P1 Supek F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021800 Sykes PJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820921651 Teshiba E, 2016, BIOSCI BIOTECH BIOCH, V80, P1436, DOI 10.1080/09168451.2016.1158634 Tharmalingam S, 2017, RADIAT RES, V188, P525, DOI 10.1667/RR14587.1 Tubiana M, 2005, INT J RADIAT ONCOL, V63, P317, DOI 10.1016/j.ijrobp.2005.06.013 Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399 Van Voorhies WA, 2000, J EXP BIOL, V203, P2467 Waggoner LF, 2000, GENETICS, V154, P1181 Wood WB, 1988, NEMATODE CAENORHABDI Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840 Zimmer C, 2009, SCIENCE, V325, P666, DOI 10.1126/science.325_666 NR 62 TC 11 Z9 11 U1 1 U2 3 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2296-2565 J9 FRONT PUBLIC HEALTH JI Front. Public Health PD OCT 16 PY 2020 VL 8 AR 581796 DI 10.3389/fpubh.2020.581796 PG 12 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA OK7DV UT WOS:000584807300001 PM 33178665 OA gold, Green Published DA 2023-03-13 ER PT J AU Roberts, JD Lillis, J Pinto, JM Willmott, AGB Gautam, L Davies, C Lopez-Samanes, A Del Coso, J Chichger, H AF Roberts, Justin D. Lillis, Joseph Pinto, Jorge Marques Willmott, Ashley G. B. Gautam, Lata Davies, Christopher Lopez-Samanes, Alvaro Del Coso, Juan Chichger, Havovi TI The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia (R)) on Exercise-Induced Oxidative Stress in Healthy Adults SO NUTRIENTS LA English DT Article DE polyphenols; OliPhenolia (R); oxidative stress; exercise; nutrition; antioxidants ID LIPID-PEROXIDATION; ANTIOXIDANT CAPACITY; REACTIVE OXYGEN; VITAMIN-C; HYDROXYTYROSOL; SUPPLEMENTATION; POLYPHENOLS; BIOAVAILABILITY; HORMESIS; OIL AB The role of natural polyphenols in reducing oxidative stress and/or supporting antioxidant mechanisms, particularly relating to exercise, is of high interest. The aim of this study was to investigate OliPhenolia (R) (OliP), a biodynamic and organic olive fruit water phytocomplex, rich in hydroxytyrosol (HT), for the first time within an exercise domain. HT bioavailability from OliP was assessed in fifteen healthy volunteers in a randomized, double-blind, placebo controlled crossover design (age: 30 +/- 2 yrs; body mass: 76.7 +/- 3.9 kg; height: 1.77 +/- 0.02 m), followed by a separate randomized, double-blinded, cohort trial investigating the short-term impact of OliP consumption (2 x 28 mL.d(-1) of OliP or placebo (PL) for 16-days) on markers of oxidative stress in twenty-nine recreationally active participants (42 +/- 2 yrs; 71.1 +/- 2.1 kg; 1.76 +/- 0.02 m). In response to a single 28 mL OliP bolus, plasma HT peaked at 1 h (38.31 +/- 4.76 ng.mL(-1)), remaining significantly elevated (p < 0.001) until 4 h. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and HT were assessed at rest and immediately following exercise (50 min at similar to 75% (V)over dotO(2)max then 10 min intermittent efforts) and at 1 and 24 h post-exercise, before and after the 16-day supplementation protocol. Plasma HT under resting conditions was not detected pre-intervention, but increased to 6.3 +/- 1.6 ng.mL(-1) following OliP only (p < 0.001). OliP demonstrated modest antioxidant effects based on reduced SOD activity postexercise (p = 0.016) and at 24 h (p <= 0.046), and increased GSH immediately post-exercise (p = 0.009) compared with PL. No differences were reported for MDA and CAT activity in response to the exercise protocol between conditions. The phenolic compounds within OliP, including HT, may have specific antioxidant benefits supporting acute exercise recovery. Further research is warranted to explore the impact of OliP following longer-term exercise training, and clinical domains pertinent to reduced oxidative stress. C1 [Roberts, Justin D.; Lillis, Joseph; Pinto, Jorge Marques; Willmott, Ashley G. B.] Anglia Ruskin Univ, Cambridge Ctr Sport & Exercise Sci, Sch Psychol & Sport Sci, Cambridge CB1 1PT, England. [Gautam, Lata; Davies, Christopher; Chichger, Havovi] Anglia Ruskin Univ, Sch Life Sci, Cambridge CB1 1PT, England. [Lopez-Samanes, Alvaro] Univ Francisco de Vitoria, Fac Hlth Sci, Exercise Physiol Grp, Madrid 28223, Spain. [Del Coso, Juan] Rey Juan Carlos Univ, Ctr Sport Studies, Fuenlabrada 28943, Spain. C3 Anglia Ruskin University; Anglia Ruskin University; Universidad Francisco de Vitoria; Universidad Rey Juan Carlos RP Roberts, JD (corresponding author), Anglia Ruskin Univ, Cambridge Ctr Sport & Exercise Sci, Sch Psychol & Sport Sci, Cambridge CB1 1PT, England. EM Justin.roberts@aru.ac.uk OI Roberts, Justin/0000-0002-3169-2041 FU Fattoria La Vialla, Castiglion Fibocchi, Arezzo, Italy FX This research was funded by Fattoria La Vialla, Castiglion Fibocchi, Arezzo, Italy for product and related consumables, and research/analytical costs. This study was undertaken independently of the funding company. CR Aguilar T.A.F., 2016, MASTER REGULATOR OXI, P3, DOI DOI 10.5772/65715 Al Fazazi S, 2018, J INT SOC SPORT NUTR, V15, DOI 10.1186/s12970-018-0221-3 Aleman-Jimenez C, 2021, EUR J NUTR, V60, P905, DOI 10.1007/s00394-020-02295-0 Allgrove J, 2011, INT J SPORT NUTR EXE, V21, P113, DOI 10.1123/ijsnem.21.2.113 Ammar A, 2017, NUTRIENTS, V9, DOI 10.3390/nu9080819 [Anonymous], 2017, M24100 ITUR Arulselvan P, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/5276130 Ashley NT, 2012, ANNU REV ECOL EVOL S, V43, P385, DOI 10.1146/annurev-ecolsys-040212-092530 Aydar A. Y., 2017, EC NUTR, V11, P147 Bailey DM, 2011, EUR J APPL PHYSIOL, V111, P925, DOI 10.1007/s00421-010-1718-x Bertelli M, 2020, J BIOTECHNOL, V309, P29, DOI 10.1016/j.jbiotec.2019.12.016 Bloomer RJ, 2006, MED SCI SPORT EXER, V38, P1098, DOI 10.1249/01.mss.0000222839.51144.3e Bloomer RJ, 2005, J STRENGTH COND RES, V19, P276 Bouviere J, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10040537 Bowtell J, 2019, SPORTS MED, V49, pS3, DOI 10.1007/s40279-018-0998-x Bryant RJ, 2003, J STRENGTH COND RES, V17, P792, DOI 10.1519/00124278-200311000-00027 Cases J, 2017, NUTRIENTS, V9, DOI 10.3390/nu9040421 Chai SC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11020228 D'Archivio M, 2010, INT J MOL SCI, V11, P1321, DOI 10.3390/ijms11041321 Dominguez-Perles R, 2017, EUR J NUTR, V56, P215, DOI 10.1007/s00394-015-1071-2 Eynon N, 2010, PHYSIOL GENOMICS, V41, P78, DOI 10.1152/physiolgenomics.00199.2009 Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146 Fisher-Wellman Kelsey, 2009, Dyn Med, V8, P1, DOI 10.1186/1476-5918-8-1 Foster C, 2001, J STRENGTH COND RES, V15, P109, DOI 10.1519/00124278-200102000-00019 Ganesan K, 2017, NUTRIENTS, V9, DOI 10.3390/nu9050455 Goldfarb AH, 2007, APPL PHYSIOL NUTR ME, V32, P1124, DOI 10.1139/H07-078 Goldsmith CD, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19071937 Gomez-Cabrera MC, 2008, FREE RADICAL BIO MED, V44, P126, DOI 10.1016/j.freeradbiomed.2007.02.001 Goncalves MC, 2011, CLINICS, V66, P1537, DOI 10.1590/S1807-59322011000900005 Gonzalez-Santiago M, 2010, PHARMACOL RES, V61, P364, DOI 10.1016/j.phrs.2009.12.016 Huang Y, 2015, J NUTR BIOCHEM, V26, P1401, DOI 10.1016/j.jnutbio.2015.08.001 Hurst RD, 2019, FRONT NUTR, V6, DOI 10.3389/fnut.2019.00073 Hussain Tarique, 2016, Oxid Med Cell Longev, V2016, P7432797 Ishikawa T., 2021, OLIVES OLIVE OIL HLT, P625 James CA, 2015, SCAND J MED SCI SPOR, V25, P190, DOI 10.1111/sms.12376 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Ji LL, 1999, P SOC EXP BIOL MED, V222, P283, DOI 10.1046/j.1525-1373.1999.d01-145.x Jowko E, 2011, NUTR RES, V31, P813, DOI 10.1016/j.nutres.2011.09.020 KANTER MM, 1993, J APPL PHYSIOL, V74, P965, DOI 10.1152/jappl.1993.74.2.965 Kashi DS, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102389 Katerji M, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/1279250 Kawamura T, 2018, ANTIOXIDANTS-BASEL, V7, DOI 10.3390/antiox7090119 Kliszczewicz B, 2015, J HUM KINET, V47, P81, DOI 10.1515/hukin-2015-0064 Kupusarevic J, 2019, SPORTS, V7, DOI 10.3390/sports7040084 Lamprecht M, 2015, Antioxidants in Sport Nutrition, P1 Lamprecht M, 2009, INT J SPORT NUTR EXE, V19, P385, DOI 10.1123/ijsnem.19.4.385 Leaf DA, 1997, MED SCI SPORT EXER, V29, P1036, DOI 10.1097/00005768-199708000-00008 Malaguti M, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/825928 Manach C, 2004, AM J CLIN NUTR, V79, P727, DOI 10.1093/ajcn/79.5.727 Martinez-Huelamo M, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6040073 Minich DM, 2019, NUTRIENTS, V11, DOI 10.3390/nu11092073 Miro-Casas E, 2003, CLIN CHEM, V49, P945, DOI 10.1373/49.6.945 Moldogazieva NT, 2018, FREE RADICAL RES, V52, P507, DOI 10.1080/10715762.2018.1457217 Morillas-Ruiz J, 2005, EUR J APPL PHYSIOL, V95, P543, DOI 10.1007/s00421-005-0017-4 Morrison D, 2015, FREE RADICAL BIO MED, V89, P852, DOI 10.1016/j.freeradbiomed.2015.10.412 Nikolaidis MG, 2006, MED SCI SPORT EXER, V38, P1443, DOI 10.1249/01.mss.0000228938.24658.5f Nimse SB, 2015, RSC ADV, V5, P27986, DOI 10.1039/c4ra13315c O'Dowd Y, 2004, BIOCHEM PHARMACOL, V68, P2003, DOI 10.1016/j.bcp.2004.06.023 Pandey KB, 2009, OXID MED CELL LONGEV, V2, P270, DOI 10.4161/oxim.2.5.9498 Papadopoulou A, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/8273160 Pastor A, 2016, J CHROMATOGR A, V1437, P183, DOI 10.1016/j.chroma.2016.02.016 Powers SK, 2011, J PHYSIOL-LONDON, V589, P2129, DOI 10.1113/jphysiol.2010.201327 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Rickards L, 2022, J INT SOC SPORT NUTR, V19, P336, DOI 10.1080/15502783.2022.2091412 Rickards L, 2021, NUTRIENTS, V13, DOI 10.3390/nu13092988 Riva A, 2018, MINERVA MED, V109, P285, DOI 10.23736/S0026-4806.18.05681-1 Roberts JD, 2021, NUTRIENTS, V13, DOI 10.3390/nu13030764 Roberts JD, 2016, NUTRIENTS, V8, DOI 10.3390/nu8110733 Robles-Almazan M, 2018, FOOD RES INT, V105, P654, DOI 10.1016/j.foodres.2017.11.053 Sadowska-Krpa E, 2008, MED SPORT, V12, P1, DOI DOI 10.2478/V10036-008-0001-2 Diaz MS, 2022, NUTRIENTS, V14, DOI 10.3390/nu14194085 Shakoor H, 2021, NUTRIENTS, V13, DOI 10.3390/nu13030728 Somerville V, 2017, SPORTS MED, V47, P1589, DOI 10.1007/s40279-017-0675-5 Sureda A, 2014, CURR PHARM BIOTECHNO, V15, P373, DOI 10.2174/1389201015666140813123843 Turck D, 2017, EFSA J, V15, DOI 10.2903/j.efsa.2017.4728 Visioli F, 2003, J NUTR, V133, P2612, DOI 10.1093/jn/133.8.2612 Visioli F, 1998, BIOCHEM BIOPH RES CO, V247, P60, DOI 10.1006/bbrc.1998.8735 Yavari Abbas, 2015, Asian J Sports Med, V6, pe24898, DOI 10.5812/asjsm.24898 Zaragoza C, 2020, MOLECULES, V25, DOI 10.3390/molecules25041017 Zrelli H, 2011, EUR J PHARMACOL, V660, P275, DOI 10.1016/j.ejphar.2011.03.045 NR 80 TC 1 Z9 1 U1 1 U2 1 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2072-6643 J9 NUTRIENTS JI Nutrients PD DEC PY 2022 VL 14 IS 23 AR 5156 DI 10.3390/nu14235156 PG 21 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 7A5JJ UT WOS:000898491900001 PM 36501186 OA Green Accepted, gold DA 2023-03-13 ER PT J AU Liu, SQ Wang, C Hou, J Wang, PF Miao, LZ Fan, XL You, GX Xu, Y AF Liu, Songqi Wang, Chao Hou, Jun Wang, Peifang Miao, Lingzhan Fan, Xiulei You, Guoxiang Xu, Yi TI Effects of Ag and Ag2S nanoparticles on denitrification in sediments SO WATER RESEARCH LA English DT Article DE Ag nanoparticles; Denitrification; Toxicity; Isotope labeling; Sediment ID SILVER SULFIDE NANOPARTICLES; ANAEROBIC AMMONIUM OXIDATION; NITROUS-OXIDE REDUCTASE; MICROBIAL COMMUNITIES; ENGINEERED NANOMATERIALS; METABOLIC-ACTIVITY; NITRATE REDUCTION; NOSZ GENES; SOIL; IMPACTS AB The widespread use of commercial silver nanoparticles (Ag NPs) inevitably results in their increased release into natural waters and subsequent deposition in sediments, requiring the environmental impact of such deposition to be closely investigated. Hence, the effects of Ag NPs, polyvinylpyrrolidone (PVP)-Ag NPs, and sliver sulfide nanoparticles (Ag2S NPs) on denitrification-induced gas production (N2O and N-15-N-2), and denitrifying microbes in freshwater sediments were investigated. Slurry experiments (8 h) combined with a (NO3-)-N-15 addition technique were performed to determine the gaseous production. The abundance of relative functional genes (nirK, nirS and nosZ) and the composition of functional community were determined through RT-PCR and high-throughput sequencing, respectively. The obtained results showed that the toxicity of NPs on denitrification depended on their type (Ag+ > Ag NPs > PVP-Ag NPs > Ag2S NPs) and concentration, e.g., all 1 mg/L NPs exhibited no effects on denitrification, whereas evident hormesis effect-induced acceleration was observed in the case of Ag+. Conversely, 10 mg/L Ag+ and Ag NPs significantly inhibited the release rates of N2O and N-2 by decreasing the abundance of functional genes (nirK and/or nirS) and the predominant bacteria Paracoccus. PVP-Ag and Ag2S NPs had no effects on N-2 release rates and the composition of denitrifiers, however, inhibited the emission of N2O (by reducing the abundance of nirK), suggesting that normal denitrification-induced N-2 formation in sediments could still be sustained when the N2O production decrease lied within a certain range. Further, the inhibiting ability of Ag-containing NPs was caused by their intrinsic nanotoxicity to functional microbes rather than by the general toxicity of Ag+. Besides, Ag2S NPs (as a main detoxification form of AgNPs) were revealed to be intrinsically nanotoxic to denitrifiers, albeit showing the lowest inhibitory effect among the three tested NPs. Thus, this study demonstrated that the inhibitory effect of Ag-containing NPs on denitrification in sediments depends on their morphology and type, implying that the stability and toxicity of Ag-containing NPs should be considered with caution. (C) 2018 Elsevier Ltd. All rights reserved. C1 [Liu, Songqi; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; Fan, Xiulei; You, Guoxiang; Xu, Yi] Hohai Univ, Coll Environm, Key Lab Integrated Regulat & Resources Dev Shallo, Minist Educ, Nanjing 210098, Jiangsu, Peoples R China. C3 Hohai University RP Hou, J; Miao, LZ (corresponding author), Hohai Univ, Coll Environm, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China. EM hhuhjyhj@126.com; mlz1988@126.com RI Wang, Chao/GXF-8353-2022; Miao, Lingzhan/AAH-8282-2019; Miao, lingzhan/AAE-4683-2020; Hou, Jun/K-1122-2012 OI Hou, Jun/0000-0002-0412-4874 FU Creative Research Groups of China [51421006]; National Natural Science Funds for Excellent Young Scholar [51722902]; Outstanding Youth Fund of Natural Science Foundation of Jiangsu, China [BK20160038]; National Natural Science Foundation of China [51709081]; Fundamental Research Funds for the Central Universities [B17020016]; Priority Academic Program Development of Jiangsu Higher Education In-stitutions (PAPD) FX We are grateful for the grants from the projects supported by the Creative Research Groups of China (No. 51421006), the National Natural Science Funds for Excellent Young Scholar (No. 51722902), the Outstanding Youth Fund of Natural Science Foundation of Jiangsu, China (BK20160038), the National Natural Science Foundation of China (No. 51709081), the Fundamental Research Funds for the Central Universities (No. B17020016), and Priority Academic Program Development of Jiangsu Higher Education In-stitutions (PAPD). Besides, we also thank the help from Professor Lu Zhang of Nanjing Institute of Geography & Limnology Chinese Academy of Sciences. CR Angel BM, 2013, CHEMOSPHERE, V93, P359, DOI 10.1016/j.chemosphere.2013.04.096 Antizar-Ladislao B, 2015, MAR POLLUT BULL, V99, P104, DOI 10.1016/j.marpolbul.2015.07.051 Bao SP, 2016, ENVIRON POLLUT, V219, P696, DOI 10.1016/j.envpol.2016.06.071 Beddow J, 2017, ENVIRON MICROBIOL, V19, P500, DOI 10.1111/1462-2920.13441 Blaser SA, 2008, SCI TOTAL ENVIRON, V390, P396, DOI 10.1016/j.scitotenv.2007.10.010 Bonaglia S, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6133 Bradford A, 2009, ENVIRON SCI TECHNOL, V43, P4530, DOI 10.1021/es9001949 Chen J, 2014, CHEMOSPHERE, V104, P141, DOI 10.1016/j.chemosphere.2013.10.082 Choi OK, 2009, WATER SCI TECHNOL, V59, P1699, DOI 10.2166/wst.2009.205 Colman BP, 2012, ECOTOXICOLOGY, V21, P1867, DOI 10.1007/s10646-012-0920-5 Cornelis G, 2014, CRIT REV ENV SCI TEC, V44, P2720, DOI 10.1080/10643389.2013.829767 Doolette CL, 2015, J HAZARD MATER, V300, P788, DOI 10.1016/j.jhazmat.2015.08.012 Durenkamp M, 2016, ENVIRON POLLUT, V211, P399, DOI 10.1016/j.envpol.2015.12.063 Ellis LJA, 2016, SCI TOTAL ENVIRON, V568, P95, DOI 10.1016/j.scitotenv.2016.05.199 Fabrega J, 2011, ENVIRON INT, V37, P517, DOI 10.1016/j.envint.2010.10.012 Fabrega J, 2009, ENVIRON SCI TECHNOL, V43, P7285, DOI 10.1021/es803259g Fan XL, 2017, CHEM ENG J, V310, P317, DOI 10.1016/j.cej.2016.10.123 Fernandes SO, 2016, ESTUAR COAST SHELF S, V179, P39, DOI 10.1016/j.ecss.2015.10.009 Garner KL, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2503-2 Giles ME, 2017, SOIL BIOL BIOCHEM, V106, P90, DOI 10.1016/j.soilbio.2016.11.028 Gottschalk F, 2013, ENVIRON POLLUT, V181, P287, DOI 10.1016/j.envpol.2013.06.003 Gottschalk F, 2009, ENVIRON SCI TECHNOL, V43, P9216, DOI 10.1021/es9015553 Gui MY, 2017, BIORESOURCE TECHNOL, V235, P325, DOI 10.1016/j.biortech.2017.03.131 Hallin S, 2009, ISME J, V3, P597, DOI 10.1038/ismej.2008.128 Harter J, 2016, SCI TOTAL ENVIRON, V562, P379, DOI 10.1016/j.scitotenv.2016.03.220 Harter J, 2014, ISME J, V8, P660, DOI 10.1038/ismej.2013.160 Hashimoto Y, 2017, J HAZARD MATER, V322, P318, DOI 10.1016/j.jhazmat.2015.09.001 He SY, 2016, CHEMOSPHERE, V147, P195, DOI 10.1016/j.chemosphere.2015.12.055 Henry S, 2006, APPL ENVIRON MICROB, V72, P5181, DOI 10.1128/AEM.00231-06 Hou LJ, 2015, ENVIRON SCI TECHNOL, V49, P326, DOI 10.1021/es504433r Jacobson AR, 2005, ENVIRON POLLUT, V135, P1, DOI 10.1016/j.envpol.2004.10.017 Jahangir MMR, 2017, WATER RES, V111, P254, DOI 10.1016/j.watres.2017.01.015 Jiang HS, 2017, ENVIRON POLLUT, V223, P395, DOI 10.1016/j.envpol.2017.01.036 Jiao ZH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102564 Judy JD, 2015, ENVIRON POLLUT, V206, P256, DOI 10.1016/j.envpol.2015.07.002 Keller AA, 2013, J NANOPART RES, V15, DOI 10.1007/s11051-013-1692-4 Huynh KA, 2014, ENVIRON SCI TECH LET, V1, P361, DOI 10.1021/ez5002177 Kim H, 2016, WATER RES, V106, P51, DOI 10.1016/j.watres.2016.09.048 Kwok KWH, 2016, NANOTOXICOLOGY, V10, P1306, DOI 10.1080/17435390.2016.1206150 Li L, 2015, ENVIRON SCI TECHNOL, V50, P188 Li LXY, 2017, ENVIRON SCI TECHNOL, V51, P7920, DOI 10.1021/acs.est.7b01738 Li LXY, 2016, ENVIRON SCI TECHNOL, V50, P13342, DOI 10.1021/acs.est.6b04042 Liu JY, 2010, ACS NANO, V4, P6903, DOI 10.1021/nn102272n Lok CN, 2007, J BIOL INORG CHEM, V12, P527, DOI 10.1007/s00775-007-0208-z Ma TW, 2010, J ENVIRON SCI-CHINA, V22, P304, DOI 10.1016/S1001-0742(09)60109-1 Miao LZ, 2018, WATER RES, V129, P287, DOI 10.1016/j.watres.2017.11.014 Miao LZ, 2017, ENVIRON POLLUT, V224, P771, DOI 10.1016/j.envpol.2017.01.017 Miao Y, 2015, WATER RES, V76, P43, DOI 10.1016/j.watres.2015.02.042 Michotey V, 2000, APPL ENVIRON MICROB, V66, P1564, DOI 10.1128/AEM.66.4.1564-1571.2000 Moore JD, 2016, ENVIRON SCI TECHNOL, V50, P2641, DOI 10.1021/acs.est.5b05054 Morales SE, 2010, ISME J, V4, P799, DOI 10.1038/ismej.2010.8 Muhling M, 2009, MAR ENVIRON RES, V68, P278, DOI 10.1016/j.marenvres.2009.07.001 Ollivier J, 2010, APPL ENVIRON MICROB, V76, P7903, DOI 10.1128/AEM.01252-10 Pang CF, 2016, NANOTOXICOLOGY, V10, P129, DOI 10.3109/17435390.2015.1024295 Philippot L, 2007, ADV AGRON, V96, P249, DOI 10.1016/S0065-2113(07)96003-4 Philippot L, 2011, GLOBAL CHANGE BIOL, V17, P1497, DOI 10.1111/j.1365-2486.2010.02334.x Praetorius A, 2012, ENVIRON SCI TECHNOL, V46, P6705, DOI 10.1021/es204530n Reinsch BC, 2012, ENVIRON SCI TECHNOL, V46, P6992, DOI 10.1021/es203732x Risgaard-Petersen N, 2004, AQUAT MICROB ECOL, V36, P293, DOI 10.3354/ame036293 Sadovnikov Stanislav I., 2016, Nano-Structures & Nano-Objects, V7, P81, DOI 10.1016/j.nanoso.2016.06.004 Samarajeewa AD, 2017, ENVIRON POLLUT, V220, P504, DOI 10.1016/j.envpol.2016.09.094 Seitzinger S, 2008, NATURE, V452, P162, DOI 10.1038/452162a Sheng ZY, 2017, J ENVIRON MANAGE, V191, P290, DOI 10.1016/j.jenvman.2017.01.028 Sheng ZY, 2011, WATER RES, V45, P6039, DOI 10.1016/j.watres.2011.08.065 Sigg L, 2015, ENVIRON POLLUT, V206, P582, DOI 10.1016/j.envpol.2015.08.017 Stegemeier JP, 2015, ENVIRON SCI TECHNOL, V49, P8451, DOI 10.1021/acs.est.5b01147 Sullivan MJ, 2013, P NATL ACAD SCI USA, V110, P19926, DOI 10.1073/pnas.1314529110 Suresh AK, 2011, ACTA BIOMATER, V7, P4253, DOI 10.1016/j.actbio.2011.07.007 Thamdrup B, 2002, APPL ENVIRON MICROB, V68, P1312, DOI 10.1128/AEM.68.3.1312-1318.2002 Throback IN, 2004, FEMS MICROBIOL ECOL, V49, P401, DOI 10.1016/j.femsec.2004.04.011 USEPA, 2014, UND GLOB WARM POT VandeVoort AR, 2012, IND BIOTECHNOL, V8, P358, DOI DOI 10.1089/IND.2012.0026 Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w Xu HJ, 2014, ENVIRON SCI TECHNOL, V48, P9391, DOI 10.1021/es5021058 Yan C, 2013, WATER RES, V47, P3654, DOI 10.1016/j.watres.2013.04.025 Yang XY, 2012, ENVIRON SCI TECHNOL, V46, P1119, DOI 10.1021/es202417t Yang Y, 2013, ENVIRON TOXICOL CHEM, V32, P1488, DOI 10.1002/etc.2230 Yao XL, 2016, ENVIRON POLLUT, V219, P501, DOI 10.1016/j.envpol.2016.05.073 Yin GY, 2014, ENVIRON SCI TECHNOL, V48, P9555, DOI 10.1021/es501261s Yu T, 2012, ENVIRON MONIT ASSESS, V184, P4367, DOI 10.1007/s10661-011-2270-9 Yuan ZH, 2015, CHEM ENG J, V276, P83, DOI 10.1016/j.cej.2015.04.059 Zhang CQ, 2016, WATER RES, V88, P403, DOI 10.1016/j.watres.2015.10.025 Zhao YQ, 2013, CHEMOSPHERE, V93, P2124, DOI 10.1016/j.chemosphere.2013.07.063 Zheng X, 2014, ENVIRON SCI TECHNOL, V48, P13800, DOI 10.1021/es504251v NR 84 TC 66 Z9 69 U1 9 U2 213 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD JUN 15 PY 2018 VL 137 BP 28 EP 36 DI 10.1016/j.watres.2018.02.067 PG 9 WC Engineering, Environmental; Environmental Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Water Resources GA GD5BO UT WOS:000430520200004 PM 29525425 DA 2023-03-13 ER PT J AU Leroy, M Mosser, T Maniere, X Alvarez, DF Matic, I AF Leroy, Magali Mosser, Thomas Maniere, Xavier Alvarez, Diana Fernandez Matic, Ivan TI Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses SO BMC EVOLUTIONARY BIOLOGY LA English DT Article DE Caenorhabditis elegans; Development; Lifespan; Stress resistance; Hormesis; Pathogens ID HEAT-SHOCK-FACTOR; HOST-MICROBIAL INTERACTIONS; FREE-LIVING STAGES; LIFE-SPAN; ESCHERICHIA-COLI; C-ELEGANS; STRONGYLOIDES-RATTI; BACTERIAL PROLIFERATION; ISOGENIC POPULATIONS; GENETIC-ANALYSIS AB Background: Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals' stress resistance and longevity. Results: We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response. Conclusions: Our study shows that development on pathogens has a hormetic effect on adult nematodes, as it results in increased resistance to different pathogens and to heat shock. Such developmental plasticity of C. elegans nematodes, which are self-fertilizing homozygous animals producing offspring with negligible genetic variation, could increase the probability of survival in changing environments. C1 [Leroy, Magali; Mosser, Thomas; Maniere, Xavier; Alvarez, Diana Fernandez; Matic, Ivan] Univ Paris 05, Fac Med Paris Descartes, Lab Evolut Med & Mol Genet, Inserm,U1001, F-75730 Paris 15, France. C3 Institut National de la Sante et de la Recherche Medicale (Inserm); UDICE-French Research Universities; Universite Paris Cite RP Matic, I (corresponding author), Univ Paris 05, Fac Med Paris Descartes, Lab Evolut Med & Mol Genet, Inserm,U1001, Sorbonne Paris Cite,156 Rue Vaugirard, F-75730 Paris 15, France. EM ivan.matic@inserm.fr FU Nestle Fondation; Servier PhD fellowship; AXA master fellowship; ANR [ANR-06-BLAN-0406/AGING] FX This work was supported in part by a 2008 fellowship from the Nestle Fondation to M.L., Servier PhD fellowship to X.M., AXA master fellowship to D.F.A. and ANR grant ANR-06-BLAN-0406/AGING to I.M. CR Adlerberth I, 2006, PEDIATR RES, V59, P96, DOI 10.1203/01.pdr.0000191137.12774.b2 Anyanful A, 2009, CELL HOST MICROBE, V5, P450, DOI 10.1016/j.chom.2009.04.012 Baeriswyl S, 2010, BIOGERONTOLOGY, V11, P53, DOI 10.1007/s10522-009-9228-0 BAKULA M, 1969, J INVERTEBR PATHOL, V14, P365, DOI 10.1016/0022-2011(69)90163-3 BARGMANN CI, 1993, CELL, V74, P515, DOI 10.1016/0092-8674(93)80053-H Ben-Zvi A, 2009, P NATL ACAD SCI USA, V106, P14914, DOI 10.1073/pnas.0902882106 Braendle C, 2009, J BIOSCIENCES, V34, P543, DOI 10.1007/s12038-009-0073-8 BRENNER S, 1974, GENETICS, V77, P71 Brummel T, 2004, P NATL ACAD SCI USA, V101, P12974, DOI 10.1073/pnas.0405207101 Bry L, 1996, SCIENCE, V273, P1380, DOI 10.1126/science.273.5280.1380 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Casadevall A, 1999, INFECT IMMUN, V67, P3703, DOI 10.1128/IAI.67.8.3703-3713.1999 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Diard M, 2007, MICROBES INFECT, V9, P214, DOI 10.1016/j.micinf.2006.11.009 Diard M, 2010, J BACTERIOL, V192, P4885, DOI 10.1128/JB.00804-10 DUNNY GM, 1978, P NATL ACAD SCI USA, V75, P3479, DOI 10.1073/pnas.75.7.3479 Ewbank Jonathan J, 2006, WormBook, P1 Felix MA, 2010, CURR BIOL, V20, pR965, DOI 10.1016/j.cub.2010.09.050 Fonte V, 2008, J BIOL CHEM, V283, P784, DOI 10.1074/jbc.M703339200 Gardner MP, 2006, AGING CELL, V5, P315, DOI 10.1111/j.1474-9726.2006.00226.x Garigan D, 2002, GENETICS, V161, P1101 Garsin DA, 2003, SCIENCE, V300, P1921, DOI 10.1126/science.1080147 Gluckman P, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P1, DOI 10.2277/ 0521847435 Hajdu-Cronin YM, 2004, GENETICS, V168, P1937, DOI 10.1534/genetics.104.028423 Hall SE, 2010, CURR BIOL, V20, P149, DOI 10.1016/j.cub.2009.11.035 Hooper LV, 2002, ANNU REV NUTR, V22, P283, DOI 10.1146/annurev.nutr.22.011602.092259 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Johnson JR, 2006, J INFECT DIS, V194, P1141, DOI 10.1086/507305 Kaper JB, 2004, NAT REV MICROBIOL, V2, P123, DOI 10.1038/nrmicro818 Kim Y, 2012, INFECT IMMUN, V80, P2500, DOI 10.1128/IAI.06350-11 Laforsch C, 2004, J MORPHOL, V262, P701, DOI 10.1002/jmor.10270 Lucas A, 1998, J NUTR, V128, p401S, DOI 10.1093/jn/128.2.401S Macpherson AJ, 2007, SEMIN IMMUNOL, V19, P57, DOI 10.1016/j.smim.2007.04.001 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Medzhitov R, 2012, SCIENCE, V335, P936, DOI 10.1126/science.1214935 Melo JA, 2012, CELL, V149, P452, DOI 10.1016/j.cell.2012.02.050 Minato K, 2008, PARASITOL RES, V102, P315, DOI 10.1007/s00436-007-0773-7 Mitchell A, 2009, NATURE, V460, P220, DOI 10.1038/nature08112 Mochii M, 1999, P NATL ACAD SCI USA, V96, P15020, DOI 10.1073/pnas.96.26.15020 Moret Y, 2006, P R SOC B, V273, P1399, DOI 10.1098/rspb.2006.3465 O'Halloran DM, 2006, WAG UR FRON, V16, P71 Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194 Partridge FA, 2010, DEV DYNAM, V239, P1330, DOI 10.1002/dvdy.22232 Portal-Celhay C, 2012, BMC MICROBIOL, V12, DOI 10.1186/1471-2180-12-49 Pradel E, 2007, P NATL ACAD SCI USA, V104, P2295, DOI 10.1073/pnas.0610281104 Pujol N, 2001, CURR BIOL, V11, P809, DOI 10.1016/S0960-9822(01)00241-X Rawls JF, 2004, P NATL ACAD SCI USA, V101, P4596, DOI 10.1073/pnas.0400706101 Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 Read AF, 2008, PLOS BIOL, V6, P2638, DOI 10.1371/journal.pbio.1000004 Riedler J, 2001, LANCET, V358, P1129, DOI 10.1016/S0140-6736(01)06252-3 Sadd BM, 2006, CURR BIOL, V16, P1206, DOI 10.1016/j.cub.2006.04.047 Schulenburg H, 2007, MOL MICROBIOL, V66, P563, DOI 10.1111/j.1365-2958.2007.05946.x Shtonda BB, 2006, J EXP BIOL, V209, P89, DOI 10.1242/jeb.01955 Singh V, 2006, CELL CYCLE, V5, P2443, DOI 10.4161/cc.5.21.3434 Stappenbeck TS, 2002, P NATL ACAD SCI USA, V99, P15451, DOI 10.1073/pnas.202604299 Sulston J., 1988, NEMATODE CAENORHABDI, P587 Szewczyk NJ, 2006, J EXP BIOL, V209, P4129, DOI 10.1242/jeb.02492 TAYLOR KA, 1990, J PARASITOL, V76, P545, DOI 10.2307/3282838 von Mutius E, 2000, CLIN EXP ALLERGY, V30, P1230 Walker GA, 2003, FASEB J, V17, P1960, DOI 10.1096/fj.03-0164fje Wold AE, 1998, ALLERGY, V53, P20, DOI 10.1111/j.1398-9995.1998.tb04953.x Wu DQ, 2006, EXP GERONTOL, V41, P261, DOI 10.1016/j.exger.2006.01.003 Zhou KI, 2011, AGING-US, V3, P733, DOI 10.18632/aging.100367 NR 64 TC 13 Z9 16 U1 0 U2 28 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2148 J9 BMC EVOL BIOL JI BMC Evol. Biol. PD SEP 21 PY 2012 VL 12 AR 187 DI 10.1186/1471-2148-12-187 PG 10 WC Evolutionary Biology; Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Evolutionary Biology; Genetics & Heredity GA 027DT UT WOS:000310332700001 PM 22998555 OA Green Published, gold DA 2023-03-13 ER PT J AU Carbajal-Valenzuela, IA Medina-Ramos, G Caicedo-Lopez, LH Jimenez-Hernandez, A Ortega-Torres, AE Contreras-Medina, LM Torres-Pacheco, I Guevara-Gonzalez, RG AF Carbajal-Valenzuela, Ireri Alejandra Medina-Ramos, Gabriela Caicedo-Lopez, Laura Helena Jimenez-Hernandez, Alejandra Ortega-Torres, Adrian Esteban Contreras-Medina, Luis Miguel Torres-Pacheco, Irineo Guevara-Gonzalez, Ramon Gerardo TI Extracellular DNA: Insight of a Signal Molecule in Crop Protection SO BIOLOGY-BASEL LA English DT Review DE eDNA; elicitors; hormesis; sustainable agriculture; DAMPs ID CAPSICUM-ANNUUM L.; CLIMATE-CHANGE; INDUCED RESISTANCE; HYDROGEN-PEROXIDE; SALICYLIC-ACID; EXTRACTION; FUNGAL; SELF; RESPONSES; PLANTS AB Simple Summary:& nbsp;Agriculture systems use multiple chemical treatments to prevent pests and diseases, and to fertilize plants and eliminate weeds around the crop. These practices are less accepted by the consumers each day, mostly because of the associated environmental, health, and ecological impact; thus, new sustainable green technologies are being developed to replace the use of chemical products. Among green technologies for agriculture practices, the use of plant elicitors represents an alternative with great potential, and extracellular DNA has shown beneficial effects on important production traits such as defence mechanisms, plant growth and development, and secondary metabolites production that results in yield increment and better-quality food. In this review, we reunite experimental evidence of the natural effect that extracellular DNA has on plants. We also aim to contribute a step closer to the agricultural application of extracellular DNA. Additionally, we suggest that extracellular DNA can have a biostimulant effect on plants, and can be applied as a highly sustainable treatment contributing to the circular economy of primary production.


Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.

C1 [Carbajal-Valenzuela, Ireri Alejandra; Caicedo-Lopez, Laura Helena; Jimenez-Hernandez, Alejandra; Ortega-Torres, Adrian Esteban; Contreras-Medina, Luis Miguel; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon Gerardo] Autonomous Univ Queretaro, CA Biosyst Engn, Campus Amazcala, El Marques 76265, Queretaro, Mexico. [Medina-Ramos, Gabriela] Polytech Univ Guanajuato, Mol Plant Pathol Lab, Cortazar 38496, Mexico. RP Guevara-Gonzalez, RG (corresponding author), Autonomous Univ Queretaro, CA Biosyst Engn, Campus Amazcala, El Marques 76265, Queretaro, Mexico.; Medina-Ramos, G (corresponding author), Polytech Univ Guanajuato, Mol Plant Pathol Lab, Cortazar 38496, Mexico. EM gmedina@upgto.edu.mx OI CAICEDO LOPEZ, LAURA HELENA/0000-0001-5184-0112; Contreras-Medina, Luis Miguel/0000-0003-1595-7545; Ortega-Torres, Adrian Esteban/0000-0001-5501-0968 FU Universidad Politecnica de Guanajuato; Universidad Autonoma de Queretaro FX Authors thanks to Universidad Politecnica de Guanajuato and Universidad Autonoma de Queretaro for support this research and publication. CR Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agrimonti C, 2021, CRIT REV FOOD SCI, V61, P971, DOI 10.1080/10408398.2020.1749555 Ali S, 2017, FOODS, V6, DOI 10.3390/foods6060039 Armengot L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157168 Azad M. O. K., 2020, Journal of Crop Science and Biotechnology, V24, P51, DOI 10.1007/s12892-020-00058-1 Barbero F, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.686121 Barbero F, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101659 Barbosa C, 2016, MOLECULAR MICROBIAL DIAGNOSTIC METHODS: PATHWAYS TO IMPLEMENTATION FOR THE FOOD AND WATER INDUSTRIES, P135, DOI 10.1016/B978-0-12-416999-9.00007-1 Batyrshina ZS, 2020, BMC PLANT BIOL, V20, DOI 10.1186/s12870-019-2214-z Beattie P.J., 2005, ENCY TOXICOLOGY, V2, P32 Brandfass C, 2008, INT J MOL SCI, V9, P2306, DOI 10.3390/ijms9112306 Brinkman EP, 2010, J ECOL, V98, P1063, DOI 10.1111/j.1365-2745.2010.01695.x Brzozowski LJ, 2020, PLANT CELL ENVIRON, V43, P2812, DOI 10.1111/pce.13844 Carella P, 2015, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00775 CCA (Comision para la Cooperacion Ambiental), 2020, CAR GEST RES ORG AM Chakraborty S, 2020, 3 BIOTECH, V10, DOI 10.1007/s13205-020-2051-7 Chapman J, 2018, CATALYSTS, V8, DOI 10.3390/catal8060238 Chiusano ML, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10081744 Choi HW, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0921-2 COMPTON MM, 1992, CANCER METAST REV, V11, P105, DOI 10.1007/BF00048058 Dalpke A, 2006, INFECT IMMUN, V74, P940, DOI 10.1128/IAI.74.2.940-946.2006 Das T, 2013, ENV MICROBIOL REP, V5, P778, DOI 10.1111/1758-2229.12085 Dellaporta S. L., 1983, PLANT MOL BIOL REP, V1, P19, DOI [DOI 10.1007/BF02712670, 10.1007/BF02712670] Dhiman D, 2019, J PLANT NUTR, V42, P2507, DOI 10.1080/01904167.2019.1659317 Di XT, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00170 Diaz-Valenzuela E, 2020, MOL BIOL EVOL, V37, P1593, DOI 10.1093/molbev/msaa027 Didenko VV, 2003, AM J PATHOL, V162, P1571, DOI 10.1016/S0002-9440(10)64291-5 Duran-Flores D, 2018, BRAIN BEHAV IMMUN, V72, P78, DOI 10.1016/j.bbi.2017.10.010 Duran-Flores D, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00585 FAOSTAT, 2021, FAOSTAT DAT AGR Ferrusquia-Jimenez NI, 2021, J PLANT GROWTH REGUL, V40, P451, DOI 10.1007/s00344-020-10129-w Figueroa-Macias JP, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22020693 Flors V, 2008, PLANT J, V54, P81, DOI 10.1111/j.1365-313X.2007.03397.x Food and Agricultural Organization (FAO), 2016, PRECIPITATION EARTH Garcia-Mier L, 2013, INT J MOL SCI, V14, P4203, DOI 10.3390/ijms14024203 Gay NJ, 2014, NAT REV IMMUNOL, V14, P546, DOI 10.1038/nri3713 Gharbi Y, 2017, PHYSIOL MOL PLANT P, V97, P30, DOI 10.1016/j.pmpp.2016.12.001 Hadwiger LA, 2013, PLANT SCI, V201, P98, DOI 10.1016/j.plantsci.2012.11.011 Harju S, 2004, BMC BIOTECHNOL, V4, DOI 10.1186/1472-6750-4-8 HARRISON STL, 1991, BIOTECHNOL ADV, V9, P217, DOI 10.1016/0734-9750(91)90005-G Heuvelink E., 2005, Tomatoes, DOI 10.1079/9780851993966.0000 Huang HJ, 2019, NEW PHYTOL, V224, P860, DOI 10.1111/nph.15792 Huang XH, 2016, MOL PLANT, V9, P956, DOI 10.1016/j.molp.2016.05.014 Huffaker A, 2006, P NATL ACAD SCI USA, V103, P10098, DOI 10.1073/pnas.0603727103 Huot B, 2014, MOL PLANT, V7, P1267, DOI 10.1093/mp/ssu049 de Aldecoa ALI, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01390 Islam MS, 2017, MICROMACHINES-BASEL, V8, DOI 10.3390/mi8030083 ISOMAA B, 1976, ARCH TOXICOL, V35, P91, DOI 10.1007/BF00372762 Jeter CR, 2004, PLANT CELL, V16, P2652, DOI 10.1105/tpc.104.023945 Ji YC, 2015, VIRULENCE, V6, P515, DOI 10.1080/21505594.2015.1049806 Jones JDG, 2006, NATURE, V444, P323, DOI 10.1038/nature05286 Kabbage M, 2015, PLANT SCI, V233, P53, DOI 10.1016/j.plantsci.2014.12.018 Kabubo-Mariara J, 2007, GLOBAL PLANET CHANGE, V57, P319, DOI 10.1016/j.gloplacha.2007.01.002 Kaczerewska O, 2020, J HAZARD MATER, V392, DOI 10.1016/j.jhazmat.2020.122299 Karakousis A, 2006, J MICROBIOL METH, V65, P38, DOI 10.1016/j.mimet.2005.06.008 Kim HJ, 2006, J AGR FOOD CHEM, V54, P2327, DOI 10.1021/jf051979g Klosterman SJ, 2001, MOL PLANT PATHOL, V2, P147, DOI 10.1046/j.1364-3703.2001.00062.x Koning A. N. M. de, 1993, Acta Horticulturae, P141 Kotchoni SO, 2009, MOL BIOL REP, V36, P1633, DOI 10.1007/s11033-008-9362-9 KRIEG AM, 1995, NATURE, V374, P546, DOI 10.1038/374546a0 Lamb A, 2016, NAT CLIM CHANGE, V6, P488, DOI [10.1038/NCLIMATE2910, 10.1038/nclimate2910] Le Mire G, 2019, PHYTOPATHOLOGY, V109, P409, DOI 10.1094/PHYTO-11-17-0367-R LORENZ MG, 1991, ARCH MICROBIOL, V156, P319, DOI 10.1007/BF00263005 Lybbert TJ, 2012, FOOD POLICY, V37, P114, DOI 10.1016/j.foodpol.2011.11.001 Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273 Mann TL, 2004, BIOSENS BIOELECTRON, V20, P945, DOI 10.1016/j.bios.2004.06.021 Mazzoleni S, 2015, NEW PHYTOL, V206, P127, DOI 10.1111/nph.13306 McKune S, 2018, CLIM RISK MANAG, V22, P22, DOI 10.1016/j.crm.2018.08.002 Mejia-Teniente L, 2019, PHYSIOL MOL PLANT P, V106, P23, DOI 10.1016/j.pmpp.2018.11.008 Mejia-Teniente L, 2013, INT J MOL SCI, V14, P10178, DOI 10.3390/ijms140510178 Melo P, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10114052 Mittal S, 2018, CLIM RISK MANAG, V22, P42, DOI 10.1016/j.crm.2018.08.003 Morrissey EM, 2015, SOIL BIOL BIOCHEM, V86, P42, DOI 10.1016/j.soilbio.2015.03.020 Nagler M, 2018, APPL MICROBIOL BIOT, V102, P6343, DOI 10.1007/s00253-018-9120-4 Nehete PN, 2020, FRONT AGING NEUROSCI, V12, DOI 10.3389/fnagi.2020.00036 Niger S, 2019, FRONT NUTR, V6, DOI 10.3389/fnut.2019.00140 Ortega-Ortiz H, 2007, J MEX CHEM SOC, V51, P141 Pajerowska-Mukhtar KM, 2012, CURR BIOL, V22, P103, DOI 10.1016/j.cub.2011.12.015 Pane C, 2015, CHEM BIOL TECHNOL AG, V2, DOI 10.1186/s40538-014-0026-9 Park HJ, 2019, MBIO, V10, DOI 10.1128/mBio.02805-18 Park SY, 2014, MYCOBIOLOGY, V42, P311, DOI 10.5941/MYCO.2014.42.4.311 PEARCE G, 1991, SCIENCE, V253, P895, DOI 10.1126/science.253.5022.895 Piccinno F, 2016, J CLEAN PROD, V135, P1085, DOI 10.1016/j.jclepro.2016.06.164 Pontiggia D, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.613259 Praveen Mamidala, 2009, Journal of Phytology, V1, P388 Puglisi I, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9010123 Quintana-Rodriguez E, 2018, SCI HORTIC-AMSTERDAM, V237, P207, DOI 10.1016/j.scienta.2018.03.026 Radkowski A, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111656 Rassizadeh L, 2021, PLANT SCI, V312, DOI 10.1016/j.plantsci.2021.111036 Raza A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8020034 Redmile-Gordon MA, 2014, SOIL BIOL BIOCHEM, V72, P163, DOI 10.1016/j.soilbio.2014.01.025 Rockstrom J, 2009, NATURE, V461, P472, DOI 10.1038/461472a Rodrigues P, 2018, LETT APPL MICROBIOL, V66, P32, DOI 10.1111/lam.12822 Rouphael Y, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00040 Rowhani P, 2011, AGR FOREST METEOROL, V151, P449, DOI 10.1016/j.agrformet.2010.12.002 Salleh MAM, 2011, DESALINATION, V280, P1, DOI 10.1016/j.desal.2011.07.019 Samadi SH, 2020, RENEW ENERG, V149, P1077, DOI 10.1016/j.renene.2019.10.109 Sanabria N, 2008, NEW PHYTOL, V178, P503, DOI 10.1111/j.1469-8137.2008.02403.x Scarlat N, 2010, WASTE MANAGE, V30, P1889, DOI 10.1016/j.wasman.2010.04.016 Schlee M, 2016, NAT REV IMMUNOL, V16, P566, DOI 10.1038/nri.2016.78 Serrano-Jamaica LM, 2021, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.581891 Sharma U, 2014, COMMUN SOIL SCI PLAN, V45, P2647, DOI 10.1080/00103624.2014.941854 Tabrika Ilyass, 2020, Organic Agriculture, V10, P229, DOI 10.1007/s13165-019-00268-0 Taha RS, 2020, S AFR J BOT, V128, P42, DOI 10.1016/j.sajb.2019.09.014 Thomsen PF, 2015, BIOL CONSERV, V183, P4, DOI 10.1016/j.biocon.2014.11.019 Thornton PK, 2010, AGR SYST, V103, P73, DOI 10.1016/j.agsy.2009.09.003 Torti A, 2015, MAR GENOM, V24, P185, DOI 10.1016/j.margen.2015.08.007 Tran TM, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005686 Turaki A. A., 2017, African Journal of Biotechnology, V16, P1354, DOI 10.5897/AJB2017.15942 van Butselaar T, 2020, TRENDS PLANT SCI, V25, P566, DOI 10.1016/j.tplants.2020.02.002 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Vega-Munoz I, 2018, FUNCT PLANT BIOL, V45, P1065, DOI 10.1071/FP18011 Waha K, 2013, GLOBAL ENVIRON CHANG, V23, P130, DOI 10.1016/j.gloenvcha.2012.11.001 Wang D, 2007, CURR BIOL, V17, P1784, DOI 10.1016/j.cub.2007.09.025 Wei YC, 2017, FISH SHELLFISH IMMUN, V63, P270, DOI 10.1016/j.fsi.2017.02.026 Wen FS, 2009, PLANT PHYSIOL, V151, P820, DOI 10.1104/pp.109.142067 Whitehead SR, 2019, ANN BOT-LONDON, V123, P1029, DOI 10.1093/aob/mcz010 Yakushiji S, 2009, J GEN PLANT PATHOL, V75, P227, DOI 10.1007/s10327-009-0162-4 Zehra A, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0198-2 Zulfiqar F, 2020, PLANT SCI, V295, DOI 10.1016/j.plantsci.2019.110194 NR 122 TC 4 Z9 4 U1 6 U2 15 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-7737 J9 BIOLOGY-BASEL JI Biology-Basel PD OCT PY 2021 VL 10 IS 10 AR 1022 DI 10.3390/biology10101022 PG 20 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics GA WP7IX UT WOS:000713301600001 PM 34681122 OA Green Published, gold DA 2023-03-13 ER PT J AU Ramos, PB Colombo, GM Schmitz, MJ Simiao, CS Machado, KD Werhli, AV Costa, LDF Yunes, JS Prentice, C Wasielesky, W Monserrat, JM AF Ramos, Patricia B. Colombo, Grecica M. Schmitz, Marcos J. Simiao, Cleber S. Machado, Karina dos Santos Werhli, Adriano, V Fonseca Costa, Luiza Dy Yunes, Joao Sarkis Prentice, Carlos Wasielesky, Wilson Monserrat, Jose M. TI Chemoprotection mediated by acai berry (Euterpe oleracea) in white shrimp Litopenaeus vannamei exposed to the cyanotoxin saxitoxin analyzed by in vivo assays and docking modeling SO AQUATIC TOXICOLOGY LA English DT Article DE Antioxidant supplements; Neurotoxin; Hormesis; Molecular docking; Shrimp rearing ID PARALYTIC SHELLFISH TOXINS; SITE-DIRECTED MUTAGENESIS; OXIDATIVE STRESS; LIPOIC ACID; BIOACTIVE METABOLITES; GROWTH-PERFORMANCE; ANTIOXIDANT; RESPONSES; BOONE; MART. AB Saxitoxin (STX) is a neumtoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit a:cal Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 degrees C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized a:cal pulp (10%), in addition to the control diet. After, shrimps (7.21 +/- 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 mu g/g), A (10% of acaf) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of acai supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation. C1 [Colombo, Grecica M.; Schmitz, Marcos J.; Simiao, Cleber S.; Prentice, Carlos; Wasielesky, Wilson; Monserrat, Jose M.] Fed Univ Rio Grande FURG, Grad Program Aquiculture, Inst Oceanog IO, Rio Grande, RS, Brazil. [Ramos, Patricia B.; Colombo, Grecica M.; Schmitz, Marcos J.; Simiao, Cleber S.; Monserrat, Jose M.] Fundacao Univ Fed Rio Grande, Lab Funct Biochem Aquat Organisms BIFOA, Rio Grande, RS, Brazil. [Machado, Karina dos Santos; Werhli, Adriano, V] Fundacao Univ Fed Rio Grande, Ctr Computat Sci C3, Rio Grande, RS, Brazil. [Fonseca Costa, Luiza Dy; Yunes, Joao Sarkis] Fundacao Univ Fed Rio Grande, Cyanobacteria & Ficotoxin Lab, Rio Grande, RS, Brazil. [Prentice, Carlos] Fundacao Univ Fed Rio Grande, Sch Food Chem EQA, Rio Grande, RS, Brazil. [Wasielesky, Wilson] Fundacao Univ Fed Rio Grande, Lab Carcinoculture, Rio Grande, RS, Brazil. [Monserrat, Jose M.] Fundacao Univ Fed Rio Grande, Inst Biol Sci ICB, Rio Grande, RS, Brazil. C3 Universidade Federal do Rio Grande; Universidade Federal do Rio Grande; Universidade Federal do Rio Grande; Universidade Federal do Rio Grande; Universidade Federal do Rio Grande; Universidade Federal do Rio Grande; Universidade Federal do Rio Grande RP Monserrat, JM (corresponding author), Fed Univ Rio Grande FURG, Grad Program Aquiculture, Inst Oceanog IO, Rio Grande, RS, Brazil.; Monserrat, JM (corresponding author), Fundacao Univ Fed Rio Grande, Lab Funct Biochem Aquat Organisms BIFOA, Rio Grande, RS, Brazil.; Monserrat, JM (corresponding author), Fundacao Univ Fed Rio Grande, Inst Biol Sci ICB, Rio Grande, RS, Brazil. EM monserrat_jm@furg.br OI dos Santos Simiao, Cleber/0000-0003-2091-0485 FU CNPq [439582/2018-0, 150718/2017-9] FX J.M. Monserrat, C. Prentice, J.S. Yunes, and W. Wasielesky Jr. are productivity fellow from Brazilian agency CNPq. Part of this study was supported with funds of CNPq given to P.B.Ramos (Process number 150718/2017-9) . K.S. Machado has support of CNPq funding (Process number 439582/2018-0) . J.M. Monserrat dedicates this study to Dr. Carlos Prentice for all the years of kindness and friendship. CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Almandoz G.O., 2019 Amado LL, 2010, ENVIRON INT, V36, P226, DOI 10.1016/j.envint.2009.10.010 Amado LL, 2011, ARCH ENVIRON CON TOX, V60, P319, DOI 10.1007/s00244-010-9594-2 Amado LL, 2009, SCI TOTAL ENVIRON, V407, P2115, DOI 10.1016/j.scitotenv.2008.11.038 Araoz R, 2010, TOXICON, V56, P813, DOI 10.1016/j.toxicon.2009.07.036 Garzon GA, 2017, FOOD CHEM, V217, P364, DOI 10.1016/j.foodchem.2016.08.107 Baba Shahid P., 2018, Current Opinion in Toxicology, V7, P133, DOI 10.1016/j.cotox.2018.03.005 Barros L, 2015, IND CROP PROD, V76, P318, DOI 10.1016/j.indcrop.2015.05.086 Basica B, 2019, AQUAT TOXICOL, V208, P196, DOI 10.1016/j.aquatox.2019.01.005 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Chen SJ, 2017, AQUAC RES, V48, P4608, DOI 10.1111/are.13284 Colombo GM, 2020, AQUAC RES, V51, P1551, DOI 10.1111/are.14503 Contreras-Vergara CA, 2008, BIOCHIMIE, V90, P968, DOI 10.1016/j.biochi.2008.02.005 Costa PR, 2012, AQUAT TOXICOL, V106, P42, DOI 10.1016/j.aquatox.2011.08.023 Martins ACD, 2018, AQUACULT NUTR, V24, P1255, DOI 10.1111/anu.12663 Martins ACD, 2015, MAR FRESHW BEHAV PHY, V48, P279, DOI 10.1080/10236244.2015.1041240 Yamaguchi KKD, 2015, FOOD CHEM, V179, P137, DOI 10.1016/j.foodchem.2015.01.055 Calado SLD, 2020, CHEMOSPHERE, V238, DOI 10.1016/j.chemosphere.2019.124616 Enamorado AD, 2015, COMP BIOCHEM PHYS A, V188, P9, DOI 10.1016/j.cbpa.2015.05.023 FAO, 2018, STAT WORLD FISH AQ 2, P227 Fracalossi D.M., 2013, NUTRIAQUA NUTRIAO AL Goncalves-Soares D, 2012, MAR ENVIRON RES, V75, P54, DOI 10.1016/j.marenvres.2011.07.007 Guzman-Guillen R, 2017, TOXINS, V9, DOI 10.3390/toxins9060175 Huang IS, 2019, HARMFUL ALGAE, V83, P42, DOI 10.1016/j.hal.2018.11.008 Ikawa M, 1997, HYDROBIOLOGIA, V356, P143, DOI 10.1023/A:1003103726520 Juarez-Martinez AB, 2017, J BIOCHEM MOL TOXIC, V31, DOI 10.1002/jbt.21838 Kang J, 2012, FOOD CHEM, V133, P671, DOI 10.1016/j.foodchem.2012.01.048 Kim S, 2019, NUCLEIC ACIDS RES, V47, pD1102, DOI 10.1093/nar/gky1033 Kutter MT, 2014, COMP BIOCHEM PHYS C, V162, P70, DOI 10.1016/j.cbpc.2014.03.008 Laskowski RA, 2011, J CHEM INF MODEL, V51, P2778, DOI 10.1021/ci200227u Liu G, 2017, FISH SHELLFISH IMMUN, V67, P19, DOI 10.1016/j.fsi.2017.05.038 Liu ZF, 2018, CHEMOSPHERE, V203, P139, DOI 10.1016/j.chemosphere.2018.03.179 Lobato RO, 2013, COMP BIOCHEM PHYS A, V165, P491, DOI 10.1016/j.cbpa.2013.03.015 MacKenzie AL, 2014, NEW ZEAL J MAR FRESH, V48, P430, DOI 10.1080/00288330.2014.911191 Mardones JI, 2015, HARMFUL ALGAE, V49, P40, DOI 10.1016/j.hal.2015.09.001 Leon DCM, 2018, AQUAC RES, V49, P3569, DOI 10.1111/are.13823 Morris GM, 2009, J COMPUT CHEM, V30, P2785, DOI 10.1002/jcc.21256 Negri AP, 2004, AQUACULTURE, V232, P91, DOI 10.1016/S0044-8486(03)00487-3 O'Neill K, 2017, BASIC CLIN PHARMACOL, V120, P390, DOI 10.1111/bcpt.12701 OSHIMA Y, 1995, J AOAC INT, V78, P528 Pacheco L., 2016, PHARM ANAL ACTA, V07, DOI [10.4172/2153-2435.1000479, DOI 10.4172/2153-2435.1000479] Pala D, 2018, CLIN NUTR, V37, P618, DOI 10.1016/j.clnu.2017.02.001 Pan C, 2019, J SCI FOOD AGR, V99, P1719, DOI 10.1002/jsfa.9361 Gaona CAP, 2016, AQUACULT ENG, V72-73, P65, DOI 10.1016/j.aquaeng.2016.03.004 Quintana Lopez A., 1931, EFFECT REARING CONDI, V47, P303, DOI [10.3856/vol47-issue2-fulltext-10, DOI 10.3856/VOL47-ISSUE2-FULLTEXT-10] Ramos P, 2018, TOXICOLOGY, V393, P171, DOI 10.1016/j.tox.2017.11.004 Ramos P, 2017, ENVIRON TOXICOL CHEM, V36, P1728, DOI 10.1002/etc.3544 Ramos PB, 2014, HARMFUL ALGAE, V37, P68, DOI 10.1016/j.hal.2014.04.002 Rodriguez Bernal E, 2017, INT J AQUACUL FISHER, P062, DOI [10.17352/2455-8400.000030, DOI 10.17352/2455-8400.000030] Rosas VT, 2019, COMP BIOCHEM PHYS C, V218, P46, DOI 10.1016/j.cbpc.2018.12.009 Rourke WA, 2008, J AOAC INT, V91, P589 Detoni AMS, 2016, TOXICON, V110, P51, DOI 10.1016/j.toxicon.2015.12.003 Samet James M., 2018, Current Opinion in Toxicology, V7, P60, DOI 10.1016/j.cotox.2017.10.008 Schmitz MJ, 2020, FISH SHELLFISH IMMUN, V103, P464, DOI 10.1016/j.fsi.2020.05.055 Searle S., 2006, VARIANCE COMPONENTS Seus V.R., 2016, P 31 ANN ACM S APPL, P31 Shin C, 2018, FOOD RES INT, V108, P274, DOI 10.1016/j.foodres.2018.03.061 Silva S.M., 2020, ZOOTECHNICAL PERFORM Smith FMJ, 2011, TOXICON, V57, P566, DOI 10.1016/j.toxicon.2010.12.020 Smith JL, 2008, AQUACULTURE, V280, P5, DOI 10.1016/j.aquaculture.2008.05.007 Sterling T, 2015, J CHEM INF MODEL, V55, P2324, DOI 10.1021/acs.jcim.5b00559 Takser L, 2016, TOXICOL REP, V3, P180, DOI 10.1016/j.toxrep.2015.12.008 Turner AD, 2011, ANAL BIOANAL CHEM, V399, P1257, DOI 10.1007/s00216-010-4428-7 van de Riet J, 2011, J AOAC INT, V94, P1154 Vinagre T.M., 2002, PHYSL BIOCEM ZOOL Wade N.M., 2015, PENAEUS MONODON AQUA, V449, P78, DOI [10.1016/j.aquaculture.2015.01.023, DOI 10.1016/J.AQUACULTURE.2015.01.023] Wasielesky W, 2006, AQUACULTURE, V258, P396, DOI 10.1016/j.aquaculture.2006.04.030 Wu X, 2019, CHEMOSPHERE, V229, P332, DOI 10.1016/j.chemosphere.2019.04.210 Zar JH., 1984, BIOSTAT ANAL, V4, P324 Zhang B, 2015, FOOD CONTROL, V51, P114, DOI 10.1016/j.foodcont.2014.11.016 Zheng X, 2015, TOXICON, V101, P41, DOI 10.1016/j.toxicon.2015.04.017 Zhou ZY, 2018, CHEMOSPHERE, V192, P66, DOI 10.1016/j.chemosphere.2017.10.083 NR 73 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0166-445X EI 1879-1514 J9 AQUAT TOXICOL JI Aquat. Toxicol. PD MAY PY 2022 VL 246 AR 106148 DI 10.1016/j.aquatox.2022.106148 EA MAR 2022 PG 12 WC Marine & Freshwater Biology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Marine & Freshwater Biology; Toxicology GA 0Y7WV UT WOS:000790598000002 PM 35364510 DA 2023-03-13 ER PT J AU Strobl, V Camenzind, D Minnameyer, A Walker, S Eyer, M Neumann, P Straub, L AF Strobl, Verena Camenzind, Domenic Minnameyer, Angela Walker, Stephanie Eyer, Michael Neumann, Peter Straub, Lars TI Positive Correlation between Pesticide Consumption and Longevity in Solitary Bees: Are We Overlooking Fitness Trade-Offs? SO INSECTS LA English DT Article DE glyphosate-based herbicides; neonicotinoid; lethal and sublethal effects; combined exposure; Osmia bicornis ID NEONICOTINOID INSECTICIDE; INDUCED HORMESIS; OSMIA-CORNUTA; EUROPEAN BEE; HONEY-BEES; EXPOSURE; GLYPHOSATE; REPRODUCTION; HYMENOPTERA; POLLINATOR AB Simple Summary The possible impacts of neonicotinoids combined with glyphosate-based herbicides on bees are unknown. Here, we show no effects of chronic exposure to field-realistic dosages of Roundup(R) and clothianidin alone or combined on food consumption and cumulative survival of adult female bees, Osmia bicornis in the laboratory. However, a positive correlation between exposure and longevity was revealed. Our data suggest a possibly neglected trade-off between survival and reproduction in insect toxicology. The ubiquitous use of pesticides is one major driver for the current loss of biodiversity, and the common practice of simultaneously applying multiple agrochemicals may further contribute. Insect toxicology currently has a strong focus on survival to determine the potential hazards of a chemical routinely used in risk evaluations. However, studies revealing no effect on survival or even indicating enhanced survival are likely to be misleading, if potential trade-offs between survival and other physiological factors are overlooked. Here, we used standard laboratory experiments to investigate the sublethal (i.e., food consumption) and lethal (i.e., survival) effects of two common agricultural pesticides (Roundup(R) and clothianidin) on adult female solitary bees, Osmia bicornis. The data showed no significant effect of the treatment on cumulative survival; however, a significant positive correlation between herbicide and insecticide exposure and age was revealed, i.e., bees exposed to higher dosages lived longer. As no significant differences in daily food consumption were observed across treatment groups, increased food intake can be excluded as a factor leading to the prolonged survival. While this study does not provide data on fitness effects, two previous studies using solitary bees observed significant negative effects of neonicotinoid insecticides on fitness, yet not on survival. Thus, we conjecture that the observed non-significant effects on longevity may result from a trade-off between survival and reproduction. The data suggest that a focus on survival can lead to false-negative results and it appears inevitable to include fitness or at least tokens of fitness at the earliest stage in future risk assessments. C1 [Strobl, Verena; Camenzind, Domenic; Minnameyer, Angela; Walker, Stephanie; Neumann, Peter; Straub, Lars] Univ Bern, Vetsuisse Fac, Inst Bee Hlth, CH-3012 Bern, Switzerland. [Eyer, Michael] Univ Neuchatel, Lab Soil Biodivers, CH-2000 Neuchatel, Switzerland. C3 University of Bern; University of Neuchatel RP Strobl, V; Straub, L (corresponding author), Univ Bern, Vetsuisse Fac, Inst Bee Hlth, CH-3012 Bern, Switzerland. EM verena.strobl@vetsuisse.unibe.ch; domenic.camenzind@vetsuisse.unibe.ch; angela.minnameyer@vetsuisse.unibe.ch; stephanie.walker13@gmail.com; michael-eyer@bluewin.ch; peter.neumann@vetsuisse.unibe.ch; lars.straub@vetsuisse.unibe.ch RI Straub, Lars/AAP-2820-2020; Neumann, Peter/C-9964-2015 OI Straub, Lars/0000-0002-2091-1499; Neumann, Peter/0000-0001-5163-5215; Eyer, Michael/0000-0003-1047-1714 FU Bundesamt fur Umwelt (BAFU) [16.0091.PJ/R102-1664]; Agroscope; Vinetum Foundation FX This research was funded by the Bundesamt fur Umwelt (BAFU) (16.0091.PJ/R102-1664) to L.S., by Agroscope to L.S. and P.N. and by the Vinetum Foundation to P.N. CR Abiru N, 2020, DIABETOL INT, V11, P1, DOI 10.1007/s13340-019-00415-8 Alaux C, 2010, BIOL LETTERS, V6, P562, DOI 10.1098/rsbl.2009.0986 Arena M, 2014, ECOTOXICOLOGY, V23, P324, DOI 10.1007/s10646-014-1190-1 Assalin MR, 2010, J ENVIRON SCI HEAL B, V45, P89, DOI 10.1080/03601230903404598 Azpiazu C, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-50255-4 Baron GL, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0123 Beadle K, 2019, PLOS GENET, V15, DOI 10.1371/journal.pgen.1007903 Belsky J, 2020, FRONT ENV SCI-SWITZ, V8, DOI 10.3389/fenvs.2020.00081 Benbrook CM, 2016, ENVIRON SCI EUR, V28, DOI 10.1186/s12302-016-0070-0 Berenbaum MR, 2015, CURR OPIN INSECT SCI, V10, P51, DOI 10.1016/j.cois.2015.03.005 Blacquiere T, 2012, ECOTOXICOLOGY, V21, P973, DOI 10.1007/s10646-012-0863-x Bonmatin JM, 2015, ENVIRON SCI POLLUT R, V22, P35, DOI 10.1007/s11356-014-3332-7 Botias C, 2015, ENVIRON SCI TECHNOL, V49, P12731, DOI 10.1021/acs.est.5b03459 Brittain CA, 2010, BASIC APPL ECOL, V11, P106, DOI 10.1016/j.baae.2009.11.007 Bruhl CA, 2019, FRONT ENV SCI-SWITZ, V7, DOI 10.3389/fenvs.2019.00177 Cardoso P, 2020, BIOL CONSERV, V242, DOI 10.1016/j.biocon.2020.108426 Castaneda LE, 2009, J EXP BIOL, V212, P1185, DOI 10.1242/jeb.020990 Colgan TJ, 2019, MOL ECOL, V28, P1964, DOI 10.1111/mec.15047 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Dickel F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191256 du Rand EE, 2015, SCI REP-UK, V5, DOI 10.1038/srep11779 Duke SO, 2008, PEST MANAG SCI, V64, P319, DOI 10.1002/ps.1518 EFSA, 2015, EFSA J, V13, DOI 10.2903/j.efsa.2015.4302 European Food Safety Authority, 2013, EFSA J, V11, DOI 10.2903/j.efsa.2013.3295 Farina WM, 2019, INSECTS, V10, DOI 10.3390/insects10100354 Fauser-Misslin A, 2014, J APPL ECOL, V51, P450, DOI 10.1111/1365-2664.12188 Goulson D, 2015, SCIENCE, V347, DOI 10.1126/science.1255957 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hallmann CA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185809 Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008 Heard MS, 2017, SCI TOTAL ENVIRON, V578, P357, DOI 10.1016/j.scitotenv.2016.10.180 Humann-Guilleminot S, 2019, J APPL ECOL, V56, P1502, DOI 10.1111/1365-2664.13392 Kessler SC, 2015, NATURE, V521, P74, DOI 10.1038/nature14414 Ladurner E, 2005, APIDOLOGIE, V36, P379, DOI 10.1051/apido:2005025 Mallqui KSV, 2014, J ECON ENTOMOL, V107, P860, DOI 10.1603/EC13526 Matsuda K, 2020, ANNU REV PHARMACOL, V60, P241, DOI 10.1146/annurev-pharmtox-010818-021747 Gonalons CM, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.176644 Mertens M, 2018, ENVIRON SCI POLLUT R, V25, P5298, DOI 10.1007/s11356-017-1080-1 Mesnage R, 2019, FOOD CHEM TOXICOL, V128, P137, DOI 10.1016/j.fct.2019.03.053 Mogren CL, 2016, SCI REP-UK, V6, DOI 10.1038/srep29608 Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166 Motta EVS, 2018, P NATL ACAD SCI USA, V115, P10305, DOI 10.1073/pnas.1803880115 Neumann P., 2015, 26 EASAC GERM NAT AC Nicholls E, 2017, PEERJ, V5, DOI 10.7717/peerj.3417 Powney GD, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08974-9 Rinkevich FD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139841 Rubio F., 2014, J ENV ANAL TOXICOL, V4, P249, DOI [10.4172/2161-0525.1000249, DOI 10.4172/2161-0525.1000249] Rundlof M, 2015, NATURE, V521, P77, DOI 10.1038/nature14420 Sandrock C, 2014, AGR FOREST ENTOMOL, V16, P119, DOI 10.1111/afe.12041 Schlappi D, 2020, COMMUN BIOL, V3, DOI 10.1038/s42003-020-1066-2 Schmehl DR, 2014, J INSECT PHYSIOL, V71, P177, DOI 10.1016/j.jinsphys.2014.10.002 Schwenke RA, 2016, ANNU REV ENTOMOL, V61, P239, DOI 10.1146/annurev-ento-010715-023924 Seide VE, 2018, ENVIRON POLLUT, V243, P1854, DOI 10.1016/j.envpol.2018.10.020 Sgolastra F, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0887 Sgolastra F, 2017, PEST MANAG SCI, V73, P1236, DOI 10.1002/ps.4449 Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2 Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x Straub L, 2020, NAT ECOL EVOL, V4, P895, DOI 10.1038/s41559-020-1194-6 Straub L, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0506 Straub L, 2015, CURR OPIN INSECT SCI, V12, P109, DOI 10.1016/j.cois.2015.10.010 Strobl V, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214597 Stuligross C, 2020, P ROY SOC B-BIOL SCI, V287, DOI 10.1098/rspb.2020.1390 Topping CJ, 2020, SCIENCE, V367, P360, DOI 10.1126/science.aay1144 TORCHIO PF, 1985, J KANSAS ENTOMOL SOC, V58, P42 TORCHIO PF, 1987, ENVIRON ENTOMOL, V16, P664, DOI 10.1093/ee/16.3.664 Turturro A, 2000, HUM EXP TOXICOL, V19, P320, DOI 10.1191/096032700678815981 Vazquez DE, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-67477-6 Westrich P, 1989, WILDBIENEN BADEN WUR Whitehorn PR, 2012, SCIENCE, V336, P351, DOI 10.1126/science.1215025 Wood TJ, 2017, ENVIRON SCI POLLUT R, V24, P17285, DOI 10.1007/s11356-017-9240-x Woodcock BA, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12459 NR 72 TC 5 Z9 5 U1 3 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-4450 J9 INSECTS JI Insects PD NOV PY 2020 VL 11 IS 11 AR 819 DI 10.3390/insects11110819 PG 12 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA OW9KU UT WOS:000593197600001 PM 33233695 OA Green Published, gold DA 2023-03-13 ER PT J AU Giani, F Masto, R Trovato, MA Malandrino, P Russo, M Pellegriti, G Vigneri, P Vigneri, R AF Giani, Fiorenza Masto, Roberta Trovato, Maria Antonietta Malandrino, Pasqualino Russo, Marco Pellegriti, Gabriella Vigneri, Paolo Vigneri, Riccardo TI Heavy Metals in the Environment and Thyroid Cancer SO CANCERS LA English DT Review DE thyroid cancer; metal carcinogenesis; metals; metal pollution; metal mixture; thyroid stem cells; volcanic pollution ID VOLCANIC AREA; UNITED-STATES; DNA-DAMAGE; OXIDATIVE STRESS; RISK-ASSESSMENT; TRACE-ELEMENTS; SELF-RENEWAL; TOXICITY; TUNGSTEN; CELLS AB Simple Summary: Epidemiological observations indicate that the incidence of thyroid cancer is increased in volcanic areas. Indeed, in the volcanic area of Sicily, where residents are biocontaminated by volcano-originated, low-level, multi-elemental metal pollution, the thyroid cancer incidence is double that in non-volcanic areas. The aim of this review is to summarize the evidence suggesting that chronic exposure to heavy metals, even at slightly increased environmental concentrations that cause no harm to mature thyrocytes, may alter the biology of stem/precursor thyroid cells, leading to a predisposition to malignant transformation. Both in vitro and in vivo experiments support this possibility; this phenomenon involves a variety of molecular mechanisms depending on the metal and the target cell involved. The role of the increased and generalized metal pollution in our ecosystem, paralleling the worldwide increase in thyroid cancer in recent decades, requires more attention and further studies. In recent decades, the incidence of thyroid cancer has increased more than most other cancers, paralleling the generalized worldwide increase in metal pollution. This review provides an overview of the evidence supporting a possible causative link between the increase in heavy metals in the environment and thyroid cancer. The major novelty is that human thyroid stem/progenitor cells (thyrospheres) chronically exposed to different metals at slightly increased environmentally relevant concentrations show a biphasic increase in proliferation typical of hormesis. The molecular mechanisms include, for all metals investigated, the activation of the extracellular signal-regulated kinase (ERK1/2) pathway. A metal mixture, at the same concentration of individual metals, was more effective. Under the same conditions, mature thyrocytes were unaffected. Preliminary data with tungsten indicate that, after chronic exposure, additional abnormalities may occur and persist in thyrocytes derived from exposed thyrospheres, leading to a progeny population of transformationprone thyroid cells. In a rat model predisposed to develop thyroid cancer, long-term exposure to low levels of metals accelerated and worsened histological signs of malignancy in the thyroid. These studies provide new insight on metal toxicity and carcinogenicity occurring in thyroid cells at a low stage of differentiation when chronically exposed to metal concentrations that are slightly increased, albeit still in the "normal" range. C1 [Giani, Fiorenza; Masto, Roberta; Malandrino, Pasqualino; Russo, Marco; Pellegriti, Gabriella; Vigneri, Riccardo] Univ Catania, Dept Clin & Expt Med, Garibaldi Nesima Med Ctr, Endocrinol, I-95122 Catania, Italy. [Trovato, Maria Antonietta] Garibaldi Nesima Med Ctr, Surg Oncol, I-95122 Catania, Italy. [Vigneri, Paolo] Univ Catania, AOU Policlin Vittorio Emanuele, Med Oncol, I-95125 Catania, Italy. [Vigneri, Paolo] Univ Catania, AOU Policlin Vittorio Emanuele, Ctr Expt Oncol & Hematol, Dept Clin & Expt Med, I-95125 Catania, Italy. [Vigneri, Riccardo] CNR, Cristallog Inst, Catania Sect, Via P Gaifami 18, I-95126 Catania, Italy. C3 Presidio Ospedaliero Garibaldi-Nesima; University of Catania; Presidio Ospedaliero Garibaldi-Nesima; Azienda Ospedaliera Universitaria Policlinico Vittorio Emanuele Presidio Ferraotto; University of Catania; Azienda Ospedaliera Universitaria Policlinico Vittorio Emanuele Presidio Ferraotto; University of Catania; Consiglio Nazionale delle Ricerche (CNR) RP Vigneri, R (corresponding author), Univ Catania, Dept Clin & Expt Med, Garibaldi Nesima Med Ctr, Endocrinol, I-95122 Catania, Italy.; Vigneri, R (corresponding author), CNR, Cristallog Inst, Catania Sect, Via P Gaifami 18, I-95126 Catania, Italy. EM fiorenza.giani@gmail.com; robertamasto88@gmail.com; maritrov@icloud.com; p.malandrino@unict.it; mruss@hotmail.it; g.pellegriti@unict.it; vigneri.p@unict.it; vigneri@unict.it RI Gianì, Fiorenza/K-8833-2016; Pellegriti, Gabriella/CAH-1780-2022; VIGNERI, Paolo/K-8504-2016 OI Gianì, Fiorenza/0000-0002-1901-8230; Pellegriti, Gabriella/0000-0001-6102-379X; Masto, Roberta/0000-0002-4266-6658; VIGNERI, Paolo/0000-0002-5943-6066 FU Fondazione AIRC (Italy) [19897] FX This research was funded by Fondazione AIRC (Italy), grant number 19897 to RV. CR Adjadj E, 2009, LANCET ONCOL, V10, P181, DOI 10.1016/S1470-2045(09)70020-8 Ali H, 2017, ENVIRON CHEM LETT, V15, P329, DOI 10.1007/s10311-016-0601-3 Altenburger R, 2013, ENVIRON TOXICOL CHEM, V32, P1685, DOI 10.1002/etc.2294 Armstrong TA, 2001, J ANIM SCI, V79, P1549 Aschebrook-Kilfoy B, 2013, INT J CANCER, V132, P897, DOI 10.1002/ijc.27659 AXELRAD AA, 1955, CANCER, V8, P339, DOI 10.1002/1097-0142(1955)8:2<339::AID-CNCR2820080214>3.0.CO;2-M Azriel-Tamir H, 2004, J BIOL CHEM, V279, P51804, DOI 10.1074/jbc.M406581200 Balali-Mood M, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.643972 Barthel A, 2007, ARCH BIOCHEM BIOPHYS, V463, P175, DOI 10.1016/j.abb.2007.04.015 Bizon A, 2017, POSTEP HIG MED DOSW, V71, P98, DOI 10.5604/01.3001.0010.3794 Boffetta P, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77027-9 Boulyga SF, 2004, ANAL BIOANAL CHEM, V380, P198, DOI 10.1007/s00216-004-2699-6 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Carpenter RL, 2013, CURR CANCER DRUG TAR, V13, P252 Christensen KLY, 2013, INT J HYG ENVIR HEAL, V216, P624, DOI 10.1016/j.ijheh.2012.08.005 Chung HK, 2016, BIOL TRACE ELEM RES, V171, P54, DOI 10.1007/s12011-015-0502-5 COCLET J, 1989, CLIN ENDOCRINOL, V31, P655, DOI 10.1111/j.1365-2265.1989.tb01290.x Copat C, 2013, FOOD CHEM TOXICOL, V53, P33, DOI 10.1016/j.fct.2012.11.038 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Davies L, 2014, JAMA OTOLARYNGOL, V140, P317, DOI 10.1001/jamaoto.2014.1 Donaldson K, 2003, FREE RADICAL BIO MED, V34, P1369, DOI 10.1016/S0891-5849(03)00150-3 Dong WW, 2013, MED SCI MONITOR, V19, P49, DOI 10.12659/MSM.883736 Elisei R, 2014, J CLIN ENDOCR METAB, V99, P412, DOI 10.1210/jc.2014-1130 Fada G, 2010, PATHOLOGICA, V102, P405 FAURE R, 1990, BIOCHEM CELL BIOL, V68, P630, DOI 10.1139/o90-089 Fuchs E, 2013, EMBO REP, V14, P39, DOI 10.1038/embor.2012.197 Giani F, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.652675 Giani F, 2019, ENDOCR-RELAT CANCER, V26, P713, DOI 10.1530/ERC-19-0176 Giani F, 2015, J CLIN ENDOCR METAB, V100, pE1168, DOI [10.1210/jc.2014-4163, 10.1210/JC.2014-4163] GOODMAN MT, 1988, CANCER, V61, P1272, DOI 10.1002/1097-0142(19880315)61:6<1272::AID-CNCR2820610636>3.0.CO;2-8 Gore AC, 2015, ENDOCR REV, V36, P593, DOI 10.1210/er.2015-1093 Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005 Harris RM, 2015, TOXICOL APPL PHARM, V283, P223, DOI 10.1016/j.taap.2015.01.013 HRAFNKELSSON J, 1989, ACTA ONCOL, V28, P785, DOI 10.3109/02841868909092308 Fernandez-Marino AI, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118148 Ivashkevich A, 2012, CANCER LETT, V327, P123, DOI 10.1016/j.canlet.2011.12.025 Jain S, 2018, PLANT SIGNAL BEHAV, V13, DOI 10.1080/15592324.2018.1507401 Jancic SA, 2014, VITAM HORM, V94, P391, DOI 10.1016/B978-0-12-800095-3.00014-6 Jensen CB, 2020, THYROID, V30, P696, DOI 10.1089/thy.2019.0587 Jiang GF, 2009, TOXICOL IN VITRO, V23, P973, DOI 10.1016/j.tiv.2009.06.029 Jung CK, 2014, J CLIN ENDOCR METAB, V99, pE276, DOI 10.1210/jc.2013-2503 KANNO J, 1990, TOXICOL PATHOL, V18, P239, DOI 10.1177/019262339001800202 KAWADA J, 1982, J ENDOCRINOL, V95, P117, DOI 10.1677/joe.0.0950117 Kelly ADR, 2013, TOXICOL SCI, V131, P434, DOI 10.1093/toxsci/kfs324 Kim Hyun Sook, 2010, Korean Journal of Internal Medicine, V25, P399, DOI 10.3904/kjim.2010.25.4.399 Kim J, 2020, NAT REV ENDOCRINOL, V16, P17, DOI 10.1038/s41574-019-0263-x Kitahara CM, 2020, NAT REV ENDOCRINOL, V16, P617, DOI 10.1038/s41574-020-00414-9 Koutsospyros A, 2006, J HAZARD MATER, V136, P1, DOI 10.1016/j.jhazmat.2005.11.007 La Vecchia C, 2017, NAT REV ENDOCRINOL, V13, P318, DOI 10.1038/nrendo.2017.53 Laulicht F, 2015, TOXICOL APPL PHARM, V288, P33, DOI 10.1016/j.taap.2015.07.003 Li DJ, 2018, MOL MED REP, V17, P4422, DOI 10.3892/mmr.2018.8383 Lim H, 2017, JAMA-J AM MED ASSOC, V317, P1338, DOI 10.1001/jama.2017.2719 Liotta M, 2016, CHEM GEOL, V433, P68, DOI 10.1016/j.chemgeo.2016.03.032 Lu QH, 2019, APPL GEOCHEM, V106, P142, DOI 10.1016/j.apgeochem.2019.05.010 Luca E, 2017, J EXP CLIN CANC RES, V36, DOI 10.1186/s13046-017-0543-z Maier J, 2006, ENDOCRINOLOGY, V147, P3391, DOI 10.1210/en.2005-1669 Malandrino P, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21103425 Malandrino P, 2020, THYROID, V30, P290, DOI 10.1089/thy.2019.0244 Malandrino P, 2016, ENDOCRINE, V53, P471, DOI 10.1007/s12020-015-0761-0 Malandrino Pasqualino, 2013, Front Endocrinol (Lausanne), V4, P65, DOI 10.3389/fendo.2013.00065 Marcello MA, 2014, ENDOCR-RELAT CANCER, V21, pT235, DOI 10.1530/ERC-14-0131 MAZZAFERRI EL, 1993, NEW ENGL J MED, V328, P553 Meeker JD, 2009, ENVIRON RES, V109, P869, DOI 10.1016/j.envres.2009.06.004 Morales ME, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151367 Nriagu JO, 1996, SCIENCE, V272, P223, DOI 10.1126/science.272.5259.223 Nuttall JR, 2012, NEUROTOX RES, V21, P128, DOI 10.1007/s12640-011-9291-6 Paksoy N, 1989, Asia Pac J Public Health, V3, P231, DOI 10.1177/101053958900300310 Pamphlett R, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0246748 Panier S, 2014, NAT REV MOL CELL BIO, V15, P7, DOI 10.1038/nrm3719 Pellegriti G, 2009, JNCI-J NATL CANCER I, V101, P1575, DOI 10.1093/jnci/djp354 Pelser C, 2009, ANN EPIDEMIOL, V19, P597, DOI 10.1016/j.annepidem.2009.04.002 Pereira M, 2020, THYROID, V30, P1132, DOI 10.1089/thy.2019.0415 Perera FP, 1997, SCIENCE, V278, P1068, DOI 10.1126/science.278.5340.1068 Petrosino V, 2018, BIOMETALS, V31, P285, DOI 10.1007/s10534-018-0091-9 Popoveniuc G, 2012, MED CLIN N AM, V96, P329, DOI 10.1016/j.mcna.2012.02.002 Prins GS, 2014, ENDOCRINOLOGY, V155, P805, DOI 10.1210/en.2013-1955 Pula B, 2012, THYROID RES, V5, DOI 10.1186/1756-6614-5-26 Qian Y, 2003, J INORG BIOCHEM, V96, P271, DOI 10.1016/S0162-0134(03)00235-6 Rana SVS, 2014, BIOL TRACE ELEM RES, V160, P1, DOI 10.1007/s12011-014-0023-7 Rodrigues AS, 2012, ENVIRON INT, V49, P51, DOI 10.1016/j.envint.2012.08.008 Martin JAR, 2018, ENVIRON POLLUT, V239, P438, DOI 10.1016/j.envpol.2018.04.036 Russo M, 2015, ANTICANCER RES, V35, P3995 Sakr HI, 2017, DIAGN PATHOL, V12, DOI 10.1186/s13000-017-0661-0 Samet JM, 1998, AM J PHYSIOL-LUNG C, V275, pL551, DOI 10.1152/ajplung.1998.275.3.L551 Scharf P, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21196996 Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Simard EP, 2012, CA-CANCER J CLIN, V62, P118, DOI 10.3322/caac.20141 Singh KB, 2017, BIOMETALS, V30, P517, DOI 10.1007/s10534-017-0019-9 Sodango TH, 2018, J HEALTH POLLUT, V8, P53, DOI 10.5696/2156-9614-8.17.53 Son HY, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15966 Su H, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14101164 Tabrez S, 2014, MUTAT RES-GEN TOX EN, V760, P1, DOI 10.1016/j.mrgentox.2013.11.002 Tchounwou PB., 2012, EXS, V101, P133, DOI [10.1007/978-3-7643-8340-4_6, DOI 10.1007/978-3-7643-8340-4_6] Thevenod F, 2013, ARCH TOXICOL, V87, P1743, DOI 10.1007/s00204-013-1110-9 Truong T, 2007, EUR J CANCER PREV, V16, P62, DOI 10.1097/01.cej.0000236244.32995.e1 Valko M, 2005, CURR MED CHEM, V12, P1161, DOI 10.2174/0929867053764635 Varrica D, 2014, SCI TOTAL ENVIRON, V470, P117, DOI 10.1016/j.scitotenv.2013.09.058 Vigneri R, 2017, MOL CELL ENDOCRINOL, V457, P73, DOI 10.1016/j.mce.2016.10.027 Vigneri R, 2020, J CLIN ENDOCR METAB, V105, pE2639, DOI 10.1210/clinem/dgaa223 Vigneri R, 2015, CURR OPIN ONCOL, V27, P1, DOI 10.1097/CCO.0000000000000148 Wang YF, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17041451 Wise JTF, 2017, TOXICOL APPL PHARM, V331, P1, DOI 10.1016/j.taap.2017.04.007 Wu XY, 2016, ENVIRON SCI POLLUT R, V23, P8244, DOI 10.1007/s11356-016-6333-x Xie LS, 2020, ENVIRON HEALTH PERSP, V128, DOI 10.1289/EHP6471 Xing MZ, 2012, ENDOCR-RELAT CANCER, V19, pC7, DOI 10.1530/ERC-11-0360 Xu SH, 2013, J ENDOCRINOL, V218, P125, DOI 10.1530/JOE-13-0029 Yaman M, 2006, CURR MED CHEM, V13, P2513, DOI 10.2174/092986706778201620 Yan KL, 2020, J CLIN ENDOCR METAB, V105, P1770, DOI 10.1210/clinem/dgaa121 Zafra D, 2013, FEBS LETT, V587, P291, DOI 10.1016/j.febslet.2012.11.034 Zaichick V., 2018, J CANC METASTASIS TR, V4, P60, DOI DOI 10.20517/2394-4722.2018.52 ZAICHICK VY, 1995, ANALYST, V120, P817, DOI 10.1039/an9952000817 Zhao HQ, 2014, BIOL TRACE ELEM RES, V162, P87, DOI 10.1007/s12011-014-0102-9 NR 114 TC 11 Z9 11 U1 6 U2 28 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2072-6694 J9 CANCERS JI Cancers PD AUG PY 2021 VL 13 IS 16 AR 4052 DI 10.3390/cancers13164052 PG 18 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA UG2AY UT WOS:000689063000001 PM 34439207 OA Green Published, gold DA 2023-03-13 ER PT J AU Rossnerova, A Pokorna, M Svecova, V Sram, RJ Topinka, J Zolzer, F Rossner, P AF Rossnerova, Andrea Pokorna, Michaela Svecova, Viasta Sram, Radim J. Topinka, Jan Zolzer, Friedo Rossner, Pavel, Jr. TI Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and "omics" biomonitoring studies and possible mechanisms SO MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH LA English DT Review DE Adaptive response; DNA methylation; Environmental exposure; Micronuclei ID ADAPTIVE-RESPONSE; DNA METHYLATION; ESCHERICHIA-COLI; RADIATION HORMESIS; GENETIC-DAMAGE; CHROMOSOMAL-ABERRATIONS; GAMMA-IRRADIATION; ALKYLATING-AGENTS; CORD BLOOD; MICRONUCLEI AB The human population is continually exposed to numerous harmful environmental stressors, causing negative health effects and/or deregulation of biomarker levels. However, studies reporting no or even positive impacts of some stressors on humans are also sometimes published. The main aim of this review is to provide a comprehensive overview of the last decade of Czech biomonitoring research, concerning the effect of various levels of air pollution (benzo[a]pyrene) and radiation (uranium, X-ray examination and natural radon background), on the differently exposed population groups. Because some results obtained from cytogenetic studies were opposite than hypothesized, we have searched for a meaningful interpretation in genomic/epigenetic studies. A detailed analysis of our data supported by the studies of others and current epigenetic knowledge, leads to a hypothesis of the versatile mechanism of adaptation to environmental stressors via DNA methylation settings which may even originate in prenatal development, and help to reduce the resulting DNA damage levels. This hypothesis is fully in agreement with unexpected data from our studies (e.g. lower levels of DNA damage in subjects from highly polluted regions than in controls or in subjects exposed repeatedly to a pollutant than in those without previous exposure), and is also supported by differences in DNA methylation patterns in groups from regions with various levels of pollution. In light of the adaptation hypothesis, the following points may be suggested for future research: (i) the chronic and acute exposure of study subjects should be distinguished; (ii) the exposure history should be mapped including place of residence during the life and prenatal development; (iii) changes of epigenetic markers should be monitored over time. In summary, investigation of human adaptation to the environment, one of the most important processes of survival, is a new challenge for future research in the field of human biomonitoring that may change our view on the results of biomarker analyses and potential negative health impacts of the environment (C) 2017 The Authors. Published by Elsevier B.V. C1 [Rossnerova, Andrea; Pokorna, Michaela; Svecova, Viasta; Sram, Radim J.; Topinka, Jan; Rossner, Pavel, Jr.] Czech Acad Sci, Inst Expt Med, Dept Genet Toxicol & Nanotoxicol, Prague 14220 4, Czech Republic. [Zolzer, Friedo] Univ South Bohemia, Inst Radiol Toxicol & Civil Protect, Ceske Budejovice 37005, Czech Republic. C3 Czech Academy of Sciences; Institute of Experimental Medicine of the Czech Academy of Sciences; University of South Bohemia Ceske Budejovice RP Rossner, P (corresponding author), Inst Expt Med CAS, Dept Genet Toxicol & Nanotoxicol, Videnska 1083, Prague 14220 4, Czech Republic. EM prossner@biomed.cas.cz RI Rossnerova, Andrea/AAQ-8369-2021; Rossner, Pavel/H-2569-2014; Topinka, Jan/H-2551-2014; Rossnerova, Andrea/AAI-4471-2021; Sram, Radim/S-9574-2019; Rossner, Pavel/AAI-5789-2020; Zölzer, Friedo/D-7213-2016 OI Rossnerova, Andrea/0000-0001-8576-6950; Rossner, Pavel/0000-0001-6921-5446; Topinka, Jan/0000-0001-6860-7253; Sram, Radim/0000-0002-2500-4572; Rossner, Pavel/0000-0001-6921-5446; Zölzer, Friedo/0000-0002-2428-0313 FU Ministry of Education, Youth and Sports CR [LO1508]; EU [FP7/ENV-2012-308524-2/CITI-SENSE] FX The authors thank all current and former staff members of the Laboratory of Genetic Ecotoxicology and the Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine; the staff of the Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia, as well as medical staff involved in the research. Preparation of the manuscript and part of the experiments were supported by the grant of the Ministry of Education, Youth and Sports CR (#LO1508) and by the EU program FP7/ENV-2012-308524-2/CITI-SENSE. We would like to thank Ms. Frances Zatrepalkova for language editing. CR Andersen ZJ, 2016, ENVIRON INT, V88, P112, DOI 10.1016/j.envint.2015.12.009 ANGELIS K, 1992, MUTAT RES, V273, P271, DOI 10.1016/0921-8777(92)90089-L Bae S, 2015, INT J MOL MED, V35, P227, DOI 10.3892/ijmm.2014.1994 Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074 Barnthouse Lawrence W., 2009, Integrated Environmental Assessment and Management, V5, P435, DOI 10.1897/IEAM_2008-080.1 Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460 Bernal AJ, 2013, FASEB J, V27, P665, DOI 10.1096/fj.12-220350 Beskid O, 2006, MUTAT RES-FUND MOL M, V594, P20, DOI 10.1016/j.mrfmmm.2005.07.009 Bird A, 2002, GENE DEV, V16, P6, DOI 10.1101/gad.947102 Brody JG, 2003, ENVIRON HEALTH PERSP, V111, P1007, DOI 10.1289/ehp.6310 BROZMANOVA J, 1990, NUCLEIC ACIDS RES, V18, P331, DOI 10.1093/nar/18.2.331 Cao-Lei L, 2014, PLOS ONE, V9 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Chen W. L., 2007, Dose-Response, V5, P63, DOI 10.2203/dose-response.06-105.Chen Committee on the Epidemiology of Air Pollutants, 1985, EP AIR POLL, P127 Davis FG, 2015, RADIAT RES, V184, P56, DOI 10.1667/RR14023.1 Dejmek J, 1999, ENVIRON HEALTH PERSP, V107, P475, DOI 10.2307/3434630 Dimova EG, 2008, GENET MOL BIOL, V31, P396, DOI 10.1590/S1415-47572008000300002 Dobzhansky T., 1968, Evolutionary Biology, V2, P1 Doudoroff M, 1940, J GEN PHYSIOL, V23, P585, DOI 10.1085/jgp.23.5.585 Dulout FN, 1996, MUTAT RES-GENET TOX, V370, P151, DOI 10.1016/S0165-1218(96)00060-2 Esteller M, 2002, J PATHOL, V196, P1, DOI 10.1002/path.1024 EVANS HJ, 1959, INT J RADIAT BIOL RE, V1, P216, DOI 10.1080/09553005914550311 FENECH M, 1985, MUTAT RES, V147, P29, DOI 10.1016/0165-1161(85)90015-9 Fenech M, 2013, INT J HYG ENVIR HEAL, V216, P541, DOI 10.1016/j.ijheh.2013.01.008 GAUTIER F, 1977, EUR J BIOCHEM, V80, P175, DOI 10.1111/j.1432-1033.1977.tb11869.x Gourabi H, 1998, MUTAGENESIS, V13, P475, DOI 10.1093/mutage/13.5.475 Guida F, 2015, HUM MOL GENET, V24, P2349, DOI 10.1093/hmg/ddu751 Guo HS, 2014, NATURE, V511, P606, DOI 10.1038/nature13544 Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105 Hemminki K, 2014, EUR J PUBLIC HEALTH, V24, P64, DOI 10.1093/eurpub/cku102 HENNIG UGG, 1988, MUTAT RES, V203, P405, DOI 10.1016/0165-1161(88)90013-1 Henschel S, 2012, INT J PUBLIC HEALTH, V57, P757, DOI 10.1007/s00038-012-0369-6 HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001 Hillman SL, 2015, EPIGENETICS-US, V10, P50, DOI 10.4161/15592294.2014.989741 Hui WWI, 2016, CURR OPIN OBSTET GYN, V28, P105, DOI 10.1097/GCO.0000000000000252 IARC, 2012, IARC MON EV CYT RISK Izzotti A, 2014, INT J HYG ENVIR HEAL, V217, P601, DOI 10.1016/j.ijheh.2014.01.001 Izzotti A, 2011, MUTAT RES-FUND MOL M, V717, P9, DOI 10.1016/j.mrfmmm.2010.12.008 Jeck WR, 2014, NAT BIOTECHNOL, V32, P453, DOI 10.1038/nbt.2890 JELINEK J, 1988, CARCINOGENESIS, V9, P81, DOI 10.1093/carcin/9.1.81 Kanherkar R.R., 2014, CELL DEV BIOL, V49, P1 Kim M., 2017, EXP MOL MED, V49 Kleibl K, 2002, MUTAT RES-REV MUTAT, V512, P67, DOI 10.1016/S1383-5742(02)00025-X Ko Y, 2014, WORLD J GASTROENTERO, V20, P1238, DOI 10.3748/wjg.v20.i5.1238 Koestler DC, 2013, ENVIRON HEALTH PERSP, V121, P971, DOI 10.1289/ehp.1205925 Kubota T., 2013, INTECH, P333 Laird PW, 2010, NAT REV GENET, V11, P191, DOI 10.1038/nrg2732 Laufer BI, 2015, EPIGENOMICS-UK, V7, P1259, DOI 10.2217/epi.15.60 Leuraud K, 2015, LANCET HAEMATOL, V2, pE276, DOI 10.1016/S2352-3026(15)00094-0 LINDAHL T, 1988, ANNU REV BIOCHEM, V57, P133, DOI 10.1146/annurev.bi.57.070188.001025 Markunas CA, 2014, ENVIRON HEALTH PERSP, V122, P1147, DOI 10.1289/ehp.1307892 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MCMICHAEL AJ, 1988, CANCER RES, V48, P751 Mollert AP, 2016, TRENDS ECOL EVOL, V31, P281, DOI 10.1016/j.tree.2016.01.005 MOORE LE, 1993, J TOXICOL ENV HEALTH, V40, P349, DOI 10.1080/15287399309531800 Moran S, 2016, EPIGENOMICS-UK, V8, P389, DOI 10.2217/epi.15.114 MOROHOSHI F, 1993, J BACTERIOL, V175, P6010, DOI 10.1128/JB.175.18.6010-6017.1993 Natarajan AT, 1996, ENVIRON HEALTH PERSP, V104, P445, DOI 10.2307/3432801 Nersesyan A, 2016, MUTAT RES-REV MUTAT, V770, P1, DOI 10.1016/j.mrrev.2016.05.003 Pacchierotti F, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/123484 REID D. D., 1966, NAT CANCER INST MONOGR, V19, P321 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Rojas D, 2015, TOXICOL SCI, V143, P97, DOI 10.1093/toxsci/kfu210 Rossner P, 2015, MUTAT RES-FUND MOL M, V780, P60, DOI 10.1016/j.mrfmmm.2015.08.001 Rossner P, 2013, MUTAGENESIS, V28, P89, DOI 10.1093/mutage/ges057 Rossner P, 2013, MUTAGENESIS, V28, P97, DOI 10.1093/mutage/ges058 Rossner P, 2011, MUTAT RES-FUND MOL M, V713, P76, DOI 10.1016/j.mrfmmm.2011.06.001 Rossnerova A, 2009, MUTAT RES-FUND MOL M, V669, P42, DOI 10.1016/j.mrfmmm.2009.04.008 Rossnerova A., 2009, OCHRANA OVZDUSI, V5-6, P37 Rossnerova A., 2016, EEMGS ANN M, P115 Rossnerova A, 2016, MUTAT RES-FUND MOL M, V793, P32, DOI 10.1016/j.mrfmmm.2016.10.004 Rossnerova A, 2013, MUTAT RES-FUND MOL M, V741, P18, DOI 10.1016/j.mrfmmm.2013.02.003 Rossnerova A, 2011, MUTAT RES-FUND MOL M, V708, P44, DOI 10.1016/j.mrfmmm.2011.01.004 Rossnerova A, 2011, MUTAGENESIS, V26, P169, DOI 10.1093/mutage/geq057 Sanz LA, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-3-110 Schlebusch CM, 2015, MOL BIOL EVOL, V32, P1544, DOI 10.1093/molbev/msv046 Scott BR, 2009, DOSE-RESPONSE, V7, P104, DOI 10.2203/dose-response.08-016.Scott Seisenberger S, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2011.0330 Shi XP, 2016, ENVIRON RES, V151, P537, DOI 10.1016/j.envres.2016.08.026 Siroux V, 2016, EUR RESPIR REV, V25, P124, DOI 10.1183/16000617.0034-2016 Sokolov M, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17010055 Speit G, 2013, MUTAGENESIS, V28, P375, DOI 10.1093/mutage/get026 Sram R., 2013, ISRN PUBLIC HLTH, P1, DOI DOI 10.1155/2013/416701 Sram RJ, 2016, MUTAT RES-REV MUTAT, V770, P162, DOI 10.1016/j.mrrev.2016.07.009 Sram RJ., 2010, OCHRANA OVZDUSI, V5-6, P3 Stevens M, 2013, GENOME RES, V23, P1541, DOI 10.1101/gr.152231.112 Tobi EW, 2015, INT J EPIDEMIOL, V44, P1211, DOI 10.1093/ije/dyv043 Toprani SM, 2015, MUTAGENESIS, V30, P663, DOI 10.1093/mutage/gev032 VAHTER M, 1995, EUR J PHARM-ENVIRON, V293, P455, DOI 10.1016/0926-6917(95)90066-7 VAUGHAN P, 1991, J BACTERIOL, V173, P3656, DOI 10.1128/JB.173.12.3656-3662.1991 Vineis P, 2017, FASEB J, V31, P2241, DOI 10.1096/fj.201601059RR VOLKERT MR, 1988, ENVIRON MOL MUTAGEN, V11, P241, DOI 10.1002/em.2850110210 Vrijens K, 2015, ENVIRON HEALTH PERSP, V123, P399, DOI 10.1289/ehp.1408459 *WHO, 2009, WHOHTMTB2009411, pCH1 Wild CP, 2005, CANCER EPIDEM BIOMAR, V14, P1847, DOI 10.1158/1055-9965.EPI-05-0456 Wirgin I, 2011, SCIENCE, V331, P1322, DOI 10.1126/science.1197296 Wojcik A, 2000, HUM ECOL RISK ASSESS, V6, P281, DOI 10.1080/10807030009380063 World Health Organization, 2010, WHO GUID IND AIR QUA Yang MY, 2011, DNA REPAIR, V10, P595, DOI 10.1016/j.dnarep.2011.03.007 Zaichkina SI, 2016, B EXP BIOL MED+, V161, P24, DOI 10.1007/s10517-016-3336-z Ziller MJ, 2015, NAT METHODS, V12, P230, DOI [10.1038/NMETH.3152, 10.1038/nmeth.3152] Zolzer F, 2012, CYTOGENET GENOME RES, V136, P288, DOI 10.1159/000338084 Zolzer F, 2015, CYTOGENET GENOME RES, V147, P17, DOI 10.1159/000441889 Zolzer F, 2013, INT ARCH OCC ENV HEA, V86, P629, DOI 10.1007/s00420-012-0795-z Zolzer F, 2012, RADIAT ENVIRON BIOPH, V51, P277, DOI 10.1007/s00411-012-0422-0 Zolzer F., 2017, BIOMARKERS, V3, P1 NR 107 TC 20 Z9 20 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5742 EI 1388-2139 J9 MUTAT RES-REV MUTAT JI Mutat. Res.-Rev. Mutat. Res. PD JUL-SEP PY 2017 VL 773 BP 188 EP 203 DI 10.1016/j.mrrev.2017.07.002 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA FJ0DI UT WOS:000412378300012 PM 28927528 OA hybrid DA 2023-03-13 ER PT J AU Zhang, B Weston, LA Li, MJ Zhu, XC Weston, PA Feng, FJ Zhang, BY Zhang, LJ Gu, L Zhang, ZY AF Zhang, Bao Weston, Leslie A. Li, Mingjie Zhu, Xiaocheng Weston, Paul A. Feng, Fajie Zhang, Bingyong Zhang, Liuji Gu, Li Zhang, Zhongyi TI Rehmannia glutinosa Replant Issues: Root Exudate-Rhizobiome Interactions Clearly Influence Replant Success SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE allelopathy; pathogens; phytotoxicity; plant-soil feedbacks; replanting problems ID COMPLETE GENOME SEQUENCE; MICROBIAL COMMUNITY; RHIZOSPHERE SOIL; PHENOLIC-ACIDS; ALLELOCHEMICALS; TOXICITY; ROT; AUTOTOXICITY; PATHOGENS; DATASETS AB Production of medicinal tubers of Rehmannia glutinosa is severely hindered by replanting issues. However, a mechanistic understanding of the plant-soil factors associated with replant problems is currently limited. Thus, we aimed to identify the R. glutinosa root exudates, evaluate their potential phytotoxicity and profile the interactions between the plant and its associated rhizobiome. Stereomicroscopy and liquid chromatography coupled to a quadrupole/time of flight mass spectrometer were used to monitor and identify secreted metabolites, respectively. Seedling bioassays were used to evaluate the phytotoxicity of R. glutinosa root exudates. Two complimentary experiments were performed to investigate allelochemical fate in rhizosphere soil and profile the associated microbiota. Root specific microbes were further isolated from R. glutinosa rhizosphere. Impacts of isolated strains were evaluated by co-cultivation on plate and on seedlings in tissue culture, with a focus on their pathogenicity. Interactions between key R. glutinosa root exudates and isolated rhizobiomes were investigated to understand the potential for plant-soil feedbacks. Quantification and phytotoxic analysis of metabolites released from R. glutinosa indicated catalpol was the most abundant and bioactive metabolite in root exudates. Subsequent microbial profiling in soil containing accumulated and ecologically significant levels of catalpol identified several taxa (e.g., Agromyces, Lysobacter, Pseudomonas, Fusarium) that were specifically shifted. Isolation of R. glutinosa rhizobiomes obtained several root specific strains. A significant antagonistic effect between strain Rh7 (Pseudomonas aeruginosa) and two pathogenic strains Rf1 (Fusarium oxysporum) and Rf2 (Fusarium solani) was observed. Notably, the growth of strain Rh7 and catalpol concentration showed a hormesis-like effect. Field investigation further indicated catalpol was increasingly accumulated in the rhizosphere of replanted R. glutinosa, suggesting that interactions of biocontrol agents and pathogens are likely regulated by the presence of bioactive root exudates and in turn impact the rhizo-ecological process. In summary, this research successfully monitored the release of R. glutinosa root exudates, identified several abundant bioactive R. glutinosa secreted metabolites, profiled associated root specific microbes, and investigated the plant-soil feedbacks potentially regulated by catalpol and associated rhizobiomes. Our findings provide new perspectives toward an enhanced understanding R. glutinosa replant problems. C1 [Zhang, Bao; Li, Mingjie; Feng, Fajie; Gu, Li; Zhang, Zhongyi] Fujian Agr & Forestry Univ, Coll Agr, Minist Educ Genet Breeding & Multiple Utilizat Cr, Key Lab, Fuzhou, Peoples R China. [Weston, Leslie A.; Zhu, Xiaocheng; Weston, Paul A.] Charles Sturt Univ, Graham Ctr Agr Innovat, Wagga Wagga, NSW, Australia. [Zhang, Bingyong] Henan Prov Peoples Hosp, Zhengzhou, Peoples R China. [Zhang, Liuji] Henan Prov Chinese Med Res Inst, Zhengzhou, Peoples R China. C3 Fujian Agriculture & Forestry University; Charles Sturt University; Zhengzhou University RP Gu, L; Zhang, ZY (corresponding author), Fujian Agr & Forestry Univ, Coll Agr, Minist Educ Genet Breeding & Multiple Utilizat Cr, Key Lab, Fuzhou, Peoples R China. EM Guli5101@163.com; zyzhang@fafu.edu.cn RI zhang, ZY/HJH-6535-2023; Weston, Leslie/M-4557-2015; Zhu, Xiaocheng/B-6963-2015 OI Weston, Leslie/0000-0002-1029-7982; Zhu, Xiaocheng/0000-0003-4468-1090 CR Asao T, 2003, SCI HORTIC-AMSTERDAM, V97, P389, DOI 10.1016/S0304-4238(02)00197-8 Bais HP, 2006, ANNU REV PLANT BIOL, V57, P233, DOI 10.1146/annurev.arplant.57.032905.105159 Bais Harsh P., 2008, V14, P241, DOI 10.1007/978-3-540-74543-3_11 Bever JD, 2012, ANNU REV MICROBIOL, V66, P265, DOI 10.1146/annurev-micro-092611-150107 Bouhot D., 1983, P 3 COLL SFP VERS FR, P9 Buell CR, 2003, P NATL ACAD SCI USA, V100, P10181, DOI 10.1073/pnas.1731982100 Caporaso JG, 2012, ISME J, V6, P1621, DOI 10.1038/ismej.2012.8 Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303 CHAO A, 1984, SCAND J STAT, V11, P265 Chen A., 2018, ACTA PHYSIOL PLANT, V40, P1 Chen Hui, 2007, Yingyong Shengtai Xuebao, V18, P2755 Chen Y, 2016, FRONT MAR SCI, V3, DOI 10.3389/fmars.2016.00257 Cipollini D, 2012, J CHEM ECOL, V38, P714, DOI 10.1007/s10886-012-0133-7 Commission N. P., 2017, PHARM PEOPL REP CHIN Dong LL, 2018, SOIL BIOL BIOCHEM, V125, P64, DOI 10.1016/j.soilbio.2018.06.028 Dong LL, 2018, ACTA PHARM SIN B, V8, P272, DOI 10.1016/j.apsb.2017.12.011 Du Jia-fang, 2009, Shengtaixue Zazhi, V28, P445 Du Jiafang, 2009, Zhongguo Zhong Yao Za Zhi, V34, P948 Edwards J, 2015, P NATL ACAD SCI USA, V112, pE911, DOI 10.1073/pnas.1414592112 Exposito RG, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.01243 Fujii Y., 2005, 4 WORLD C ALL, P21 Gao Wei-Wei, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1665 Garibaldi A, 2013, PLANT DIS, V97, P848, DOI 10.1094/PDIS-12-12-1168-PDN Guo LL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124002 He WJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08799-w Hofmann A, 2009, J APPL BOT FOOD QUAL, V82, P193 Huang PM, 1999, PRINCIPLES AND PRACTICES IN PLANT ECOLOGY, P287 Huo Y, 2018, ARCH MICROBIOL, V200, P1457, DOI 10.1007/s00203-018-1560-9 Inderjit, 2005, PLANT SOIL, V274, P227, DOI 10.1007/s11104-004-0159-x Inderjit, 2001, AGRON J, V93, P79 Jiao XL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44530-7 Jilani G, 2008, ANN MICROBIOL, V58, P351, DOI 10.1007/BF03175528 Kidd PS, 2001, J EXP BOT, V52, P1339, DOI 10.1093/jexbot/52.359.1339 Kobayashi Katsuichiro, 2004, Weed Biology and Management, V4, P1, DOI 10.1111/j.1445-6664.2003.00112.x Kong CH, 2008, J AGR FOOD CHEM, V56, P11734, DOI 10.1021/jf802666p Kong CH, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06429-1 Langenhoven SD, 2018, PHYTOPATHOL MEDITERR, V57, P519, DOI 10.14601/Phytopathol_Mediterr-23921 Langille MGI, 2013, NAT BIOTECHNOL, V31, P814, DOI 10.1038/nbt.2676 Latif S, 2020, PLANT SOIL, V447, P199, DOI 10.1007/s11104-019-04225-4 Lee YS, 2013, BIOCONTROL SCI TECHN, V23, P1427, DOI 10.1080/09583157.2013.840359 Leys NMEJ, 2004, APPL ENVIRON MICROB, V70, P1944, DOI 10.1128/AEM.70.4.1944-1955.2004 Li MJ, 2015, J EXP BOT, V66, P5837, DOI 10.1093/jxb/erv288 Li ZF, 2016, SCI REP-UK, V6, DOI 10.1038/srep33962 Li ZhenFang, 2013, Zhongguo Shengtai Nongye Xuebao / Chinese Journal of Eco-Agriculture, V21, P1426, DOI 10.3724/SP.J.1011.2013.01426 Llado S, 2009, BIODEGRADATION, V20, P593, DOI 10.1007/s10532-009-9247-1 Lu HN, 2019, SCI TOTAL ENVIRON, V653, P658, DOI 10.1016/j.scitotenv.2018.10.385 Lu HS, 2011, INT J SYST EVOL MICR, V61, P404, DOI 10.1099/ijs.0.020206-0 Ludwig J.A., 1988, STAT ECOLOGY Madigan MT, 2006, BROCK BIOL MICROORGA Magoc T, 2011, BIOINFORMATICS, V27, P2957, DOI 10.1093/bioinformatics/btr507 Manici LM, 2013, APPL SOIL ECOL, V72, P207, DOI 10.1016/j.apsoil.2013.07.011 McCully ME, 2008, NEW PHYTOL, V180, P193, DOI 10.1111/j.1469-8137.2008.02520.x Mishra S, 2013, APPL MICROBIOL BIOT, V97, P5659, DOI 10.1007/s00253-013-4885-y Nguyen NH, 2016, FUNGAL ECOL, V20, P241, DOI 10.1016/j.funeco.2015.06.006 PARKER C., 1966, WEEDS, V14, P117, DOI 10.2307/4040941 Paulsen IT, 2005, NAT BIOTECHNOL, V23, P873, DOI 10.1038/nbt1110 Qiu JG, 2010, CHIN J EXP TRADIT ME, V16, P110 Ren X, 2017, IND CROP PROD, V97, P302, DOI 10.1016/j.indcrop.2016.12.035 Scotto la Massese N, 1970, C R J ETUDES, V26, P19 Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60 Shieh JP, 2011, J AGR FOOD CHEM, V59, P3747, DOI 10.1021/jf200069t Singh N, 2016, ECOTOX ENVIRON SAFE, V125, P25, DOI 10.1016/j.ecoenv.2015.11.020 Solecka D, 1999, PLANT PHYSIOL BIOCH, V37, P491, DOI 10.1016/S0981-9428(99)80054-0 Spring S, 2001, INT J SYST EVOL MICR, V51, P1463, DOI 10.1099/00207713-51-4-1463 Stringlis IA, 2018, P NATL ACAD SCI USA, V115, pE5213, DOI 10.1073/pnas.1722335115 [苏文华 Su Wenhua], 2005, [中草药, Chinese Traditional and Herbal Drugs], V36, P1415 Sun Yuechun, 2011, Zhongguo Zhong Yao Za Zhi, V36, P387 Tao XQ, 2007, PROCESS BIOCHEM, V42, P401, DOI 10.1016/j.procbio.2006.09.018 Uren N.C., 2000, RHIZOSPHERE, P35 [王娟娟 Wang Juanjuan], 2015, [中成药, Chinese Traditional Patent Medicine], V37, P1981 Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07 Wang RF, 2018, APPL SOIL ECOL, V130, P271, DOI 10.1016/j.apsoil.2018.07.001 Wang TX, 2005, J HENAN AGR SCI J HENAN AGR SCI, V10, P69 Wang XR, 2019, ACTA PHYSIOL PLANT, V41, DOI 10.1007/s11738-019-2847-4 Wang YJ, 2016, J ANAL METHODS CHEM, V2016, DOI 10.1155/2016/4956589 WESTON LA, 1989, J CHEM ECOL, V15, P1855, DOI 10.1007/BF01012272 Westphal A, 2002, PLANT SOIL, V242, P197, DOI 10.1023/A:1016297603427 White JR, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000352 White T.J., 1990, PCR PROTOCOLS GUIDE, V18, P315 Wu HW, 2000, J AGR FOOD CHEM, V48, P5321, DOI 10.1021/jf0006473 Wu LK, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082394 Wu LK, 2018, PHYTOPATHOLOGY, V108, P1493, DOI [10.1094/PHYTO-02-18-0038-R, 10.1094/phyto-02-18-0038-r] Wu LK, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030850 Wu LK, 2016, EUR J SOIL BIOL, V72, P1, DOI 10.1016/j.ejsobi.2015.12.002 Wu LK, 2015, SCI REP-UK, V5, DOI 10.1038/srep15871 Wu LK, 2013, APPL SOIL ECOL, V67, P1, DOI 10.1016/j.apsoil.2013.02.008 Wu WT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033200 Wu Zong-wei, 2009, Shengtaixue Zazhi, V28, P660 Xie YX, 2012, NAT PROD REP, V29, P1277, DOI 10.1039/c2np20064c Yang M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118555 Yang WZ, 2017, ACTA PHARM SIN B, V7, P439, DOI 10.1016/j.apsb.2017.04.012 Yang YH, 2011, BMC PLANT BIOL, V11, DOI 10.1186/1471-2229-11-53 Yeasmin R., 2014, Australian Journal of Crop Science, V8, P251 Yim B, 2013, PLANT SOIL, V366, P617, DOI 10.1007/s11104-012-1454-6 YOUNG CC, 1984, PLANT SOIL, V82, P247, DOI 10.1007/BF02220251 Yu RQ, 2019, APPL ENVIRON MICROB, V85, DOI 10.1128/AEM.02154-18 Zhang B, 2019, PLANT SOIL, V441, P439, DOI 10.1007/s11104-019-04136-4 Zhang B, 2016, PLANT SOIL, V407, P307, DOI 10.1007/s11104-016-2885-2 Zhang BG, 2010, PLANTA MED, V76, P1948, DOI 10.1055/s-0030-1250527 [张留记 Zhang Liuji], 2017, [天然产物研究与开发, Natural Product Research and Development], V29, P87 Zhang Shuxiang, 2000, Yingyong Shengtai Xuebao, V11, P152 Zhang Zhong-Yi, 2010, Chinese Journal of Plant Ecology, V34, P547, DOI 10.3773/j.issn.1005-264x.2010.05.008 Zhang ZhongYi, 2009, Zhongguo Shengtai Nongye Xuebao / Chinese Journal of Eco-Agriculture, V17, P189, DOI 10.3724/SP.J.1011.2009.00189 Zhang ZY, 2013, MODERN CHIN MED, V15, P38, DOI DOI 10.13313/J.I Zhao HM, 2016, SCI TOTAL ENVIRON, V562, P170, DOI 10.1016/j.scitotenv.2016.03.171 Zheng F, 2018, PLANT DIS, V102, P2653, DOI [10.1094/PDIS-09-17-1469-PDN, 10.1094/pdis-09-17-1469-pdn] Zhi JY, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19123751 Zhou F, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10411-0 Zhu XC, 2016, J EXP BOT, V67, P3777, DOI 10.1093/jxb/erw182 NR 109 TC 6 Z9 8 U1 4 U2 38 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JUN 30 PY 2020 VL 11 AR 1413 DI 10.3389/fmicb.2020.01413 PG 21 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA NX2LW UT WOS:000575547200001 PM 32714307 OA Green Published, gold DA 2023-03-13 ER PT J AU Zitta, K Peeters-Scholte, C Sommer, L Gruenewald, M Hummitzsch, L Parczany, K Steinfath, M Albrecht, M AF Zitta, Karina Peeters-Scholte, Cacha Sommer, Lena Gruenewald, Matthias Hummitzsch, Lars Parczany, Kerstin Steinfath, Markus Albrecht, Martin TI 2-Iminobiotin Superimposed on Hypothermia Protects Human Neuronal Cells from Hypoxia-Induced Cell Damage: An in Vitro Study SO FRONTIERS IN PHARMACOLOGY LA English DT Article DE hypoxia-ischemia; hypothermia; neuroprotection; asphyxia; 2-iminobiotin; cell damage; apoptosis; in vitro ID NITRIC-OXIDE SYNTHASE; THERAPEUTIC HYPOTHERMIA; NEONATAL ENCEPHALOPATHY; NEWBORN PIGLET; ISCHEMIA; NEUROPROTECTION; INHIBITOR; HORMESIS; BRAIN; MANAGEMENT AB Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE), but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB) superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7 h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25 h of hypothermia (33.5 degrees C), and incubated with vehicle or 2-IB (10, 30, 50, 100, and 300 ng/ml). Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assays. Production of reactive oxygen species (ROS) was measured using fluorometric assays. Western blotting for PARP, Caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4 h post-hypoxia and human apoptosis proteome profiler arrays were performed. Twenty-five hour after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10 and 30 ng/ml) reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erkl/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of Caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4 h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a >= 25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27, and phospho Rad17. In summary, addition of 2-IB during hypothermia is able to attenuate hypoxia-induced neuronal cell damage in vitro. Combination treatment of hypothermia with 2-IB could be a promising strategy to reduce hypoxia-induced neuronal cell damage and should be considered in further animal and clinical studies. C1 [Zitta, Karina; Sommer, Lena; Gruenewald, Matthias; Hummitzsch, Lars; Parczany, Kerstin; Steinfath, Markus; Albrecht, Martin] Univ Hosp Schleswig Hoistein, Dept Anesthesiol & Intens Care Med, Kiel, Germany. [Peeters-Scholte, Cacha] Neurophyxia BV, Shertogenbosch, Netherlands. RP Albrecht, M (corresponding author), Univ Hosp Schleswig Hoistein, Dept Anesthesiol & Intens Care Med, Kiel, Germany. EM martin.albrecht@uksh.de RI Albrecht, Martin/AAW-9303-2021; Peeters-Scholte, Cacha/AAA-9042-2021 OI Albrecht, Martin/0000-0003-2580-768X; Peeters-Scholte, Cacha/0000-0002-3982-6868 CR Aksamitiene E, 2012, BIOCHEM SOC T, V40, P139, DOI 10.1042/BST20110609 Aldinucci C, 2010, NEUROCHEM RES, V35, P1691, DOI 10.1007/s11064-010-0231-2 Anderson KB, 2016, THER HYPOTHERMIA TEM, V6, P169, DOI 10.1089/ther.2016.0003 Bjorkman ST, 2013, STROKE, V44, P809, DOI 10.1161/STROKEAHA.112.677922 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Dawson VL, 2004, J BIOENERG BIOMEMBR, V36, P287, DOI 10.1023/B:JOBB.0000041755.22613.8d Diaz J, 2017, DEV NEUROSCI-BASEL, V39, P257, DOI 10.1159/000454949 Erecinska M, 2003, J CEREBR BLOOD F MET, V23, P513, DOI 10.1097/01.WCB.0000066287.21705.21 Fan XY, 2010, J MATERN-FETAL NEO M, V23, P17, DOI 10.3109/14767058.2010.505052 Filatova E, 2017, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00089 Galvao TF, 2013, J TROP PEDIATRICS, V59, P453, DOI 10.1093/tropej/fmt047 Gunn AJ, 1997, AUST NZ J OBSTET GYN, V37, P36, DOI 10.1111/j.1479-828X.1997.tb02214.x Hassell KJ, 2015, ARCH DIS CHILD-FETAL, V100, pF541, DOI 10.1136/archdischild-2014-306284 Higgins RD, 2011, J PEDIATR-US, V159, P851, DOI 10.1016/j.jpeds.2011.08.004 Huang Y, 2013, ANAESTHESIA, V68, P31, DOI 10.1111/j.1365-2044.2012.07336.x Huang Y, 2013, DIS MODEL MECH, V6, P1507, DOI 10.1242/dmm.013078 Hummitzsch L, 2014, EXP CELL RES, V322, P62, DOI 10.1016/j.yexcr.2013.12.022 Kimura A, 2002, CRIT CARE MED, V30, P1499, DOI 10.1097/00003246-200207000-00017 Martinello K, 2017, ARCH DIS CHILD-FETAL, V102, pF346, DOI 10.1136/archdischild-2015-309639 O'Brien FE, 2006, PEDIATRICS, V117, P1549, DOI 10.1542/peds.2005-1649 Peeters-Scholte C, 2002, DEV NEUROSCI-BASEL, V24, P396, DOI 10.1159/000069045 Peeters-Scholte C, 2002, STROKE, V33, P2304, DOI 10.1161/01.STR.0000028343.25901.09 Peeters-Scholte C, 2002, EXP BRAIN RES, V147, P200, DOI 10.1007/s00221-002-1182-x Perrone S, 2013, EXPERT OPIN ORPHAN D, V1, P935, DOI 10.1517/21678707.2013.853614 Robertson NJ, 2012, J PEDIATR-US, V160, P544, DOI 10.1016/j.jpeds.2011.12.052 Sahuquillo J, 2007, CURR PHARM DESIGN, V13, P2310 Sunjic KM, 2015, CRIT CARE MED, V43, P2228, DOI 10.1097/CCM.0000000000001223 SUP SJ, 1994, BIOCHEM BIOPH RES CO, V204, P962, DOI 10.1006/bbrc.1994.2554 Takenouchi T, 2015, J CEREBR BLOOD F MET, V35, P794, DOI 10.1038/jcbfm.2014.253 Tataranno ML, 2015, OXID MED CELL LONGEV, V2015, DOI 10.1155/2015/108251 TUMILOWICZ JJ, 1970, CANCER RES, V30, P2110 van Bel F, 2016, SEMIN PERINATOL, V40, P152, DOI 10.1053/j.semperi.2015.12.003 van den Tweel ERW, 2005, J CEREBR BLOOD F MET, V25, P67, DOI 10.1038/sj.jcbfm.9600007 Wagner BP, 2002, PEDIATR RES, V51, P354, DOI 10.1203/00006450-200203000-00015 Zhu JC, 2015, DEV NEUROSCI-BASEL, V37, P376, DOI 10.1159/000369007 Zimmermann A, 2014, MICROB CELL, V1, P150, DOI 10.15698/mic2014.05.148 Zitta K, 2016, EUR J PHARMACOL, V792, P63, DOI 10.1016/j.ejphar.2016.10.026 Zitta K, 2010, EUR J PHARMACOL, V645, P39, DOI 10.1016/j.ejphar.2010.07.017 Zitta K, 2010, EUR J PHARMACOL, V628, P11, DOI 10.1016/j.ejphar.2009.11.023 NR 41 TC 8 Z9 8 U1 0 U2 5 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1663-9812 J9 FRONT PHARMACOL JI Front. Pharmacol. PD JAN 11 PY 2018 VL 8 AR 971 DI 10.3389/fphar.2017.00971 PG 11 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA FS4VI UT WOS:000419791400002 PM 29358921 OA Green Published, gold DA 2023-03-13 ER PT J AU Edwards, C Canfield, J Copes, N Brito, A Rehan, M Lipps, D Brunquell, J Westerheide, SD Bradshaw, PC AF Edwards, Clare Canfield, John Copes, Neil Brito, Andres Rehan, Muhammad Lipps, David Brunquell, Jessica Westerheide, Sandy D. Bradshaw, Patrick C. TI Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans SO BMC GENETICS LA English DT Article DE Amino acids; Lifespan; Aging; C. elegans; Serine; Proline; Histidine; Tryptophan; Mitochondrial ID P70 S6 KINASE; DIETARY RESTRICTION; CALORIC RESTRICTION; OXIDATIVE STRESS; LONGEVITY; PROTEIN; METHIONINE; GROWTH; IMBALANCE; AUTOPHAGY AB Background: Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans. In addition, leucine strongly activates the TOR signaling pathway, which when inhibited increases lifespan. Results: Therefore each of the 20 proteogenic amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one or more of the 3 concentrations tested with serine and proline showing the largest effects. 11 of the amino acids were less potent at higher doses, while 5 even decreased lifespan. Serine, proline, or histidine-mediated lifespan extension was greatly inhibited in eat-2 worms, a model of dietary restriction, in daf-16/ FOXO, sir-2.1, rsks-1 (ribosomal S6 kinase), gcn-2, and aak-2 (AMPK) longevity pathway mutants, and in bec-1 autophagy-defective knockdown worms. 8 of 10 longevity-promoting amino acids tested activated a SKN-1/Nrf2 reporter strain, while serine and histidine were the only amino acids from those to activate a hypoxia-inducible factor (HIF-1) reporter strain. Thermotolerance was increased by proline or tryptophan supplementation, while tryptophan-mediated lifespan extension was independent of DAF-16/FOXO and SKN-1/Nrf2 signaling, but tryptophan and several related pyridine-containing compounds induced the mitochondrial unfolded protein response and an ER stress response. High glucose levels or mutations affecting electron transport chain (ETC) function inhibited amino acid-mediated lifespan extension suggesting that metabolism plays an important role. Providing many other cellular metabolites to C. elegans also increased longevity suggesting that anaplerosis of tricarboxylic acid (TCA) cycle substrates likely plays a role in lifespan extension. Conclusions: Supplementation of C. elegans with 18 of the 20 individual amino acids extended lifespan, but lifespan often decreased with increasing concentration suggesting hormesis. Lifespan extension appears to be caused by altered mitochondrial TCA cycle metabolism and respiratory substrate utilization resulting in the activation of the DAF-16/FOXO and SKN-1/Nrf2 stress response pathways. C1 [Edwards, Clare; Canfield, John; Copes, Neil; Brito, Andres; Rehan, Muhammad; Lipps, David; Brunquell, Jessica; Westerheide, Sandy D.; Bradshaw, Patrick C.] Univ S Florida, Dept Cell Biol Microbiol & Mol Biol, Tampa, FL 33620 USA. C3 State University System of Florida; University of South Florida RP Bradshaw, PC (corresponding author), Univ S Florida, Dept Cell Biol Microbiol & Mol Biol, Tampa, FL 33620 USA. EM pbradsha@usf.edu RI Bradshaw, Patrick C./AAR-9189-2020 OI Bradshaw, Patrick C./0000-0002-4591-6798 FU NIH Office of Research Infrastructure Programs [P40 OD010440]; NIH [AG046769] FX We would like to thank Robert Buzzeo for sharing equipment and reagents. C. elegans strains were obtained from the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN, USA), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). The research was funded by NIH grant # AG046769 awarded to PB. CR Alvers AL, 2009, AGING CELL, V8, P353, DOI 10.1111/j.1474-9726.2009.00469.x Ari C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103526 Baker BM, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002760 Ban H, 2004, INT J MOL MED, V13, P537 Batch BC, 2014, CURR OPIN CLIN NUTR, V17, P86, DOI 10.1097/MCO.0000000000000010 Bennett CF, 2014, EXP GERONTOL, V56, P142, DOI 10.1016/j.exger.2014.02.002 Chin RM, 2014, NATURE Chuang MH, 2009, BIOORGAN MED CHEM, V17, P7831, DOI 10.1016/j.bmc.2009.09.002 D'Antona G, 2010, CELL METAB, V12, P362, DOI 10.1016/j.cmet.2010.08.016 De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111 Depuydt G, 2013, MOL CELL PROTEOMICS, V12, P3624, DOI 10.1074/mcp.M113.027383 Dostal V, 2010, JOVE-J VIS EXP, V44, pe2252 Edwards CB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058345 Ferguson AA, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1004020 Fitzgerald VK, 2009, BIOTECHNIQUES, V47, pIX, DOI 10.2144/000113277 Fuchs S, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-14 Golubnitschaja O, 2012, EPMA J, V3, DOI 10.1186/1878-5085-3-11 Gomes AP, 2013, CELL, V155, P1624, DOI 10.1016/j.cell.2013.11.037 Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619 Grant RS, 2009, INT J TRYPTOPHAN RES, V2, P71 Hajdu-Cronin YM, 2004, GENETICS, V168, P1937, DOI 10.1534/genetics.104.028423 Hamase K, 2005, BIOL PHARM BULL, V28, P1578, DOI 10.1248/bpb.28.1578 Hamilton B, 2005, GENE DEV, V19, P1544, DOI 10.1101/gad.1308205 Han S, 2012, TRENDS CELL BIOL, V22, P42, DOI 10.1016/j.tcb.2011.11.001 Hansen M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040024 Hansen M, 2007, WESTERN HUM REV, V61, P6 Hara K, 1998, J BIOL CHEM, V273, P14484, DOI 10.1074/jbc.273.23.14484 Hashimoto T, 2010, BIOGERONTOLOGY, V11, P31, DOI 10.1007/s10522-009-9225-3 Hayat S, 2012, PLANT SIGNAL BEHAV, V7, P1456, DOI 10.4161/psb.21949 He C, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004860 Houtkooper RH, 2013, NATURE, V497, P451, DOI 10.1038/nature12188 Jia KL, 2007, AUTOPHAGY, V3, P597, DOI 10.4161/auto.4989 Kabil H, 2011, P NATL ACAD SCI USA, V108, P16831, DOI 10.1073/pnas.1102008108 Kamei Y, 2011, BIOCHEM BIOPH RES CO, V407, P185, DOI 10.1016/j.bbrc.2011.02.136 Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Kapulkin V, 2005, FEBS LETT, V579, P3063, DOI 10.1016/j.febslet.2005.04.062 Kim SG, 2013, MOL CELLS, V35, P463, DOI 10.1007/s10059-013-0138-2 Lee SJ, 2009, CELL METAB, V10, P379, DOI 10.1016/j.cmet.2009.10.003 Lugo-Huitron R, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/104024 Marino G, 2014, MOL CELL, V53, P710, DOI 10.1016/j.molcel.2014.01.016 MASSIE HR, 1984, EXP GERONTOL, V19, P393, DOI 10.1016/0531-5565(84)90049-4 MASSIE HR, 1985, AGE, V8, P128, DOI 10.1007/BF02431953 Miller RA, 2005, AGING CELL, V4, P119, DOI 10.1111/j.1474-9726.2005.00152.x Min KJ, 2006, MECH AGEING DEV, V127, P643, DOI 10.1016/j.mad.2006.02.005 Mirisola MG, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004113 Morley JF, 2002, P NATL ACAD SCI USA, V99, P10417, DOI 10.1073/pnas.152161099 Moskalev AA, 2010, REJUV RES, V13, P246, DOI 10.1089/rej.2009.0903 Mouchiroud L, 2013, CELL, V154, P430, DOI 10.1016/j.cell.2013.06.016 Mouchiroud L, 2011, AGING CELL, V10, P39, DOI 10.1111/j.1474-9726.2010.00640.x Mullen AR, 2012, NATURE, V481, P385, DOI 10.1038/nature10642 Murphy Coleen T, 2013, WormBook, P1, DOI 10.1895/wormbook.1.164.1 Newgard CB, 2012, CELL METAB, V15, P606, DOI 10.1016/j.cmet.2012.01.024 OOKA H, 1988, MECH AGEING DEV, V43, P79, DOI 10.1016/0047-6374(88)90099-1 ORENTREICH N, 1993, J NUTR, V123, P269 Pamplona R, 2006, BBA-BIOENERGETICS, V1757, P496, DOI 10.1016/j.bbabio.2006.01.009 Panowski SH, 2007, NATURE, V447, P550, DOI 10.1038/nature05837 Plaisance EP, 2011, J CLIN ENDOCR METAB, V96, pE836, DOI 10.1210/jc.2010-2493 Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406 Robida-Stubbs S, 2012, CELL METAB, V15, P713, DOI 10.1016/j.cmet.2012.04.007 Roth E, 2011, CURR OPIN CLIN NUTR, V14, P67, DOI 10.1097/MCO.0b013e328341368c Rousakis A, 2013, AGING CELL, V12, P742, DOI 10.1111/acel.12101 Saitoh Y, 2012, MOL CELL BIOL, V32, P1967, DOI 10.1128/MCB.06513-11 Salminen A, 2012, AGEING RES REV, V11, P230, DOI 10.1016/j.arr.2011.12.005 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 SEGALL PE, 1976, MECH AGEING DEV, V5, P109, DOI 10.1016/0047-6374(76)90012-9 Shibamura A, 2009, MECH AGEING DEV, V130, P652, DOI 10.1016/j.mad.2009.06.008 Shukla V, 2012, CNS NEUROL DISORD-DR, V11, P984 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Stiernagle Theresa, 2006, WormBook, P1 Swire J, 2009, P ROY SOC B-BIOL SCI, V276, P2747, DOI 10.1098/rspb.2009.0354 Syntichaki P, 2007, NATURE, V445, P922, DOI 10.1038/nature05603 Tullet JMA, 2008, CELL, V132, P1025, DOI 10.1016/j.cell.2008.01.030 van der Goot AT, 2012, P NATL ACAD SCI USA, V109, P14912, DOI 10.1073/pnas.1203083109 Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a Wijeyesekera A, 2012, J PROTEOME RES, V11, P2224, DOI 10.1021/pr2010154 Williams DS, 2009, AGING CELL, V8, P765, DOI 10.1111/j.1474-9726.2009.00527.x Wu ZY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079319 Yamaguchi T, 2008, AATEX, V13, P1 Yoshida R, 2010, AGING CELL, V9, P616, DOI 10.1111/j.1474-9726.2010.00590.x Zajitschek F, 2013, AGE, V35, P1193, DOI 10.1007/s11357-012-9445-3 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 Zhang Y, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006348 Zhong M, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000848 NR 83 TC 104 Z9 111 U1 13 U2 59 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-2156 J9 BMC GENET JI BMC Genet. PD FEB 3 PY 2015 VL 16 AR 8 DI 10.1186/s12863-015-0167-2 PG 24 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity GA CC0ZY UT WOS:000350069800002 PM 25643626 OA Green Published, gold DA 2023-03-13 ER PT J AU Leow, SS Luu, A Shrestha, S Hayes, KC Sambanthamurthi, R AF Leow, Soon-Sen Luu, Alice Shrestha, Swechhya Hayes, K. C. Sambanthamurthi, Ravigadevi TI Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Palm fruit juice; Oil palm phenolics; Fruit fly; Hormesis; Ageing; Longevity ID LIFE-SPAN EXTENSION; HEAT-SHOCK PROTEINS; CALORIC RESTRICTION MIMETICS; NF-KAPPA-B; OXIDATIVE STRESS; DIETARY RESTRICTION; TOR PATHWAY; FAT-BODY; CAENORHABDITIS-ELEGANS; GENETICS AB Palm fruit juice (PFJ) containing oil palm phenolics is obtained as a by-product from oil palm (Elaeis guineensis) fruit milling. It contains shikimic acid, soluble fibre and various phenolic acids including p-hydroxybenzoic acid and three caffeoylshikimic acid isomers. PFJ has also demonstrated beneficial health properties in various biological models. Increasing concentrations of PFJ and different PFJ fractions were used to assess growth dynamics and possible anti-ageing properties in fruit flies (Drosophila melanogaster) genotype w(1118). Microarray gene expression analysis was performed on whole fruit fly larvae and their fat bodies, after the larvae were fed a control Standard Brandeis Diet (SBD) with or without PFJ. Transcripts from Affymetrix GeneChips were utilised to identify the possible mechanisms involved, with genes having fold changes > vertical bar 1.30 vertical bar and p < 0.05 considered differentially expressed. PFJ dose-dependently delayed larval growth and pupation, but not percent eclosion from pupae. Eclosed male fruit flies fed PFJ or its fractions during the larval stage tended to have 20-40% improved survival ratings over controls when allowed to age on the control diet (SBD). Microarray analysis of whole fruit fly larvae revealed that 127 genes were up-regulated, while 67 were down-regulated by PFJ. Functional analysis revealed transport and metabolic processes were up-regulated, while development and morphogenesis processes, including the nutrient-sensing Tor gene, were down-regulated by PFJ, whereas microarray analysis of larval fat bodies found 161 genes were up-regulated, while 84 genes were down-regulated. Genes involved in defence response and determination of adult lifespan, including those encoding various heat shock proteins and the antioxidant enzyme Sod2, were up-regulated, while cell cycle and growth genes were down-regulated. Thus, PFJ supplementation lengthened the growth stages in fruit fly larvae that was reflected in extended ageing of adult flies, suggesting that larval expression of hormetic stress response genes was linked to subsequent ageing and longevity. C1 [Leow, Soon-Sen; Sambanthamurthi, Ravigadevi] Malaysian Palm Oil Board, 6 Persiaran Inst, Kajang 43000, Selangor, Malaysia. [Luu, Alice; Shrestha, Swechhya; Hayes, K. C.] Brandeis Univ, 415 South St, Waltham, MA 02454 USA. C3 Malaysian Palm Oil Board; Brandeis University RP Leow, SS (corresponding author), Malaysian Palm Oil Board, 6 Persiaran Inst, Kajang 43000, Selangor, Malaysia. EM ssleow@mpob.gov.my RI Leow, Soon-Sen/L-4423-2016; Leow, Soon-Sen/P-2443-2019 OI Leow, Soon-Sen/0000-0002-8002-5376; Leow, Soon-Sen/0000-0002-8002-5376 FU Malaysian Palm Oil Board; Brandeis University Foster Biomedical Research Laboratory FX This research was funded by the Malaysian Palm Oil Board and the Brandeis University Foster Biomedical Research Laboratory funds for research and teaching. CR Abeywardena M., 2013, J OIL PALM ENV HLTH, V5, P38 Aguila JR, 2007, J EXP BIOL, V210, P956, DOI 10.1242/jeb.001586 Anastasiou D, 2006, PHYSIOLOGY, V21, P404, DOI 10.1152/physiol.00031.2006 Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496 Arking R, 2002, ANN NY ACAD SCI, V959, P251, DOI 10.1111/j.1749-6632.2002.tb02097.x Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356 Bai H, 2012, AGING CELL, V11, P978, DOI 10.1111/acel.12000 Balasubramani SP, 2014, FRONT PUBLIC HEALTH, V2, DOI 10.3389/fpubh.2014.00245 Barja G, 2002, AGEING RES REV, V1, P397, DOI 10.1016/S1568-1637(02)00008-9 BARKER DJP, 1989, LANCET, V2, P577 Barker DJP, 2004, J AM COLL NUTR, V23, p588S, DOI 10.1080/07315724.2004.10719428 Bass TM, 2007, MECH AGEING DEV, V128, P546, DOI 10.1016/j.mad.2007.07.007 Granado-Serrano AB, 2010, BRIT J NUTR, V103, P168, DOI 10.1017/S0007114509991747 Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010 Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965 Blagosklonny MV, 2006, J CELL PHYSIOL, V209, P592, DOI 10.1002/jcp.20750 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Blagosklonny MV, 2009, AGING-US, V1, P1 Bolsinger J, 2014, J NUTR SCI, V3, DOI 10.1017/jns.2014.3 Borra MT, 2005, J BIOL CHEM, V280, P17187, DOI 10.1074/jbc.M501250200 Burnett C, 2011, NATURE, V477, P482, DOI 10.1038/nature10296 Cantley LC, 2002, SCIENCE, V296, P1655, DOI 10.1126/science.296.5573.1655 Carter CS, 2007, APPL PHYSIOL NUTR ME, V32, P954, DOI 10.1139/H07-085 Chandrashekara KT, 2014, AGE, V36, DOI 10.1007/s11357-014-9702-8 Chandrashekara KT, 2011, J GERONTOL A-BIOL, V66, P965, DOI 10.1093/gerona/glr103 Chavous DA, 2001, P NATL ACAD SCI USA, V98, P14814, DOI 10.1073/pnas.251446498 Chell JM, 2010, CELL, V143, P1161, DOI 10.1016/j.cell.2010.12.007 Chung HY, 2009, AGEING RES REV, V8, P18, DOI 10.1016/j.arr.2008.07.002 Clancy DJ, 2002, SCIENCE, V296, P319, DOI 10.1126/science.1069366 Colombani J, 2003, CELL, V114, P739, DOI 10.1016/S0092-8674(03)00713-X Correa RCG, 2018, CRIT REV FOOD SCI, V58, P942, DOI 10.1080/10408398.2016.1233860 Curtis C, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-12-r262 de Magalhaes JP, 2009, BIOINFORMATICS, V25, P875, DOI 10.1093/bioinformatics/btp073 Demidenko ZN, 2008, CELL CYCLE, V7, P3355, DOI 10.4161/cc.7.21.6919 Dhahbi JM, 2005, PHYSIOL GENOMICS, V23, P343, DOI 10.1152/physiolgenomics.00069.2005 Edgar R, 2002, NUCLEIC ACIDS RES, V30, P207, DOI 10.1093/nar/30.1.207 Evans DS, 2011, AGEING RES REV, V10, P225, DOI 10.1016/j.arr.2010.04.001 Ferguson M, 2008, EXP GERONTOL, V43, P757, DOI 10.1016/j.exger.2008.04.016 Fontana L, 2007, JAMA-J AM MED ASSOC, V297, P986, DOI 10.1001/jama.297.9.986 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Gao XQ, 2000, J AGR FOOD CHEM, V48, P1485, DOI 10.1021/jf991072g Garber K, 2008, NAT BIOTECHNOL, V26, P371, DOI 10.1038/nbt0408-371 Geminard C, 2009, CELL METAB, V10, P199, DOI 10.1016/j.cmet.2009.08.002 Gems D, 2013, ANNU REV PHYSIOL, V75, P621, DOI 10.1146/annurev-physiol-030212-183712 Gredilla R, 2005, ENDOCRINOLOGY, V146, P3713, DOI 10.1210/en.2005-0378 Grewal Savraj S, 2012, F1000 Biol Rep, V4, P12, DOI 10.3410/B4-12 [顾蔚 GU Wei], 2009, [食品科学, Food Science], V30, P252 Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700 Haigis MC, 2006, GENE DEV, V20, P2913, DOI 10.1101/gad.1467506 Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221 Hayes K.C., 2014, J AIDS CLIN RES, V5, P400, DOI [10.4172/2155-6113.1000400, DOI 10.4172/2155-6113.1000400] Hekimi S, 2003, SCIENCE, V299, P1351, DOI 10.1126/science.1082358 Helfand SL, 2003, ANNU REV GENET, V37, P329, DOI 10.1146/annurev.genet.37.040103.095211 Hoffmann J, 2013, AGING-US, V5, P315, DOI 10.18632/aging.100553 Hwangbo DS, 2004, NATURE, V429, P562, DOI 10.1038/nature02549 Idris CAC, 2014, J FUNCT FOODS, V7, P541, DOI 10.1016/j.jff.2014.01.002 Inoki K, 2005, NAT GENET, V37, P19, DOI 10.1038/ng1494 Ja WW, 2007, P NATL ACAD SCI USA, V104, P8253, DOI 10.1073/pnas.0702726104 Ji XM, 2015, ANTICANCER RES, V35, P97 Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861 Johnson TE, 2002, J INHERIT METAB DIS, V25, P197, DOI 10.1023/A:1015677828407 Johnson TE, 2006, EXP GERONTOL, V41, P1243, DOI 10.1016/j.exger.2006.09.006 Kaeberlein M, 2005, J BIOL CHEM, V280, P17038, DOI 10.1074/jbc.M500655200 Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535 Kang HL, 2002, P NATL ACAD SCI USA, V99, P838, DOI 10.1073/pnas.022631999 Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Kapahi P, 2010, CELL METAB, V11, P453, DOI 10.1016/j.cmet.2010.05.001 Katewa SD, 2011, EXP GERONTOL, V46, P382, DOI 10.1016/j.exger.2010.11.036 Katewa SD, 2010, AGING CELL, V9, P105, DOI 10.1111/j.1474-9726.2010.00552.x Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980 Khan F, 2016, NUTRIENTS, V8, DOI 10.3390/nu8090529 Kregel KC, 2007, AM J PHYSIOL-REG I, V292, pR18, DOI 10.1152/ajpregu.00327.2006 Laplante M, 2012, CELL, V149, P274, DOI 10.1016/j.cell.2012.03.017 Layalle S, 2008, DEV CELL, V15, P568, DOI 10.1016/j.devcel.2008.08.003 Ledford H, 2010, NATURE, V464, P480, DOI 10.1038/464480a Lee BC, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4592 Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370 Leonov A, 2015, MOLECULES, V20, P6544, DOI 10.3390/molecules20046544 Leow SS, 2016, GENES NUTR, V11, DOI 10.1186/s12263-016-0545-z Leow SS, 2013, J NUTRIGENET NUTRIGE, V6, P305, DOI 10.1159/000357948 Leow SS, 2013, NUTR NEUROSCI, V16, P207, DOI 10.1179/1476830512Y.0000000047 Leow SS, 2013, EUR J NUTR, V52, P443, DOI 10.1007/s00394-012-0346-0 Leow SS, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-432 Lynch BS, 2017, REGUL TOXICOL PHARM, V88, P96, DOI 10.1016/j.yrtph.2017.05.021 Mair W, 2005, PLOS BIOL, V3, P1305, DOI 10.1371/journal.pbio.0030223 Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016 McDonald J.H., 2014, HDB BIOLOGICAL STAT Meng FD, 2015, INT J CLIN EXP PATHO, V8, P6157 Meydani M, 2011, J NUTR HEALTH AGING, V15, P456, DOI 10.1007/s12603-011-0002-z Michan S, 2007, BIOCHEM J, V404, P1, DOI 10.1042/BJ20070140 Milne JC, 2007, NATURE, V450, P712, DOI 10.1038/nature06261 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 Morrow G, 2006, CELL STRESS CHAPERON, V11, P51, DOI 10.1379/CSC-166.1 Morrow G, 2003, SEMIN CELL DEV BIOL, V14, P291, DOI 10.1016/j.semcdb.2003.09.023 Moskalev AA, 2014, CELL CYCLE, V13, P1063, DOI 10.4161/cc.28433 Neufeld TP, 2003, MECH DEVELOP, V120, P1283, DOI 10.1016/j.mod.2003.07.003 Paaby AB, 2009, FLY, V3, P29, DOI 10.4161/fly.3.1.7771 Pacholec M, 2010, J BIOL CHEM, V285, P8340, DOI 10.1074/jbc.M109.088682 Partridge L, 2011, EXP GERONTOL, V46, P376, DOI 10.1016/j.exger.2010.09.003 Partridge L, 2010, PHILOS T R SOC B, V365, P147, DOI 10.1098/rstb.2009.0222 Patten GS, 2015, J FUNCT FOODS, V17, P928, DOI 10.1016/j.jff.2015.06.008 Peng C, 2012, EXP GERONTOL, V47, P170, DOI 10.1016/j.exger.2011.12.001 Piazza N, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005886 Piegholdt S, 2016, FASEB J, V30, P948, DOI 10.1096/fj.15-282061 Polak P, 2009, CURR OPIN CELL BIOL, V21, P209, DOI 10.1016/j.ceb.2009.01.024 Porcu M, 2005, TRENDS PHARMACOL SCI, V26, P94, DOI 10.1016/j.tips.2004.12.009 Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406 Proshkina E, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00505 Rajan A, 2012, CELL, V151, P123, DOI 10.1016/j.cell.2012.08.019 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Ricklefs RE, 2006, P ROY SOC B-BIOL SCI, V273, P2077, DOI 10.1098/rspb.2006.3544 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Rogina B, 2004, P NATL ACAD SCI USA, V101, P15998, DOI 10.1073/pnas.0404184101 Rogina B, 2002, SCIENCE, V298, P1745, DOI 10.1126/science.1078986 Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137 Sadowska-Bartosz I, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/404680 Sambanthamurthi R., 2008, United States Patent US, Patent No. [7387802 B2, 7387802B2] Sambanthamurthi R, 2011, BRIT J NUTR, V106, P1655, DOI 10.1017/S0007114511002121 Sambanthamurthi R, 2011, BRIT J NUTR, V106, P1664, DOI 10.1017/S0007114511002133 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Sekaran S. D., 2010, African Journal of Food Science, V4, P495 Seo K, 2013, AGING CELL, V12, P1073, DOI 10.1111/acel.12140 Sharma PK, 2011, AGE, V33, P143, DOI 10.1007/s11357-010-9169-1 Soh JW, 2007, MECH AGEING DEV, V128, P581, DOI 10.1016/j.mad.2007.08.004 Soh JW, 2013, EXP GERONTOL, V48, P229, DOI 10.1016/j.exger.2012.09.007 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Soni MG, 2002, FOOD CHEM TOXICOL, V40, P1335, DOI 10.1016/S0278-6915(02)00107-2 Sousa-Nunes R, 2011, NATURE, V471, P508, DOI 10.1038/nature09867 Spencer CC, 2003, AGING CELL, V2, P123, DOI 10.1046/j.1474-9728.2003.00044.x Spindler SR, 2010, AGEING RES REV, V9, P324, DOI 10.1016/j.arr.2009.10.003 Staats S, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010223 Stankovic M, 2013, GEN PHYSIOL BIOPHYS, V32, P277, DOI 10.4149/gpb_2013027 Stefana MI, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01740-9 Strimpakos AS, 2009, CANCER TREAT REV, V35, P148, DOI 10.1016/j.ctrv.2008.09.006 Strong R, 2013, J GERONTOL A-BIOL, V68, P6, DOI 10.1093/gerona/gls070 Sun JT, 2002, GENETICS, V161, P661 Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155 Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447 Tee AR, 2005, SEMIN CELL DEV BIOL, V16, P29, DOI 10.1016/j.semcdb.2004.11.005 Tower J, 2006, MECH AGEING DEV, V127, P705, DOI 10.1016/j.mad.2006.05.001 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 Tower J, 2009, TRENDS ENDOCRIN MET, V20, P216, DOI 10.1016/j.tem.2008.12.005 Tower John, 2009, Journal of Biology (London), V8, P38, DOI 10.1186/jbiol141 Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034 Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a Wang LJ, 2015, EXP GERONTOL, V69, P189, DOI 10.1016/j.exger.2015.06.021 Waskar M, 2009, AGING-US, V1, P903, DOI 10.18632/aging.100099 Weindruch R, 2001, J GERONTOL A-BIOL, V56, P20, DOI 10.1093/gerona/56.suppl_1.20 Zambon AC, 2012, BIOINFORMATICS, V28, P2209, DOI 10.1093/bioinformatics/bts366 Zhao YM, 2005, J EXP BIOL, V208, P697, DOI 10.1242/jeb.01439 Zhou HY, 2010, ANTI-CANCER AGENT ME, V10, P571, DOI 10.2174/187152010793498663 Zuin A, 2010, EMBO J, V29, P981, DOI 10.1038/emboj.2009.407 Zuo YY, 2013, BIOGERONTOLOGY, V14, P107, DOI 10.1007/s10522-012-9413-4 Zuo YY, 2012, FOOD FUNCT, V3, P1271, DOI 10.1039/c2fo30135k NR 154 TC 9 Z9 10 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD JUN PY 2018 VL 106 BP 198 EP 221 DI 10.1016/j.exger.2018.03.013 PG 24 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA GD4JI UT WOS:000430469000028 PM 29550564 OA hybrid DA 2023-03-13 ER PT J AU Olivares-Castro, G Caceres-Jensen, L Guerrero-Bosagna, C Villagra, C AF Olivares-Castro, Gabriela Caceres-Jensen, Lizethly Guerrero-Bosagna, Carlos Villagra, Cristian TI Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview SO INSECTS LA English DT Review DE imidacloprid; insectageddon; hormetic responses; sublethal exposure ID CROP POLLINATION SERVICES; MUSCA-DOMESTICA DIPTERA; DNA METHYLATION; AQUATIC INSECTS; GENE-EXPRESSION; APIS-MELLIFERA; DEVELOPMENTAL PLASTICITY; NEONICOTINOID PESTICIDES; IMIDACLOPRID RESISTANCE; ALPHITOBIUS-DIAPERINUS AB Simple Summary Epigenetic molecular mechanisms (EMMs) are capable of regulating and stabilizing a wide range of living cell processes without altering its DNA sequence. EMMs can be triggered by environmental inputs. In insects, EMMs contribute to explaining both negative effects as well as adaptive responses towards environmental cues. Among these stimuli are chemical stressors, such as pesticides. We review the link between EMMs and pesticides in insects. We suggest that pesticide chemical behavior promotes both lethal and sublethal exposure of both target and non-target insects. As a consequence, for several native and beneficial insect (e.g., pollinators), EMMs are involved in diseases and disruptive responses due to pesticides, while in the case of pest species, EMMs are linked in the development of pesticide resistance and hormesis. We discuss the consequences of these in the context of insect global decline and biotic homogenization. Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences. C1 [Olivares-Castro, Gabriela; Villagra, Cristian] Univ Metropolitana Ciencias Educ, Inst Entomol, Ave Jose Pedro Alessandri 774, Santiago 7760197, Chile. [Caceres-Jensen, Lizethly] Univ Metropolitana Ciencias Educ, Fac Ciencias Basicas, Dept Quim, Lab Fisicoquim Analit, Santiago 7760197, Chile. [Guerrero-Bosagna, Carlos] Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden. [Guerrero-Bosagna, Carlos] Uppsala Univ, Dept Integrat Biol, Environm Toxicol Program, S-75236 Uppsala, Sweden. C3 Universidad Metropolitana de Ciencias de la Educacion (UMCE); Universidad Metropolitana de Ciencias de la Educacion (UMCE); Linkoping University; Uppsala University RP Olivares-Castro, G (corresponding author), Univ Metropolitana Ciencias Educ, Inst Entomol, Ave Jose Pedro Alessandri 774, Santiago 7760197, Chile. EM gp.olivares.castro@gmail.com; lyzethly.caceres@umce.cl; carlos.guerrero.bosagna@liu.se; cristian.villagra@umce.cl OI Caceres-Jensen, Lizethly/0000-0002-5903-7356 FU Swedish Research Council for Environment, Agricultural Sciences and Spacial Planning (FORMAS) [2018-01074]; [DIP-UMCE 2021] FX Publishing costs were partially provided by DIP-UMCE 2021. C. G-B. greatly appreciate funding from the Swedish Research Council for Environment, Agricultural Sciences and Spacial Planning (FORMAS) grant #2018-01074. CR Abdel-Haleem Doaa R., 2018, Egyptian Academic Journal of Biological Sciences A Entomology, V11, P33 Abraham JP, 2013, REV GEOPHYS, V51, P450, DOI 10.1002/rog.20022 Akindele EO, 2020, ENVIRON SCI POLLUT R, V27, P33373, DOI 10.1007/s11356-020-08763-8 Al-Jaibachi R, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2018.0479 Alavian-Ghavanini A, 2018, BASIC CLIN PHARMACOL, V122, P38, DOI 10.1111/bcpt.12878 Alston DG, 2007, ENVIRON ENTOMOL, V36, P811, DOI 10.1603/0046-225X(2007)36[811:EOTIPO]2.0.CO;2 Annabi E, 2019, TOXICOL MECH METHOD, V29, P580, DOI 10.1080/15376516.2019.1624907 [Anonymous], 2019, KINETIC MODELING ENV Aparicio VC, 2013, CHEMOSPHERE, V93, P1866, DOI 10.1016/j.chemosphere.2013.06.041 Ardura A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-29181-4 Arican YE, 2019, ISTANB J PHARM, V49, P167, DOI 10.26650/IstanbulJPharm.2019.19058 Arsenault SV, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05903-0 Atwood D., 2017, PESTICIDES IND SALES Augustyniak M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167371 BALL HJ, 1979, J ECON ENTOMOL, V72, P873, DOI 10.1093/jee/72.6.873 Bansal OP, 2011, INDIAN J AGR SCI, V81, P578 Bantz A, 2018, CURR OPIN INSECT SCI, V30, P73, DOI 10.1016/j.cois.2018.09.008 Barbieri RF, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2157 Barbosa WF, 2015, PEST MANAG SCI, V71, P1049, DOI 10.1002/ps.4025 Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678 Basley K, 2018, PEERJ, V6, DOI 10.7717/peerj.4258 Baur B, 2006, BIOL CONSERV, V132, P261, DOI 10.1016/j.biocon.2006.04.018 Parra-Morales LB, 2021, INT J PEST MANAGE, V67, P121, DOI 10.1080/09670874.2019.1698787 Bebane PSA, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0718 Beketov MA, 2008, ENVIRON TOXICOL CHEM, V27, P461, DOI 10.1897/07-322R.1 Berens AJ, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1410-y Bernstein BE, 2007, CELL, V128, P669, DOI 10.1016/j.cell.2007.01.033 Biergans SD, 2017, SCI REP-UK, V7, DOI 10.1038/srep43635 Biesmeijer JC, 2006, SCIENCE, V313, P351, DOI 10.1126/science.1127863 Bird A, 2007, NATURE, V447, P396, DOI 10.1038/nature05913 Bordoni L, 2020, PRINCIPLES OF NUTRIGENETICS AND NUTRIGENOMICS: FUNDAMENTALS OF INDIVIDUALIZED NUTRITION, P513, DOI 10.1016/B978-0-12-804572-5.00067-7 Botias C, 2016, SCI TOTAL ENVIRON, V566, P269, DOI 10.1016/j.scitotenv.2016.05.065 Bovier TF, 2018, ECOTOX ENVIRON SAFE, V162, P625, DOI 10.1016/j.ecoenv.2018.07.020 Bradford BR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0238637 Brevik K, 2021, EVOL APPL, V14, P746, DOI 10.1111/eva.13153 Brevik K, 2018, CURR OPIN INSECT SCI, V26, P34, DOI 10.1016/j.cois.2017.12.007 Britch SC, 2020, J AM MOSQUITO CONTR, V36, P37, DOI 10.2987/19-6894.1 Burdge GC, 2010, ANNU REV NUTR, V30, P315, DOI 10.1146/annurev.nutr.012809.104751 Burggren Warren, 2016, Biology-Basel, V5, P24, DOI 10.3390/biology5020024 Burggren WW, 2017, ADV INSECT PHYSIOL, V53, P1, DOI 10.1016/bs.aiip.2017.04.001 Bushati N, 2007, ANNU REV CELL DEV BI, V23, P175, DOI 10.1146/annurev.cellbio.23.090506.123406 Butt N, 2013, SCIENCE, V342, P425, DOI 10.1126/science.1237261 Byholm P, 2018, SCI TOTAL ENVIRON, V639, P929, DOI 10.1016/j.scitotenv.2018.05.185 Caceres L, 2010, J AGR FOOD CHEM, V58, P6864, DOI 10.1021/jf904191z Caceres-Jensen L, 2009, J ENVIRON QUAL, V38, P1449, DOI 10.2134/jeq2008.0146 Caceres-Jensen L., 2018, ADV SORPTION PROCESS, DOI [10.5772/intechopen.81155, DOI 10.5772/INTECHOPEN.81155] Caceres-Jensen L, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121576 Caceres-Jensen L, 2019, J HAZARD MATER, V379, DOI 10.1016/j.jhazmat.2019.120746 Cardoso P, 2020, BIOL CONSERV, V242, DOI 10.1016/j.biocon.2020.108426 Carlisle DM, 2003, J N AM BENTHOL SOC, V22, P582, DOI 10.2307/1468355 Ceballos G, 2020, P NATL ACAD SCI USA, V117, P13596, DOI 10.1073/pnas.1922686117 Ceballos G, 2017, P NATL ACAD SCI USA, V114, pE6089, DOI 10.1073/pnas.1704949114 Chatterjee Nivedita, 2018, Environ Health Toxicol, V33, pe2018015, DOI 10.5620/eht.e2018015 Chaudhary O. P., 2018, Indian Journal of Ecology, V45, P592 Chen Xin, 2013, Zhongguo Shengtai Nongye Xuebao / Chinese Journal of Eco-Agriculture, V21, P54 Chernaki-Leffer AM, 2011, REV BRAS ENTOMOL, V55, P125, DOI 10.1590/S0085-56262011000100020 Chiron F, 2014, AGR ECOSYST ENVIRON, V185, P153, DOI 10.1016/j.agee.2013.12.013 Colin T, 2019, ENVIRON SCI TECHNOL, V53, P8252, DOI 10.1021/acs.est.9b02452 Collotta M, 2013, TOXICOLOGY, V307, P35, DOI 10.1016/j.tox.2013.01.017 Colosio C., 2016, INT ENCY PUBLIC HLTH, V2nd ed., P454 Cook N, 2016, ECOL ENTOMOL, V41, P693, DOI 10.1111/een.12344 Craddock HA, 2019, ENVIRON HEALTH-GLOB, V18, DOI 10.1186/s12940-018-0441-7 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dai PL, 2010, ENVIRON TOXICOL CHEM, V29, P644, DOI 10.1002/etc.67 Dai TM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03373-w Darvas B, 1998, APPL AGR, P188 DAVIS JW, 1972, J ECON ENTOMOL, V65, P231, DOI 10.1093/jee/65.1.231 de Barros EC, 2015, J INSECT SCI, V15, DOI 10.1093/jisesa/ieu172 Desneux N, 2004, CHEMOSPHERE, V54, P619, DOI 10.1016/j.chemosphere.2003.09.007 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Di Felice F, 2019, INT J BIOCHEM CELL B, V110, P143, DOI 10.1016/j.biocel.2019.03.006 Di Prisco G, 2013, P NATL ACAD SCI USA, V110, P18466, DOI 10.1073/pnas.1314923110 Dupont C, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00337 Edie SM, 2018, INTEGR COMP BIOL, V58, P1179, DOI 10.1093/icb/icy111 Eggleton P, 2020, ANNU REV ENV RESOUR, V45, P61, DOI 10.1146/annurev-environ-012420-050035 Eisenhauer N, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-07916-1 Ekroos J, 2020, BIOL CONSERV, V241, DOI 10.1016/j.biocon.2019.108255 El Hassani AK, 2008, ARCH ENVIRON CON TOX, V54, P653, DOI 10.1007/s00244-007-9071-8 Elbert A, 2008, PEST MANAG SCI, V64, P1099, DOI 10.1002/ps.1616 ELDEFRAWI M, 1961, J ECON ENTOMOL, V54, P401, DOI 10.1093/jee/54.3.401 Elmqvist T, 2016, ROUT INT HANDB, P139 Farahat Nermeen M., 2018, International Journal of Mosquito Research, V5, P111 Faulk C, 2011, EPIGENETICS-US, V6, P791, DOI 10.4161/epi.6.7.16209 Feil R, 2012, NAT REV GENET, V13, P97, DOI 10.1038/nrg3142 Feldhaar H, 2020, INSECTS, V11, DOI 10.3390/insects11030153 Fernandez-Bayo JD, 2008, J AGR FOOD CHEM, V56, P5266, DOI 10.1021/jf8004349 FOLMAR LC, 1979, ARCH ENVIRON CON TOX, V8, P269, DOI 10.1007/BF01056243 Forister ML, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0475 Frandi A, 2019, BIOCHEM SOC T, V47, P187, DOI 10.1042/BST20180460 Gallai N, 2009, ECOL ECON, V68, P810, DOI 10.1016/j.ecolecon.2008.06.014 GAMMON DW, 1978, PESTIC SCI, V9, P79, DOI 10.1002/ps.2780090115 Geneletti D., 2003, ENVIRON IMPACT ASSES, V23, P343, DOI [10.1016/S0195-9255(02)00099-9, DOI 10.1016/S0195-9255(02)00099-9] Georgieva M, 2021, ENVIRON SCI POLLUT R, V28, P53193, DOI 10.1007/s11356-021-14497-y Giersch JJ, 2017, GLOBAL CHANGE BIOL, V23, P2577, DOI 10.1111/gcb.13565 Gill JPK, 2018, ENVIRON CHEM LETT, V16, P401, DOI 10.1007/s10311-017-0689-0 Gill RJ, 2014, FUNCT ECOL, V28, P1459, DOI 10.1111/1365-2435.12292 GINTENREITER S, 1993, ARCH ENVIRON CON TOX, V25, P62 Glastad KM, 2019, ANNU REV ENTOMOL, V64, P185, DOI 10.1146/annurev-ento-011118-111914 Goosem M, 2007, CURR SCI INDIA, V93, P1587 Gressel J, 2009, PEST MANAG SCI, V65, P1164, DOI 10.1002/ps.1842 Guenat S, 2019, J APPL ECOL, V56, P214, DOI 10.1111/1365-2664.13270 Gulati P., 2019, 598946 BIORXIV, DOI [10.1101/598946, DOI 10.1101/598946] GUPTA AP, 1968, ANN ENTOMOL SOC AM, V61, P910, DOI 10.1093/aesa/61.4.910 Gutzat R, 2012, CURR OPIN PLANT BIOL, V15, P568, DOI 10.1016/j.pbi.2012.08.007 Habel JC, 2019, BIODIVERS CONSERV, V28, P1343, DOI 10.1007/s10531-019-01741-8 Hallmann CA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185809 Hallmann CA, 2014, NATURE, V511, P341, DOI 10.1038/nature13531 Hamilton C, 2015, ANTHROPOCENE REV, V2, P102, DOI 10.1177/2053019615584974 Hamm RL, 2006, PEST MANAG SCI, V62, P673, DOI 10.1002/ps.1230 Hardstone MC, 2010, PEST MANAG SCI, V66, P1171, DOI 10.1002/ps.2001 HAYNES KF, 1988, ANNU REV ENTOMOL, V33, P149, DOI 10.1146/annurev.en.33.010188.001053 Henriquez-Piskulich PA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126728 Hitchcock S.W, 1965, FIELD LAB STUDIES DD Hobbie SE, 2020, PHILOS T R SOC B, V375, DOI 10.1098/rstb.2019.0124 Hoshi N., 2021, RISKS REGULATION NEW, P235 Hoshi N, 2014, BIOL PHARM BULL, V37, P1439, DOI 10.1248/bpb.b14-00359 House M., 2019, EPIGENETICS PLANTS A, P115 Howe CM, 2004, ENVIRON TOXICOL CHEM, V23, P1928, DOI 10.1897/03-71 Hu YT, 2018, INSECT MOL BIOL, V27, P512, DOI 10.1111/imb.12390 Hu YT, 2017, SCI REP-UK, V7, DOI 10.1038/srep41255 Hunt BG, 2013, INTEGR COMP BIOL, V53, P319, DOI 10.1093/icb/ict003 Hussain S, 2009, ADV AGRON, V102, P159, DOI 10.1016/S0065-2113(09)01005-0 Isenring R., 2010, Pesticides News, P4 Jablonka E, 2014, LIFE MIND-PHILOS ISS, P1 Jadiya P, 2012, CNS NEUROL DISORD-DR, V11, P976 Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089 Jales JT, 2020, ACTA TROP, V212, DOI 10.1016/j.actatropica.2020.105652 Jeanrenaud A.C., 2020, RES SQ, DOI [10.21203/rs.3.rs-49568/v1, DOI 10.21203/RS.3.RS-49568/V1] Jia GF, 2011, NAT CHEM BIOL, V7, P885, DOI [10.1038/NCHEMBIO.687, 10.1038/nchembio.687] Junqueira LV, 2020, ARCH AGRON SOIL SCI, V66, P1651, DOI 10.1080/03650340.2019.1686139 Kavi LAK, 2014, PESTIC BIOCHEM PHYS, V109, P64, DOI 10.1016/j.pestbp.2014.01.006 Khosla S, 2006, CYTOGENET GENOME RES, V113, P41, DOI 10.1159/000090814 Kim D, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01164 KIM KC, 1993, BIODIVERS CONSERV, V2, P191, DOI 10.1007/BF00056668 Kobashi K, 2017, ECOTOX ENVIRON SAFE, V138, P122, DOI 10.1016/j.ecoenv.2016.12.025 Koch MW, 2013, TRENDS MOL MED, V19, P23, DOI 10.1016/j.molmed.2012.10.008 Kozeretska IA, 2017, ADV INSECT PHYSIOL, V53, P87, DOI 10.1016/bs.aiip.2017.03.001 Kremen C., 2002, FREMONTIA, V30, P41, DOI [10.1046/j.1365-2435.2003.00736.x, DOI 10.1046/J.1365-2435.2003.00736.X] Kristensen M, 2000, J ECON ENTOMOL, V93, P1788, DOI 10.1603/0022-0493-93.6.1788 KRUEGER HR, 1959, J ECON ENTOMOL, V52, P1063, DOI 10.1093/jee/52.6.1063 Laubach ZM, 2018, BIOL REV, V93, P1323, DOI 10.1111/brv.12396 Lawrence TJ, 2016, J ECON ENTOMOL, V109, P520, DOI 10.1093/jee/tov397 Lerro CC, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106187 Li J, 2012, PESTIC BIOCHEM PHYS, V102, P109, DOI 10.1016/j.pestbp.2011.10.012 Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 Liu JT, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.127830 Liu SS, 2020, BIOTECHNOL ADV, V39, DOI 10.1016/j.biotechadv.2019.107463 Lo N, 2018, CURR OPIN INSECT SCI, V25, P25, DOI 10.1016/j.cois.2017.11.003 Lu CS, 2018, ENVIRON SCI TECHNOL, V52, P3175, DOI 10.1021/acs.est.7b05596 Lu CS, 2012, B INSECTOL, V65, P99 Luiza-Andrade A, 2017, ECOL INDIC, V82, P478, DOI 10.1016/j.ecolind.2017.07.006 LUMMIS SCR, 1990, PROC R SOC SER B-BIO, V240, P97, DOI 10.1098/rspb.1990.0029 MacDonald D, 2000, J ENVIRON MANAGE, V59, P47, DOI 10.1006/jema.1999.0335 Magbanua FS, 2016, FRESHW SCI, V35, P139, DOI 10.1086/684363 Maiti S. K., 2013, Journal of Environmental Protection, V4, P1428, DOI 10.4236/jep.2013.412163 Maloney EM, 2018, ENVIRON POLLUT, V243, P1727, DOI 10.1016/j.envpol.2018.09.008 Mantyka-Pringle CS, 2012, GLOBAL CHANGE BIOL, V18, P1239, DOI 10.1111/j.1365-2486.2011.02593.x Mao W, 2013, P NATL ACAD SCI USA, V110, P8842, DOI 10.1073/pnas.1303884110 Marcantonio M, 2013, APPL GEOGR, V42, P63, DOI 10.1016/j.apgeog.2013.05.001 Martinez-Paz P, 2013, MUTAT RES-GEN TOX EN, V758, P41, DOI 10.1016/j.mrgentox.2013.09.005 MATSUMURA F, 1964, J AGR FOOD CHEM, V12, P447, DOI 10.1021/jf60135a018 Mattick JS, 2009, BIOESSAYS, V31, P51, DOI 10.1002/bies.080099 Mattina MI, 2002, ENVIRON TOXICOL CHEM, V21, P281, DOI [10.1897/1551-5028(2002)021<0281:COWCRI>2.0.CO;2, 10.1897/1551-5028(2002)021<0281:COWCRI>2.0.CO;2] MAUND SJ, 1992, ECOTOX ENVIRON SAFE, V23, P76, DOI 10.1016/0147-6513(92)90023-V MCNEELY JA, 1992, BIODIVERS CONSERV, V1, P2, DOI 10.1007/BF00700247 Melathopoulos AP, 2015, ECOL ECON, V109, P59, DOI 10.1016/j.ecolecon.2014.11.007 Millot F, 2017, ENVIRON SCI POLLUT R, V24, P5469, DOI 10.1007/s11356-016-8272-y Mortl M, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17062006 Morais S., 2012, IMPACT PESTICIDES, P21 Morales M, 2014, AQUAT TOXICOL, V157, P1, DOI 10.1016/j.aquatox.2014.09.009 Morales-Nebreda L, 2019, TRANSL RES, V204, P1, DOI 10.1016/j.trsl.2018.08.001 Morandin C, 2019, MOL ECOL, V28, P1975, DOI 10.1111/mec.15062 Motaung TE, 2020, CROP PROT, V131, DOI 10.1016/j.cropro.2020.105097 MOYE WC, 1964, J ECON ENTOMOL, V57, P318, DOI 10.1093/jee/57.3.318 Muller T, 2019, J APPL ECOL, V56, P1528, DOI 10.1111/1365-2664.13398 Mukherjee K, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36829-8 Mukherjee K, 2015, PROG BIOPHYS MOL BIO, V118, P69, DOI 10.1016/j.pbiomolbio.2015.02.009 Murano H, 2018, SCI TOTAL ENVIRON, V615, P1478, DOI 10.1016/j.scitotenv.2017.09.120 Muzinic V, 2018, ARH HIG RADA TOKSIKO, V69, P86, DOI 10.2478/aiht-2018-69-3111 Nadda G, 2005, APPL ENTOMOL ZOOL, V40, P265, DOI 10.1303/aez.2005.265 Ney Gideon, 2019, Journal of Orthoptera Research, V28, P11, DOI 10.3897/jor.28.28888 Nolan RH, 2020, GLOBAL CHANGE BIOL, V26, P1039, DOI 10.1111/gcb.14987 Oberhauser KS, 2009, J AM MOSQUITO CONTR, V25, P83, DOI 10.2987/08-5788.1 Oppold A, 2015, ECOTOX ENVIRON SAFE, V122, P45, DOI 10.1016/j.ecoenv.2015.06.036 Oppold AM, 2017, ADV INSECT PHYSIOL, V53, P313, DOI 10.1016/bs.aiip.2017.04.002 Paleolog J, 2020, APIDOLOGIE, V51, P620, DOI 10.1007/s13592-020-00747-4 Park K, 2008, CHEMOSPHERE, V74, P89, DOI 10.1016/j.chemosphere.2008.09.041 Parkinson RH, 2020, P NATL ACAD SCI USA, V117, P5510, DOI 10.1073/pnas.1916432117 Patalano S, 2012, CURR OPIN CELL BIOL, V24, P367, DOI 10.1016/j.ceb.2012.02.005 Pearson MM, 2019, METHODS MOL BIOL, V2021, P121, DOI 10.1007/978-1-4939-9601-8_12 Peng YC, 2016, SCI REP-UK, V6, DOI 10.1038/srep19298 Pettis JS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070182 Pico Y, 2020, SCI TOTAL ENVIRON, V701, DOI 10.1016/j.scitotenv.2019.135021 Pietrzak D, 2020, CHEMOSPHERE, V255, DOI 10.1016/j.chemosphere.2020.126981 Pievani T, 2014, REND LINCEI-SCI FIS, V25, P85, DOI 10.1007/s12210-013-0258-9 Piiroinen S, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0246 Pisa LW, 2015, ENVIRON SCI POLLUT R, V22, P68, DOI 10.1007/s11356-014-3471-x Planello R, 2008, CHEMOSPHERE, V71, P1870, DOI 10.1016/j.chemosphere.2008.01.033 Planello R, 2011, AQUAT TOXICOL, V105, P62, DOI 10.1016/j.aquatox.2011.05.011 Posner R, 2019, CELL, V177, P1814, DOI 10.1016/j.cell.2019.04.029 Rada S, 2019, DIVERS DISTRIB, V25, P217, DOI 10.1111/ddi.12854 Raes H, 2000, J EXP ZOOL, V286, P1, DOI 10.1002/(SICI)1097-010X(20000101)286:1<1::AID-JEZ1>3.0.CO;2-Z Rayms-Keller A, 2000, INSECT MOL BIOL, V9, P419, DOI 10.1046/j.1365-2583.2000.00202.x Reilly JR, 2020, P ROY SOC B-BIOL SCI, V287, DOI 10.1098/rspb.2020.0922 Requena-Mullor M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18052355 Reynolds JA, 2013, INSECT BIOCHEM MOLEC, V43, P982, DOI 10.1016/j.ibmb.2013.07.005 Richard G, 2019, CURR OPIN INSECT SCI, V35, P138, DOI 10.1016/j.cois.2019.06.013 Rockstrom J, 2009, NATURE, V461, P472, DOI 10.1038/461472a Roelofs D, 2009, MOL ECOL, V18, P3227, DOI 10.1111/j.1365-294X.2009.04261.x Rostant WG, 2012, ADV GENET, V78, P169, DOI 10.1016/B978-0-12-394394-1.00002-X Rundlof M, 2015, NATURE, V521, P77, DOI 10.1038/nature14420 Rusiecki JA, 2017, ENVIRON MOL MUTAGEN, V58, P19, DOI 10.1002/em.22067 Saaristo M, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.1297 Saha S, 2008, B ENVIRON CONTAM TOX, V80, P49, DOI 10.1007/s00128-007-9314-4 Samson-Robert O, 2017, PEERJ, V5, DOI 10.7717/peerj.3670 Schapheer C, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.702763 Schleier JJ, 2010, ECOTOXICOLOGY, V19, P1140, DOI 10.1007/s10646-010-0497-9 Seebacher F, 2019, TRENDS ECOL EVOL, V34, P818, DOI 10.1016/j.tree.2019.04.017 Seide VE, 2018, ENVIRON POLLUT, V243, P1854, DOI 10.1016/j.envpol.2018.10.020 Shevchenko AI, 2019, INT J DEV BIOL, V63, P223, DOI 10.1387/ijdb.180376as Simola DF, 2016, SCIENCE, V351, DOI 10.1126/science.aac6633 Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y Singh JS, 2002, CURR SCI INDIA, V82, P638 Skinner MK, 2019, EPIGENETICS-US, V14, P721, DOI 10.1080/15592294.2019.1614417 Skinner MK, 2018, EPIGENET CHROMATIN, V11, DOI 10.1186/s13072-018-0178-0 Smith C. J., 2020, Toxicology Research and Application, V4, P0561, DOI 10.1177/2397847320940561 SPURR HW, 1974, J ENVIRON QUAL, V3, P130, DOI 10.2134/jeq1974.00472425000300020008x Stanley DA, 2015, NATURE, V528, P548, DOI 10.1038/nature16167 Stanley J., 2016, 2016 4 INT S ENV FRI, P1 Stavert JR, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0788 Steffan-Dewenter I, 2005, TRENDS ECOL EVOL, V20, P651, DOI 10.1016/j.tree.2005.09.004 Stoughton SJ, 2008, ARCH ENVIRON CON TOX, V54, P662, DOI 10.1007/s00244-007-9073-6 Studzinska MB, 2020, ACTA VET SCAND, V62, DOI 10.1186/s13028-020-00526-2 Summerhayes Colin P., 2018, Geology Today, V34, P194 Tasei JN, 2002, HONEY BEES: ESTIMATING THE ENVIRONMENTAL IMPACT OF CHEMICALS, P101, DOI 10.1201/9780203218655.ch7 Tikhodeyev ON, 2018, BIOL REV, V93, P1987, DOI 10.1111/brv.12429 Tosi S, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0433 Tucci V, 2019, CELL, V176, P952, DOI 10.1016/j.cell.2019.01.043 Unni BG, 2009, CURR SCI INDIA, V96, P1114 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 van der Sluijs JP, 2020, CURR OPIN ENV SUST, V46, P39, DOI 10.1016/j.cosust.2020.08.012 Vargas AO, 2020, J EXP ZOOL PART B, DOI 10.1002/jez.b.23023 Vehovszky A, 2015, AQUAT TOXICOL, V167, P172, DOI 10.1016/j.aquatox.2015.08.009 Vidaki A, 2013, FORENSIC SCI INT-GEN, V7, P499, DOI 10.1016/j.fsigen.2013.05.004 Villagra C, 2020, NEOTROP ENTOMOL, V49, P615, DOI 10.1007/s13744-020-00777-8 Virah-Sawmy M, 2014, J ENVIRON MANAGE, V143, P61, DOI 10.1016/j.jenvman.2014.03.027 WAFFORD KA, 1989, PESTIC BIOCHEM PHYS, V33, P213, DOI 10.1016/0048-3575(89)90119-3 Wang HF, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.00770 Wang WL, 2021, TOXICOL IN VITRO, V75, DOI 10.1016/j.tiv.2021.105174 Ware G W, 1980, Residue Rev, V76, P173 Wilcox AAE, 2021, J EXP BIOL, V224, DOI 10.1242/jeb.230870 Wilting HC, 2017, ENVIRON SCI TECHNOL, V51, P3298, DOI 10.1021/acs.est.6b05296 Woodcock BA, 2017, SCIENCE, V356, P1393, DOI 10.1126/science.aaa1190 Wu ZH, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2010.06.018 Xider K. M., 2018, Kurdistan Journal of Applied Research, V3, P40, DOI 10.24017/science.2018.1.8 Youngson NA, 2008, ANNU REV GENOM HUM G, V9, P233, DOI 10.1146/annurev.genom.9.081307.164445 Yusmalinar Sri, 2017, Journal of Entomology, V14, P199, DOI 10.3923/je.2017.199.207 Zahm SH, 1998, ENVIRON HEALTH PERSP, V106, P893, DOI 10.2307/3434207 Zhao JZ, 2000, J ECON ENTOMOL, V93, P1508, DOI 10.1603/0022-0493-93.5.1508 Zhong PQ, 2019, DEVELOPMENT, V146, DOI 10.1242/dev.167841 Zylicz JJ, 2019, CELL, V176, P182, DOI 10.1016/j.cell.2018.11.041 NR 261 TC 8 Z9 8 U1 9 U2 18 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-4450 J9 INSECTS JI Insects PD SEP PY 2021 VL 12 IS 9 AR 780 DI 10.3390/insects12090780 PG 29 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Entomology GA UV5MV UT WOS:000699523200001 PM 34564220 OA Green Published, gold DA 2023-03-13 ER PT J AU Leri, M Scuto, M Ontario, ML Calabrese, V Calabrese, EJ Bucciantini, M Stefani, M AF Leri, Manuela Scuto, Maria Ontario, Maria Laura Calabrese, Vittorio Calabrese, Edward J. Bucciantini, Monica Stefani, Massimo TI Healthy Effects of Plant Polyphenols: Molecular Mechanisms SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE plant polyphenols; hormesis; autophagy; Mediterranean diet; olive oil; curcumin; resveratrol; oleuropein; hydroxytyrosol; epigallocathechin; epigenetics ID VIRGIN OLIVE OIL; ACTIVATED PROTEIN-KINASE; IMPROVES MITOCHONDRIAL-FUNCTION; NATURALLY-OCCURRING IRIDOIDS; CELLULAR STRESS-RESPONSE; TUMOR-SUPPRESSOR GENES; BREAST-CANCER RISK; MEDITERRANEAN DIET; ALZHEIMERS-DISEASE; OXIDATIVE STRESS AB The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies. C1 [Leri, Manuela; Bucciantini, Monica; Stefani, Massimo] Univ Florence, Dept Expt & Clin Biomed Sci Mario Serio, Viale Morgagni 50, I-50134 Florence, Italy. [Leri, Manuela] Univ Firenze, Dept Neurosci Psychol Drug Res & Child Hlth, I-50139 Florence, Italy. [Scuto, Maria; Ontario, Maria Laura; Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Torre Biol, Via Santa Sofia, I-9795125 Catania, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Florence; University of Florence; University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM manuela.leri@unifi.it; mary-amir@hotmail.it; Marialaura.ontario@ontariosrl.it; vittorio.calabrese@unict.it; calabres@unict.it; monica.bucciantini@unifi.it; massimo.stefani@unifi.it RI Calabrese, Vittorio/AAC-8157-2021; Ontario, Maria Laura/AAC-7849-2022 OI Calabrese, Vittorio/0000-0002-0478-985X; Leri, Manuela/0000-0002-3785-0805 FU Fondo di ricerca University of Catania [20130143005] FX This research was funded by "Fondo di ricerca University of Catania" n. 20130143005. CR Abbasi N, 2016, IRAN J MED SCI, V41, P118 Abbasi N, 2014, PHYTOTHER RES, V28, P1301, DOI 10.1002/ptr.5128 Abuznait AH, 2013, ACS CHEM NEUROSCI, V4, P973, DOI 10.1021/cn400024q Afshari K, 2019, J CELL PHYSIOL, V234, P21519, DOI 10.1002/jcp.28777 Alam MN, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/4154185 An YW, 2016, NEUROBIOL AGING, V38, P1, DOI 10.1016/j.neurobiolaging.2015.10.016 Annara I, 2020, ENVIRON TOXICOL, V35, P78, DOI 10.1002/tox.22844 [Anonymous], 2018, J CLIN TRANSL RES, DOI 10.18053/jctres.04.201802.004 Ayissi VBO, 2014, MOL NUTR FOOD RES, V58, P22, DOI 10.1002/mnfr.201300195 Babu PVA, 2013, J NUTR BIOCHEM, V24, P1777, DOI 10.1016/j.jnutbio.2013.06.003 Bach-Faig A, 2011, PUBLIC HEALTH NUTR, V14, P2274, DOI 10.1017/S1368980011002515 Bachinskaya N, 2011, NEUROPSYCH DIS TREAT, V7, P209, DOI 10.2147/NDT.S18741 Baixauli F, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00403 Bartolini G, 2002, CLASSIFICATIONS ORIG Baum L, 2008, J CLIN PSYCHOPHARM, V28, P110, DOI 10.1097/jcp.0b013e318160862c Bedse G, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00204 Berr C, 2009, DEMENT GERIATR COGN, V28, P357, DOI 10.1159/000253483 Biessels GJ, 2015, NAT REV NEUROSCI, V16, P660, DOI 10.1038/nrn4019 Bravo L, 1998, NUTR REV, V56, P317, DOI 10.1111/j.1753-4887.1998.tb01670.x Bronner M, 2004, BIOCHEM J, V384, P295, DOI 10.1042/BJ20040955 Cai EP, 2009, J AGR FOOD CHEM, V57, P9817, DOI 10.1021/jf902618v Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese V, 2014, J CELL COMMUN SIGNAL, V8, P369, DOI 10.1007/s12079-014-0253-7 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calahorra J, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102430 Calin GA, 2005, NEW ENGL J MED, V353, P1793, DOI 10.1056/NEJMoa050995 Calixto Joao B., 2004, Planta Medica, V70, P93, DOI 10.1055/s-2004-815483 Camargo A, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-253 Campbell NK, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00345 Carlos S, 2018, NUTRIENTS, V10, DOI 10.3390/nu10040439 Carnevale R, 2019, EUR J NUTR, V58, P843, DOI 10.1007/s00394-018-1718-x Carnevale R, 2014, ATHEROSCLEROSIS, V235, P649, DOI 10.1016/j.atherosclerosis.2014.05.954 Carra S, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2011.0409 Casamenti F, 2017, EXPERT REV NEUROTHER, V17, P345, DOI 10.1080/14737175.2017.1245617 Chakrabarti M, 2012, BRAIN RES, V1454, P1, DOI 10.1016/j.brainres.2012.03.017 Chang TC, 2007, MOL CELL, V26, P745, DOI 10.1016/j.molcel.2007.05.010 Chen CY, 2011, MITOCHONDRION, V11, P739, DOI 10.1016/j.mito.2011.05.014 Cheng KK, 2013, AAPS J, V15, P324, DOI 10.1208/s12248-012-9444-4 Chimento A, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20061381 Choi KC, 2009, CANCER RES, V69, P583, DOI 10.1158/0008-5472.CAN-08-2442 Chung JH, 2012, TRENDS CELL BIOL, V22, P546, DOI 10.1016/j.tcb.2012.07.004 Chung SW, 2010, ARCH BIOCHEM BIOPHYS, V501, P79, DOI 10.1016/j.abb.2010.05.003 Codolo G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055375 Collodet C, 2019, FASEB J, V33, P12374, DOI 10.1096/fj.201900841R Colomer R, 2017, CURR DRUG TARGETS, V18, P147, DOI 10.2174/1389450117666160112113930 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-41 Covas MI, 2006, ANN INTERN MED, V145, P333, DOI 10.7326/0003-4819-145-5-200609050-00006 Cummings E, 2004, MOL CELL BIOCHEM, V261, P99, DOI 10.1023/B:MCBI.0000028743.75669.ab Curti V, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20051250 D'Amore S, 2016, BBA-MOL CELL BIOL L, V1861, P1671, DOI 10.1016/j.bbalip.2016.07.003 Daccache A, 2011, NEUROCHEM INT, V58, P700, DOI 10.1016/j.neuint.2011.02.010 de Bock M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057622 de Bock M, 2013, MOL NUTR FOOD RES, V57, P2079, DOI 10.1002/mnfr.201200795 de la Torre R, 2006, EUR J NUTR, V45, P307, DOI 10.1007/s00394-006-0596-9 de Lorgeril M, 1999, CIRCULATION, V99, P779, DOI 10.1161/01.CIR.99.6.779 de Pablos RM, 2019, PHARMACOL RES, V143, P58, DOI 10.1016/j.phrs.2019.03.005 deRijk MC, 1997, ARCH NEUROL-CHICAGO, V54, P762, DOI 10.1001/archneur.1997.00550180070015 Dinda B, 2007, CHEM PHARM BULL, V55, P159, DOI 10.1248/cpb.55.159 Dinda B, 2011, CHEM PHARM BULL, V59, P803, DOI 10.1248/cpb.59.803 Diomede L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058893 DiSilvestro RA, 2012, NUTR J, V11, DOI 10.1186/1475-2891-11-79 Drira R, 2011, LIFE SCI, V89, P708, DOI 10.1016/j.lfs.2011.08.012 Egan DF, 2011, SCIENCE, V331, P456, DOI 10.1126/science.1196371 El Amin M, 2013, PAK J PHARM SCI, V26, P359 Esteller M, 2008, NEW ENGL J MED, V358, P1148, DOI 10.1056/NEJMra072067 Estruch R, 2018, NEW ENGL J MED, V378, DOI [10.1056/NEJMoa1800389, 10.1056/nejmoa1800389] Fang MZ, 2003, CANCER RES, V63, P7563 Feart C, 2013, P NUTR SOC, V72, P140, DOI 10.1017/S0029665112002959 Fenaux P, 2009, LANCET ONCOL, V10, P223, DOI 10.1016/S1470-2045(09)70003-8 Feng LF, 2019, DNA CELL BIOL, V38, P874, DOI 10.1089/dna.2018.4308 Fito M, 2014, EUR J HEART FAIL, V16, P543, DOI 10.1002/ejhf.61 Flemmig J, 2011, PHYTOMEDICINE, V18, P561, DOI 10.1016/j.phymed.2010.10.021 Flemmig J, 2014, ARCH BIOCHEM BIOPHYS, V549, P17, DOI 10.1016/j.abb.2014.03.006 Freeman D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062143 Frey B, 2015, CANCER LETT, V368, P230, DOI 10.1016/j.canlet.2015.04.010 Frost JL, 2013, AM J PATHOL, V183, P369, DOI 10.1016/j.ajpath.2013.05.005 Fu YJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102535 Fujiwara Y, 2017, J CLIN BIOCHEM NUTR, V61, P196, DOI 10.3164/jcbn.16-120 Fulco M, 2008, CELL CYCLE, V7, P3669, DOI 10.4161/cc.7.23.7164 Funakohi-Tago M, 2018, EUR J PHARMACOL, V834, P246, DOI 10.1016/j.ejphar.2018.07.043 Furtado LM, 2002, BIOCHEM CELL BIOL, V80, P569, DOI 10.1139/O02-156 Gallardo-Fernandez M, 2019, FOOD CHEM TOXICOL, V134, DOI 10.1016/j.fct.2019.110817 Gao J, 2010, NATURE, V466, P1105, DOI 10.1038/nature09271 Garcia-Villalba R, 2014, EUR J NUTR, V53, P1015, DOI 10.1007/s00394-013-0604-9 Gardeazabal I, 2019, BRIT J NUTR, V122, P542, DOI 10.1017/S0007114518003811 Garza-Lombo Carla, 2018, Current Opinion in Toxicology, V8, P102, DOI 10.1016/j.cotox.2018.05.002 George ES, 2019, CRIT REV FOOD SCI, V59, P2772, DOI 10.1080/10408398.2018.1470491 Goldstein DS, 2016, NEUROCHEM RES, V41, P2173, DOI 10.1007/s11064-016-1959-0 Graff J, 2012, NATURE, V483, P222, DOI 10.1038/nature10849 Graikou K, 2011, CHEM CENT J, V5, DOI 10.1186/1752-153X-5-33 Granato M, 2017, J NUTR BIOCHEM, V41, P124, DOI 10.1016/j.jnutbio.2016.12.011 Grossi C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071702 Gu HF, 2020, CRIT REV FOOD SCI, V60, P810, DOI 10.1080/10408398.2018.1551778 Guasch-Ferre M, 2015, AM J CLIN NUTR, V102, P479, DOI 10.3945/ajcn.115.112029 Guasch-Ferre M, 2014, BMC MED, V12, DOI 10.1186/1741-7015-12-78 Gumireddy A, 2019, AAPS PHARMSCITECH, V20, DOI 10.1208/s12249-019-1349-4 Guo XH, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2572606 Gwinn DM, 2008, MOL CELL, V30, P214, DOI 10.1016/j.molcel.2008.03.003 Hadrich F, 2016, CHEM-BIOL INTERACT, V252, P54, DOI 10.1016/j.cbi.2016.03.026 Halliwell B, 2001, DRUG AGING, V18, P685, DOI 10.2165/00002512-200118090-00004 Hamaguchi T, 2010, CNS NEUROSCI THER, V16, P285, DOI 10.1111/j.1755-5949.2010.00147.x Han YS, 2006, J PHARMACOL EXP THER, V318, P238, DOI 10.1124/jpet.106.102319 Hanhineva K, 2010, INT J MOL SCI, V11, P1365, DOI 10.3390/ijms11041365 Hao JJ, 2010, J NUTR BIOCHEM, V21, P634, DOI 10.1016/j.jnutbio.2009.03.012 Hardie DG, 2007, NAT REV MOL CELL BIO, V8, P774, DOI 10.1038/nrm2249 Hardy TM, 2011, EPIGENOMICS-UK, V3, P503, DOI [10.2217/EPI.11.71, 10.2217/epi.11.71] Harte AL, 2012, DIABETES CARE, V35, P375, DOI 10.2337/dc11-1593 Heger V, 2019, BIOMED PHARMACOTHER, V111, P1326, DOI 10.1016/j.biopha.2019.01.035 Hellebrekers DMEI, 2007, BBA-REV CANCER, V1775, P76, DOI 10.1016/j.bbcan.2006.07.003 Heneka MT, 2013, NATURE, V493, P674, DOI 10.1038/nature11729 Henning SM, 2013, EPIGENOMICS-UK, V5, P729, DOI 10.2217/epi.13.57 Henquin JC, 2000, DIABETES, V49, P1751, DOI 10.2337/diabetes.49.11.1751 Heo J, 2017, CELL REP, V18, P1930, DOI 10.1016/j.celrep.2017.01.074 Herman JG, 2003, NEW ENGL J MED, V349, P2042, DOI 10.1056/NEJMra023075 Hernaez A, 2015, J NUTR, V145, P1692, DOI 10.3945/jn.115.211557 Hernaez A, 2014, ARTERIOSCL THROM VAS, V34, P2115, DOI 10.1161/ATVBAHA.114.303374 Herrschaft H, 2012, J PSYCHIATR RES, V46, P716, DOI 10.1016/j.jpsychires.2012.03.003 Herskovits AZ, 2014, NEURON, V81, P471, DOI 10.1016/j.neuron.2014.01.028 Hetz C, 2012, NAT REV MOL CELL BIO, V13, P89, DOI 10.1038/nrm3270 Hiyoshi T, 2019, J BIOMED RES, V33, P1, DOI 10.7555/JBR.31.20160164 Howes MJR, 2011, DRUG AGING, V28, P439, DOI 10.2165/11591310-000000000-00000 Huang YJ, 2019, AGING-US, V11, P2217, DOI 10.18632/aging.101910 Inoki K, 2003, CELL, V115, P577, DOI 10.1016/S0092-8674(03)00929-2 Jaisamut P, 2017, PLANTA MED, V83, P461, DOI 10.1055/s-0042-108734 Jinsmaa Y, 2020, J PHARMACOL EXP THER, V372, P157, DOI 10.1124/jpet.119.262246 Johnston K, 2005, FEBS LETT, V579, P1653, DOI 10.1016/j.febslet.2004.12.099 Joshi S, 2018, NAT REV CANCER, V18, P562, DOI 10.1038/s41568-018-0020-9 Juli G, 2019, CANCERS, V11, DOI 10.3390/cancers11070990 Kala R, 2015, BMC CANCER, V15, DOI 10.1186/s12885-015-1693-z Keys, 1980, 7 COUNTRIES MULTIVAR Kikuno N, 2008, INT J CANCER, V123, P552, DOI 10.1002/ijc.23590 Kim MH, 2018, NUTR NEUROSCI, V21, P520, DOI [10.1080/1028415X.2017.1317449, 10.1080/1028415x.2017.1317449] Knight A, 2015, BMC GERIATR, V15, DOI 10.1186/s12877-015-0054-8 Korolchuk VI, 2009, MOL CELL, V33, P517, DOI 10.1016/j.molcel.2009.01.021 Korzus E, 2010, NAT NEUROSCI, V13, P405, DOI 10.1038/nn0410-405 Kostomoiri M, 2013, CELL MOL NEUROBIOL, V33, P147, DOI 10.1007/s10571-012-9880-9 Kouzarides T, 2007, CELL, V128, P693, DOI 10.1016/j.cell.2007.02.005 Kristen AV, 2012, CLIN RES CARDIOL, V101, P805, DOI 10.1007/s00392-012-0463-z Kumar R, 2017, EUR J MED CHEM, V127, P909, DOI 10.1016/j.ejmech.2016.11.001 Kundu J, 2014, FOOD CHEM TOXICOL, V65, P18, DOI 10.1016/j.fct.2013.12.015 Kurimoto Y, 2013, J AGR FOOD CHEM, V61, P5558, DOI 10.1021/jf401190y Kuzuhara T, 2008, CANCER LETT, V261, P12, DOI 10.1016/j.canlet.2007.10.037 Kwak MK, 2003, MOL CELL BIOL, V23, P8786, DOI 10.1128/MCB.23.23.8786-8794.2003 Labbadia J, 2015, ANNU REV BIOCHEM, V84, P435, DOI 10.1146/annurev-biochem-060614-033955 Ladiwala ARA, 2011, CHEMBIOCHEM, V12, P1749, DOI 10.1002/cbic.201100123 Lan F, 2017, NUTRIENTS, V9, DOI 10.3390/nu9070751 Large M, 2015, STRAHLENTHER ONKOL, V191, P742, DOI 10.1007/s00066-015-0848-9 Laudati G, 2019, NEUROTOXICOLOGY, V71, P6, DOI 10.1016/j.neuro.2018.11.009 Lee DH, 2007, PANCREAS, V35, P53, DOI 10.1097/01.mpa.0000278676.58491.ef Lee JH, 2007, NATURE, V447, P1017, DOI 10.1038/nature05828 Lee S, 2018, MOL NUTR FOOD RES, V62, DOI 10.1002/mnfr.201800240 Lee WJ, 2011, ONCOL REP, V25, P583, DOI 10.3892/or.2010.1097 Lee YJ, 2015, MOL CELLS, V38, P416, DOI 10.14348/molcells.2015.2268 Leri M, 2019, FOOD CHEM TOXICOL, V129, P1, DOI 10.1016/j.fct.2019.04.015 Li XN, 2009, DIABETES, V58, P2246, DOI 10.2337/db08-1512 Li YY, 2013, MOL CANCER, V12, DOI 10.1186/1476-4598-12-9 Lindstrom J, 2006, DIABETOLOGIA, V49, P912, DOI 10.1007/s00125-006-0198-3 Ling D, 2012, EUR J CANCER, V48, P3278, DOI 10.1016/j.ejca.2012.02.067 Lithner CU, 2013, NEUROBIOL AGING, V34, P2081, DOI 10.1016/j.neurobiolaging.2012.12.028 Liu B, 2003, J PHARMACOL EXP THER, V304, P1, DOI 10.1124/jpet.102.035048 Lockyer S, 2017, EUR J NUTR, V56, P1421, DOI 10.1007/s00394-016-1188-y Lockyer S, 2015, BRIT J NUTR, V114, P75, DOI 10.1017/S0007114515001269 Hazas MCLD, 2018, J FUNCT FOODS, V46, P110, DOI 10.1016/j.jff.2018.04.028 Lopez-Serra P, 2012, ONCOGENE, V31, P1609, DOI 10.1038/onc.2011.354 Lu J, 2005, NATURE, V435, P834, DOI 10.1038/nature03702 Luccarini I, 2015, NEUROBIOL AGING, V36, P648, DOI 10.1016/j.neurobiolaging.2014.08.029 Ma QL, 2013, J BIOL CHEM, V288, P4056, DOI 10.1074/jbc.M112.393751 Ma S, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/4602715 Maggi S, 2006, J GERONTOL A-BIOL, V61, P505, DOI 10.1093/gerona/61.5.505 Maiti P, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061637 Majid S, 2010, CANCER-AM CANCER SOC, V116, P66, DOI 10.1002/cncr.24662 Majid S, 2009, CARCINOGENESIS, V30, P662, DOI 10.1093/carcin/bgp042 Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75 Marsin AS, 2002, J BIOL CHEM, V277, P30778, DOI 10.1074/jbc.M205213200 Martinez-Gonzalez MA, 2019, CIRC RES, V124, P779, DOI 10.1161/CIRCRESAHA.118.313348 Martinez-Lapiscina EH, 2013, J NUTR HEALTH AGING, V17, P544, DOI 10.1007/s12603-013-0027-6 Martinez-Lapiscina EH, 2014, GENES NUTR, V9, DOI 10.1007/s12263-014-0393-7 Matsui T, 2007, J AGR FOOD CHEM, V55, P99, DOI 10.1021/jf0627672 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Meigs JB, 2002, DIABETES CARE, V25, P1845, DOI 10.2337/diacare.25.10.1845 Mhillaj E, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01298 Miceli C, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/8067592 Miki H, 2012, INT J ONCOL, V40, P1020, DOI 10.3892/ijo.2012.1325 Milenkovic D, 2012, PLOS ONE, V7, P156, DOI 10.1371/journal.pone.0029837 Miyamoto K, 2005, JPN J CLIN ONCOL, V35, P293, DOI 10.1093/jjco/hyi088 Moghadam FH, 2018, EUR J PHARMACOL, V841, P104, DOI 10.1016/j.ejphar.2018.10.003 Montagut G, 2010, J NUTR BIOCHEM, V21, P476, DOI 10.1016/j.jnutbio.2009.02.003 Monti MC, 2012, J NAT PROD, V75, P1584, DOI 10.1021/np300384h Montoya T, 2018, J NUTR BIOCHEM, V57, P110, DOI 10.1016/j.jnutbio.2018.03.014 Moussa C, 2017, J NEUROINFLAMM, V14, DOI 10.1186/s12974-016-0779-0 Murie-Fernandez M, 2011, ATHEROSCLEROSIS, V219, P158, DOI 10.1016/j.atherosclerosis.2011.06.050 Najafi MN, 2018, PHYTOTHER RES, V32, P1855, DOI 10.1002/ptr.6124 Nardiello P, 2018, J ALZHEIMERS DIS, V63, P1161, DOI 10.3233/JAD-171124 Naviaux RK, 2019, MITOCHONDRION, V46, P278, DOI 10.1016/j.mito.2018.08.001 Nocella C, 2017, THROMB HAEMOSTASIS, V117, P1558, DOI 10.1160/TH16-11-0857 O'Keefe JH, 2007, AM J CARDIOL, V100, P899, DOI 10.1016/j.amjcard.2007.03.107 Okonkwo A, 2018, MOL NUTR FOOD RES, V62, DOI 10.1002/mnfr.201800228 Oliveras-Lopez MJ, 2013, ARCH GERONTOL GERIAT, V57, P234, DOI 10.1016/j.archger.2013.04.002 Palazzi L, 2020, BIOCHEM PHARMACOL, V173, DOI 10.1016/j.bcp.2019.113722 Park CE, 2007, EXP MOL MED, V39, P222, DOI 10.1038/emm.2007.25 Patel KR, 2011, ANN NY ACAD SCI, V1215, P161, DOI 10.1111/j.1749-6632.2010.05853.x Peedicayil J, 2006, INDIAN J MED RES, V123, P17 Peng SJ, 2015, FOOD FUNCT, V6, P2091, DOI [10.1039/c5fo00097a, 10.1039/C5FO00097A] Peng YH, 2016, MOL NUTR FOOD RES, V60, P2331, DOI 10.1002/mnfr.201600332 Perez-Herrera A, 2012, MOL NUTR FOOD RES, V56, P510, DOI 10.1002/mnfr.201100533 Perrone MA, 2019, J CARDIOVASC MED, V20, P419, DOI 10.2459/JCM.0000000000000816 Pilipenko V, 2019, J NEUROSCI RES, V97, P708, DOI 10.1002/jnr.24396 Psaltopoulou Theodora, 2015, Evid Based Med, V20, P202, DOI 10.1136/ebmed-2015-110237 Qosa H, 2015, J NUTR BIOCHEM, V26, P1479, DOI 10.1016/j.jnutbio.2015.07.022 Rahman I, 2010, J NUTRIGENET NUTRIGE, V3, P220, DOI 10.1159/000324358 Rainer M, 2013, WIEN KLIN WOCHENSCHR, V125, P8, DOI 10.1007/s00508-012-0307-x Ranalli A, 2009, EUR J LIPID SCI TECH, V111, P678, DOI 10.1002/ejlt.200800268 Raver-Shapira N, 2007, MOL CELL, V26, P731, DOI 10.1016/j.molcel.2007.05.017 Reutzel M, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/4070935 Rigacci S, 2015, ONCOTARGET, V6, P35344, DOI 10.18632/oncotarget.6119 Rigacci S, 2015, EXPERT REV NEUROTHER, V15, P41, DOI 10.1586/14737175.2015.986101 Rigacci S, 2010, J NUTR BIOCHEM, V21, P726, DOI 10.1016/j.jnutbio.2009.04.010 Ringman JM, 2012, ALZHEIMERS RES THER, V4, DOI 10.1186/alzrt146 Rutter GA, 2003, BIOCHEM J, V375, P1, DOI 10.1042/BJ20030048 Sabatini DM, 2006, NAT REV CANCER, V6, P729, DOI 10.1038/nrc1974 Safouris A, 2015, CURR ALZHEIMER RES, V12, P736, DOI 10.2174/1567205012666150710114430 Salinaro AT, 2018, IMMUN AGEING, V15, DOI 10.1186/s12979-017-0108-1 Salinaro AT, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00129 Scarmeas N, 2009, ARCH NEUROL-CHICAGO, V66, P216, DOI 10.1001/archneurol.2008.536 Schilling S, 2008, NAT MED, V14, P1106, DOI 10.1038/nm.1872 Schnack Lauren L, 2017, Recent Pat Biotechnol, V11, P101, DOI 10.2174/1872208311666170227112013 Schneider-Stock R, 2012, FRONT BIOSCI-LANDMRK, V17, P129, DOI 10.2741/3919 Scoditti E, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102493 Scuto M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010284 Scuto MC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102417 Selvaraj S, 2016, MOL CARCINOGEN, V55, P818, DOI 10.1002/mc.22324 Servili M, 2002, EUR J LIPID SCI TECH, V104, P602, DOI 10.1002/1438-9312(200210)104:9/10<602::AID-EJLT602>3.0.CO;2-X Shibani F, 2019, N-S ARCH PHARMACOL, V392, P1383, DOI 10.1007/s00210-019-01678-3 Singh AP, 2019, MED RES REV, V39, P1851, DOI 10.1002/med.21565 Song J, 2002, J BIOL CHEM, V277, P15252, DOI 10.1074/jbc.M110496200 Soriguer F, 2013, EUR J CLIN NUTR, V67, P911, DOI 10.1038/ejcn.2013.130 Speer H, 2019, NUTR METAB INSIGHTS, V12, DOI 10.1177/1178638819882739 Stefani M, 2014, BIOFACTORS, V40, P482, DOI 10.1002/biof.1171 Sun M, 2008, MOL CANCER THER, V7, P464, DOI 10.1158/1535-7163.MCT-07-2272 Sun T, 2019, INT J MOL MED, V44, P1531, DOI 10.3892/ijmm.2019.4300 Sun WY, 2017, NEUROPHARMACOLOGY, V113, P556, DOI 10.1016/j.neuropharm.2016.11.010 Tadera K, 2006, J NUTR SCI VITAMINOL, V52, P149, DOI 10.3177/jnsv.52.149 Tan MS, 2013, MOL NEUROBIOL, V48, P875, DOI 10.1007/s12035-013-8475-x Tangney CC, 2011, AM J CLIN NUTR, V93, P601, DOI 10.3945/ajcn.110.007369 Teiten MH, 2009, CANCER LETT, V279, P145, DOI 10.1016/j.canlet.2009.01.031 Thilagam E, 2013, J ACUPUNCT MERIDIAN, V6, P24, DOI 10.1016/j.jams.2012.10.005 Toledo E, 2015, JAMA INTERN MED, V175, P1752, DOI 10.1001/jamainternmed.2015.4838 Tomaselli S, 2019, ACS CHEM NEUROSCI, V10, P4462, DOI 10.1021/acschemneuro.9b00241 Toric J, 2019, ACTA PHARMACEUT, V69, P461, DOI 10.2478/acph-2019-0052 Trichopoulou A, 2003, EUR J PUBLIC HEALTH, V13, P24, DOI 10.1093/eurpub/13.suppl_1.24 Trovato A, 2016, IMMUN AGEING, V13, DOI 10.1186/s12979-016-0078-8 Trovato A, 2016, NEUROTOXICOLOGY, V53, P350, DOI 10.1016/j.neuro.2015.09.012 Tsang WP, 2010, J NUTR BIOCHEM, V21, P140, DOI 10.1016/j.jnutbio.2008.12.003 Tuomilehto Jaakko, 2001, New England Journal of Medicine, V344, P1343, DOI 10.1056/NEJM200105033441801 Utley RT, 1998, NATURE, V394, P498, DOI 10.1038/28886 Valdivielso P, 2010, CLIN CHIM ACTA, V411, P433, DOI 10.1016/j.cca.2009.12.022 Valls-Pedret C, 2015, JAMA INTERN MED, V175, P1094, DOI 10.1001/jamainternmed.2015.1668 Valls-Pedret C, 2012, J ALZHEIMERS DIS, V29, P773, DOI 10.3233/JAD-2012-111799 Villa-Cuesta E, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029513 Violi F, 2015, NUTR DIABETES, V5, DOI 10.1038/nutd.2015.23 Vissers MN, 2002, J NUTR, V132, P409, DOI 10.1093/jn/132.3.409 Vos MJ, 2011, AUTOPHAGY, V7, P101, DOI 10.4161/auto.7.1.13935 Wainstein J, 2012, J MED FOOD, V15, P605, DOI 10.1089/jmf.2011.0243 Wakabayashi N, 2003, NAT GENET, V35, P238, DOI 10.1038/ng1248 Wang LF, 2017, LIPIDS HEALTH DIS, V16, DOI 10.1186/s12944-017-0464-z Wang SL, 2009, BIOMED ENVIRON SCI, V22, P32, DOI 10.1016/S0895-3988(09)60019-2 Wang WR, 2018, CAN J PHYSIOL PHARM, V96, P88, DOI 10.1139/cjpp-2016-0676 Watson RT, 2004, ENDOCR REV, V25, P177, DOI 10.1210/er.2003-0011 Wei YL, 2018, MOL MED REP, V17, P1493, DOI 10.3892/mmr.2017.8036 Williams RJ, 2004, FREE RADICAL BIO MED, V36, P838, DOI 10.1016/j.freeradbiomed.2004.01.001 Wilson T, 2008, J MED FOOD, V11, P46, DOI 10.1089/jmf.2007.531 Woo SM, 2018, ASIAN PAC J TROP MED, V11, P653, DOI 10.4103/1995-7645.248322 Wu L, 2017, BIOCHEMISTRY-US, V56, P5035, DOI 10.1021/acs.biochem.7b00199 Wunderlich R, 2015, CLIN EXP IMMUNOL, V179, P50, DOI 10.1111/cei.12344 Xiao XS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022934 Xie Q, 2014, GENE CHROMOSOME CANC, V53, P422, DOI 10.1002/gcc.22154 XU CL, 1995, BIOCHEM PHARMACOL, V50, P1333, DOI 10.1016/0006-2952(95)02092-6 Xu JL, 2019, CHEM-BIOL INTERACT, V305, P171, DOI 10.1016/j.cbi.2019.01.010 Yang H, 2018, NEUROCHEM RES, V43, P297, DOI 10.1007/s11064-017-2421-7 Yang X, 2017, CURR MOL MED, V17, P149, DOI 10.2174/1566524017666170421151940 Yang XJ, 2007, ONCOGENE, V26, P5310, DOI 10.1038/sj.onc.1210599 Yin HP, 2018, J IMMUNOL, V200, P2835, DOI 10.4049/jimmunol.1701495 Yu GH, 2016, NEUROCHEM INT, V96, P113, DOI 10.1016/j.neuint.2016.03.005 Zhang C, 2016, RENAL FAILURE, V38, P622, DOI 10.3109/0886022X.2016.1149774 Zhang SH, 2017, MATH PROBL ENG, V2017, DOI 10.1155/2017/1970628 Zhang Y, 2011, CHEM BIOL, V18, P1355, DOI 10.1016/j.chembiol.2011.09.008 Zhang ZF, 2010, PHYTOMEDICINE, V17, P14, DOI 10.1016/j.phymed.2009.09.007 Zhao WJ, 2016, CELL SIGNAL, V28, P1401, DOI 10.1016/j.cellsig.2016.06.018 Zhao YN, 2013, BIOCHEM BIOPH RES CO, V435, P597, DOI 10.1016/j.bbrc.2013.05.025 Zheng A, 2015, BRIT J NUTR, V113, P1667, DOI 10.1017/S0007114515000884 Zhi LQ, 2018, MOL MED REP, V17, P4035, DOI 10.3892/mmr.2017.8353 Zhou YF, 2019, TOXICON, V164, P10, DOI 10.1016/j.toxicon.2019.03.022 Zrelli H, 2015, PHYTOTHER RES, V29, P1011, DOI 10.1002/ptr.5339 NR 300 TC 188 Z9 193 U1 28 U2 131 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD FEB PY 2020 VL 21 IS 4 AR 1250 DI 10.3390/ijms21041250 PG 40 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA KY4FE UT WOS:000522524400077 PM 32070025 OA gold, Green Published HC Y HP N DA 2023-03-13 ER PT J AU Sidibe, A Charles, MT Lucier, JF Xu, YQ Beaulieu, C AF Sidibe, Amadou Charles, Marie Therese Lucier, Jean-Francois Xu, Yanqun Beaulieu, Carole TI Preharvest UV-C Hormesis Induces Key Genes Associated With Homeostasis, Growth and Defense in Lettuce Inoculated With Xanthomonas campestris pv. vitians SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE bacterial disease; cell homeostasis; defense mechanisms; eustress; leaf spot disease; lettuce; physiological processes; plant growth ID BOTRYTIS-CINEREA; TREHALOSE-6-PHOSPHATE SYNTHASE; DROUGHT TOLERANCE; ABIOTIC STRESSES; OXIDATIVE BURST; IRON-DEFICIENCY; CROSS-TOLERANCE; SALT-STRESS; ARABIDOPSIS; RESISTANCE AB Preharvest application of hormetic doses of ultraviolet-C (UV-C) generates beneficial effects in plants. In this study, within 1 week, four UV-C treatments of 0.4 kJ/m2 were applied to 3-week-old lettuce seedlings. The leaves were inoculated with a virulent strain of Xanthomonas campestris pv. vitians (Xcv) 48 h after the last UV-C application. The extent of the disease was tracked over time and a transcriptomic analysis was performed on lettuce leaf samples. Samples of lettuce leaves, from both control and treated groups, were taken at two different times corresponding to T2, 48 h after the last UV-C treatment and T3, 24 h after inoculation (i.e., 72 h after the last UV-C treatment). A significant decrease in disease severity between the UV-C treated lettuce and the control was observed on days 4, 8, and 14 after pathogen inoculation. Data from the transcriptomic study revealed, that in response to the effect of UV-C alone and/or UV-C + Xcv, a total of 3828 genes were differentially regulated with fold change (|log2-FC|) > 1.5 and false discovery rate (FDR) < 0.05. Among these, of the 2270 genes of known function 1556 were upregulated and 714 were downregulated. A total of 10 candidate genes were verified by qPCR and were generally consistent with the transcriptomic results. The differentially expressed genes observed in lettuce under the conditions of the present study were associated with 14 different biological processes in the plant. These genes are involved in a series of metabolic pathways associated with the ability of lettuce treated with hormetic doses of UV-C to resume normal growth and to defend themselves against potential stressors. The results indicate that the hormetic dose of UV-C applied preharvest on lettuce in this study, can be considered as an eustress that does not interfere with the ability of the treated plants to carry on a set of key physiological processes namely: homeostasis, growth and defense. C1 [Sidibe, Amadou; Charles, Marie Therese; Lucier, Jean-Francois; Beaulieu, Carole] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ, Canada. [Sidibe, Amadou; Charles, Marie Therese] Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, Richelieu, PQ, Canada. [Xu, Yanqun] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Zhejiang Key Lab Agrifood Proc, Hangzhou, Peoples R China. C3 University of Sherbrooke; Agriculture & Agri Food Canada; Zhejiang University RP Charles, MT (corresponding author), Univ Sherbrooke, Dept Biol, Sherbrooke, PQ, Canada.; Charles, MT (corresponding author), Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, Richelieu, PQ, Canada. EM marietherese.charles@agr.gc.ca CR Aarrouf J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235918 Achuo EA, 2006, PLANT PATHOL, V55, P178, DOI 10.1111/j.1365-3059.2006.01340.x Ashrafi-Dehkordi E, 2018, PEERJ, V6, DOI 10.7717/peerj.4631 Bagati S., 2018, ABIOTIC STRESS MEDIA, P1, DOI DOI 10.1007/978-981-10-7479-0_1 Balague C, 2017, MOL PLANT PATHOL, V18, P937, DOI 10.1111/mpp.12457 Ban QY, 2020, SCI HORTIC-AMSTERDAM, V265, DOI 10.1016/j.scienta.2020.109232 Baucher M, 1998, CRIT REV PLANT SCI, V17, P125, DOI 10.1016/S0735-2689(98)00360-8 Baxter A, 2014, J EXP BOT, V65, P1229, DOI 10.1093/jxb/ert375 Konatu FRB, 2018, J SEP SCI, V41, P1726, DOI 10.1002/jssc.201701038 BOITEAU P, 1956, Therapie, V11, P125 Borowski JM, 2014, PLANTA, V239, P1187, DOI 10.1007/s00425-014-2041-2 Buer CS, 2010, J INTEGR PLANT BIOL, V52, P98, DOI 10.1111/j.1744-7909.2010.00905.x Bull C.T., 2007, PLANT HLTH PROG, V8, DOI [10.1094/PHP-2007-0917-02-RS, DOI 10.1094/PHP-2007-0917-02-RS] Bundo M, 2017, J EXP BOT, V68, P2963, DOI 10.1093/jxb/erx145 Buti M, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20225662 Cassin G, 2009, J EXP BOT, V60, P1249, DOI 10.1093/jxb/erp007 Chaiwanon J, 2016, CELL, V164, P1257, DOI 10.1016/j.cell.2016.01.044 Le CTT, 2016, PLANT PHYSIOL, V170, P540, DOI 10.1104/pp.15.01589 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019 Cheng Y, 2018, PLANT CELL PHYSIOL, V59, P978, DOI 10.1093/pcp/pcy034 Colina F, 2020, BIOTECHNOL BIOFUELS, V13, DOI 10.1186/s13068-020-01750-8 De Storme N, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00138 Deng FY, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0188458 Dey S, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00640 Doan TTP, 2009, J PLANT PHYSIOL, V166, P787, DOI 10.1016/j.jplph.2008.10.003 Drerup MM, 2013, MOL PLANT, V6, P559, DOI 10.1093/mp/sst009 Duarte-Sierra A., 2019, POSTHARVEST PATHOLOG, V1st ed., P539, DOI DOI 10.1201/9781315209180-17 Dutton C, 2019, PLANT CELL ENVIRON, V42, P2411, DOI 10.1111/pce.13570 Escudero V, 2019, MOL PLANT MICROBE IN, V32, P464, DOI 10.1094/MPMI-08-18-0217-FI Farahbakhsh H, 2017, PLANT PROD SCI, V20, P237, DOI [10.1080/1343943X.2017.1299581, 10.1080/1343943x.2017.1299581] Fayette J, 2018, EUR J PLANT PATHOL, V151, P341, DOI 10.1007/s10658-017-1377-4 Feussner I, 2015, CURR OPIN PLANT BIOL, V26, P26, DOI 10.1016/j.pbi.2015.05.023 Foyer CH, 2016, J EXP BOT, V67, P2025, DOI 10.1093/jxb/erw079 Gierz SL, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00271 Gollhofer J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110468 Han JY, 2013, PLANT CELL PHYSIOL, V54, P2034, DOI 10.1093/pcp/pct141 Hauser T, 2015, NAT PLANTS, V1, P1, DOI [10.1038/NPLANTS.2015.65, 10.1038/nplants.2015.65] Health Canada, 2019, SEARCH PROD LAB PEST Hofer R, 2013, METAB ENG, V20, P221, DOI 10.1016/j.ymben.2013.08.001 Hofberger JA, 2015, GENOME BIOL EVOL, V7, P720, DOI 10.1093/gbe/evv020 Hu W, 2018, GENES-BASEL, V9, DOI 10.3390/genes9040221 Huo DongYing, 2014, Acta Agronomica Sinica, V40, P1585 Jamieson PA, 2018, PLANT SCI, V274, P242, DOI 10.1016/j.plantsci.2018.05.030 Janisiewicz WJ, 2016, CAN J PLANT PATHOL, V38, P430, DOI 10.1080/07060661.2016.1263807 Janisiewicz WJ, 2016, PHYTOPATHOLOGY, V106, P386, DOI 10.1094/PHYTO-09-15-0240-R Kato Y, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00855 Kawarazaki T, 2013, BBA-MOL CELL RES, V1833, P2775, DOI 10.1016/j.bbamcr.2013.06.024 Kazemi-Pour N, 2004, PROTEOMICS, V4, P3177, DOI 10.1002/pmic.200300814 Kim YH, 2007, PLANT PHYSIOL BIOCH, V45, P908, DOI 10.1016/j.plaphy.2007.07.019 Kimura Y, 2010, J BIOCHEM, V147, P793, DOI 10.1093/jb/mvq044 Kumar D, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00748 Lannoo N, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00397 Li Q, 2020, HORTIC RES-ENGLAND, V7, DOI 10.1038/s41438-020-0263-y Li YF, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-31432-3 Lionetti V, 2017, PLANT PHYSIOL, V173, P1844, DOI 10.1104/pp.16.01185 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lokdarshi A, 2016, PLANT PHYSIOL, V170, P1046, DOI 10.1104/pp.15.01407 Lu HJ, 2013, HORTSCIENCE, V48, P171, DOI 10.21273/HORTSCI.48.2.171 Lunn JE, 2014, PLANT J, V79, P544, DOI 10.1111/tpj.12509 Ma XY, 2005, J BIOL CHEM, V280, P13576, DOI 10.1074/jbc.M414508200 Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009 Mondal R, 2020, PLANT SIGNAL BEHAV, V15, DOI 10.1080/15592324.2020.1818031 Moraes RM, 2018, PAK J BOT, V50, P1769 Moses T, 2014, CRIT REV BIOCHEM MOL, V49, P439, DOI 10.3109/10409238.2014.953628 Murcia G, 2017, PHYTOCHEMISTRY, V135, P34, DOI 10.1016/j.phytochem.2016.12.007 Muthusamy SK, 2017, J PLANT PHYSIOL, V211, P100, DOI 10.1016/j.jplph.2017.01.004 Nayeri FD, 2014, MOL BIOL REP, V41, P5077, DOI 10.1007/s11033-014-3373-5 Nicolas O., 2020, ACTA HORTIC, V1271, P387, DOI [10.17660/ActaHortic.2020.1271.53, DOI 10.17660/ACTAHORTIC.2020.1271.53] Nicolas O, 2018, CAN J PLANT PATHOL, V40, P399, DOI 10.1080/07060661.2018.1495269 Niu L., 2020, DEFENSIVE FORWARDS S, DOI [10.1101/2020.02.15.950535, DOI 10.1101/2020.02.15.950535] Noda S, 2013, PLANT BIOTECHNOL-NAR, V30, P169, DOI 10.5511/plantbiotechnology.13.0304a Lopez-Fernandez MP, 2015, J INTEGR PLANT BIOL, V57, P996, DOI 10.1111/jipb.12367 Phukan UJ, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00760 Proietti S, 2014, PLANT PHYSIOL BIOCH, V85, P51, DOI 10.1016/j.plaphy.2014.10.011 Pushpa D, 2014, PLANT MOL BIOL REP, V32, P584, DOI 10.1007/s11105-013-0665-1 Qiao K, 2019, J AGR FOOD CHEM, V67, P9877, DOI 10.1021/acs.jafc.9b04210 Quezada EH, 2019, GENES-BASEL, V10, DOI 10.3390/genes10010059 Ravet K, 2013, ANTIOXID REDOX SIGN, V19, P919, DOI 10.1089/ars.2012.5084 Sampedro J, 2012, PLANT PHYSIOL, V158, P1146, DOI 10.1104/pp.111.192195 Savidge B, 2002, PLANT PHYSIOL, V129, P321, DOI 10.1104/pp.010747 Scarpeci TE, 2013, PLANT MOL BIOL, V83, P265, DOI 10.1007/s11103-013-0090-8 SHANER G, 1977, PHYTOPATHOLOGY, V67, P1051, DOI 10.1094/Phyto-67-1051 Shen JL, 2017, BMC PLANT BIOL, V17, DOI 10.1186/s12870-017-1175-3 Sidibe A, 2021, SCI HORTIC-AMSTERDAM, V285, DOI 10.1016/j.scienta.2021.110094 Skaar JR, 2013, NAT REV MOL CELL BIO, V14, P369, DOI 10.1038/nrm3582 Suarez R, 2008, MOL PLANT MICROBE IN, V21, P958, DOI 10.1094/MPMI-21-7-0958 Sung PH, 2011, J AGR FOOD CHEM, V59, P4637, DOI 10.1021/jf200259n Suzuki N, 2011, CURR OPIN PLANT BIOL, V14, P691, DOI 10.1016/j.pbi.2011.07.014 Tan SK, 2000, PLANT CELL REP, V19, P739, DOI 10.1007/s002999900186 Tian MM, 2015, PLANT J, V82, P81, DOI 10.1111/tpj.12797 Valencia MA, 2017, OPT PURA APL, V50, P369, DOI 10.7149/OPA.50.4.49073 VANENGELEN FA, 1993, PLANT J, V4, P855, DOI 10.1046/j.1365-313X.1993.04050855.x Vanholme R, 2013, SCIENCE, V341, P1103, DOI 10.1126/science.1241602 Vasquez H, 2020, J PHYTOPATHOL, V168, P524, DOI 10.1111/jph.12930 Vasquez H, 2017, SCI HORTIC-AMSTERDAM, V222, P32, DOI 10.1016/j.scienta.2017.04.017 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Wang XY, 2016, PLANT PHYSIOL BIOCH, V107, P273, DOI 10.1016/j.plaphy.2016.06.016 Williams B, 2010, P NATL ACAD SCI USA, V107, P6088, DOI 10.1073/pnas.0912670107 Wormit A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102878 Wu CL, 2018, MOLECULES, V23, DOI 10.3390/molecules23051196 Xie ZC, 2016, PLANT PHYSIOL BIOCH, V108, P337, DOI 10.1016/j.plaphy.2016.07.026 Xu J, 2014, PLANT J, V77, P222, DOI 10.1111/tpj.12382 Xu YQ, 2019, PLANT CELL ENVIRON, V42, P815, DOI 10.1111/pce.13491 Yan Q, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162253 Yang Zhong-Bao, 2007, Zhiwu Shengli yu Fenzi Shengwuxue Xuebao, V33, P480 Yeo ET, 2000, MOL CELLS, V10, P263 Yin YH, 2005, CELL, V120, P249, DOI 10.1016/j.cell.2004.11.044 Yu KS, 2013, CELL REP, V3, P1266, DOI 10.1016/j.celrep.2013.03.030 Zhang HN, 2017, PLANT J, V90, P839, DOI 10.1111/tpj.13557 Zhang XB, 2015, MOL PLANT, V8, P17, DOI 10.1016/j.molp.2014.11.001 Zhao CZ, 2018, P NATL ACAD SCI USA, V115, P13123, DOI 10.1073/pnas.1816991115 Zhou J, 2014, J EXP BOT, V65, P595, DOI 10.1093/jxb/ert404 Zhu XB, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006311 Ziegler J, 2008, ANNU REV PLANT BIOL, V59, P735, DOI 10.1146/annurev.arplant.59.032607.092730 NR 114 TC 2 Z9 2 U1 5 U2 9 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD JAN 17 PY 2022 VL 12 AR 793989 DI 10.3389/fpls.2021.793989 PG 18 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA YR6YX UT WOS:000750140400001 PM 35111177 OA gold DA 2023-03-13 ER PT J AU Feinendegen, LE Neumann, RD AF Feinendegen, LE Neumann, RD TI The issue of risk in complex adaptive systems: the case of low-dose radiation induced cancer SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE complex adaptive systems; radiation risk; low-dose effects; adaptive responses; radiation damage vs. hormesis ID PROTECTIVE RESPONSES; MECHANISMS; INDUCTION; DAMAGE; DNA AB Living systems exist in hierarchical levels of biological organization, ascending from the basic atomic-molecular level, to the cellular level, the tissue-organ level, and the whole organism. All levels and elements at each level communicate with each other though intricate intra- and intercellular signaling through many specified molecular interactions. These regulate homeostasis between the system levels and their individual elements. The probability of a defined effect at the basic atomic-molecular level per impact increment of a toxic agent, such as ionizing radiation, at that level appears constant at low doses, even if the probability constant may change as a consequence of a previous exposure. Thus, at a given state of the system, the incidence of effect at the atomic-molecular level increases linearly with the number of impact increments in terms of energy deposition events. Primary effects may amplify to damage and there are immediate attempts at repairing the damage from an effect. Amplification and propagation of damage at, and from, the basic to higher levels of biological organization meets resistance, the degree of which per impact increment is not constant. It changes with the number of impact increments. This resistance encompasses both physicochemical and biochemical reactions. The corresponding biochemical reactions express the physiological system's capacity to respond to perturbations of homeostasis at and between the various levels. Types and degrees of these responses depend on the system and the degree of homeostatic perturbation. At relatively mild to moderate degrees of perturbation, protective responses appear with a delay of hours and may last for months, shield also against endogenous non-radiogenic damage, and in doing so may prevail over radiogenic damage. With increasing degrees of homeostatic perturbation, damage eventually overwhelms adaptive protection. Thus, systems do not respond in a linear function of impact increments at the lowest level of biological organization. For assessing the probability of radiation damage per absorbed dose, i.e., risk, in complex adaptive systems, both damaging and protecting responses need attention, and to exclude one for the other is scientifically unjustified and misleading. C1 Univ Dusseldorf, D-4000 Dusseldorf, Germany. Brookhaven Natl Lab, Upton, NY 11973 USA. NIH, Dept Nucl Med, Ctr Clin, Bethesda, MD 20892 USA. C3 Heinrich Heine University Dusseldorf; United States Department of Energy (DOE); Brookhaven National Laboratory; National Institutes of Health (NIH) - USA; NIH Clinical Center (CC) RP Feinendegen, LE (corresponding author), Univ Dusseldorf, D-4000 Dusseldorf, Germany. EM feinendegen@gmx.net FU CLINICAL CENTER [Z01CL060001, ZIACL060001] Funding Source: NIH RePORTER CR ARTHUR C, 2000, TXB MED PHYSL Barcellos-Hoff MH, 2001, RADIAT RES, V156, P618, DOI 10.1667/0033-7587(2001)156[0618:ESTTMA]2.0.CO;2 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CLEAVER JE, 1968, NATURE, V218, P652, DOI 10.1038/218652a0 *ENV PROT AG EPA, 2004, EPA100B001 FEINENDEGEN LE, 1987, HEALTH PHYS, V52, P663, DOI 10.1097/00004032-198705000-00020 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2003, RADIAT PROT DOSIM, V104, P337, DOI 10.1093/oxfordjournals.rpd.a006197 FEINENDEGEN LE, 1991, EUR J NUCL MED, V18, P740, DOI 10.1007/BF00956715 FEINENDEGEN LE, 1995, STEM CELLS, V13, P7 FEINENDEGEN LE, 2002, BR J RADIOL S, V26, P6 Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431 Gell-Mann M., 1994, QUARK JAGUAR Hall E. J., 2000, RADIOBIOLOGY RADIOLO ICRU, 1983, 36 ICRU Lehninger AL, 1993, PRINCIPLES BIOCH EXT Little JB, 2000, CARCINOGENESIS, V21, P397, DOI 10.1093/carcin/21.3.397 McBride WH, 2003, ONCOGENE, V22, P5755, DOI 10.1038/sj.onc.1206676 Mothersill C, 1997, INT J RADIAT BIOL, V71, P421, DOI 10.1080/095530097144030 NAGASAWA H, 1992, CANCER RES, V52, P6394 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Ullrich RL, 1998, INT J RADIAT BIOL, V74, P747, DOI 10.1080/095530098141023 NR 24 TC 10 Z9 10 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2006 VL 25 IS 1 BP 11 EP 17 DI 10.1191/0960327106ht579oa PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 007NU UT WOS:000234977200004 PM 16459709 DA 2023-03-13 ER PT J AU Gu, CG Jin, ZH Fan, XL Ti, QQ Yang, XL Sun, C Jiang, X AF Gu, Chenggang Jin, Zhihua Fan, Xiuli Ti, Qingqing Yang, Xinglun Sun, Cheng Jiang, Xin TI Comparative evaluation and prioritization of key influences on biodegradation of 2,2 ',4,4 '-tetrabrominated diphenyl ether by bacterial isolate B. xenovorans LB400 SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Polybrominated diphenyl ethers; Biodegradation efficiency; Influential factors; PLS; Mechanistic relationship ID BROMINATED FLAME RETARDANTS; AEROBIC BIOTRANSFORMATION; DEGRADATION; SEDIMENT; BDE-209; PBDES; TETRABROMOBISPHENOL; EXPRESSION; EXPOSURE; BINDING AB Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants being widely distributed and harmful to human health and wildlife, and the development of sustainable rehabilitation strategies including microbial degradation is of great concern. Although the increasing number of bacteria, especially the broad-spectrum and potent aerobes have been isolated for the efficient removal of PBDEs, the external influences and the corresponding influential mechanism on biodegradation are not fully understood yet. Given the wide-spectrum biodegradability of aerobic bacterial isolate, B. xenovorans LB400 for PBDEs, the dual impacts of many pivotal factors including pH, temperature, presence of dissolved organic matter (DOM) and cadmium ion etc. were comprehensively revealed on biodegradation of 2,2 ',4,4 '-tetrabromodiphenyl ether (BDE-47). Due to the structural resemblance and stimulation of specific enzyme activity in bacteria, the biphenyl as substrates showed the greater capacity than non-aromatic compounds in improving biodegradation. The individual adaptation to neutrality and cultivation at about 30 degrees C was beneficial for biodegradation since the bacterial cellular viability and enzyme activity was mostly preserved. Although it was possibly good for the induction of hormesis and favorable to enhance the permeability or bioavailability of pollutant, the exceeding increase of Cd2+ or DOM may not give the profitable increase of biodegradation yet for the detrimental effect. For biodegradation, the mechanistic relationship that took account of the integrative correlation with the influential factors was artfully developed using partial least square (PLS) regression technique. Relative to the most sig-nificant influence of culture time and initial concentration of BDE-47, the larger relevance of other factors primarily marked as pH and DOM was consecutively shown after the quantitative prioritization. This may not only help understand the influential mechanism but provide a prioritizing regulation strategy for biodegradation of BDE-47. The PLS-derived relationship was validated with the certain predictability in biodegradation, and could be used as an alternative to accelerate a priori evaluation of suitability or improve the feasibility of such bacteria in remediation of PBDEs in the environment. C1 [Gu, Chenggang; Jin, Zhihua; Fan, Xiuli; Ti, Qingqing; Yang, Xinglun; Jiang, Xin] Chinese Acad Sci, Inst Soil Sci, CAS Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China. [Gu, Chenggang; Jin, Zhihua; Fan, Xiuli; Ti, Qingqing; Yang, Xinglun; Jiang, Xin] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Sun, Cheng] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China. C3 Chinese Academy of Sciences; Institute of Soil Science, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Nanjing University RP Gu, CG; Jiang, X (corresponding author), Chinese Acad Sci, Inst Soil Sci, CAS Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China. EM cggu@issas.ac.cn; Jiangxin@issas.ac.cn FU Ministry of Science and Technology of the People's Republic of China [2020YFC1808601]; National Natural Science Foundation of China [41977356, 21377138]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA28030501] FX The work was financially supported by Ministry of Science and Technology of the People's Republic of China (2020YFC1808601), National Natural Science Foundation of China (41977356, 21377138) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA28030501). CR Abbasi G, 2019, ENVIRON SCI TECHNOL, V53, P6330, DOI 10.1021/acs.est.8b07032 Acosta-Gonzalez A, 2013, ENVIRON MICROBIOL, V15, P77, DOI 10.1111/j.1462-2920.2012.02782.x Alaee M, 2003, ENVIRON INT, V29, P683, DOI 10.1016/S0160-4120(03)00121-1 Alberty RA, 2007, BIOPHYS CHEM, V125, P328, DOI 10.1016/j.bpc.2006.09.007 Ali N, 2017, ENVIRON SCI POLLUT R, V24, P18721, DOI 10.1007/s11356-017-9336-3 Birnbaum LS, 2004, ENVIRON HEALTH PERSP, V112, P9, DOI 10.1289/ehp.6559 Blanco J, 2013, TOXICOLOGY, V308, P122, DOI 10.1016/j.tox.2013.03.010 Blanco J, 2011, TOXICOLOGY, V290, P305, DOI 10.1016/j.tox.2011.10.010 Costa LG, 2007, NEUROTOXICOLOGY, V28, P1047, DOI 10.1016/j.neuro.2007.08.007 Darnerud PO, 2003, ENVIRON INT, V29, P841, DOI 10.1016/S0160-4120(03)00107-7 de Campos LJ, 2014, J MOL GRAPH MODEL, V54, P19, DOI 10.1016/j.jmgm.2014.08.004 de Wit CA, 2006, CHEMOSPHERE, V64, P209, DOI 10.1016/j.chemosphere.2005.12.029 Deng DY, 2011, INT BIODETER BIODEGR, V65, P465, DOI 10.1016/j.ibiod.2011.01.008 Drage D, 2015, SCI TOTAL ENVIRON, V512, P177, DOI 10.1016/j.scitotenv.2015.01.034 Drage DS, 2019, ENVIRON RES, V177, DOI 10.1016/j.envres.2019.108631 Dunnick JK, 2018, TOXICOL REP, V5, P615, DOI 10.1016/j.toxrep.2018.05.010 Eckbo N, 2019, ENVIRON POLLUT, V249, P191, DOI 10.1016/j.envpol.2019.01.025 Gerecke AC, 2005, ENVIRON SCI TECHNOL, V39, P1078, DOI 10.1021/es048634j Golbraikh A, 2002, J MOL GRAPH MODEL, V20, P269, DOI 10.1016/S1093-3263(01)00123-1 Grasso G, 2015, BIOPHYS CHEM, V203, P33, DOI 10.1016/j.bpc.2015.05.010 Gu CG, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.126132 Guan NZ, 2020, APPL MICROBIOL BIOT, V104, P51, DOI 10.1007/s00253-019-10226-1 Harrad S, 2015, ENVIRON SCI TECHNOL, V49, P13899, DOI 10.1021/acs.est.5b00539 Hu SF, 2020, FOOD MICROBIOL, V92, DOI 10.1016/j.fm.2020.103585 Jagadevan S, 2013, APPL MICROBIOL BIOT, V97, P5089, DOI 10.1007/s00253-012-4310-y Jiang YF, 2019, SCI TOTAL ENVIRON, V696, DOI 10.1016/j.scitotenv.2019.133902 Kim S, 2014, J HAZARD MATER, V275, P99, DOI 10.1016/j.jhazmat.2014.04.052 Kim YM, 2007, APPL MICROBIOL BIOT, V77, P187, DOI 10.1007/s00253-007-1129-z Lefevre PLC, 2016, ENDOCRINOLOGY, V157, P2698, DOI 10.1210/en.2016-1106 Li GY, 2016, ENVIRON POLLUT, V208, P796, DOI 10.1016/j.envpol.2015.11.001 Li JD, 2020, APPL ENVIRON MICROB, V86, DOI 10.1128/AEM.01040-20 Okonski K, 2014, ENVIRON SCI TECHNOL, V48, P14426, DOI 10.1021/es5044547 Pan B, 2007, ENVIRON SCI TECHNOL, V41, P6472, DOI 10.1021/es070790d Robrock KR, 2011, BIOTECHNOL BIOENG, V108, P313, DOI 10.1002/bit.22952 Robrock KR, 2009, ENVIRON SCI TECHNOL, V43, P5705, DOI 10.1021/es900411k Seeger M, 1997, MAR CHEM, V58, P327, DOI 10.1016/S0304-4203(97)00059-5 Shi GY, 2013, J HAZARD MATER, V263, P711, DOI 10.1016/j.jhazmat.2013.10.035 Shi GY, 2013, CHEMOSPHERE, V93, P1487, DOI 10.1016/j.chemosphere.2013.07.044 Stojanovski BM, 2014, BBA-PROTEINS PROTEOM, V1844, P2145, DOI 10.1016/j.bbapap.2014.09.013 Talsness CE, 2008, ENVIRON RES, V108, P158, DOI 10.1016/j.envres.2008.08.008 Ti QQ, 2020, J HAZARD MATER, V393, DOI 10.1016/j.jhazmat.2020.122382 Tokarz JA, 2008, ENVIRON SCI TECHNOL, V42, P1157, DOI 10.1021/es071989t UNEP, 2010, STOCKH CONV 6 POP RE Wang HS, 2011, J HAZARD MATER, V192, P374, DOI 10.1016/j.jhazmat.2011.05.036 Wang JX, 2011, J HAZARD MATER, V197, P211, DOI 10.1016/j.jhazmat.2011.09.078 Wong MH, 2007, ENVIRON POLLUT, V149, P131, DOI 10.1016/j.envpol.2007.01.044 Wu CD, 2012, APPL MICROBIOL BIOT, V93, P707, DOI 10.1007/s00253-011-3757-6 Wu ZN, 2020, ENVIRON RES, V187, DOI 10.1016/j.envres.2020.109531 Xiong P, 2019, ENVIRON SCI TECHNOL, V53, P13551, DOI 10.1021/acs.est.9b03159 Xu GY, 2014, CHEMOSPHERE, V110, P70, DOI 10.1016/j.chemosphere.2014.03.052 Zhang SW, 2013, INT BIODETER BIODEGR, V76, P24, DOI 10.1016/j.ibiod.2012.06.020 Zhang YP, 2015, BIORESOURCE TECHNOL, V193, P274, DOI 10.1016/j.biortech.2015.06.110 Zheng G, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113872 Zhou HC, 2019, J HAZARD MATER, V379, DOI 10.1016/j.jhazmat.2019.120788 Zhou J, 2007, CHEMOSPHERE, V70, P172, DOI 10.1016/j.chemosphere.2007.06.036 NR 55 TC 0 Z9 0 U1 4 U2 4 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD APR 1 PY 2023 VL 331 AR 117320 DI 10.1016/j.jenvman.2023.117320 EA JAN 2023 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 8O6HE UT WOS:000925935200001 PM 36696759 DA 2023-03-13 ER PT J AU Wang, JX Xie, P Guo, N AF Wang, Jingxian Xie, Ping Guo, Nichun TI Effects of nonylphenol on the growth and microcystin production of Microcystis strains SO ENVIRONMENTAL RESEARCH LA English DT Article DE Microcystis aeruginosa; microcystin; nonylphenol (NP); algal growth ID TOXIN PRODUCTION; HEPATOTOXIN PRODUCTION; CHLORELLA-VULGARIS; CHLOROPHYLL-A; CELL-DIVISION; BATCH CULTURE; AERUGINOSA; LIGHT; 4-NONYLPHENOL; CYANOBACTERIA AB Both organic pollution and eutrophication are prominent environmental issues concerning water pollution in the world. It is important to reveal the effects of organic pollutants on algal growth and toxin production for assessing ecological risk of organic pollution. Since nonylphenol (NP) is a kind of persistent organic pollutant with endocrine disruptive effect which exists ubiquitously in environments, NP was selected as test compound in our study to study the relationship between NP stress and Microcystis growth and microcystin production. Our study showed that responses of toxic and nontoxic Microcystis aeruginosa to NP stress were obviously different. The growth inhibition test with NP on M. aeruginosa yielded effect concentrations EbC50 values within this range of 0.67-2.96 mg/L. The nontoxic M. aeruginosa strains were more resistant to NP than toxic strains at concentration above 1 mg/L. Cell growth was enhanced by 0.02-0.2 mg/L NP for both toxic and nontoxic strains, suggesting a hormesis effect of NP on M. aeruginosa. Both toxic and nontoxic strains tended to be smaller with increasing NP. But with the increased duration of the experiment, both the cell size and the growth rate began to resume, suggesting a quick adaptation of M. aeruginosa to adverse stress. NP of 0.05-0.5 mg/L significantly promoted microcystin production of toxic strain PCC7820, suggesting that NP might affect microcystin production of some toxic M. aeruginosa in the field. Our study showed that microcystin excretion was species specific that up to 75% of microcystins in PCC7820 were released into solution, whereas > 99% of microcystins in 562 remained in algal cells after 12 days' incubation. NP also significantly influenced microcystin release into cultural media. The fact that NP enhanced growth and toxin production of M. aeruginosa at low concentrations of 0.02-0.5 mg/L that might be possibly found in natural freshwaters implies that low concentration of NP may favor survival of M. aeruginosa in the field and may play a subtle role in affecting cyanobacterial blooms and microcystin production in natural waters. (c) 2006 Elsevier Inc. All rights reserved. C1 Chinese Acad Sci, Donghu Expt Stn Lake Ecosyst, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China. C3 Chinese Academy of Sciences; Institute of Hydrobiology, CAS RP Xie, P (corresponding author), Chinese Acad Sci, Donghu Expt Stn Lake Ecosyst, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China. EM xieping@ihb.ac.cn RI Xie, Ping/AAL-7532-2020 CR AHEL M, 1987, ENVIRON SCI TECHNOL, V21, P697, DOI 10.1021/es00161a011 AHEL M, 1994, WATER RES, V28, P1131, DOI 10.1016/0043-1354(94)90200-3 Bajguz A, 2004, PHYSIOL PLANTARUM, V121, P349, DOI 10.1111/j.1399-3054.2004.00329.x Baldwin WS, 1997, ENVIRON TOXICOL CHEM, V16, P1905, DOI 10.1002/etc.5620160920 Bennie DT, 1999, WATER QUAL RES J CAN, V34, P79, DOI 10.2166/wqrj.1999.004 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Codd GA, 1999, EUR J PHYCOL, V34, P405, DOI 10.1017/S0967026299002255 De Maagd PGJ, 1999, WATER RES, V33, P677, DOI 10.1016/S0043-1354(98)00258-9 Dittmann E, 1997, MOL MICROBIOL, V26, P779, DOI 10.1046/j.1365-2958.1997.6131982.x DOERS MP, 1988, J PHYCOL, V24, P502, DOI 10.1111/j.1529-8817.1988.tb04254.x ElJay A, 1996, B ENVIRON CONTAM TOX, V57, P191 GIGER W, 1984, SCIENCE, V225, P623, DOI 10.1126/science.6740328 Gross-Sorokin MY, 2003, ENVIRON SCI TECHNOL, V37, P2236, DOI 10.1021/es020092n Hense BA, 2003, ENVIRON TOXICOL CHEM, V22, P2727, DOI 10.1897/02-188 HESS FD, 1980, WEED SCI, V28, P515, DOI 10.1017/S0043174500061130 Hoss S, 2002, ENVIRON POLLUT, V120, P169, DOI 10.1016/S0269-7491(02)00161-6 Huisman J, 1999, LIMNOL OCEANOGR, V44, P1781, DOI 10.4319/lo.1999.44.7.1781 Hyenstrand P, 1998, ERGEB LIMNOL, V51, P41 Jahnichen S, 2001, ARCH HYDROBIOL, V150, P177 Jang MH, 2004, AQUAT TOXICOL, V68, P51, DOI 10.1016/j.aquatox.2004.02.002 Jang MH, 2003, FRESHWATER BIOL, V48, P1540, DOI 10.1046/j.1365-2427.2003.01107.x JEFFREY SW, 1975, BIOCH PHYSL PFLANZ, V4, P167 Jobling S, 1996, ENVIRON TOXICOL CHEM, V15, P194, DOI [10.1897/1551-5028(1996)015<0194:IOTGIR>2.3.CO;2, 10.1002/etc.5620150218] Johnson AC, 1998, SCI TOTAL ENVIRON, V210, P271, DOI 10.1016/S0048-9697(98)00017-5 Kaebernick M, 2001, FEMS MICROBIOL ECOL, V35, P1, DOI 10.1111/j.1574-6941.2001.tb00782.x Kruger G., 1981, WATER ENV, P193, DOI [10.1007/978-1-4613-3267-1_15, DOI 10.1007/978-1-4613-3267-1_15] KUZIN AM, 1995, IDEI RADIATSIONNOGO KVESTAK R, 1994, ECOTOX ENVIRON SAFE, V28, P25, DOI 10.1006/eesa.1994.1031 Lahti K, 1997, WATER RES, V31, P1005, DOI 10.1016/S0043-1354(96)00353-3 LEHTIMAKI J, 1994, ARCH HYDROBIOL, V130, P269 LUKAC M, 1993, TOXICON, V31, P293, DOI 10.1016/0041-0101(93)90147-B Lyck S, 2004, J PLANKTON RES, V26, P727, DOI 10.1093/plankt/fbh071 Lyck S, 2003, PHYCOLOGIA, V42, P667, DOI 10.2216/i0031-8884-42-6-667.1 MARTIN W, 1999, HYDROBIOLOGIA, V408, P263 Nakai S, 2001, WATER RES, V35, P1855, DOI 10.1016/S0043-1354(00)00444-9 NEILAN BA, 1995, APPL ENVIRON MICROB, V61, P3785 Oberholster P. J., 2004, African Journal of Biotechnology, V3, P159 *OCD, 1984, GUID TEST CHEM 201 A Okai Y, 2000, FEMS MICROBIOL LETT, V185, P65, DOI 10.1016/S0378-1097(00)00072-0 Orr PT, 1998, LIMNOL OCEANOGR, V43, P1604, DOI 10.4319/lo.1998.43.7.1604 Paerl Hans W., 1996, Phycologia, V35, P25, DOI 10.2216/i0031-8884-35-6S-25.1 Park HD, 1998, ENVIRON TOXIC WATER, V13, P61, DOI 10.1002/(SICI)1098-2256(1998)13:1<61::AID-TOX4>3.0.CO;2-5 PENALOZA R, 1990, FRESHWATER BIOL, V24, P233, DOI 10.1111/j.1365-2427.1990.tb00705.x PRASAD R, 1989, ADJUVANTS AGROCHEMIS, V1, P51 Rapala J, 1997, APPL ENVIRON MICROB, V63, P2206, DOI 10.1128/AEM.63.6.2206-2212.1997 Sabater C, 1996, B ENVIRON CONTAM TOX, V56, P977, DOI 10.1007/s001289900141 Schatz D, 2005, ENVIRON MICROBIOL, V7, P798, DOI 10.1111/j.1462-2920.2005.00752.x Schmude KL, 1999, ENVIRON TOXICOL CHEM, V18, P386, DOI [10.1897/1551-5028(1999)018<0386:EONOBM>2.3.CO;2, 10.1002/etc.5620180304] SEMPLE KT, 1995, FEMS MICROBIOL LETT, V133, P253, DOI 10.1111/j.1574-6968.1995.tb07893.x Servos MR, 1999, WATER QUAL RES J CAN, V34, P123, DOI 10.2166/wqrj.1999.005 SHI L, 1995, ARCH MICROBIOL, V163, P7, DOI 10.1007/BF00262197 SIVONEN K, 1990, APPL ENVIRON MICROB, V56, P2658, DOI 10.1128/AEM.56.9.2658-2666.1990 Sivonen Kaarina, 1996, Phycologia, V35, P12, DOI 10.2216/i0031-8884-35-6S-12.1 Song Lirong, 1998, Phycological Research, V46, P19, DOI 10.1046/j.1440-1835.1998.00120.x Tian SZ, 1997, CHEMOSPHERE, V35, P2713, DOI 10.1016/S0045-6535(97)00329-9 UTKILEN H, 1995, APPL ENVIRON MICROB, V61, P797, DOI 10.1128/AEM.61.2.797-800.1995 VANDERWESTHUIZEN AJ, 1985, PLANTA, V163, P55, DOI 10.1007/BF00395897 Watanabe MF, 1989, J APPL PHYCOL, V1, P161, DOI 10.1007/BF00003879 Wei LP, 1998, CHEMOSPHERE, V37, P747, DOI 10.1016/S0045-6535(98)00076-9 WICKS RJ, 1990, ENVIRON SCI TECHNOL, V24, P1413, DOI 10.1021/es00079a017 Wiedner C, 2003, APPL ENVIRON MICROB, V69, P1475, DOI 10.1128/AEM.69.3.1475-1481.2003 Wong PK, 2000, CHEMOSPHERE, V41, P177, DOI 10.1016/S0045-6535(99)00408-7 Zheng L, 2004, B ENVIRON CONTAM TOX, V73, P698, DOI 10.1007/s00128-004-0482-1 NR 64 TC 54 Z9 70 U1 1 U2 54 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 EI 1096-0953 J9 ENVIRON RES JI Environ. Res. PD JAN PY 2007 VL 103 IS 1 BP 70 EP 78 DI 10.1016/j.envres.2006.05.013 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 128YX UT WOS:000243696700009 PM 16831412 DA 2023-03-13 ER PT J AU Zhang, C Tan, Y Guo, WY Li, C Ji, SZ Li, XK Cai, L AF Zhang, Chi Tan, Yi Guo, Weiying Li, Cai Ji, Shunzi Li, Xiaokun Cai, Lu TI Attenuation of diabetes-induced renal dysfunction by multiple exposures to low-dose radiation is associated with the suppression of systemic and renal inflammation SO AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM LA English DT Article DE diabetic nephropathy; renal oxidative damage; inflammatory factors; radio-adaptive response; radiation hormesis ID PLASMINOGEN-ACTIVATOR INHIBITOR-1; RATE GAMMA-RAYS; ADAPTIVE RESPONSE; IN-VITRO; SUPEROXIDE-DISMUTASE; NITROSATIVE DAMAGE; X-IRRADIATION; TUMOR-CELLS; GERM-CELLS; NEPHROPATHY AB Zhang C, Tan Y, Guo W, Li C, Ji S, Li X, Cai L. Attenuation of diabetes-induced renal dysfunction by multiple exposures to low-dose radiation is associated with the suppression of systemic and renal inflammation. Am J Physiol Endocrinol Metab 297: E1366-E1377, 2009. First published September 29, 2009; doi:10.1152/ajpendo.00478.2009.-Renal protection against diabetes-induced pathogenic injuries by multiple exposures to low-dose radiation (LDR) was investigated to develop a novel approach to the prevention of renal disease for diabetic subjects. C57BL/6J mice were given multiple low-dose streptozotocin (STZ; 60 x 6 mg/kg) to produce a type 1 diabetes. Two weeks after diabetes onset, some of diabetic mice and age-matched nondiabetic mice were exposed whole body to 25 mGy X-rays every other day for 2, 4, 8, 12, and 16 wk. Diabetes caused a significant renal dysfunction, shown by time-dependent increase in urinary microalbumin (Malb) and decrease in urinary creatinine (Cre), and pathological changes, shown by significant increases in renal structural changes and PAS-positive staining. However, diabetes-induced renal dysfunction and pathological changes were significantly, albeit partially, attenuated by multiple exposures to LDR. Furthermore, LDR protection against diabetes-induced renal dysfunction and pathological changes was associated with a significant suppression of diabetes-increased systemic and renal inflammation, shown by significant increases in serum and renal TNF alpha, ICAM-1, IL-18, MCP-1, and PAI-1 contents. To further explore the mechanism by which LDR prevents diabetes-induced renal pathological changes, renal oxidative damage was examined by Western blotting and immunohistochemical staining for 3-nitrotyrosine and 4-hydroxynonenal. Significant increase in oxidative damage was observed in diabetic mice, but not diabetic mice, with LDR. Renal fibrosis, examined by Western blotting of connective tissue growth factor and Masson's trichrome staining, was also evident in the kidneys of diabetic mice but not diabetic mice with LDR. These results suggest that multiple exposures to LDR significantly suppress diabetes-induced systemic and renal inflammatory response and renal oxidative damage, resulting in a prevention of the renal dysfunction and fibrosis. C1 [Tan, Yi; Cai, Lu] Univ Louisville, Dept Pediat, Louisville, KY 40202 USA. [Zhang, Chi; Ji, Shunzi; Li, Xiaokun] Jilin Univ, Sch Publ Hlth, Changchun 130023, Peoples R China. [Tan, Yi; Li, Cai; Li, Xiaokun; Cai, Lu] Wenzhou Med Coll, Chinese Amer Res Inst Diabet Complicat, Wenzhou, Peoples R China. [Guo, Weiying] Jilin Univ, Hosp 1, Changchun 130023, Peoples R China. [Li, Cai] Jilin Univ, Sch Pharm, Changchun 130023, Peoples R China. [Li, Xiaokun] Jilin Agr Univ, Minist Educ, Engn Res Ctr Bioreactor & Pharmaceut Dev, Changchun, Peoples R China. [Li, Xiaokun] Wenzhou Med Coll, Key Lab Biotechnol Pharmaceut Engn, Wenzhou, Peoples R China. [Cai, Lu] Univ Louisville, Dept Med, Louisville, KY 40202 USA. [Cai, Lu] Univ Louisville, Dept Radiat Oncol, Louisville, KY 40202 USA. C3 University of Louisville; Jilin University; Wenzhou Medical University; Jilin University; Jilin University; Jilin Agricultural University; Wenzhou Medical University; University of Louisville; University of Louisville RP Cai, L (corresponding author), Univ Louisville, Dept Pediat, 570 S Preston St,Baxter 1,Suite 304F, Louisville, KY 40202 USA. EM xiaokunli@163.net; l0cai001@louisville.edu RI Cai, Lu/AAG-9920-2019 FU Juvenile Diabetes Research Foundation International [5-2006-382]; Wenzhou Medical College, Wenzhou, China FX This study was supported in part by a research grant from Juvenile Diabetes Research Foundation International (5-2006-382, to L. Cai and X. Li) and a Start-Up Fund for the Chinese-American Research Institute for Diabetic Complications from Wenzhou Medical College (to L. Cai and X. Li), Wenzhou, China. CR Aunapuu M, 2004, ANN ANAT, V186, P277, DOI 10.1016/S0940-9602(04)80017-7 Cai L, 2005, DIABETES, V54, P1829, DOI 10.2337/diabetes.54.6.1829 Cai L, 2002, DIABETES, V51, P1938, DOI 10.2337/diabetes.51.6.1938 CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541 Cai L, 1999, HUM EXP TOXICOL, V18, P419, DOI 10.1191/096032799678840291 de Toledo SM, 2006, RADIAT RES, V166, P849, DOI 10.1667/RR0640.1 DiPetrillo K, 2003, AM J PHYSIOL-RENAL, V284, pF113, DOI 10.1152/ajprenal.00026.2002 DiPetrillo K, 2004, KIDNEY INT, V65, P1676, DOI 10.1111/j.1523-1755.2004.00606.x Dominguez J, 2007, AM J PHYSIOL-RENAL, V293, pF670, DOI 10.1152/ajprenal.00021.2007 Durovic B, 2008, VOJNOSANIT PREGL, V65, P613 Giunti S, 2006, Minerva Med, V97, P241 Hildebrandt G, 1998, INT J RADIAT BIOL, V74, P367, DOI 10.1080/095530098141500 Ibuki W, 1999, J RADIAT RES, V40, P253, DOI 10.1269/jrr.40.253 Ichinose K, 2007, AM J NEPHROL, V27, P554, DOI 10.1159/000107758 Jeong KH, 2009, AM J NEPHROL, V29, P274, DOI 10.1159/000158635 Jiang HY, 2008, RADIAT RES, V170, P477, DOI 10.1667/RR1132.1 Jiang HY, 2008, J RADIAT RES, V49, P219, DOI 10.1269/jrr.07072 Kern PM, 2000, RADIOTHER ONCOL, V54, P273, DOI 10.1016/S0167-8140(00)00141-9 Kim CS, 2007, MOL CELLS, V24, P424 Kim J, 2009, AM J PHYSIOL-RENAL, V296, pF1202, DOI 10.1152/ajprenal.90592.2008 Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7 Lee HB, 2005, NEPHROLOGY, V10, pS11, DOI 10.1111/j.1440-1797.2005.00449.x Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015 Lin JL, 2008, DIABETES CARE, V31, P2338, DOI 10.2337/dc08-0277 Liu GW, 2007, CRIT REV TOXICOL, V37, P587, DOI 10.1080/10408440701493061 Navarro-Gonzalez JF, 2008, J AM SOC NEPHROL, V19, P433, DOI 10.1681/ASN.2007091048 Nicholas SB, 2005, KIDNEY INT, V67, P1297, DOI 10.1111/j.1523-1755.2005.00207.x Pathak CM, 2007, J RADIAT RES, V48, P113, DOI 10.1269/jrr.06063 Rerolle JP, 2000, KIDNEY INT, V58, P1841, DOI 10.1111/j.1523-1755.2000.00355.x Rivero A, 2009, CLIN SCI, V116, P479, DOI 10.1042/CS20080394 Roedel F, 2002, INT J RADIAT BIOL, V78, P711, DOI 10.1080/09553000210137671 Song Y, 2004, EXP MOL PATHOL, V76, P66, DOI 10.1016/j.yexmp.2003.08.002 Taki K, 2009, J RADIAT RES, V50, P241, DOI 10.1269/jrr.09011 Utimura R, 2003, KIDNEY INT, V63, P209, DOI 10.1046/j.1523-1755.2003.00736.x van Kleef EM, 2000, INT J RADIAT BIOL, V76, P641, DOI 10.1080/095530000138303 Vartanyan LS, 2000, BIOCHEMISTRY-MOSCOW+, V65, P442 Wang JJ, 2008, AM J PHYSIOL-RENAL, V294, pF1166, DOI 10.1152/ajprenal.00375.2007 Wang YH, 2009, DIABETES, V58, P1391, DOI 10.2337/db08-1697 Williams Michael D, 2007, Curr Diab Rep, V7, P242, DOI 10.1007/s11892-007-0038-y Yamaoka Kiyonori, 2002, Physiological Chemistry and Physics and Medical NMR, V34, P119 Yamaoka Kiyonori, 1999, Physiological Chemistry and Physics and Medical NMR, V31, P23 Zheng M, 2009, J DIABETES COMPLICAT, V23, P124, DOI 10.1016/j.jdiacomp.2007.11.012 Zhou GH, 2004, AM J PATHOL, V165, P2033, DOI 10.1016/S0002-9440(10)63254-3 NR 43 TC 31 Z9 33 U1 1 U2 6 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0193-1849 EI 1522-1555 J9 AM J PHYSIOL-ENDOC M JI Am. J. Physiol.-Endocrinol. Metab. PD DEC PY 2009 VL 297 IS 6 BP E1366 EP E1377 DI 10.1152/ajpendo.00478.2009 PG 12 WC Endocrinology & Metabolism; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism; Physiology GA 523BX UT WOS:000272047400017 PM 19789291 DA 2023-03-13 ER PT J AU Liu, SL Ma, ZY Zhang, Y Chen, ZW Du, X Mu, YH AF Liu, Silin Ma, Zhiyi Zhang, Ying Chen, Zhongwen Du, Xiao Mu, Yinghui TI Astragalus sinicus Incorporated as Green Manure for Weed Control in Corn SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE milk vetch; goosegrass suppression; allelopathy; corn growth; phytotoxicity ID ORGANIC-CARBON; LEAF-LITTER; RICE STRAW; SOIL; GROWTH; ALLELOPATHY; RESPONSES; ACCUMULATION; MECHANISMS; NITROGEN AB Astragalus sinicus L. (milk vetch), one of the most widespread green manure species, is widely planted in the temperate zone. Eleusine indica L. (goosegrass), a serious annual weed in the world, has evolved resistance to some non-selective herbicides. The use of milk vetch as green manure for weed control in paddy fields was proposed. Aqueous extracts of milk vetch are known to exert a different level of phytotoxicity on weeds and crops. Phytotoxic substances contained in green manure were released into the soil by leaching at the initial stage and decomposition at the later stage after the return of green manure. Considering the need for searching new sustainable strategies for weed control, a question arises: "if milk vetch could be applied in goosegrass control, which stage is the most important to control goosegrass after milk vetch returned to the field, and at the same time, will the subsequent crop, corn (Zea mays L.), be affected by the side effects from milk vetch phytotoxicity?" In this study, the potential of milk vetch for goosegrass control was approached by repeated laboratory experiments, which include the aqueous extract experiment, decomposed experiment, and pot experiment. The effects of milk vetch returning to the field on maize were simulated by a pot experiment. The extract of milk vetch could significantly inhibit the germination of goosegrass at 2% concentration, and the inhibition enhanced with the increase of concentration. In the decomposed liquid experiment, decay time within 15 days, with the increase of decay days or concentration, goosegrass inhibition effect of decomposed liquid was enhanced. When decay time was more than 15 days, the inhibition ability of the decomposed liquid to goosegrass decreased. According to the RI accumulated value, aqueous extract and decomposed liquid have a "hormesis effect" on the germination and growth of goosegrass. Pot experiment proved that the addition of 1-10% (w/w) of milk vetch significantly reduced the germination and growth of goosegrass. On the contrary, the comprehensive analysis showed that the participation of milk vetch was conducive to the growth of corn. Our results constitute evidence that the incorporation of milk vetch into the soil could be a feasible practice to reduce weed infarctions in the corn-based cropping system. C1 [Liu, Silin; Zhang, Ying; Chen, Zhongwen; Du, Xiao; Mu, Yinghui] South China Agr Univ, Coll Agr, Guangzhou, Peoples R China. [Ma, Zhiyi] Zhongkai Univ Agr & Engn, Sch Elect & Mech Engn, Guangzhou, Peoples R China. [Mu, Yinghui] Minist Agr & Rural Affairs, Coll Agron, Sci Observing & Expt Stn Crop Cultivat South China, Guangzhou, Peoples R China. C3 South China Agricultural University; Zhongkai University of Agriculture & Engineering; Ministry of Agriculture & Rural Affairs RP Mu, YH (corresponding author), South China Agr Univ, Coll Agr, Guangzhou, Peoples R China.; Mu, YH (corresponding author), Minist Agr & Rural Affairs, Coll Agron, Sci Observing & Expt Stn Crop Cultivat South China, Guangzhou, Peoples R China. EM youhymoon@hotmail.com FU Natural Science Foundation of Guangdong Province [2018A0303130194]; Bayer Crop Science [2021 Grants4AG] FX This project was supported by Natural Science Foundation of Guangdong Province (2018A0303130194) and Bayer Crop Science supporting project (2021 Grants4AG). CR Alvarez-Iglesias L, 2018, WEED RES, V58, P437, DOI 10.1111/wre.12335 An J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099940 Bao Ying, 2020, Agricultural Biotechnology, V9, P18 Bishal B., 2018, INT J APPL SCI BIOTE, V6, P87, DOI [10.3126/ijasbt.v6i2.20427, DOI 10.3126/IJASBT.V6I2.20427] Chen BM, 2018, BIOL INVASIONS, V20, P1881, DOI 10.1007/s10530-018-1668-5 Chen FQ, 2018, NEW FOREST, V49, P667, DOI 10.1007/s11056-018-9651-7 Chen S., 2018, Acta Horticulturae, P463 Deng QQ, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.568130 Ding HY, 2016, BIOL OPEN, V5, P631, DOI 10.1242/bio.016451 Dogru A, 2020, BRAZ J BOT, V43, P11, DOI 10.1007/s40415-020-00577-9 Dong J, 2019, AQUAT ECOL, V53, P651, DOI 10.1007/s10452-019-09715-2 Eladel H, 2019, J APPL PHYCOL, V31, P3557, DOI 10.1007/s10811-019-01766-0 Gao S, 2020, BMC PLANT BIOL, V20, DOI 10.1186/s12870-020-2282-0 Genovesi G., 2019, J AGR STUD, V7, P272, DOI [10.5296/jas.v7i4.15404, DOI 10.5296/JAS.V7I4.15404] Goharrizi KJ, 2021, S AFR J BOT, V141, P90, DOI 10.1016/j.sajb.2021.04.029 Govea KP, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9040533 Hayat S, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9030235 He ZB, 2020, J SOIL SCI PLANT NUT, V20, P367, DOI 10.1007/s42729-019-00117-9 Huang CZ, 2020, J INTEGR AGR, V19, P518, DOI 10.1016/S2095-3119(19)62781-4 Chen JR, 2020, J INTEGR AGR, V19, P2116, DOI 10.1016/S2095-3119(19)62858-3 Kalmatskaya OA, 2019, PHOTOSYNTH RES, V142, P265, DOI 10.1007/s11120-019-00663-4 Kumari JA, 2018, RUSS J BIOL INVASION, V9, P290, DOI 10.1134/S2075111718030086 Lu P, 2015, J BASIC MICROB, V55, P22, DOI 10.1002/jobm.201300744 Mehmood A, 2018, ENVIRON SCI POLLUT R, V25, P18071, DOI 10.1007/s11356-018-2043-x Nasrollahi P, 2018, RUSS J PLANT PHYSL+, V65, P598, DOI 10.1134/S1021443718040167 Ojija F, 2019, BIOL INVASIONS, V21, P3641, DOI 10.1007/s10530-019-02075-w Otte BA, 2020, CHEMOECOLOGY, V30, P25, DOI 10.1007/s00049-019-00295-z Peng XiaoBang, 2011, Medicinal Plant, V2, P1 Puig CG, 2018, J CHEM ECOL, V44, P658, DOI 10.1007/s10886-018-0983-8 Puig CG, 2013, WEED SCI, V61, P154, DOI 10.1614/WS-D-12-00056.1 Qari SH, 2020, EGYPT J BIOL PEST CO, V30, DOI 10.1186/s41938-020-00216-1 Sendetsky V.M., 2018, AGROLOGY, V1, P281, DOI [10.32819/2617-6106.2018.13007, DOI 10.32819/2617-6106.2018.13007] Song QM, 2019, AGROFOREST SYST, V93, P1307, DOI 10.1007/s10457-018-0240-8 Tang Shan, 2016, Shengtaixue Zazhi, V35, P1730, DOI 10.13292/j.1000-4890.201607.031 Tantray AY, 2020, PHYSIOL MOL BIOL PLA, V26, P83, DOI 10.1007/s12298-019-00721-0 Tao JM, 2017, APPL MICROBIOL BIOT, V101, P1289, DOI 10.1007/s00253-016-7938-1 Tesio F, 2010, INT J SUST DEV WORLD, V17, P377, DOI 10.1080/13504509.2010.507402 Utami AI, 2020, SOIL SCI PLANT NUTR, V66, P389, DOI 10.1080/00380768.2020.1725914 Vijaya Yadav, 2019, International Journal of Vegetable Science, V25, P259 Wang XX, 2018, B ENVIRON CONTAM TOX, V100, P690, DOI 10.1007/s00128-018-2289-5 WILLIAMSON GB, 1988, J CHEM ECOL, V14, P181, DOI 10.1007/BF01022540 Xiao F, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10040769 Zhou X, 2020, J INTEGR AGR, V19, P2103, DOI 10.1016/S2095-3119(20)63206-3 Yang Bin-juan, 2013, Yingyong Shengtai Xuebao, V24, P2533 Yang ZP, 2014, J INTEGR AGR, V13, P1772, DOI 10.1016/S2095-3119(13)60565-1 Zhang C, 2021, J INTEGR AGR, V20, P2180, DOI 10.1016/S2095-3119(21)63682-1 Zhang J.Y., 2019, 9 S ALLELOPATHY PLAN Zhang KM, 2016, ENVIRON SCI POLLUT R, V23, P3578, DOI 10.1007/s11356-015-5589-x Zhang XQ, 2017, SUGAR TECH, V19, P394, DOI 10.1007/s12355-016-0479-1 Zhou GP, 2020, PEDOSPHERE, V30, P661, DOI 10.1016/S1002-0160(19)60845-3 Zhou X, 2019, J INTEGR AGR, V18, P2381, DOI 10.1016/S2095-3119(18)62096-9 NR 51 TC 5 Z9 5 U1 7 U2 13 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD APR 29 PY 2022 VL 13 AR 829421 DI 10.3389/fpls.2022.829421 PG 13 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 1H2LB UT WOS:000796376200001 PM 35574090 OA gold, Green Published DA 2023-03-13 ER PT J AU Singh, R Kishor, R Singh, V Singh, V Prasad, P Aulakh, NS Tiwari, UK Kumar, B AF Singh, Rajesh Kishor, Ram Singh, Vivek Singh, Vagmi Prasad, Priyanka Aulakh, Navneet Singh Tiwari, Umesh Kumar Kumar, Birendra TI Radio-frequency (RF) room temperature plasma treatment of sweet basil seeds (Ocimum basilicum L.) for germination potential enhancement by immaculation SO JOURNAL OF APPLIED RESEARCH ON MEDICINAL AND AROMATIC PLANTS LA English DT Article DE Cold plasma and radio-frequency; Enzymatic and nonenzymatic antioxidant; Germination; Seedling vigor index; Hormesis; Sweet basil ID ATMOSPHERIC-PRESSURE PLASMA; COLD-PLASMA; NONTHERMAL PLASMA; SEEDLING GROWTH; WHEAT; MICROORGANISMS; IRRADIATION; STRESS AB Ocimum basilicum L. is an antiviral and immunity boosting medicinal plant and culinary herb. Potential use of sweet basils in COVID 19 prevention and management is making its demand rise. This study is aimed at germination potential enhancement of sweet basil seeds. Reported study is evidenced with scientific data of radio-frequency cold plasma treatment using Ar + O-2 feed gas. O. basilicum seeds, placed inside the rotating glass bottle, were directly exposed to RF (13.56 MHz) plasma produced in Ar + O-2 feed gas. Seed treatment was done using RF source power (60 W, 150 W, 240 W), process pressure (0.2 mbar, 0.4 mbar, 0.6 mbar), and treatment time (5 min, 10 min, 15 min) at different combinations. Results show that, the most efficient treatment provide up to similar to 89 % of the germination percentage which is an enhancement by 32.3 % from the control. SEM images revealed slight shrinkage in the seed size with eroded appearance over the seed. Enhancement of lipid peroxidation, show that oxidation of seed coat may propagate internally. Water imbibition analysis, of the treated seeds, was carried out for 2-12 hours. Further analysis of seed weight, on every one hour, after soaking shows enhanced water absorption capability except the treatment at 240 W, 0.6 mbar and 15 min. Plasma treatment enhanced carbohydrate content and protein content which is reported to be due to increased primary metabolism. Whereas, increased activity of secondary metabolism results in the enhancement of enzymatic (catalase) and non-enzymatic antioxidants (proline). Vital growth parameters, such as SVI I and SVI II, got amplified by 37 % and 133 % respectively after treatment. Ameliorative effects of plasma treatment are found highly significant with a positive and significant correlation value (p < 0.01) between germination percentages, SVI I, SVI II, carbohydrate, protein and proline show their interrelationship. Ar + O-2 plasma treatment is found to bring forth significant changes in the O. basilicum seeds which eventually enhanced the germination potential and it could be a very promising technology for the medicinal crop. C1 [Singh, Rajesh; Aulakh, Navneet Singh; Tiwari, Umesh Kumar] Cent Sci Instruments Org CSIO, Council Sci & Ind Res CSIR, Chandigarh 160030, India. [Singh, Rajesh; Kishor, Ram; Singh, Vagmi; Prasad, Priyanka; Aulakh, Navneet Singh; Tiwari, Umesh Kumar; Kumar, Birendra] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India. [Kishor, Ram; Singh, Vivek; Singh, Vagmi; Prasad, Priyanka; Kumar, Birendra] Cent Inst Med & Aromat Plants CIMAP, Council Sci & Ind Res CSIR, Genet & Plant Breeding Div, Seed Qual Lab MAPs, Lucknow 226015, Uttar Pradesh, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - Central Scientific Instruments Organisation (CSIO); Academy of Scientific & Innovative Research (AcSIR); Council of Scientific & Industrial Research (CSIR) - India; CSIR - Central Institute of Medicinal & Aromatic Plants (CIMAP) RP Kumar, B (corresponding author), Cent Inst Med & Aromat Plants CIMAP, Council Sci & Ind Res CSIR, Lucknow 226015, Uttar Pradesh, India. EM birendrak67@rediffmail.com OI , Rajesh/0000-0002-6360-3373 FU CSIR-Aroma Mission Phase II, CSIR, New Delhi [HCP007] FX Authors are thankful to Director, CSIR-CSIO, Chandigarh, Director, CSIR-CIMAP, Lucknow, and SIC-CRC (Scientist-in-charge - CSIR-CIMAP Research Centre) Pantnagar, US Nagar for providing the infrastructure and facility to carrying out experimental work on sweet basil seeds. Authors are also thankful to the Dr. RK Lal for statistical analysis, Dr. Pal Dinesh Kumar Balkishan for manuscript editing and AcSIR academy. This study was financially supported CSIR-Aroma Mission Phase II (HCP007) , CSIR, New Delhi. CR Adhikari B, 2020, FREE RADICAL BIO MED, V156, P57, DOI 10.1016/j.freeradbiomed.2020.06.003 Adhikari B, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00077 Aguilar C.H., 2009, ACTA AGROPHYS, V14, P7 Al-Bachir M, 2007, BIORESOURCE TECHNOL, V98, P1871, DOI 10.1016/j.biortech.2005.05.025 Alves C, 2016, SCI REP-UK, V6, DOI 10.1038/srep33722 Ambrico PF, 2020, J PHYS D APPL PHYS, V53, DOI 10.1088/1361-6463/ab5b1b Ambrico PF, 2017, J PHYS D APPL PHYS, V50, DOI 10.1088/1361-6463/aa77c8 Araujo SD, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00646 Attri P, 2020, PROCESSES, V8, DOI 10.3390/pr8081002 Bafoi M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44927-4 Berry J.A., 1982, ENV REGULATION PHOTO, P294 Blaszczak W, 2007, FOOD RES INT, V40, P415, DOI 10.1016/j.foodres.2006.10.018 Bormashenko E, 2015, J EXP BOT, V66, P4013, DOI 10.1093/jxb/erv206 Bormashenko E, 2012, SCI REP-UK, V2, DOI 10.1038/srep00741 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calcabrini C, 2017, BIOTECHNOL APPL BIOC, V64, P415, DOI 10.1002/bab.1495 Perez-Piza MC, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61913-3 CHANDLEE JM, 1984, THEOR APPL GENET, V69, P71, DOI 10.1007/BF00262543 Charoux CMG, 2021, J APPL MICROBIOL, V130, P325, DOI 10.1111/jam.14823 Cui DJ, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01322 de Groot GJJB, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32692-9 De Souza F.H.D., 2001, BRAZ J BOT, V24, P365, DOI [10.1590/S0100-84042001000400002, DOI 10.1590/S0100-84042001000400002] Martinez-Ballesta MD, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10040504 Denes F., 1999, J PHOTOPOLYM SCI TEC, V12, P27, DOI [10.2494/photopolymer.12.27, DOI 10.2494/PHOTOPOLYMER.12.27] Dhayal M, 2006, VACUUM, V80, P499, DOI 10.1016/j.vacuum.2005.06.008 Dubinov AE, 2000, IEEE T PLASMA SCI, V28, P180, DOI 10.1109/27.842898 DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017 Falahat A, 2018, PRAMANA-J PHYS, V90, DOI 10.1007/s12043-018-1520-6 Filatova I, 2020, J PHYS D APPL PHYS, V53, DOI 10.1088/1361-6463/ab7960 Gaunt LF, 2006, IEEE T PLASMA SCI, V34, P1257, DOI 10.1109/TPS.2006.878381 Gomez-Ramirez A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06164-5 Goussous Saba J., 2010, Archives of Phytopathology and Plant Protection, V43, P1746, DOI 10.1080/03235401003633832 Grene Ruth, 2002, Arabidopsis Book, V1, pe0036, DOI 10.1199/tab.0036.1 Hayashi N, 2015, JPN J APPL PHYS, V54, DOI 10.7567/JJAP.54.06GD01 Hayat S, 2012, PLANT SIGNAL BEHAV, V7, P1456, DOI 10.4161/psb.21949 Holc M, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8110462 Homa K, 2021, HORTSCIENCE, V56, P42, DOI 10.21273/HORTSCI15338-20 Iqbal T, 2019, J LASER APPL, V31, DOI 10.2351/1.5109764 Kagale S, 2004, PHYSIOL MOL PLANT P, V65, P91, DOI 10.1016/j.pmpp.2004.11.008 Kitazaki S, 2012, JPN J APPL PHYS, V51, DOI 10.1143/JJAP.51.01AE01 Kumar B, 2012, J CROP IMPROV, V26, P532, DOI 10.1080/15427528.2012.659418 Liu J, 2016, SCI REP-UK, V6, DOI 10.1038/srep22403 Lynikiene S., 2006, International Agrophysics, V20, P195 Mattioli R, 2009, PLANT SIGNAL BEHAV, V4, P1016, DOI 10.4161/psb.4.11.9797 Meng YR, 2017, PLASMA CHEM PLASMA P, V37, P1105, DOI 10.1007/s11090-017-9799-5 Mildaziene V, 2018, PLASMA PROCESS POLYM, V15, DOI 10.1002/ppap.201700059 Molina R, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34801-0 Pau, 2017, PLASMA PROCESS POLYM, V15 Pawlat J, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194349 Perez Piza M.C., 2018, INNOVATION FOOD SCI, V5, P1466 Prasad P, 2018, J APPL RES MED AROMA, V9, P110, DOI 10.1016/j.jarmap.2018.03.005 Puac N, 2018, PLASMA PROCESS POLYM, V15, DOI 10.1002/ppap.201700174 Rahman MM, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-28960-3 Randeniya LK, 2015, PLASMA PROCESS POLYM, V12, P608, DOI 10.1002/ppap.201500042 Reznikov S, 2016, J GEN PLANT PATHOL, V82, P273, DOI 10.1007/s10327-016-0669-4 Roy NC, 2018, PLASMA CHEM PLASMA P, V38, P13, DOI 10.1007/s11090-017-9855-1 Sadhu S, 2017, LWT-FOOD SCI TECHNOL, V78, P97, DOI 10.1016/j.lwt.2016.12.026 Sarinont T, 2016, ARCH BIOCHEM BIOPHYS, V605, P129, DOI 10.1016/j.abb.2016.03.024 Selcuk M, 2008, BIORESOURCE TECHNOL, V99, P5104, DOI 10.1016/j.biortech.2007.09.076 Seol YB, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00480-6 Sera B, 2008, PLASMA SCI TECHNOL, V10, P506, DOI 10.1088/1009-0630/10/4/22 Sera B, 2010, IEEE T PLASMA SCI, V38, P2963, DOI 10.1109/TPS.2010.2060728 Shashikanthalu SP, 2020, J APPL RES MED AROMA, V18, DOI 10.1016/j.jarmap.2020.100259 Singh R, 2019, J APPL RES MED AROMA, V12, P78, DOI 10.1016/j.jarmap.2018.11.005 Sohan MSR, 2021, PLASMA CHEM PLASMA P, V41, P923, DOI 10.1007/s11090-021-10158-7 da Silva DLS, 2018, REV CAATINGA, V31, P632, DOI 10.1590/1983-21252018v31n311rc Stolarik T, 2015, PLASMA CHEM PLASMA P, V35, P659, DOI 10.1007/s11090-015-9627-8 Taheri S, 2020, INNOV FOOD SCI EMERG, V66, DOI 10.1016/j.ifset.2020.102488 Tomekova J, 2020, PLASMA CHEM PLASMA P, V40, P1571, DOI 10.1007/s11090-020-10109-8 Volin JC, 2000, CROP SCI, V40, P1706, DOI 10.2135/cropsci2000.4061706x Volkov AG, 2019, BIOELECTROCHEMISTRY, V128, P175, DOI 10.1016/j.bioelechem.2019.04.012 Wang XQ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04963-4 Weber D, 2015, REDOX BIOL, V5, P367, DOI 10.1016/j.redox.2015.06.005 Xu G, 2012, NUCL INSTRUM METH B, V287, P76, DOI 10.1016/j.nimb.2012.05.038 Yao YN, 2005, ENVIRON EXP BOT, V54, P286, DOI 10.1016/j.envexpbot.2004.09.006 Zahoranova A, 2016, PLASMA CHEM PLASMA P, V36, P397, DOI 10.1007/s11090-015-9684-z Zahoranova A, 2018, PLASMA CHEM PLASMA P, V38, P969, DOI 10.1007/s11090-018-9913-3 Zhang ShuJie, 2011, Agricultural Science & Technology - Hunan, V12, P484 NR 78 TC 3 Z9 3 U1 3 U2 7 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS EI 2214-7861 J9 J APPL RES MED AROMA JI J. Appl. Res. Med. Aromat. Plants PD FEB PY 2022 VL 26 AR 100350 DI 10.1016/j.jarmap.2021.100350 EA NOV 2021 PG 12 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA WW8CP UT WOS:000718137700001 PM 36568438 OA Green Published DA 2023-03-13 ER PT J AU Marini, E Magi, G Mingoia, M Pugnaloni, A Facinelli, B AF Marini, Emanuela Magi, Gloria Mingoia, Marina Pugnaloni, Armanda Facinelli, Bruna TI Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant, Cell-Invasive Group A Streptococci SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE capsaicin; Group A streptococci; virulence; biofilm; haemolytic activity; cell invasion; hormesis ID BIOFILM FORMATION; SUBINHIBITORY CONCENTRATIONS; STAPHYLOCOCCUS-AUREUS; MACROLIDE RESISTANCE; RESPIRATORY CELLS; ESSENTIAL OILS; PYOGENES; ANTIBIOTICS; STRAINS; QUANTIFICATION AB Capsaicin (8-methyl-N-vanillyI-6-nonenamide) is the active component of Capsicum plants (chili peppers), which are grown as food and for medicinal purposes since ancient times, and is responsible for the pungency of their fruit. Besides its multiple pharmacological and physiological properties (pain relief, cancer prevention, and beneficial cardiovascular, and gastrointestinal effects) capsaicin has recently attracted considerable attention because of its antimicrobial and anti-virulence activity. This is the first study of its in vitro antibacterial and anti-virulence activity against Streptococcus pyogenes (Group A streptococci, GAS), a major human pathogen. The test strains were previously characterized, erythromycin-susceptible (n = 5) and erythromycin-resistant (n = 27), cell-invasive pharyngeal isolates. The MICs of capsaicin were 64-128 mu g/mL (the most common MIC was 128 mu g/mL). The action of capsaicin was bactericidal, as suggested by MBC values that were equal or close to the MICs, and by early detection of dead cells in the live/dead assay. No capsaicin-resistant mutants were obtained in single-step resistance selection studies. Interestingly, growth in presence of sublethal capsaicin concentrations induced an increase in biofilm production (p <= 0.05) and in the number of bacteria adhering to A549 monolayers, and a reduction in cell-invasiveness and haemolytic activity (both p <= 0.05). Cell invasiveness fell so dramatically that a highly invasive strain became non-invasive. The dose-response relationship, characterized by opposite effects of low and high capsaicin doses, suggests a hormetic response. The present study documents that capsaicin has promising bactericidal activity against erythromycin-resistant, cell-invasive pharyngeal GAS isolates. The fact that sublethal concentrations inhibited cell invasion and reduced haemolytic activity, two important virulence traits of GAS, is also interesting, considering that cell invasive erythromycin resistant strains can evade beta-lactams by virtue of intracellular location and macrolides by virtue of resistance, thus escaping antibiotic treatment. By inhibiting intracellular invasion and haemolytic activity, capsaicin could thus prevent both formation of a difficult to eradicate intracellular reservoir, and infection spread to deep tissues. C1 [Marini, Emanuela; Magi, Gloria; Mingoia, Marina; Facinelli, Bruna] Polytech Univ Marche, Dept Biomed Sci & Publ Hlth, Microbiol Unit, Ancona, Italy. [Pugnaloni, Armanda] Polytech Univ Marche, Dept Clin & Mol Sci, Ancona, Italy. C3 Marche Polytechnic University; Marche Polytechnic University RP Facinelli, B (corresponding author), Polytech Univ Marche, Dept Biomed Sci & Publ Hlth, Microbiol Unit, Ancona, Italy. EM b.facinelli@univpm.it RI Mingoia, Marina/AAB-3553-2019; Pugnaloni, Armanda/AAE-9049-2020; Mingoia, Marina/AAC-2753-2020; Mingoia, Marina/AAE-9124-2019 OI Mingoia, Marina/0000-0001-8225-7843; CR Andersson DI, 2014, NAT REV MICROBIOL, V12, P465, DOI 10.1038/nrmicro3270 Baldassarri L, 2006, J CLIN MICROBIOL, V44, P2721, DOI 10.1128/JCM.00512-06 Bisno AL, 2003, LANCET INFECT DIS, V3, P191, DOI 10.1016/S1473-3099(03)00576-0 Chatterjee S, 2010, FEMS MICROBIOL LETT, V306, P54, DOI 10.1111/j.1574-6968.2010.01931.x CHRISTENSEN GD, 1985, J CLIN MICROBIOL, V22, P996, DOI 10.1128/JCM.22.6.996-1006.1985 Cichewicz RH, 1996, J ETHNOPHARMACOL, V52, P61, DOI 10.1016/0378-8741(96)01384-0 Clinical and Laboratory Standards Institute, 2015, M100S25 CLSI S Cowan MM, 1999, CLIN MICROBIOL REV, V12, P564, DOI 10.1128/CMR.12.4.564 Cunningham MW, 2008, ADV EXP MED BIOL, V609, P29, DOI 10.1007/978-0-387-73960-1_3 Darfeuille-Michaud A, 1998, GASTROENTEROLOGY, V115, P1405, DOI 10.1016/S0016-5085(98)70019-8 Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 Facinelli B, 1998, MICROBIOL-SGM, V144, P109, DOI 10.1099/00221287-144-1-109 Facinelli B, 2001, LANCET, V358, P30, DOI 10.1016/S0140-6736(00)05253-3 Fiedler T, 2015, FRONT CELL INFECT MI, V5, DOI 10.3389/fcimb.2015.00015 Gillespie SH, 1998, LANCET, V352, P1954, DOI 10.1016/S0140-6736(05)61327-X Giovanetti E, 2002, ANTIMICROB AGENTS CH, V46, P3750, DOI 10.1128/AAC.46.12.3750-3755.2002 Gracia M, 2009, DIAGN MICR INFEC DIS, V64, P52, DOI 10.1016/j.diagmicrobio.2008.12.018 Hemaiswarya S, 2008, PHYTOMEDICINE, V15, P639, DOI 10.1016/j.phymed.2008.06.008 Hyldgaard M, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00012 Jensen PG, 2003, PEST MANAG SCI, V59, P1007, DOI 10.1002/ps.705 Kalia NP, 2012, J ANTIMICROB CHEMOTH, V67, P2401, DOI 10.1093/jac/dks232 Kaplan EL, 2005, CLIN INFECT DIS, V41, P609, DOI 10.1086/432480 Kaplan JB, 2011, INT J ARTIF ORGANS, V34, P737, DOI 10.5301/ijao.5000027 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Liang YM, 2012, J MED MICROBIOL, V61, P975, DOI 10.1099/jmm.0.042309-0 Logan LK, 2012, PEDIATRICS, V129, pE798, DOI 10.1542/peds.2011-1198 LORIAN V, 1975, B NEW YORK ACAD MED, V51, P1046 Luo XJ, 2011, EUR J PHARMACOL, V650, P1, DOI 10.1016/j.ejphar.2010.09.074 Magi G, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00165 Nascimento PLA, 2014, MOLECULES, V19, P5434, DOI 10.3390/molecules19045434 Pizarro-Cerda J, 2006, CELL, V124, P715, DOI 10.1016/j.cell.2006.02.012 Qiu JZ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033032 Reiland H.A., 2014, J INFECT DIS THERAPY, V8, P145, DOI [10.4172/2332-0877.1000145, DOI 10.4172/2332-0877.1000145] Smith-Palmer A, 2004, J MED MICROBIOL, V53, P1023, DOI 10.1099/jmm.0.45567-0 Spinaci C, 2004, J CLIN MICROBIOL, V42, P639, DOI 10.1128/JCM.42.2.639-644.2004 Spinaci C, 2006, PEDIATR INFECT DIS J, V25, P880, DOI 10.1097/01.inf.0000238136.63851.4a Stepanovic S, 2000, J MICROBIOL METH, V40, P175, DOI 10.1016/S0167-7012(00)00122-6 Sumitomo T, 2011, J BIOL CHEM, V286, P2750, DOI 10.1074/jbc.M110.171504 Varaldo PE, 1999, CLIN INFECT DIS, V29, P869, DOI 10.1086/520451 Vignaroli C, 2013, ENVIRON SCI TECHNOL, V47, P13772, DOI 10.1021/es4019139 Xu QW, 2005, ENVIRON TOXICOL, V20, P467, DOI 10.1002/tox.20134 Zhou Y, 2014, EUR J CLIN MICROBIOL, V33, P211, DOI 10.1007/s10096-013-1947-0 NR 42 TC 52 Z9 54 U1 1 U2 58 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD NOV 13 PY 2015 VL 6 AR 1281 DI 10.3389/fmicb.2015.01281 PG 7 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA CW9QK UT WOS:000365333100001 PM 26617603 OA Green Published, gold DA 2023-03-13 ER PT J AU Lloyd, KL Davis, DD Marini, RP Decoteau, DR AF Lloyd, Kirsten L. Davis, Donald D. Marini, Richard P. Decoteau, Dennis R. TI Response of Sensitive and Resistant Snap Bean Genotypes to Nighttime Ozone Concentration SO JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE LA English DT Article DE Phaseolus vulgaris; stomatal conductance; R123; S156 ID PHASEOLUS-VULGARIS L.; STOMATAL CONDUCTANCE; DIEL TREND; EXPOSURE; VEGETATION; FLUX; PHOTOSYNTHESIS; TRANSPIRATION; MECHANISMS; POLLUTION AB Effects of nighttime (2000 to 0700 HR) O-3 on the pod mass of sensitive (S156) and resistant (R123) snap bean (Phaseolus vulgaris) genotypes were assessed using continuous stirred tank reactors located within a greenhouse. Two concentration-response relationship trials were designed to evaluate yield response to nighttime O-3 exposure (10 to 265 ppb) in combination with daytime exposure at background levels (44 and 62 ppb). Three replicated trials tested the impact of nighttime O-3 treatment at means of 145, 144, and 145 ppb on yields. In addition, stomatal conductance (g(s)) measurements documented diurnal variations and assessed the effects of genotype and leaf age. During the concentration-response experiments, pod mass had a significant linear relationship with the nighttime O-3 concentration across genotypes. Yield losses of 15% and 50% occurred at nighttime exposure levels of approximate to 45 and 145 ppb, respectively, for S156, whereas R123 yields decreased by 15% at approximate to 150 ppb. At low nighttime O-3 levels of approximate to 100 ppb, R123 yields initially increased up to 116% of the treatment that received no added nighttime O-3, suggesting a potential hormesis effect for R123, but not for S156. Results from replicated trials revealed significant yield losses in both genotypes following combined day and night exposure, whereas night-only exposure caused significant decreases only for S156. The g(s) rates ranged from less than 100 mmol.m(-2) .s(-1) in the evening to midday levels more than 1000 mmol.m(-2).s(-1). At sunrise and sunset, S156 had significantly higher g(s) rates than R123, suggesting a greater potential O-3 flux into leaves. Across genotypes, younger rapidly growing leaves had higher g s rates than mature fully expanded leaves when evaluated at four different times during the day. Although these were long-term trials, g(s )measurements and observations of foliar injury development suggest that acute injury, occurring at approximately the time of sunrise, also may have contributed to yield losses. To our knowledge, these are the first results to confirm that the relative O-3 sensitivity of the S156/R123 genotypes is valid for nighttime exposure. C1 [Lloyd, Kirsten L.; Marini, Richard P.; Decoteau, Dennis R.] Penn State Univ, Dept Plant Sci, 102 Tyson Bldg, University Pk, PA 16802 USA. [Davis, Donald D.] Penn State Univ, Dept Plant Pathol & Environm Microbiol, 211 Buckhout Lab, University Pk, PA 16802 USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park RP Lloyd, KL (corresponding author), Penn State Univ, Dept Plant Sci, 102 Tyson Bldg, University Pk, PA 16802 USA. EM kll24@psu.edu FU U.S. Department of Agriculture National Institute of Food and Federal Appropriations [PEN04564, 1002837]; Pennsylvania Department of Environmental Protection, Bureau of Air Quality; Harrisburg, PA; Pennsylvania Agricultural Experiment Station; Department of Plant Science, The Pennsylvania State University; NIFA [1002837, 690369] Funding Source: Federal RePORTER FX Funding provided by the U.S. Department of Agriculture National Institute of Food and Federal Appropriations under Project PEN04564, Accession number 1002837; Pennsylvania Department of Environmental Protection, Bureau of Air Quality; Harrisburg, PA; the Pennsylvania Agricultural Experiment Station; and the Department of Plant Science, The Pennsylvania State University. We thank Scott DiLoreto, Jim Savage, and Jon Ferdinand for technical expertise; Dr. Kent Burkey for providing seed and expertise; Dr. Rick Bates and Dr. Amy Huff for reviewing the manuscript; and Emily Isaacs, Alexis Dolby, and Michael Potts for greenhouse assistance. CR Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2017, SCI TOTAL ENVIRON, V580, P1046, DOI 10.1016/j.scitotenv.2016.12.059 Ainsworth EA, 2017, PLANT J, V90, P886, DOI 10.1111/tpj.13298 [Anonymous], 2014, PRINCIPLES SOIL PLAN Balajee K. L., 2017, International Journal of Medicine and Public Health, V7, P56, DOI 10.5530/ijmedph.2017.1.10 Booker F, 2009, J INTEGR PLANT BIOL, V51, P337, DOI 10.1111/j.1744-7909.2008.00805.x Burkey KO, 2005, J ENVIRON QUAL, V34, P1081, DOI 10.2134/jeq2004.0008 BUTLER LK, 1979, J AM SOC HORTIC SCI, V104, P213 Caird MA, 2007, PLANT PHYSIOL, V143, P4, DOI 10.1104/pp.106.092940 Dawson TE, 2007, TREE PHYSIOL, V27, P561, DOI 10.1093/treephys/27.4.561 Emberson LD, 2000, ENVIRON POLLUT, V109, P393, DOI 10.1016/S0269-7491(00)00042-7 Flowers MD, 2007, ENVIRON EXP BOT, V61, P190, DOI 10.1016/j.envexpbot.2007.05.009 Forlani A, 2005, FRESEN ENVIRON BULL, V14, P478 Goknur AB, 2001, J AM SOC HORTIC SCI, V126, P37, DOI 10.21273/JASHS.126.1.37 Grantz DA, 2013, J EXP BOT, V64, P1703, DOI 10.1093/jxb/ert032 Grantz DA, 2018, NEW PHYTOL, V219, P275, DOI 10.1111/nph.15102 Grantz DA, 2014, ATMOS ENVIRON, V98, P571, DOI 10.1016/j.atmosenv.2014.08.068 GunthardtGoerg MS, 1996, J PLANT PHYSIOL, V148, P207, DOI 10.1016/S0176-1617(96)80316-6 Heath RL, 2009, ATMOS ENVIRON, V43, P2919, DOI 10.1016/j.atmosenv.2009.03.011 Heck W.W., 1978, CONTINUOUS STIRRED T Hoshika Y, 2019, SCI TOTAL ENVIRON, V692, P713, DOI 10.1016/j.scitotenv.2019.07.288 Hoshika Y, 2013, ENVIRON EXP BOT, V88, P19, DOI 10.1016/j.envexpbot.2011.12.004 HUCL P, 1982, CAN J BOT, V60, P2187, DOI 10.1139/b82-268 Lee EH, 1999, J AIR WASTE MANAGE, V49, P669, DOI 10.1080/10473289.1999.10463835 LEE EH, 1982, PLANT PHYSIOL, V69, P1444, DOI 10.1104/pp.69.6.1444 Lefohn A.S., 2019, BRIDGING GAP OZONE E Li K, 2019, P NATL ACAD SCI USA, V116, P422, DOI 10.1073/pnas.1812168116 Li S, 2017, PLANT CELL ENVIRON, V40, P1984, DOI 10.1111/pce.13003 Lloyd K.L., 2019, THESIS Lloyd KL, 2018, J AM SOC HORTIC SCI, V143, P23, DOI 10.21273/JASHS04253-17 MATYSSEK R, 1995, TREE PHYSIOL, V15, P159, DOI 10.1093/treephys/15.3.159 McGrath JM, 2015, P NATL ACAD SCI USA, V112, P14390, DOI 10.1073/pnas.1509777112 Mills G, 2018, ELEMENTA-SCI ANTHROP, V6, DOI 10.1525/elementa.302 Musselman RC, 2006, ATMOS ENVIRON, V40, P1869, DOI 10.1016/j.atmosenv.2005.10.064 Musselman RC, 2000, ATMOS ENVIRON, V34, P719, DOI 10.1016/S1352-2310(99)00355-6 Orendovici T., 2005, THESIS Pell EJ, 1997, PHYSIOL PLANTARUM, V100, P264, DOI 10.1034/j.1399-3054.1997.1000207.x REICH PB, 1985, SCIENCE, V230, P566, DOI 10.1126/science.230.4725.566 Reinert RA, 2000, J AM SOC HORTIC SCI, V125, P222, DOI 10.21273/JASHS.125.2.222 Richardson F, 2017, TREE PHYSIOL, V37, P869, DOI 10.1093/treephys/tpx073 Salvatori E, 2013, ENVIRON EXP BOT, V87, P79, DOI 10.1016/j.envexpbot.2012.09.008 SATTERTHWAITE FE, 1946, BIOMETRICS BULL, V2, P110, DOI 10.2307/3002019 Stripe CM, 2014, ENVIRON SCI-PROC IMP, V16, P2488, DOI [10.1039/C4EM00143E, 10.1039/c4em00143e] Toro G, 2019, THEOR EXP PLANT PHYS, V31, P483, DOI 10.1007/s40626-019-00161-x U.S. Environmental Protection Agency, 1993, EPA600891049AFCF U.S. Environmental Protection Agency, 2013, EPA600R10076F U.S. Environmental Protection Agency, 2017, 80FR65291 US EPA Wang SG, 2015, J AGR SCI-CAMBRIDGE, V153, P837, DOI 10.1017/S0021859615000040 Wang T, 2017, SCI TOTAL ENVIRON, V575, P1582, DOI 10.1016/j.scitotenv.2016.10.081 WINNER WE, 1989, P NATL ACAD SCI USA, V86, P8828, DOI 10.1073/pnas.86.22.8828 Yan YY, 2018, ATMOS CHEM PHYS, V18, P1185, DOI 10.5194/acp-18-1185-2018 NR 52 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC HORTICULTURAL SCIENCE PI ALEXANDRIA PA 113 S WEST ST, STE 200, ALEXANDRIA, VA 22314-2851 USA SN 0003-1062 EI 2327-9788 J9 J AM SOC HORTIC SCI JI J. Am. Soc. Hortic. Sci. PD NOV PY 2020 VL 145 IS 6 BP 331 EP 339 DI 10.21273/JASHS04808-19 PG 9 WC Horticulture WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA OO4NO UT WOS:000587357600001 OA gold DA 2023-03-13 ER PT J AU Peichoto, ME Tavares, FL DeKrey, G Mackessy, SP AF Peichoto, Maria E. Tavares, Flavio L. DeKrey, Gregory Mackessy, Stephen P. TI A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: Identification of a protein with inhibitory activity against the parasite SO TOXICON LA English DT Article DE Antileishmanial activity; Hypsiglena torquata texana; Philodryas baroni; Philodiyas olfersii olfersii; Philodryas patagoniensis; Phospholipase A(2); Trimorphodon biscutatus lambda ID CERASTES-CERASTES VENOM; AMINO-ACID OXIDASE; PHOSPHOLIPASE A(2); ANTILEISHMANIAL ACTIVITY; TRYPANOSOMA-CRUZI; COLUBRID SNAKES; CELLS; PROLIFERATION; ACTIVATION; HORMESIS AB Leishmania parasites of several species cause cutaneous and visceral disease to millions of people worldwide, and treatment for this vector-borne protozoan parasite typically involves administration of highly toxic antimonial drugs. Snake venoms are one of the most concentrated enzyme sources in nature, displaying a broad range of biological effects, and several drugs now used in humans were derived from venoms. In this study, we compared the effects of the venoms of the South American rear-fanged snakes Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV), and the North American rear-fanged snakes Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV), on the growth of Leishmania major, a causative agent of cutaneous leishmaniasis. Different concentrations of each venom were incubated with the log-phase promastigote stage of L. major. TblV showed significant anti-leishmanial activity (IC50 of 108.6 mu g/mL) at its highest concentrations; however, it induced parasite proliferation at intermediate concentrations. PpV was not very active in decreasing the parasitic growth, and a high final concentration (1.7 mg/mL) was necessary to inhibit proliferation by only 51.5%+/- 3.6%. PbV, PooV and HttV, at final concentrations of 562, 524 and 438 mu g/mL respectively, had no significant effect on L major growth. The phospholipase A(2) of TblV (trimorphin) was isolated and assayed as for crude venom, and it also exhibited dose-dependent biphasic effects on the parasite culture, with potent cytotoxicity at higher concentrations (IC50 of 0.25 mu M; 3.6 mu g/mL) and stimulation of proliferation at very low concentrations. Anti-leishmanial activity of TblV appears to be solely due to the action of trimorphin. This is the first report of anti-leishmanial activity of rear-fanged snake venoms, and these results suggest novel possibilities for discovering new protein-based drugs that might be used as possible agents against leishmaniasis as well as tools to study the biology of Leishmania parasites. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Peichoto, Maria E.] Univ Nacl Nordeste, Fac Ciencias Vet, Catedra Farmacol, RA-3400 Corrientes, Argentina. [Peichoto, Maria E.; Tavares, Flavio L.; DeKrey, Gregory; Mackessy, Stephen P.] Univ No Colorado, Sch Biol Sci, Greeley, CO 80639 USA. C3 University of Northern Colorado RP Peichoto, ME (corresponding author), Univ Nacl Nordeste, Fac Ciencias Vet, Catedra Farmacol, Sargento Cabral 2139, RA-3400 Corrientes, Argentina. EM mepeichoto@yahoo.com.ar RI Mackessy, Stephen/GPT-0793-2022 OI Tavares, Flavio/0000-0003-1137-9012; Peichoto, Maria/0000-0001-7269-3086; Mackessy, Stephen/0000-0003-4515-2545 FU Fulbright Commission; National Scientific and Technical Research Council (CONICET); CONICET from Argentina [PIP 114-200801-00088]; Colorado Office of Economic Development and International Trade; University of Northern Colorado (FRPB) [PRR44]; Dallas Zoological Park FX A postdoctoral fellowship for MEP by the Fulbright Commission and the National Scientific and Technical Research Council (CONICET) is gratefully acknowledged. Additional financial support was provided by CONICET from Argentina (PIP 114-200801-00088, to MEP), by a Bioscience Discovery Evaluation Grant from the Colorado Office of Economic Development and International Trade (to SPM), and by the University of Northern Colorado (FRPB grant #PRR44). The donation of P. baroni by the Dallas Zoological Park (D. Hartigan) to SPM is also greatly appreciated. CR BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Chen KC, 2008, TOXICOL LETT, V180, P53, DOI 10.1016/j.toxlet.2008.05.014 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Costa TR, 2008, PEPTIDES, V29, P1645, DOI 10.1016/j.peptides.2008.05.021 Torres AFC, 2010, TOXICON, V55, P795, DOI 10.1016/j.toxicon.2009.11.013 Desjeux P., 1992, World Health Statistics Quarterly, V45, P267 Doley Robin, 2010, P173 Farooqui AA, 2005, REPROD NUTR DEV, V45, P613, DOI 10.1051/rnd:2005049 FERLAN I, 1983, TOXICON, V21, P570, DOI 10.1016/0041-0101(83)90137-X FERNANDEZGOMEZ R, 1994, TOXICON, V32, P875, DOI 10.1016/0041-0101(94)90366-2 Fry BG, 2008, MOL CELL PROTEOMICS, V7, P215, DOI 10.1074/mcp.M700094-MCP200 Goncalves AR, 2002, PARASITOL RES, V88, P598, DOI 10.1007/s00436-002-0626-3 Hill RE, 1997, TOXICON, V35, P671, DOI 10.1016/S0041-0101(96)00174-2 Holzer M, 1996, TOXICON, V34, P1149, DOI 10.1016/0041-0101(96)00057-8 Huang P, 2004, TOXICON, V44, P27, DOI 10.1016/j.toxicon.2004.03.027 Kessentini-Zouari R, 2010, LAB INVEST, V90, P510, DOI 10.1038/labinvest.2009.137 Loiseau PM, 2006, CURR TOP MED CHEM, V6, P539, DOI 10.2174/156802606776743165 Ma An-de, 2006, Nan Fang Yi Ke Da Xue Xue Bao, V26, P75 Mackessy S.P., 2010, HDB VENOMS TOXINS RE, P1 Mackessy SP, 2002, J TOXICOL-TOXIN REV, V21, P43, DOI 10.1081/TXR-120004741 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mora R, 2005, TOXICON, V45, P651, DOI 10.1016/j.toxicon.2005.01.008 Mukherjee P, 2009, INT J ANTIMICROB AG, V34, P596, DOI 10.1016/j.ijantimicag.2009.08.007 Passero LFD, 2007, PARASITOL RES, V101, P1365, DOI 10.1007/s00436-007-0653-1 Passero LFD, 2008, PARASITOL RES, V102, P1025, DOI 10.1007/s00436-007-0871-6 Peichoto M, 2010, TOXICOL LETT, V196, pS347, DOI 10.1016/j.toxlet.2010.03.1099 Rath S, 2003, QUIM NOVA, V26, P550, DOI 10.1590/S0100-40422003000400018 ROSENBERG HI, 1992, COPEIA, P244 Rosenthal E, 2009, MED MALADIES INFECT, V39, P741, DOI 10.1016/j.medmal.2009.05.001 Rufini S, 1999, AM J PHYSIOL-CELL PH, V277, pC814, DOI 10.1152/ajpcell.1999.277.4.C814 Sabina H, 2005, PAK J BOT, V37, P163 SACKS DL, 1984, SCIENCE, V223, P1417, DOI 10.1126/science.6701528 Schaeffer EL, 2009, PSYCHOPHARMACOLOGY, V202, P37, DOI 10.1007/s00213-008-1351-0 Soares AM, 2004, CURR ORG CHEM, V8, P1677, DOI 10.2174/1385272043369610 Stabeli RG, 2006, COMP BIOCHEM PHYS C, V142, P371, DOI 10.1016/j.cbpc.2005.11.020 Tempone AG, 2001, BIOCHEM BIOPH RES CO, V280, P620, DOI 10.1006/bbrc.2000.4175 Weldon CL, 2010, TOXICON, V55, P558, DOI 10.1016/j.toxicon.2009.10.010 NR 38 TC 25 Z9 26 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0041-0101 J9 TOXICON JI Toxicon PD JUL PY 2011 VL 58 IS 1 BP 28 EP 34 DI 10.1016/j.toxicon.2011.04.018 PG 7 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 809DC UT WOS:000294031000004 PM 21601589 DA 2023-03-13 ER PT J AU Ozgeris, FB Yeltekin, AC Ucar, A Caglar, O Parlak, V Arslan, ME Turkez, H Atamanalp, M Alak, G AF Ozgeris, Fatma Betul Yeltekin, Asli Cilingir Ucar, Arzu Caglar, Ozge Parlak, Veysel Arslan, Mehmet Enes Turkez, Hasan Atamanalp, Muhammed Alak, Gonca TI Toxic releases and exposure assessment: A multi-endpoint approach in fish for ferrocene toxicity SO PROCESS SAFETY AND ENVIRONMENTAL PROTECTION LA English DT Article DE Hepatotoxicity; Hematological index; Immune system; Fisheries; Food security; Nrf-2 ID OXIDATIVE STRESS; RAINBOW-TROUT; BORIC-ACID; BRAIN; BORON; GILL; HEMATOLOGY; PARAMETERS; ZEBRAFISH; TISSUES AB Fe2+ in ferrocene facilities the oxidation. Based on this phenomenon, increased iron (Fe) level in freshwater ecosystems is thought as an important environmental problem in many geographic regions. In addition to increased mobilization of Fe from sediment due to changes in land use, mining, industrial activity, and elevated acid deposition are also proposed to be possible factors contributing to the increased Fe loading in freshwater environments. Ferrocene is useful in the modern organometallic chemistry industry due to its versatile appli-cations. In this study, the toxicity potential and related toxicity mechanisms of acute ferrocene exposure as well as the protective potential of borax supplementation against ferrocene were investigated in rainbow trout during 96 h under semi-static conditions. In target tissues multiplexed endpoints of hematological indices, genotoxicity, oxidative stress response, DNA damage and apoptosis levels, as well as tumor necrosis factor alpha, and interleukin-6 activities were assessed in blood tissue. In liver tissue, in addition to the parameters studied in blood tissue (except cortisol), the nuclear factor erythroid-2, which regulates the expression of detoxification enzymes, was investigated. When the results obtained from blood analyzes were examined, ferrocen treatment caused different reactions (increase/decrease) in blood indexes, and these findings were confirmed by MN tests. In ferrocene-induced hematoxicite, the healing effect of borax application has been observed to increase inhibited values and decrease in indexes with increasing tendencies. Besides, this hematoxicity was also supported by cortisol in-creases. Our findings showed that ferrocene inhibited antioxidant enzyme activities and increased lipid perox-idation, 8-OH-dG, caspase 3, TNF-alpha, and IL-6 levels in both blood and liver tissues. Similarly, cortisol level (in blood tissue) and Nrf-2 level (in liver tissue) increased with ferrocene application. In the ferrocen+borax group, the MDA level decreased 11 % at the end of the 96th hour compared to the 48th hour, and the Nrf2 level increased 9 %. In general, enzyme inhibitions in blood and liver tissues have shown that ferrocen-mediated toxicity occurs in induced ROS, DNA damage, apoptos activity, and BX applications have a positive effect on the correction of toxicity in the direction of hormesis. In a conclusion, the present study suggested that borax migt exhibite ameliorative potential against ferrocene-induced toxicity in O. mykiss blood and liver via regulating the ROS/TNF-alpha/Nrf-2 pathway. C1 [Ozgeris, Fatma Betul] Ataturk Univ, Fac Hlth Sci, Dept Nutr & Dietet, Erzurum, Turkey. [Yeltekin, Asli Cilingir] Yuzuncu Yil Univ, Fac Sci, Dept Chem, Van, Turkey. [Ucar, Arzu; Atamanalp, Muhammed] Ataturk Univ, Fac Fisheries, Dept Aquaculture, Erzurum, Turkey. [Caglar, Ozge; Arslan, Mehmet Enes] Erzurum Tech Univ, Fac Sci, Dept Mol Biol & Genet, Erzurum, Turkey. [Parlak, Veysel] Ataturk Univ, Fac Fisheries, Dept Basic Sci, Erzurum, Turkey. [Turkez, Hasan] Ataturk Univ, Fac Med, Dept Basic Med Sci, Erzurum, Turkey. [Alak, Gonca] Ataturk Univ, Fac Fisheries, Dept Seafood Proc Technol, Erzurum, Turkey. C3 Ataturk University; Yuzuncu Yil University; Ataturk University; Erzurum Technical University; Ataturk University; Ataturk University; Ataturk University RP Atamanalp, M (corresponding author), Ataturk Univ, Fac Fisheries, Dept Aquaculture, Erzurum, Turkey.; Alak, G (corresponding author), Ataturk Univ, Fac Fisheries, Dept Seafood Proc Technol, Erzurum, Turkey. EM mataman@atauni.edu.tr; galak@atauni.edu.tr RI ARSLAN, MEHMET ENES/I-5823-2014 OI ARSLAN, MEHMET ENES/0000-0002-1600-2305 CR Aderibigbe B.A., 2017, NANO MICROSCALE DRUG, P33 Alak G, 2020, ENVIRON TOXICOL PHAR, V80, DOI 10.1016/j.etap.2020.103496 Alak G, 2021, BIOL TRACE ELEM RES, V199, P1092, DOI 10.1007/s12011-020-02231-7 Alak G, 2020, TURK J FISH AQUAT SC, V20, P593, DOI 10.4194/1303-2712-v20_8_02 Alak G, 2019, BIOL TRACE ELEM RES, V191, P495, DOI 10.1007/s12011-018-1622-5 Alak G, 2019, COMP BIOCHEM PHYS C, V216, P82, DOI 10.1016/j.cbpc.2018.10.005 Alak G, 2018, FISH PHYSIOL BIOCHEM, V44, P1409, DOI 10.1007/s10695-018-0530-0 Alak G, 2019, BIOL TRACE ELEM RES, V187, P536, DOI 10.1007/s12011-018-1399-6 Arsova-Sarafinovska Z, 2009, INT UROL NEPHROL, V41, P63, DOI 10.1007/s11255-008-9407-y Atamanalp M, 2021, TOXICOL MECH METHOD, V31, P224, DOI 10.1080/15376516.2021.1871794 BEUTLER E, 1963, EXPERIENTIA, V19, P96, DOI 10.1007/BF02148042 Bojarski B, 2020, ENVIRON SCI POLLUT R, V27, P19236, DOI 10.1007/s11356-020-08248-8 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Bub CB, 2019, EXPERT REV MOL DIAGN, V19, P777, DOI 10.1080/14737159.2019.1656529 Calder PC, 2013, P NUTR SOC, V72, P299, DOI 10.1017/S0029665113001286 Comba B, 2016, KAFKAS UNIV VET FAK, V22, P539, DOI 10.9775/kvfd.2016.15001 Corredor-Santamaria W, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-1753-0 ECHA, 2021, FERR REG DOSS Eriksson ANM, 2022, AQUAT TOXICOL, V244, DOI 10.1016/j.aquatox.2022.106083 Eskin A., 2017, NEVSEHIR BILIM VE TE, V6, P457 Fazio F, 2019, AQUACULTURE, V500, P237, DOI 10.1016/j.aquaculture.2018.10.030 Federici G, 2007, AQUAT TOXICOL, V84, P415, DOI 10.1016/j.aquatox.2007.07.009 FINNEY DJ, 1948, BIOMETRIKA, V35, P191, DOI 10.2307/2332639 Fouda MFR, 2007, APPL ORGANOMET CHEM, V21, P613, DOI 10.1002/aoc.1202 Ganz T, 2005, BEST PRACT RES CL HA, V18, P171, DOI 10.1016/j.beha.2004.08.020 Gulsoy N, 2015, EXCLI J, V14, P890, DOI 10.17179/excli2015-404 Habte-Tsion HM, 2020, COMP BIOCHEM PHYS B, V241, DOI 10.1016/j.cbpb.2019.110389 Harikrishnan R, 2012, EXP PARASITOL, V131, P116, DOI 10.1016/j.exppara.2012.03.020 Hassan AT, 2020, ENVIRON POLLUT, V267, DOI 10.1016/j.envpol.2020.115625 Hassan M.S., 2021, ANN AGR SCI MOSHTOHO, V59, P81, DOI [10.21608/ASSJM.2021.183663, DOI 10.21608/ASSJM.2021.183663] Hedayati A, 2014, FISH PHYSIOL BIOCHEM, V40, P715, DOI 10.1007/s10695-013-9878-3 Hottin A, 2012, ORG BIOMOL CHEM, V10, P5592, DOI 10.1039/c2ob25727k Hu YQ, 2017, EUR J MED CHEM, V139, P22, DOI 10.1016/j.ejmech.2017.07.061 Kuru R, 2017, CLIN EXP HEALTH SCI, V7, P107, DOI 10.5152/clinexphealthsci.2017.314 Kuzu M, 2021, ENVIRON SCI POLLUT R, V28, P10818, DOI 10.1007/s11356-020-11327-5 Loewengart G, 2001, ENVIRON TOXICOL CHEM, V20, P796, DOI 10.1002/etc.5620200415 Pawa S, 2006, CHEM-BIOL INTERACT, V160, P89, DOI 10.1016/j.cbi.2005.12.002 Peter S, 2019, MOLECULES, V24, DOI 10.3390/molecules24193604 Sakai M, 2021, FISHERIES SCI, V87, P1, DOI 10.1007/s12562-020-01476-4 Saravanan M, 2012, ENVIRON TOXICOL PHAR, V34, P14, DOI 10.1016/j.etap.2012.02.005 Sengul E, 2021, BIOL TRACE ELEM RES, V199, P173, DOI 10.1007/s12011-020-02111-0 Topal A, 2017, CHEMOSPHERE, V175, P186, DOI 10.1016/j.chemosphere.2017.02.047 Topal A, 2016, J APPL ANIM RES, V44, P297, DOI 10.1080/09712119.2015.1031784 Turkez H, 2021, NEUROCHEM INT, V149, DOI 10.1016/j.neuint.2021.105137 Turkez H, 2011, TURK J BIOL, V35, P293, DOI 10.3906/biy-0902-11 Ucar A, 2021, IN VITRO CELL DEV-AN, V57, P17, DOI 10.1007/s11626-020-00541-7 Ucar A, 2021, TOXICOL MECH METHOD, V31, P73, DOI 10.1080/15376516.2020.1831122 Ucar A, 2020, IN VITRO CELL DEV-AN, V56, P543, DOI 10.1007/s11626-020-00480-3 Ullah Inam, 2018, Cureus, V10, pe3376, DOI 10.7759/cureus.3376 Uzun M., 2019, VAN TIP DERG, V26, P289, DOI 10.5505/vtd.2019.32815 Santos SW, 2021, ENVIRON TOXICOL CHEM, V40, P3092, DOI 10.1002/etc.5183 Yamada T, 2000, J CLIN ENDOCR METAB, V85, P2775, DOI 10.1210/jc.85.8.2775 Yang YF, 2021, GERIATR ORTHOP SURG, V12, DOI 10.1177/2151459321998614 Yuan J, 2018, J SURG RES, V228, P238, DOI 10.1016/j.jss.2018.03.024 Yurdakul G., 2013, KOCATEPE VET J, V6, P13, DOI 10.5578/kvj.6402 NR 55 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0957-5820 EI 1744-3598 J9 PROCESS SAF ENVIRON JI Process Saf. Environ. Protect. PD JAN PY 2023 VL 169 BP 636 EP 645 DI 10.1016/j.psep.2022.11.052 PG 10 WC Engineering, Environmental; Engineering, Chemical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA 6W3MR UT WOS:000895635800009 OA Bronze DA 2023-03-13 ER PT J AU Beaudin, AE Waltz, X Hanly, PJ Poulin, MJ AF Beaudin, Andrew E. Waltz, Xavier Hanly, Patrick J. Poulin, Marc J. TI Impact of obstructive sleep apnoea and intermittent hypoxia on cardiovascular and cerebrovascular regulation SO EXPERIMENTAL PHYSIOLOGY LA English DT Review DE cerebral blood flow; endothelial function; hormesis; mortality; vascular reactivity ID POSITIVE AIRWAY PRESSURE; SYMPATHETIC-NERVE ACTIVITY; VASCULAR ENDOTHELIAL FUNCTION; ARTERIAL-BLOOD PRESSURE; CROSSTALK OPPOSING VIEW; CORONARY-HEART-DISEASE; ALL-CAUSE MORTALITY; ISOCAPNIC-HYPOXIA; RISK-FACTOR; CEREBRAL AUTOREGULATION AB New Findings What is the topic of this review? This review examines the notion that obstructive sleep apnoea (OSA) and intermittent hypoxia (IH) have hormetic effects on vascular health. What advances does it highlight? Clinical (OSA patient) and experimental animal and human models report that IH is detrimental to vascular regulation. However, mild IH and, by extension, mild OSA also have physiological and clinical benefits. This review highlights clinical and experimental animal and human data linking OSA and IH to vascular disease and discusses how hormetic effects of OSA and IH relate to OSA severity, IH intensity and duration, and patient/subject age. Obstructive sleep apnoea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease, a consequence attributed in part to chronic intermittent hypoxia (IH) resulting from repetitive apnoeas during sleep. Although findings from experimental animal, and human, models have shown that IH is detrimental to vascular regulation, the severity of IH used in many of these animal studies [e.g. inspired fraction of oxygen (F-I,F-O2)=2-3%; oxygen desaturation index = 120 events h(-1)] is considerably greater than that observed in the majority of patients with OSA. This may also explain disparities between animal and recently developed human models of IH, where IH severity is, by necessity, less severe (e.g. F-I,F-O2 = 10-12%; oxygen desaturation index = 15-30 events h(-1)). In this review, we highlight the current knowledge regarding the impact of OSA and IH on cardiovascular and cerebrovascular regulation. In addition, we critically discuss the recent notion that OSA and IH may have hormetic effects on vascular health depending on conditions such as OSA severity, IH intensity and duration, and age. In general, data support an independent causal link between OSA and vascular disease, particularly for patients with severe OSA. However, the data are equivocal for older OSA patients and patients with mild OSA, because advanced age and short-duration, low-intensity IH have been reported to provide a degree of protection against IH and ischaemic events such as myocardial infarction and stroke, respectively. Overall, additional studies are needed to investigate the beneficial/detrimental effects of mild OSA on the various vascular beds. C1 [Beaudin, Andrew E.; Waltz, Xavier; Poulin, Marc J.] Univ Calgary, Cumming Sch Med, Dept Physiol & Pharmacol, Calgary, AB, Canada. [Beaudin, Andrew E.; Waltz, Xavier; Hanly, Patrick J.; Poulin, Marc J.] Univ Calgary, Hotchkiss Brain Inst, Cumming Sch Med, Calgary, AB, Canada. [Waltz, Xavier] Univ Grenoble Alpes, Lab HP2, INSERM, U1042, Grenoble, France. [Hanly, Patrick J.] Univ Calgary, Cumming Sch Med, Dept Med, Calgary, AB, Canada. [Hanly, Patrick J.] Foothills Med Ctr, Sleep Ctr, Calgary, AB, Canada. [Poulin, Marc J.] Univ Calgary, Libin Cardiovasc Inst Alberta, Cumming Sch Med, Calgary, AB, Canada. [Poulin, Marc J.] Univ Calgary, Cumming Sch Med, Dept Clin Neurosci, Calgary, AB, Canada. [Poulin, Marc J.] Univ Calgary, Fac Kinesiol, Calgary, AB, Canada. C3 University of Calgary; University of Calgary; Communaute Universite Grenoble Alpes; UDICE-French Research Universities; Universite Grenoble Alpes (UGA); Institut National de la Sante et de la Recherche Medicale (Inserm); University of Calgary; University of Calgary; Libin Cardiovascular Institute Of Alberta; University of Calgary; University of Calgary; University of Calgary RP Poulin, MJ (corresponding author), Univ Calgary, Hotchkiss Brain Inst, Cumming Sch Med, Dept Physiol & Pharmacol, Heritage Med Res Bldg Room 210,3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada. EM poulin@ucalgary.ca RI WALTZ, Xavier/M-3606-2016; Beaudin, Andrew E./G-1505-2010 OI WALTZ, Xavier/0000-0002-0838-290X; Beaudin, Andrew E./0000-0002-3295-7232 FU Alberta Innovates-Health Solutions (AI-HS) doctoral fellowship; Canadian Institutes of Health Research (CIHR)-Heart and Stroke Foundation of Canada (HSFC) Focus on Stroke doctoral fellowship, a William H. Davies Medical Research Scholarship (University of Calgary); Osten-Victor Graduate Scholarship in Cardiology (University of Calgary); Hotchkiss Brain Institute (HBI), an AI-HS postgraduate fellowship program, a CIHR postdoctoral fellowship; European Respiratory Society; Societe de Pneumologie de Langue Francaise; CIHR; HSFC; Natural Sciences and Engineering Research Council of Canada; Sleep Research Program, Cumming School of Medicine, University of Calgary; Alberta Innovates [201400505] Funding Source: researchfish FX A.E.B. was supported by an Alberta Innovates-Health Solutions (AI-HS) doctoral fellowship, the Canadian Institutes of Health Research (CIHR)-Heart and Stroke Foundation of Canada (HSFC) Focus on Stroke doctoral fellowship, a William H. Davies Medical Research Scholarship (University of Calgary), and the Osten-Victor Graduate Scholarship in Cardiology (University of Calgary). X.W. received support from a Hotchkiss Brain Institute (HBI) postdoctoral fellowship, an AI-HS postgraduate fellowship program, a CIHR postdoctoral fellowship, and a postdoctoral fellowship from the European Respiratory Society and the 'Societe de Pneumologie de Langue Francaise'. Funding for the authors' work investigating the impact of OSA and IH on vascular regulation is provided by a CIHR operating grant (principal investigator, M.J.P.; co-applicant, P.J.H.), an HSFC grant-in-aid (principal investigator, M.J.P.; co-applicant, P.J.H.), a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (principal investigator, M.J.P.) and Sleep Research Program, Cumming School of Medicine, University of Calgary. M.J.P. holds The Brenda Strafford Foundation Chair in Alzheimer Research. CR Arzt M, 2005, AM J RESP CRIT CARE, V172, P1447, DOI 10.1164/rccm.200505-702OC Baguet JP, 2006, J HYPERTENS, V24, P205, DOI 10.1097/01.hjh.0000198039.39504.63 Beguin PC, 2005, J APPL PHYSIOL, V99, P1064, DOI 10.1152/japplphysiol.00056.2005 Berry RB, 2015, AASM MANUAL SCORING Burtscher M, 2004, INT J CARDIOL, V96, P247, DOI 10.1016/j.ijcard.2003.07.021 Campos-Rodriguez F, 2014, AM J RESP CRIT CARE, V189, P1544, DOI 10.1164/rccm.201311-2012OC Cano-Pumarega I, 2011, AM J RESP CRIT CARE, V184, P1299, DOI 10.1164/rccm.201101-0130OC Carlson JT, 1996, J HYPERTENS, V14, P577, DOI 10.1097/00004872-199605000-00006 Cho ER, 2013, J SLEEP RES, V22, P452, DOI 10.1111/jsr.12034 Chobanian AV, 2003, HYPERTENSION, V42, P1206, DOI 10.1161/01.HYP.0000107251.49515.c2 Navarro RC, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-1691-x Craig SE, 2012, THORAX, V67, P1090, DOI 10.1136/thoraxjnl-2012-202178 Cross MD, 2008, THORAX, V63, P578, DOI 10.1136/thx.2007.081877 Cutler MJ, 2004, J APPL PHYSIOL, V96, P754, DOI 10.1152/japplphysiol.00506.2003 Dempsey JA, 2010, PHYSIOL REV, V90, P47, DOI 10.1152/physrev.00043.2008 DIMSDALE JE, 1995, SLEEP, V18, P377 Diomedi M, 1998, NEUROLOGY, V51, P1051, DOI 10.1212/WNL.51.4.1051 Duchna Hans-W, 2005, Sleep Breath, V9, P97, DOI 10.1007/s11325-005-0024-z Fatouleh RH, 2014, NEUROIMAGE-CLIN, V6, P275, DOI 10.1016/j.nicl.2014.08.021 Fava C, 2014, CHEST, V145, P762, DOI 10.1378/chest.13-1115 Flammer AJ, 2012, CIRCULATION, V126, P753, DOI 10.1161/CIRCULATIONAHA.112.093245 FLETCHER EC, 1992, HYPERTENSION, V19, P555, DOI 10.1161/01.HYP.19.6.555 FLETCHER EC, 1992, J APPL PHYSIOL, V72, P1978, DOI 10.1152/jappl.1992.72.5.1978 FLETCHER EC, 1987, SLEEP, V10, P35, DOI 10.1093/sleep/10.1.35 FLETCHER EC, 1992, HYPERTENSION, V20, P612, DOI 10.1161/01.HYP.20.5.612 Foster GE, 2005, J PHYSIOL-LONDON, V567, P689, DOI 10.1113/jphysiol.2005.091462 Foster GE, 2008, ADV EXP MED BIOL, V605, P463 Foster GE, 2007, AM J RESP CRIT CARE, V175, P720, DOI 10.1164/rccm.200609-1271OC Foster GE, 2007, EXP PHYSIOL, V92, P51, DOI 10.1113/expphysiol.2006.035204 Foster GE, 2010, HYPERTENSION, V56, P369, DOI 10.1161/HYPERTENSIONAHA.110.152108 Foster GE, 2009, J PHYSIOL-LONDON, V587, P3287, DOI 10.1113/jphysiol.2009.171553 Foster GE, 2009, RESP PHYSIOL NEUROBI, V165, P73, DOI 10.1016/j.resp.2008.10.011 Gami AS, 2005, NEW ENGL J MED, V352, P1206, DOI 10.1056/NEJMoa041832 Gay P, 2006, SLEEP, V29, P381, DOI 10.1093/sleep/29.3.381 Gilmartin GS, 2010, AM J PHYSIOL-HEART C, V299, pH925, DOI 10.1152/ajpheart.00253.2009 Gottlieb DJ, 2014, NEW ENGL J MED, V370, P2276, DOI 10.1056/NEJMoa1306766 Gottlieb DJ, 2010, CIRCULATION, V122, P352, DOI 10.1161/CIRCULATIONAHA.109.901801 Gozal D, 2003, EUR J NEUROSCI, V18, P2335, DOI 10.1046/j.1460-9568.2003.02947.x Gozal D, 2013, J PHYSIOL-LONDON, V591, P379, DOI 10.1113/jphysiol.2012.241216 Greenberg HE, 1999, J APPL PHYSIOL, V86, P298, DOI 10.1152/jappl.1999.86.1.298 Grote L, 2000, J HYPERTENS, V18, P679, DOI 10.1097/00004872-200018060-00004 Hall CN, 2014, NATURE, V508, P55, DOI 10.1038/nature13165 Hausenloy DJ, 2015, NEW ENGL J MED, V373, P1408, DOI 10.1056/NEJMoa1413534 HE J, 1988, CHEST, V94, P9, DOI 10.1378/chest.94.1.9 HEDNER JA, 1992, AM REV RESPIR DIS, V146, P1240, DOI 10.1164/ajrccm/146.5_Pt_1.1240 Henderson LA, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00090 Huang JH, 2009, RESP PHYSIOL NEUROBI, V166, P102, DOI 10.1016/j.resp.2009.02.010 HUNG J, 1990, LANCET, V336, P261, DOI 10.1016/0140-6736(90)91799-G Imadojemu VA, 2007, CHEST, V131, P1406, DOI 10.1378/chest.06-2580 Ip MSM, 2004, AM J RESP CRIT CARE, V169, P348, DOI 10.1164/rccm.200306-767OC Jackman KA, 2014, STROKE, V45, P1460, DOI 10.1161/STROKEAHA.114.004816 Julien C, 2003, RESP PHYSIOL NEUROBI, V139, P21, DOI 10.1016/j.resp.2003.09.005 Kato M, 2000, CIRCULATION, V102, P2607 Kent BD, 2013, EUR RESPIR J, V42, P1263, DOI 10.1183/09031936.00094812 Khalyfa A, 2016, SLEEP, V39, P2077, DOI 10.5665/sleep.6302 Khot SP, 2016, J CLIN SLEEP MED, V12, P1019, DOI 10.5664/jcsm.5940 Kohler M, 2012, J PHYSIOL-LONDON, V590, P2813, DOI 10.1113/jphysiol.2012.229633 Koller A, 2012, J VASC RES, V49, P375, DOI 10.1159/000338747 Kraiczi H, 2001, CHEST, V119, P1085, DOI 10.1378/chest.119.4.1085 Kwon Y, 2014, J AM HEART ASSOC, V3, DOI 10.1161/JAHA.114.001241 Larsson BW, 2008, RESPIRATION, V76, P21, DOI 10.1159/000126492 Lattimore JL, 2006, THORAX, V61, P491, DOI 10.1136/thx.2004.039164 Lavie L, 2006, MED HYPOTHESES, V66, P1069, DOI 10.1016/j.mehy.2005.10.033 Lavie L, 2012, J PHYSIOL-LONDON, V590, P2817, DOI 10.1113/jphysiol.2012.233833 Lavie P, 2000, BRIT MED J, V320, P479, DOI 10.1136/bmj.320.7233.479 Lavie P, 2007, EUR RESPIR REV, V16, P203, DOI 10.1183/09059180.00010610 Lavie P, 2005, EUR RESPIR J, V25, P514, DOI 10.1183/09031936.05.00051504 Lefebvre B, 2006, RESP PHYSIOL NEUROBI, V150, P278, DOI 10.1016/j.resp.2005.05.020 Lesske J, 1997, J HYPERTENS, V15, P1593 LEUENBERGER U, 1995, J APPL PHYSIOL, V79, P581, DOI 10.1152/jappl.1995.79.2.581 Leuenberger UA, 1996, CIRCULATION, V94, P1 Leuenberger UA, 2007, J APPL PHYSIOL, V103, P835, DOI 10.1152/japplphysiol.00036.2007 Levy P, 2011, EUR RESPIR REV, V20, P134, DOI 10.1183/09059180.00003111 Lewington S, 2002, LANCET, V360, P1903, DOI 10.1016/S0140-6736(02)11911-8 Lundblad LC, 2015, J NEUROPHYSIOL, V114, P893, DOI 10.1152/jn.00092.2015 Lyamina NP, 2011, J HYPERTENS, V29, P2265, DOI 10.1097/HJH.0b013e32834b5846 Marcus NJ, 2010, RESP PHYSIOL NEUROBI, V171, P36, DOI 10.1016/j.resp.2010.02.003 Marin JM, 2005, LANCET, V365, P1046, DOI 10.1016/S0140-6736(05)71141-7 Marin JM, 2012, JAMA-J AM MED ASSOC, V307, P2169, DOI 10.1001/jama.2012.3418 MARRONE O, 1993, CHEST, V103, P722, DOI 10.1378/chest.103.3.722 Marshall NS, 2014, J CLIN SLEEP MED, V10, P355, DOI 10.5664/jcsm.3600 Mateika JH, 2015, J APPL PHYSIOL, V118, P520, DOI 10.1152/japplphysiol.00564.2014 McEvoy RD, 2016, NEW ENGL J MED, V375, P919, DOI 10.1056/NEJMoa1606599 Meadows GE, 2005, STROKE, V36, P2367, DOI 10.1161/01.STR.0000185923.49484.0f Meadows GE, 2004, J APPL PHYSIOL, V97, P1343, DOI 10.1152/japplphysiol.01101.2003 Meadows GE, 2003, J APPL PHYSIOL, V94, P2197, DOI 10.1152/japplphysiol.00606.2002 Mehra R, 2006, AM J RESP CRIT CARE, V173, P910, DOI 10.1164/rccm.200509-1442OC Moradkhan R, 2010, J APPL PHYSIOL, V108, P1234, DOI 10.1152/japplphysiol.90855.2008 Morgan BJ, 2010, AM J RESP CRIT CARE, V182, P1445, DOI 10.1164/rccm.201002-0313OC Munoz R, 2006, STROKE, V37, P2317, DOI 10.1161/01.STR.0000236560.15735.0f Narkiewicz K, 1999, CIRCULATION, V99, P1183, DOI 10.1161/01.CIR.99.9.1183 Narkiewicz K, 1998, CIRCULATION, V98, P772, DOI 10.1161/01.CIR.98.8.772 Narkiewicz K, 1999, CIRCULATION, V100, P2332, DOI 10.1161/01.CIR.100.23.2332 Nasr N, 2009, EUR J NEUROL, V16, P386, DOI 10.1111/j.1468-1331.2008.02505.x Nieto FJ, 2004, AM J RESP CRIT CARE, V169, P354, DOI 10.1164/rccm.200306-756OC Nieto FJ, 2000, JAMA-J AM MED ASSOC, V283, P1829, DOI 10.1001/jama.283.14.1829 O'Connor GT, 2009, AM J RESP CRIT CARE, V179, P1159, DOI 10.1164/rccm.200712-1809OC Patel SK, 2015, J CLIN SLEEP MED, V11, P1417, DOI 10.5664/jcsm.5278 Peker Y, 1999, EUR RESPIR J, V14, P179, DOI 10.1034/j.1399-3003.1999.14a30.x Peppard PE, 2000, NEW ENGL J MED, V342, P1378, DOI 10.1056/NEJM200005113421901 Phillips SA, 2004, AM J PHYSIOL-HEART C, V286, pH388, DOI 10.1152/ajpheart.00683.2003 Placidi F, 1998, J SLEEP RES, V7, P288, DOI 10.1046/j.1365-2869.1998.00120.x Prilipko O, 2014, SLEEP MED, V15, P892, DOI 10.1016/j.sleep.2014.04.004 Przybylowski T, 2003, J PHYSIOL-LONDON, V548, P323, DOI 10.1113/jphysiol.2002.029678 Punjabi NM, 2008, AM J RESP CRIT CARE, V177, P1150, DOI 10.1164/rccm.200712-1884OC Querido JS, 2015, AEROSP MED HUM PERF, V86, P782, DOI 10.3357/AMHP.4192.2015 Quintero M, 2016, J PHYSIOL-LONDON, V594, P1773, DOI 10.1113/JP270878 Redline S, 2010, AM J RESP CRIT CARE, V182, P269, DOI 10.1164/rccm.200911-1746OC Reichmuth KJ, 2009, AM J RESP CRIT CARE, V180, P1143, DOI 10.1164/rccm.200903-0393OC Remsburg S, 1999, J APPL PHYSIOL, V87, P1148, DOI 10.1152/jappl.1999.87.3.1148 Rosenzweig I, 2015, LANCET RESP MED, V3, P404, DOI 10.1016/S2213-2600(15)00090-9 Rosenzweig I, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083173 Rosenzweig I, 2013, J PHYSIOL-LONDON, V591, P383, DOI 10.1113/jphysiol.2012.241224 Ryan CM, 2014, RESP PHYSIOL NEUROBI, V190, P47, DOI 10.1016/j.resp.2013.09.003 Ryan CM, 2011, STROKE, V42, P1062, DOI 10.1161/STROKEAHA.110.597468 Senaratna CV, 2016, SLEEP MED R IN PRESS Serebrovskaya TV, 2008, EXP BIOL MED, V233, P627, DOI 10.3181/0710-MR-267 SIEBLER M, 1993, CHEST, V103, P1118, DOI 10.1378/chest.103.4.1118 Smith ML, 2007, EXP PHYSIOL, V92, P45, DOI 10.1113/expphysiol.2006.033753 Somers VK, 2008, J AM COLL CARDIOL, V52, P686, DOI 10.1016/j.jacc.2008.05.002 SOMERS VK, 1995, J CLIN INVEST, V96, P1897, DOI 10.1172/JCI118235 Tahawi Z, 2001, J APPL PHYSIOL, V90, P2007, DOI 10.1152/jappl.2001.90.5.2007 Tamisier R, 2011, EUR RESPIR J, V37, P119, DOI 10.1183/09031936.00204209 Tamisier R, 2009, J APPL PHYSIOL, V107, P17, DOI 10.1152/japplphysiol.91165.2008 Tremblay JC, 2016, AM J PHYSIOL-HEART C, V311, pH699, DOI 10.1152/ajpheart.00388.2016 Tsai YW, 2013, J CEREBR BLOOD F MET, V33, P764, DOI 10.1038/jcbfm.2013.15 Tsai YW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024001 Urbano F, 2008, J APPL PHYSIOL, V105, P1852, DOI 10.1152/japplphysiol.90900.2008 Verges S, 2015, FRONT PEDIATR, V3, DOI 10.3389/fped.2015.00058 Vienne J, 2016, SLEEP, V39, P1613, DOI 10.5665/sleep.6032 Wahlin-Larsson B, 2009, MUSCLE NERVE, V40, P556, DOI 10.1002/mus.21357 Waltz X, 2016, J PHYSIOL-LONDON, V594, P7089, DOI 10.1113/JP272967 Xie AL, 2000, J APPL PHYSIOL, V89, P1333, DOI 10.1152/jappl.2000.89.4.1333 Yaggi HK, 2005, NEW ENGL J MED, V353, P2034, DOI 10.1056/NEJMoa043104 ZEPELIN H, 1984, J GERONTOL, V39, P294, DOI 10.1093/geronj/39.3.294 Zhang PZ, 2015, EXP BIOL MED, V240, P961, DOI 10.1177/1535370214562339 Ziegler MG, 1995, SLEEP, V18, P859 NR 137 TC 52 Z9 52 U1 1 U2 14 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0958-0670 EI 1469-445X J9 EXP PHYSIOL JI Exp. Physiol. PD JUN 1 PY 2017 VL 102 IS 7 BP 743 EP 763 DI 10.1113/EP086051 PG 21 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA EZ3YS UT WOS:000404648000001 PM 28439921 DA 2023-03-13 ER PT J AU Rietjens, IMCM Alink, GM AF Rietjens, Ivonne M. C. M. Alink, Gerrit M. TI Future of toxicologys - Low-dose toxicology and risk - Benefit analysis SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID OMEGA-6 FATTY-ACIDS; FISH-OIL; CELL-PROLIFERATION; TUMOR-GROWTH; QUERCETIN; HORMESIS; CANCER; SUPPRESSION; FLAVONOIDS; ACRYLAMIDE AB Toxicology historically has been directed at studying the mechanisms of adverse effects of isolated compounds on living organisms at high levels of exposure, forming the basis for risk and safety assessment. One way to refocus and mobilize new research funds would be to better match the priorities in regulatory issues and direct the research within the field of toxicology more to low-dose toxicology and risk-benefit analysis. Low-dose toxicology can only be developed when taking into account mechanistic insight and will require risk-benefit analysis and a definition of interactions between compounds at realistic doses of exposure, especially in the case of dietary constituents. This is because the biological effects at low levels of exposure not only may be adverse but also can be beneficial depending on the target organ, the actual end point studied, the receptors activated, and/or the gene expression, protein, and metabolite patterns affected. Toxicologists have the tools and knowledge to study mechanisms of biological effects of chemicals on living organisms, and they should redirect their focus from looking only at adverse effects at high levels of exposure to characterizing the complex biological effects, both adverse and beneficial, at low levels of exposure. This may even result in the notion that beneficial effects can be the result of reaction pathways that are generally considered adverse and vice versa. Low-dose toxicology not only will provide a significant research challenge for the years ahead but also should contribute to better methods for low-dose risk assessment for complex mixtures of chemical compounds. This refocusing from high- to low-dose effects turns the field from a science focusing on adverse effects into a science studying the biological effects of chemical compounds on living organisms, taking into account the realization that the ultimate biological effect of a chemical may vary with its dose, the end point or target organ considered, and/or the combined exposure with other chemicals. By defining the effects of chemicals on living organisms at physiologically relevant exposure levels, toxicologists may contribute not only to better risk and safety assessment but also to preventive medicine, generating knowledge on possible adverse and also beneficial effects of chemicals. In addition, it will result in an approach for food safety assessment more in line with that for drug safety assessment taking the risk-benefit balance into consideration. C1 Univ Wageningen & Res Ctr, Div Toxicol, NL-6703 HE Wageningen, Netherlands. C3 Wageningen University & Research RP Rietjens, IMCM (corresponding author), Univ Wageningen & Res Ctr, Div Toxicol, Tuinlaan 5, NL-6703 HE Wageningen, Netherlands. OI Rietjens, Ivonne/0000-0003-1894-3544 CR Andersen ME, 2005, ADV EXP MED BIOL, V561, P117 Arts ICW, 2005, AM J CLIN NUTR, V81, p317S, DOI 10.1093/ajcn/81.1.317S Blitzer A, 1986, Laryngoscope, V96, P1300 BRIN MF, 1989, MOVEMENT DISORD, V4, P287, DOI 10.1002/mds.870040401 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cognault S, 2000, NUTR CANCER, V36, P33, DOI 10.1207/S15327914NC3601_6 *COMM CARC CHEM FO, 2004, GUID STRAT RISK ASS Dinkova-Kostova AT, 2005, CHEM RES TOXICOL, V18, P1779, DOI 10.1021/tx050217c Dommels YEM, 2003, FOOD CHEM TOXICOL, V41, P1739, DOI 10.1016/S0278-6915(03)00201-1 Dybing E, 2005, FOOD CHEM TOXICOL, V43, P365, DOI 10.1016/j.fct.2004.11.004 European Food Safety Authority (EFSA), 2005, EFSA J, V3, P282, DOI [10.2903/j.efsa.2005.282, DOI 10.2903/J.EFSA.2005.282] Galati G, 2001, FREE RADICAL BIO MED, V30, P370, DOI 10.1016/S0891-5849(00)00481-0 Geleijnse JM, 2002, AM J CLIN NUTR, V75, P880, DOI 10.1093/ajcn/75.5.880 Giovannucci E, 1997, AM J CLIN NUTR, V66, P1564 Griffiths CW, 2002, RISK ANAL, V22, P679, DOI 10.1111/0272-4332.00060 HERTOG MGL, 1993, NUTR CANCER, V20, P21, DOI 10.1080/01635589309514267 HOEL DG, 1994, ENVIRON HEALTH PERSP, V102, P109, DOI 10.1289/ehp.94102s1109 Kirman CR, 2003, J TOXICOL ENV HEAL A, V66, P253, DOI 10.1080/15287390306368 Knekt P, 1997, AM J EPIDEMIOL, V146, P223, DOI 10.1093/oxfordjournals.aje.a009257 Levonen AL, 2004, BIOCHEM J, V378, P373, DOI 10.1042/BJ20031049 Narbone MC, 2004, NEUROL SCI, V25, pS113, DOI 10.1007/s10072-004-0266-8 REDDY BS, 1991, CANCER RES, V51, P487 REDDY BS, 1992, LIPIDS, V27, P807, DOI 10.1007/BF02535855 REDDY BS, 1988, CANCER RES, V48, P6642 Sanner T, 2001, PHARMACOL TOXICOL, V88, P331 Schutte ME, 2006, CANCER LETT, V231, P36, DOI 10.1016/j.canlet.2005.01.020 Takahashi M, 1997, CARCINOGENESIS, V18, P1337, DOI 10.1093/carcin/18.7.1337 Tjalkens RB, 1998, ARCH BIOCHEM BIOPHYS, V359, P42, DOI 10.1006/abbi.1998.0895 USEPA, 1996, FED REGISTER, V61, P17960 Van den Berg M, 1998, ENVIRON HEALTH PERSP, V106, P775, DOI 10.1289/ehp.98106775 van der Woude H, 2005, CHEM RES TOXICOL, V18, P1907, DOI 10.1021/tx050201m van der Woude H, 2005, MOL NUTR FOOD RES, V49, P763, DOI 10.1002/mnfr.200500036 van der Woude H, 2003, CANCER LETT, V200, P41, DOI 10.1016/S0304-3835(03)00412-9 Walle T, 2003, BIOCHEM PHARMACOL, V65, P1603, DOI 10.1016/S0006-2952(03)00151-5 West JD, 2005, CHEM RES TOXICOL, V18, P1642, DOI 10.1021/tx050211n Yam D, 2001, CANCER CHEMOTH PHARM, V47, P34, DOI 10.1007/s002800000205 Zoete V, 2004, FREE RADICAL BIO MED, V36, P1418, DOI 10.1016/j.freeradbiomed.2004.03.008 NR 39 TC 25 Z9 25 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD AUG 21 PY 2006 VL 19 IS 8 BP 977 EP 981 DI 10.1021/tx0601051 PG 5 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Chemistry; Toxicology GA 075LS UT WOS:000239887100001 PM 16918235 DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Shi, C Masui, N Abu-ElEla, S Hikino, K Satoh, F Koike, T AF Agathokleous, Evgenios Kitao, Mitsutoshi Shi, Cong Masui, Noboru Abu-ElEla, Shahenda Hikino, Kyohsuke Satoh, Fuyuki Koike, Takayoshi TI Ethylenediurea (EDU) spray effects on willows (Salix sachalinensis F. Schmid) grown in ambient or ozone-enriched air: implications for renewable biomass production SO JOURNAL OF FORESTRY RESEARCH LA English DT Article DE Air pollution; Ethylenediurea (EDU); Hormesis; Plant protection; Tropospheric ozone (O-3) ID GROUND-LEVEL OZONE; TRITICUM-AESTIVUM L.; CARBON METABOLISM; ECOLOGICAL STOICHIOMETRY; BIOENERGY PLANTATIONS; STAY-GREEN; PLANTS; O-3; EXPOSURE; IMPACTS AB Ground-level ozone (O-3) is a widespread air pollutant causing extensive injuries in plants. However, its effects on perennial energy crops remain poorly understood due to technical difficulties in cultivating fast-growing shrubs for biomass production under O-3 treatment on the field. Here we present the results of a two-year evaluation in the framework of which willow (Salix sachalinensis F. Schmid) shrubs were exposed to ambient (AOZ) or elevated (EOZ) O-3 in two successive growing seasons (2014, 2015) and treated with 0 (EDU0) or 400 mg L-1 (EDU400) ethylenediurea spray in the second growing season. In 2014, EOZ altered the chemical composition of both top young and fallen leaves, and a novel mechanism of decreasing Mg in fallen leaves while highly enriching it in young top leaves was revealed in shrubs exposed to EOZ. In 2015, EDU400 alleviated EOZ-induced decreases in leaf fresh mass to dry mass ratio (FM/DM) and leaf mass per area (LMA). While EDU400 protected against EOZ-induced suppression of the maximum rate at which leaves can fix carbon (A(max)) in O-3-asymptomatic leaves, it did not alleviate EOZ-induced suppression of the maximum rates of carboxylation (V-Cmax) and electron transport (J(max)) and chlorophylls a, b, and a + b in the same type of leaves. In O-3-symptomatic leaves, however, EDU400 alleviated EOZ-induced suppression of chlorophylls a and a + b, indicating different mode of action of EDU between O-3-asymptomatic and O-3-symptomatic leaves. Extensive herbivory occurred only in AOZ-exposed plants, leading to suppressed biomass production, while EOZ also led to a similar suppression of biomass production (EDU0 x EOZ vs. EDU400 x EOZ). In 2016, carry-over effects were also evaluated following cropping and transplantation into new ambient plots. Effects of EOZ in the preceding growing seasons extended to the third growing season in the form of suppressed ratoon biomass production, indicating carry-over effect of EOZ. Although EDU400 protected against EOZ-induced suppression of biomass production when applied in 2015, there was no carry-over effect of EDU in the absence of EDU treatment in 2016. The results of this study provide novel mechanistic understandings of O-3 and EDU modes of action and can enlighten cultivation of willow as energy crop. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Peoples R China. [Agathokleous, Evgenios; Masui, Noboru; Hikino, Kyohsuke; Koike, Takayoshi] Hokkaido Univ, Sch Agr, Sapporo, Hokkaido 0608589, Japan. [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan. [Shi, Cong] Tiangong Univ, Sch Environm Sci & Engn, Tianjin 300387, Peoples R China. [Abu-ElEla, Shahenda] Cairo Univ, Fac Sci, Dept Entomol, Giza 12613, Egypt. [Hikino, Kyohsuke] Tech Univ Munich TUM, TUM Sch Life Sci, Hans Carl von Carlowitz Pl 2, D-85354 Freising Weihenstephan, Germany. [Satoh, Fuyuki] Hokkaido Univ, Field Sci Ctr Northern Biosphere, Sapporo, Hokkaido 0600809, Japan. [Koike, Takayoshi] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China. C3 Nanjing University of Information Science & Technology; Hokkaido University; Forestry & Forest Products Research Institute - Japan; Tiangong University; Egyptian Knowledge Bank (EKB); Cairo University; Technical University of Munich; Hokkaido University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES) RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Peoples R China.; Agathokleous, E (corresponding author), Hokkaido Univ, Sch Agr, Sapporo, Hokkaido 0608589, Japan.; Agathokleous, E (corresponding author), Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan. EM evgenios@nuist.edu.cn RI Abuelela, Shahenda/GSI-6653-2022; Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857; Hikino, Kyohsuke/0000-0002-6981-3988 FU Japan's Forestry and Forest Products Research Institute (FFPRI) [201802]; KAKENHI of the Japan Society for the Promotion of Science (JSPS) [JP17F17102]; JSPS [P17102] FX This research was partly supported by grant #201802 of the Japan's Forestry and Forest Products Research Institute (FFPRI) and KAKENHI grant #JP17F17102 of the Japan Society for the Promotion of Science (JSPS). Evgenios Agathokleous was an International Research Fellow (ID No: P17102) of the JSPS, and JSPS is a non-profit, independent administrative institution. CR Adegbidi HG, 2001, BIOMASS BIOENERG, V20, P399, DOI 10.1016/S0961-9534(01)00009-5 Agathokleous E, 2022, J FORESTRY RES, V33, P117, DOI 10.1007/s11676-021-01352-6 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2021, J FORESTRY RES, V32, P2047, DOI 10.1007/s11676-020-01223-6 Agathokleous E, 2020, SCI TOTAL ENVIRON, V703, DOI 10.1016/j.scitotenv.2019.134962 Agathokleous E, 2018, ENVIRON POLLUT, V238, P663, DOI 10.1016/j.envpol.2018.03.061 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Agathokleous E, 2016, SCI TOTAL ENVIRON, V573, P1053, DOI 10.1016/j.scitotenv.2016.08.183 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9 Agathokleous E, 2016, SCI TOTAL ENVIRON, V566, P841, DOI 10.1016/j.scitotenv.2016.05.122 Agathokleous E, 2015, J AGRIC METEOROL, V71, P185, DOI 10.2480/agrmet.D-14-00017 Akimoto H, 2015, ATMOS ENVIRON, V102, P302, DOI 10.1016/j.atmosenv.2014.12.001 Ashrafuzzaman M, 2018, PLANT CELL ENVIRON, V41, P2882, DOI 10.1111/pce.13423 BARNES JD, 1992, ENVIRON EXP BOT, V32, P85, DOI 10.1016/0098-8472(92)90034-Y Bisigato AJ, 2015, ARTHROPOD-PLANT INTE, V9, P477, DOI 10.1007/s11829-015-9387-7 Blande James D., 2021, Current Opinion in Environmental Science & Health, V19, P100228, DOI 10.1016/j.coesh.2020.100228 CARNAHAN JE, 1978, PHYTOPATHOLOGY, V68, P1225, DOI 10.1094/Phyto-68-1225 Chaudhary IJ, 2021, ENVIRON TECHNOL INNO, V22, DOI 10.1016/j.eti.2021.101494 Cohen J., 1988, STAT POWER ANAL BEHA, V2nd ed. Cotrozzi L, 2021, SCI TOTAL ENVIRON, V756, DOI 10.1016/j.scitotenv.2020.143795 Derstroff B, 2017, ATMOS CHEM PHYS, V17, P9547, DOI 10.5194/acp-17-9547-2017 Dimitriou I, 2011, QUANTIFYING ENV EFFE, P33 Dizengremel P, 2001, PLANT PHYSIOL BIOCH, V39, P729, DOI 10.1016/S0981-9428(01)01291-8 DIZENGREMEL P, 1994, J PLANT PHYSIOL, V144, P300, DOI 10.1016/S0176-1617(11)81191-0 EDWARDS NT, 1990, TREE PHYSIOL, V6, P95, DOI 10.1093/treephys/6.1.95 El Kasmioui O, 2012, BIOMASS BIOENERG, V43, P52, DOI 10.1016/j.biombioe.2012.04.006 Erickson LE, 2020, ENVIRON PROG SUSTAIN, V39, DOI 10.1002/ep.13484 Fabio ES, 2017, IND CROP PROD, V96, P57, DOI 10.1016/j.indcrop.2016.11.019 FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231 Fatima A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8040080 Fenech S, 2021, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.631280 Feng ZZ, 2008, GLOBAL CHANGE BIOL, V14, P2696, DOI 10.1111/j.1365-2486.2008.01673.x Feng ZZ, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.104966 Feng ZZ, 2019, SCI TOTAL ENVIRON, V654, P832, DOI 10.1016/j.scitotenv.2018.11.179 Feng ZZ, 2014, ENVIRON POLLUT, V193, P296, DOI 10.1016/j.envpol.2014.06.004 Feng ZZ, 2010, ENVIRON POLLUT, V158, P3236, DOI 10.1016/j.envpol.2010.07.009 Gao M, 2020, ATMOS CHEM PHYS, V20, P4399, DOI 10.5194/acp-20-4399-2020 Giovannelli A, 2019, FORESTS, V10, DOI 10.3390/f10050396 Gottardini E, 2014, SCI TOTAL ENVIRON, V493, P954, DOI 10.1016/j.scitotenv.2014.06.041 Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x Guidi L, 2009, ENVIRON EXP BOT, V66, P117, DOI 10.1016/j.envexpbot.2008.12.005 Guidi Nissim W, 2013, BIOMASS BIOENERG, V56, P361, DOI 10.1016/j.biombioe.2013.05.020 Guo WL, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.4161/15592324.2014.992287 Gupta SK, 2021, PROTOPLASMA, V258, P1009, DOI 10.1007/s00709-021-01617-1 Hermans C, 2005, J EXP BOT, V56, P2153, DOI 10.1093/jxb/eri215 Hoshika Y, 2013, ENVIRON POLLUT, V180, P299, DOI 10.1016/j.envpol.2013.05.041 Huber DM, 2013, PLANT SOIL, V368, P73, DOI 10.1007/s11104-012-1476-0 Jabeen F, 2021, INT J ENVIRON SCI TE, V18, P3571, DOI 10.1007/s13762-020-03077-1 Jiang LJ, 2018, J ENVIRON SCI, V64, P10, DOI 10.1016/j.jes.2017.07.002 Jolivet Y, 2016, ANN FOREST SCI, V73, P923, DOI 10.1007/s13595-016-0580-3 Kakuk B, 2021, BIORESOURCE TECHNOL, V333, DOI 10.1016/j.biortech.2021.125223 Karnosky DF, 2007, PLANT BIOLOGY, V9, P181, DOI 10.1055/s-2006-955915 Karnosky DF, 2007, ENVIRON POLLUT, V147, P489, DOI 10.1016/j.envpol.2006.08.043 Karp A, 2011, J INTEGR PLANT BIOL, V53, P151, DOI 10.1111/j.1744-7909.2010.01015.x Kayama M, 2005, ANN BOT-LONDON, V95, P661, DOI 10.1093/aob/mci063 Kinose Y, 2020, SCI TOTAL ENVIRON, V716, DOI 10.1016/j.scitotenv.2020.137008 Kitao M, 2015, ENVIRON POLLUT, V206, P133, DOI 10.1016/j.envpol.2015.06.034 Koike T, 2013, DEV ENVIRONM SCI, V13, P371, DOI 10.1016/B978-0-08-098349-3.00017-7 Kopp RF, 2001, FOREST CHRON, V77, P287, DOI 10.5558/tfc77287-2 Kume A, 2009, ECOL RES, V24, P821, DOI 10.1007/s11284-008-0557-2 Li K, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2015797118 Li P, 2017, PLANT CELL ENVIRON, V40, P2369, DOI 10.1111/pce.13043 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 Liu CQ, 2021, ATMOS ENVIRON, V251, DOI 10.1016/j.atmosenv.2021.118275 Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262 Lumme I., 1988, Silva Fennica, V22, P67 Manning WJ, 2011, ENVIRON POLLUT, V159, P3283, DOI 10.1016/j.envpol.2011.07.005 Marschner P, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P1 Maruyama Y., 2002, JPN J ENV, V44, P71, DOI [10.18922/jjfe.44.2_71, DOI 10.18922/JJFE.44.2_71] Masui N, 2021, J FORESTRY RES, V32, P1337, DOI 10.1007/s11676-020-01287-4 Mola-Yudego B, 2008, ENERG POLICY, V36, P3062, DOI 10.1016/j.enpol.2008.03.036 Mola-Yudego B, 2010, BIOMASS BIOENERG, V34, P442, DOI 10.1016/j.biombioe.2009.12.008 Nagashima T, 2017, ATMOS CHEM PHYS, V17, P8231, DOI 10.5194/acp-17-8231-2017 NIIYAMA K, 1987, Japanese Journal of Ecology (Tokyo), V37, P163 Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 Nordborg M, 2018, RENEW SUST ENERG REV, V93, P473, DOI 10.1016/j.rser.2018.05.045 Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010 Oksanen E, 2003, TREE PHYSIOL, V23, P603, DOI 10.1093/treephys/23.9.603 Onoda Y, 2017, NEW PHYTOL, V214, P1447, DOI 10.1111/nph.14496 Pandey AK, 2019, CLIMATE, V7, DOI 10.3390/cli7020023 Pandey AK, 2015, SCI TOTAL ENVIRON, V532, P230, DOI 10.1016/j.scitotenv.2015.05.040 Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051 Paoletti E, 2014, ENVIRON POLLUT, V193, P1, DOI 10.1016/j.envpol.2014.06.001 Paoletti E, 2009, ENVIRON POLLUT, V157, P1453, DOI 10.1016/j.envpol.2008.09.021 Pellegrini E, 2014, URBAN FOR URBAN GREE, V13, P94, DOI 10.1016/j.ufug.2013.10.006 PLUCKNETT D. L., 1970, Advances in Agronomy, P285, DOI 10.1016/S0065-2113(08)60271-0 Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x Proietti C, 2021, J FORESTRY RES, V32, P543, DOI 10.1007/s11676-020-01226-3 Querol X, 2021, SCI TOTAL ENVIRON, V779, DOI 10.1016/j.scitotenv.2021.146380 Sacchelli S, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80516-6 Sato T, 2018, J PLANT PHYSIOL, V222, P94, DOI 10.1016/j.jplph.2018.01.010 Shang B, 2018, ENVIRON POLLUT, V234, P136, DOI 10.1016/j.envpol.2017.11.056 Shi C, 2017, ENVIRON EXP BOT, V138, P148, DOI 10.1016/j.envexpbot.2017.03.012 Shimoda Y, 2016, PLANT CELL, V28, P2147, DOI 10.1105/tpc.16.00428 Shinano T, 1996, PHOTOSYNTHETICA, V32, P409 Sicard Pierre, 2021, Current Opinion in Environmental Science & Health, V19, P100226, DOI 10.1016/j.coesh.2020.100226 Sicard P, 2020, SCI TOTAL ENVIRON, V735, DOI 10.1016/j.scitotenv.2020.139542 Sicard P, 2017, ATMOS CHEM PHYS, V17, P12177, DOI 10.5194/acp-17-12177-2017 Singh AA, 2015, REV ENVIRON CONTAM T, V233, P129, DOI 10.1007/978-3-319-10479-9_4 Singh S, 2018, ECOTOX ENVIRON SAFE, V147, P1046, DOI 10.1016/j.ecoenv.2017.09.068 Sperdouli I, 2021, MOLECULES, V26, DOI 10.3390/molecules26102984 Tiwari S, 2017, ENVIRON SCI POLLUT R, V24, P14019, DOI 10.1007/s11356-017-8859-y Tobita H, 2019, CLIMATE, V7, DOI 10.3390/cli7100117 Ueno AC, 2021, PLANT CELL ENVIRON, V44, P2716, DOI 10.1111/pce.14047 Ueno AC, 2020, PLANT CELL ENVIRON, V43, P2540, DOI 10.1111/pce.13859 Vlachojannis JE, 2009, PHYTOTHER RES, V23, P897, DOI 10.1002/ptr.2747 Volk TA, 2006, BIOMASS BIOENERG, V30, P715, DOI 10.1016/j.biombioe.2006.03.001 Wan WX, 2014, ENVIRON POLLUT, V191, P215, DOI 10.1016/j.envpol.2014.02.035 Wang L, 2013, AGR ECOSYST ENVIRON, V178, P57, DOI 10.1016/j.agee.2013.06.013 Wang WQ, 2020, ADV AGRON, V159, P135, DOI 10.1016/bs.agron.2019.07.006 Yuan XY, 2015, ENVIRON POLLUT, V205, P199, DOI 10.1016/j.envpol.2015.05.043 NR 111 TC 6 Z9 6 U1 3 U2 14 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD APR PY 2022 VL 33 IS 2 BP 397 EP 422 DI 10.1007/s11676-021-01400-1 EA OCT 2021 PG 26 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA 0D3SS UT WOS:000703369700002 OA hybrid DA 2023-03-13 ER PT J AU Kolodziej, F O'Halloran, KD AF Kolodziej, Filip O'Halloran, Ken D. TI Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? SO ANTIOXIDANTS LA English DT Review DE oxidative stress; endurance exercise; metabolic disease; oxidative phenotype AB Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O-2(-)). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome. C1 [Kolodziej, Filip; O'Halloran, Ken D.] Univ Coll Cork, Coll Med & Hlth, Sch Med, Dept Physiol, Cork T12 XF62, Ireland. C3 University College Cork RP Kolodziej, F (corresponding author), Univ Coll Cork, Coll Med & Hlth, Sch Med, Dept Physiol, Cork T12 XF62, Ireland. EM 116333553@umail.ucc.ie; K.OHalloran@ucc.ie OI Kolodziej, Filip/0000-0002-5575-2037 CR Abe T, 2015, J APPL PHYSIOL, V119, P1297, DOI 10.1152/japplphysiol.00499.2015 Achten J, 2003, INT J SPORTS MED, V24, P603, DOI 10.1055/s-2003-43265 Adhihetty PJ, 2005, AM J PHYSIOL-CELL PH, V289, pC994, DOI 10.1152/ajpcell.00031.2005 Aguiar AS, 2016, NEUROCHEM RES, V41, P64, DOI 10.1007/s11064-015-1709-8 Ahn BH, 2008, P NATL ACAD SCI USA, V105, P14447, DOI 10.1073/pnas.0803790105 Akimoto T, 2005, J BIOL CHEM, V280, P19587, DOI 10.1074/jbc.M408862200 Allen DG, 2008, PHYSIOL REV, V88, P287, DOI 10.1152/physrev.00015.2007 Alvarez-Guardia D, 2010, CARDIOVASC RES, V87, P449, DOI 10.1093/cvr/cvq080 Anderson RM, 2008, AGING CELL, V7, P101, DOI 10.1111/j.1474-9726.2007.00357.x Aquilano K, 2013, ANTIOXID REDOX SIGN, V18, P386, DOI 10.1089/ars.2012.4615 Archibald JM, 2015, CURR BIOL, V25, pR911, DOI 10.1016/j.cub.2015.07.055 ARENAS J, 1991, MUSCLE NERVE, V14, P598, DOI 10.1002/mus.880140703 Arias-Mayenco I, 2018, CELL METAB, V28, P145, DOI 10.1016/j.cmet.2018.05.009 Ashraf MS, 2006, CURR HYPERTENS REP, V8, P368, DOI 10.1007/s11906-006-0080-1 ASTRAND PO, 1961, J APPL PHYSIOL, V16, P977 Azevedo JL, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000927 Baldelli S, 2013, BBA-GEN SUBJECTS, V1830, P4137, DOI 10.1016/j.bbagen.2013.04.006 Balon TW, 1997, J APPL PHYSIOL, V82, P359, DOI 10.1152/jappl.1997.82.1.359 Barnes KR, 2015, SPORTS MED-OPEN, V1, DOI 10.1186/s40798-015-0007-y Bergman BC, 1999, J APPL PHYSIOL, V87, P1684, DOI 10.1152/jappl.1999.87.5.1684 Bergman BC, 1999, AM J PHYSIOL-ENDOC M, V277, pE81, DOI 10.1152/ajpendo.1999.277.1.E81 Berridge MJ, 2003, NAT REV MOL CELL BIO, V4, P517, DOI 10.1038/nrm1155 Bezaire V, 2006, AM J PHYSIOL-ENDOC M, V290, pE509, DOI 10.1152/ajpendo.00312.2005 Billat VL, 2003, SPORTS MED, V33, P407, DOI 10.2165/00007256-200333060-00003 Bircher S, 2004, J SPORT SCI MED, V3, P174 Block K, 2007, J BIOL CHEM, V282, P8019, DOI 10.1074/jbc.M611569200 Bonuccelli G, 2010, CELL CYCLE, V9, P3506, DOI 10.4161/cc.9.17.12731 Boron W., 2017, MED PHYSL, V3rd, P228 Boss O, 1999, BIOCHEM BIOPH RES CO, V261, P870, DOI 10.1006/bbrc.1999.1145 BRENMAN JE, 1995, CELL, V82, P743, DOI 10.1016/0092-8674(95)90471-9 Broad EM, 2011, INT J SPORT NUTR EXE, V21, P385, DOI 10.1123/ijsnem.21.5.385 Broad EM, 2008, INT J SPORT NUTR EXE, V18, P567, DOI 10.1123/ijsnem.18.6.567 Brooks G.A., 1985, COMP PHYSL BIOCH CUR, P208 BROOKS GA, 1985, MED SCI SPORT EXER, V17, P22 Brooks GA, 1999, J APPL PHYSIOL, V87, P1713, DOI 10.1152/jappl.1999.87.5.1713 BROOKS GA, 1994, J APPL PHYSIOL, V76, P2253, DOI 10.1152/jappl.1994.76.6.2253 Brooks GA, 2018, CELL METAB, V27, P757, DOI 10.1016/j.cmet.2018.03.008 Brown M, 2018, EUR J APPL PHYSIOL, V118, P2111, DOI 10.1007/s00421-018-3930-z Burns DP, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6040101 Cai TQ, 2008, BIOCHEM BIOPH RES CO, V377, P987, DOI 10.1016/j.bbrc.2008.10.088 Calvo JA, 2008, J APPL PHYSIOL, V104, P1304, DOI 10.1152/japplphysiol.01231.2007 Canto C, 2009, NATURE, V458, P1056, DOI 10.1038/nature07813 Capitanio D, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10097-4 Carling D, 2012, BIOCHEM J, V445, P11, DOI 10.1042/BJ20120546 Fernandez-Aguera MC, 2015, CELL METAB, V22, P825, DOI 10.1016/j.cmet.2015.09.004 Loureiro ACC, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/6738701 Cerda-Kohler H, 2018, PHYSIOL REP, V6, DOI 10.14814/phy2.13800 Chang AJ, 2015, NATURE, V527, P240, DOI 10.1038/nature15721 Chen KJ, 2008, ANTIOXID REDOX SIGN, V10, P1185, DOI 10.1089/ars.2007.1959 Chen ZP, 2003, DIABETES, V52, P2205, DOI 10.2337/diabetes.52.9.2205 Chi W, 2013, FEBS OPEN BIO, V3, P479, DOI 10.1016/j.fob.2013.09.004 Chicco AJ, 2018, J BIOL CHEM, V293, P6659, DOI 10.1074/jbc.RA117.000470 Choi HI, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04593-w Cieszczyk P, 2011, BIOL SPORT, V28, P111, DOI 10.5604/945117 Cohen S, 2009, J CELL BIOL, V185, P1083, DOI 10.1083/jcb.200901052 Constantin-Teodosiu D, 2009, J PHYSIOL-LONDON, V587, P231, DOI 10.1113/jphysiol.2008.164210 Cox PJ, 2016, CELL METAB, V24, P256, DOI 10.1016/j.cmet.2016.07.010 Crunkhorn S, 2007, J BIOL CHEM, V282, P15439, DOI 10.1074/jbc.M611214200 Daemen S, 2018, MOL METAB, V17, P71, DOI 10.1016/j.molmet.2018.08.004 Dalvi PS, 2017, INT J OBESITY, V41, P149, DOI 10.1038/ijo.2016.183 Davies MN, 2016, CELL REP, V14, P243, DOI 10.1016/j.celrep.2015.12.030 de Paoli FV, 2007, J PHYSIOL-LONDON, V581, P829, DOI 10.1113/jphysiol.2007.129049 Debold EP, 2015, FRONT PHYSIOL, V6, DOI 10.3389/fphys.2015.00239 Dehvari N, 2012, BRIT J PHARMACOL, V165, P1442, DOI 10.1111/j.1476-5381.2011.01647.x Deng Y, 2016, SCI REP-UK, V6, DOI 10.1038/srep21422 DESPLANCHES D, 1993, PFLUG ARCH EUR J PHY, V425, P263, DOI 10.1007/BF00374176 Ding HW, 2016, BIOCHEM BIOPH RES CO, V478, P798, DOI 10.1016/j.bbrc.2016.08.028 Dinkova-Kostova AT, 2015, FREE RADICAL BIO MED, V88, P179, DOI 10.1016/j.freeradbiomed.2015.04.036 Drake JC, 2016, FASEB J, V30, P13, DOI 10.1096/fj.15-276337 DUARTE JAR, 1993, INT J SPORTS MED, V14, P440, DOI 10.1055/s-2007-1021207 Eisele PS, 2013, J BIOL CHEM, V288, P2246, DOI 10.1074/jbc.M112.375253 Engineer A, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8100436 Essner RA, 2017, J NEUROSCI, V37, P8678, DOI 10.1523/JNEUROSCI.0798-17.2017 Fan LM, 2017, FREE RADICAL BIO MED, V108, P940, DOI 10.1016/j.freeradbiomed.2017.05.008 Fang EF, 2017, SCI REP-UK, V7, DOI 10.1038/srep46208 Fathizadeh H, 2019, EXCLI J, V18, P631, DOI 10.17179/excli2019-1447 Faubert B, 2014, P NATL ACAD SCI USA, V111, P2554, DOI 10.1073/pnas.1312570111 Finley LWS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023295 Fletcher G, 2017, AM J CLIN NUTR, V105, P864, DOI 10.3945/ajcn.116.133520 Fogelholm G M, 1991, Br J Sports Med, V25, P41 Frandsen J, 2017, INT J SPORTS MED, V38, P975, DOI 10.1055/s-0043-117178 Fu YJ, 2017, ONCOTARGET, V8, P57813, DOI 10.18632/oncotarget.18175 Fulghum K, 2018, FREE RADICAL BIO MED, V128, pS83, DOI 10.1016/j.freeradbiomed.2018.10.188 Fulle S, 2004, EXP GERONTOL, V39, P17, DOI 10.1016/j.exger.2003.09.012 Gill JF, 2019, AGING CELL, V18, DOI 10.1111/acel.12993 Gkotinakou IM, 2019, J CELL SCI, V132, DOI 10.1242/jcs.225698 Golpich M, 2017, CNS NEUROSCI THER, V23, P5, DOI 10.1111/cns.12655 Gomes AP, 2013, CELL, V155, P1624, DOI 10.1016/j.cell.2013.11.037 Gonzalez JT, 2016, AM J PHYSIOL-ENDOC M, V311, pE543, DOI 10.1152/ajpendo.00232.2016 Goodpaster BH, 2001, J CLIN ENDOCR METAB, V86, P5755, DOI 10.1210/jc.86.12.5755 Goodpaster BH, 2017, CELL METAB, V25, P1027, DOI 10.1016/j.cmet.2017.04.015 Gumucio JP, 2013, ENDOCRINE, V43, P12, DOI 10.1007/s12020-012-9751-7 Gurd BJ, 2011, AM J PHYSIOL-REG I, V301, pR67, DOI 10.1152/ajpregu.00417.2010 Gureev AP, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00435 Handschin C, 2003, P NATL ACAD SCI USA, V100, P7111, DOI 10.1073/pnas.1232352100 Harman D, 2009, BIOGERONTOLOGY, V10, P773, DOI 10.1007/s10522-009-9234-2 Hashimoto T, 2005, J PHYSIOL-LONDON, V567, P121, DOI 10.1113/jphysiol.2005.087411 Hashimoto T, 2006, AM J PHYSIOL-ENDOC M, V290, pE1237, DOI 10.1152/ajpendo.00594.2005 Hashimoto T, 2015, FRONT PEDIATR, V3, DOI 10.3389/fped.2015.00033 Hayes JD, 2015, BIOCHEM SOC T, V43, P611, DOI 10.1042/BST20150011 He ZH, 2000, BIOPHYS J, V79, P945, DOI 10.1016/S0006-3495(00)76349-1 HENNEMAN E, 1957, SCIENCE, V126, P1345, DOI 10.1126/science.126.3287.1345 Hidalgo C, 2006, J BIOL CHEM, V281, P26473, DOI 10.1074/jbc.M600451200 Hill AV, 1924, P R SOC LOND B-CONTA, V96, P438, DOI 10.1098/rspb.1924.0037 Hirschey MD, 2011, MOL CELL, V44, P177, DOI 10.1016/j.molcel.2011.07.019 Hochachka PW, 2002, NEWS PHYSIOL SCI, V17, P122, DOI 10.1152/nips.01382.2001 Holloway GP, 2007, J PHYSIOL-LONDON, V582, P393, DOI 10.1113/jphysiol.2007.135301 Holloway TM, 2015, AM J PHYSIOL-REG I, V308, pR927, DOI 10.1152/ajpregu.00048.2015 Holloway TM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121138 Hota KB, 2012, HIPPOCAMPUS, V22, P723, DOI 10.1002/hipo.20934 Hureau TJ, 2019, J APPL PHYSIOL, V127, P1257, DOI 10.1152/japplphysiol.00490.2019 Hureau TJ, 2018, J PHYSIOL-LONDON, V596, P1373, DOI 10.1113/JP275465 Huxley HE, 2004, EUR J BIOCHEM, V271, P1403, DOI 10.1111/j.1432-1033.2004.04044.x Ivan M, 2001, SCIENCE, V292, P464, DOI 10.1126/science.1059817 Jager S, 2007, P NATL ACAD SCI USA, V104, P12017, DOI 10.1073/pnas.0705070104 Jamurtas AZ, 2018, J SPORT SCI MED, V17, P501 Jang JY, 2018, J CLIN INVEST, V128, P3662, DOI 10.1172/JCI120842 Jensen J, 2011, FRONT PHYSIOL, V2, DOI 10.3389/fphys.2011.00112 Jensen R, 2020, J PHYSIOL-LONDON, V598, P789, DOI 10.1113/JP278543 Jeppesen J, 2012, J PHYSIOL-LONDON, V590, P1059, DOI 10.1113/jphysiol.2011.225011 Jia YT, 2007, J IMMUNOL, V179, P7808, DOI 10.4049/jimmunol.179.11.7808 Jin W, 2011, J TRAUMA, V71, P680, DOI 10.1097/TA.0b013e3181f6b984 KAIJSER L, 1990, J APPL PHYSIOL, V69, P785, DOI 10.1152/jappl.1990.69.2.785 Kansanen E, 2013, REDOX BIOL, V1, P45, DOI 10.1016/j.redox.2012.10.001 Kellogg DL, 2017, FREE RADICAL BIO MED, V110, P261, DOI 10.1016/j.freeradbiomed.2017.06.018 Khan SA, 2004, P NATL ACAD SCI USA, V101, P15944, DOI 10.1073/pnas.0404136101 Kiens B, 2004, J APPL PHYSIOL, V97, P1209, DOI 10.1152/japplphysiol.01278.2003 Kim Jisu, 2016, J Exerc Nutrition Biochem, V20, P48, DOI 10.20463/jenb.2016.0057 Kitagishi Y, 2013, INT J MOL MED, V31, P511, DOI 10.3892/ijmm.2013.1235 Knechtle B, 2004, INT J SPORTS MED, V25, P38, DOI 10.1055/s-2003-45232 Ko K, 2018, LIPIDS HEALTH DIS, V17, DOI 10.1186/s12944-018-0730-8 Koh JH, 2019, DIABETES, V68, P1552, DOI 10.2337/db19-0088 Korzeniewski B, 2005, BIOPHYS CHEM, V116, P129, DOI 10.1016/j.bpc.2005.03.004 Koves TR, 2013, J LIPID RES, V54, P522, DOI 10.1194/jlr.P028910 Lacher SE, 2018, REDOX BIOL, V19, P401, DOI 10.1016/j.redox.2018.08.014 Lackey DE, 2013, AM J PHYSIOL-ENDOC M, V304, pE1175, DOI 10.1152/ajpendo.00630.2012 LaGory EL, 2015, CELL REP, V12, P116, DOI 10.1016/j.celrep.2015.06.006 Laker RC, 2014, DIABETES, V63, P1605, DOI [10.2337/db13-1614, 10.2337/db14-0135] Larsen EL, 2020, J SPORT SCI, V38, P2080, DOI 10.1080/02640414.2020.1770918 LEBERER E, 1984, HISTOCHEMISTRY, V80, P295, DOI 10.1007/BF00495780 Lehman JJ, 2000, J CLIN INVEST, V106, P847, DOI 10.1172/JCI10268 Levett DZ, 2012, FASEB J, V26, P1431, DOI 10.1096/fj.11-197772 Lewis P, 2016, FRONT PHYSIOL, V7, DOI [10.3389/fphys.2016.00623, 10.3339/fphys.2016.00623] Li HS, 2019, REDOX BIOL, V25, DOI 10.1016/j.redox.2019.101109 Lima-Silva AE, 2010, J SPORT SCI MED, V9, P31 Lin J, 2002, NATURE, V418, P797, DOI 10.1038/nature00904 Lindholm ME, 2014, AM J PHYSIOL-REG I, V307, pR248, DOI 10.1152/ajpregu.00036.2013 Little JP, 2010, AM J PHYSIOL-REG I, V298, pR912, DOI 10.1152/ajpregu.00409.2009 Liu CL, 2009, J BIOL CHEM, V284, P2811, DOI 10.1074/jbc.M806409200 Longo M, 2016, AM J HYPERTENS, V29, P1366, DOI 10.1093/ajh/hpw088 Lund J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-28249-5 Lundby C, 2006, EUR J APPL PHYSIOL, V96, P363, DOI 10.1007/s00421-005-0085-5 Magkos F, 2013, DIABETES, V62, P2757, DOI 10.2337/db13-0185 Marcinek DJ, 2010, J APPL PHYSIOL, V108, P1479, DOI 10.1152/japplphysiol.01189.2009 Martin-Rincon M, 2018, SCAND J MED SCI SPOR, V28, P772, DOI 10.1111/sms.12945 Martinez-Outschoorn UE, 2011, CELL CYCLE, V10, P2504, DOI 10.4161/cc.10.15.16585 Mason SD, 2004, PLOS BIOL, V2, P1540, DOI 10.1371/journal.pbio.0020288 Mason SD, 2007, AM J PHYSIOL-REG I, V293, pR2059, DOI 10.1152/ajpregu.00335.2007 Maunder E, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00599 McClelland GB, 2003, BIOCHEM BIOPH RES CO, V304, P130, DOI 10.1016/S0006-291X(03)00550-3 Merry TL, 2016, J PHYSIOL-LONDON, V594, P5195, DOI 10.1113/JP271957 Michael LF, 2001, P NATL ACAD SCI USA, V98, P3820, DOI 10.1073/pnas.061035098 Miura S, 2009, AM J PHYSIOL-ENDOC M, V296, pE47, DOI 10.1152/ajpendo.90690.2008 Miwa S, 2003, BIOCHEM SOC T, V31, P1300 Morales J, 2017, J CARD FAIL, V23, pS39, DOI 10.1016/j.cardfail.2017.07.107 Morland C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15557 Moro C, 2008, AM J PHYSIOL-ENDOC M, V294, pE203, DOI 10.1152/ajpendo.00624.2007 Morselli E, 2014, CELL REP, V9, P633, DOI 10.1016/j.celrep.2014.09.025 Muoio DM, 2012, CELL METAB, V15, P764, DOI 10.1016/j.cmet.2012.04.005 Nalbandian M, 2019, BIOLOGY-BASEL, V8, DOI 10.3390/biology8020044 Nalos M, 2014, CRIT CARE, V18, DOI 10.1186/cc13793 Namas RA, 2011, SHOCK, V36, P196, DOI 10.1097/SHK.0b013e3182205e07 Nanduri J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119762 Nanduri J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075838 Newgard CB, 2009, CELL METAB, V9, P565, DOI 10.1016/j.cmet.2009.05.001 Ngo KTA, 2012, ACTA PHYSIOL, V205, P133, DOI 10.1111/j.1748-1716.2011.02379.x Nickerson JG, 2009, J BIOL CHEM, V284, P16522, DOI 10.1074/jbc.M109.004788 Nielsen J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127808 Nielsen J, 2014, J PHYSIOL-LONDON, V592, P2003, DOI 10.1113/jphysiol.2014.271528 Nielsen J, 2010, AM J PHYSIOL-ENDOC M, V299, pE1053, DOI 10.1152/ajpendo.00324.2010 Nilsson A, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12934-8 Noland RC, 2009, J BIOL CHEM, V284, P22840, DOI 10.1074/jbc.M109.032888 O'Neill HM, 2011, P NATL ACAD SCI USA, V108, P16092, DOI 10.1073/pnas.1105062108 Odland LM, 1996, AM J PHYSIOL-ENDOC M, V270, pE541, DOI 10.1152/ajpendo.1996.270.3.E541 Odland LM, 1998, AM J PHYSIOL-ENDOC M, V274, pE1080, DOI 10.1152/ajpendo.1998.274.6.E1080 Ohtsuji M, 2008, J BIOL CHEM, V283, P33554, DOI 10.1074/jbc.M804597200 Okamoto A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03980-7 OKU H, 1988, J BIOL CHEM, V263, P18386 Ortenblad N, 2015, SCAND J MED SCI SPOR, V25, P34, DOI 10.1111/sms.12599 Ortenblad N, 2013, J PHYSIOL-LONDON, V591, P4405, DOI 10.1113/jphysiol.2013.251629 Owles WH, 1930, J PHYSIOL-LONDON, V69, P214, DOI 10.1113/jphysiol.1930.sp002646 Palazzetti S, 2003, CAN J APPL PHYSIOL, V28, P588, DOI 10.1139/h03-045 PARK JH, 1988, P NATL ACAD SCI USA, V85, P8780, DOI 10.1073/pnas.85.23.8780 Passarella S, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00407 Peake JM, 2005, MED SCI SPORT EXER, V37, P737, DOI 10.1249/01.MSS.0000161804.05399.3B Percival Justin M, 2011, Biophys Rev, V3, P209, DOI 10.1007/s12551-011-0060-9 Piantadosi CA, 2008, CIRC RES, V103, P1232, DOI 10.1161/01.RES.0000338597.71702.ad PIEKLIK JR, 1975, J BIOL CHEM, V250, P4445 Pilegaard H, 2003, J PHYSIOL-LONDON, V546, P851, DOI 10.1113/jphysiol.2002.034850 Poole DC, 2012, COMPR PHYSIOL, V2, P933, DOI 10.1002/cphy.c100072 Powers SK, 2008, PHYSIOL REV, V88, P1243, DOI 10.1152/physrev.00031.2007 Preece SJ, 2019, EUR J SPORT SCI, V19, P784, DOI 10.1080/17461391.2018.1554707 Puigserver P, 2001, MOL CELL, V8, P971, DOI 10.1016/S1097-2765(01)00390-2 Purdom T, 2018, J INT SOC SPORT NUTR, V15, DOI 10.1186/s12970-018-0207-1 Qin YJ, 2013, WORLD J EMERG MED, V4, P215, DOI [10.5847/wjem.j.issn.1920-8642.2013.03.011, 10.5847/wjem.j.1920-8642.2013.03.011] Qiu XL, 2010, CELL METAB, V12, P662, DOI 10.1016/j.cmet.2010.11.015 RANDLE PJ, 1964, BIOCHEM J, V93, P652, DOI 10.1042/bj0930652 Rasbach KA, 2010, P NATL ACAD SCI USA, V107, P21866, DOI 10.1073/pnas.1016089107 Rastogi R, 2017, FRONT CELL NEUROSCI, V10, DOI 10.3389/fncel.2016.00301 Reichenbach A, 2018, FASEB J, V32, P6923, DOI 10.1096/fj.201800634R REID MB, 1993, J APPL PHYSIOL, V75, P1081, DOI 10.1152/jappl.1993.75.3.1081 Richardson RS, 2001, J APPL PHYSIOL, V91, P2679, DOI 10.1152/jappl.2001.91.6.2679 Richter EA, 2009, BIOCHEM J, V418, P261, DOI 10.1042/BJ20082055 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Roepstorff C, 2005, AM J PHYSIOL-ENDOC M, V288, pE133, DOI 10.1152/ajpendo.00379.2004 Rogatzki MJ, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00022 ROMIJN JA, 1993, AM J PHYSIOL, V265, pE380, DOI 10.1152/ajpendo.1993.265.3.E380 Rowe GC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041817 Russ DW, 2012, BIOGERONTOLOGY, V13, P547, DOI 10.1007/s10522-012-9399-y Ruttkay-Nedecky B, 2013, INT J MOL SCI, V14, P6044, DOI 10.3390/ijms14036044 Sahlin K, 2002, J PHYSIOL-LONDON, V541, P569, DOI 10.1113/jphysiol.2002.016683 SAHLIN K, 1990, ACTA PHYSIOL SCAND, V138, P259, DOI 10.1111/j.1748-1716.1990.tb08845.x SAITO M, 1988, J APPL PHYSIOL, V65, P1548, DOI 10.1152/jappl.1988.65.4.1548 Sakellariou GK, 2014, FREE RADICAL RES, V48, P12, DOI 10.3109/10715762.2013.830718 San-Millan I, 2018, SPORTS MED, V48, P467, DOI 10.1007/s40279-017-0751-x Sanchez AMJ, 2014, AM J PHYSIOL-REG I, V307, pR956, DOI 10.1152/ajpregu.00187.2014 Satoh JI, 2013, GENE REGUL SYST BIO, V7, P139, DOI 10.4137/GRSB.S13204 Scharhag-Rosenberger F, 2010, INT J SPORTS MED, V31, P498, DOI 10.1055/s-0030-1249621 Schenk S, 2006, AM J PHYSIOL-ENDOC M, V291, pE254, DOI 10.1152/ajpendo.00051.2006 Schreiber SN, 2004, P NATL ACAD SCI USA, V101, P6472, DOI 10.1073/pnas.0308686101 Seiler SE, 2015, CELL METAB, V22, P65, DOI 10.1016/j.cmet.2015.06.003 Seiler SE, 2014, J LIPID RES, V55, P635, DOI 10.1194/jlr.M043448 Semenza GL, 2000, J APPL PHYSIOL, V88, P1474, DOI 10.1152/jappl.2000.88.4.1474 Sharma BK, 2014, J CELL PHYSIOL, V229, P1901, DOI 10.1002/jcp.24664 Shaw CS, 2012, AM J PHYSIOL-ENDOC M, V303, pE1158, DOI 10.1152/ajpendo.00272.2012 Sidhu SK, 2018, J PHYSIOL-LONDON, V596, P4789, DOI 10.1113/JP276460 Sidhu SK, 2017, CLIN NEUROPHYSIOL, V128, P44, DOI 10.1016/j.clinph.2016.10.008 Sies H, 2021, REDOX BIOL, V41, DOI 10.1016/j.redox.2021.101867 Silva Luciano A., 2018, Motriz: rev. educ. fis., V24, pe101804, DOI 10.1590/s1980-6574201800040008 SJODIN B, 1981, INT J SPORTS MED, V2, P23, DOI 10.1055/s-2008-1034579 Song Z, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05483-x Sowter HM, 2001, CANCER RES, V61, P6669 Spriet LL, 2014, SPORTS MED, V44, P87, DOI 10.1007/s40279-014-0154-1 St-Pierre J, 2003, J BIOL CHEM, V278, P26597, DOI 10.1074/jbc.M301850200 St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024 Stanford KI, 2018, DIABETES, V67, P2530, DOI 10.2337/db18-0667 STANLEY WC, 1986, J APPL PHYSIOL, V60, P1116, DOI 10.1152/jappl.1986.60.4.1116 Starritt EC, 2000, AM J PHYSIOL-ENDOC M, V278, pE462, DOI 10.1152/ajpendo.2000.278.3.E462 Steinbacher P, 2015, BIOMOLECULES, V5, P356, DOI 10.3390/biom5020356 Stephens FB, 2007, J PHYSIOL-LONDON, V581, P431, DOI 10.1113/jphysiol.2006.125799 Stroka DM, 2001, FASEB J, V15, P2445, DOI 10.1096/fj.01-0125com Su X, 2015, OBESITY, V23, P329, DOI 10.1002/oby.20923 Sugden MC, 2003, AM J PHYSIOL-ENDOC M, V284, pE855, DOI 10.1152/ajpendo.00526.2002 Summermatter S, 2013, P NATL ACAD SCI USA, V110, P8738, DOI 10.1073/pnas.1212976110 Taniyama Y, 2003, HYPERTENSION, V42, P1075, DOI 10.1161/01.HYP.0000100443.09293.4F Tanskanen M, 2010, J SPORT SCI, V28, P309, DOI 10.1080/02640410903473844 Tauffenberger A, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-1877-6 TAYLOR DJ, 1986, MAGNET RESON MED, V3, P44, DOI 10.1002/mrm.1910030107 Taylor EB, 2005, AM J PHYSIOL-ENDOC M, V289, pE960, DOI 10.1152/ajpendo.00237.2005 TAYLOR HL, 1955, J APPL PHYSIOL, V8, P73, DOI 10.1152/jappl.1955.8.1.73 Temesi J, 2011, J NUTR, V141, P890, DOI 10.3945/jn.110.137075 Terada S, 2002, BIOCHEM BIOPH RES CO, V296, P350, DOI 10.1016/S0006-291X(02)00881-1 Valle I, 2005, CARDIOVASC RES, V66, P562, DOI 10.1016/j.cardiores.2005.01.026 van Hall G, 2015, SPORTS MED, V45, pS23, DOI 10.1007/s40279-015-0394-8 van Loon LJC, 2004, J APPL PHYSIOL, V97, P1170, DOI 10.1152/japplphysiol.00368.2004 Varga T, 2011, BBA-MOL BASIS DIS, V1812, P1007, DOI 10.1016/j.bbadis.2011.02.014 Vega RB, 2000, MOL CELL BIOL, V20, P1868, DOI 10.1128/MCB.20.5.1868-1876.2000 Vest SD, 2018, INT J SPORTS MED, V39, P916, DOI 10.1055/a-0660-0031 VIRBASIUS JV, 1994, P NATL ACAD SCI USA, V91, P1309, DOI 10.1073/pnas.91.4.1309 Vyas S, 2016, CELL, V166, P555, DOI 10.1016/j.cell.2016.07.002 Wachter S, 2002, CLIN CHIM ACTA, V318, P51, DOI 10.1016/S0009-8981(01)00804-X Wagner S, 2011, CIRC RES, V108, P555, DOI 10.1161/CIRCRESAHA.110.221911 Wall BT, 2011, J PHYSIOL-LONDON, V589, P963, DOI 10.1113/jphysiol.2010.201343 Wallace M, 2018, NAT CHEM BIOL, V14, P1021, DOI 10.1038/s41589-018-0132-2 WALLIMANN T, 1992, BIOCHEM J, V281, P21, DOI 10.1042/bj2810021 Wang L, 2013, INT J BIOCHEM CELL B, V45, P1155, DOI 10.1016/j.biocel.2013.03.007 Wang YM, 2007, FREE RADICAL RES, V41, P963, DOI 10.1080/10715760701445045 Ward SA, 2019, CURR OPIN PHYSIOL, V10, P166, DOI 10.1016/j.cophys.2019.05.010 WASSERMAN K, 1964, AM J CARDIOL, V14, P844, DOI 10.1016/0002-9149(64)90012-8 Watanabe D, 2019, J MUSCLE RES CELL M, V40, P353, DOI 10.1007/s10974-019-09524-y Watt MJ, 2008, MOL ENDOCRINOL, V22, P1200, DOI 10.1210/me.2007-0485 Watt MJ, 2009, APPL PHYSIOL NUTR ME, V34, P340, DOI 10.1139/H09-019 Watt MJ, 2004, P NUTR SOC, V63, P315, DOI 10.1079/PNS2004360 Webb AE, 2014, TRENDS BIOCHEM SCI, V39, P159, DOI 10.1016/j.tibs.2014.02.003 Wehrlin JP, 2006, EUR J APPL PHYSIOL, V96, P404, DOI 10.1007/s00421-005-0081-9 Wende AR, 2007, J BIOL CHEM, V282, P36642, DOI 10.1074/jbc.M707006200 WHIPP BJ, 1970, J APPL PHYSIOL, V28, P452, DOI 10.1152/jappl.1970.28.4.452 Whitehead N, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00242 Whitman SA, 2013, EXP CELL RES, V319, P2673, DOI 10.1016/j.yexcr.2013.07.015 Wilkins BJ, 2002, J PHYSIOL-LONDON, V541, P1, DOI 10.1113/jphysiol.2002.017129 WINDER WW, 1989, J APPL PHYSIOL, V67, P2230, DOI 10.1152/jappl.1989.67.6.2230 Withee ED, 2017, J INT SOC SPORT NUTR, V14, DOI 10.1186/s12970-017-0181-z Wojtaszewski JFP, 2003, AM J PHYSIOL-ENDOC M, V284, pE813, DOI 10.1152/ajpendo.00436.2002 Wojtaszewski JFP, 2000, J PHYSIOL-LONDON, V528, P221, DOI 10.1111/j.1469-7793.2000.t01-1-00221.x Wojtaszewski JFP, 2002, BIOCHEM BIOPH RES CO, V298, P309, DOI 10.1016/S0006-291X(02)02465-8 Wright DC, 2007, J BIOL CHEM, V282, P194, DOI 10.1074/jbc.M606116200 Wu HQ, 2017, J MOL NEUROSCI, V61, P449, DOI 10.1007/s12031-017-0885-1 Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X Young A, 2020, REDOX BIOL, V28, DOI 10.1016/j.redox.2019.101339 Yuan GX, 2011, J CELL PHYSIOL, V226, P2925, DOI 10.1002/jcp.22640 Zajac A, 2014, NUTRIENTS, V6, P2493, DOI 10.3390/nu6072493 Zhang DD, 2003, MOL CELL BIOL, V23, P8137, DOI 10.1128/MCB.23.22.8137-8151.2003 Zhang HF, 2007, CANCER CELL, V11, P407, DOI 10.1016/j.ccr.2007.04.001 Zhao GX, 2008, AM J PHYSIOL-HEART C, V294, pH936, DOI 10.1152/ajpheart.00870.2007 Zhao M, 1999, MOL CELL BIOL, V19, P21 Zheng J, 2020, BMJ OPEN DIAB RES CA, V8, DOI 10.1136/bmjdrc-2019-000890 Zoladz JA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189456 NR 308 TC 6 Z9 6 U1 2 U2 11 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3921 J9 ANTIOXIDANTS-BASEL JI Antioxidants PD APR PY 2021 VL 10 IS 4 AR 609 DI 10.3390/antiox10040609 PG 35 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science & Technology GA RQ9IN UT WOS:000642725400001 PM 33921022 OA Green Published, gold DA 2023-03-13 ER PT J AU Pillai, MR Keylock, KT Cromwell, HC Meserve, LA AF Pillai, Mahesh R. Keylock, K. Todd Cromwell, Howard C. Meserve, Lee A. TI Exercise influences the impact of polychlorinated biphenyl exposure on immune function SO PLOS ONE LA English DT Article ID ACETYLTRANSFERASE CHAT ACTIVITY; VOLUNTARY EXERCISE; AROCLOR 1254; PCB; CONGENERS; HORMESIS; MEMORY; RATS; IMMUNOTOXICITY; ANTIBACTERIAL AB Polychlorinated biphenyls (PCBs) are environmental pollutants and endocrine disruptors, harmfully affecting reproductive, endocrine, neurological and immunological systems. This broad influence has implications for processes such as wound healing, which is modulated by the immunological response of the body. Conversely, while PCBs can be linked to diminished wound healing, outside of PCB pollution systems, exercise has been shown to accelerate wound healing. However, the potential for moderate intensity exercise to modulate or offset the harmful effects of a toxin like PCB are yet unknown. A key aim of the present study was to examine how PCB exposure at different doses (0, 100, 500, 1000 ppm i.p.) altered wound healing in exercised versus non-exercised subgroups of mice. We examined PCB effects on immune function in more depth by analyzing the concentrations of cytokines, interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), Interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) in these wounds inflicted by punch biopsy. Mice were euthanized at Day 3 or Day 5 after PCB injection (n = 3-6) and skin excised from the wound area was homogenized and analyzed for cytokine content. Results revealed that wound healing was not signficantly impacted by either PCB exposure or exercise, but there were patterns of delays in healing that depended on PCB dose. Changes in cytokines were also observed and depended on PCB dose and exercise experience. For example, IL-1 beta concentrations in Day 5 mice without PCB administration were 33% less in exercised mice than mice not exercised. However, IL-1 beta concentrations in Day 3 mice administered 100 ppm were 130% greater in exercised mice than not exercisedmice. Changes in the other measured cytokines varied with mainly depressions at lesser PCB doses and elevations at higher doses. Exercise had diverse effects on cytokine levels, but increased cytokine levels in the two greater doses. Explanations for these diverse effects include the use of young animals with more rapid wound healing rates less affected by toxin exposure, as well as PCB-mediated compensatory effects at specific doses which could actually enhance immune function. Future work should examine these interactions in more detail across a developmental time span. Understanding how manipulating the effects of exposure to environemntal contaminants using behavioral modification could be very useful in certain high risk populations or exposed individuals. C1 [Pillai, Mahesh R.; Meserve, Lee A.] Bowling Green State Univ, Dept Biol Sci, Bowling Green, OH 43403 USA. [Keylock, K. Todd] Bowling Green State Univ, Dept Exercise Sci, Bowling Green, OH 43403 USA. [Cromwell, Howard C.] Bowling Green State Univ, Dept Psychol, Bowling Green, OH 43403 USA. [Cromwell, Howard C.] Bowling Green State Univ, JP Scott Ctr Neurosci Mind & Behav, Bowling Green, OH 43403 USA. [Pillai, Mahesh R.] Univ Toledo, Human Res Protect Program, 2801 W Bancroft St, Toledo, OH 43606 USA. C3 University System of Ohio; Bowling Green State University; University System of Ohio; Bowling Green State University; University System of Ohio; Bowling Green State University; University System of Ohio; Bowling Green State University; University System of Ohio; University of Toledo RP Meserve, LA (corresponding author), Bowling Green State Univ, Dept Biol Sci, Bowling Green, OH 43403 USA. EM lmeserv@bgsu.edu OI Cromwell, Howard/0000-0003-0464-7082 FU Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio FX Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Ashcroft GS, 2002, BIOGERONTOLOGY, V3, P337, DOI 10.1023/A:1021399228395 Baldwin DR, 1997, PHYSIOL BEHAV, V61, P447, DOI 10.1016/S0031-9384(96)00459-3 Barrientos S, 2008, WOUND REPAIR REGEN, V16, P585, DOI 10.1111/j.1524-475X.2008.00410.x Bell MR, 2018, TOXICOL APPL PHARM, V353, P55, DOI 10.1016/j.taap.2018.06.002 Bell MR, 2016, HORM BEHAV, V78, P168, DOI 10.1016/j.yhbeh.2015.11.007 Berghuis SA, 2019, CURR PROB PEDIATR AD, V49, P133, DOI 10.1016/j.cppeds.2019.04.006 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Campbell JP, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00648 Cohan CH, 2019, FRONT AGING NEUROSCI, V11, DOI 10.3389/fnagi.2019.00261 Curtis SW, 2019, ENVIRON HEALTH-GLOB, V18, DOI 10.1186/s12940-019-0509-z Donahue DA, 2004, TOXICOLOGY, V203, P99, DOI 10.1016/j.tox.2004.06.011 Edwards R, 2004, CURR OPIN INFECT DIS, V17, P91, DOI 10.1097/00001432-200404000-00004 European Chemicals Agcy ECHA, 2018, EFSA J, V16, DOI 10.2903/j.efsa.2018.5311 European Commission, 2000, OFFICIAL J EUROPEAN, V169, P10 Ferrante MC, 2011, TOXICOL LETT, V202, P61, DOI 10.1016/j.toxlet.2011.01.023 Fortunato RS, 2008, J ENDOCRINOL, V198, P347, DOI 10.1677/JOE-08-0174 Frank S, 2003, METH MOLEC MED, V78, P3 GANEY PE, 1993, ENVIRON HEALTH PERSP, V101, P430, DOI 10.2307/3431901 Giera S, 2011, ENDOCRINOLOGY, V152, P2909, DOI 10.1210/en.2010-1490 Gleeson M, 2011, NAT REV IMMUNOL, V11, P607, DOI 10.1038/nri3041 Goh J, 2014, MECH AGEING DEV, V139, P41, DOI 10.1016/j.mad.2014.06.004 Hackney AC, 2015, PROG MOL BIOL TRANSL, V135, P293, DOI 10.1016/bs.pmbts.2015.07.001 Hany J, 1999, TOXICOL APPL PHARM, V158, P231, DOI 10.1006/taap.1999.8710 HARPER N, 1995, FUND APPL TOXICOL, V27, P131, DOI 10.1006/faat.1995.1116 Heilmann C, 2006, PLOS MED, V3, P1352, DOI 10.1371/journal.pmed.0030311 Hopf NB, 2009, SCI TOTAL ENVIRON, V407, P6109, DOI 10.1016/j.scitotenv.2009.08.035 Jin JJ, 2017, J EXERC REHABIL, V13, P381, DOI 10.12965/jer.1735070.535 Jolous-Jamshidi B, 2010, TOXICOL LETT, V199, P136, DOI 10.1016/j.toxlet.2010.08.015 Kern JK, 2017, ACTA NEUROBIOL EXP, V77, P269 Keylock KT, 2008, AM J PHYSIOL-REG I, V294, pR179, DOI 10.1152/ajpregu.00177.2007 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Krishnan K, 2018, ENVIRON HEALTH PERSP, V126, DOI 10.1289/EHP3550 La Merrill MA, 2020, NAT REV ENDOCRINOL, V16, P45, DOI 10.1038/s41574-019-0273-8 Lombarte M, 2013, J ENDOCRINOL, V218, P99, DOI 10.1530/JOE-13-0067 LOOSE LD, 1981, ENVIRON HEALTH PERSP, V39, P79, DOI 10.2307/3429282 Uribe RM, 2014, ENDOCRINOLOGY, V155, P2020, DOI 10.1210/en.2013-1724 Martin P, 2005, TRENDS CELL BIOL, V15, P599, DOI 10.1016/j.tcb.2005.09.002 Mathur N, 2008, MEDIAT INFLAMM, V2008, DOI 10.1155/2008/109502 MAUTZ WJ, 1988, J TOXICOL ENV HEALTH, V25, P165, DOI 10.1080/15287398809531198 Menke NB, 2007, CLIN DERMATOL, V25, P19, DOI 10.1016/j.clindermatol.2006.12.005 Merghani A, 2016, TRENDS CARDIOVAS MED, V26, P232, DOI 10.1016/j.tcm.2015.06.005 MESERVE LA, 1992, B ENVIRON CONTAM TOX, V48, P715 Nishida N, 1997, FUND APPL TOXICOL, V40, P68, DOI 10.1006/faat.1997.2352 Pence BD, 2014, ADV WOUND CARE, V3, P71, DOI 10.1089/wound.2012.0377 Provost TL, 1999, PROG NEURO-PSYCHOPH, V23, P915, DOI 10.1016/S0278-5846(99)00035-4 Pruitt DL, 1999, TOXICOLOGY, V138, P11, DOI 10.1016/S0300-483X(99)00073-6 ROCH P, 1991, ECOTOX ENVIRON SAFE, V22, P283, DOI 10.1016/0147-6513(91)90079-5 Safe S, 2004, TOXICOLOGY, V205, P3, DOI 10.1016/j.tox.2004.06.032 Schell LM, 2009, ENVIRON RES, V109, P86, DOI 10.1016/j.envres.2008.08.015 Segre M, 2002, TOXICOLOGY, V174, P163, DOI 10.1016/S0300-483X(02)00039-2 Serhan CN, 2007, FASEB J, V21, P325, DOI 10.1096/fj.06-7227rev Sharma R, 2000, TOXICOLOGY, V156, P13, DOI 10.1016/S0300-483X(00)00328-0 Shields PG, 2006, CANCER EPIDEM BIOMAR, V15, P830, DOI 10.1158/1055-9965.EPI-06-0222 Siette J, 2013, BIOL PSYCHIAT, V73, P435, DOI 10.1016/j.biopsych.2012.05.034 Steed DL, 2003, SURG CLIN N AM, V83, P547, DOI 10.1016/S0039-6109(02)00208-6 Swift ME, 2001, J INVEST DERMATOL, V117, P1027, DOI 10.1046/j.0022-202x.2001.01539.x Szpaderska AM, 2003, J DENT RES, V82, P621, DOI 10.1177/154405910308200810 Tanner MK, 2019, BEHAV BRAIN RES, V369, DOI 10.1016/j.bbr.2019.111923 Toth CL, 2019, TOXICOL ENV HEALTH, V11, P283, DOI 10.1007/s13530-019-0415-3 TRYPHONAS H, 1991, FUND APPL TOXICOL, V16, P773, DOI 10.1016/0272-0590(91)90163-X VILLE P, 1995, J INVERTEBR PATHOL, V65, P217, DOI 10.1006/jipa.1995.1033 Yoo BS, 1997, TOXICOL LETT, V91, P83, DOI 10.1016/S0378-4274(96)03861-1 Zemva J, 2017, REDOX BIOL, V13, P674, DOI 10.1016/j.redox.2017.08.007 Zhang JY, 2016, ONCOTARGET, V7, P8498, DOI 10.18632/oncotarget.7381 Zhao F, 1997, CHEMOSPHERE, V34, P1605, DOI 10.1016/S0045-6535(97)00456-6 Zhao J X, 2019, Fa Yi Xue Za Zhi, V35, P143, DOI 10.12116/j.issn.1004-5619.2019.02.003 NR 67 TC 2 Z9 2 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 24 PY 2020 VL 15 IS 8 AR e0237705 DI 10.1371/journal.pone.0237705 PG 22 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA NI7TB UT WOS:000565550400003 PM 32833973 OA Green Published DA 2023-03-13 ER PT J AU Huang, Y Han, D Zhu, XM Yang, YX Jin, JY Chen, YF Xie, SQ AF Huang, Ying Han, Dong Zhu, Xiaoming Yang, Yunxia Jin, Junyan Chen, Yifeng Xie, Shouqi TI Response and recovery of gibel carp from subchronic oral administration of aflatoxin B-1 SO AQUACULTURE LA English DT Article DE Aflatoxin B-1; Carassius auratus gibelio; Growth; Residue; Recovery ID ENZYME-ACTIVITIES; ESTERIFIED-GLUCOMANNAN; DIETARY CYANOBACTERIA; COMPENSATORY GROWTH; CONTAMINATED FEED; RAINBOW-TROUT; PERFORMANCE; HORMESIS; SERUM; ACCUMULATION AB A 16-week feeding trial was conducted to evaluate the effect of dietary aflatoxin B-1 (AFB(1)) on growth, physiological responses, histological changes, and accumulation in gibel carp (Carassius auratus gibelio), and the recovery when the fish were fed basal diet without supplemental chemical AFB(1). Triplicate groups of gibel carp with initial body weight of 10.33 +/- 0.19 g were fed seven semipurified diets (Diets 1 to 7) designed to contain 0, 10, 20, 50, 100, 200, 1000 mu g AFB(1) kg(-1) diet (determined level was 3.2, 11.3, 20.2, 55.2, 95.8, 176.0, 991.5 mu g AFB(1) kg(-1) diet, respectively) for 12 weeks. Subsequently, all fish were fed Diet 1 for another 4 weeks. The results showed that, after 12 weeks of AFB(1) exposure, average body weight in fish fed Diet 4 was 1123% of that of the control group (Diet 1), but there was no significant difference between other groups and the control group. No external changes, unusual behavior or significant difference in mortality were observed in the fish fed with various levels of AFB(1). There was no significant difference in feeding rate (FR) between the control and experimental groups. Specific growth rate (SGR) and feed efficiency (FE) of the fish fed with Diet 4 was significantly higher than that fed the control diet during the first exposure period (weeks 0-4) while there were no significant difference during the second exposure period (weeks 5-12). Fish fed with various levels of AFB(1) showed no significant differences in activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), superoxide dismutase (SOD), total protein, total serum cholesterol, and hematocrit compared to the control group. No significant histological lesions were identified between the control and increasing AFB(1) treatments. Low AFB(1) residues were found in muscles, whereas high residues of AFB(1) were determined in hepatopancreas (above the safety limitation of 5 mu g kg(-1)), which was logarithmically related to the dietary AFB(1) levels. Our results indicate that gibel carp is a less susceptible species to AFB(1) exposure up to approximately 1000 mu g AFB(1) kg(-1) diet, at least for 12 weeks. The fish also showed strong clearance ability of AFB(1) during recovery period. (C) 2011 Elsevier B.V. All rights reserved. C1 [Huang, Ying; Han, Dong; Zhu, Xiaoming; Yang, Yunxia; Jin, Junyan; Chen, Yifeng; Xie, Shouqi] Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan 430072, Hubei, Peoples R China. [Huang, Ying] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China. [Xie, Shouqi] Shanghai Univ E Inst, Aquaculture Div, Shanghai, Peoples R China. C3 Chinese Academy of Sciences; Institute of Hydrobiology, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS RP Zhu, XM (corresponding author), Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan 430072, Hubei, Peoples R China. EM xmzhu@ihb.ac.cn RI yang, yx/GZM-0464-2022 FU earmarked fund for China Agriculture Research System [CARS-46-19]; Special Fund for Agro-scientific Research in the Public Interest [201003020] FX The authors would like to give great thanks to Mr. Guanghan NIE for his technical support and Dr. Raghavan for his helpful advice to the manuscript. The research was supported by the earmarked fund for China Agriculture Research System (CARS-46-19) and Special Fund for Agro-scientific Research in the Public Interest (201003020). CR Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x Aravind KL, 2003, POULTRY SCI, V82, P571, DOI 10.1093/ps/82.4.571 Bintvihok A, 2006, TOXICON, V47, P41, DOI 10.1016/j.toxicon.2005.09.009 Bintvihok A, 2002, J VET MED SCI, V64, P1037, DOI 10.1292/jvms.64.1037 BOLIN DW, 1952, SCIENCE, V116, P634, DOI 10.1126/science.116.3023.634 Boonyaratpalin M, 2001, AQUAC RES, V32, P388, DOI 10.1046/j.1355-557x.2001.00046.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 CHAVEZSANCHEZ MC, 1994, AQUACULTURE, V127, P49, DOI 10.1016/0044-8486(94)90191-0 Chen H.Y., 2008, CHINA POULT, V30, P33 COOK WO, 1986, AM J VET RES, V47, P1817 Deng SX, 2010, AQUACULTURE, V307, P233, DOI 10.1016/j.aquaculture.2010.07.029 DOBSON SH, 1984, J FISH BIOL, V25, P649, DOI 10.1111/j.1095-8649.1984.tb04911.x Dong GF, 2011, ENVIRON TOXICOL, V26, P161, DOI 10.1002/tox.20540 Dong GF, 2009, TOXICON, V54, P208, DOI 10.1016/j.toxicon.2009.03.031 Eaton DL, 1994, TOXICOLOGY AFLATOXIN El-Banna R., 1992, Veterinary Medical Journal Giza, V40, P17 El-Sayed YS, 2009, FOOD CHEM TOXICOL, V47, P1606, DOI 10.1016/j.fct.2009.04.008 FDA, 2007, ACT LEV POIS DEL SUB Fernandez A, 1997, J SCI FOOD AGR, V74, P161, DOI 10.1002/(SICI)1097-0010(199706)74:2<161::AID-JSFA783>3.0.CO;2-D GALLAGHER EP, 1995, TOXICOL APPL PHARM, V132, P82, DOI 10.1006/taap.1995.1089 Gowda NKS, 2007, ANIM FEED SCI TECH, V133, P167, DOI 10.1016/j.anifeedsci.2006.08.009 HALVER. J. E, 1969, Aflatoxicosis and trout hepatoma., P265 Han D, 2010, AQUACULT NUTR, V16, P335, DOI 10.1111/j.1365-2095.2009.00669.x Han XY, 2008, LIVEST SCI, V119, P216, DOI 10.1016/j.livsci.2008.04.006 HARTLEY RD, 1963, NATURE, V198, P1056, DOI 10.1038/1981056a0 Hendricks J. D., 1994, TOXICOLOGY AFLATOXIN, P103, DOI DOI 10.1016/B978-0-12-228255-3.50011-8 Horder H., 1981, AMINOTRANSFERASE MET, V3, p[416, 444] HUFF WE, 1986, POULTRY SCI, V65, P1891, DOI 10.3382/ps.0651891 INT AGCY RES CANC, 1993, IARC MONOG EVAL CARC, V56, P245 JANTRAROTAI W, 1990, Journal of Aquatic Animal Health, V2, P237, DOI 10.1577/1548-8667(1990)002<0237:ATOABT>2.3.CO;2 JANTRAROTAI W, 1990, Journal of Aquatic Animal Health, V2, P248, DOI 10.1577/1548-8667(1990)002<0248:STODAB>2.3.CO;2 Johnson TE, 1998, HUM EXP TOXICOL, V17, P263, DOI 10.1191/096032798678908729 Joner A, 2000, MYCOTOXINS Jones CE, 1984, OFFICIAL METHODS ANA, P152 Kececi T, 1998, BRIT POULTRY SCI, V39, P452, DOI 10.1080/00071669889051 Kid P.R.N., 1954, J CLIN PATHOL, V6, P322 Li Y.Y., 1998, J CHINESE POULTRY, V20, P30 Lovell T., 1984, Aquaculture, V10, P34 Madhusudhanan N, 2004, ENVIRON TOXICOL PHAR, V17, P73, DOI 10.1016/j.etap.2004.03.002 Manning BB, 2005, J WORLD AQUACULT SOC, V36, P59, DOI 10.1111/j.1749-7345.2005.tb00131.x MATTSON MP, 1995, J NEUROCHEM, V65, P1740 MCCORD JM, 1969, J BIOL CHEM, V244, P6049 NGETHE S, 1993, AQUACULTURE, V114, P355, DOI 10.1016/0044-8486(93)90309-M NRC, 1993, NUTR REQ FISH SHRIMP, DOI 10.17226/2115 OSTROWSKIMEISSNER HT, 1995, AQUACULTURE, V131, P155, DOI 10.1016/0044-8486(95)98125-U PLAKAS SM, 1991, FOOD CHEM TOXICOL, V29, P805, DOI 10.1016/0278-6915(91)90106-H Raghavan PR, 2011, AQUACULT NUTR, V17, pE39, DOI 10.1111/j.1365-2095.2009.00725.x Raju MVLN, 2000, BRIT POULTRY SCI, V41, P640, DOI 10.1080/713654986 Rastogi R, 2001, PHARMACOL TOXICOL, V88, P53, DOI 10.1034/j.1600-0773.2001.088002053.x Rodrigues I., 2008, BIOMIN NEWSL, V7, P1 Sahoo PK, 2003, COMP IMMUNOL MICROB, V26, P65, DOI 10.1016/S0147-9571(01)00038-8 Sahoo PK, 2001, FISH SHELLFISH IMMUN, V11, P683, DOI 10.1006/fsim.2001.0345 Santacroce MP, 2008, REV FISH BIOL FISHER, V18, P99, DOI 10.1007/s11160-007-9064-8 SIEDEL J, 1983, CLIN CHEM, V29, P1075 Smith J. E., 1997, Handbook of plant and fungal toxicants., P269 Tuan NA, 2002, AQUACULTURE, V212, P311, DOI 10.1016/S0044-8486(02)00021-2 Zaki M. S., 2008, American-Eurasian Journal of Agricultural and Environmental Science, V3, P211 Zhao M, 2006, J APPL ICHTHYOL, V22, P72, DOI 10.1111/j.1439-0426.2006.00706.x Zhao M, 2006, AQUACULTURE, V261, P960, DOI 10.1016/j.aquaculture.2006.08.019 NR 63 TC 44 Z9 49 U1 1 U2 28 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0044-8486 EI 1873-5622 J9 AQUACULTURE JI Aquaculture PD SEP 1 PY 2011 VL 319 IS 1-2 BP 89 EP 97 DI 10.1016/j.aquaculture.2011.06.024 PG 9 WC Fisheries; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Fisheries; Marine & Freshwater Biology GA 818KV UT WOS:000294751500014 DA 2023-03-13 ER PT J AU Malandrino, P Russo, M Ronchi, A Moretti, F Giani, F Vigneri, P Masucci, R Pellegriti, G Belfiore, A Vigneri, R AF Malandrino, Pasqualino Russo, Marco Ronchi, Anna Moretti, Fabiola Giani, Fiorenza Vigneri, Paolo Masucci, Romilda Pellegriti, Gabriella Belfiore, Antonino Vigneri, Riccardo TI Concentration of Metals and Trace Elements in the Normal Human and Rat Thyroid: Comparison with Muscle and Adipose Tissue and Volcanic Versus Control Areas SO THYROID LA English DT Article DE trace elements; metals; human thyroid; rat thyroid; muscle tissue; adipose tissue; volcanic area ID CANCER INCIDENCE; COPPER; SPECTROMETRY; CARCINOMA; MANGANESE; SELENIUM; HORMESIS; CADMIUM; ORGANS; DAMAGE AB Background: The concentration of trace elements and metals in the thyroid is the result of exposure, uptake, retention, and clearance. The specificity and selectivity of thyroid capacity to concentrate these elements relative to other tissues are not known. To obtain this information, we measured the tissue concentration of 26 elements in the thyroid, muscle, and fat of euthyroid human subjects and also in normal rats. Methods: At programmed surgery, small (<1 g) tissue fragments were collected in 77 euthyroid subjects. Macroscopically normal thyroid tissue, sternothyroid muscle, and neck subcutaneous fat samples were excised, and thyroid tissue was confirmed to be morphologically normal through microscopy. Tissue specimens (thyroid, hindlimb muscle, and abdominal fat) were also obtained from normal rats. Measurements of trace elements were performed on tissues using inductively coupled plasma mass spectrometry (DRC-ICP-MS). Results: Only 19 of the 26 investigated elements were measurable as 7 elements were below the limit of detection. The ranking concentration in human thyroid tissue, not considering iodide, indicated that Zn, Br, Cu, Cr, Se, and Mn represented over 95% of the measured elements. A similar ranking was observed in the rat thyroid. A comparison with other tissues indicated that in addition to I, also Br, Mn, Se, and Sn were significantly more concentrated in the thyroid, and this was also the case for the recognized carcinogens As, Cd, and Hg. As and Hg, but not Cd (which was not detectable in any of the rat tissues), were also more concentrated in the rat thyroid. Since human thyroid specimens were also obtained from residents of a volcanic area, where environmental pollution may cause human biocontamination, we compared the trace element concentration in specimens from the volcanic area with controls. Many trace elements were slightly, but not significantly, increased in the volcanic area specimens. Conclusions: In the normal human thyroid, many trace elements, including Br, Mn, Se, and Sn, and the recognized carcinogens, As, Cd, and Hg, are significantly more concentrated than in muscle and fat of the same individual. Similar data were observed in rats. The reason for the differential element accumulation in the thyroid is unclear; a better understanding may be useful to further clarify thyroid biology. C1 [Malandrino, Pasqualino; Russo, Marco; Giani, Fiorenza; Pellegriti, Gabriella; Belfiore, Antonino; Vigneri, Riccardo] Univ Catania, Dept Clin & Expt Med, Endocrinol, Garibaldi Nesima Med Ctr, Via Palermo 636, I-95122 Catania, Italy. [Ronchi, Anna] IRCCS Pavia, Maugeri Clin Sci Inst Spa SC, Toxicol Unit, Lab Expt & Clin Toxicol, Pavia, Italy. [Moretti, Fabiola] Natl Res Council Italy, Inst Cell Biol & Neurobiol, Rome, Italy. [Vigneri, Paolo] Univ Catania, Dept Clin & Expt Med, Med Oncol, Catania, Italy. [Masucci, Romilda] Garibaldi Nesima Med Ctr, Surg Oncol, Catania, Italy. [Vigneri, Riccardo] Natl Res Council CNR IBB, Inst Biostruct & Bioimages, Sect Catania, Catania, Italy. C3 Presidio Ospedaliero Garibaldi-Nesima; University of Catania; IRCCS Fondazione Casimiro Mondino; Consiglio Nazionale delle Ricerche (CNR); Istituto di Biologia Cellulare e Neurobiologia (IBCN-CNR); University of Catania; Presidio Ospedaliero Garibaldi-Nesima; Consiglio Nazionale delle Ricerche (CNR); Istituto di Biostrutture e Bioimmagini (IBB-CNR) RP Vigneri, R (corresponding author), Univ Catania, Dept Clin & Expt Med, Endocrinol, Garibaldi Nesima Med Ctr, Via Palermo 636, I-95122 Catania, Italy. EM vigneri@unict.it RI Gianì, Fiorenza/K-8833-2016; Ronchi, Anna/AAC-2144-2020; Moretti, Fabiola/I-5647-2013; Pellegriti, Gabriella/CAH-1780-2022; Belfiore, Antonino/B-4652-2011; Pellegriti, Gabriella/J-7923-2012; VIGNERI, Paolo/K-8504-2016 OI Gianì, Fiorenza/0000-0002-1901-8230; Ronchi, Anna/0000-0003-0907-3460; Moretti, Fabiola/0000-0002-2691-1254; Pellegriti, Gabriella/0000-0001-6102-379X; Belfiore, Antonino/0000-0002-6181-4193; Pellegriti, Gabriella/0000-0001-6102-379X; VIGNERI, Paolo/0000-0002-5943-6066; Malandrino, Pasqualino/0000-0003-2474-0954 CR Al-Sayer H, 2004, MOL CELL BIOCHEM, V260, P1, DOI 10.1023/B:MCBI.0000026027.20680.c7 [Anonymous], 2001, ZINC BIOCH PHYSL HOM, DOI [10.1007/978-94-017-3728-9_7, DOI 10.1007/978-94-017-3728-9_7] ARNBJORNSSON E, 1986, ARCH ENVIRON HEALTH, V41, P36, DOI 10.1080/00039896.1986.9935763 Assem FL, 2011, J TOXICOL ENV HEAL B, V14, P537, DOI 10.1080/10937404.2011.615111 Baranov VI, 1999, J ANAL ATOM SPECTROM, V14, P1133, DOI 10.1039/a809889a Beyersmann D, 2008, ARCH TOXICOL, V82, P493, DOI 10.1007/s00204-008-0313-y Blazewicz A, 2010, J CHROMATOGR B, V878, P34, DOI 10.1016/j.jchromb.2009.11.014 Boulyga SF, 2004, ANAL BIOANAL CHEM, V380, P198, DOI 10.1007/s00216-004-2699-6 Brady DC, 2014, NATURE, V509, P492, DOI 10.1038/nature13180 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Capinski M, 2012, MASTER MATH FINANC, P48 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Fada G, 2010, PATHOLOGICA, V102, P405 Gore AC, 2015, ENDOCR REV, V36, pE1, DOI 10.1210/er.2015-1010 Guo HW, 2014, ENDOCRINE, V45, P230, DOI 10.1007/s12020-013-9968-0 Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005 Hornung R.W., 1990, APPL OCCUP ENV HYGIE, V5, P46, DOI [DOI 10.1080/1047322X.1990.10389587, 10.1080/1047322X.1990.10389587] Jiang HM, 2018, ENVIRON SCI POLLUT R, V25, P28275, DOI 10.1007/s11356-018-2835-z Jiang H, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13040442 Katoh Y, 2002, BIOL TRACE ELEM RES, V90, P57, DOI 10.1385/BTER:90:1-3:57 Kelly ADR, 2013, TOXICOL SCI, V131, P434, DOI 10.1093/toxsci/kfs324 KOLONEL LN, 1990, CANCER CAUSE CONTROL, V1, P223, DOI 10.1007/BF00117474 Kucharzewski M, 2003, BIOL TRACE ELEM RES, V93, P9, DOI 10.1385/BTER:93:1-3:9 KUNG TM, 1981, ARCH ENVIRON HEALTH, V36, P265, DOI 10.1080/00039896.1981.10667635 Maier J, 2006, ENDOCRINOLOGY, V147, P3391, DOI 10.1210/en.2005-1669 Malandrino P, 2016, ENDOCRINE, V53, P471, DOI 10.1007/s12020-015-0761-0 MINOIA C, 1992, SCI TOTAL ENVIRON, V120, P63, DOI 10.1016/0048-9697(92)90216-F Patel Kepal N, 2006, Cancer Control, V13, P111 Pavelka S, 2004, PHYSIOL RES, V53, pS81 Pellegriti G, 2009, JNCI-J NATL CANCER I, V101, P1575, DOI 10.1093/jnci/djp354 Petr EJ, 2016, SEMIN ONCOL, V43, P582, DOI 10.1053/j.seminoncol.2016.08.007 Prins GS, 2019, BASIC CLIN PHARMACOL, V125, P14, DOI 10.1111/bcpt.13125 Reddy SB, 2002, NUCL INSTRUM METH B, V196, P333, DOI 10.1016/S0168-583X(02)01292-2 Shen F, 2015, BIOL TRACE ELEM RES, V167, P225, DOI 10.1007/s12011-015-0304-9 Valko M, 2005, CURR MED CHEM, V12, P1161, DOI 10.2174/0929867053764635 Vella V, 2009, INT J CANCER, V124, P2539, DOI 10.1002/ijc.24221 Vigneri R, 2017, MOL CELL ENDOCRINOL, V457, P73, DOI 10.1016/j.mce.2016.10.027 Vigneri R, 2015, CURR OPIN ONCOL, V27, P1, DOI 10.1097/CCO.0000000000000148 Watjen W, 2002, ENVIRON HEALTH PERSP, V110, P865, DOI 10.1289/ehp.110-1241262 Xu MM, 2018, CLIN CANCER RES, V24, P4271, DOI 10.1158/1078-0432.CCR-17-3705 Yaman M, 2004, ANAL SCI, V20, P1363, DOI 10.2116/analsci.20.1363 Yang MH, 2017, ONCOL LETT, V14, P3103, DOI 10.3892/ol.2017.6518 Zaichick V, 2018, AGING CLIN EXP RES, V30, P1059, DOI 10.1007/s40520-018-0906-0 Zhu HD, 2010, HEALTH PHYS, V98, P61, DOI 10.1097/HP.0b013e3181bad921 NR 44 TC 10 Z9 10 U1 0 U2 10 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1050-7256 EI 1557-9077 J9 THYROID JI Thyroid PD FEB 1 PY 2020 VL 30 IS 2 BP 290 EP 299 DI 10.1089/thy.2019.0244 PG 10 WC Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism GA KM6VT UT WOS:000514276300014 PM 31880996 DA 2023-03-13 ER PT J AU Wang, YB Song, L Hong, X Cui, LB Zhang, ZD Xiao, H Zhou, JW Wang, XR AF Wang, Yubang Song, Ling Hong, Xia Cui, Lunbiao Zhang, Zhengdong Xiao, Hang Zhou, Jianwei Wang, Xinru TI Low concentrations mono-butyl phthalate stimulates steroidogenesis by facilitating steroidogenic acute regulatory protein expression in mouse Leydig tumor cells (MLTC-1) SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article DE mono-butyl phthalate; mouse Leydig tumor cells (MLTC-1); steroidogenesis; steroidogenic acute regulatory protein ID FETAL-RAT TESTES; DI(N-BUTYL) PHTHALATE; CHOLESTEROL TRANSPORT; REPRODUCTIVE-TRACT; IN-UTERO; GENE; HORMESIS; EXPOSURE; RECEPTOR; PHOSPHORYLATION AB Di-n-butyl phthalate (DBP) is one of the most dominant phthalate esters and is widely distributed environmental contaminant. Although previous studies have demonstrated that DBP led to a variety of male reproductive abnormalities similar to those caused by androgen receptor antagonists, DBP and its active metabolite, mono-butyl phthalate (MBP), have been demonstrated no affinity for the androgen receptor, but rather exert anti-androgenic effect by altering testosterone biosynthesis. Furthermore, all these results were obtained from very high administrations of DBP or MBP. The purpose of this study was to determine the onset and the site of action of relatively low concentration of MBP on steroidogenesis in vitro. The mouse Leydig tumor cells (MLTC-1) was employed as a cellular model to investigate the effect of MBP on steroidogenesis. Various concentrations of MBP (1, 10, 100 and 1000 nmol/l) and its solvent dimethyl sulfoxide (DMSO) were added to the medium for 24 h followed by stimulation of some compounds such as human chorionic gonadotrophin (hCG), cholera toxin (CT), forskolin, cAMP analog 8-Br-cAMP, 22(R)-hydroxycholesterol (22R-HC) and pregnenolone. Progesterone in the medium and amounts of intracellular cAMP were measured by RIA. Expression of steroidogenic acute regulatory protein (StAR) was monitored by real-time PCR and Western blotting. The results revealed that the increases of progesterone production in the presence of hCG, CT, forskolin and 8-Br-cAMP were augmented by MBP. In contrast, the levels of intracellular cAMP exhibited no statistical significance when MLTC-1 cells were treated as above. These results implied that the site in the steroid biosynthesis pathway affected by MBP occurs after PKA activation in MLTC-1 cells. Moreover, supplementing the medium with 22R-HC and pregnenolone as progesterone precursors for P450 side chain cleavage enzyme (P450scc) and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), respectively, resulted in no rise in progesterone production, making clear that MBP did not influence the P450scc and 3 beta-HSD but on the rate-limiting step, cholesterol transportation into mitochondria. In fact, the above results were confirmed by the upgraded StAR expression in MBP-treated cells. These data support that MBP promotes steroid hormone production by facilitating StAR expression in MLTC-1 cells. (c) 2006 Elsevier Ireland Ltd. All rights reserved. C1 Nanjing Med Univ, Inst Toxicol, Key Lab Reprod Med Jiangsu Prov, Nanjing 210029, Peoples R China. C3 Nanjing Medical University RP Wang, XR (corresponding author), Nanjing Med Univ, Inst Toxicol, Key Lab Reprod Med Jiangsu Prov, Nanjing 210029, Peoples R China. EM xrwang@njmu.edu.cn RI cui, lunbiao/AAP-7931-2021; zhang, zheng/HCH-9684-2022 CR ANNA K, 2003, CARCINOGENESIS, V24, P1389 ASCOLI M, 1989, ANN NY ACAD SCI, V564, P99, DOI 10.1111/j.1749-6632.1989.tb25891.x Ascoli M, 2002, ENDOCR REV, V23, P141, DOI 10.1210/er.23.2.141 Barlow NJ, 2003, TOXICOL SCI, V73, P431, DOI 10.1093/toxsci/kfg087 Blount BC, 2000, ENVIRON HEALTH PERSP, V108, P979, DOI 10.2307/3435058 Boujrad N, 2000, ENDOCRINOLOGY, V141, P3137, DOI 10.1210/en.141.9.3137 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Caron KM, 1997, P NATL ACAD SCI USA, V94, P11540, DOI 10.1073/pnas.94.21.11540 Chen CW, 2001, FOLIA HISTOCHEM CYTO, V39, P20 Chen JF, 2005, REPROD TOXICOL, V20, P195, DOI 10.1016/j.reprotox.2005.01.013 CLARK BJ, 1994, J BIOL CHEM, V269, P28314 Clem BF, 2005, ENDOCRINOLOGY, V146, P1348, DOI 10.1210/en.2004-0761 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Duty SM, 2004, J ANDROL, V25, P293 Foster PMD, 2001, HUM REPROD UPDATE, V7, P231, DOI 10.1093/humupd/7.3.231 Hedger MP, 1997, REPROD FERT DEVELOP, V9, P659, DOI 10.1071/R97062 Higuchi TT, 2003, TOXICOL SCI, V72, P301, DOI 10.1093/toxsci/kfg036 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kaiser J, 2003, SCIENCE, V302, P378, DOI 10.1126/science.302.5644.378 Kavlock R, 2002, REPROD TOXICOL, V16, P489, DOI 10.1016/S0890-6238(02)00033-3 KHAN SA, 1990, ENDOCRINOLOGY, V126, P3043, DOI 10.1210/endo-126-6-3043 Koch HM, 2003, ENVIRON RES, V93, P177, DOI 10.1016/S0013-9351(03)00083-5 Kohn MC, 2000, ENVIRON HEALTH PERSP, V108, pA440, DOI 10.1289/ehp.108-a440b KRISTINA AT, 2005, ENV HLTH PERSPECT, V113, P1271 KUMAR S, 1994, CELL CALCIUM, V15, P349, DOI 10.1016/0143-4160(94)90010-8 LIN D, 1995, SCIENCE, V267, P1828, DOI 10.1126/science.7892608 Lin T, 1998, ENDOCRINE, V8, P73, DOI 10.1385/ENDO:8:1:73 Maness SC, 1998, TOXICOL APPL PHARM, V151, P135, DOI 10.1006/taap.1998.8431 Manna P. R., 2005, Current Drug Targets - Immune Endocrine and Metabolic Disorders, V5, P93, DOI 10.2174/1568008053174714 Manna PR, 1999, ENDOCRINOLOGY, V140, P1739, DOI 10.1210/en.140.4.1739 Manna PR, 2004, MOL ENDOCRINOL, V18, P558, DOI 10.1210/me.2003-0223 Manna PR, 2003, J MOL ENDOCRINOL, V30, P381, DOI 10.1677/jme.0.0300381 Manna PR, 2002, BIOL REPROD, V67, P1393, DOI 10.1095/biolreprod.102.007179 Manna Pulak R., 2004, Biol Proced Online, V6, P83, DOI 10.1251/bpo76 Melnick Ronald, 2002, Environmental Health Perspectives, V110, P427 Mylchreest E, 1999, TOXICOL APPL PHARM, V156, P81, DOI 10.1006/taap.1999.8643 Mylchreest E, 2002, REPROD TOXICOL, V16, P19, DOI 10.1016/S0890-6238(01)00201-5 Mylchreest E, 1998, TOXICOL SCI, V43, P47, DOI 10.1093/toxsci/43.1.47 Parks LG, 2000, TOXICOL SCI, V58, P339, DOI 10.1093/toxsci/58.2.339 Qiu CP, 2003, CANCER RES, V63, P5674 Richards JS, 2001, MOL ENDOCRINOL, V15, P209, DOI 10.1210/me.15.2.209 RORY BC, 2004, TOXICOL SCI, V77, P151 Shono T, 2003, UROL RES, V31, P293, DOI 10.1007/s00240-003-0330-5 Shultz VD, 2001, TOXICOL SCI, V64, P233, DOI 10.1093/toxsci/64.2.233 STOCCO DM, 1993, J STEROID BIOCHEM, V46, P337, DOI 10.1016/0960-0760(93)90223-J Stocco DM, 1996, ENDOCR REV, V17, P221, DOI 10.1210/er.17.3.221 STOCCO DM, 1992, MOL CELL ENDOCRINOL, V84, P185, DOI 10.1016/0303-7207(92)90029-6 Thompson CJ, 2004, ENDOCRINOLOGY, V145, P1227, DOI 10.1210/en.2003-1475 VERHOEVEN G, 1988, MOL CELL ENDOCRINOL, V57, P51, DOI 10.1016/0303-7207(88)90031-7 WANG Y, 2005, CHIN J PUBLIC HLTH, V21, P1168 WANG Y, IN PRESS J TOXICOL A Wang Yu-bang, 2005, Zhonghua Yufang Yixue Zazhi, V39, P179 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa Wooton-Kee CR, 2000, ENDOCRINOLOGY, V141, P1345, DOI 10.1210/en.141.4.1345 Wu CS, 2001, J ANDROL, V22, P245 Zirkin BR, 2000, BIOL REPROD, V63, P977, DOI 10.1095/biolreprod63.4.977 NR 58 TC 21 Z9 27 U1 0 U2 14 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD DEC 1 PY 2006 VL 164 IS 1-2 BP 15 EP 24 DI 10.1016/j.cbi.2006.08.022 PG 10 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 114ET UT WOS:000242650200002 PM 16999944 DA 2023-03-13 ER PT J AU Richer, S Stiles, W Ulanski, L Carroll, D Podella, C AF Richer, Stuart Stiles, William Ulanski, Lawrence Carroll, Donn Podella, Carla TI Observation of Human Retinal Remodeling in Octogenarians with a Resveratrol Based Nutritional Supplement SO NUTRIENTS LA English DT Article DE macular degeneration; gene expression; epigenetics; RPE (retinal pigment epithelium) function; VEGF; pharmacogenomics AB Purpose: Rare spontaneous remissions from age-related macular degeneration (AMD) suggest the human retina has large regenerative capacity, even in advanced age. We present examples of robust improvement of retinal structure and function using an OTC oral resveratrol (RV) based nutritional supplement called Longevinex (R) or L/RV (circa 2004, Resveratrol Partners, LLC, Las Vegas, NV, USA). RV, a polyphenolic phytoalexin caloric-restriction mimic, induces hormesis at low doses with widespread beneficial effects on systemic health. RV alone inhibits neovascularization in the murine retina. Thus far, published evidence includes L/RV mitigation of experimentally induced murine cardiovascular reperfusion injury, amelioration of human atherosclerosis serum biomarkers in a human Japanese randomized placebo controlled trial, modulation of micro RNA 20b and 539 that control hypoxia-inducing-factor (HIF-1) and vascular endothelial growth factor (VEGF) genes in the murine heart (RV inhibited micro RNA20b 189-fold, L/RV 1366-fold). Little is known about the effects of L/RV on human ocular pathology. Methods: Absent FDA IRB approval, but with permission from our Chief of Staff and medical center IRB, L/RV is reserved for AMD patients, on a case-by-case compassionate care basis. Patients include those who progress on AREDS II type supplements, refuse intra-vitreal anti-VEGF injections or fail to respond to Lucentis (R), Avastin (R) or Eylea (R). Patients are clinically followed traditionally as well as with multi-spectral retinal imaging, visual acuity, contrast sensitivity, cone glare recovery and macular visual fields. Three cases are presented. Results: Observed dramatic short-term anti-VEGF type effect including anatomic restoration of retinal structure with a suggestion of improvement in choroidal blood flow by near IR multispectral imaging. The visual function improvement mirrors the effect seen anatomically. The effect is bilateral with the added benefit of better RPE function. Effects have lasted for one year or longer when taken daily, at which point one patient required initiation of anti-VEGF agents. Unanticipated systemic benefits were observed. Conclusions: Preliminary observations support previous publications in animals and humans. Restoration of structure and visual function in octogenarians with daily oral consumption of L/RV is documented. Applications include failure on AREDS II supplements, refusing or failing conventional anti-VEGF therapy, adjunct therapy to improve RPE function, and compassionate use in medically underserved or economically depressed third-world countries. C1 [Richer, Stuart; Stiles, William; Ulanski, Lawrence; Carroll, Donn; Podella, Carla] Captain James Lovell Fed Hlth Care Ctr, Eye Clin 112E, N Chicago, IL 60064 USA. RP Richer, S (corresponding author), Captain James Lovell Fed Hlth Care Ctr, Eye Clin 112E, 3001 Green Bay Rd, N Chicago, IL 60064 USA. EM stuart.richer1@VA.Gov; ilovemabel@aol.com; larry.ulanski@gmail.com; donn.carroll@gmail.com; cjpstella63@gmail.com FU Captain James Lovell Federal Health Care Facility, DVA-Naval Medical Center, North Chicago, IL, USA FX These medical case reports are based on original clinical work supported by the Optometry/Ophthalmology sections of Captain James Lovell Federal Health Care Facility, DVA-Naval Medical Center, North Chicago, IL, USA. Further peer-reviewed scientific studies are available at [14]. CR [Anonymous], THE 2ND INTERNATIONA Barger JL, 2008, EXP GERONTOL, V43, P859, DOI 10.1016/j.exger.2008.06.013 Fujitaka K, 2011, NUTR RES, V31, P842, DOI 10.1016/j.nutres.2011.09.028 Harris G., 2012, FOOD AND NUTRIENTS I Juhasz B, 2010, EXP CLIN CARDIOL, V15, pE134 Pezzuto JM, 2011, ANN NY ACAD SCI, V1215, P123, DOI 10.1111/j.1749-6632.2010.05849.x Richer S, 2009, OPTOMETRY, V80, P695, DOI 10.1016/j.optm.2009.03.018 Richer SP, 2011, OPTOMETRY, V82, P667, DOI 10.1016/j.optm.2011.08.008 Vang O, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019881 NR 9 TC 37 Z9 37 U1 0 U2 18 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2072-6643 J9 NUTRIENTS JI Nutrients PD JUN PY 2013 VL 5 IS 6 BP 1989 EP 2005 DI 10.3390/nu5061989 PG 17 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 169HS UT WOS:000320771400009 PM 23736827 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU dos Santos, MLS de Almeida, AAF da Silva, NM Oliveira, BRM Silva, JVS Souza, JO Ahnert, D Baligar, VC AF Souza dos Santos, Mayana Leandra de Almeida, Alex-Alan Furtado da Silva, Natalia Martins Machado Oliveira, Bruna Rafaela Silva, Jose Victor S. Souza Junior, Jose Olimpio Ahnert, Dario Baligar, Virupax C. TI Mitigation of cadmium toxicity by zinc in juvenile cacao: Physiological, biochemical, molecular and micromorphological responses SO ENVIRONMENTAL AND EXPERIMENTAL BOTANY LA English DT Article DE Theobroma cacao; Heavy metal; Photosynthesis; Oxidative stress; Gene expression; Micromorphology ID ANTIOXIDATIVE ENZYME-ACTIVITIES; INDUCED OXIDATIVE STRESS; HEAVY-METAL; CHLOROPHYLL FLUORESCENCE; ALLEVIATES CADMIUM; LIPID-PEROXIDATION; CD TOXICITY; PLANTS; ACCUMULATION; SEEDLINGS AB Cadmium (Cd) is a trace metal without essential biological function due to its high toxicity to plants, animals and humans, even at low concentrations. On the other hand, Zn is an essential nutrient and plays important metabolic functions in plants. The study of the interaction between essential and a nonessential element may be important for understanding, analyzing and improving the defense strategies adapted by plants. The main objective of this work was to evaluate the mitigation of Cd toxicity by Zn in young plants of the CCN 51 cocoa genotype, grown in soil with different concentrations of Zn, Cd and Zn + Cd, through physiological, biochemical, molecular and micro-morphological responses. It was verified that high concentrations of Zn, Cd and Zn + Cd in the soil promoted alterations in the enzymatic and non-enzymatic antioxidative metabolism and expression of genes. This was demonstrated by increase in the activity of antioxidative enzymes, proline content and reduction in lipid peroxidation. Leaf gas exchange was affected at the highest soil Cd concentrations (0.4, 0.6 and 0.8 mmol Cd kg(-1) soil) combined with different soil Zn concentrations (0.4, 0.8, 1.2 and 1.6 mmol kg(-1) soil), resulting in a decrease in CO2 fixation. The higher concentration of soil Cd (0.8 mmol kg(-1) soil), together with the intermediate concentrations of soil Zn + Cd (0.8 + 0.4 and 0.4 + 0.6 mmol kg-1 soil), promoted reduction of the thickness of the leaf mesophyll and, consequently, led to decrease of the leaf gas exchange. It was observed a hormesis effect due to high photosynthetic activity in low Cd concentration. The increase in Cd concentration in the soil altered the uptake of Cd and Zn by the roots of the CCN 51 cocoa genotype. The increase of Zn concentration in the soil promoted the decrease of the Cd uptake by the root system of the plants and thereby reduced the transport of Cd to the leaves. Part of Cd uptake by the plant's root system was immobilized in roots tissues, as a tolerance strategy, preventing that it was transported to the aerial part. The increase of Zn + Cd concentration in the soil did not influence the accumulation of Zn in the leaves of the young plants of the CCN 51 cocoa genotype. C1 [Souza dos Santos, Mayana Leandra; de Almeida, Alex-Alan Furtado; da Silva, Natalia Martins; Machado Oliveira, Bruna Rafaela; Silva, Jose Victor S.; Souza Junior, Jose Olimpio; Ahnert, Dario] Univ Estadual Santa Cruz, Dept Biol Sci, Rodovia Jorge Amado,Km 16, BR-45662900 Ilheus, BA, Brazil. [Souza dos Santos, Mayana Leandra] Inst Fed Educ Sci & Technol Bahia, Salvador, BA, Brazil. [Baligar, Virupax C.] USDA ARS, Beltsville Agr Res Ctr, Beltsville, MD 20705 USA. C3 Universidade Estadual de Santa Cruz; United States Department of Agriculture (USDA) RP de Almeida, AAF (corresponding author), Univ Estadual Santa Cruz, Dept Biol Sci, Rodovia Jorge Amado,Km 16, BR-45662900 Ilheus, BA, Brazil. EM alexalan.uesc@gmail.com RI Almeida, Alex-Alan/AAL-9505-2021 OI Almeida, Alex-Alan/0000-0001-5313-0608; Baligar, Virupax/0000-0002-6441-4638 FU National Council for Scientific and Technological Development (CNPq), Brazil; USDA-ARS; UESC FX The second author gratefully acknowledges the National Council for Scientific and Technological Development (CNPq), Brazil, for the grant of a fellowship of scientific productivity. This study was funded by a grant from USDA-ARS, in an international cooperative agreement with UESC. CR Aikpokpodion P. E., 2013, Journal of Chemical and Pharmaceutical Research, V5, P88 ALIA, 1991, J PLANT PHYSIOL, V138, P554, DOI 10.1016/S0176-1617(11)80240-3 Alloway B. J., 1990, HEAVY METALS SOILS, P323 Alloway BJ, 2013, HEAVY METALS SOILS, DOI [10.1007/978-94-007-4470-7_8, DOI 10.1007/978-94-007-4470-7] Aravind P, 2003, PLANT PHYSIOL BIOCH, V41, P391, DOI 10.1016/S0981-9428(03)00035-4 Aravind Parameswaran, 2005, Braz. J. Plant Physiol., V17, P3, DOI 10.1590/S1677-04202005000100002 Arguello D, 2019, SCI TOTAL ENVIRON, V649, P120, DOI 10.1016/j.scitotenv.2018.08.292 Ayala A, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/360438 Barraza F, 2017, ENVIRON POLLUT, V229, P950, DOI 10.1016/j.envpol.2017.07.080 BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060 Benavides María P., 2005, Braz. J. Plant Physiol., V17, P21, DOI 10.1590/S1677-04202005000100003 Bhaduri AM, 2012, REV ENVIRON SCI BIO, V11, P55, DOI 10.1007/s11157-011-9251-x Boza EJ, 2014, J AM SOC HORTIC SCI, V139, P219, DOI 10.21273/JASHS.139.2.219 Bray CM, 2005, NEW PHYTOL, V168, P511, DOI 10.1111/j.1469-8137.2005.01548.x CAKMAK I, 1991, PHYSIOL PLANTARUM, V83, P463, DOI 10.1111/j.1399-3054.1991.tb00121.x Cakmak I, 2000, NEW PHYTOL, V146, P185, DOI 10.1046/j.1469-8137.2000.00630.x Castro AV, 2015, ECOTOX ENVIRON SAFE, V115, P174, DOI 10.1016/j.ecoenv.2015.02.003 Castro H.U., 1981, POSIBILIDAD CREACION, DOI [10.21273/JASHS.139.2.219, DOI 10.21273/JASHS.139.2.219] Chavez E, 2016, CHEMOSPHERE, V150, P57, DOI 10.1016/j.chemosphere.2016.02.013 Chavez E, 2015, SCI TOTAL ENVIRON, V533, P205, DOI 10.1016/j.scitotenv.2015.06.106 Chen YT, 2017, CURR OPIN PLANT BIOL, V39, P66, DOI 10.1016/j.pbi.2017.06.004 Cherif J, 2011, J ENVIRON SCI, V23, P837, DOI 10.1016/S1001-0742(10)60415-9 Cherif J, 2010, J PHOTOCH PHOTOBIO B, V101, P332, DOI 10.1016/j.jphotobiol.2010.08.005 Choudhary K.K., 2017, REACTIVE OXYGEN SPEC, P352 Chugh LK, 1999, PLANT PHYSIOL BIOCH, V37, P297, DOI 10.1016/S0981-9428(99)80028-X Clemens S, 2016, ANNU REV PLANT BIOL, V67, P489, DOI 10.1146/annurev-arplant-043015-112301 D'Alessandro A, 2013, J PROTEOME RES, V12, P4979, DOI 10.1021/pr400793e Dahiya S, 2005, J FOOD COMPOS ANAL, V18, P517, DOI 10.1016/j.jfca.2004.05.002 de Araujo RP, 2017, ECOTOX ENVIRON SAFE, V144, P148, DOI 10.1016/j.ecoenv.2017.06.006 Dey Surjendu K., 2007, Braz. J. Plant Physiol., V19, P53, DOI 10.1590/S1677-04202007000100006 Di Baccio D, 2009, ENVIRON EXP BOT, V67, P153, DOI 10.1016/j.envexpbot.2009.05.014 Dixit V, 2001, J EXP BOT, V52, P1101, DOI 10.1093/jexbot/52.358.1101 FRIDOVICH I, 1995, ANNU REV BIOCHEM, V64, P97, DOI 10.1146/annurev.bi.64.070195.000525 Godzik B., 1993, POL BOT STUD, V5, P113 Gramlich A, 2017, SCI TOTAL ENVIRON, V580, P677, DOI 10.1016/j.scitotenv.2016.12.014 Guan MY, 2018, SCI TOTAL ENVIRON, V627, P663, DOI 10.1016/j.scitotenv.2018.01.245 Hafeez B., 2013, American Journal of Experimental Agriculture, V3, P374 Hart JJ, 2002, PHYSIOL PLANTARUM, V116, P73, DOI 10.1034/j.1399-3054.2002.1160109.x Hasan MK, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01492 HAVIR EA, 1987, PLANT PHYSIOL, V84, P450, DOI 10.1104/pp.84.2.450 Hussain A, 2018, ENVIRON POLLUT, V242, P1518, DOI 10.1016/j.envpol.2018.08.036 ICCO International Cocoa Organization, Q B COC STAT, VXLIV, P2 Jamali N, 2014, ENVIRON ENG MANAG J, V13, P2937 Jesus P, 2010, SYM REL DIST SYST, P37, DOI 10.1109/SRDS.2010.13 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Kabata-Pendias A., 2000, TRACE ELEMENTS SOILS, P331 Kapoor D, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00013 KAR M, 1976, PLANT PHYSIOL, V57, P315, DOI 10.1104/pp.57.2.315 Kim C, 2012, PLANT CELL, V24, P3026, DOI 10.1105/tpc.112.100479 Kirkham MB, 2006, GEODERMA, V137, P19, DOI 10.1016/j.geoderma.2006.08.024 Kupper K, 2007, CHROMOSOMA, V116, P285, DOI 10.1007/s00412-007-0098-4 Li He, 2015, Yingyong Shengtai Xuebao, V26, P1193 Liu FJ, 2010, PLANT SOIL, V327, P365, DOI 10.1007/s11104-009-0060-8 Liu LT, 2016, PLANT SOIL ENVIRON, V62, P80, DOI 10.17221/706/2015-PSE Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Llatance W.O., 2018, PERU REV FORESTAL PE, V33, P63, DOI [10.21704/rfp.v33i1.1156., DOI 10.21704/RFP.V33I1.1156] Losch R., 2004, HEAVY METAL STRESS P, DOI [10.1007/978-3-662-07743-6_7, DOI 10.1007/978-3-662-07743-6_7] Ma M, 2003, PLANT SCI, V164, P51, DOI 10.1016/S0168-9452(02)00334-5 Manova V, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00885 Marchiol L, 2004, ENVIRON POLLUT, V132, P21, DOI 10.1016/j.envpol.2004.04.001 Marques MC, 2014, REV BRAS CIENC SOLO, V38, P850, DOI 10.1590/S0100-06832014000300016 Mateos-Naranjo E, 2008, PLANT BIOLOGY, V10, P754, DOI 10.1111/j.1438-8677.2008.00098.x Matysik J, 2002, CURR SCI INDIA, V82, P525 Mitra G.N., 2015, REGULATION NUTR UPTA, DOI 10.1007/978-81-322-2334-4 Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009 Moller IM, 2007, ANNU REV PLANT BIOL, V58, P459, DOI 10.1146/annurev.arplant.58.032806.103946 Mysliwa-Kurdziel B., 2004, P146 Nadgorska-Socha A, 2013, ENVIRON SCI POLLUT R, V20, P1124, DOI 10.1007/s11356-012-1191-7 NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867 Nickelsen J, 2013, ANNU REV PLANT BIOL, V64, P609, DOI 10.1146/annurev-arplant-050312-120124 Pereira MP, 2016, TREES-STRUCT FUNCT, V30, P807, DOI 10.1007/s00468-015-1322-0 Perl, 2002, OXIDATIVE STRESS INT Pirovani CP, 2008, ELECTROPHORESIS, V29, P2391, DOI 10.1002/elps.200700743 Prasad MNV, 1999, HEAVY METAL STRESS P RADAMSON HH, 2018, J SOIL SEDIMENT, P1, DOI DOI 10.1007/S11368-018-2082-4 Rizwan M, 2018, SCI TOTAL ENVIRON, V631-632, P1175, DOI 10.1016/j.scitotenv.2018.03.104 Saha JK, 2017, ENV CHEM SUSTAIN WOR, V10, P155, DOI 10.1007/978-981-10-4274-4_7 Schreck E, 2012, SCI TOTAL ENVIRON, V427, P253, DOI 10.1016/j.scitotenv.2012.03.051 Sekara A, 2005, POL J ENVIRON STUD, V14, P509 Sharma P., 2012, J BOT, V26 Sharma SS, 1998, PHYTOCHEMISTRY, V49, P1531, DOI 10.1016/S0031-9422(98)00282-9 Shaw BP., 2004, HEAVY METAL STRESS P, P84, DOI [10.1007/978-3-662-07743-6_4, DOI 10.1007/978-3-662-07743-6_4] Shetty K, 2004, PROCESS BIOCHEM, V39, P789, DOI 10.1016/S0032-9592(03)00088-8 Singh S, 2015, PLANT GROWTH REGUL, V77, P87, DOI 10.1007/s10725-015-0039-9 Singh S, 2014, SCI HORTIC-AMSTERDAM, V176, P1, DOI 10.1016/j.scienta.2014.06.022 Sodre G.A., 2017, B TECNICO CEPEC CEPL, V209, P32 Souza Júnior José Olimpio de, 2011, Rev. Bras. Ciênc. Solo, V35, P151, DOI 10.1590/S0100-06832011000100014 Souza VL, 2011, BIOMETALS, V24, P59, DOI 10.1007/s10534-010-9374-5 Taiz L, 2017, FISIOLOGIA DESENVOLV Tran TA, 2013, TURK J BOT, V37, P1, DOI 10.3906/bot-1112-16 Thomas H, 2015, BIOCH MOL BIOL PLANT, P925 Tian SK, 2012, BIOL PLANTARUM, V56, P344, DOI 10.1007/s10535-012-0096-0 Ulusu Y, 2017, RUSS J PLANT PHYSL+, V64, P883, DOI 10.1134/S1021443717060139 Vardar F, 2016, CARYOLOGIA, V69, P111, DOI 10.1080/00087114.2015.1109954 Vardar F, 2011, NOT BOT HORTI AGROBO, V39, P71 da Silva FBV, 2017, J SOIL SCI PLANT NUT, V17, P635, DOI 10.4067/S0718-95162017000300007 Vitola V, 2016, RURAL SUSTAINABILITY, V35, P330, DOI DOI 10.1515/PLUA-2016-0003 VONCAEMMERER S, 1981, PLANTA, V153, P376, DOI 10.1007/BF00384257 Wang J, 2011, PLANT GROWTH REGUL, V63, P207, DOI 10.1007/s10725-010-9517-2 Whiting SN, 2000, NEW PHYTOL, V145, P199, DOI 10.1046/j.1469-8137.2000.00570.x Winterbourn CC, 2008, NAT CHEM BIOL, V4, P278, DOI 10.1038/nchembio.85 Xing JP, 2008, NEW PHYTOL, V178, P315, DOI 10.1111/j.1469-8137.2008.02376.x Yang Y, 2017, J AGR FOOD CHEM, V65, P5463, DOI 10.1021/acs.jafc.7b01931 Yanus RL, 2014, TALANTA, V119, P1, DOI 10.1016/j.talanta.2013.10.048 Yilmaz DD, 2011, ECOL INDIC, V11, P417, DOI 10.1016/j.ecolind.2010.06.012 Zarcinas BA, 2004, ENVIRON GEOCHEM HLTH, V26, P359, DOI 10.1007/s10653-005-4670-7 Zhang HX, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102083 Zhu GX, 2018, ECOTOX ENVIRON SAFE, V158, P300, DOI 10.1016/j.ecoenv.2018.04.045 Zhu XF, 2011, PLANT CELL ENVIRON, V34, P1055, DOI 10.1111/j.1365-3040.2011.02304.x NR 109 TC 9 Z9 9 U1 1 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-8472 EI 1873-7307 J9 ENVIRON EXP BOT JI Environ. Exp. Bot. PD NOV PY 2020 VL 179 AR 104201 DI 10.1016/j.envexpbot.2020.104201 PG 15 WC Plant Sciences; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences; Environmental Sciences & Ecology GA NR3SJ UT WOS:000571483200010 DA 2023-03-13 ER PT J AU Sukata, T Uwagawa, S Ozaki, K Ogawa, M Nishikawa, T Iwai, S Kinoshita, A Wanibuchi, H Imaoka, S Funae, Y Okuno, Y Fukushima, S AF Sukata, T Uwagawa, S Ozaki, K Ogawa, M Nishikawa, T Iwai, S Kinoshita, A Wanibuchi, H Imaoka, S Funae, Y Okuno, Y Fukushima, S TI Detailed low-dose study of 1,1-b is(p-chlorophenyl)-2,2,2-trichloroethane carcinogenesis suggests the possibility of a hormetic effect SO INTERNATIONAL JOURNAL OF CANCER LA English DT Article DE hormesis; nongenotoxic carcinogen; risk assessment; oxidative stress; proinflammatory cytokine ID JUNCTIONAL INTERCELLULAR COMMUNICATION; CELL-CELL COMMUNICATION; NECROSIS-FACTOR-ALPHA; DYE-TRANSFER ASSAY; RAT-LIVER; NITRIC-OXIDE; HEPATIC FOCI; OGG1 GENE; PRENEOPLASTIC LESIONS; LIPID-PEROXIDATION AB To obtain information on the effects of nongenotoxic carcinogens at low doses for human cancer risk assessment, the carcinogenic potential of the organochlorine insecticide, 1, 1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), in the liver was assessed in F344 rats. In experiment 1, 240 male animals, 21 days old, were administered 0, 0.5, 1.0, 2.0, 5.0, 20, 100 and 500 ppm DDT in the diet for 16 weeks. Experiment 2 was conducted to elucidate the carcinogenic potential of DDT at lower levels using 180 rats given doses of 0, 0.005, 0.01, 0.1, 0.2 and 0.5 ppm. The livers of all animals were immunohistochemically examined for expression of glutathione S-transferase placental form (GST-P), putative preneoplastic lesions. Quantitative values for GST-P-positive foci in the liver were increased dose-dependently in rats given 20 ppm DDT and above with statistical significance as compared with the concurrent control value. In contrast, doses of 0.005 and 0.01 ppm were associated with a tendency for decrease below the control value, although not significantly. Western blotting analysis show that cytochrome P-450 3A2 (CYP3A2) protein expression tended to decrease at 0.005 and 0.01 ppm, a good correlation being observed with the change in the number of GST-P-positive foci. These findings suggest that a DDT hepatocarcinogenicity may show nonlinear response, that is, hormetic response at low doses. Furthermore, since CYP3A2 protein expression appears to be important for the effects of phenobarbital and the alpha-isomer of benzene hexachloride, mRNAs for IL-1 receptor type I (IL-IRI) and TNF-alpha receptor type I (TNFR1) whose ligands have roles not only in downregulating CYP3A2 expression but also in inducing antiproliferative effect or apoptosis in hepatocyte were examined. Increase was observed at low doses of DDT. Oxidative stress in liver DNA, assessed in terms of 8-hydroxydeoxyguanosine as a marker, was also decreased. These findings suggest that the possible hormetic effect that was observed in our detailed low-dose study of DDT carcinogenesis, although not statistically significant, may be linked to levels of oxidative stress and proinflammatory cytokines. (C) 2002 Wiley-Liss, Inc. C1 Sumitomo Chem Co Ltd, Environm Hlth Sci Lab, Konohana Ku, Osaka 5548558, Japan. Osaka City Univ, Sch Med, Dept Pathol, Osaka 545, Japan. Osaka City Univ, Sch Med, Dept Biol Chem, Osaka 545, Japan. C3 Sumitomo Chem Co Ltd; Osaka Metropolitan University; Osaka Metropolitan University RP Sukata, T (corresponding author), Sumitomo Chem Co Ltd, Environm Hlth Sci Lab, Konohana Ku, 1-98,3 Chome,Kasugade Naka, Osaka 5548558, Japan. CR Aburatani H, 1997, CANCER RES, V57, P2151 Arai K, 1997, ONCOGENE, V14, P2857, DOI 10.1038/sj.onc.1201139 BARROS SBM, 1994, TOXICOL LETT, V70, P33, DOI 10.1016/0378-4274(94)90141-4 BERTAZZI PA, 1993, EPIDEMIOLOGY, V4, P398, DOI 10.1097/00001648-199309000-00004 Boulton R, 1997, HEPATOLOGY, V26, P49 Carlson TJ, 1996, MOL PHARMACOL, V49, P796 CHUNG MH, 1991, BIOCHEM BIOPH RES CO, V178, P1472, DOI 10.1016/0006-291X(91)91059-L DINARELLO CA, 1988, FASEB J, V2, P108, DOI 10.1096/fasebj.2.2.3277884 Eder J, 1997, TRENDS PHARMACOL SCI, V18, P319, DOI 10.1016/S0165-6147(97)90657-X FLODSTROM S, 1990, CARCINOGENESIS, V11, P1413, DOI 10.1093/carcin/11.8.1413 Floyd R A, 1986, Free Radic Res Commun, V1, P163, DOI 10.3109/10715768609083148 FLOYD RA, 1984, J BIOCHEM BIOPH METH, V10, P221, DOI 10.1016/0165-022X(84)90042-3 Fukushima S, 1999, CANCER LETT, V143, P157, DOI 10.1016/S0304-3835(99)00117-2 GELLER DA, 1995, J IMMUNOL, V155, P4890 GOLDSWORTHY T, 1984, CARCINOGENESIS, V5, P67, DOI 10.1093/carcin/5.1.67 HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577, DOI 10.1177/29.4.6166661 IARC, 1991, IARC MON EV CARC RIS, V52, P179, DOI DOI 10.7705/BIOMEDICA.V25I3.1358,335-345 Ito A, 1999, J IMMUNOL, V162, P4260 ITO N, 1983, ENVIRON HEALTH PERSP, V50, P131, DOI 10.2307/3429543 KASAI H, 1984, NUCLEIC ACIDS RES, V12, P2127, DOI 10.1093/nar/12.4.2127 Kasai H, 1997, MUTAT RES-REV MUTAT, V387, P147, DOI 10.1016/S1383-5742(97)00035-5 KASAI H, 1984, NUCLEIC ACIDS RES, V12, P2137, DOI 10.1093/nar/12.4.2137 KASAI H, 1986, ENVIRON HEALTH PERSP, V67, P111, DOI 10.2307/3430324 KASAI H, 1986, CARCINOGENESIS, V7, P1841 Kato T, 1996, JPN J CANCER RES, V87, P127, DOI 10.1111/j.1349-7006.1996.tb03149.x Kim PM, 1997, FREE RADICAL BIO MED, V23, P579, DOI 10.1016/S0891-5849(97)00012-9 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 LEIBOLD E, 1993, CARCINOGENESIS, V14, P2377, DOI 10.1093/carcin/14.11.2377 Liu ZG, 1996, CELL, V87, P565, DOI 10.1016/S0092-8674(00)81375-6 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Lu RZ, 1997, CURR BIOL, V7, P397, DOI 10.1016/S0960-9822(06)00187-4 Masuda C, 2001, CANCER LETT, V163, P179, DOI 10.1016/S0304-3835(00)00687-X MATSUDA T, 1995, CANCER LETT, V97, P137, DOI 10.1016/0304-3835(95)03965-Y NORDBERG GF, 1981, ENVIRON HEALTH PERSP, V40, P65, DOI 10.2307/3429221 OMURA T, 1964, J BIOL CHEM, V239, P137 POLLYCOVE M, 1997, BELLE, V6, P13 Radicella JP, 1997, P NATL ACAD SCI USA, V94, P8010, DOI 10.1073/pnas.94.15.8010 Rink L, 1996, INT ARCH ALLERGY IMM, V111, P199, DOI 10.1159/000237369 RoldanArjona T, 1997, P NATL ACAD SCI USA, V94, P8016, DOI 10.1073/pnas.94.15.8016 Rosenquist TA, 1997, P NATL ACAD SCI USA, V94, P7429, DOI 10.1073/pnas.94.14.7429 Ross HJ, 1996, ONCOL RES, V8, P171 SUGIE S, 1987, CARCINOGENESIS, V8, P45, DOI 10.1093/carcin/8.1.45 TAKAGI A, 1990, JPN J CANCER RES, V81, P213, DOI 10.1111/j.1349-7006.1990.tb02551.x Tani M, 1998, MAMM GENOME, V9, P32, DOI 10.1007/s003359900675 TARTAGLIA LA, 1991, P NATL ACAD SCI USA, V88, P9292, DOI 10.1073/pnas.88.20.9292 TATENO C, 1993, CELL BIOL TOXICOL, V9, P215, DOI 10.1007/BF00755600 TATENO C, 1994, CARCINOGENESIS, V15, P517, DOI 10.1093/carcin/15.3.517 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 Tsurudome Y, 1999, CARCINOGENESIS, V20, P1573, DOI 10.1093/carcin/20.8.1573 TSUSHIMOTO G, 1983, ARCH ENVIRON CON TOX, V12, P721, DOI 10.1007/BF01060757 Wallach D, 1997, TRENDS BIOCHEM SCI, V22, P107, DOI 10.1016/S0968-0004(97)01015-3 Wang ZQ, 1998, HEPATOLOGY, V28, P430, DOI 10.1002/hep.510280221 WARNGARD L, 1985, ARCH ENVIRON CON TOX, V14, P541 YAMAMOTO F, 1992, JPN J CANCER RES, V83, P351, DOI 10.1111/j.1349-7006.1992.tb00114.x YOSHIJI H, 1992, CARCINOGENESIS, V13, P1227, DOI 10.1093/carcin/13.7.1227 ZEILMAKER MJ, 1986, CANCER RES, V46, P6180 NR 57 TC 41 Z9 41 U1 1 U2 10 PU WILEY-LISS PI NEW YORK PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA SN 0020-7136 J9 INT J CANCER JI Int. J. Cancer PD MAY 1 PY 2002 VL 99 IS 1 BP 112 EP 118 DI 10.1002/ijc.10312 PG 7 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA 546XD UT WOS:000175300900018 PM 11948501 OA Bronze DA 2023-03-13 ER PT J AU Kolesnikov, S Timoshenko, A Kabakova, V Minnikova, T Tsepina, N Kazeev, K Minkina, TM Shende, SS Mandzhieva, SS Tsitsuashvili, V Sushkova, SN AF Kolesnikov, Sergey Timoshenko, Alena Kabakova, Victoria Minnikova, Tatiana Tsepina, Natalia Kazeev, Kamil Minkina, Tatiana M. Shende, Sudhir S. Mandzhieva, Saglara S. Tsitsuashvili, Victoria Sushkova, Svetlana N. TI Effect of Platinum Nanoparticles (PtNPs) Pollution on the Biological Properties of Haplic Cambisols Eutric of the Caucasus Forests SO FORESTS LA English DT Article DE Platinum Nanoparticles (PtNPs); pollution; Cambisols; biotesting; ecotoxicity; phytotoxicity ID GROUP ELEMENTS PGE; OXIDE NANOPARTICLES; HEAVY-METALS; COPPER; SOILS; TOXICITY; RHODIUM; BIOACCUMULATION; ENVIRONMENT; DISRUPTION AB Pollution by platinum (Pt) is an emerging threat to forest soil health. The widespread use of Pt nanoparticles (NPs) in gas neutralizers for automobile exhaust has sharply increased the amount of PtNP pollution in the environment, including forest ecosystems. Recently, territories with Pt concentrations greater than 0.3 mg/kg in soil have been discovered. This concentration is 750 times greater than the background content in the earth's crust. Cambisols, the most prevalent forest soil type in boreal forests that determines the functioning of the entire forest ecosystem, occupy a significant share of the Earth's soil cover, which is about 1.5 billion hectares worldwide, or 12% of the entire continental land area. This shows the importance of studying the effect of pollution on this type of soil. In this study, laboratory simulations of PtNP contamination of the Haplic Cambisols Eutric at concentrations of 0.01, 0.1, 1, 10, and 100 mg/kg were carried out. The effect of PtNPs on soil properties was assessed using the most sensitive and informative biological indicators. The total number of bacteria was studied by the methods of luminescent microscopy, catalase activity (gasometrically), dehydrogenases activity (spectrophotometrically), germination, and length of roots by the method of seedlings. It was found that at the concentrations of 0.01, 0.1, and 1 mg/kg of PtNPs, there was either no effect or a slight, statistically insignificant decrease in the biological state of Haplic Cambisols Eutric. Concentrations of 10 and 100 mg/kg of PtNPs had a toxic effect on all the studied parameters. No statistically significant stimulating effect (hormesis) of PtNPs on the biological properties of Haplic Cambisols Eutric was observed, which indicates the high toxicity of PtNPs and the importance of studying the consequences of soil and ecosystem contamination with PtNPs. However, when the content of Pt in the soil was 1 mg/kg, there was a tendency to stimulate germination, the length of radish roots, and the total number of bacteria. The toxicity of PtNPs measured by biochemical indicators (activity of catalase and dehydrogenases) starts at a concentration of 100 mg/kg for phytotoxic effects (germination and root length of radish) and 10 mg/kg for microbiological effects (total number of bacteria). C1 [Kolesnikov, Sergey; Timoshenko, Alena; Kabakova, Victoria; Minnikova, Tatiana; Tsepina, Natalia; Kazeev, Kamil; Minkina, Tatiana M.; Shende, Sudhir S.; Mandzhieva, Saglara S.; Tsitsuashvili, Victoria; Sushkova, Svetlana N.] Southern Fed Univ, Acad Biol & Biotechnol, Rostov Na Donu 344090, Russia. C3 Southern Federal University RP Minnikova, T; Shende, SS (corresponding author), Southern Fed Univ, Acad Biol & Biotechnol, Rostov Na Donu 344090, Russia. EM loko261008@yandex.ru; sudhirsshende13884@gmail.com RI Minnikova, Tatiana/R-4216-2016; Minkina, Tatiana/A-1683-2014; Sushkova, Svetlana/A-4756-2014; Mandzhieva, Saglara/A-1681-2014 OI Minnikova, Tatiana/0000-0002-9453-7137; Minkina, Tatiana/0000-0003-3022-0883; Sushkova, Svetlana/0000-0003-3470-9627; Mandzhieva, Saglara/0000-0001-6000-2209 FU Ministry of Science and Higher Education of the Russian Federation [075-15-2022-1122]; Strategic Academic Leadership Priority of the Southern Federal University Priority 2030 [SP-12-22-10] FX The study was carried out in the Soil Health laboratory of the Southern Federal University with the financial support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-1122) and the Strategic Academic Leadership Priority of the Southern Federal University Priority 2030 (SP-12-22-10). CR Adams MB, 2019, DEV SOIL SCI, V36, P83, DOI 10.1016/B978-0-444-63998-1.00006-9 Ajdary M, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8090634 Ali S, 2013, ECOTOX ENVIRON SAFE, V89, P66, DOI 10.1016/j.ecoenv.2012.11.015 Alt F, 1997, FRESEN J ANAL CHEM, V357, P1013, DOI 10.1007/s002160050296 Astafurova T.P., 2013, PLANT PHYSL GENET, V45, P544 Asztemborska M, 2015, INT J ENVIRON RES, V9, P109 Avila M.I.A., 2020, CLEAN ENG TECHNOL, V1, P100016, DOI [10.1016/j.clet.2020.100016, DOI 10.1016/J.CLET.2020.100016] Babula P, 2008, ENVIRON CHEM LETT, V6, P189, DOI 10.1007/s10311-008-0159-9 Bayraktar H, 2006, CHEM COMMUN, P1390, DOI 10.1039/b516096k Birke M, 2018, J GEOCHEM EXPLOR, V187, P72, DOI 10.1016/j.gexplo.2017.09.005 Bloch K, 2021, FRONT CHEM, V9, DOI 10.3389/fchem.2021.624344 Buchman JT, 2019, ACCOUNTS CHEM RES, V52, P1632, DOI 10.1021/acs.accounts.9b00053 Cakovic M, 2021, FORESTS, V12, DOI 10.3390/f12111461 Cicchella D, 2008, GEOCHEM-EXPLOR ENV A, V8, P31, DOI 10.1144/1467-7873/07-149 Djingova R, 2003, SCI TOTAL ENVIRON, V308, P235, DOI 10.1016/S0048-9697(02)00677-0 Figas A, 2021, FORESTS, V12, DOI 10.3390/f12101310 Gagnon ZE, 2006, J ENVIRON SCI HEAL A, V41, P397, DOI 10.1080/10934520500423592 Galaktionova L, 2019, TOXICOL ENV HEALTH, V11, P259, DOI 10.1007/s13530-019-0413-5 Galstyan A.S, 1982, SOIL SCI, V4, P108 Gomez B, 2001, SCI TOTAL ENVIRON, V269, P131, DOI 10.1016/S0048-9697(00)00826-3 Grimaldi M, 2019, TOXICOL APPL PHARM, V364, P1, DOI 10.1016/j.taap.2018.12.005 Hooda PS, 2007, SCI TOTAL ENVIRON, V384, P384, DOI 10.1016/j.scitotenv.2007.05.040 Jackson MT, 2010, SCI TOTAL ENVIRON, V408, P1276, DOI 10.1016/j.scitotenv.2009.09.014 Jung TK, 2014, T NONFERR METAL SOC, V24, pS99, DOI 10.1016/S1003-6326(14)63294-5 Kabata-Pendias Alina, 2010, P1 Kazeev K.S., 2003, BIOL DIAGNOSIS INDIC Kolesnikov S. I., 2006, Pochvovedenie, P616 Kolesnikov SI, 2019, EURASIAN SOIL SCI+, V52, P982, DOI 10.1134/S106422931908009X Kolesnikov SI, 2019, ENVIRON MONIT ASSESS, V191, DOI 10.1007/s10661-019-7718-3 Kolesnikov S, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10102080 Kolesnikov S, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10051022 Kolton A., 2014, GEOL GEOPHYS ENVIRON, V40, P343, DOI [10.7494/geol.2014.40.4.343, DOI 10.7494/GEOL.2014.40.4.343] Komendova R, 2019, SCI TOTAL ENVIRON, V694, DOI 10.1016/j.scitotenv.2019.133822 Kowalska JB, 2021, FORESTS, V12, DOI 10.3390/f12030291 Lai L, 2017, LANGMUIR, V33, P2378, DOI 10.1021/acs.langmuir.7b00173 Levay K, 2021, J IND ENG CHEM, V101, P279, DOI 10.1016/j.jiec.2021.06.002 Lushchaeva Inna V., 2015, Advanced Materials Research, V1085, P384, DOI 10.4028/www.scientific.net/AMR.1085.384 Manceau A, 2008, ENVIRON SCI TECHNOL, V42, P1766, DOI 10.1021/es072017o Manikandan M, 2012, BIOSENS BIOELECTRON, V35, P493, DOI 10.1016/j.bios.2012.03.020 Marcheselli M, 2010, CHEMOSPHERE, V80, P1247, DOI 10.1016/j.chemosphere.2010.06.070 Maye MM, 2005, J AM CHEM SOC, V127, P1519, DOI 10.1021/ja044408y Mitra A, 2017, GEOCHIM COSMOCHIM AC, V216, P417, DOI 10.1016/j.gca.2017.08.025 Morton O, 2001, J GEOCHEM EXPLOR, V72, P223, DOI 10.1016/S0375-6742(01)00163-7 Nel A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397 Orecchio S, 2011, MICROCHEM J, V99, P283, DOI 10.1016/j.microc.2011.05.016 Paz-Ferreiro J, 2012, CHEMOSPHERE, V86, P1117, DOI 10.1016/j.chemosphere.2011.12.009 Rahman M. S., 2020, Nano-Structures & Nano-Objects, V21, P191, DOI 10.1016/j.nanoso.2019.100408 Rajendran S., 2020, NANOTOXICITY PREVENT, P275, DOI [10.1016/B978-0-12-819943-5.00012-9, DOI 10.1016/B978-0-12-819943-5.00012-9] Rajput V, 2021, ENVIRON GEOCHEM HLTH, V43, P2443, DOI 10.1007/s10653-020-00681-5 Rajput VD, 2019, INT J AGRIC BIOL, V21, P171, DOI 10.17957/IJAB/15.0877 Rauch S, 2013, WATER AIR SOIL POLL, V224, DOI 10.1007/s11270-012-1395-y Ravindra K, 2004, SCI TOTAL ENVIRON, V318, P1, DOI 10.1016/S0048-9697(03)00372-3 Sanzari I, 2019, FRONT BIOENG BIOTECH, V7, DOI 10.3389/fbioe.2019.00120 Savignan L, 2021, CHEMOSPHERE, V271, DOI 10.1016/j.chemosphere.2020.129517 Schafer J, 1998, SCI TOTAL ENVIRON, V215, P59, DOI 10.1016/S0048-9697(98)00115-6 Seckin H, 2022, ENVIRON RES, V208, DOI 10.1016/j.envres.2022.112708 Shar S, 2021, APPL SOIL ECOL, V157, DOI 10.1016/j.apsoil.2020.103727 Sidor CG, 2021, FORESTS, V12, DOI 10.3390/f12050640 Silva S, 2016, CHEMOSPHERE, V151, P68, DOI 10.1016/j.chemosphere.2016.02.047 Sobrova P, 2012, CENT EUR J CHEM, V10, P1369, DOI 10.2478/s11532-012-0073-7 Soltanian S, 2021, BIONANOSCIENCE, V11, P245, DOI 10.1007/s12668-020-00816-z Stejskal K, 2007, LISTY CUKROV REPAR, V123, P328 [Тимошенко А.Н. Timoshenko A.N.], 2021, [Экология и промышленность России, Ekologiya i promyshlennost' Rossii], V25, P61, DOI 10.18412/1816-0395-2021-4-61-65 Valkov V.F., 2004, SOIL SCI TXB U Venzhik YV, 2021, BIOL BULL+, V48, P140, DOI 10.1134/S106235902102014X Wang W, 2020, ENVIRON SCI POLLUT R, V27, P31505, DOI 10.1007/s11356-020-09338-3 WEDEPOHL KH, 1995, GEOCHIM COSMOCHIM AC, V59, P1217, DOI 10.1016/0016-7037(95)00038-2 World Reference Base for Soil Resources, 2022, INT SOIL CLASS SYST, V4 Xiong ZT, 2005, ENVIRON TOXICOL, V20, P188, DOI 10.1002/tox.20094 Yadav G, 2014, BIOL TRACE ELEM RES, V158, P410, DOI 10.1007/s12011-014-9950-6 You TT, 2018, J SOIL SEDIMENT, V18, P211, DOI 10.1007/s11368-017-1716-2 You YY, 2017, ADV FUNCT MATER, V27, DOI 10.1002/adfm.201703313 Zereini F, 2015, ENVIRON SCI ENG, P1, DOI 10.1007/978-3-662-44559-4 Zhang KZ, 2010, INT J CLIN EXP MED, V3, P33 Zvyagintsev DG, 2005, BIOLOGIYA POCHV SOIL, V3rd, P445 NR 75 TC 0 Z9 0 U1 2 U2 2 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1999-4907 J9 FORESTS JI Forests PD JAN PY 2023 VL 14 IS 1 AR 54 DI 10.3390/f14010054 PG 14 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA 8C4WR UT WOS:000917610900001 OA gold DA 2023-03-13 ER PT J AU Budiono, BP Hoe, LES Peart, JN Sabapathy, S Ashton, KJ Haseler, LJ Headrick, JP AF Budiono, Boris P. Hoe, Louise E. See Peart, Jason N. Sabapathy, Surendran Ashton, Kevin J. Haseler, Luke J. Headrick, John P. TI Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns SO AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY LA English DT Article DE cardioprotection; exercise; gene expression; ischemia-reperfusion; myocardial; protein kinase; voluntary activity; wheel-running ID EXERCISE-INDUCED CARDIOPROTECTION; ACTIVATED PROTEIN-KINASE; ISCHEMIA/REPERFUSION INJURY; REPERFUSION INJURY; HEART; INFARCTION; TIME; CARDIOMYOPATHY; MITOCHONDRIA; INFLAMMATION AB Budiono BP, See Hoe LE, Peart JN, Sabapathy S, Ashton KJ, Haseler LJ, Headrick JP. Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns. Am J Physiol Regul Integr Comp Physiol 302: R1091-R1100, 2012. First published February 29, 2012; doi:10.1152/ajpregu.00406.2011.-Exercise triggers hormesis, conditioning hearts against damaging consequences of subsequent ischemia- reperfusion (I/R). We test whether "low-stress" voluntary activity modifies I/R tolerance and molecular determinants of cardiac survival. Male C57BL/6 mice were provided 7-day access to locked (7SED) or rotating (7EX) running-wheels before analysis of cardiac prosurvival (Akt, ERK 1/2) and prodeath (GSK3 beta) kinases, transcriptomic adaptations, and functional tolerance of isolated hearts to 25-min ischemia/45-min reperfusion. Over 7 days, 7EX mice increased running from 2.1 +/- 0.2 to 5.3 +/- 0.3 km/day (mean speed 38 +/- 2 m/min), with activity improving myocardial I/R tolerance: 7SED hearts recovered 43 +/- 3% of ventricular force with diastolic contracture of 33 +/- 3 mmHg, whereas 7EX hearts recovered 63 +/- 5% of force with diastolic dysfunction reduced to 23 +/- 2 mmHg (P < 0.05). Cytosolic expression (total protein) of Akt and GSK3 beta was unaltered, while ERK 1/2 increased 30% in 7EX vs. 7SED hearts. Phosphorylation of Akt and ERK 1/2 was unaltered, whereas GSK3 beta phosphorylation increased similar to 90%. Microarray interrogation identified significant changes (>= 1.3-fold expression change, <= 5% FDR) in 142 known genes, the majority (92%) repressed. Significantly modified paths/networks related to inflammatory/immune function (particularly interferon-dependent), together with cell movement, growth, and death. Of only 14 induced transcripts, 3 encoded interrelated sarcomeric proteins titin, alpha-actinin, and myomesin-2, while transcripts for protective actin-stabilizing ND1-L and activator of mitochondrial biogenesis ALAS1 were also induced. There was no transcriptional evidence of oxidative heat-shock or other canonical "stress" responses. These data demonstrate that relatively brief voluntary activity substantially improves cardiac ischemic tolerance, an effect independent of shifts in Akt, but associated with increased total ERK 1/2 and phospho-inhibition of GSK3 beta. Transcriptomic data implicate inflammatory/immune and sarcomeric modulation in activity-dependent protection. C1 [Budiono, Boris P.; Hoe, Louise E. See; Peart, Jason N.; Sabapathy, Surendran; Haseler, Luke J.; Headrick, John P.] Griffith Univ, Heart Fdn Res Ctr, Griffith Hlth Inst, Gold Coast, Qld 9726, Australia. [Ashton, Kevin J.] Bond Univ, Fac Hlth Sci & Med, Robina, Qld, Australia. C3 Griffith University; Menzies Health Institute Queensland; Bond University RP Headrick, JP (corresponding author), Griffith Univ, Heart Fdn Res Ctr, Griffith Hlth Inst, PMB 50 Gold Coast Mail Ctr, Gold Coast, Qld 9726, Australia. EM j.headrick@griffith.edu.au RI Ashton, Kevin/R-2147-2016; Hoe, Louise E See/C-6650-2017 OI Ashton, Kevin/0000-0001-6106-3425; Hoe, Louise E See/0000-0003-0553-205X; Sabapathy, Surendran/0000-0003-1267-6035; Haseler, Luke/0000-0003-1607-4402; Budiono, Boris/0000-0002-1189-739X FU National Heart Foundation of Australia [G-08B-3971, G-05B-2029]; National Health and Medical Research Council of Australia (NHMRC); Australian Postgraduate Award scholarship; Australian Research Council FX The authors gratefully acknowledge grant support from the National Heart Foundation of Australia (G-08B-3971; G-05B-2029) and National Health and Medical Research Council of Australia (NHMRC). B. Budiono was supported by an Australian Postgraduate Award scholarship, and J. N. Peart was the recipient of a Future Fellowship from the Australian Research Council. CR Akita Y, 2007, AM J PHYSIOL-HEART C, V292, pH2051, DOI 10.1152/ajpheart.01102.2006 Ali MAM, 2010, CIRCULATION, V122, P2039, DOI 10.1161/CIRCULATIONAHA.109.930222 Ascensao A, 2007, INT J CARDIOL, V117, P16, DOI 10.1016/j.ijcard.2006.04.076 Belter JG, 2004, J APPL PHYSIOL, V96, P1270, DOI 10.1152/japplphysiol.00838.2003 Bronikowski AM, 2003, PHYSIOL GENOMICS, V12, P129, DOI 10.1152/physiolgenomics.00082.2002 Chiu C, 2010, J AM COLL CARDIOL, V55, P1127, DOI 10.1016/j.jacc.2009.11.016 Coven DL, 2003, AM J PHYSIOL-ENDOC M, V285, pE629, DOI 10.1152/ajpendo.00171.2003 Daniel-Carmi V, 2009, INT J CANCER, V125, P2810, DOI 10.1002/ijc.24669 De Bono JP, 2006, AM J PHYSIOL-REG I, V290, pR926, DOI 10.1152/ajpregu.00694.2005 de Waard MC, 2010, J MOL CELL CARDIOL, V48, P1041, DOI 10.1016/j.yjmcc.2010.02.005 de Waard MC, 2009, J APPL PHYSIOL, V107, P928, DOI 10.1152/japplphysiol.91281.2008 Demirel HA, 2001, J APPL PHYSIOL, V91, P2205, DOI 10.1152/jappl.2001.91.5.2205 Edgar R, 2002, NUCLEIC ACIDS RES, V30, P207, DOI 10.1093/nar/30.1.207 Eisele JC, 2008, BASIC RES CARDIOL, V103, P12, DOI 10.1007/s00395-007-0684-x Fluck M, 2006, J EXP BIOL, V209, P2239, DOI 10.1242/jeb.02149 Frangogiannis NG, 2007, THROMB HAEMOSTASIS, V97, P738, DOI 10.1160/TH07-01-0022 Gosselin H, 2006, MED SCI SPORT EXER, V38, P455, DOI 10.1249/01.mss.0000205138.02440.79 Hamilton KL, 2007, MED SCI SPORT EXER, V39, P1544, DOI 10.1249/mss.0b013e3180d099e8 Hamilton KL, 2001, AM J PHYSIOL-HEART C, V281, pH1346, DOI 10.1152/ajpheart.2001.281.3.H1346 Hayes K, 2008, ACTA NEUROPATHOL, V115, P289, DOI 10.1007/s00401-008-0340-z Headrick JP, 2001, EXP PHYSIOL, V86, P703, DOI 10.1111/j.1469-445X.2001.tb00035.x Healy GN, 2008, DIABETES CARE, V31, P661, DOI 10.2337/dc07-2046 Huey KA, 2008, J APPL PHYSIOL, V105, P1830, DOI 10.1152/japplphysiol.90955.2008 Kavazis AN, 2008, AM J PHYSIOL-HEART C, V294, pH928, DOI 10.1152/ajpheart.01231.2007 Kavazis AN, 2009, SPORTS MED, V39, P923, DOI 10.2165/11317870-000000000-00000 Ke Z, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016643 Konhilas JP, 2004, AM J PHYSIOL-HEART C, V287, pH2768, DOI 10.1152/ajpheart.00292.2004 Kostin S, 2000, Heart Fail Rev, V5, P271 Lajoie C, 2004, J APPL PHYSIOL, V96, P1606, DOI 10.1152/japplphysiol.00853.2003 Lara-Pezzi E, 2008, ENDOCRINOLOGY, V149, P5822, DOI 10.1210/en.2008-0151 Lennon SL, 2004, ACTA PHYSIOL SCAND, V182, P161, DOI 10.1111/j.1365-201X.2004.01346.x Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 LOCKE M, 1995, AM J PHYSIOL-HEART C, V269, pH320, DOI 10.1152/ajpheart.1995.269.1.H320 Matsudo Y, 2006, TRANSGENIC RES, V15, P573, DOI 10.1007/s11248-006-9010-x McClung HM, 2007, NEUROSCI LETT, V419, P172, DOI 10.1016/j.neulet.2007.04.037 Melling CWJ, 2006, J MOL CELL CARDIOL, V41, P816, DOI 10.1016/j.yjmcc.2006.05.010 Moraska A, 2000, AM J PHYSIOL-REG I, V279, pR1321, DOI 10.1152/ajpregu.2000.279.4.R1321 Murphy E, 2008, PHYSIOL REV, V88, P581, DOI 10.1152/physrev.00024.2007 Musi N, 2005, FEBS LETT, V579, P2045, DOI 10.1016/j.febslet.2005.02.052 Noble EG, 1999, J APPL PHYSIOL, V86, P1696, DOI 10.1152/jappl.1999.86.5.1696 Oshima Y, 2008, CIRCULATION, V117, P3099, DOI 10.1161/CIRCULATIONAHA.108.767673 Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004 Powers SK, 2008, FREE RADICAL BIO MED, V44, P193, DOI 10.1016/j.freeradbiomed.2007.02.006 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Schweitzer NB, 2005, LIFE SCI, V77, P2246, DOI 10.1016/j.lfs.2005.01.036 Sherwin CM, 1998, ANIM BEHAV, V56, P11, DOI 10.1006/anbe.1998.0836 Simonsen ML, 2010, EXP PHYSIOL, V95, P1071, DOI 10.1113/expphysiol.2010.054858 Stamatakis E, 2011, J AM COLL CARDIOL, V57, P292, DOI 10.1016/j.jacc.2010.05.065 Stanley William C., 2004, Journal of Cardiovascular Pharmacology and Therapeutics, V9, pS31, DOI 10.1177/107424840400900104 Starnes JW, 2003, AM J PHYSIOL-HEART C, V285, pH347, DOI 10.1152/ajpheart.00952.2002 Stuewe SR, 2000, J MOL CELL CARDIOL, V32, P903, DOI 10.1006/jmcc.2000.1131 Taylor RP, 1999, AM J PHYSIOL-HEART C, V276, pH1098, DOI 10.1152/ajpheart.1999.276.3.H1098 Wilund KR, 2007, CLIN SCI, V112, P543, DOI 10.1042/CS20060368 Woods JA, 2009, IMMUNOL ALLERGY CLIN, V29, P381, DOI 10.1016/j.iac.2009.02.011 Xu Y, 2009, ACTA BIOCH BIOPH SIN, V41, P488, DOI 10.1093/abbs/gmp034 Yang G, 2007, ONCOGENE, V26, P594, DOI 10.1038/sj.onc.1209807 Zhang KR, 2007, APOPTOSIS, V12, P1579, DOI 10.1007/s10495-007-0090-8 NR 58 TC 20 Z9 20 U1 0 U2 14 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6119 EI 1522-1490 J9 AM J PHYSIOL-REG I JI Am. J. Physiol.-Regul. Integr. Comp. Physiol. PD MAY PY 2012 VL 302 IS 9 BP R1091 EP R1100 DI 10.1152/ajpregu.00406.2011 PG 10 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA 935UQ UT WOS:000303547500008 PM 22378772 DA 2023-03-13 ER PT J AU Jacobs, PJ Hart, DW Suess, T van Vuuren, AKJ Bennett, NC AF Jacobs, Paul Juan Hart, Daniel William Suess, Tobias Janse van Vuuren, Andries Koch Bennett, Nigel Charles TI The Cost of Reproduction in a Cooperatively Breeding Mammal: Consequences of Seasonal Variation in Rainfall, Reproduction, and Reproductive Suppression SO FRONTIERS IN PHYSIOLOGY LA English DT Article DE oxidative stress; redox balance; mole-rat; cooperative breeder; seasonal; reproductive suppression; hormesis; oxidative shielding ID HIGHVELD MOLE-RAT; HOTTENTOTUS-PRETORIAE RODENTIA; OXIDATIVE STRESS; CRYPTOMYS-HOTTENTOTUS; LIPID-PEROXIDATION; EXOGENOUS GNRH; SEX-HORMONES; OXYGEN; EVOLUTION; BIOLOGY AB Biological investments, such as reproduction, are influenced by both biotic and abiotic factors and their interactions. The trade-off between reproduction and survival has been well established. Seasonally breeding species, therefore, may exhibit variations in these trade-offs, but there is a dearth of knowledge concerning this. This study investigated the physiological cost of reproduction (measured through oxidative stress) across seasons in the cooperatively breeding highveld mole-rat (Cryptomys hottentotus pretoriae), one of the few seasonal breeding mole-rats. Oxidative stress indicates elevated reactive oxygen species (ROS) levels, which can overwhelm antioxidant defences resulting in damaged proteins, lipids and DNA, which overall can reduce longevity and compromise reproduction. Oxidative markers such as total oxidant status (TOS-measure of total peroxides present), total antioxidant capacity (TAC), oxidative stress index (OSI), and malondialdehyde (MDA) are utilised to measure oxidative stress. In this study, breeding and non-breeding male (NBM) and female mole-rats were captured during the dry season (breeding period) and wet season (non-breeding period). There was an apparent cost of reproduction in the highveld mole-rat; however, the seasonality pattern to the cost of reproduction varied between the sexes. Breeding females (BFs) had significantly higher MDA during the breeding period/dry season in comparison to the non-breeding period/wet season; this is possibly a consequence of bearing and nursing offspring. Contrastingly, breeding males (BMs) showed increased oxidative damage in the non-breeding/wet season compared to the breeding/dry season, possibly due to increased activities of protecting their mating rights for the next breeding/dry season, but this was not significant. Interestingly, during the non-breeding period/wet season, non-breeding females (NBFs) are released from their reproductive suppression, which resulted in increases in TOS and OSI, which again indicated that just the mere ability to be able to breed results in a cost (oxidative stress). Therefore we can speculate that highveld mole-rats exhibited seasonal variation in redox balance brought about by variation in abiotic variables (e.g., rainfall), physiology and behaviour. We conclude that physiological changes associated with reproduction are sufficient to induce significant acute oxidative stress in the plasma of female highveld mole-rats, which become alleviated following transition to the non-breeding season/wet period suggesting a possible hormetic effect. C1 [Jacobs, Paul Juan; Hart, Daniel William; Suess, Tobias; Janse van Vuuren, Andries Koch; Bennett, Nigel Charles] Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, Pretoria, South Africa. C3 University of Pretoria RP Jacobs, PJ (corresponding author), Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, Pretoria, South Africa. EM pauljuanjacobs@gmail.com OI Jacobs, PJ/0000-0002-2601-5337 FU SARChI chair of Mammalian Behavioural Ecology and Physiology from the DST-NRF South Africa; National Research Foundation [64756]; University of Pretoria FX NB acknowledges funding from the SARChI chair of Mammalian Behavioural Ecology and Physiology from the DST-NRF South Africa, the National Research Foundation (Grant No. 64756), and the University of Pretoria. CR Acker T, 2006, CARDIOVASC RES, V71, P195, DOI 10.1016/j.cardiores.2006.04.008 Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x Alonso-Alvarez C, 2017, BIOSCIENCE, V67, P258, DOI 10.1093/biosci/biw176 Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395 Arguelles S, 2004, BBA-GEN SUBJECTS, V1674, P251, DOI 10.1016/j.bbagen.2004.06.023 Barker AJ, 2021, SCIENCE, V371, P503, DOI 10.1126/science.abc6588 Bates D, 2015, J STAT SOFTW, V67, P1, DOI 10.18637/jss.v067.i01 Belhocine M, 2007, HISTOL HISTOPATHOL, V22, P603, DOI 10.14670/HH-22.603 Bennett NC, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2018.0150 Bennett N.C., 2000, AFRICAN MOLE RATS EC Bennett NC, 1996, P ROY SOC B-BIOL SCI, V263, P1599, DOI 10.1098/rspb.1996.0234 Bennett NC, 1997, P ROY SOC B-BIOL SCI, V264, P1001, DOI 10.1098/rspb.1997.0138 BENNETT NC, 1989, J ZOOL, V219, P45, DOI 10.1111/j.1469-7998.1989.tb02564.x Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x Bhat S, 2008, INDIAN J CLIN BIOCHE, V23, P191, DOI 10.1007/s12291-008-0042-2 Birben E, 2012, WORLD ALLERGY ORGAN, V5, P9, DOI 10.1097/WOX.0b013e3182439613 Bitiren M, 2010, BIOL TRACE ELEM RES, V136, P87, DOI 10.1007/s12011-009-8518-3 Blecher AS, 2020, GEN COMP ENDOCR, V295, DOI 10.1016/j.ygcen.2020.113520 Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179 Bonda-Ostaszewska E, 2012, ACTA THERIOL, V57, P289, DOI 10.1007/s13364-012-0083-z Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X Bronson FH, 2009, PHILOS T R SOC B, V364, P3331, DOI 10.1098/rstb.2009.0140 BRONSON FH, 1985, BIOL REPROD, V32, P1, DOI 10.1095/biolreprod32.1.1 Bronson FH, 1989, MAMMALIAN REPROD BIO Brooks RC, 2017, ANN NY ACAD SCI, V1389, P92, DOI 10.1111/nyas.13302 Brzek P, 2014, J EXP BIOL, V217, P1504, DOI 10.1242/jeb.100073 BURDA H, 1990, EXPERIENTIA, V46, P528, DOI 10.1007/BF01954256 Burg MB, 2007, PHYSIOL REV, V87, P1441, DOI 10.1152/physrev.00056.2006 Burland TM, 2004, MOL ECOL, V13, P2371, DOI 10.1111/j.1365-294X.2004.02233.x Busch C, 2000, LIFE UNDERGROUND, P183 Chainy GBN, 2016, SCIENTIFICA, V2016, DOI 10.1155/2016/6126570 Christensen LL, 2015, ECOL EVOL, V5, P5096, DOI 10.1002/ece3.1771 CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0 Costantini D., 2014, OXIDATIVE STRESS HOR, P348, DOI DOI 10.1007/978-3-642-54663-1 Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x Costantini D, 2019, J EXP BIOL, V222, DOI 10.1242/jeb.194688 Costantini D, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00010 Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 Erel O, 2004, CLIN BIOCHEM, V37, P112, DOI 10.1016/j.clinbiochem.2003.10.014 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014 Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818 Giordano FJ, 2005, J CLIN INVEST, V115, P500, DOI 10.1172/JCI200524408 Giudici A, 2010, J EXP MAR BIOL ECOL, V389, P13, DOI 10.1016/j.jembe.2010.04.002 GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0 HALLIWELL B, 1993, AM J CLIN NUTR, V57, P715 Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008 Hart DW, 2021, CAN J ZOOL, V99, P801, DOI 10.1139/cjz-2020-0158 Heinsohn R, 1999, TRENDS ECOL EVOL, V14, P53, DOI 10.1016/S0169-5347(98)01545-6 Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840 HICKMAN GC, 1979, S AFR J ZOOL, V14, P9 Huh K, 1994, Arch Pharm Res, V17, P109, DOI 10.1007/BF02974233 Itagaki T, 2005, GUT, V54, P1782, DOI 10.1136/gut.2005.053278 Ivy CM, 2020, ACTA PHYSIOL, V228, DOI 10.1111/apha.13436 Jacobs PJ, 2021, J THERM BIOL, V98, DOI 10.1016/j.jtherbio.2021.102958 Jacobs PJ, 2021, BEHAV PROCESS, V185, DOI 10.1016/j.beproc.2021.104346 Jacobs PJ, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242279 Jacobs PJ, 2021, FRONT ZOOL, V18, DOI 10.1186/s12983-021-00430-z JARVIS JUM, 1993, BEHAV ECOL SOCIOBIOL, V33, P253, DOI 10.1007/BF02027122 JARVIS JUM, 1994, TRENDS ECOL EVOL, V9, P47, DOI 10.1016/0169-5347(94)90267-4 Khokhlova IS, 2000, PHYSIOL BIOCHEM ZOOL, V73, P257, DOI 10.1086/316745 Kireev RA, 2007, BIOGERONTOLOGY, V8, P469, DOI 10.1007/s10522-007-9089-3 Lemaitre JF, 2017, BIOL REV, V92, P2182, DOI 10.1111/brv.12328 Lenth R.V., 2022, EMMEANS ESTIMATED MA Lukas D, 2012, P ROY SOC B-BIOL SCI, V279, P2151, DOI 10.1098/rspb.2011.2468 Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4 Lutermann H, 2013, GEN COMP ENDOCR, V187, P60, DOI 10.1016/j.ygcen.2013.03.026 Malherbe GP, 2003, AFR ZOOL, V38, P161 Margaritelis NV, 2015, BIOMARKERS, V20, P97, DOI 10.3109/1354750X.2014.1002807 McGowan NE, 2020, J THERM BIOL, V88, DOI 10.1016/j.jtherbio.2019.102495 Medger K, 2019, SCI NAT-HEIDELBERG, V106, DOI 10.1007/s00114-019-1621-1 Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015 Miller AA, 2007, CLIN EXP PHARMACOL P, V34, P1037, DOI 10.1111/j.1440-1681.2007.04732.x Molteno AJ, 2002, J ZOOL, V256, P445, DOI 10.1017/S0952836902000481 Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x Munoz Sabater J, 2019, ERA5 LAND MONTHLY AV, DOI [10.24381/cds.68d2bb30?tab=overview, DOI 10.24381/CDS.68D2BB30?TAB=OVERVIEW] National Research Council, 2010, GUIDE CARE USE LAB A, V8th Edn. Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x Oldakowski L, 2015, J EXP BIOL, V218, P3901, DOI 10.1242/jeb.126557 Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452 Oliveira MF, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00945 R Foundation for Statistical Computing, 2019, R FDN STAT COMPUTING Romero-Haro AA, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0842 Sainz RM, 2000, J REPROD FERTIL, V119, P143, DOI 10.1530/reprod/119.1.143 Scantlebury M, 2006, P ROY SOC B-BIOL SCI, V273, P57, DOI 10.1098/rspb.2005.3280 Schmidt CM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103286 Schmidt CM, 2013, AFR ZOOL, V48, P193 Schradin C, 2006, BEHAV ECOL, V17, P452, DOI 10.1093/beheco/arj047 Sharick JT, 2015, FUNCT ECOL, V29, P367, DOI 10.1111/1365-2435.12330 Sies H, 1997, EXP PHYSIOL, V82, P291, DOI 10.1113/expphysiol.1997.sp004024 Skinner JD., 2005, MAMMALS SO AFRICAN S, DOI [10.1017/CBO9781107340992, DOI 10.1017/CBO9781107340992] Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145 Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790 Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108 Spinks AC, 1997, J REPROD FERTIL, V109, P79 Spinks AC, 1999, J ZOOL, V248, P161, DOI 10.1017/S0952836999006032 Spinks AC, 2000, J ANIM ECOL, V69, P224, DOI 10.1046/j.1365-2656.2000.00388.x Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37 Dantas MRT, 2021, ANIM REPROD, V18, DOI [10.1590/1984-3143-AR2020-0213, 10.1590/1984-3143-ar2020-0213] Tomac J, 2011, PERIOD BIOL, V113, P43 Turpaev KT, 2002, BIOCHEMISTRY-MOSCOW+, V67, P281, DOI 10.1023/A:1014819832003 Vaanholt LM, 2016, PHYSIOL BEHAV, V154, P1, DOI 10.1016/j.physbeh.2015.11.009 van de Crommenacker J, 2011, J ANIM ECOL, V80, P668, DOI 10.1111/j.1365-2656.2010.01792.x van der Walt L, 2001, J ZOOL, V254, P177, DOI 10.1017/S0952836901000681 van Rensburg LJ, 2003, J ZOOL, V260, P73, DOI 10.1017/S0952836903003443 van Rensburg LJ, 2002, CAN J ZOOL, V80, P810, DOI 10.1139/Z02-051 Varpe O, 2017, INTEGR COMP BIOL, V57, P943, DOI 10.1093/icb/icx123 Veskoukis AS, 2009, FREE RADICAL BIO MED, V47, P1371, DOI 10.1016/j.freeradbiomed.2009.07.014 Viblanc VA, 2018, FUNCT ECOL, V32, P722, DOI 10.1111/1365-2435.13032 Vitikainen EIK, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00058 Wallace KME, 2021, J THERM BIOL, V99, DOI 10.1016/j.jtherbio.2021.103025 WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 Withers PC, 2016, ECOL ENVIRON PHYSIOL, V5, P1, DOI 10.1093/acprof:oso/9780199642717.001.0001 Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168 Yang YH, 2013, INT REV IMMUNOL, V32, P249, DOI 10.3109/08830185.2012.755176 Young AJ, 2010, HORM BEHAV, V57, P177, DOI 10.1016/j.yhbeh.2009.10.011 Yuan XH, 2016, J STEROID BIOCHEM, V155, P104, DOI 10.1016/j.jsbmb.2015.09.029 NR 119 TC 2 Z9 2 U1 1 U2 7 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-042X J9 FRONT PHYSIOL JI Front. Physiol. PD NOV 19 PY 2021 VL 12 AR 780490 DI 10.3389/fphys.2021.780490 PG 13 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA YF4ZU UT WOS:000741817400001 PM 34867486 OA gold, Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Bhatia, TN Calabrese, V Dhawan, G Giordano, J Hanekamp, YN Kapoor, R Kozumbo, WJ Leak, RK AF Calabrese, Edward J. Bhatia, Tarun N. Calabrese, Vittorio Dhawan, Gaurav Giordano, James Hanekamp, Yannic N. Kapoor, Rachna Kozumbo, Walter J. Leak, Rehana K. TI Cytotoxicity models of Huntington's disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Huntington's disease; Animal models; Chemoprevention; Dose response; Hormesis; Preconditioning ID ACID-INDUCED NEUROTOXICITY; INDUCED OXIDATIVE STRESS; INDUCED BEHAVIORAL ALTERATIONS; INDUCED COGNITIVE DYSFUNCTION; TRANSGENIC MOUSE MODELS; TRANSCRANIAL MAGNETIC STIMULATION; FOCAL CEREBRAL-ISCHEMIA; 3-NITROPROPIONIC ACID; RAT MODEL; QUINOLINIC ACID AB This paper assesses in vivo cytotoxicity models of Huntington's disease (HD). Nearly 150 agents were found to be moderately to highly effective in mitigating the pathological sequelae of cytotoxic induction of HD features in multiple rodent models. Typically, rodents are treated with a prospective HD-protective agent before, during, or after the application of a chemical or transgenic process for inducing histopathological and behavioral symptoms of HD. Although transgenic and knockout rodent models (1) display relatively high construct and face validity, and (2) are ever more routinely employed to mimic genetic-to-phenotypic expression of HD features, toxicant models are also often employed, and have served as valuable test beds for the elucidation of biochemical processes and discovery of therapeutic targets in HD. Literature searches of the toxicant HD rodent models yielded nearly 150 agents that were moderately to highly effective in mitigating pathological sequelae in multiple mouse and rat HD models. Experimental models, study designs, and exposure protocols (e.g., pre- and post-conditioning) used in testing these agents were assessed, including dosing strategies, endpoints, and dose-response features. Hormetic-like biphasic dose responses, chemoprotective mechanisms, and the translational relevance of the preclinical studies and their therapeutic implications are critically analyzed in the present report. Notably, not one of the 150 agents that successfully delayed onset and progression of HD in the experimental models has been successfully translated to the treatment of humans in a clinical setting. Potential reasons for these translational failures are (1) the inadequacy of dose-response analyses and subsequent lack of useful dosing data; (2) effective rodent doses that are too high for safe human application; (3) key differences between the experimental models and humans in pharmacokinetic/pharmacodynamic features, ages and routes of agent administration; (4) lack of robust pharmacokinetic, mechanistic or systematic approaches to probe novel treatment strategies; and (5) inadequacies of the chemically induced HD model in rats to mimic accurately the complex genetic and developmental origin and progression of HD in humans. These deficiencies need to be urgently addressed if pharmaceutical agents for the treatment of HD are going to be successfully developed in experimental models and translated with fidelity to the clinic. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. [Bhatia, Tarun N.; Leak, Rehana K.] Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15219 USA. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Viale Andrea Doria 6, I-95125 Catania, Italy. [Dhawan, Gaurav] Univ Massachusetts, Mass Venture Ctr, Human Res Protect Off, Res Compliance, Hadley, MA USA. [Giordano, James] Georgetown Univ, Med Ctr, Dept Neurol, 4000 Reservoir Rd, Washington, DC 20007 USA. [Giordano, James] Georgetown Univ, Med Ctr, Dept Biochem, 4000 Reservoir Rd, Washington, DC 20007 USA. [Hanekamp, Yannic N.] Univ Groningen, Mol Med, UMCG, Groningen, Netherlands. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD USA. C3 University of Massachusetts System; University of Massachusetts Amherst; Duquesne University; University of Catania; University of Massachusetts System; Georgetown University; Georgetown University; University of Groningen; Saint Francis Hospital & Medical Center RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; bhatiat@duq.edu; calabres@unict.it; gdhawan@umass.edu; james.giordano@georgetown.edu; y.n.hanekamp@gmail.com; Rachna.kapoor@stfranciscare.org; kozumbo@gmail.com; leakr@duq.edu RI Kapoor, Rachna/AAP-1186-2020; Bhatia, Tarun/K-5594-2019; Leak, Rehana K./I-2607-2019; Calabrese, Vittorio/AAC-8157-2021; Dhawan, Gaurav/I-7098-2019 OI Kapoor, Rachna/0000-0003-0538-5440; Bhatia, Tarun/0000-0002-3046-6659; Leak, Rehana K./0000-0003-2817-7417; Calabrese, Vittorio/0000-0002-0478-985X; Dhawan, Gaurav/0000-0003-0511-7323; Hanekamp, Yannic/0000-0003-3576-0985 FU U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, " [UL1TR001409] FX EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (< GN2 > S18200000000256 < GN3 >). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. JG is supported by federal funds UL1TR001409 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise". The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Ahmad M, 2005, J NEUROCHEM, V93, P94, DOI 10.1111/j.1471-4159.2005.03000.x Ahmed LA, 2016, MOL NEUROBIOL, V53, P3927, DOI 10.1007/s12035-015-9303-2 Ahuja M, 2008, TOXICOLOGY, V244, P111, DOI 10.1016/j.tox.2007.11.003 Akula KK, 2008, EUR J PHARMACOL, V587, P129, DOI 10.1016/j.ejphar.2008.03.038 Al Mutairy A, 2010, NEUROTOXICOL TERATOL, V32, P226, DOI 10.1016/j.ntt.2009.09.003 Alexi T, 2000, PROG NEUROBIOL, V60, P409, DOI 10.1016/S0301-0082(99)00032-5 Alfaras I, 2016, CIRC RES, V118, P1626, DOI 10.1161/CIRCRESAHA.116.307475 Andreassen OA, 2001, NEUROBIOL DIS, V8, P479, DOI 10.1006/nbdi.2001.0406 Andreassen OA, 2001, NEUROREPORT, V12, P3371, DOI 10.1097/00001756-200110290-00044 Andreassen OA, 2001, ANN NEUROL, V50, P112, DOI 10.1002/ana.1085 Aragno M, 2000, BIOCHEM PHARMACOL, V60, P389, DOI 10.1016/S0006-2952(00)00327-0 Bagheri M, 2011, NEUROBIOL LEARN MEM, V95, P270, DOI 10.1016/j.nlm.2010.12.001 Barger JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002264 Basgut B, 2008, ARCH PHARM RES, V31, P1257, DOI 10.1007/s12272-001-2104-3 Beal MF, 2003, BIOFACTORS, V18, P153 Borlongan CV, 1999, CELL TRANSPLANT, V8, P153, DOI 10.1177/096368979900800107 Borlongan CV, 2002, BRAIN RES, V956, P211, DOI 10.1016/S0006-8993(02)03474-1 Borlongan CV, 2000, NEUROSCI LETT, V279, P73, DOI 10.1016/S0304-3940(99)00962-3 Borlongan CV, 1996, SURG NEUROL, V46, P384, DOI 10.1016/S0090-3019(96)00190-5 Bortolatto CF, 2013, NEUROTOX RES, V23, P214, DOI 10.1007/s12640-012-9336-5 Brandhorst S, 2015, CELL METAB, V22, P86, DOI 10.1016/j.cmet.2015.05.012 BROUILLET E, 1993, J NEUROCHEM, V60, P356, DOI 10.1111/j.1471-4159.1993.tb05859.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Carta AR, 2011, NEUROSCIENCE, V194, P250, DOI 10.1016/j.neuroscience.2011.07.046 Cetkovic GS, 2004, FOOD RES INT, V37, P643, DOI 10.1016/j.foodres.2004.01.010 Chakraborty J, 2014, BEHAV BRAIN RES, V264, P91, DOI 10.1016/j.bbr.2014.01.048 Chandran R., 2018, J CEREB BLOOD FLOW M, V38, P1212 Chapple SJ, 2012, INT J BIOCHEM CELL B, V44, P1315, DOI 10.1016/j.biocel.2012.04.021 Chillemi R, 2015, EUR J MED CHEM, V96, P467, DOI 10.1016/j.ejmech.2015.04.038 Colle D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067658 Colle D, 2013, MITOCHONDRION, V13, P125, DOI 10.1016/j.mito.2013.01.005 Colle D, 2012, BRAIN RES BULL, V87, P397, DOI 10.1016/j.brainresbull.2012.01.003 Corona G, 2007, BIOCHEM BIOPH RES CO, V362, P606, DOI 10.1016/j.bbrc.2007.08.049 Cutler RG, 2015, APPROACH AGING CONTR, P63 Dai DF, 2009, CIRCULATION, V119, P2789, DOI 10.1161/CIRCULATIONAHA.108.822403 Danduga RCSR, 2018, BIOMED PHARMACOTHER, V105, P1254, DOI 10.1016/j.biopha.2018.06.079 Davies JE, 2006, HUM MOL GENET, V15, P23, DOI 10.1093/hmg/ddi422 de Lago E, 2005, BRAIN RES, V1050, P210, DOI 10.1016/j.brainres.2005.05.024 Deckel AW, 2000, BRAIN RES, V875, P187, DOI 10.1016/S0006-8993(00)02640-8 Dedeoglu A, 2002, J NEUROSCI, V22, P8942 DeMarch Z, 2008, NEUROBIOL DIS, V30, P375, DOI 10.1016/j.nbd.2008.02.010 DeMarch Z, 2007, NEUROBIOL DIS, V25, P266, DOI 10.1016/j.nbd.2006.09.006 Devagi G, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-25984-7 Dhadde SB, 2016, BIOMED PHARMACOTHER, V77, P52, DOI 10.1016/j.biopha.2015.11.009 Dhir A, 2005, ADDICT BIOL, V10, P329, DOI 10.1080/13556210500352964 Diaz-Alonso J, 2016, SCI REP-UK, V6, DOI 10.1038/srep29789 Diguet E, 2004, EUR J NEUROSCI, V19, P3266, DOI 10.1111/j.0953-816X.2004.03372.x Duan WZ, 2008, NEUROBIOL DIS, V30, P312, DOI 10.1016/j.nbd.2008.01.015 Duan WZ, 2004, ANN NEUROL, V55, P590, DOI 10.1002/ana.20075 Duan WZ, 2003, P NATL ACAD SCI USA, V100, P2911, DOI 10.1073/pnas.0536856100 Dunah AW, 2002, SCIENCE, V296, P2238, DOI 10.1126/science.1072613 DUYAO M, 1993, NAT GENET, V4, P387, DOI 10.1038/ng0893-387 Ellrichmann G, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04990-1 Ellrichmann G, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016172 Endo J, 2016, J CARDIOL, V67, P22, DOI 10.1016/j.jjcc.2015.08.002 Fatehi-Hassanabad Z, 2011, NEUROTOX RES, V19, P462, DOI 10.1007/s12640-010-9201-3 Fatoba O, 2018, EXP NEUROL, V302, P112, DOI 10.1016/j.expneurol.2018.01.001 Ferrante RJ, 2000, J NEUROSCI, V20, P4389, DOI 10.1523/JNEUROSCI.20-12-04389.2000 Ferrante RJ, 2002, J NEUROSCI, V22, P1592, DOI 10.1523/JNEUROSCI.22-05-01592.2002 Ferrante RJ, 2004, J NEUROSCI, V24, P10335, DOI 10.1523/JNEUROSCI.2599-04.2004 Ferrante RJ, 2003, J NEUROSCI, V23, P9418 Gao Y, 2015, ACTA PHARMACOL SIN, V36, P311, DOI 10.1038/aps.2014.107 Garcia-Miralles M, 2016, SCI REP-UK, V6, DOI 10.1038/srep31652 Gardian G, 2005, J BIOL CHEM, V280, P556, DOI 10.1074/jbc.M410210200 Gopinath K, 2011, NEUROCHEM INT, V59, P1066, DOI 10.1016/j.neuint.2011.08.022 Grover S, 2013, PHARMACOL BIOCHEM BE, V111, P17, DOI 10.1016/j.pbb.2013.08.001 Gupta S, 2014, PHARMACOL BIOCHEM BE, V122, P122, DOI 10.1016/j.pbb.2014.03.022 Guyot MC, 1997, NEUROSCIENCE, V81, P141, DOI 10.1016/S0306-4522(97)00192-9 Hanna DMF, 2015, PROG NEURO-PSYCHOPH, V60, P36, DOI 10.1016/j.pnpbp.2015.02.005 Hanus L, 1999, P NATL ACAD SCI USA, V96, P14228, DOI 10.1073/pnas.96.25.14228 Hashimoto M, 2018, J HUNTINGTONS DIS, V7, P297, DOI 10.3233/JHD-180309 Herrera-Mundo MN, 2006, NEUROSCI RES, V56, P39, DOI 10.1016/j.neures.2006.04.018 Hillard CJ, 1999, J PHARMACOL EXP THER, V289, P1427 Ho DJ, 2010, EXP NEUROL, V225, P74, DOI 10.1016/j.expneurol.2010.05.006 Hoshi A, 2005, BRAIN RES, V1050, P33, DOI 10.1016/j.brainres.2005.05.028 Hussain T, 2005, INT J CANCER, V113, P660, DOI 10.1002/ijc.20629 Jadiswami C, 2014, TOXICOL MECH METHOD, V24, P672, DOI 10.3109/15376516.2014.961216 Jamwal S, 2016, PHYSIOL BEHAV, V155, P180, DOI 10.1016/j.physbeh.2015.12.015 Jang M, 2014, BRAIN BEHAV IMMUN, V38, P151, DOI 10.1016/j.bbi.2014.01.015 Jang M, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/237207 Jin J, 2013, J NEUROCHEM, V125, P410, DOI 10.1111/jnc.12190 Joseph KMD, 2014, APPL PHYSIOL NUTR ME, V39, P487, DOI 10.1139/apnm-2013-0262 Joseph KMD, 2013, PROG NEURO-PSYCHOPH, V40, P83, DOI 10.1016/j.pnpbp.2012.08.018 Kalonia H, 2010, EUR J PHARMACOL, V634, P46, DOI 10.1016/j.ejphar.2010.02.031 Kaur G, 2006, TOXICOLOGY, V226, P152, DOI 10.1016/j.tox.2006.06.018 Kaur N, 2015, TOXICOL REP, V2, P1222, DOI 10.1016/j.toxrep.2015.08.004 Keene CD, 2002, P NATL ACAD SCI USA, V99, P10671, DOI 10.1073/pnas.162362299 Khan A, 2015, NEUROSCIENCE, V287, P66, DOI 10.1016/j.neuroscience.2014.12.018 Kim JH, 2005, NEUROPHARMACOLOGY, V48, P743, DOI 10.1016/j.neuropharm.2004.12.013 Kim MS, 2004, PHYTOTHER RES, V18, P663, DOI 10.1002/ptr.1486 Kjaer MA, 2008, LIPIDS, V43, P813, DOI 10.1007/s11745-008-3208-z Kuhad A, 2008, LIFE SCI, V83, P128, DOI 10.1016/j.lfs.2008.05.013 Kumar A, 2016, J HUNTINGTONS DIS, V5, P217, DOI 10.3233/JHD-160205 Kumar A, 2008, INDIAN J EXP BIOL, V46, P159 Kumar P, 2007, FUND CLIN PHARMACOL, V21, P297, DOI 10.1111/j.1472-8206.2007.00485.x Kumar P, 2007, METHOD FIND EXP CLIN, V29, P19, DOI 10.1358/mf.2007.29.1.1063492 Kumar P, 2012, EUR J PHARMACOL, V674, P265, DOI 10.1016/j.ejphar.2011.11.030 Kumar P, 2011, J PSYCHOPHARMACOL, V25, P1399, DOI 10.1177/0269881110364269 Kumar P, 2011, BRIT J PHARMACOL, V164, P644, DOI 10.1111/j.1476-5381.2011.01418.x Kumar P, 2010, DRUG CHEM TOXICOL, V33, P377, DOI 10.3109/01480541003642050 Kumar P, 2010, BASIC CLIN PHARMACOL, V107, P577, DOI 10.1111/j.1742-7843.2010.00537.x Kumar P, 2010, INT J TOXICOL, V29, P318, DOI 10.1177/1091581810365568 Kumar P, 2010, BEHAV BRAIN RES, V206, P38, DOI 10.1016/j.bbr.2009.08.028 Kumar P, 2009, LIFE SCI, V85, P711, DOI 10.1016/j.lfs.2009.10.001 Kumar P, 2009, INDIAN J EXP BIOL, V47, P715 Kumar P, 2009, FOOD CHEM TOXICOL, V47, P2522, DOI 10.1016/j.fct.2009.07.011 Kumar P, 2009, EUR J PHARMACOL, V615, P91, DOI 10.1016/j.ejphar.2009.04.058 Kumar P, 2009, NEUROSCI RES, V63, P302, DOI 10.1016/j.neures.2009.01.005 Kumar P, 2009, PROG NEURO-PSYCHOPH, V33, P100, DOI 10.1016/j.pnpbp.2008.10.013 Kumar P, 2008, PHARMACOL REP, V60, P706 Kumar P, 2009, J MED FOOD, V12, P591, DOI 10.1089/jmf.2008.0028 Kumar P, 2009, J ASIAN NAT PROD RES, V11, P439, DOI 10.1080/10286020902862194 Kuroiwa T, 2000, NEUROSCI LETT, V283, P145, DOI 10.1016/S0304-3940(00)00937-X La Fontaine MA, 2000, J NEUROCHEM, V75, P1709 Lagoa R, 2009, J NEUROCHEM, V111, P473, DOI 10.1111/j.1471-4159.2009.06331.x Lastres-Becker I, 2003, J NEUROCHEM, V84, P1097, DOI 10.1046/j.1471-4159.2003.01595.x Lastres-Becker I, 2004, NEUROREPORT, V15, P2375, DOI 10.1097/00001756-200410250-00015 Lastres-Becker I, 2002, SYNAPSE, V44, P23, DOI 10.1002/syn.10054 Leak Rehana K, 2018, Cond Med, V1, P143 Leventhal L, 2000, J COMP NEUROL, V425, P471, DOI 10.1002/1096-9861(20001002)425:4<471::AID-CNE1>3.0.CO;2-U Lian XY, 2005, ANN NEUROL, V57, P642, DOI 10.1002/ana.20450 Liang YC, 1999, CARCINOGENESIS, V20, P1945, DOI 10.1093/carcin/20.10.1945 Liu AYC, 2011, J BIOL CHEM, V286, P2785, DOI 10.1074/jbc.M110.158220 Mahdy HM, 2014, CAN J PHYSIOL PHARM, V92, P252, DOI 10.1139/cjpp-2013-0398 Maher P, 2011, HUM MOL GENET, V20, P261, DOI 10.1093/hmg/ddq460 Malfa GA, 2014, J NEUROSCI RES, V92, P95, DOI 10.1002/jnr.23290 Malik J, 2015, PHARM BIOL, V53, P1448, DOI 10.3109/13880209.2014.984856 Mandy HM, 2011, NEUROCHEM INT, V59, P770, DOI 10.1016/j.neuint.2011.07.012 Mangiarini L, 1996, CELL, V87, P493, DOI 10.1016/S0092-8674(00)81369-0 Maragos WF, 1999, BRAIN RES, V834, P168, DOI 10.1016/S0006-8993(99)01487-0 Martel JC, 1998, EXP NEUROL, V154, P595, DOI 10.1006/exnr.1998.6942 Masuda N, 2008, NEUROBIOL DIS, V30, P293, DOI 10.1016/j.nbd.2008.01.014 Matthews RT, 1998, J NEUROSCI, V18, P156 Maya-Lopez M, 2017, AM J TRANSL RES, V9, P261 Mehrotra A, 2015, MOL CELL BIOCHEM, V410, P281, DOI 10.1007/s11010-015-2561-5 Menze ET, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117223 Menze ET, 2012, NEUROTOXICOLOGY, V33, P1265, DOI 10.1016/j.neuro.2012.07.007 Montilla P, 2004, EUR J PHARMACOL, V488, P19, DOI 10.1016/j.ejphar.2004.02.004 Morales-Martinez A, 2017, NUTR NEUROSCI, V20, P388, DOI 10.1080/1028415X.2016.1147683 Moreno CL, 2016, NEUROBIOL DIS, V85, P25, DOI 10.1016/j.nbd.2015.09.012 Murphy MP, 2007, ANNU REV PHARMACOL, V47, P629, DOI 10.1146/annurev.pharmtox.47.120505.105110 Nam E, 2005, BRAIN RES, V1046, P90, DOI 10.1016/j.brainres.2005.03.053 Nguyen T, 2005, P NATL ACAD SCI USA, V102, P11840, DOI 10.1073/pnas.0502177102 Noda Y, 2015, PHARMACOL RES PERSPE, V3, DOI 10.1002/prp2.140 Oomen CA, 2009, FRONT AGING NEUROSCI, V1, DOI 10.3389/neuro.24.004.2009 Padi S.S.V., 2004, PHARM BIOCH BEHAV, V79, P249 Padi SSV, 2002, NEPHRON, V92, P685, DOI 10.1159/000064095 Pan HP, 2008, YAKUGAKU ZASSHI, V128, P1689, DOI 10.1248/yakushi.128.1689 Park JE, 2008, NEUROSCI LETT, V448, P143, DOI 10.1016/j.neulet.2008.10.020 Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105 Peng Q, 2008, EXP NEUROL, V210, P154, DOI 10.1016/j.expneurol.2007.10.015 Perez-De La Cruz V, 2006, BRAIN RES BULL, V68, P379, DOI 10.1016/j.brainresbull.2005.09.013 Perez-Severiano F, 2004, NEUROCHEM INT, V45, P1175, DOI 10.1016/j.neuint.2004.06.008 Perluigi M, 2005, MOL CELL PROTEOMICS, V4, P1849, DOI 10.1074/mcp.M500090-MCP200 Pintor A, 2006, NEUROPHARMACOLOGY, V51, P1004, DOI 10.1016/j.neuropharm.2006.06.013 Popovic N, 2002, ANN NEUROL, V51, P215, DOI 10.1002/ana.10092 Pouladi MA, 2012, NEUROBIOL DIS, V48, P282, DOI 10.1016/j.nbd.2012.06.026 Pubill D, 2001, BRIT J PHARMACOL, V132, P693, DOI 10.1038/sj.bjp.0703869 Puerta E, 2010, NEUROBIOL DIS, V38, P237, DOI 10.1016/j.nbd.2010.01.013 Raefsky SM, 2017, FREE RADICAL BIO MED, V102, P203, DOI 10.1016/j.freeradbiomed.2016.11.045 Rahman MM, 2013, AGING CELL, V12, P554, DOI 10.1111/acel.12078 Ramachandran S, 2016, CHEM-BIOL INTERACT, V256, P25, DOI 10.1016/j.cbi.2016.05.020 Riepe MW, 1997, MOL CELL BIOCHEM, V174, P249, DOI 10.1023/A:1006820927262 Riepe MW, 1996, EXP NEUROL, V138, P15, DOI 10.1006/exnr.1996.0042 Ryu JK, 2006, NEUROSCIENCE, V141, P1835, DOI 10.1016/j.neuroscience.2006.05.043 Ryu JK, 2003, EXP NEUROL, V183, P700, DOI 10.1016/S0014-4886(03)00214-0 Sagredo O, 2007, EUR J NEUROSCI, V26, P843, DOI 10.1111/j.1460-9568.2007.05717.x Sagredo O, 2011, J NEUROSCI RES, V89, P1509, DOI 10.1002/jnr.22682 Sagredo O, 2009, GLIA, V57, P1154, DOI 10.1002/glia.20838 Sandhir R, 2015, SYNAPSE, V69, P128, DOI 10.1002/syn.21793 Sandhir R, 2013, BBA-MOL BASIS DIS, V1832, P421, DOI 10.1016/j.bbadis.2012.11.018 Sandhir R, 2012, NEURODEGENER DIS, V9, P145, DOI 10.1159/000334273 Sandhir R, 2010, NEUROCHEM INT, V57, P579, DOI 10.1016/j.neuint.2010.07.005 Santamaria A, 2003, FREE RADICAL BIO MED, V35, P418, DOI 10.1016/S0891-5849(03)00317-4 Saydoff JA, 2003, BRAIN RES, V994, P44, DOI 10.1016/j.brainres.2003.09.049 Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653 Schulz JB, 1996, NEUROSCIENCE, V71, P1043, DOI 10.1016/0306-4522(95)00527-7 Schwarz C, 2018, AGING-US, V10, P19, DOI 10.18632/aging.101354 Senatorov VV, 2004, MOL PSYCHIATR, V9, P371, DOI 10.1038/sj.mp.4001463 Shear DA, 2000, NEUROREPORT, V11, P1833, DOI 10.1097/00001756-200006260-00007 Shetty S, 2015, ANN NEUROSCI, V22, P11, DOI 10.5214/ans.0972.7531.220104 Shivasharan BD, 2013, DRUG CHEM TOXICOL, V36, P466, DOI 10.3109/01480545.2013.776583 Silva-Palacios A, 2017, EXP GERONTOL, V96, P89, DOI 10.1016/j.exger.2017.06.009 Singh A, 2003, EUR J PHARMACOL, V477, P87, DOI 10.1016/S0014-2999(03)02124-1 Singh S, 2015, NEUROCHEM RES, V40, P1758, DOI 10.1007/s11064-015-1658-2 Smith AJ, 2008, NEUROSCI LETT, V440, P294, DOI 10.1016/j.neulet.2008.05.066 Smith DL, 2003, ANN NEUROL, V54, P186, DOI 10.1002/ana.10614 Soliman Y, 2009, NEUROCHEM RES, V34, P304, DOI 10.1007/s11064-008-9779-5 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Stephen C., 2015, NEUROLOGY, V84, P65 Subbaramaiah K, 2001, ADV EXP MED BIOL, V492, P147 Suganya SN, 2017, METAB BRAIN DIS, V32, P471, DOI 10.1007/s11011-016-9929-4 Sykiotis GP, 2008, DEV CELL, V14, P76, DOI 10.1016/j.devcel.2007.12.002 Tadros MG, 2005, PHARMACOL BIOCHEM BE, V82, P574, DOI 10.1016/j.pbb.2005.10.018 Tanaka M, 2004, NAT MED, V10, P148, DOI 10.1038/nm985 Tariq M, 2005, BRAIN RES BULL, V67, P161, DOI 10.1016/j.brainresbull.2005.06.024 Tasset I, 2012, NEUROSCIENCE, V209, P54, DOI 10.1016/j.neuroscience.2012.02.034 Tasset I, 2011, NUTR NEUROSCI, V14, P106, DOI 10.1179/1476830511Y.0000000005 Tasset I, 2011, PROG NEURO-PSYCHOPH, V35, P1944, DOI 10.1016/j.pnpbp.2011.09.005 Thakur T, 2013, EUR J PHARMACOL, V714, P515, DOI 10.1016/j.ejphar.2013.06.035 Thangarajan S, 2014, INT J NEUROSCI, V124, P673, DOI 10.3109/00207454.2013.872642 Thippeswamy BS, 2011, NEUROTOX RES, V20, P379, DOI 10.1007/s12640-011-9258-7 Tian C, 2013, NEUROTOXICOLOGY, V34, P42, DOI 10.1016/j.neuro.2012.10.008 Toth P, 2015, AGING CELL, V14, P400, DOI 10.1111/acel.12315 Toth P, 2014, AM J PHYSIOL-HEART C, V306, pH299, DOI 10.1152/ajpheart.00744.2013 Tozzi A, 2007, EXP NEUROL, V207, P218, DOI 10.1016/j.expneurol.2007.06.008 Tunez I, 2006, NEUROCHEM INT, V48, P367, DOI 10.1016/j.neuint.2005.11.011 Tunez I, 2006, J NEUROCHEM, V97, P619, DOI 10.1111/j.1471-4159.2006.03724.x Tunez I, 2004, EUR J PHARMACOL, V504, P169, DOI 10.1016/j.ejphar.2004.09.061 Tunez I, 2005, PHARMACOLOGY, V74, P113, DOI 10.1159/000084169 Tunez I, 2007, LIFE SCI, V80, P1221, DOI 10.1016/j.lfs.2006.12.013 Tunez I, 2006, NEUROSCI RES, V56, P91, DOI 10.1016/j.neures.2006.05.012 Turan NN, 2008, LIFE SCI, V82, P928, DOI 10.1016/j.lfs.2008.02.011 Upaganlawar A, 2010, J PHARMACOL PHARMACO, V1, P24, DOI 10.4103/0976-500X.64532 Valdeolivas S, 2015, NEUROTHERAPEUTICS, V12, P185, DOI 10.1007/s13311-014-0304-z Velloso NA, 2008, BRAIN RES, V1198, P107, DOI 10.1016/j.brainres.2007.12.056 Vicari RM, 2005, J AM COLL CARDIOL, V46, P1803, DOI 10.1016/j.jacc.2005.07.047 Voelkl B, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2003693 Wahdan SA, 2017, N-S ARCH PHARMACOL, V390, P905, DOI 10.1007/s00210-017-1392-1 Wang X, 2008, J NEUROSCI, V28, P9473, DOI 10.1523/JNEUROSCI.1867-08.2008 Waza M, 2005, NAT MED, V11, P1088, DOI 10.1038/nm1298 Willenberg I, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139147 Wood NI, 2003, BRAIN RES BULL, V61, P375, DOI 10.1016/S0361-9230(03)00141-2 Woodruff TM, 2006, FASEB J, V20, P1407, DOI 10.1096/fj.05-5814com Wu B, 2017, EXP NEUROL, V293, P83, DOI 10.1016/j.expneurol.2017.03.020 Wu DC, 2002, J NEUROSCI, V22, P1763, DOI 10.1523/JNEUROSCI.22-05-01763.2002 WULLNER U, 1994, J NEUROCHEM, V63, P1772 Wurbel H, 2000, NAT GENET, V26, P263, DOI 10.1038/81541 Xu CS, 2012, BRAIN RES BULL, V87, P37, DOI 10.1016/j.brainresbull.2011.10.007 Yang LC, 2009, J NEUROCHEM, V109, P1427, DOI 10.1111/j.1471-4159.2009.06074.x Yrjanheikki J, 1999, P NATL ACAD SCI USA, V96, P13496, DOI 10.1073/pnas.96.23.13496 Zhang HQ, 2015, FREE RADICAL BIO MED, V88, P314, DOI 10.1016/j.freeradbiomed.2015.05.036 Zhu S, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2010.94 NR 246 TC 9 Z9 9 U1 0 U2 9 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 J9 PHARMACOL RES JI Pharmacol. Res. PD DEC PY 2019 VL 150 AR 104371 DI 10.1016/j.phrs.2019.104371 PG 30 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA LE8UZ UT WOS:000527002800007 PM 31415915 DA 2023-03-13 ER PT J AU De Nicola, E Meric, S Della Rocca, C Gallo, M Iaccarino, M Manini, P Petruzzelli, D Belgiorno, V Cheggour, M Di Gennaro, A Moukrim, A Nay, OT Pagano, G AF De Nicola, E. Meric, S. Della Rocca, C. Gallo, M. Iaccarino, M. Manini, P. Petruzzelli, D. Belgiorno, V. Cheggour, M. Di Gennaro, A. Moukrim, A. Nay, O. Tu Pagano, G. TI Wastewater toxicity of tannin- versus chromium-based leather tanneries in Marrakesh, Morocco SO ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article ID URCHIN EARLY DEVELOPMENT; INDUSTRY EFFLUENT; SEA-URCHINS; HORMESIS; ACID; FERTILIZATION; HEALTH; IMPACT; GROWTH; CELLS AB The toxicity of leather tanning wastewater from a traditional tannery (TT), which is based on vegetable tannin (VT), was compared with wastewater from a tannery combining the use of chromium- based tanning (CT) with VT- based tanning operations. Wastewater samples from a TT and a CT plant as well as from five sewer sampling points were collected in Marrakesh, Morocco, and the concentrations of VT and some selected inorganics were measured. A set of bioassays were used to test wastewater toxicity in sea urchin (Paracentrotus lividus) embryos and sperm, in Daphnia magna, and in marine microalgae (Dunaliella tertiolecta). Toxicity end points included: (1) developmental defects, embryonic mortality, sperm fertilization success, and offspring damage in sea urchins; (2) D. magna immobilization; and (3) algal growth rate inhibition. Toxicity tests on TT and CT effluents (TTE and CTE) were run at dilutions ranging from 0.1% to 2% (sea urchins and algae) or up to 12% in D. magna. Parallel bioassays were run on VT extract (VTE) at nominal tannin concentrations ranging from 0.1 to 10 mg l - 1. The results showed higher toxicity of CTE compared with TTE. CTE toxicity in sea urchins and algae showed concentration- related trends, whereas TTE exerted hormetic effects at levels of 0.1% to 0.2% and toxic effects at levels 1%. The same trends were observed for VTE, suggesting a prevailing role of tannin in TTE-associated effects. The moderate wastewater toxicity of VT-based tanneries might prompt interest in the VT tanning process. An established body of evidence has associated the chromium-based leather tanning (CT) industry with environmental and occupational health concerns, which has been reviewed by several investigators (Losi et al. 1994; Battista et al. 1995; Chattopadhyay et al. 1999; Chandra et al. 2004; Meric, et al. 2005; Mwinyhija et al. 2006; Nath et al. 2005; Otero et al. 2005; Riva et al. 2005; Tagliari et al. 2004; Zhou et al. 2005). Unlike the CT industry, scanty information is available regarding the environmental impact of the traditional leather industry based on the use of vegetable tannin ( VT) and of a set of natural organic agents ( Anonymous 1974; De Nicola et al. 2004, 2006). Wastewater from VT- based tanneries is The toxicity of leather tanning wastewater from a traditional tannery (TT), which is based on vegetable tannin (VT), was compared with wastewater from a tannery combining the use of chromium-based tanning (CT) with VT-based tanning operations. Wastewater samples from a TT and a CT plant as well as from five sewer sampling points were collected in Marrakesh, Morocco, and the concentrations of VT and some selected inorganics were measured. A set of bioassays were used to test wastewater toxicity in sea urchin (Paracentrotus lividus) embryos and sperm, in Daphnia magna, and in marine microalgae (Dunaliella tertiolecta). Toxicity end points included: (1) developmental defects, embryonic mortality, sperm fertilization success, and offspring damage in sea urchins; (2) D. magna immobilization; and (3) algal growth rate inhibition. Toxicity tests on TT and CT effluents (TTE and CTE) were run at dilutions ranging from 0.1% to 2% (sea urchins and algae) or up to 12% in D. magna. Parallel bioassays were run on VT extract (VTE) at nominal tannin concentrations ranging from 0.1 to 10 mg l(-1). The results showed higher toxicity of CTE compared with TTE. CTE toxicity in sea urchins and algae showed concentration-related trends, whereas TTE exerted hormetic effects at levels of 0.1% to 0. 2% and toxic effects at levels &GE1%. The same trends were observed for VTE, suggesting a prevailing role of tannin in TTE-associated effects. The moderate wastewater toxicity of VT-based tanneries might prompt interest in the VT tanning process known to inhibit the activity of microorganisms during biologic oxidations in tertiary effluent treatment because of high levels of tannins and other chemicals, and two studies have reported processes aimed at optimizing the environmental performance of VT- based leather tanning operations (Panizza & Cerisola 2004; Saravanabhavan et al. 2004). We reported previously that water extracts of Acacia tannin, used in leather- tanning operations, induced a nonlinear concentration- related effect, with a shift from hormesis ( Calabrese & Baldwin 2002) to toxicity at VT levels ranging from 0.3 to 30 mg l(-1) (De Nicola et al. 2004). To the best of our knowledge, however, no information is available on the toxicity of wastewaters from VT- based tanneries at concentrations that may mimic the environmental dilution of wastewater in sewage systems. Hence, also unknown is any comparison between wastewaters of VT versus CT tanneries. In the attempt to gain knowledge regarding these unsolved questions, this study was aimed at comparing the toxicities of wastewater from VT versus CT leathertanning facilities employing a set of bioassays measuring sea urchin Paracentrotus lividus early development, Daphnia magna immobilization, and marine microalga Dunaliella tertiolecta growth rate. Wastewater from VT and CT tanneries was collected in Marrakesh, Morocco, and bioassay results pointed to sharp differences in wastewater toxicity for VT versus CT tanneries. C1 Italian Natl Canc Inst, G Pascale Fdn, I-80131 Naples, Italy. Univ Salerno, Dept Civil Engn, I-84084 Fisciano, Italy. Campania Regl Agcy Environm Protect, I-80143 Naples, Italy. Univ Naples Federico II, Dept Organ Chem & Biochem, I-80126 Naples, Italy. Politech Sch, Dept Civil & Environm Engn, I-70125 Bari, Italy. Ecole Normale Super, Dept Biol, Ecol Unit, Marrakech 2400, Morocco. Ibn Zohr Univ, Fac Sci, Agadir, Morocco. Tech Univ Istanbul, Dept Environm Engn, TK-34649 Istanbul, Turkey. C3 IRCCS Fondazione Pascale; University of Salerno; University of Naples Federico II; Politecnico di Bari; Cadi Ayyad University of Marrakech; Sidi Mohamed Ben Abdellah University of Fez; Ibn Zohr University of Agadir; Istanbul Technical University RP Pagano, G (corresponding author), Italian Natl Canc Inst, G Pascale Fdn, I-80131 Naples, Italy. EM gbpagano@tin.it RI Meric, Sureyya/AAH-3509-2020 OI Belgiorno, Vincenzo/0000-0003-1379-0091; Meric, Sureyya/0000-0002-2491-2755 CR *AM SOC TEST MAT, 1986, WAT ENV TOXICOL, V11, P27 American Public Health Association, 1998, STAND METH EX WAT WA BAE HD, 1993, J AGR FOOD CHEM, V41, P1256, DOI 10.1021/jf00032a018 BATTISTA G, 1995, J CANCER RES CLIN, V121, P1, DOI 10.1007/BF01202722 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Chandra S, 2004, ENVIRON TOXICOL, V19, P129, DOI 10.1002/tox.20005 Chattopadhyay B, 1999, J AM LEATHER CHEM AS, V94, P337 Chen SC, 2000, FOOD CHEM TOXICOL, V38, P1, DOI 10.1016/S0278-6915(99)00114-3 Cooman K, 2003, ENVIRON TOXICOL, V18, P45, DOI 10.1002/tox.10094 Cotman M, 2004, WATER SCI TECHNOL, V49, P39, DOI 10.2166/wst.2004.0012 De Nicola E, 2004, ARCH ENVIRON CON TOX, V46, P336, DOI 10.1007/s00244-003-2293-5 De Nicola E, 2007, ENVIRON POLLUT, V146, P46, DOI 10.1016/j.envpol.2006.06.018 GODFREY K, 1992, MED USES STAT, P233 *INT ORG STAND, 1996, INT ORG STAND WAT QU Kitchin KT, 2002, HUM EXP TOXICOL, V21, P105, DOI 10.1191/0960327102ht220oa Kolodziej H, 2005, PHYTOCHEMISTRY, V66, P2056, DOI 10.1016/j.phytochem.2005.01.011 LOFRANO G, 2006, GLOBAL NEST INT J, V8, P63 LOSI ME, 1994, REV ENVIRON CONTAM T, V136, P91 Meric S, 2005, CHEMOSPHERE, V61, P208, DOI 10.1016/j.chemosphere.2005.02.037 Mwinyihija M, 2006, ARCH ENVIRON CON TOX, V50, P316, DOI 10.1007/s00244-005-1049-9 Nath K, 2005, J ENVIRON BIOL, V26, P197 Okuda T, 2005, PHYTOCHEMISTRY, V66, P2012, DOI 10.1016/j.phytochem.2005.04.023 ORAL R, 2007, IN PRESS EVALUATION Otero XL, 2005, ENVIRON POLLUT, V136, P119, DOI 10.1016/j.envpol.2004.11.026 PAGANO G, 1982, ARCH ENVIRON CON TOX, V11, P47, DOI 10.1007/BF01055185 PAGANO G, 1983, ENVIRON RES, V30, P442, DOI 10.1016/0013-9351(83)90230-X Pagano G., 1986, COMMUNITY TOXICITY T, P67 Panizza M, 2004, ENVIRON SCI TECHNOL, V38, P5470, DOI 10.1021/es049730n Riva MC, 2005, B ENVIRON CONTAM TOX, V75, P34, DOI 10.1007/s00128-005-0715-y Saravanabhavan S, 2004, ENVIRON SCI TECHNOL, V38, P871, DOI 10.1021/es034554o SASAKI YF, 1990, MUTAT RES, V244, P43, DOI 10.1016/0165-7992(90)90106-T Stebbing ARD, 2002, MAR ENVIRON RES, V54, P805, DOI 10.1016/S0141-1136(02)00119-8 TAGLIARI KC, 2004, MUTAT RES, V561, P1001 Tunay O, 2003, WATER SCI TECHNOL, V48, P43, DOI 10.2166/wst.2004.0800 *US EPA, 1988, METHODS TOXICITY TES WHORTON EB, 1985, ENVIRON MUTAGEN, V7, P9, DOI 10.1002/em.2860070804 Zhou LX, 2005, ENVIRON TECHNOL, V26, P277, DOI 10.1080/09593332608618558 1974, IARC MONOGRAPHS EVLA, V10, P253 NR 39 TC 12 Z9 13 U1 0 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-4341 EI 1432-0703 J9 ARCH ENVIRON CON TOX JI Arch. Environ. Contam. Toxicol. PD OCT PY 2007 VL 53 IS 3 BP 321 EP 328 DI 10.1007/s00244-006-0181-5 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 205RL UT WOS:000249132200003 PM 17728989 DA 2023-03-13 ER PT J AU Sperdouli, I Mellidou, I Moustakas, M AF Sperdouli, Ilektra Mellidou, Ifigeneia Moustakas, Michael TI Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience SO CLIMATE LA English DT Article DE non-photochemical quenching (NPQ); moderate drought stress; severe drought stress; redox state; lipid peroxidation; singlet oxygen (O-1(2)); hormesis; reactive oxygen species (ROS); Solanum lycopersicum; Solanum pennellii ID PHOTOSYSTEM-II PHOTOCHEMISTRY; SINGLET OXYGEN PRODUCTION; ARABIDOPSIS-THALIANA; DROUGHT STRESS; OXIDATIVE STRESS; REDOX STATE; PHOTOPROTECTIVE MECHANISM; ABIOTIC STRESS; LIGHT STRESS; RESPONSES AB Fluctuations of the weather conditions, due to global climate change, greatly influence plant growth and development, eventually affecting crop yield and quality, but also plant survival. Since water shortage is one of the key risks for the future of agriculture, exploring the capability of crop species to grow with limited water is therefore fundamental. By using chlorophyll fluorescence analysis, we evaluated the responses of wild tomato accession Solanum pennellii LA0716, Solanum lycopersicum cv. M82, the introgression line IL12-4 (from cv. M82 X LA0716), and the Greek tomato cultivars cv. Santorini and cv. Zakinthos, to moderate drought stress (MoDS) and severe drought stress (SDS), in order to identify the minimum irrigation level for efficient photosynthetic performance. Agronomic traits (plant height, number of leaves and root/shoot biomass), relative water content (RWC), and lipid peroxidation, were also measured. Under almost 50% deficit irrigation, S. pennellii exhibited an enhanced photosynthetic function by displaying a hormetic response of electron transport rate (ETR), due to an increased fraction of open reaction centers, it is suggested to be activated by the low increase of reactive oxygen species (ROS). A low increase of ROS is regarded to be beneficial by stimulating defense responses and also triggering a more oxidized redox state of quinone A (Q(A)), corresponding in S. pennellii under 50% deficit irrigation, to the lowest stomatal opening, resulting in reduction of water loss. Solanum pennellii was the most tolerant to drought, as it was expected, and could manage to have an adequate photochemical function with almost 30% water regime of well-watered plants. With 50% deficit irrigation, cv. M82 and cv. Santorini did not show any difference in photochemical efficiency to control plants and are recommended to be cultivated under deficit irrigation as an effective strategy to enhance agricultural sustainability under a global climate change. We conclude that instead of the previously used Fv/Fm ratio, the redox state of Q(A), as it can be estimated by the chlorophyll fluorescence parameter 1 - q(L), is a better indicator to evaluate photosynthetic efficiency and select drought tolerant cultivars under deficit irrigation. C1 [Sperdouli, Ilektra; Mellidou, Ifigeneia] Hellen Agr Org Demeter ELGO Dimitra, Inst Plant Breeding & Genet Resources, GR-57001 Thessaloniki, Greece. [Moustakas, Michael] Aristotle Univ Thessaloniki, Dept Bot, GR-54124 Thessaloniki, Greece. C3 Aristotle University of Thessaloniki RP Moustakas, M (corresponding author), Aristotle Univ Thessaloniki, Dept Bot, GR-54124 Thessaloniki, Greece. EM ilektras@bio.auth.gr; imellidou@ipgrb.gr; moustak@bio.auth.gr RI Moustakas, Michael/B-4420-2010 OI Moustakas, Michael/0000-0003-0480-9387; Sperdouli, Ilektra/0000-0002-8755-0421; Mellidou, Ifigeneia/0000-0002-5320-132X CR Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Adamakis IDS, 2021, J HAZARD MATER, V404, DOI 10.1016/j.jhazmat.2020.124001 Adamakis IDS, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.01196 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819838420 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Antonoglou O, 2018, ACS APPL MATER INTER, V10, P4450, DOI 10.1021/acsami.7b17017 Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Asada K, 2006, PLANT PHYSIOL, V141, P391, DOI 10.1104/pp.106.082040 Asfi M, 2012, ECOTOX ENVIRON SAFE, V80, P69, DOI 10.1016/j.ecoenv.2012.02.030 Bano H, 2021, PHYSIOL PLANTARUM, V172, P603, DOI 10.1111/ppl.13337 Baycu G, 2018, MATERIALS, V11, DOI 10.3390/ma11122580 Beckles DM, 2012, FRUITS, V67, P49, DOI 10.1051/fruits/2011066 Beckles DM, 2012, POSTHARVEST BIOL TEC, V63, P129, DOI 10.1016/j.postharvbio.2011.05.016 Bertin N, 2018, SCI HORTIC-AMSTERDAM, V233, P264, DOI 10.1016/j.scienta.2018.01.056 BILGER W, 1995, OECOLOGIA, V102, P425, DOI 10.1007/BF00341354 Busch FA, 2014, PHOTOSYNTH RES, V119, P131, DOI 10.1007/s11120-013-9805-6 Calabrese EJ, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111544 Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Cazzaniga S, 2013, PLANT J, V76, P568, DOI 10.1111/tpj.12314 Chawade A, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9050258 Choudhury FK, 2017, PLANT J, V90, P856, DOI 10.1111/tpj.13299 Cirillo V, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10020139 Considine MJ, 2021, J EXP BOT, V72, P5795, DOI 10.1093/jxb/erab265 Czarnocka W, 2018, FREE RADICAL BIO MED, V122, P4, DOI 10.1016/j.freeradbiomed.2018.01.011 Dabrowski P, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19122736 Devireddy AR, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22168843 Dobrikova A, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10020194 Dorais M., 2001, Horticultural Reviews, V26, P239 dos Santos NZ, 2021, PLANT CELL ENVIRON, V44, P2858, DOI 10.1111/pce.14136 Farooq S, 2018, NAT PLANTS, V4, P225, DOI 10.1038/s41477-018-0127-8 Feng Y, 2021, PLANT J, V107, P399, DOI 10.1111/tpj.15296 Flexas J, 2002, ANN BOT-LONDON, V89, P183, DOI 10.1093/aob/mcf027 Flexas J, 2007, PLANT CELL ENVIRON, V30, P1284, DOI 10.1111/j.1365-3040.2007.01700.x Foyer CH, 2009, ANTIOXID REDOX SIGN, V11, P861, DOI 10.1089/ars.2008.2177 Gawronski P, 2021, PLANT J, V105, P619, DOI 10.1111/tpj.15058 Gawronski P, 2014, MOL PLANT, V7, P1151, DOI 10.1093/mp/ssu060 Giovannucci E, 2002, EXP BIOL MED, V227, P852, DOI 10.1177/153537020222701003 Glowacka K, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03231-x Gorbe E, 2012, SCI HORTIC-AMSTERDAM, V138, P24, DOI 10.1016/j.scienta.2012.02.002 Guidi L, 2014, ENVIRON EXP BOT, V103, P42, DOI 10.1016/j.envexpbot.2013.12.007 Guo Y, 2015, PHOTOCHEM PHOTOBIOL, V91, P1, DOI 10.1111/php.12362 Hammer GL, 2021, J EXP BOT, V72, P5097, DOI 10.1093/jxb/erab273 Hanjra MA, 2010, FOOD POLICY, V35, P365, DOI 10.1016/j.foodpol.2010.05.006 Hasanuzzaman M, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9080681 Havaux M, 2020, TRENDS PLANT SCI, V25, P1252, DOI 10.1016/j.tplants.2020.06.011 HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 Hein NT, 2021, J EXP BOT, V72, P5102, DOI 10.1093/jxb/erab021 Hou XM, 2020, J EXP BOT, V71, P1249, DOI 10.1093/jxb/erz526 HSIAO TC, 1973, ANNU REV PLANT PHYS, V24, P519, DOI 10.1146/annurev.pp.24.060173.002511 Hussain M, 2018, AGR WATER MANAGE, V201, P152, DOI 10.1016/j.agwat.2018.01.028 Imran QM, 2021, AGRONOMY-BASEL, V11, DOI 10.3390/agronomy11081579 Kalaji HM, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2113-y Kalaji HM, 2012, J PHOTOCH PHOTOBIO B, V112, P1, DOI 10.1016/j.jphotobiol.2012.03.009 Kanazawa A, 2002, P NATL ACAD SCI USA, V99, P12789, DOI 10.1073/pnas.182427499 Kasajima I, 2011, P NATL ACAD SCI USA, V108, P13835, DOI 10.1073/pnas.1104809108 Kramer DM, 2004, PHOTOSYNTH RES, V79, P209, DOI 10.1023/B:PRES.0000015391.99477.0d Krieger-Liszkay A, 2008, PHOTOSYNTH RES, V98, P551, DOI 10.1007/s11120-008-9349-3 Kromdijk J, 2019, PHOTOSYNTH RES, V141, P83, DOI 10.1007/s11120-019-00632-x Kumar N, 2020, J AGRON CROP SCI, V206, P148, DOI 10.1111/jac.12371 Lambrev PH, 2012, BBA-BIOENERGETICS, V1817, P760, DOI 10.1016/j.bbabio.2012.02.002 Lawlor DW, 2009, ANN BOT-LONDON, V103, P543, DOI [10.1093/aob/mcn244, 10.1093/aob/mcn256] Lawlor DW, 2002, PLANT CELL ENVIRON, V25, P275, DOI 10.1046/j.0016-8025.2001.00814.x Li ZR, 2009, ANNU REV PLANT BIOL, V60, P239, DOI 10.1146/annurev.arplant.58.032806.103844 Liu DJ, 2021, NEW PHYTOL, V230, P1761, DOI 10.1111/nph.17269 Liu RN, 2022, J AGRON CROP SCI, V208, P853, DOI 10.1111/jac.12533 Lodeyro AF, 2021, J EXP BOT, V72, P5919, DOI 10.1093/jxb/erab270 Lu CM, 1999, J EXP BOT, V50, P1199, DOI 10.1093/jexbot/50.336.1199 Araus JL, 2018, TRENDS PLANT SCI, V23, P451, DOI 10.1016/j.tplants.2018.02.001 Malea P, 2019, MATERIALS, V12, DOI 10.3390/ma12132101 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Martinez-Ispizua E, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.696272 Mellidou I, 2020, FUNCT PLANT BIOL, V47, P651, DOI 10.1071/FP19350 Mellidou I, 2017, J PLANT PHYSIOL, V218, P171, DOI 10.1016/j.jplph.2017.08.006 Mellidou I, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-239 Miller G, 2010, PLANT CELL ENVIRON, V33, P453, DOI 10.1111/j.1365-3040.2009.02041.x Mittler R, 2011, TRENDS PLANT SCI, V16, P300, DOI 10.1016/j.tplants.2011.03.007 Moustaka J, 2021, INSECTS, V12, DOI 10.3390/insects12060562 Moustaka J, 2020, ENVIRON EXP BOT, V175, DOI 10.1016/j.envexpbot.2020.104065 Moustaka J, 2018, MATERIALS, V11, DOI 10.3390/ma11091772 Moustaka J, 2018, ENVIRON EXP BOT, V154, P44, DOI 10.1016/j.envexpbot.2018.01.006 Moustaka J, 2016, BIOMETALS, V29, P611, DOI 10.1007/s10534-016-9938-0 Moustaka J, 2015, INT J MOL SCI, V16, P13989, DOI 10.3390/ijms160613989 Moustaka J, 2014, PESTIC BIOCHEM PHYS, V111, P1, DOI 10.1016/j.pestbp.2014.04.006 Moustakas M, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.658500 Moustakas M, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9080962 Moustakas M, 2019, MATERIALS, V12, DOI 10.3390/ma12182953 Moustakas M, 2019, ENVIRON SCI POLLUT R, V26, P6613, DOI 10.1007/s11356-019-04126-0 Moustakas M, 2017, ENVIRON SCI POLLUT R, V24, P16007, DOI 10.1007/s11356-017-9174-3 Moustakas M, 2016, PESTIC BIOCHEM PHYS, V126, P28, DOI 10.1016/j.pestbp.2015.07.003 Moustakas M, 2011, PLANT GROWTH REGUL, V65, P315, DOI 10.1007/s10725-011-9604-z Muktadir MA, 2021, PHYSIOL PLANTARUM, V172, P540, DOI 10.1111/ppl.13309 Muller P, 2001, PLANT PHYSIOL, V125, P1558, DOI 10.1104/pp.125.4.1558 Murata N, 2007, BBA-BIOENERGETICS, V1767, P414, DOI 10.1016/j.bbabio.2006.11.019 Murchie EH, 2013, J EXP BOT, V64, P3983, DOI 10.1093/jxb/ert208 Niyogi KK, 2005, J EXP BOT, V56, P375, DOI 10.1093/jxb/eri056 Pashayeva A, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22157978 Pfannschmidt T, 2012, PROTOPLASMA, V249, P125, DOI 10.1007/s00709-012-0398-2 Pignon CP, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.627432 Razavi F, 2008, PHOTOSYNTHETICA, V46, P631, DOI 10.1007/s11099-008-0108-7 Razifard H, 2020, MOL BIOL EVOL, V37, P1118, DOI 10.1093/molbev/msz297 Reddy TY, 2003, PLANT GROWTH REGUL, V41, P75, DOI 10.1023/A:1027353430164 Ruban AV, 2016, PLANT PHYSIOL, V170, P1903, DOI 10.1104/pp.15.01935 Shahinnia F, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22157877 Silva EN, 2010, J PLANT PHYSIOL, V167, P1157, DOI 10.1016/j.jplph.2010.03.005 Sipka G, 2021, PLANT CELL, V33, P1286, DOI 10.1093/plcell/koab008 Sperdouli I, 2015, PHOTOSYNTHETICA, V53, P471, DOI 10.1007/s11099-015-0116-3 Sperdouli I, 2012, PLANT BIOLOGY, V14, P118, DOI 10.1111/j.1438-8677.2011.00473.x Sperdouli I, 2021, MOLECULES, V26, DOI 10.3390/molecules26144157 Sperdouli I, 2021, MOLECULES, V26, DOI 10.3390/molecules26102984 Sperdouli I, 2019, MATERIALS, V12, DOI 10.3390/ma12152498 Sperdouli I, 2014, J PLANT RES, V127, P481, DOI 10.1007/s10265-014-0635-1 Sperdouli I, 2014, J PLANT PHYSIOL, V171, P587, DOI 10.1016/j.jplph.2013.11.014 Sperdouli I, 2012, ACTA PHYSIOL PLANT, V34, P1267, DOI 10.1007/s11738-011-0920-8 Sperdouli I, 2012, J PLANT PHYSIOL, V169, P577, DOI 10.1016/j.jplph.2011.12.015 Stamelou ML, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10030521 Subramanian KS, 2006, SCI HORTIC-AMSTERDAM, V107, P245, DOI 10.1016/j.scienta.2005.07.006 Takahashi S, 2011, TRENDS PLANT SCI, V16, P53, DOI 10.1016/j.tplants.2010.10.001 Telfer A, 2014, PLANT CELL PHYSIOL, V55, P1216, DOI 10.1093/pcp/pcu040 Trenberth KE, 2014, NAT CLIM CHANGE, V4, P17, DOI 10.1038/NCLIMATE2067 Triantaphylides C, 2009, TRENDS PLANT SCI, V14, P219, DOI 10.1016/j.tplants.2009.01.008 Tsabari O, 2015, PLANT J, V81, P884, DOI 10.1111/tpj.12774 Tschiersch H, 2017, PLANT METHODS, V13, DOI 10.1186/s13007-017-0204-4 Walter J, 2011, ENVIRON EXP BOT, V71, P34, DOI 10.1016/j.envexpbot.2010.10.020 Willett W, 2019, LANCET, V393, P447, DOI 10.1016/S0140-6736(18)31788-4 Woolery P. O., 2010, Native Plants Journal, V11, P27, DOI 10.2979/NPJ.2010.11.1.27 Yao JN, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00603 Zavafer A, 2021, J PHOTOCH PHOTOBIO C, V47, DOI 10.1016/j.jphotochemrev.2021.100421 Zhao TB, 2015, J CLIMATE, V28, P4490, DOI 10.1175/JCLI-D-14-00363.1 Zhu JK, 2016, CELL, V167, P313, DOI 10.1016/j.cell.2016.08.029 NR 131 TC 13 Z9 13 U1 0 U2 7 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2225-1154 J9 CLIMATE JI Climate PD NOV PY 2021 VL 9 IS 11 AR 154 DI 10.3390/cli9110154 PG 17 WC Meteorology & Atmospheric Sciences WE Emerging Sources Citation Index (ESCI) SC Meteorology & Atmospheric Sciences GA XF0CC UT WOS:000723746500001 OA gold DA 2023-03-13 ER PT J AU Yang, W Hekimi, S AF Yang, Wen Hekimi, Siegfried TI A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans SO PLOS BIOLOGY LA English DT Article ID OXIDATIVE STRESS RESISTANCE; SYSTEMATIC RNAI SCREEN; LIVED CLK-1 MUTANTS; LIFE-SPAN; HYDROGEN-PEROXIDE; COMPLEX-III; IN-VIVO; RESTRICTION; LONG; DAMAGE AB The nuo-6 and isp-1 genes of C. elegans encode, respectively, subunits of complex I and III of the mitochondrial respiratory chain. Partial loss-of-function mutations in these genes decrease electron transport and greatly increase the longevity of C. elegans by a mechanism that is distinct from that induced by reducing their level of expression by RNAi. Electron transport is a major source of the superoxide anion (O center dot-), which in turn generates several types of toxic reactive oxygen species (ROS), and aging is accompanied by increased oxidative stress, which is an imbalance between the generation and detoxification of ROS. These observations have suggested that the longevity of such mitochondrial mutants might result from a reduction in ROS generation, which would be consistent with the mitochondrial oxidative stress theory of aging. It is difficult to measure ROS directly in living animals, and this has held back progress in determining their function in aging. Here we have adapted a technique of flow cytometry to directly measure ROS levels in isolated mitochondria to show that the generation of superoxide is elevated in the nuo-6 and isp-1 mitochondrial mutants, although overall ROS levels are not, and oxidative stress is low. Furthermore, we show that this elevation is necessary and sufficient to increase longevity, as it is abolished by the antioxidants NAC and vitamin C, and phenocopied by mild treatment with the prooxidant paraquat. Furthermore, the absence of effect of NAC and the additivity of the effect of paraquat on a variety of long-and short-lived mutants suggest that the pathway triggered by mitochondrial superoxide is distinct from previously studied mechanisms, including insulin signaling, dietary restriction, ubiquinone deficiency, the hypoxic response, and hormesis. These findings are not consistent with the mitochondrial oxidative stress theory of aging. Instead they show that increased superoxide generation acts as a signal in young mutant animals to trigger changes of gene expression that prevent or attenuate the effects of subsequent aging. We propose that superoxide is generated as a protective signal in response to molecular damage sustained during wild-type aging as well. This model provides a new explanation for the well-documented correlation between ROS and the aged phenotype as a gradual increase of molecular damage during aging would trigger a gradually stronger ROS response. C1 [Yang, Wen; Hekimi, Siegfried] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. C3 McGill University RP Yang, W (corresponding author), McGill Univ, Dept Biol, 1205 Doctor Penfield Ave, Montreal, PQ H3A 1B1, Canada. EM Siegfried.Hekimi@McGill.ca OI Hekimi, Siegfried/0000-0002-3592-5711 FU Canadian Institutes of Health Research [216377]; McGill University FX The work was supported in part by a grant from the Canadian Institutes of Health Research to SH (grant #216377) and by McGill University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR ARUOMA OI, 1989, FREE RADICAL BIO MED, V6, P593, DOI 10.1016/0891-5849(89)90066-X Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001 Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547 Benrahmoune M, 2000, FREE RADICAL BIO MED, V29, P775, DOI 10.1016/S0891-5849(00)00380-4 Bishop NA, 2007, NATURE, V447, P545, DOI 10.1038/nature05904 Branicky R, 2006, MOL CELL BIOL, V26, P3976, DOI 10.1128/MCB.26.10.3976-3985.2006 Brunelle JK, 2005, CELL METAB, V1, P409, DOI 10.1016/j.cmet.2005.05.002 Budzinska M, 2009, J BIOENERG BIOMEMBR, V41, P361, DOI 10.1007/s10863-009-9231-9 CADENAS E, 1977, ARCH BIOCHEM BIOPHYS, V180, P248, DOI 10.1016/0003-9861(77)90035-2 CARRANO AC, 2009, NATURE Chen D, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000486 Copeland JM, 2009, CURR BIOL, V19, P1591, DOI 10.1016/j.cub.2009.08.016 Cristina D, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000450 Curtis R, 2006, AGING CELL, V5, P119, DOI 10.1111/j.1474-9726.2006.00205.x Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Dillin A, 2002, SCIENCE, V298, P2398, DOI 10.1126/science.1077780 Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Drechsel DA, 2009, TOXICOL SCI, V112, P427, DOI 10.1093/toxsci/kfp223 Durieux J, 2007, CELL METAB, V6, P427, DOI 10.1016/j.cmet.2007.11.008 Ewbank JJ, 1997, SCIENCE, V275, P980, DOI 10.1126/science.275.5302.980 Felkai S, 1999, EMBO J, V18, P1783, DOI 10.1093/emboj/18.7.1783 Feng JL, 2001, DEV CELL, V1, P633, DOI 10.1016/S1534-5807(01)00071-5 Greer EL, 2009, AGING CELL, V8, P113, DOI 10.1111/j.1474-9726.2009.00459.x Guzy RD, 2005, CELL METAB, V1, P401, DOI 10.1016/j.cmet.2005.05.001 Hailey DW, 2010, CELL, V141, P656, DOI 10.1016/j.cell.2010.04.009 Hamilton B, 2005, GENE DEV, V19, P1544, DOI 10.1101/gad.1308205 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Hattori F, 2010, NAT METHODS, V7, P61, DOI [10.1038/NMETH.1403, 10.1038/nmeth.1403] HAUGHLAND R, 2009, HDB FLUORESCENT PROB Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x Hekimi S, 2003, SCIENCE, V299, P1351, DOI 10.1126/science.1082358 Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385 Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Huang WC, 2002, EXP CELL RES, V277, P192, DOI 10.1006/excr.2002.5546 Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331 Jonassen T, 2001, P NATL ACAD SCI USA, V98, P421, DOI 10.1073/pnas.021337498 Kayser EB, 2001, J BIOL CHEM, V276, P20551, DOI 10.1074/jbc.M011066200 Keaney M, 2004, FREE RADICAL BIO MED, V37, P239, DOI 10.1016/j.freeradbiomed.2004.04.005 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Kudin AP, 2004, J BIOL CHEM, V279, P4127, DOI 10.1074/jbc.M310341200 Kussmaul L, 2006, P NATL ACAD SCI USA, V103, P7607, DOI 10.1073/pnas.0510977103 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Lakowski B, 1996, SCIENCE, V272, P1010, DOI 10.1126/science.272.5264.1010 Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8 LEBEL CP, 1992, CHEM RES TOXICOL, V5, P227, DOI 10.1021/tx00026a012 Lee SS, 2003, NAT GENET, V33, P40, DOI 10.1038/ng1056 Libina N, 2003, CELL, V115, P489, DOI 10.1016/S0092-8674(03)00889-4 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103 Madesh M, 2005, J CELL BIOL, V170, P1079, DOI 10.1083/jcb.200505022 Madesh M, 2001, J CELL BIOL, V155, P1003, DOI 10.1083/jcb.200105057 Magwere T, 2006, MECH AGEING DEV, V127, P356, DOI 10.1016/j.mad.2005.12.009 Mattiasson G, 2004, CYTOM PART A, V62A, P89, DOI 10.1002/cyto.a.20089 Mehta R, 2009, SCIENCE, V324, P1196, DOI 10.1126/science.1173507 Miyadera H, 2002, FEBS LETT, V512, P33, DOI 10.1016/S0014-5793(02)02282-2 Miyadera H, 2001, J BIOL CHEM, V276, P7713, DOI 10.1074/jbc.C000889200 Myhre O, 2003, BIOCHEM PHARMACOL, V65, P1575, DOI 10.1016/S0006-2952(03)00083-2 Navarro A, 2007, AM J PHYSIOL-CELL PH, V292, pC670, DOI 10.1152/ajpcell.00213.2006 Oh SW, 2005, P NATL ACAD SCI USA, V102, P4494, DOI 10.1073/pnas.0500749102 Owusu-Ansah E, 2008, NAT GENET, V40, P356, DOI 10.1038/ng.2007.50 PEARL R, 1928, RATE LIVING Piskemik C, 2008, BBA-MOL BASIS DIS, V1782, P280, DOI 10.1016/j.bbadis.2008.01.007 Rea SL, 2007, PLOS BIOL, V5, P2312, DOI 10.1371/journal.pbio.0050259 Reznick RM, 2007, CELL METAB, V5, P151, DOI 10.1016/j.cmet.2007.01.008 Robinson KM, 2006, P NATL ACAD SCI USA, V103, P15038, DOI 10.1073/pnas.0601945103 Rubner M., 1908, PROBLEM LEBENSDAUR S Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771 Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556 Storz P., 2006, SCI STKE, DOI DOI 10.1126/STKE.3322006RE3 Suda H, 2005, BIOCHEM BIOPH RES CO, V330, P839, DOI 10.1016/j.bbrc.2005.03.050 Tullet JMA, 2008, CELL, V132, P1025, DOI 10.1016/j.cell.2008.01.030 TURRENS JF, 1985, ARCH BIOCHEM BIOPHYS, V237, P408, DOI 10.1016/0003-9861(85)90293-0 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 VANRAAMSDONK J, 2010, ANTIOXID RE IN PRESS VANRAAMSDONK J, 2010, GENETICS IN PRESS VANRAAMSDONK JM, 2010, GENETICS Weinberg F, 2009, CELL MOL LIFE SCI, V66, P3663, DOI 10.1007/s00018-009-0099-y Wolkow CA, 2000, SCIENCE, V290, P147, DOI 10.1126/science.290.5489.147 WONG A, 1995, GENETICS, V139, P1247 YANG W, 2010, AGING CELL IN PRESS Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788 NR 84 TC 418 Z9 432 U1 3 U2 103 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1544-9173 EI 1545-7885 J9 PLOS BIOL JI PLoS. Biol. PD DEC PY 2010 VL 8 IS 12 AR e1000556 DI 10.1371/journal.pbio.1000556 PG 14 WC Biochemistry & Molecular Biology; Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 697GD UT WOS:000285500100004 PM 21151885 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Sidibe, A Charles, MT Nicolas, O Beaulieu, C AF Sidibe, Amadou Charles, Marie Therese Nicolas, Olbert Beaulieu, Carole TI Preharvest UV-C affects lettuce resistance to Xanthomonas campestris pv. vitians and quality SO SCIENTIA HORTICULTURAE LA English DT Article DE Abiotic stress; Asteraceae; Bacterial leaf spot; Biotic stress; Eustress; Dry matter; Fruit; UV-C hormesis; Vegetable; Yield ID BOTRYTIS-CINEREA; PHYSIOLOGICAL-BASIS; WATER-STRESS; GROWTH; IRRADIATION; RADIATION; LIGHT; FRUIT; EXPRESSION; NITROGEN AB A series of independent trials were conducted to evaluate the use of UV-C radiation for controlling Xanthomonas campestris pv. vitians (Xcv), the causative agent of bacterial leaf spot in lettuce, and to assess the impact of this treatment on lettuce yield. The first trial involved repeated applications of a pre-established hormetic dose of UV-C (0.4 kJ/m(2)), for a total dose of 1.6 kJ/m(2), which represented a single treatment cycle. Lettuce plants were inoculated with a virulent strain of Xcv 48 h after this treatment cycle. The second trial, which took place after Xcv inoculation, involved additional UV-C treatment cycles (0.5, 1.0 and 1.75 cycles), corresponding to total doses of 2.4, 3.2 and 4.4 kJ/m(2) respectively. In the third trial, three weekly UV-C treatments were given at 48 h intervals using the standard 0.4 kJ/m(2) dose, beginning the third week after seeding and continuing until the lettuce reached the commercial stage and was harvested. By the time the mature lettuce plants were harvested, they had undergone five treatment cycles, representing a total dose of 8 kJ/m(2). A single UV-C treatment cycle resulted in a 90 %, 30 % or 10 % reduction in the susceptibility of the growing lettuce plants to Xcv compared with the control group, depending on when symptoms were evaluated. The application of additional treatment cycles (0.5, 1.0 and 1.75 cycles) resulted in a reduction of 30 %, 45 % and 50 % in susceptibility, respectively, in the treated lettuce plants relative to the controls. The fresh yield of lettuce treated with 2.75 cycles of UV-C (4.4 kJ/m(2)) was similar to that of the control lettuce; this treatment also resulted in a significant decrease (20 %) in core length, an agronomic trait associated with increased yield when lettuce is processed as fresh-cut ready-to-eat product. UV-C-treated lettuce had a significantly greater dry matter content and higher total mineral concentrations than the control lettuce. These results indicate that repeated preharvest UV-C treatments (0.4 kJ/m(2)) improve the tolerance of lettuce to Xcv without negative effects. C1 [Sidibe, Amadou; Charles, Marie Therese; Beaulieu, Carole] Univ Sherbrooke, Dept Biol, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada. [Sidibe, Amadou; Charles, Marie Therese] Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, 430 Blvd Gouin, St Jean, PQ J3B 3E6, Canada. [Nicolas, Olbert] Agr & Agri Food Canada, Harrow Res & Dev Ctr, 2585 Cty Rd 20, Harrow, ON N0R 1G0, Canada. C3 University of Sherbrooke; Agriculture & Agri Food Canada; Agriculture & Agri Food Canada RP Charles, MT (corresponding author), Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, 430 Blvd Gouin, St Jean, PQ J3B 3E6, Canada. EM marietherese.charles@canada.ca OI Charles, Marie Therese/0000-0001-7485-906X FU Agriculture and Agri-Food Canada; AgroPhytoSciences program at Centre SEVE (Plant Science Research Centre) at the University of Sherbrooke FX The research described in this document was funded primarily by Agriculture and Agri-Food Canada and conducted at the AAFC's SaintJean-sur-Richelieu Research and Development Centre. Amadou Sidib ' e also received financial support from the AgroPhytoSciences program at Centre S`EVE (Plant Science Research Centre) at the University of Sherbrooke. The authors would like to thank Gaston Mercier for his help in analyzing the mineral elements, Karine Frechette and Bertrand Riendeau for taking care of the lettuce plants, Marie Ciotola, M ' elanie Cadieux, Daniel Rolland and Dominique Roussel for technical assistance in conducting the trials. Acknowledgements are extended to Barbara Chunn for linguistic services. CR Agriculture and Agri-food Canada, 2015, STAT OV CAN VEG IND Aguero MV, 2008, J FOOD SCI, V73, pS47, DOI 10.1111/j.1750-3841.2007.00604.x Al-Yasi H, 2020, PLANT PHYSIOL BIOCH, V150, P133, DOI 10.1016/j.plaphy.2020.02.038 Bull C.T., 2007, PLANT HLTH PROG, V8, DOI [10.1094/PHP-2007-0917-02-RS, DOI 10.1094/PHP-2007-0917-02-RS] Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019 Charles MT, 2009, POSTHARVEST BIOL TEC, V51, P414, DOI 10.1016/j.postharvbio.2008.08.016 Darras AI, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109357 Darras AI, 2012, PLANT GROWTH REGUL, V68, P343, DOI 10.1007/s10725-012-9722-2 Eitel JUH, 2006, FOREST ECOL MANAG, V229, P170, DOI 10.1016/j.foreco.2006.03.027 Food and Agriculture Organization of the United Nations (FAOSTAT), 2013, LETT CHIC Fu G, 2017, ACTA PHYSIOL PLANT, V39, DOI 10.1007/s11738-017-2387-8 Gogo EO, 2017, POSTHARVEST BIOL TEC, V129, P107, DOI 10.1016/j.postharvbio.2017.03.019 Hayes RJ, 2014, HORTIC RES-ENGLAND, V1, DOI 10.1038/hortres.2014.66 Hebert P.O, 2019, CARACTERISATION GENO, P52 ISAAC RA, 1976, J ASSOC OFF ANA CHEM, V59, P98 Janisiewicz WJ, 2016, CAN J PLANT PATHOL, V38, P430, DOI 10.1080/07060661.2016.1263807 Janisiewicz WJ, 2016, PHYTOPATHOLOGY, V106, P386, DOI 10.1094/PHYTO-09-15-0240-R Johkan M, 2010, HORTSCIENCE, V45, P1809, DOI 10.21273/HORTSCI.45.12.1809 Jorge TF, 2019, ENVIRON EXP BOT, V166, DOI 10.1016/j.envexpbot.2019.103808 KADER A A, 1973, Hortscience, V8, P408 Leon AP, 2007, COMMUN SOIL SCI PLAN, V38, P2877, DOI 10.1080/00103620701663115 Lu HJ, 2013, HORTSCIENCE, V48, P171, DOI 10.21273/HORTSCI.48.2.171 Lu MF, 2013, BIOCHEM BIOPH RES CO, V434, P701, DOI 10.1016/j.bbrc.2013.04.035 Luckey T.D., 1980, HORMESIS IONIZING RA, P222 Ma DY, 2014, PLANT PHYSIOL BIOCH, V80, P60, DOI 10.1016/j.plaphy.2014.03.024 Madre J.L., 2010, P 6 INT C FOR FIR RE, P1 Malini P., 2011, ASIAN J PHARM CLIN R, V4, P124 MAPAQ, 2018, PORTR DIGN SECT MAPAQ, 2017, PRINC INS FONG HOM 2 MAPAQ, 2018, PORTR DIAGN SECT Melotto M, 2008, ANNU REV PHYTOPATHOL, V46, P101, DOI 10.1146/annurev.phyto.121107.104959 Moraes RM, 2018, PAK J BOT, V50, P1769 Nicolas O., 2020, ACTA HORTIC, V1271, P387, DOI [10.17660/ActaHortic.2020.1271.53, DOI 10.17660/ACTAHORTIC.2020.1271.53] Nicolas O, 2018, CAN J PLANT PATHOL, V40, P399, DOI 10.1080/07060661.2018.1495269 Ouhibi C, 2015, J PHYTOPATHOL, V163, P578, DOI 10.1111/jph.12357 Reboucas DM, 2017, PLANTS-BASEL, V6, DOI 10.3390/plants6010014 Rizet C, 2012, PROCD SOC BEHV, V48, P184, DOI 10.1016/j.sbspro.2012.06.999 Sanchez-Rodriguez E, 2010, PLANT SOIL, V335, P339, DOI 10.1007/s11104-010-0422-2 Severo J, 2017, LWT-FOOD SCI TECHNOL, V85, P390, DOI 10.1016/j.lwt.2016.10.032 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 SHANER G, 1977, PHYTOPATHOLOGY, V67, P1051, DOI 10.1094/Phyto-67-1051 Sharma P., 2012, J BOT, V2012, P1, DOI [10.1155/2012/217037, DOI 10.1155/2012/217037, 10.1155/2012/872875, DOI 10.1155/2012/650206] Son KH, 2013, HORTSCIENCE, V48, P988 Statistics Canada, 2011, AR PROD FARM GAT VAL Urban L, 2016, PLANT PHYSIOL BIOCH, V105, P1, DOI 10.1016/j.plaphy.2016.04.004 Valencia MA, 2017, OPT PURA APL, V50, P369, DOI 10.7149/OPA.50.4.49073 Vanegas D., 2018, Acta Horticulturae, P51, DOI 10.17660/ActaHortic.2018.1194.9 Vasquez H, 2017, SCI HORTIC-AMSTERDAM, V222, P32, DOI 10.1016/j.scienta.2017.04.017 Xie ZC, 2015, J SCI FOOD AGR, V95, P2996, DOI 10.1002/jsfa.7064 Xu YQ, 2019, PLANT CELL ENVIRON, V42, P815, DOI 10.1111/pce.13491 Xu YQ, 2017, PLANT PHYSIOL BIOCH, V116, P80, DOI 10.1016/j.plaphy.2017.05.010 Yamasaki Simone, 1999, Revista Brasileira de Fisiologia Vegetal, V11, P69 NR 53 TC 2 Z9 2 U1 4 U2 15 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-4238 EI 1879-1018 J9 SCI HORTIC-AMSTERDAM JI Sci. Hortic. PD JUL 27 PY 2021 VL 285 AR 110094 DI 10.1016/j.scienta.2021.110094 EA APR 2021 PG 9 WC Horticulture WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA SH3JD UT WOS:000654030900002 DA 2023-03-13 ER PT J AU Wang, ED Lu, DG Liu, XH Li, YJ AF Wang, Endong Lu, Daguang Liu, Xiaohui Li, Yongjun TI Evaluating the use of nuclear techniques for colonization and production of Trichogramma chilonis in combination with releasing irradiated moths for control of cotton bollworm, Helicoverpa armigera SO BIOCONTROL SCIENCE AND TECHNOLOGY LA English DT Article DE Trichogramma; Helicoverpa; biological control; pest management; parasitoids; irradiation; low dose irradiation; radiation hormesis AB Gamma radiation was tested as a means of increasing production of the egg parasitoid Trichogramma chilonis Ishii by improving the suitability of host eggs and by stimulating reproduction of the parasitoid females. For manipulation of the host eggs' suitability, radiation was used to either (a) produce developmentally-inactivated (DI) eggs incapable of hatching, or (b) to produce F-1 sterile host eggs. For treatment of the parasitoid females with the intent of stimulating reproduction, parasitoid pupae were exposed to very low dose radiation (250 mGray). For tests on host suitability using radiation-induced DI host eggs, newly-laid (<8 h old) host eggs (Helicoverpa armigera Hubner) were exposed to 300 Gy of Co-60 gamma radiation. For tests of F-1 sterile host eggs, H. armigera moths were mated with individuals exposed to 250 Gy as pupae. Tests were performed with eggs resulting from all possibilities of normal (N) and sterile (S) female x male matings. Both types of DI host eggs (irradiated or sterile), along with untreated host eggs (controls), were exposed to T. chilonis females, using the following host egg-to-parasitoid ratios: 1:10, 1:30, 1:60 and 1:90. Developmentally-inactivated host eggs exposed to 300 Gy did not differ in suitability from normal host eggs at a 1:10 parasitoid-host ratio, but were significantly more suitable at the higher host-parasitoid ratios. 1 sterile eggs were not significantly different in suitability from normal eggs at a 1:10 host-parasitoid ratio but were marginally better at the higher host-parasitoid ratios. In tests performed using T. chilonis females exposed to low-dose radiation (250 mGy), no effects were observed when cohorts of 5 T. chilonis females were provided with only 50 host eggs, but when more hosts were provided (ratios of 1:30, 1:60 and 1:90), significantly higher rates of parasitization were noted for the parasitoids exposed to low-dose radiation. This effect prevailed using both normal host eggs and DI host eggs exposed to 300 Gy. The stimulatory effect also was noted when 1 sterile host eggs were provided to the irradiated T. chilonis females. These results suggest that release of T. chilonis irradiated with 250 mGy may complement release of irradiated H. armigera moths, which produce sterile F-1 eggs that can serve as supplemental hosts in the field and thereby enhance the pest management system. C1 [Lu, Daguang] Chinese Acad Agr Sci, Int Cooperat Dept, Beijing 100081, Peoples R China. [Liu, Xiaohui; Li, Yongjun] Chinese Acad Agr Sci, Inst Plant Protect, Beijing 100193, Peoples R China. [Wang, Endong] China Agr Univ, Beijing 100193, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Chinese Academy of Agricultural Sciences; Institute of Plant Protection, CAAS; China Agricultural University RP Lu, DG (corresponding author), Chinese Acad Agr Sci, Int Cooperat Dept, Beijing 100081, Peoples R China. EM daguang_lu@caas.net.cn FU International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria [10778] FX Thanks are due to Dr Patrick Greany and Mr Wang Huesong for their help and support. Technical and financial assistances were provided, in part, by contract no. 10778 of the International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria. CR Abdel-Salam K.A., 1995, UMWELTSCHUTZ, V68, P147 [Anonymous], 2003, J NUCL AGR SCI, V17, P319 BROWER JH, 1982, J ECON ENTOMOL, V75, P939, DOI 10.1093/jee/75.6.939 Cossentine JE, 2000, BIOL CONTROL, V18, P179, DOI 10.1006/bcon.2000.0828 HARWALKAR MR, 1987, ENTOMOPHAGA, V32, P159, DOI 10.1007/BF02373126 Liu S., 1983, J S CHINA AGR COLL, V4, P77 Luckey TD, 1991, RAD HORMESIS PAK GA, 1986, J APPL ENTOMOL, V101, P55, DOI 10.1111/j.1439-0418.1986.tb00833.x Saour G, 2004, J APPL ENTOMOL, V128, P681, DOI 10.1111/j.1439-0418.2004.00909.x SPSS Inc, 2004, US MAN Tuncbilek AS, 2003, ANZ SCHADL-J PEST SC, V76, P176, DOI 10.1007/s10340-003-0018-1 YUSIFOV NI, 1990, RADIAT ENVIRON BIOPH, V29, P323, DOI 10.1007/BF01210412 NR 12 TC 3 Z9 5 U1 0 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0958-3157 J9 BIOCONTROL SCI TECHN JI Biocontrol Sci. Technol. PY 2009 VL 19 SU 1 SI SI BP 235 EP 242 DI 10.1080/09583150902790293 PG 8 WC Biotechnology & Applied Microbiology; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Entomology GA V21GP UT WOS:000208196400018 DA 2023-03-13 ER PT J AU Naviaux, RK AF Naviaux, Robert K. TI Metabolic features of the cell danger response SO MITOCHONDRION LA English DT Article DE Oxidative stress; Oxidative shielding; Innate immunity; Inflammation; Purinergic signaling; Mitochondria ID CYSTINE/GLUTAMATE ANTIPORTER; MOLECULAR-MECHANISMS; IMPROVES RECOVERY; STRESS-RESPONSE; ATP RELEASE; KAPPA-B; RECEPTOR; SURAMIN; MITOCHONDRIA; DISEASE AB The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatoty and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental, autoimmune, and degenerative disorders. These disorders include autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), asthma, atopy, gluten and many other food and chemical sensitivity syndromes, emphysema, Tourette's syndrome, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), chronic traumatic encephalopathy (CTE), traumatic brain injury (TB!), epilepsy, suicidal ideation, organ transplant biology, diabetes, kidney, liver, and heart disease, cancer, Alzheimer and Parkinson disease, and autoimmune disorders like lupus, rheumatoid arthritis, multiple sclerosis, and primary sclerosing cholangitis. (C) 2013 The Author. Published by Elsevier B.V. and Mitochondria Research Society. All rights reserved. C1 [Naviaux, Robert K.] Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, Dept Med, San Diego, CA 92103 USA. [Naviaux, Robert K.] Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, Dept Pediat, San Diego, CA 92103 USA. [Naviaux, Robert K.] Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, Dept Pathol, San Diego, CA 92103 USA. [Naviaux, Robert K.] Vet Affairs Ctr Excellence Stress & Mental Hlth C, La Jolla, CA USA. C3 University of California System; University of California San Diego; University of California System; University of California San Diego; University of California System; University of California San Diego RP Naviaux, RK (corresponding author), Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, 214 Dickinson St,Bldg CTF,Rm C102, San Diego, CA 92103 USA. EM Naviaux@ucsd.edu FU UCSD Christini Fund; Jane Botsford Johnson Foundation; Wright Foundation; Lennox Foundation; Takes Guts Foundation; UCSD Mitochondrial Disease Research Foundation; Hailey's Wish Foundation FX RKN thanks Jane Naviaux, Will Alaynick, Jim Adams, Steve Edelson, Kate Crowley, and Vicki Kobliner for helpful comments on the manuscript. This work was made possible by support from the UCSD Christini Fund, the Jane Botsford Johnson Foundation, the Wright Foundation, the Lennox Foundation, the It Takes Guts Foundation, the UCSD Mitochondrial Disease Research Foundation, and the Hailey's Wish Foundation. CR Ajioka RS, 2006, BBA-MOL CELL RES, V1763, P723, DOI 10.1016/j.bbamcr.2006.05.005 Angata T, 2012, ANN NY ACAD SCI, V1253, P159, DOI 10.1111/j.1749-6632.2012.06469.x Arispe N, 2002, FASEB J, V16, P1526, DOI 10.1096/fj.02-0829com Arnoult D, 2011, EMBO REP, V12, P901, DOI 10.1038/embor.2011.157 Bachrach U, 2007, AMINO ACIDS, V33, P267, DOI 10.1007/s00726-007-0535-y Ballok DA, 2008, BRAIN BEHAV IMMUN, V22, P1208, DOI 10.1016/j.bbi.2008.06.002 Bernstein HG, 2012, NEUROPHARMACOLOGY, V62, P237, DOI 10.1016/j.neuropharm.2011.07.012 Bezvenyuk Z, 2000, NEUROSCI LETT, V292, P111, DOI 10.1016/S0304-3940(00)01453-1 Blumberg Stephen J, 2013, Natl Health Stat Report, P1 Bours Martijn Jan Leo, 2011, Front Biosci (Schol Ed), V3, P1443 Bridges RJ, 2012, BRIT J PHARMACOL, V165, P20, DOI 10.1111/j.1476-5381.2011.01480.x BURNSTOCK G, 1972, BRIT J PHARMACOL, V44, P451, DOI 10.1111/j.1476-5381.1972.tb07283.x Burnstock G, 2012, CURR OPIN PHARMACOL, V12, P80, DOI 10.1016/j.coph.2011.10.008 Burnstock G, 2010, ACTA PHYSIOL, V199, P93, DOI 10.1111/j.1748-1716.2010.02114.x Burnstock G, 2009, ACTA PHYSIOL, V195, P415, DOI 10.1111/j.1748-1716.2009.01957.x Burnstock G, 2011, PROG NEUROBIOL, V95, P229, DOI 10.1016/j.pneurobio.2011.08.006 Caccamo D, 2012, AMINO ACIDS, V42, P1037, DOI 10.1007/s00726-011-1018-8 Cantin LD, 2012, BIOORG MED CHEM LETT, V22, P2565, DOI 10.1016/j.bmcl.2012.01.124 Cervelli M, 2012, AMINO ACIDS, V42, P441, DOI 10.1007/s00726-011-1014-z Choo AM, 2013, BRAIN, V136, P65, DOI 10.1093/brain/aws286 Cicko S, 2010, J IMMUNOL, V185, P688, DOI 10.4049/jimmunol.0904042 Corcoran JA, 2009, J VIROL, V83, P2601, DOI 10.1128/JVI.02087-08 Darwin C.R., 1839, C DARWIN AUSTR, P30 De Clercq E, 2009, MED RES REV, V29, P611, DOI 10.1002/med.20153 de Oliveira Moreira D., 2013, MUSCLE NERVE Degtyar E, 2009, CELL MICROBIOL, V11, P1219, DOI 10.1111/j.1462-5822.2009.01328.x DiNatale BC, 2010, TOXICOL SCI, V115, P89, DOI 10.1093/toxsci/kfq024 Dreifus Claudia, 1998, NY TIMES Edmonds JL, 2002, ARCH OTOLARYNGOL, V128, P355, DOI 10.1001/archotol.128.4.355 Ehlert U., 2013, PSYCHONEUROENDOCRINO Eisner V, 2010, CELL CALCIUM, V48, P358, DOI 10.1016/j.ceca.2010.11.001 Engel T, 2012, FASEB J, V26, P1616, DOI 10.1096/fj.11-196089 Forstermann U, 2012, EUR HEART J, V33, P829, DOI 10.1093/eurheartj/ehr304 Fontecave M, 2004, TRENDS BIOCHEM SCI, V29, P243, DOI 10.1016/j.tibs.2004.03.007 Fuchs E J, 1996, Semin Immunol, V8, P271, DOI 10.1006/smim.1996.0035 Fulkerson PC, 2013, NAT REV DRUG DISCOV, V12, P117, DOI 10.1038/nrd3838 Garrod AE, 1902, LANCET, V2, P1616 Gray TJ, 1999, J CARDIOVASC PHARM, V33, P960, DOI 10.1097/00005344-199906000-00018 Gunderson LH, 2000, ANNU REV ECOL SYST, V31, P425, DOI 10.1146/annurev.ecolsys.31.1.425 Halassa MM, 2011, SEMIN CELL DEV BIOL, V22, P245, DOI 10.1016/j.semcdb.2011.02.008 Haynes CM, 2013, TRENDS CELL BIOL, V23, P311, DOI 10.1016/j.tcb.2013.02.002 He SQ, 2013, J PHARMACOL EXP THER, V344, P417, DOI 10.1124/jpet.112.199919 HeberKatz E, 2013, CURR TOP MICROBIOL, V367, P1, DOI 10.1007/978-3-642-35810-4 Hecker L, 2009, NAT MED, V15, P1077, DOI 10.1038/nm.2005 HSU HC, 1994, AUTOIMMUNITY, V19, P253, DOI 10.3109/08916939409071351 Hultqvist M, 2009, TRENDS IMMUNOL, V30, P201, DOI 10.1016/j.it.2009.03.004 Ibrahim D, 2006, CLIN LAB MED, V26, P67, DOI 10.1016/j.cll.2006.02.003 Jacobs SA, 2007, MED HYPOTHESES, V68, P308, DOI 10.1016/j.mehy.2006.07.023 Jiang XM, 2012, IMMUNITY, V36, P959, DOI 10.1016/j.immuni.2012.03.022 Jin S, 2009, CURR ATHEROSCLER REP, V11, P220, DOI 10.1007/s11883-009-0034-6 Junger WG, 2011, NAT REV IMMUNOL, V11, P201, DOI 10.1038/nri2938 Kannan KB, 2007, J IMMUNOL, V178, P5253, DOI 10.4049/jimmunol.178.8.5253 KAWAMURA M, 1991, JPN J PHARMACOL, V56, P543, DOI 10.1254/jjp.56.543 Kharlamov A, 2002, EXP BRAIN RES, V147, P353, DOI 10.1007/s00221-002-1251-1 Kim HP, 2006, EXPERT OPIN THER TAR, V10, P759, DOI 10.1517/14728222.10.5.759 Kim HJ, 2012, BBA-MOL CELL RES, V1823, P1604, DOI 10.1016/j.bbamcr.2012.04.008 Kivity S, 2011, CELL MOL IMMUNOL, V8, P243, DOI 10.1038/cmi.2010.73 Knight JC, 2013, TRENDS GENET, V29, P74, DOI 10.1016/j.tig.2012.10.006 Kobayashi S, 2012, FREE RADICAL BIO MED, V53, P2197, DOI 10.1016/j.freeradbiomed.2012.09.040 Korrapati MC, 2012, J PHARMACOL EXP THER, V343, P34, DOI 10.1124/jpet.112.196964 Kruidenier L, 2012, NATURE, V488, P404, DOI 10.1038/nature11262 Kuijpers T, 2012, CELL MOL LIFE SCI, V69, P7, DOI 10.1007/s00018-011-0834-z Landrigan PJ, 2012, ENVIRON HEALTH PERSP, V120, pA258, DOI 10.1289/ehp.1104285 Lee AH, 2009, CELL MOL LIFE SCI, V66, P2835, DOI 10.1007/s00018-009-0049-8 LESCH M, 1964, AM J MED, V36, P561, DOI 10.1016/0002-9343(64)90104-4 Lewerenz J, 2013, ANTIOXID REDOX SIGN, V18, P522, DOI 10.1089/ars.2011.4391 Liu C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052703 Liu GG, 2008, BIOCHEM BIOPH RES CO, V370, P651, DOI 10.1016/j.bbrc.2008.04.031 Liu GW, 2010, NAT IMMUNOL, V11, P1047, DOI 10.1038/ni.1939 Lluis JM, 2007, CANCER RES, V67, P7368, DOI 10.1158/0008-5472.CAN-07-0515 Lucki NC, 2012, ANNU REV PHYSIOL, V74, P131, DOI 10.1146/annurev-physiol-020911-153321 Lushchak VI, 2011, COMP BIOCHEM PHYS C, V153, P175, DOI 10.1016/j.cbpc.2010.10.004 MacLennan AJ, 2006, HEARING RES, V220, P38, DOI 10.1016/j.heares.2006.06.016 Mahankali M, 2011, P NATL ACAD SCI USA, V108, P19617, DOI 10.1073/pnas.1114692108 Mandi Y, 2012, J NEURAL TRANSM, V119, P197, DOI 10.1007/s00702-011-0681-y Marina N, 2013, BASIC RES CARDIOL, V108, DOI 10.1007/s00395-012-0317-x MATZINGER P, 1994, ANNU REV IMMUNOL, V12, P991, DOI 10.1146/annurev.immunol.12.1.991 Matzinger P, 2011, NAT REV IMMUNOL, V11, P221, DOI 10.1038/nri2940 McLain AL, 2013, FREE RADICAL BIO MED, V61, P161, DOI 10.1016/j.freeradbiomed.2013.03.020 Micheli V, 2011, CURR TOP MED CHEM, V11, P923, DOI 10.2174/156802611795347645 Nathanson N, 2010, AM J EPIDEMIOL, V172, P1213, DOI 10.1093/aje/kwq320 Naviaux RK, 2008, CANCER BIOL THER, V7, P1191, DOI 10.4161/cbt.7.8.6741 Naviaux RK, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057380 Naviaux RK, 2012, J PHARMACOL EXP THER, V342, P608, DOI 10.1124/jpet.112.192120 Nie XW, 2013, INT J BIOCHEM CELL B, V45, P964, DOI 10.1016/j.biocel.2013.01.017 Nielsen MJ, 2012, NAT REV GASTRO HEPAT, V9, P345, DOI 10.1038/nrgastro.2012.76 NovalesLi P, 1996, IMMUNOPHARMACOLOGY, V35, P155, DOI 10.1016/S0162-3109(96)00141-5 Novgorodov Sergei A, 2011, Int J Biochem Mol Biol, V2, P347 Nyhan WL, 2005, MOL GENET METAB, V86, P25, DOI 10.1016/j.ymgme.2005.07.027 NYHAN WL, 1969, J PEDIATR, V74, P20, DOI 10.1016/S0022-3476(69)80004-1 Oguma T, 2007, CLIN EXP ALLERGY, V37, P893, DOI 10.1111/j.1365-2222.2007.02719.x Ohta A, 2011, MITOCHONDRION, V11, P1, DOI 10.1016/j.mito.2010.08.006 Ong WY, 2010, CURR MED CHEM, V17, P2746, DOI 10.2174/092986710791859289 Panossian A, 2009, CURR CLIN PHARMACOL, V4, P198, DOI 10.2174/157488409789375311 Pastural E, 2009, PROSTAG LEUKOTR ESS, V81, P253, DOI 10.1016/j.plefa.2009.06.003 Paul L, 2013, NUTR REV, V71, P239, DOI 10.1111/nure.12014 Peng WG, 2009, P NATL ACAD SCI USA, V106, P12489, DOI 10.1073/pnas.0902531106 Peng X, 2012, ACTA PHYSIOL, V204, P219, DOI 10.1111/j.1748-1716.2011.02298.x Pimentel VC, 2013, NEUROCHEM RES, V38, P886, DOI 10.1007/s11064-013-0994-3 Rabiet MJ, 2005, EUR J IMMUNOL, V35, P2486, DOI 10.1002/eji.200526338 Riegl B, 2009, ANN NY ACAD SCI, V1162, P136, DOI 10.1111/j.1749-6632.2009.04493.x Riteau N, 2012, CELL DEATH DIS, V3, DOI 10.1038/cddis.2012.144 Romero P, 2005, GENOME BIOL, V6 Sahu D, 2012, INT IMMUNOPHARMACOL, V12, P288, DOI 10.1016/j.intimp.2011.12.003 Salminen A, 2012, AGEING RES REV, V11, P230, DOI 10.1016/j.arr.2011.12.005 Scott I, 2010, MITOCHONDRION, V10, P316, DOI 10.1016/j.mito.2010.02.005 Sentelle RD, 2012, NAT CHEM BIOL, V8, P831, DOI 10.1038/NCHEMBIO.1059 Seong SY, 2004, NAT REV IMMUNOL, V4, P469, DOI 10.1038/nri1372 Seth RB, 2005, CELL, V122, P669, DOI 10.1016/j.cell.2005.08.012 Shanmugasundaram R, 2012, POULTRY SCI, V91, P1819, DOI 10.3382/ps.2011-02129 Silva JM, 2009, NEUROBIOL DIS, V34, P357, DOI 10.1016/j.nbd.2009.02.005 Smriga M, 2003, P NATL ACAD SCI USA, V100, P15370, DOI 10.1073/pnas.2436556100 Stipanuk MH, 2011, J INHERIT METAB DIS, V34, P17, DOI 10.1007/s10545-009-9006-9 SUTTON RAL, 1993, MINER ELECTROL METAB, V19, P232 Takabe K, 2008, PHARMACOL REV, V60, P181, DOI 10.1124/pr.107.07113 Thompson CR, 2005, J IMMUNOL, V174, P3551, DOI 10.4049/jimmunol.174.6.3551 West AP, 2011, NAT REV IMMUNOL, V11, P389, DOI 10.1038/nri2975 Williams BL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024585 Wood JH, 2010, CURR OPIN PEDIATR, V22, P315, DOI 10.1097/MOP.0b013e328338da48 Xia JS, 2012, J PHYSIOL-LONDON, V590, P2285, DOI 10.1113/jphysiol.2012.227983 Yang Z, 2012, OBES REV, V13, P58, DOI 10.1111/j.1467-789X.2012.01038.x Yousefi S, 2008, NAT MED, V14, P949, DOI 10.1038/nm.1855 Zamek-Gliszczynski MJ, 2006, EUR J PHARM SCI, V27, P447, DOI 10.1016/j.ejps.2005.12.007 Zhang XY, 2011, AM J PHYSIOL-CELL PH, V301, pC451, DOI 10.1152/ajpcell.00458.2010 Zhou RB, 2011, NATURE, V469, P221, DOI 10.1038/nature09663 NR 125 TC 130 Z9 135 U1 2 U2 95 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1567-7249 EI 1872-8278 J9 MITOCHONDRION JI Mitochondrion PD MAY PY 2014 VL 16 SI SI BP 7 EP 17 DI 10.1016/j.mito.2013.08.006 PG 11 WC Cell Biology; Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Genetics & Heredity GA AH9OP UT WOS:000336472000003 PM 23981537 OA hybrid DA 2023-03-13 ER PT J AU Flowers, MD Fiscus, EL Burkey, KO Booker, FL Dubois, JJB AF Flowers, Michael D. Fiscus, Edwin L. Burkey, Kent O. Booker, Fitzgerald L. Dubois, Jean-Jacques B. TI Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone SO ENVIRONMENTAL AND EXPERIMENTAL BOTANY LA English DT Article DE snap bean; ozone sensitivity; photosynthesis; hormesis; air pollution ID ELEVATED CO2; GROWTH; ASSIMILATION; LEAVES; CONDUCTANCE; RADIATION; RESPONSES; EXPOSURE; HEALTH; FLUX AB Understanding the impact of pollutant ozone (O-3) is a concern for agricultural production. This work was undertaken as the first comparative study of the effects Of O-3 on the photosynthetic processes and yield of three snap bean (Phaseolus vulgaris L.) genotypes with known differences in sensitivity to O-3 (S156, R123 and R331). Previous information showed R123 and R331 to be tolerant and S156 sensitive. The purpose was to identify physiological subsystems that may mediate those differences in sensitivity. Plants were grown in environmentally controlled field chambers with four levels Of O-3 (0, 15, 30 and 60 nmol mol(-1)). Net assimilation (A) and fluorescence were measured throughout the growing season and yield data were collected at physiological maturity. All genotypes were tolerant of low O-3 (<30 nmol mol(-1)) but the highest O-3 significantly reduced the yield in all three, with R331 and S156 being equally sensitive on a unit exposure basis. Yield reductions were correlated with A, especially during pod filling. No genotype showed any significant response of stomatal conductance (g(s)) indicating equal O-3 fluxes into the leaves in all genotypes. Mesophyll conductance (g(m)) was affected in S156 only, where it was reduced by 55% at 60 nmol mol(-1) O-3. There was an upward trend in F-0, and a downward trend in the variable fluorescence ratio (F-v/F-m) with increasing O-3 for S156 but not for the other genotypes. S156 was the only genotype to show significant decreases in photochemical quenching (q(p)) and R123 the only one to show significant decreases in non-photochemical quenching (q(n)). The sequence of loss of Rubisco content and/or activity and changes in g(m), F-0, and F-v/F-m could not be resolved in time and may all have been the result of generalized tissue destruction rather than sequential attack on individual subsystems. S156 had the highest photosynthetic rate in clean air but appeared to have no significant capacity to protect Rubisco from attack or to up-regulate Rubisco activity at high O-3, thus there was no reserve capacity, while R123 was able to maintain both Rubisco activity and A within narrow ranges. These data suggest that S156 has comparatively little anti-oxidant capacity and/or is deficient in its ability to regulate Rubisco activity. For future studies the best contrasts for resolving questions of physiological sensitivity to O-3 would be obtained from R123 and S156. Published by Elsevier B.V. C1 USDA ARS, Plant Sci Res Unit, Raleigh, NC 27603 USA. N Carolina State Univ, USDA ARS, Plant Sci Res Unit, Raleigh, NC 27695 USA. USDA ARS, Air Qual Plant Sci Res Unit, Raleigh, NC 27603 USA. C3 United States Department of Agriculture (USDA); North Carolina State University; United States Department of Agriculture (USDA); United States Department of Agriculture (USDA) RP Fiscus, EL (corresponding author), USDA ARS, Plant Sci Res Unit, 3908 Inwood Rd, Raleigh, NC 27603 USA. EM Mike.Flowers@oregonstate.edu; Ed.Fiscus@ars.usda.gov; Kent.Burkey@ars.usda.gov; Fitz.Booker@ars.usda.gov; Jean-Jacques.Dubois@ars.usda.gov CR AMTHOR JS, 1988, NEW PHYTOL, V110, P319, DOI 10.1111/j.1469-8137.1988.tb00268.x [Anonymous], 2001, CLIMATE CHANGE 2001 Bernacchi CJ, 2001, PLANT CELL ENVIRON, V24, P253, DOI 10.1111/j.1365-3040.2001.00668.x Burkey KO, 2005, J ENVIRON QUAL, V34, P1081, DOI 10.2134/jeq2004.0008 Burkey KO, 2002, PHYSIOL PLANTARUM, V114, P387, DOI 10.1034/j.1399-3054.2002.1140308.x Calatayud A, 2001, ENVIRON POLLUT, V115, P283, DOI 10.1016/S0269-7491(01)00101-4 Castagna A, 2001, NEW PHYTOL, V152, P223, DOI 10.1046/j.0028-646X.2001.00253.x FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231 FARQUHAR GD, 1982, ANNU REV PLANT PHYS, V33, P317, DOI 10.1146/annurev.pp.33.060182.001533 Fiscus EL, 2005, PLANT CELL ENVIRON, V28, P997, DOI 10.1111/j.1365-3040.2005.01349.x Fiscus EL, 1997, J EXP BOT, V48, P307, DOI 10.1093/jxb/48.2.307 Fiscus EL, 1999, ENVIRON EXP BOT, V41, P231, DOI 10.1016/S0098-8472(99)00011-8 Fowler D, 1999, WATER AIR SOIL POLL, V116, P5, DOI 10.1023/A:1005249231882 Guidi L, 2000, ENVIRON POLLUT, V107, P349, DOI 10.1016/S0269-7491(99)00170-0 Guidi L, 2002, NEW PHYTOL, V156, P377, DOI 10.1046/j.1469-8137.2002.00533.x HARLEY PC, 1992, PLANT PHYSIOL, V98, P1429, DOI 10.1104/pp.98.4.1429 Heagle AS, 2002, J ENVIRON QUAL, V31, P2008, DOI 10.2134/jeq2002.2008 Littell R.C., 2006, SAS SYSTEM MIXED MOD, V2nd ed. Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262 LONG SP, 2002, AIR POLLUTION PLANT, P69 MCKEE IF, 1995, PHOTOSYNTH RES, V45, P111, DOI 10.1007/BF00032582 Miller CA, 1995, AM J PREV MED, V11, P24, DOI 10.1016/S0749-3797(18)30382-9 MILLER JE, 1994, J ENVIRON QUAL, V23, P83, DOI 10.2134/jeq1994.00472425002300010012x Morgan PB, 2003, PLANT CELL ENVIRON, V26, P1317, DOI 10.1046/j.0016-8025.2003.01056.x PELL EJ, 1992, NEW PHYTOL, V120, P397, DOI 10.1111/j.1469-8137.1992.tb01080.x Reid CD, 1998, J EXP BOT, V49, P1999, DOI 10.1093/jexbot/49.329.1999 ROSENQVIST E, 2003, PRACTICAL APPL CHLOR, P31, DOI DOI 10.1007/978-1-4615-0415-3_2 Sandermann H, 1996, ANNU REV PHYTOPATHOL, V34, P347, DOI 10.1146/annurev.phyto.34.1.347 NR 28 TC 118 Z9 133 U1 1 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-8472 J9 ENVIRON EXP BOT JI Environ. Exp. Bot. PD NOV PY 2007 VL 61 IS 2 BP 190 EP 198 DI 10.1016/j.envexpbot.2007.05.009 PG 9 WC Plant Sciences; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences; Environmental Sciences & Ecology GA 218VG UT WOS:000250042700011 DA 2023-03-13 ER PT J AU Eggers, C Fujitani, M Kato, R Smid, S AF Eggers, Carly Fujitani, Masaya Kato, Ryuji Smid, Scott TI Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid beta-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone SO BIOCHEMICAL PHARMACOLOGY LA English DT Article DE Amyloid beta; Cannflavin A; Diplacone; Hormesis; Mimulone; Neuroprotection ID PRENYLATED FLAVONOIDS; FIBRIL; AGGREGATION; INHIBITION AB Background: including inhibition of amyloid beta (A beta) fibrillisation and neurotoxicity of relevance to Alzheimer's disease. Cannabis contains a unique subset of prenylated flavonoids, the cannflavins. While selected conventional flavonoids have demonstrated anti-amyloid and neuroprotective potential, any neuroprotective bioactivity of prenylated flavonoids has not been determined. We evaluated the in vitro neuroprotective and anti-aggregative properties of the novel geranylated cannabis-derived flavonoid, cannflavin A against A beta 1-42 and compared it to two similarly geranylated flavonoids, mimulone and diplacone, to compare the bioactive properties of these unique flavonoids more broadly. Methods: Neuronal viability were assessed in PC12 cells biochemically using the MTT assay in the presence of each flavonoid (1-200 mu M) for 48 h. Sub-toxic threshold test concentrations of each flavonoid were then applied to cells, alone or with concomitant incubation with the lipid peroxidant tert-butyl hyrdroperoxide (t-bhp) or amyloid beta (A beta 1-42; 0-2 mu M). Fluorescent staining was used to indicate effects of A beta 1-42 on PC12 cellular morphology, while direct effects of each flavonoid on A beta fibril formation and aggregation were assessed using the Thioflavin T (ThT) fluorometric kinetic assay and transmission electron microscopy (TEM) to visualise fibril and aggregate morphology. Results: Cannflavin A demonstrated intrinsic hormetic effects on cell viability, increasing viability by 40% from 1 to 10 mu M but displaying neurotoxicity at higher (> 10-100 mu M) concentrations. Neither mimulone nor diplacone exhibited such a biphasic effect, instead showing only concentration-dependent neurotoxicity, with diplacone the more potent (from > 1 mu M). However at the lower concentrations (< 10 mu M), cannflavin A increased cell viability by up to 40%, while 10 mu M cannflavin A inhibited the neurotoxicity elicited by A beta 1-42 (0-2 mu M), reducing A beta aggregate adherence to PC-12 cells and associated neurite loss. The neuroprotective effects of cannflavin A were associated with a direct inhibition of A beta 1-42 fibril and aggregate density, evidenced by attenuated ThT fluorescence kinetics and microscopic evidence of both altered and diminished density of A beta aggregate and fibril morphology via electron microscopy. Conclusions: These findings highlight a concentration-dependent hormetic and neuroprotective role of cannflavin A against A beta-mediated neurotoxicity, associated with an inhibition of A beta fibrillisation. The efficacy of the cannabis flavone may itself direct further lead development targeting neurodegeneration in Alzheimer's disease. However, the geranylated flavonoids generally displayed a comparatively potent neurotoxicity not observed with many conventional flavonoids in vitro. C1 [Eggers, Carly; Smid, Scott] Univ Adelaide, Fac Hlth & Med Sci, Adelaide Med Sch, Discipline Pharmacol, Adelaide, SA, Australia. [Fujitani, Masaya; Kato, Ryuji] Nagoya Univ, Dept Basic Med Sci, Grad Sch Pharmaceut Sci, Nagoya, Aichi, Japan. [Kato, Ryuji] Nagoya Univ, Inst Nanolife Syst, Inst Innovat Future Soc, Div Micronano Mechatron, Nagoya, Aichi, Japan. C3 University of Adelaide; Nagoya University; Nagoya University RP Smid, S (corresponding author), Univ Adelaide, Fac Hlth Sci, Adelaide Med Sch, Discipline Pharmacol, Adelaide, SA 5005, Australia. EM scott.smid@adelaide.edu.au RI Kato, Ryuji/I-6952-2014 OI Smid, Scott/0000-0003-4192-7219 CR Akaishi T, 2008, NEUROSCI LETT, V444, P280, DOI 10.1016/j.neulet.2008.08.052 An TT, 2017, REDOX BIOL, V11, P315, DOI 10.1016/j.redox.2016.12.016 Baptista FI, 2014, ACS CHEM NEUROSCI, V5, P83, DOI 10.1021/cn400213r BARRETT ML, 1985, BIOCHEM PHARMACOL, V34, P2019, DOI 10.1016/0006-2952(85)90325-9 BARRETT ML, 1986, EXPERIENTIA, V42, P452, DOI 10.1007/BF02118655 Bieschke J, 2010, P NATL ACAD SCI USA, V107, P7710, DOI 10.1073/pnas.0910723107 Botta B, 2005, CURR MED CHEM, V12, P713, DOI 10.2174/0929867053202241 Chen X, 2014, PHARM BIOL, V52, P655, DOI 10.3109/13880209.2013.853809 Cho JK, 2012, BIOORGAN MED CHEM, V20, P2595, DOI 10.1016/j.bmc.2012.02.044 Churches QI, 2014, BIOORG MED CHEM LETT, V24, P3108, DOI 10.1016/j.bmcl.2014.05.008 Das S, 2016, FOOD FUNCT, V7, P1138, DOI [10.1039/c5fo01281c, 10.1039/C5FO01281C] Davinelli S, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-28 dos Santos TW, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092757 Ehrnhoefer DE, 2008, NAT STRUCT MOL BIOL, V15, P558, DOI 10.1038/nsmb.1437 Hanaki M, 2016, BIOORGAN MED CHEM, V24, P304, DOI 10.1016/j.bmc.2015.12.021 Hosek J, 2013, J NAT PROD, V76, P1586, DOI 10.1021/np400242e Hudson SA, 2009, FEBS J, V276, P5960, DOI 10.1111/j.1742-4658.2009.07307.x Lee Y, 2014, ACTA CRYSTALLOGR D, V70, P1357, DOI 10.1107/S1399004714002971 Marsh DT, 2017, BIOORGAN MED CHEM, V25, P3827, DOI 10.1016/j.bmc.2017.05.041 Moss MA, 2004, MOL PHARMACOL, V66, P592 Rea KA, 2019, PHYTOCHEMISTRY, V164, P162, DOI 10.1016/j.phytochem.2019.05.009 Ruthel G, 2003, J NEUROSCI, V23, P8618 Sadik CD, 2003, BIOCHEM PHARMACOL, V65, P773, DOI 10.1016/S0006-2952(02)01621-0 Sato M, 2013, J BIOL CHEM, V288, P23212, DOI 10.1074/jbc.M113.464222 Schneiderova K, 2015, PHYTOCHEM REV, V14, P799, DOI 10.1007/s11101-014-9376-y Smejkal K, 2014, PHYTOCHEM REV, V13, P245, DOI 10.1007/s11101-013-9308-2 Song YH, 2017, J ENZYM INHIB MED CH, V32, P1195, DOI 10.1080/14756366.2017.1368502 Speciale A, 2011, CURR MOL MED, V11, P770, DOI 10.2174/156652411798062395 Teixeira J, 2018, INT J BIOCHEM CELL B, V97, P98, DOI 10.1016/j.biocel.2018.02.007 Ushikubo H, 2012, NEUROSCI LETT, V513, P51, DOI 10.1016/j.neulet.2012.02.006 Vauzour D, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/914273 Vochyanova Z, 2015, FITOTERAPIA, V101, P201, DOI 10.1016/j.fitote.2015.01.012 Watjen W, 2007, FOOD CHEM TOXICOL, V45, P119, DOI 10.1016/j.fct.2006.08.008 Werz Oliver, 2014, PharmaNutrition, V2, P53, DOI 10.1016/j.phanu.2014.05.001 Wu CH, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-18935-1 Yang XM, 2016, SCI REP-UK, V6, DOI 10.1038/srep24819 Yang XM, 2015, TRENDS FOOD SCI TECH, V44, P93, DOI 10.1016/j.tifs.2015.03.007 Zima A, 2010, MOLECULES, V15, P6035, DOI 10.3390/molecules15096035 NR 38 TC 18 Z9 19 U1 2 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0006-2952 EI 1873-2968 J9 BIOCHEM PHARMACOL JI Biochem. Pharmacol. PD NOV PY 2019 VL 169 AR 113609 DI 10.1016/j.bcp.2019.08.011 PG 9 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA KB3UR UT WOS:000506425300006 PM 31437460 DA 2023-03-13 ER PT J AU Mtisi, M Gwenzi, W AF Mtisi, Munyaradzi Gwenzi, Willis TI Evaluation of the phytotoxicity of coal ash on lettuce (Lactuca sativa L.) germination, growth and metal uptake SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Bioassay; Bioavailability; Metal partitioning; Hormesis; Phytotoxicity; Salinity ID THERMAL POWER-PLANT; FLY-ASH; HEAVY-METALS; PHYSICOCHEMICAL PROPERTIES; GENOTYPIC VARIATIONS; SEWAGE-SLUDGE; SALT STRESS; SOIL; ACCUMULATION; TOXICITY AB Land application of coal ash is considered an environmentally friendly option to improve soil quality, but limited information exists on metal bioavailability and phytotoxicity of coal ash to sensitive plant species such as lettuce (Lactuca sativa L.). Germination and pot bioassay experiments were conducted at six coal application rates (0% (control), 5%, 15%, 25%, 50% and 75% v/v) to investigate the hypothesis that, coal ash will have a hormetic effect on germination, growth, metal uptake and biomass yield of lettuce, characterized by stimulatory and phytotoxicity effects at low and high application rates, respectively. Total concentrations (mg/kg) of metals in coal ash spanned several orders of magnitude, and decreased in the order: Fe (5150.5), Mn (326.0), Zn (102.6), Cu (94.7), Ni (74.7) and Pb (11.6). Bioavailable concentrations of metals were very low (0.0-14.1 mg/kg), accounting for less than 2% of the total concentrations. Coal ash had no significant effect on germination indices, but had hormetic effects on radicle elongation, evidenced by stimulatory and phytotoxicity effects at low (5-25%) and high (50-75%) application rates, respectively. Coal ash application at 50% and 75% significantly (p < 0.05) reduced lettuce growth and edible biomass yield, but lower application rates (5-25%) were similar to the unamended soil (control). Fe, Mn, Zn, Cu and Ni bioavailability and plant uptake generally decreased with increasing coal ash application rates particularly at 50% and 75%. Soil pH significantly increased (p < 0.05) from 6.5 for the control to about 8 for 75% coal ash, while electrical conductivity (EC) increased by 2-7 times to about 0.9 and 1.5 dS/m at 50% and 75% coal ash, respectively. Significant inverse linear relationship (p < 0.05; r(2) = 0.80) were observed between edible and total biomass yields and EC, suggesting that increased salinity at high coal ash application rates could account for reduced growth and biomass. Partial elemental balances showed that plant uptake of metals was very low, accounting for just less than 2% of the bioavailable concentrations, while the bulk of the metals (98-99%) remained in the soil. In conclusion, the current findings show that coal ash may have hormetic and phytotoxic effects on sensitive plant species, an observation contrary to the bulk of earlier literature documenting beneficial effects of coal ash application to soils. Long-term field studies are required to confirm the current findings based on laboratory and pot bioassay experiments. C1 [Mtisi, Munyaradzi; Gwenzi, Willis] Univ Zimbabwe, Biosyst & Environm Engn Res Grp, Dept Soil Sci & Agr Engn, POB MP167, Harare, Zimbabwe. C3 University of Zimbabwe RP Gwenzi, W (corresponding author), Univ Zimbabwe, Biosyst & Environm Engn Res Grp, Dept Soil Sci & Agr Engn, POB MP167, Harare, Zimbabwe. EM wgwenzi@agric.uz.ac.zww RI Gwenzi, Willis/AAD-4037-2019 OI Gwenzi, Willis/0000-0003-3149-1052 FU British Ecological Society (BES) - Ecologists in Africa [5774-6818] FX We thank the two anonymous reviewers for their detailed and insightful comments that greatly improved the quality of the manuscript and overall presentation. We also thank Technical staff from the Department of Soil Science and Agricultural Engineering, University of Zimbabwe for providing laboratory assistance. Left-over laboratory reagents were provided by a research project funded by the British Ecological Society (BES) - Ecologists in Africa Grant No.: 5774-6818 awarded to WG, to which we are very grateful. BES played no role in research process and decision to publish the manuscript, and authors are solely responsible for research design, implementation and decision to publish the manuscript. CR Akinci IE, 2010, AFR J BIOTECHNOL, V9, P4589 Alexander PD, 2006, ENVIRON POLLUT, V144, P736, DOI 10.1016/j.envpol.2006.03.001 Ametepey S. T., 2018, International Journal of Food Contamination, V5, DOI 10.1186/s40550-018-0067-0 [Anonymous], 2005, 112692 ISO Arivazhagan K., 2011, WORLD COAL ASH C MAY, P9 Aroca R, 2013, J PLANT PHYSIOL, V170, P47, DOI 10.1016/j.jplph.2012.08.020 ASTM (American Society for Testing and Materials), 2003, E196302 ASTM Babbitt CW, 2008, INT J LIFE CYCLE ASS, V13, P555, DOI 10.1007/s11367-008-0026-8 Baldantoni D, 2016, ECOTOX ENVIRON SAFE, V123, P89, DOI 10.1016/j.ecoenv.2015.05.019 Basu M, 2009, PROG NAT SCI-MATER, V19, P1173, DOI 10.1016/j.pnsc.2008.12.006 Benzarti S, 2008, ENVIRON TOXICOL, V23, P607, DOI 10.1002/tox.20405 Boriss H., 2005, COMMODITY PROFILE LE Bouguerra S, 2016, ECOTOX ENVIRON SAFE, V129, P291, DOI 10.1016/j.ecoenv.2016.03.038 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Chaudhuri D, 2003, ENVIRON GEOL, V44, P419, DOI 10.1007/s00254-003-0777-2 Cleuvers M, 2003, TOXICOL LETT, V142, P185, DOI 10.1016/S0378-4274(03)00068-7 Evelin H, 2009, ANN BOT-LONDON, V104, P1263, DOI 10.1093/aob/mcp251 Galvin AP, 2013, CONSTR BUILD MATER, V40, P1207, DOI 10.1016/j.conbuildmat.2011.12.091 Gavina A, 2016, SCI TOTAL ENVIRON, V547, P413, DOI 10.1016/j.scitotenv.2015.12.163 Gavina A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059748 Bagur-Gonzalez MG, 2011, J SOIL SEDIMENT, V11, P281, DOI 10.1007/s11368-010-0285-4 Gupta AK, 2012, SUSTAIN AGR REV, V8, P269, DOI 10.1007/978-94-007-1905-7_11 Gupta DK, 2002, J PLANT RES, V115, P401, DOI 10.1007/s10265-002-0057-3 Gwenzi W, 2017, MINE WATER ENVIRON, V36, P520, DOI 10.1007/s10230-017-0439-3 Gwenzi W, 2016, WASTE MANAGE, V49, P114, DOI 10.1016/j.wasman.2015.12.029 Gwenzi W, 2016, CHEMOSPHERE, V147, P144, DOI 10.1016/j.chemosphere.2015.12.102 Gwenzi W, 2011, PLANT SOIL, V344, P255, DOI 10.1007/s11104-011-0744-8 Hillis DG, 2011, ARCH ENVIRON CON TOX, V60, P220, DOI 10.1007/s00244-010-9624-0 Howladar MF, 2016, ENERGY ECOL ENVIRON, V1, P233, DOI 10.1007/s40974-016-0022-y *ISO, 1993, 112691 ISO Izquierdo M, 2012, INT J COAL GEOL, V94, P54, DOI 10.1016/j.coal.2011.10.006 Jadhav UU, 2015, APPL BIOCHEM BIOTECH, V175, P870, DOI 10.1007/s12010-014-1323-2 Jayasinghe GY, 2012, J PLANT NUTR, V35, P453, DOI 10.1080/01904167.2012.639924 Jiang M, 2008, LETT APPL MICROBIOL, V47, P561, DOI 10.1111/j.1472-765X.2008.02454.x Kabata-Pendias A., 2011, TRACE ELEMENTS SOILS, V4th, DOI [10.1201/b10158, DOI 10.1201/B10158] Kapustka Larry, 2008, Integrated Environmental Assessment and Management, V4, P290, DOI 10.1897/IEAM_2007-084.1 Karuppiah M, 1997, J HAZARD MATER, V56, P53, DOI 10.1016/S0304-3894(97)00034-4 Kaur R, 2015, PARTICUL SCI TECHNOL, V33, P76, DOI 10.1080/02726351.2014.938378 Kikuchi R, 1999, RESOUR CONSERV RECY, V27, P333, DOI 10.1016/S0921-3449(99)00030-0 Kosmatka S. H., 2002, DES CONTROL CONCR MI LASKOWSKI R, 1995, OIKOS, V73, P140, DOI 10.2307/3545738 Leon V, 2005, ANN BOT-LONDON, V95, P609, DOI 10.1093/aob/mci066 Linder G, 1989, EPA600D89109 LINDSAY WL, 1978, SOIL SCI SOC AM J, V42, P421, DOI 10.2136/sssaj1978.03615995004200030009x Lors C, 2010, ENVIRON POLLUT, V158, P2640, DOI 10.1016/j.envpol.2010.05.005 Mahale NK, 2012, POL J ENVIRON STUD, V21, P1713 Marchiol L, 2004, ENVIRON POLLUT, V132, P21, DOI 10.1016/j.envpol.2004.04.001 Matsi T, 1999, ENVIRON POLLUT, V104, P107, DOI 10.1016/S0269-7491(98)00145-6 Mellem JJ, 2009, J ENVIRON SCI HEAL A, V44, P568, DOI 10.1080/10934520902784583 Musyoka NM, 2013, MINER ENG, V53, P9, DOI 10.1016/j.mineng.2013.06.019 Nyamapfene K., 1991, SOILS ZIMBABWE, P179 OECD/OCDE, 2006, OECD OCDE 227 OECD G OECD/OCDE, 2006, OECD OCDE 208 OECD G Onliikara A., 2008, NZ J CROP HORTIC SCI, V36, P265, DOI [10.1080/01140670809510243, DOI 10.1080/01140670809510243] Pandard P, 2006, SCI TOTAL ENVIRON, V363, P114, DOI 10.1016/j.scitotenv.2005.12.016 Pequerul A., 1993, Optimization of plant nutrition: refereed papers from the Eighth International Colloquium for the Optimization of Plant Nutrition, 31 August-8 September 1992, Lisbon, Portugal., P3 Prasad MNV, 1999, HEAVY METAL STRESS P, P117, DOI [DOI 10.1007/978-3-662-07745-0, 10.1007/978-3-662-07745-0] Rautaray SK, 2003, BIORESOURCE TECHNOL, V90, P275, DOI 10.1016/S0960-8524(03)00132-9 Ray P, 2005, INT J PHYTOREMEDIAT, V7, P199, DOI 10.1080/16226510500214673 Rayment GE, 1992, AUSTR LAB HDB SOIL W, V3 Sacristan D, 2015, SCI HORTIC-AMSTERDAM, V193, P346, DOI 10.1016/j.scienta.2015.06.051 Sahoo PK, 2013, APPL WATER SCI, V3, P567, DOI 10.1007/s13201-013-0113-2 Sajwan KS, 2003, ADV ENVIRON RES, V8, P77, DOI 10.1016/S1093-0191(02)00137-5 Sevugaperumal R., 2015, BIOCH PHYSL, V4, P172, DOI [10.4172/2168-9652.1000172, DOI 10.4172/2168-9652.1000172] Shaheen SM, 2014, J ENVIRON MANAGE, V145, P249, DOI 10.1016/j.jenvman.2014.07.005 Singh JS, 2011, APPL SOIL ECOL, V47, P133, DOI 10.1016/j.apsoil.2010.11.011 Singh RP, 2010, REV ENVIRON SCI BIO, V9, P345, DOI 10.1007/s11157-010-9218-3 Singh S. J., 2013, ECOTOX ENVIRON SAFE, V89, P45 Skordas G., 2006, ENVIRON TOXICOL, V21, P317 Smith J. L., 1996, SOIL SCI SOC AM J SP Soares C, 2016, CHEMOSPHERE, V165, P442, DOI 10.1016/j.chemosphere.2016.09.053 Su DC, 2004, ENVIRON INT, V29, P895, DOI 10.1016/S0160-4120(03)00052-7 Tsiridis V, 2012, ECOTOX ENVIRON SAFE, V84, P212, DOI 10.1016/j.ecoenv.2012.07.011 Ukwattage NL, 2013, FUEL, V109, P400, DOI 10.1016/j.fuel.2013.02.016 Valentinuzzi F, 2015, ENVIRON EXP BOT, V118, P85, DOI 10.1016/j.envexpbot.2015.06.010 Valerio ME, 2007, SCI TOTAL ENVIRON, V378, P63, DOI 10.1016/j.scitotenv.2007.01.007 VanderHoeven N, 1997, ENVIRONMETRICS, V8, P255, DOI 10.1002/(SICI)1099-095X(199705)8:3<255::AID-ENV246>3.0.CO;2-P Visioli G, 2014, B ENVIRON CONTAM TOX, V92, P490, DOI 10.1007/s00128-013-1166-5 WHO/FAO (World Health Organization/Food and Agriculture Organization), 2007, EV CERT FOOD ADD CON, V68 Yang JX, 2010, J ENVIRON SCI, V22, P1246, DOI 10.1016/S1001-0742(09)60245-X Yunusa IAM, 2012, CRIT REV ENV SCI TEC, V42, P559, DOI 10.1080/10643389.2010.520236 Yunusa IAM, 2011, J SOIL SEDIMENT, V11, P423, DOI 10.1007/s11368-010-0312-5 Zacco A, 2014, ENVIRON CHEM LETT, V12, P153, DOI 10.1007/s10311-014-0454-6 NR 83 TC 15 Z9 17 U1 0 U2 63 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD APR 15 PY 2019 VL 170 BP 750 EP 762 DI 10.1016/j.ecoenv.2018.12.047 PG 13 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA HJ0ZC UT WOS:000456890700090 PM 30583286 DA 2023-03-13 ER PT J AU Tapia, PC AF Tapia, PC TI Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: "Mitohormesis" for health and vitality SO MEDICAL HYPOTHESES LA English DT Article ID OXIDATIVE STRESS; CAENORHABDITIS-ELEGANS; ANTIOXIDANT NUTRIENTS; VOLATILE ANESTHETICS; MEDIATED APOPTOSIS; GENE-EXPRESSION; CANCER CELLS; LIFE-SPAN; CARDIOPROTECTION; PROTEIN AB The precise mechanistic sequence producing the beneficial effects on health and lifespan seen with interventions as diverse as caloric restriction, intermittent fasting, exercise, and consumption of dietary phytonutrients is still under active characterization, with large swaths of the research community kept in relative isolation from one another. Among the explanatory models capable of assisting in the identification of precipitating elements responsible for beneficial influences on physiology seen in these states, the hormesis perspective on biological systems under stress has yielded considerable insight into likely evolutionarily consistent organizing principles functioning in all four conditions. Recent experimental findings provide the tantalizing initial lodestones for an entirety new research front examining molecular substrates of stress resistance. In this novel body of research, a surprising new twist has emerged: Reactive oxygen species, derived from the mitochondrial electron transport system, may be necessary triggering elements for a sequence of events that result in benefits ranging from the transiently cytoprotective to organismal-level longevity. With the recent appreciation that reactive oxygen species and reactive nitrogen species function as signaling elements in a interconnected matrix of signal transduction, the entire basis of many widely accepted theories of aging that predominated in the past may need to be reconsidered to facilitate the formulation of an new perspective more correctly informed by the most contemporaneous experimental findings. This perspective, the mitohormesis theory, can be used in many disparate domains of inquiry to potentially explain previous findings, as well as point to new targets of research. The utility of this perspective for research on aging is significant, but beyond that this perspective emphasizes the pressing need to rigorously characterize the specific contribution of the stoichiometry of reactive oxygen species and reactive nitrogen species in the various compartments of the cell to cytoprotection and vitality. Previous findings regarding the influences of free radical chemistry on cellular physiology may have represented assessments examining the consequences of isolated elevation of signaling elements within a larger signal transductive apparatus, rather than definitive characterizations of the only modality of reactive oxygen species (and reactive nitrogen species) influence. In applying this perspective, it may be necessary for the research community, as well as the practicing clinician, to engender a more sanguine perspective on organette level physiology, as it is now plausible that such entities have an evolutionarily orchestrated capacity to self-regulate that may be pathologically disturbed by overzealous use of antioxidants, particularly in the healthy. (c) 2005 Elsevier Ltd. All rights reserved. C1 Univ Alabama, Sch Med, Med Student Serv, Birmingham, AL 35294 USA. C3 University of Alabama System; University of Alabama Birmingham RP Tapia, PC (corresponding author), Univ Alabama, Sch Med, Med Student Serv, VH P-100,1530 3rd Ave S, Birmingham, AL 35294 USA. EM ptapia@uab.edu FU Intramural NIH HHS Funding Source: Medline CR Anson RM, 2004, AGING CELL, V3, P29, DOI 10.1111/j.1474-9728.2003.00077.x Anson RM, 2003, P NATL ACAD SCI USA, V100, P6216, DOI 10.1073/pnas.1035720100 Anthony JR, 2005, P NATL ACAD SCI USA, V102, P6502, DOI 10.1073/pnas.0502225102 Ascensao A, 2005, INT J SPORTS MED, V26, P258, DOI 10.1055/s-2005-837570 Bienengraeber MW, 2005, VASC PHARMACOL, V42, P243, DOI 10.1016/j.vph.2005.02.005 Blackstone NW, 2005, P ROY SOC B-BIOL SCI, V272, P527, DOI 10.1098/rspb.2004.2981 Byfield MP, 2005, J BIOL CHEM, V280, P33076, DOI 10.1074/jbc.M507201200 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 CAREY FA, 1990, ADV ORGANIC CHEM Ceaser EK, 2004, BIOCHEM SOC T, V32, P151, DOI 10.1042/BST0320151 Connor KM, 2005, J BIOL CHEM, V280, P16916, DOI 10.1074/jbc.M410690200 de Grey ADNJ, 2002, EUR J BIOCHEM, V269, P2003, DOI 10.1046/j.1432-1033.2002.02868.x De Hert SG, 2005, ANESTH ANALG, V100, P1584, DOI 10.1213/01.ANE.0000153483.61170.0C Deng YR, 2002, PROTOPLASMA, V219, P160, DOI 10.1007/s007090200017 Dewald O, 2005, CIRCULATION, V112, P407, DOI 10.1161/CIRCULATIONAHA.105.536318 FUMAROLA C, 2005, CELL DEATH DIFFER Gao B., 1987, Computers in Physics, V1, P70 Gomez-Cabrera MC, 2005, J PHYSIOL-LONDON, V567, P113, DOI 10.1113/jphysiol.2004.080564 Gu YP, 2004, FEBS LETT, V577, P357, DOI 10.1016/j.febslet.2004.10.040 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Heinzel FR, 2005, CIRC RES, V97, P583, DOI 10.1161/01.RES.0000181171.65293.65 HERBERT KE, 2005, EUR J NUTR Hou DX, 2005, ARCH BIOCHEM BIOPHYS, V440, P101, DOI 10.1016/j.abb.2005.06.002 Hu FB, 2004, NEW ENGL J MED, V351, P2694, DOI 10.1056/NEJMoa042135 JANOFF A, 1964, INT ANESTHESIOL CLIN, V97, P251 Jazwinski SM, 2005, GENE, V354, P22, DOI 10.1016/j.gene.2005.03.040 JI LL, 1995, FREE RADICAL BIO MED, V18, P1079, DOI 10.1016/0891-5849(94)00212-3 JUNG EM, 2005, CARCINOGENESIS Kimura S, 2005, HYPERTENSION, V45, P860, DOI 10.1161/01.HYP.0000163462.98381.7f Kondo M, 2005, MECH AGEING DEV, V126, P637, DOI 10.1016/j.mad.2004.11.011 Kothan S, 2004, CAN J PHYSIOL PHARM, V82, P1084, DOI [10.1139/y04-113, 10.1139/Y04-113] Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125 Lee CK, 2004, FREE RADICAL BIO MED, V36, P1043, DOI 10.1016/j.freeradbiomed.2004.01.015 Leek BT, 2001, AM J PHYSIOL-REG I, V280, pR441, DOI 10.1152/ajpregu.2001.280.2.R441 Liu J, 2005, STROKE, V36, P1264, DOI 10.1161/01.STR.0000166180.91042.02 MACHLIN LJ, 1987, FASEB J, V1, P441, DOI 10.1096/fasebj.1.6.3315807 Madamanchi NR, 2001, ARTERIOSCL THROM VAS, V21, P321, DOI 10.1161/01.ATV.21.3.321 Maemura K, 2005, IMMUNOL CELL BIOL, V83, P336, DOI 10.1111/j.1440-1711.2005.01323.x Miller ER, 2005, ANN INTERN MED, V142, P37, DOI 10.7326/0003-4819-142-1-200501040-00110 Mouria M, 2002, INT J CANCER, V98, P761, DOI 10.1002/ijc.10202 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 MUSIEK ES, 2005, J BIOL CHEM, DOI DOI 10.1074JBC.M504785200 Ogawa K, 2004, ANAT REC PART A, V278A, P533, DOI 10.1002/ar.a.20024 OLOGHLEN A, 2005, CELL SIGNAL Orhan H, 2004, FREE RADICAL RES, V38, P1269, DOI 10.1080/10715760400013763 Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023 PLETJUSHKINA OY, 2005, CELL DEATH DIFFER Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Ridnour LA, 2005, FREE RADICAL BIO MED, V38, P1361, DOI 10.1016/j.freeradbiomed.2005.01.023 Santra S, 2004, ANN NEUROL, V56, P662, DOI 10.1002/ana.20240 Schoeler S, 2005, BIOCHEM BIOPH RES CO, V332, P43, DOI 10.1016/j.bbrc.2005.04.086 SHANG T, 2005, J BIOL CHEM Shao BH, 2005, J BIOL CHEM, V280, P29311, DOI 10.1074/jbc.M504040200 Singh SV, 2005, J BIOL CHEM, V280, P19911, DOI 10.1074/jbc.M412443200 Smith EM, 2005, J BIOL CHEM, V280, P18717, DOI 10.1074/jbc.M414499200 Sofer A, 2005, MOL CELL BIOL, V25, P5834, DOI 10.1128/MCB.25.14.5834-5845.2005 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Storz P, 2005, MOL CELL BIOL, V25, P8520, DOI 10.1128/MCB.25.19.8520-8530.2005 Strasser EM, 2005, BIOCHEM PHARMACOL, V70, P552, DOI 10.1016/j.bcp.2005.05.030 Sumikawa E, 2005, BIOCHEM BIOPH RES CO, V335, P558, DOI 10.1016/j.bbrc.2005.07.106 Tang L, 2005, MOL CANCER THER, V4, P1250, DOI 10.1158/1535-7163.MCT-05-0041 Tettweiler G, 2005, GENE DEV, V19, P1840, DOI 10.1101/gad.1311805 Tieu K, 2003, J CLIN INVEST, V112, P892, DOI 10.1172/JCI200318797 Tirosh O, 2003, EXP GERONTOL, V38, P955, DOI 10.1016/S0531-5565(03)00151-7 Ventura N, 2005, AGING CELL, V4, P109, DOI 10.1111/j.1474-9726.2005.00149.x Wang GS, 2005, ACTA MATH SCI, V25, P7, DOI 10.1016/S0252-9602(17)30256-4 Wang X, 2004, MECH AGEING DEV, V125, P237, DOI 10.1016/j.mad.2003.12.007 YE L, 1987, CARCINOGENESIS, P22 Zhang XM, 2005, CANCER CHEMOTH PHARM, V55, P251, DOI 10.1007/s00280-004-0863-5 NR 69 TC 146 Z9 147 U1 0 U2 35 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 0306-9877 J9 MED HYPOTHESES JI Med. Hypotheses PY 2006 VL 66 IS 4 BP 832 EP 843 DI 10.1016/j.mehy.2005.09.009 PG 12 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 024KS UT WOS:000236194500025 PM 16242247 DA 2023-03-13 ER PT J AU Wang, CY Wu, BD Jiang, K Zhou, JW AF Wang, Congyan Wu, Bingde Jiang, Kun Zhou, Jiawei TI Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels SO ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY LA English DT Article DE Invasive plant species; Leaf functional traits; Red amaranth; Redroot pigweed; Simulated acid deposition ID LEAF-AREA; SOLIDAGO-CANADENSIS; SEED-GERMINATION; LACTUCA-SATIVA; PLANT; GROWTH; RAIN; PHOTOSYNTHESIS; RETROFLEXUS; COMMUNITIES AB Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most treatments. Thus, competitive performance arose in most treatments when the two species were grown together. This may be due to the enhanced competitive intensity under interspecific coexistence. However, the values of the relative competition intensity of the leaf functional traits between amaranth and pigweed were all higher than zero under the pH 5.6 simulated acid deposition treatment. Thus, interspecific facilitation occurs when the two species are co-cultivated under the pH 5.6 simulated acid deposition treatment. This may be due the positive nutritional effects induced in the pH 5.6 simulated acid deposition treatment. C1 [Wang, Congyan] Jiangsu Univ, Acad Environm Hlth & Ecol Secur, Inst Environm & Ecol, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China. [Wang, Congyan] Jiangsu Univ, Sch Environm & Safety Engn, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China. C3 Jiangsu University; Jiangsu University RP Wang, CY (corresponding author), Jiangsu Univ, Acad Environm Hlth & Ecol Secur, Inst Environm & Ecol, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China.; Wang, CY (corresponding author), Jiangsu Univ, Sch Environm & Safety Engn, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China. EM liuyuexue623@163.com RI Wang, Congyan/B-1299-2010 OI Wang, Congyan/0000-0002-6132-3319 FU National Key Research & Development Program of China [2017YFC1200103]; National Natural Science Foundation of China [31300343]; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment FX This study was supported by National Key Research & Development Program of China (2017YFC1200103), National Natural Science Foundation of China (31300343), and Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. We are very grateful to the anonymous reviewer for the insightful and constructive comments that greatly improved this manuscript. CR Armas C, 2004, ECOLOGY, V85, P2682, DOI 10.1890/03-0650 Bultynck L, 2004, ANN BOT-LONDON, V94, P99, DOI 10.1093/aob/mch110 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Chen J, 2013, PLANT PHYSIOL BIOCH, V64, P41, DOI 10.1016/j.plaphy.2012.12.012 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Dwyer JM, 2014, ECOLOGY, V95, P399, DOI 10.1890/13-0412.1 Fan SF, 2013, HYDROBIOLOGIA, V711, P129, DOI 10.1007/s10750-013-1471-3 Feng YL, 2007, ACTA OECOL, V31, P40, DOI 10.1016/j.actao.2006.03.009 Funk JL, 2016, ECOLOGY, V97, P75, DOI 10.1890/15-0974.1 Gallagher RV, 2015, CONSERV BIOL, V29, P360, DOI 10.1111/cobi.12399 Gleason SM, 2004, TREE PHYSIOL, V24, P1087, DOI 10.1093/treephys/24.10.1087 Gross N, 2007, J ECOL, V95, P1296, DOI 10.1111/j.1365-2745.2007.01303.x Gross N, 2013, FUNCT ECOL, V27, P1262, DOI 10.1111/1365-2435.12120 Grotkopp E, 2010, J APPL ECOL, V47, P1320, DOI 10.1111/j.1365-2664.2010.01878.x Gruntman M, 2014, BIOL INVASIONS, V16, P141, DOI 10.1007/s10530-013-0509-9 Hang ZH, 2016, ZHENJIANG YB, V25, P27 He WM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031170 Ishii H, 2010, ECOL RES, V25, P715, DOI 10.1007/s11284-009-0668-4 Jasim B, 2017, SAUDI PHARM J, V25, P443, DOI 10.1016/j.jsps.2016.09.012 Jeong N, 2011, THEOR APPL GENET, V122, P865, DOI 10.1007/s00122-010-1492-5 Jiang MS, 2011, J METEOR SCI, V31, P99 Kardel F, 2010, ENVIRON POLLUT, V158, P788, DOI 10.1016/j.envpol.2009.10.006 LeBel P., 2013, American Journal of Plant Sciences, V4, P1278, DOI 10.4236/ajps.2013.46158 Leishman MR, 2007, NEW PHYTOL, V176, P635, DOI 10.1111/j.1469-8137.2007.02189.x Liu FD, 2010, ACTA OECOL, V36, P149, DOI 10.1016/j.actao.2009.11.004 Mandak B, 2011, FLORA, V206, P697, DOI 10.1016/j.flora.2011.01.010 Marteinsdottir B, 2014, J VEG SCI, V25, P77, DOI 10.1111/jvs.12058 Meng FQ, 2014, OECOLOGIA, V174, P13, DOI 10.1007/s00442-013-2746-0 Mishra A., 2012, Journal of Environmental Research and Development, V6, P1127 Ordonez A, 2014, GLOBAL ECOL BIOGEOGR, V23, P264, DOI 10.1111/geb.12123 Pabian SE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039755 Powell KI, 2013, SCIENCE, V339, P316, DOI 10.1126/science.1226817 Qing H, 2011, ACTA OECOL, V37, P23, DOI 10.1016/j.actao.2010.11.002 Scheepens JF, 2010, OECOLOGIA, V164, P141, DOI 10.1007/s00442-010-1650-0 Sheppard CS, 2014, PLANT ECOL, V215, P1527, DOI 10.1007/s11258-014-0411-2 Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x Wang C, 2017, S AFR J BOT, V111, P17, DOI 10.1016/j.sajb.2017.03.019 Wang CY, 2018, SCI TOTAL ENVIRON, V631-632, P702, DOI 10.1016/j.scitotenv.2018.03.061 Wang CY, 2018, ECOL ENG, V112, P55, DOI 10.1016/j.ecoleng.2017.12.025 Wang CY, 2017, AGR ECOSYST ENVIRON, V247, P329, DOI 10.1016/j.agee.2017.07.012 Wang CY, 2017, SCI NAT-HEIDELBERG, V104, DOI 10.1007/s00114-017-1482-4 Wang CY, 2017, POL J ENVIRON STUD, V26, P355, DOI 10.15244/pjoes/64240 Wang CY, 2017, J FORESTRY RES, V28, P241, DOI 10.1007/s11676-016-0290-6 Wang CY, 2016, CLEAN-SOIL AIR WATER, V44, P1591, DOI 10.1002/clen.201600144 Wang CY, 2016, POL J ENVIRON STUD, V25, P1279, DOI 10.15244/pjoes/61788 Wang CY, 2016, ECOTOXICOLOGY, V25, P555, DOI 10.1007/s10646-016-1614-1 Wang CY, 2016, POL J ENVIRON STUD, V25, P333, DOI 10.15244/pjoes/60328 Wang CY, 2010, SCI TOTAL ENVIRON, V408, P2706, DOI 10.1016/j.scitotenv.2010.03.023 Wang TJ, 2007, TERR ATMOS OCEAN SCI, V18, P995, DOI 10.3319/TAO.2007.18.5.995(A) Wang WX, 2009, PROG CHEM, V21, P266 Wang Z, 2012, PHOTOSYNTHETICA, V50, P337, DOI 10.1007/s11099-012-0039-1 Xie S.Y., 2012, ENV MONITOR FOREWARN, V4, P33 Xu HQ, 2015, ENVIRON SCI POLLUT R, V22, P18260, DOI 10.1007/s11356-015-5066-6 Yang Y, 2011, J PHYTOPATHOL, V159, P635, DOI 10.1111/j.1439-0434.2011.01808.x Yu HL, 2017, ENVIRON POLLUT, V231, P182, DOI 10.1016/j.envpol.2017.08.014 Zhang JE, 2007, CHEMOSPHERE, V67, P2131, DOI 10.1016/j.chemosphere.2006.12.095 Zhang YJ, 2012, NAT HAZARDS, V64, P1671, DOI 10.1007/s11069-012-0319-x NR 58 TC 16 Z9 17 U1 2 U2 49 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1146-609X EI 1873-6238 J9 ACTA OECOL JI Acta Oecol.-Int. J. Ecol. PD MAY PY 2018 VL 89 BP 32 EP 37 DI 10.1016/j.actao.2018.04.006 PG 6 WC Ecology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GI9YP UT WOS:000434901800005 DA 2023-03-13 ER PT J AU Zhang, YY Xu, G Jiang, Y Ma, C Yang, GQ AF Zhang, Yuanyuan Xu, Gang Jiang, Yu Ma, Chao Yang, Guoqing TI Sublethal Effects of Imidacloprid on Fecundity, Apoptosis and Virus Transmission in the Small Brown Planthopper Laodelphax striatellus SO INSECTS LA English DT Article DE imidacloprid; Laodelphax striatellus; fecundity; apoptosis; virus transmission ID PROGRAMMED CELL-DEATH; SOGATELLA-FURCIFERA; HEMIPTERA DELPHACIDAE; BIOLOGICAL TRAITS; INDUCED HORMESIS; GENE-EXPRESSION; MYZUS-PERSICAE; INSECTICIDE; REPRODUCTION; SUSCEPTIBILITY AB Simple Summary The small brown planthopper (SBPH) Laodelphax striatellus is an economically important pest in Asia, especially in China. Imidacloprid, a neonicotinoid insecticide, is commonly applied in rice fields to control the planthoppers. However, the widespread application of imidacloprid also has led to the development of resistance and to other potentially negative effects on crop protection. The sublethal effects of imidacloprid have been reported in many insects. Here, we investigated the potential effects of different sublethal concentrations of imidacloprid on SBPH and found that imidacloprid could affect the fecundity, apoptosis and virus transmission in the viruliferous SBPH. The results indicated that sublethal concentrations of imidacloprid may increase the fecundity of SBPH and the impact of insecticides on the transmission of plant viruses by insects should be considered when insecticides are applied to manage insect pests. Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies. C1 [Zhang, Yuanyuan; Xu, Gang; Jiang, Yu; Ma, Chao; Yang, Guoqing] Yangzhou Univ, Coll Hort & Plant Protect, Yangzhou 225009, Jiangsu, Peoples R China. [Yang, Guoqing] Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain C, Yangzhou 225009, Jiangsu, Peoples R China. [Yang, Guoqing] Yangzhou Univ, Minist Educ China, Joint Int Res Lab Agr & Agriprod Safety, Yangzhou 225009, Jiangsu, Peoples R China. C3 Yangzhou University; Yangzhou University; Ministry of Education, China; Yangzhou University RP Xu, G; Yang, GQ (corresponding author), Yangzhou Univ, Coll Hort & Plant Protect, Yangzhou 225009, Jiangsu, Peoples R China.; Yang, GQ (corresponding author), Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain C, Yangzhou 225009, Jiangsu, Peoples R China.; Yang, GQ (corresponding author), Yangzhou Univ, Minist Educ China, Joint Int Res Lab Agr & Agriprod Safety, Yangzhou 225009, Jiangsu, Peoples R China. EM zhangyuanyuan182@126.com; xugang@yzu.edu.cn; jiangyu1126@outlook.com; machaoyzu@163.com; gqyang@yzu.edu.cn RI zhang, yuanyuan/GYA-4428-2022; Xu, Gang/P-7444-2019 OI Xu, Gang/0000-0002-7379-8485 FU Natural Science Foundation of the Jiangsu Higher Education Institutions of China [20KJB210010]; Lvyangjinfeng Talent Program of Yangzhou FX FundingThis work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB210010), and the Lvyangjinfeng Talent Program of Yangzhou. CR Bantz A, 2018, CURR OPIN INSECT SCI, V30, P73, DOI 10.1016/j.cois.2018.09.008 Bass C, 2015, PESTIC BIOCHEM PHYS, V121, P78, DOI 10.1016/j.pestbp.2015.04.004 Biondi A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076548 Brandt A, 2016, J INSECT PHYSIOL, V86, P40, DOI 10.1016/j.jinsphys.2016.01.001 Cao Y, 2019, INSECTS, V10, DOI 10.3390/insects10010003 Castellanos NL, 2021, ECOTOXICOLOGY, V30, P678, DOI 10.1007/s10646-021-02388-4 Cooper DM, 2009, APOPTOSIS, V14, P247, DOI 10.1007/s10495-009-0322-1 Coulon M, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220703 Dai CC, 2021, INSECTS, V12, DOI [10.3390/insects12080681, 10.3390/insects12080681/] Deng JH, 2013, VIROL J, V10, DOI 10.1186/1743-422X-10-310 Di Prisco G, 2013, P NATL ACAD SCI USA, V110, P18466, DOI 10.1073/pnas.1314923110 Diao QY, 2018, SCI TOTAL ENVIRON, V630, P487, DOI 10.1016/j.scitotenv.2018.02.258 Doublet V, 2015, ENVIRON MICROBIOL, V17, P969, DOI 10.1111/1462-2920.12426 Farder-Gomes CF, 2021, SCI TOTAL ENVIRON, V794, DOI 10.1016/j.scitotenv.2021.148678 Farder-Gomes CF, 2021, SCI TOTAL ENVIRON, V774, DOI 10.1016/j.scitotenv.2021.145679 Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P269, DOI 10.1016/j.pestbp.2010.06.018 Gregorc A, 2011, PESTIC BIOCHEM PHYS, V99, P200, DOI 10.1016/j.pestbp.2010.12.005 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo Y, 2018, INSECT MOL BIOL, V27, P796, DOI 10.1111/imb.12518 He C, 2019, PESTIC BIOCHEM PHYS, V153, P136, DOI 10.1016/j.pestbp.2018.11.014 He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762 Huo Y, 2019, PHILOS T R SOC B, V374, DOI 10.1098/rstb.2018.0312 Huo Y, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1006909 Huo Y, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1003949 Jia DS, 2018, CURR OPIN VIROL, V28, P127, DOI 10.1016/j.coviro.2017.12.004 Ju JF, 2017, INSECT BIOCHEM MOLEC, V85, P11, DOI 10.1016/j.ibmb.2017.04.002 Kang ZW, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01729 Landmann F, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000758 Li WQ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204097 Li Y, 2020, PLOS PATHOG, V16, DOI 10.1371/journal.ppat.1008710 Liao X, 2019, CROP PROT, V118, P6, DOI 10.1016/j.cropro.2018.12.005 Liu BM, 2021, J ECON ENTOMOL, V114, P1568, DOI 10.1093/jee/toab122 Liu BM, 2021, J ECON ENTOMOL, V114, P1072, DOI 10.1093/jee/toab040 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lord CEN, 2012, EUR J CELL BIOL, V91, P603, DOI 10.1016/j.ejcb.2012.02.002 Lu WW, 2017, PEST MANAG SCI, V73, P1709, DOI 10.1002/ps.4518 Martinez LC, 2019, ECOTOX ENVIRON SAFE, V167, P69, DOI 10.1016/j.ecoenv.2018.09.124 Mpakou VE, 2011, DEV GROWTH DIFFER, V53, P804, DOI 10.1111/j.1440-169X.2011.01288.x Pang SM, 2020, TOXICS, V8, DOI 10.3390/toxics8030065 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Richardson H, 2002, J IMMUNOL METHODS, V265, P21, DOI 10.1016/S0022-1759(02)00068-6 Rix RR, 2020, J ECON ENTOMOL, V113, P2179, DOI 10.1093/jee/toaa169 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Roditakis E, 2017, PEST MANAG SCI, V73, P1574, DOI 10.1002/ps.4577 Rossi CD, 2013, MICROSC RES TECHNIQ, V76, P552, DOI 10.1002/jemt.22199 Ruttanaphan T, 2020, INSECTS, V11, DOI 10.3390/insects11100686 Skouras PJ, 2021, INSECTS, V12, DOI 10.3390/insects12080696 Tang XT, 2020, INSECTS, V11, DOI 10.3390/insects11040243 Tufail M, 2009, J INSECT PHYSIOL, V55, P87, DOI 10.1016/j.jinsphys.2008.11.007 Wang AH, 2005, J ECON ENTOMOL, V98, P1144, DOI 10.1603/0022-0493-98.4.1144 Wang XR, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00433-20 Wu JC, 2020, ANNU REV ENTOMOL, V65, P409, DOI 10.1146/annurev-ento-011019-025215 Wu W, 2019, GENES-BASEL, V10, DOI 10.3390/genes10110887 Wu YY, 2015, J ECON ENTOMOL, V108, P1486, DOI 10.1093/jee/tov146 Xu G, 2020, PEST MANAG SCI, V76, P1949, DOI 10.1002/ps.5729 Xu L, 2016, J ASIA-PAC ENTOMOL, V19, P683, DOI 10.1016/j.aspen.2016.06.013 Xu PF, 2019, CROP PROT, V117, P63, DOI 10.1016/j.cropro.2018.11.010 Xu QF, 2017, VIROL J, V14, DOI 10.1186/s12985-017-0732-6 Xu Y, 2021, ANNU REV PHYTOPATHOL, V59, P351, DOI 10.1146/annurev-phyto-020620-113020 Yang GQ, 2017, J ASIA-PAC ENTOMOL, V20, P830, DOI 10.1016/j.aspen.2017.05.005 Yu H, 2020, INSECT SCI, V27, P1158, DOI 10.1111/1744-7917.12741 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhang K, 2014, J ECON ENTOMOL, V107, P1916, DOI 10.1603/EC14156 Zhang XL, 2017, J ASIA-PAC ENTOMOL, V20, P955, DOI 10.1016/j.aspen.2017.07.004 Zhao W, 2019, J GEN VIROL, V100, P877, DOI 10.1099/jgv.0.001255 Zhou C, 2017, J ASIA-PAC ENTOMOL, V20, P996, DOI 10.1016/j.aspen.2017.07.002 Zhu J, 2020, J ASIA-PAC ENTOMOL, V23, P98, DOI 10.1016/j.aspen.2019.10.018 NR 67 TC 4 Z9 5 U1 6 U2 24 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-4450 J9 INSECTS JI Insects PD DEC PY 2021 VL 12 IS 12 AR 1131 DI 10.3390/insects12121131 PG 12 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA XZ3XO UT WOS:000737588500001 PM 34940219 OA Green Published, gold DA 2023-03-13 ER PT J AU Pusic, AD Grinberg, YY Mitchell, HM Kraig, RP AF Pusic, Aya D. Grinberg, Yelena Y. Mitchell, Heidi M. Kraig, Richard P. TI Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Neuroscience; Issue 52; innate immunity; hormesis; microglia; T-cells; hippocampus; slice culture; gene expression; laser dissection microscopy; real-time qPCR; interferon-gamma ID REAL-TIME PCR; HIPPOCAMPAL; QUANTIFICATION; EXPRESSION AB Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling. C1 [Pusic, Aya D.; Grinberg, Yelena Y.; Mitchell, Heidi M.; Kraig, Richard P.] Univ Colorado, Med Ctr, Dept Neurol, Boulder, CO 80309 USA. [Pusic, Aya D.; Grinberg, Yelena Y.; Kraig, Richard P.] Univ Colorado, Med Ctr, Comm Neurobiol, Boulder, CO 80309 USA. C3 University of Colorado System; University of Colorado Boulder; University of Colorado System; University of Colorado Boulder RP Kraig, RP (corresponding author), Univ Colorado, Med Ctr, Dept Neurol, Boulder, CO 80309 USA. EM rkraig@neurology.bsd.uchicago.edu OI Grinberg, Yelena/0000-0003-4255-5293; Kraig, Richard/0000-0003-4584-1017 FU National Institute of Neurological Disorders and Stroke [NS-19108]; National Institute of Child Health and Disease [PO1-HD09402]; Migraine Research Foundation; White Foundation FX This work was supported by grants from the National Institute of Neurological Disorders and Stroke (NS-19108), the National Institute of Child Health and Disease (PO1-HD09402), the Migraine Research Foundation and the White Foundation. Ms. Marcia P. Kraig assisted in the preparation and maintenance of culture systems. CR Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797 Caggiano AO, 1996, J COMP NEUROL, V369, P93, DOI 10.1002/(SICI)1096-9861(19960520)369:1<93::AID-CNE7>3.0.CO;2-F Grinberg YY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019294 Gubern C, 2009, BMC MOL BIOL, V10, DOI 10.1186/1471-2199-10-57 Hailer NP, 1996, GLIA, V18, P319, DOI 10.1002/(SICI)1098-1136(199612)18:4<319::AID-GLIA6>3.0.CO;2-S Hulse RE, 2008, J NEUROSCI, V28, P12199, DOI 10.1523/JNEUROSCI.3856-08.2008 KOROLEVA VI, 1985, ELECTROEN CLIN NEURO, V60, P55, DOI 10.1016/0013-4694(85)90951-4 Kunkler PE, 2005, J NEUROSCI, V25, P3952, DOI 10.1523/JNEUROSCI.0491-05.2005 Kunkler PE, 1998, J NEUROSCI, V18, P3416 Kunkler PE, 1997, J CEREBR BLOOD F MET, V17, P26, DOI 10.1097/00004647-199701000-00005 Mitchell H.M., 2010, JOVE-J VIS EXP, DOI [10.3791/2192, DOI 10.3791/2192] Mitchell HM, 2011, J NEUROCHEM, V117, P187, DOI 10.1111/j.1471-4159.2010.07103.x Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 Pusic A. D., 2010, Society for Neuroscience Abstract Viewer and Itinerary Planner, V40 Quinn B, 1996, J HISTOCHEM CYTOCHEM, V44, P71, DOI 10.1177/44.1.8543785 Ransohoff RM, 2009, ANNU REV IMMUNOL, V27, P119, DOI 10.1146/annurev.immunol.021908.132528 Tian YF, 2007, ACTA ANAESTH SCAND, V51, P158, DOI 10.1111/j.1399-6576.2006.01161.x NR 17 TC 14 Z9 16 U1 0 U2 1 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD JUN PY 2011 IS 52 AR e2910 DI 10.3791/2910 PG 17 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA V36MB UT WOS:000209214900042 PM 21694695 OA Green Submitted, Green Published DA 2023-03-13 ER PT J AU Fu, WT Chen, XC Zheng, XY Liu, AR Wang, WJ Ji, J Wang, G Guan, CF AF Fu, Wenting Chen, Xiancao Zheng, Xiaoyan Liu, Anran Wang, Wenjing Ji, Jing Wang, Gang Guan, Chunfeng TI Phytoremediation potential, antioxidant response, photosynthetic behavior and rhizosphere bacterial community adaptation of tobacco (Nicotiana tabacum L.) in a bisphenol A-contaminated soil SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Bisphenol A; Microbial community; Oxidative stress; Photosynthesis; Phytoremediation; Tobacco ID ENVIRONMENTAL ENDOCRINE DISRUPTOR; OXIDATIVE STRESS; LYCIUM-CHINENSE; DEFENSE SYSTEM; GROWTH; WATER; TOLERANCE; REMOVAL; BPA; DEGRADATION AB Bisphenol A (BPA) is an emerging organic pollutant, widely distributed and frequently detected in soil in recent years. BPA toxicity is a problem that needs to be solved in terms of both human health and agricultural production. Up to now, the toxic effect of BPA and its mechanism of action on plants, as well as the possibility of using plants to remediate BPA-contaminated soil, remain to be explored. In this study, six treatment groups were set up to evaluate the effects of different concentrations of BPA on the germination and growth of tobacco (Nicotiana tabacum L.) by medium experiments. Furthermore, the representative indexes of photosynthetic and antioxidant system were determined. Meanwhile, tobacco seedlings were cultivated in soil to further explore the effects of BPA on rhizosphere soil enzyme activity and bacterial community structure with or without 100 mg/kg BPA exposure. The enhancement of BPA removal efficiency from soil by phytoremediation using tobacco plants would also be estimated. Our results showed that high doses of BPA in solid medium remarkably inhibited tobacco seedling growth, and its toxicology effect was positively correlated with BPA concentration, while lower BPA exposure (< 20 mg/L) had little limitation on tobacco growth and induced hormesis effect, which was reflected mainly in the increase of root length. In pot experiments, the reducing of chlorophyll content (36.4%) and net photosynthetic rate (41.2%) meant the inhibition of tobacco photosynthetic process due to high concentration of BPA exposure (100 mg/kg) in soil. The increase of H2O2 and O-2(-) content suggested that BPA could destroy the balance of reactive oxygen species (ROS) in plants. However, tobacco plants still presented a high removal efficiency of BPA at the concentration of 100 mg/kg in soil, which could reach to 80% within 30 days. Furthermore, it was indicated that tobacco cultivation changed the structure of rhizosphere soil bacterial communities and the relative abundance of some valuable strains, including Proteobacteria, Acidobacteria and other strains, which might be participated in the BPA removal process. In addition, the tobacco-soil microbial system had the potential to reverse the negative effects caused by BPA through stimulating microorganism associated with soil nutrient cycling. In summary, tobacco is a competitive plant in phytoremediation of BPA-contaminated soil, though the growth of tobacco could be inhibited at high concentration of BPA. Moreover, tobacco might promote the removal efficiency of BPA by regulating the rhizosphere bacteria communities. C1 [Fu, Wenting; Chen, Xiancao; Zheng, Xiaoyan; Liu, Anran; Wang, Wenjing; Ji, Jing; Wang, Gang; Guan, Chunfeng] Tianjin Univ, Sch Environm Sci & Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China. C3 Tianjin University RP Guan, CF (corresponding author), Tianjin Univ, Sch Environm Sci & Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China. EM chunfengguan@tju.edu.cn OI Guan, Chunfeng/0000-0001-9245-3362 FU National Natural Science Foundation of China [32171613]; Tianjin Rice Industry Technology System Innovation Team Construction [ITTRRS2018007]; Tianjin Science and Technology Research and Development Plan Project [19YFZCSN00280] FX This work was supported by the National Natural Science Foundation of China (32171613), Tianjin Rice Industry Technology System Innovation Team Construction (ITTRRS2018007), and Tianjin Science and Technology Research and Development Plan Project (19YFZCSN00280). CR Ahammed GJ, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2020.113957 Ali I, 2016, ECOTOX ENVIRON SAFE, V124, P277, DOI 10.1016/j.ecoenv.2015.10.027 Cao HC, 2013, MOL BREEDING, V31, P655, DOI 10.1007/s11032-012-9823-7 Chen XC, 2019, CHEMOSPHERE, V233, P49, DOI 10.1016/j.chemosphere.2019.05.144 Cooper JE, 2011, CHEMOSPHERE, V85, P943, DOI 10.1016/j.chemosphere.2011.06.060 Douglas GM, 2020, NAT BIOTECHNOL, V38, P685, DOI 10.1038/s41587-020-0548-6 Ferrara G, 2006, PLANTA, V223, P910, DOI 10.1007/s00425-005-0147-2 Floch C, 2007, J MICROBIOL METH, V71, P319, DOI 10.1016/j.mimet.2007.09.020 Gao ML, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117179 Gassara F, 2013, CHEMOSPHERE, V92, P1356, DOI 10.1016/j.chemosphere.2013.02.071 Geens T, 2012, FOOD CHEM TOXICOL, V50, P3725, DOI 10.1016/j.fct.2012.07.059 Gibson R, 2010, CHEMOSPHERE, V81, P1437, DOI 10.1016/j.chemosphere.2010.09.006 Grobin A, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.132195 Guan CF, 2016, J GENET, V95, P875, DOI 10.1007/s12041-016-0710-6 Guan CF, 2015, J PLANT PHYSIOL, V175, P26, DOI 10.1016/j.jplph.2014.06.022 Heo J, 2019, BIORESOURCE TECHNOL, V281, P179, DOI 10.1016/j.biortech.2019.02.091 Huelsmann RD, 2021, J SEP SCI, V44, P1148, DOI 10.1002/jssc.202000923 Imai S, 2007, J BIOSCI BIOENG, V103, P420, DOI 10.1263/jbb.103.420 Jiang MY, 2001, PLANT CELL PHYSIOL, V42, P1265, DOI 10.1093/pcp/pce162 Jiang ZW, 2021, J HAZARD MATER, V410, DOI 10.1016/j.jhazmat.2020.124557 Kalam S, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.580024 Kielak AM, 2017, SCI REP-UK, V7, DOI 10.1038/srep41193 Kim D, 2018, CHEMOSPHERE, V209, P875, DOI 10.1016/j.chemosphere.2018.06.146 Kohler J, 2009, ENVIRON EXP BOT, V65, P245, DOI 10.1016/j.envexpbot.2008.09.008 Kreslavski VD, 2017, PLANT BIOLOGY, V19, P683, DOI 10.1111/plb.12598 Krishna MA, 2017, ENVIRON MOL MUTAGEN, V58, pS64 Kwak JI, 2018, J HAZARD MATER, V344, P390, DOI 10.1016/j.jhazmat.2017.10.048 Li JQ, 2021, J SOIL SCI PLANT NUT, V21, P1397, DOI 10.1007/s42729-021-00448-6 Li XY, 2018, ECOTOX ENVIRON SAFE, V157, P463, DOI 10.1016/j.ecoenv.2018.04.013 Li XY, 2018, ECOTOX ENVIRON SAFE, V150, P152, DOI 10.1016/j.ecoenv.2017.12.031 Lin H, 2021, J HAZARD MATER, V402, DOI 10.1016/j.jhazmat.2020.123829 Liu JM, 2021, ANTON LEEUW INT J G, V114, P457, DOI 10.1007/s10482-021-01533-7 Liu YH, 2017, ECOTOX ENVIRON SAFE, V135, P90, DOI 10.1016/j.ecoenv.2016.09.035 Lors C, 2010, CHEMOSPHERE, V81, P1263, DOI 10.1016/j.chemosphere.2010.09.021 Ma Y, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108575 Maksymiec W, 2006, ENVIRON EXP BOT, V57, P187, DOI 10.1016/j.envexpbot.2005.05.006 MATASSI G, 1991, NUCLEIC ACIDS RES, V19, P5561, DOI 10.1093/nar/19.20.5561 Navarrete AA, 2013, FEMS MICROBIOL ECOL, V83, P607, DOI 10.1111/1574-6941.12018 Nie LJ, 2015, ENVIRON TOXICOL CHEM, V34, P2363, DOI 10.1002/etc.3073 Nie LJ, 2015, ENVIRON TOXICOL CHEM, V34, P133, DOI 10.1002/etc.2770 Pan WJ, 2013, CHEMOSPHERE, V93, P2585, DOI 10.1016/j.chemosphere.2013.09.081 Pasqualini S, 2001, PLANT CELL ENVIRON, V24, P245, DOI 10.1111/j.1365-3040.2001.00671.x Peng DL, 2020, PLANT SOIL, V450, P443, DOI 10.1007/s11104-020-04521-4 Phouthavong-Murphy JC, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56655-w Qiu ZY, 2013, CHEMOSPHERE, V90, P1274, DOI [10.1016/j.chemosPhere.2012.09.085, 10.1016/j.chemosphere.2012.09.085] Rapala M, 2017, ACTA BIOCHIM POL, V64, P407, DOI 10.18388/abp.2017_1626 Rasool B, 2021, ENVIRON POLLUT, V280, DOI 10.1016/j.envpol.2021.116903 Razinger J, 2008, ENVIRON POLLUT, V153, P687, DOI 10.1016/j.envpol.2007.08.018 Saiyood S, 2010, J HAZARD MATER, V178, P777, DOI 10.1016/j.jhazmat.2010.02.008 Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60 Shen KL, 2020, WORLD J PEDIATR, V16, P232, DOI 10.1007/s12519-020-00362-4 Sun H, 2013, ENVIRON TOXICOL CHEM, V32, P174, DOI 10.1002/etc.2042 Tartaglia M, 2022, FRONT PLANT SCI, V13, DOI 10.3389/fpls.2022.852513 Tartaglia M, 2022, J HAZARD MATER, V428, DOI 10.1016/j.jhazmat.2022.128246 Tong TL, 2021, SCI TOTAL ENVIRON, V792, DOI 10.1016/j.scitotenv.2021.148486 Wang QQ, 2015, ENVIRON TOXICOL CHEM, V34, P1127, DOI 10.1002/etc.2904 Wang SM, 2015, ENVIRON SCI POLLUT R, V22, P17653, DOI 10.1007/s11356-015-4972-y Wu YC, 2014, PROTOPLASMA, V251, P1191, DOI 10.1007/s00709-014-0626-z Xian Y, 2015, CHEMOSPHERE, V139, P604, DOI 10.1016/j.chemosphere.2014.12.060 Xiao CY, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121488 Yang YY, 2014, SCI TOTAL ENVIRON, V470, P1184, DOI 10.1016/j.scitotenv.2013.10.102 Yuan C, 2013, J APPL ELECTROCHEM, V43, P1163, DOI 10.1007/s10800-013-0600-z Zaborowska M, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222312753 Zazouli MA, 2014, J ENVIRON HEALTH SCI, V12, DOI 10.1186/2052-336X-12-66 NR 64 TC 5 Z9 5 U1 28 U2 38 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD DEC PY 2022 VL 29 IS 56 BP 84366 EP 84382 DI 10.1007/s11356-022-21765-y EA JUL 2022 PG 17 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 6I1PI UT WOS:000819908500007 PM 35780263 DA 2023-03-13 ER PT J AU Li, LT Guo, BL Feng, CC Liu, HT Lin, D AF Li, Lantao Guo, Binglin Feng, Chenchen Liu, Haitao Lin, Di TI Growth, physiological, and temperature characteristics in chinese cabbage pakchoi as affected by Cd- stressed conditions and identifying its main controlling factors using PLS model SO BMC PLANT BIOLOGY LA English DT Article DE Cadmium; Chinese cabbage pakchoi (Brassica chinensis L.); Physiological traits; Canopy temperature; PLS model ID CADMIUM STRESS; REACTIVE OXYGEN; TOLERANCE MECHANISMS; PHOTOSYNTHETIC RATE; ANTIOXIDANT ENZYME; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; HEAVY-METALS; ACCUMULATION; RESPONSES AB Background: Although hormesis induced by heavy metals is a well-known phenomenon, the involved biological mechanisms are not fully understood. Cadmium (Cd) is a prevalent heavy metal in the environment. Exposure of Cd, via intake or consumption of Cd-contaminated air or food, poses a huge threat to human health. Chinese cabbage pakchoi (Brassica chinensis L.) is widely planted and consumed as a popular vegetable in China. Therefore, studying the response of Chinese cabbage pakchoi to Cd- stressed conditions is critical to assess whether cabbage can accumulate Cd and serve as an important Cd exposure pathway to human beings. In this study, we investigated the influence of Cd stress on growth, photosynthetic physiology, antioxidant enzyme activities, nutritional quality, anatomical structure, and canopy temperature in Chinese cabbage pakchoi. A partial least squares (PLS) model was used to quantify the relationship between physical and chemical indicators with Cd accumulation in cabbage, and identify the main controlling factors. Results: Results showed that Cd stress significantly inhibited cabbage's growth and development. When Cd stress was increased, the phenotypic indicators were significantly reduced. Meanwhile, Cd stress significantly enhanced the oxidative stress response of cabbage, such as the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and the content of malondialdehyde (MDA) in leaves. Such a change tended to increase fenestrated tissues' thickness but decrease the thickness of leaf and spongy tissues. Moreover, Cd stress significantly increased soluble sugar, protein, and vitamin C contents in leaves as well as the temperature in the plant canopy. The PLS model analysis showed that the studied phenotypic and physicochemical indicators had good relationships with Cd accumulation in roots, shoots, and the whole plant of cabbage, with high coefficient of determination (R-2) values of 0.891, 0.811, and 0.845, and low relative percent deviation (RPD) values of 3.052, 2.317, and 2.557, respectively. Furthermore, through analyzing each parameter's variable importance for projection (VIP) value, the SOD activity was identified as a key factor for indicating Cd accumulation in cabbage. Meanwhile, the effects of CAT on Cd accumulation in cabbage and the canopy mean temperature were also high. Conclusion: Cd stress has significant inhibitory effects and can cause damage cabbage's growth and development, and the SOD activity may serve as a key factor to indicate Cd uptake and accumulation in cabbage. C1 [Li, Lantao; Liu, Haitao] Henan Agr Univ, Coll Resources & Environm, Zhengzhou 450002, Peoples R China. [Guo, Binglin; Feng, Chenchen; Lin, Di] Henan Agr Univ, Coll Forestry, 63 Nongye Rd, Zhengzhou 450002, Peoples R China. C3 Henan Agricultural University; Henan Agricultural University RP Lin, D (corresponding author), Henan Agr Univ, Coll Forestry, 63 Nongye Rd, Zhengzhou 450002, Peoples R China. EM lindi2018@henau.edu.cn FU National Natural Science Foundation of China; Key Scientific and Technological Project of Henan Province [41907323]; special fund for young talents in Henan Agricultural University [222102320078]; [30500726]; [30500427] FX This research was funded by the National Natural Science Foundation of China (41907323), the Key Scientific and Technological Project of Henan Province (222102320078), and the special fund for young talents in Henan Agricultural University (30500726 and 30500427). CR AbdElgawad H, 2020, ENVIRON POLLUT, V258, DOI 10.1016/j.envpol.2019.113705 Ali B, 2014, BIOL PLANTARUM, V58, P131, DOI 10.1007/s10535-013-0358-5 [安婷婷 An Tingting], 2021, [植物学报, Chinese Bulletin of Botany], V56, P347 Anjum SA, 2016, CLEAN-SOIL AIR WATER, V44, P29, DOI 10.1002/clen.201400905 Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Belimov AA, 2003, EUPHYTICA, V131, P25, DOI 10.1023/A:1023048408148 Brunel-Muguet S, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00213 Buckley TN, 2015, PLANT PHYSIOL, V168, P1616, DOI 10.1104/pp.15.00731 Chaney RL, 2004, BIOMETALS, V17, P549, DOI 10.1023/B:BIOM.0000045737.85738.cf Chao YY, 2010, PLANT SOIL, V336, P39, DOI 10.1007/s11104-010-0438-7 Cho UH, 2005, PLANT SCI, V168, P113, DOI 10.1016/j.plantsci.2004.07.021 Clemens S, 2013, TRENDS PLANT SCI, V18, P92, DOI 10.1016/j.tplants.2012.08.003 DalCorso G, 2008, J INTEGR PLANT BIOL, V50, P1268, DOI 10.1111/j.1744-7909.2008.00737.x Dutta S, 2018, PLANT SIGNAL BEHAV, V13, DOI 10.1080/15592324.2018.1460048 Ekmekci Y, 2008, J PLANT PHYSIOL, V165, P600, DOI 10.1016/j.jplph.2007.01.017 El Rasafi T, 2022, CRIT REV ENV SCI TEC, V52, P675, DOI 10.1080/10643389.2020.1835435 Fahad S, 2015, ENVIRON SCI POLLUT R, V22, P12439, DOI 10.1007/s11356-015-4518-3 Farooq H, 2015, TURK J AGRIC FOR, V39, P272, DOI 10.3906/tar-1405-54 Fernandez R, 2014, PLANT PHYSIOL BIOCH, V78, P63, DOI 10.1016/j.plaphy.2014.02.021 Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016 Goncalves JF, 2009, PLANT PHYSIOL BIOCH, V47, P814, DOI 10.1016/j.plaphy.2009.04.002 Guo JJ, 2019, ECOTOX ENVIRON SAFE, V172, P380, DOI 10.1016/j.ecoenv.2019.01.069 Gusman GS, 2013, PLANT PHYSIOL BIOCH, V71, P307, DOI 10.1016/j.plaphy.2013.08.006 Hermida-Carrera C, 2016, PLANT PHYSIOL, V171, P2549, DOI 10.1104/pp.16.01846 Hetherington AM, 2003, NATURE, V424, P901, DOI 10.1038/nature01843 Jia YueHui, 2018, Journal of Agro-Environment Science, V37, P1610 Jullien A, 2011, ANN BOT-LONDON, V107, P765, DOI 10.1093/aob/mcq205 Kaya C, 2020, PHYSIOL PLANTARUM, V168, P345, DOI 10.1111/ppl.13012 Korner C, 2021, ALPINE PLANT LIFE FU, P247 Kushwaha A, 2016, ENVIRON REV, V24, P39, DOI 10.1139/er-2015-0010 Li LT, 2022, FIELD CROP RES, V281, DOI 10.1016/j.fcr.2022.108490 Li LT, 2018, FIELD CROP RES, V215, P173, DOI 10.1016/j.fcr.2017.10.018 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Mobin M, 2007, J PLANT PHYSIOL, V164, P601, DOI 10.1016/j.jplph.2006.03.003 Murshed R, 2013, PHYSIOL MOL BIOL PLA, V19, P363, DOI 10.1007/s12298-013-0173-7 NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867 Parihar P, 2015, ENVIRON SCI POLLUT R, V22, P4056, DOI 10.1007/s11356-014-3739-1 Pulford ID, 2003, ENVIRON INT, V29, P529, DOI 10.1016/S0160-4120(02)00152-6 Qin XB, 2014, ENVIRON SCI POLLUT R, V21, P11094, DOI 10.1007/s11356-014-3015-4 Rahat Nazar, 2012, American Journal of Plant Sciences, V3, P1476 Rahoui S, 2010, J HAZARD MATER, V178, P1128, DOI 10.1016/j.jhazmat.2010.01.115 Ramani H. R., 2017, International Journal of Plant Physiology and Biochemistry, V9, P1, DOI 10.5897/ijppb2015.0240 Rizwan M, 2017, CHEMOSPHERE, V182, P90, DOI 10.1016/j.chemosphere.2017.05.013 Rizwan M, 2016, ENVIRON SCI POLLUT R, V23, P17859, DOI 10.1007/s11356-016-6436-4 Rizwan M, 2016, ECOTOX ENVIRON SAFE, V130, P43, DOI 10.1016/j.ecoenv.2016.04.001 Romero-Puertas MC, 2019, ENVIRON EXP BOT, V161, P107, DOI 10.1016/j.envexpbot.2018.10.012 Romero-Puertas MC, 1999, FREE RADICAL RES, V31, pS25, DOI 10.1080/10715769900301281 Romero-Puertas MC, 2004, PLANT CELL ENVIRON, V27, P1122, DOI 10.1111/j.1365-3040.2004.01217.x Sagardoy R, 2010, NEW PHYTOL, V187, P145, DOI 10.1111/j.1469-8137.2010.03241.x Sandalio LM, 2001, J EXP BOT, V52, P2115, DOI 10.1093/jexbot/52.364.2115 Seo I, 2021, HORTIC ENVIRON BIOTE, V62, P737, DOI 10.1007/s13580-021-00378-3 Sergiev I., 1997, P B ACAD SCI, V51, P121, DOI DOI 10.1046/J.1365-3040.2001.00778.X Seshadri B, 2016, GEODERMA, V270, P43, DOI 10.1016/j.geoderma.2015.11.029 Shahid MA, 2019, ECOTOX ENVIRON SAFE, V180, P588, DOI 10.1016/j.ecoenv.2019.05.037 Shi GR, 2010, PLANT GROWTH REGUL, V61, P45, DOI 10.1007/s10725-010-9447-z Shi Y, 2021, ENVIRON SCI POLLUT R, V28, P35751, DOI 10.1007/s11356-021-12883-0 Sim H, 2022, SCI HORTIC-AMSTERDAM, V304, DOI 10.1016/j.scienta.2022.111311 Siuksta R, 2019, ENVIRON SCI POLLUT R, V26, P44, DOI 10.1007/s11356-018-3224-3 Soudek P, 2014, CHEMOSPHERE, V104, P15, DOI 10.1016/j.chemosphere.2013.09.079 Tai ZL, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14080852 Vaculik M, 2015, ECOTOX ENVIRON SAFE, V120, P66, DOI 10.1016/j.ecoenv.2015.05.026 Waalkes MP, 2003, MUTAT RES-FUND MOL M, V533, P107, DOI 10.1016/j.mrfmmm.2003.07.011 Wang DH, 2021, J AGRO ENV SCI, V37, P1610 Wang YW, 2014, BIOMETALS, V27, P389, DOI 10.1007/s10534-014-9720-0 Wang ZF, 2017, ECOTOX ENVIRON SAFE, V135, P75, DOI 10.1016/j.ecoenv.2016.09.013 [魏婧 Wei Jing], 2020, [植物生理学报, Plant Physiology Journal], V56, P2571 Wei SH, 2005, CHINESE SCI BULL, V50, P33, DOI 10.1360/982004-292 Wei X, 2008, RUSS J ECOL+, V39, P475, DOI 10.1134/S1067413608070035 Wi SH, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10121846 Yamori W, 2006, PLANT CELL ENVIRON, V29, P1659, DOI 10.1111/j.1365-3040.2006.01550.x Zhang Di, 2015, Chinese Journal of Applied and Environmental Biology, V21, P188, DOI 10.3724/SP.J.1145.2014.09027 Zhao HY, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-89322-0 Zhou CZ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223609 Zhou J, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.115045 Zhou M, 2019, FUNCT INTEGR GENOMIC, V19, P281, DOI 10.1007/s10142-018-0646-4 Zhou WB, 2005, PLANT SCI, V169, P737, DOI 10.1016/j.plantsci.2005.05.030 Zhou Z, 2022, ENVIRON SCI POLLUT R, V29, P21739, DOI 10.1007/s11356-021-17371-z Zhu GX, 2018, ECOTOX ENVIRON SAFE, V158, P300, DOI 10.1016/j.ecoenv.2018.04.045 NR 78 TC 0 Z9 0 U1 9 U2 9 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD DEC 7 PY 2022 VL 22 IS 1 AR 571 DI 10.1186/s12870-022-03966-2 PG 15 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 6W2SR UT WOS:000895583000001 PM 36476235 OA gold, Green Published DA 2023-03-13 ER PT J AU Bejarano, AC Chandler, GT He, LJ Coull, BC AF Bejarano, Adriana C. Chandler, G. Thomas He, Lijian Coull, Bruce C. TI Individual to population level effects of South Louisiana crude oil water accommodated hydrocarbon fraction (WAF) on a marine meiobenthic copepod SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE chronic exposure; crude oil WAF; life-cycle toxicity test; meiofauna ID TOXICITY; SEDIMENTS; CHLORPYRIFOS; STIMULATION; EXPRESSION; FIPRONIL; HORMESIS AB Acute toxicities of crude oil and crude oil water accommodated hydrocarbon fraction (WAF) are relatively well documented, but data on the biological effects of chronic exposures to WAF on species and populations are scarce. South Louisiana Sweet crude oil was used to assess the effects of crude oil WAF on the copepod Amphiascus tenuiremis' survival, development and reproduction. Effects were evaluated using a 96-well microplate full life-cycle toxicity test, a test that allows tracking of individuals from the nauplius stage to sexual maturation and reproduction. Briefly, 24-h hatched nauplii were followed to adulthood (n(i) = >= 120 nauplii/treatment) in individual glass-coated microplate wells containing 200 mu L of seawater solution. Treatments consisted of 10%, 30%, 50% and 100% Louisiana WAF, with seawater used as control. Nauplii were monitored through development to adulthood, and sexually mature virgin copepods were mated pairwise in wells containing original rearing treatments. Nauplius-to-copepodite survival was reduced by 57% in exposures to 100% WAF, relative to controls (88 +/- 3%), and copepodite-to-adult survival was reduced by 18% in the 50% WAF, relative to controls (98 3%). Analysis of development curves showed that nauplii in the 10% WAF developed significantly faster into copepodites, while nauplii in the 50% WAF developed significantly slower than controls. Although the naupliar developmental rate in the 100% WAF was not significantly different from the control, these nauplii showed an average 1.4 day delay in development into copepodites. Similarly, copepodite development into mature females and males was significantly enhanced by 1.2 to 1.8 days and delayed by 1.9 to 2.2 days (p < 0.05) in the 10% and 50% WAFs, respectively, compared to controls. Although the copepodite developmental rate in the 100% WAF was not significantly different from the control, these copepodites still showed an average 1.5 and 2.1 day delay in development into females and males, respectively. Analysis of reproductive endpoints showed that fertility was the only endpoint negatively affected by WAFs; reproductive failure increased by 30% and 41% in exposures to 30% and 100% WAF, respectively, compared to controls (3.33 +/- 4.71%). Leslie matrix population projections based on empirical microplate data indicated lower production rates through three generations of exposure to WAFs. Furthermore, a comparison between NIST and Louisiana crude oil WAFs using the same life-cycle approach indicated a greater chronic toxicity for the Louisiana WAF and an overall developmental delay in exposures to high WAFs (50% and 100% WAFs) from both crude oil types. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ S Carolina, Arnold Sch Publ Hlth, Dept Environm Hlth Sci, Columbia, SC 29208 USA. Univ S Carolina, Dept Chem, Columbia, SC 29208 USA. Univ S Carolina, Sch Environm, Columbia, SC 29208 USA. C3 University of South Carolina System; University of South Carolina Columbia; University of South Carolina System; University of South Carolina Columbia; University of South Carolina System; University of South Carolina Columbia RP Bejarano, AC (corresponding author), Univ S Carolina, Arnold Sch Publ Hlth, Dept Environm Hlth Sci, Columbia, SC 29208 USA. EM ACBejara@mailbox.sc.edu OI bejarano, adriana/0000-0003-2818-4115 CR Ak├a┬akaya H.R., 1999, APPL POPULATION ECOL ANDERSON JW, 1974, MAR BIOL, V27, P75, DOI 10.1007/BF00394763 [Anonymous], 1997, STAT ENV BIOL TOXICO *ASTM INT, 2004, STANDARD TEST METHOD, P1, DOI DOI 10.1520/D2872 Bejarano AC, 2005, J EXP MAR BIOL ECOL, V321, P43, DOI 10.1016/j.jembe.2005.01.003 Bejarano AC, 2004, MAR POLLUT BULL, V49, P23, DOI 10.1016/j.marpolbul.2004.01.004 Bejarano AC, 2003, ENVIRON TOXICOL CHEM, V22, P3009, DOI 10.1897/03-40 BEJARANO AC, IN PRESS ENV TOXICOL BONSDORFF E, 1990, MAR POLLUT BULL, V21, P355, DOI 10.1016/0025-326X(90)90799-E Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Carman KR, 1997, LIMNOL OCEANOGR, V42, P561, DOI 10.4319/lo.1997.42.3.0561 Caswell Hal, 2001, pi Chandler G. Thomas, 1996, P23 Chandler GT, 2004, ENVIRON SCI TECHNOL, V38, P6407, DOI 10.1021/es049654o COULL BC, 1992, OCEANOGR MAR BIOL, V30, P191 Danovaro R, 2002, MAR ECOL PROG SER, V234, P95, DOI 10.3354/meps234095 EADSFORTH CV, 1997, OP9747002 THORNT SHE ELMGREN R, 1983, MAR BIOL, V73, P51, DOI 10.1007/BF00396285 ESCARAVAGE V, 1989, TOPICS MARINE BIOL, V53, P551 Giere O., 2019, PERSPECTIVES MEIOBEN, P19 Green AS, 1996, ENVIRON TOXICOL CHEM, V15, P1182, DOI [10.1002/etc.5620150725, 10.1897/1551-5028(1996)015<1182:LSSTOS>2.3.CO;2] GYLLENBERG G, 1986, ANN ZOOL FENN, V23, P395 HICKS GRF, 1983, OCEANOGR MAR BIOL, V21, P67 Lang K., 1948, P1 LINDEN O, 1976, Ambio, V5, P36 MOTHERSHEAD RF, 1992, MAR ENVIRON RES, V33, P145, DOI 10.1016/0141-1136(92)90138-C NELSON AL, 1989, MAR ECOL PROG SER, V53, P51, DOI 10.3354/meps053051 *NRC, 1985, OIL SEA INP FAT EFF Oberdorster E, 1999, TOXICOL APPL PHARM, V160, P101, DOI 10.1006/taap.1999.8745 Platt H.M., 1981, P207 Snyder MJ, 1998, ARCH BIOCHEM BIOPHYS, V358, P271, DOI 10.1006/abbi.1998.0878 Stark JS, 2003, J EXP MAR BIOL ECOL, V283, P21, DOI 10.1016/S0022-0981(02)00449-5 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 TATEM HE, 1978, ESTUAR COAST MAR SCI, V6, P365, DOI 10.1016/0302-3524(78)90128-7 USTACH JF, 1979, ESTUARIES, V2, P273, DOI 10.2307/1351575 NR 35 TC 48 Z9 57 U1 0 U2 17 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0022-0981 EI 1879-1697 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD MAY 2 PY 2006 VL 332 IS 1 BP 49 EP 59 DI 10.1016/j.jembe.2005.11.006 PG 11 WC Ecology; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 041VK UT WOS:000237484200005 DA 2023-03-13 ER PT J AU Menendez, JA Joven, J Aragones, G Barrajon-Catalan, E Beltran-Debon, R Borras-Linares, I Camps, J Corominas-Faja, B Cufi, S Fernandez-Arroyo, S Garcia-Heredia, A Hernandez-Aguilera, A Herranz-Lopez, M Jimenez-Sanchez, C Lopez-Bonet, E Lozano-Sanchez, J Luciano-Mateo, F Martin-Castillo, B Martin-Paredero, V Perez-Sanchez, A Oliveras-Ferraros, C Riera-Borrull, M Rodriguez-Gallego, E Quirantes-Pine, R Rull, A Tomas-Menor, L Vazquez-Martin, A Alonso-Villaverde, C Micol, V Segura-Carretero, A AF Menendez, Javier A. Joven, Jorge Aragones, Gerard Barrajon-Catalan, Enrique Beltran-Debon, Raul Borras-Linares, Isabel Camps, Jordi Corominas-Faja, Bruna Cufi, Silvia Fernandez-Arroyo, Salvador Garcia-Heredia, Anabel Hernandez-Aguilera, Anna Herranz-Lopez, Maria Jimenez-Sanchez, Cecilia Lopez-Bonet, Eugeni Lozano-Sanchez, Jesus Luciano-Mateo, Fedra Martin-Castillo, Begona Martin-Paredero, Vicente Perez-Sanchez, Almudena Oliveras-Ferraros, Cristina Riera-Borrull, Marta Rodriguez-Gallego, Esther Quirantes-Pine, Rosa Rull, Anna Tomas-Menor, Laura Vazquez-Martin, Alejandro Alonso-Villaverde, Carlos Micol, Vicente Segura-Carretero, Antonio TI Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil A new family of gerosuppressant agents SO CELL CYCLE LA English DT Article DE hormesis; xenohormesis; olive oil; cancer; aging; mTOR; AMPK; resveratrol; gerogenes; gerosuppression ID ACTIVATED PROTEIN-KINASE; LIFE-SPAN EXTENSION; CANCER-ASSOCIATED FIBROBLASTS; RESVERATROL-INDUCED APOPTOSIS; ENDOPLASMIC-RETICULUM STRESS; APIGENIN INDUCES APOPTOSIS; INDUCED INSULIN-RESISTANCE; EGCG INHIBITS ACTIVATION; OXIDATIVE DAMAGE THEORY; CELL-CYCLE ARREST AB Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e. g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that: (1) The anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/ cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated beta-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer. C1 [Menendez, Javier A.; Corominas-Faja, Bruna; Cufi, Silvia; Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro] Catalan Inst Oncol, Translat Res Lab, Metab & Canc Grp, Girona, Spain. [Menendez, Javier A.; Corominas-Faja, Bruna; Cufi, Silvia; Lopez-Bonet, Eugeni; Martin-Castillo, Begona; Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro] Girona Biomed Res Inst, Girona, Spain. [Joven, Jorge; Aragones, Gerard; Beltran-Debon, Raul; Camps, Jordi; Garcia-Heredia, Anabel; Hernandez-Aguilera, Anna; Luciano-Mateo, Fedra; Martin-Paredero, Vicente; Riera-Borrull, Marta; Rodriguez-Gallego, Esther; Rull, Anna; Alonso-Villaverde, Carlos] Univ Rovira & Virgili, IISPV, Unitat Recerca Biomed URB CRB, E-43201 Reus, Spain. [Barrajon-Catalan, Enrique; Herranz-Lopez, Maria; Perez-Sanchez, Almudena; Tomas-Menor, Laura; Micol, Vicente] Miguel Hernandez Univ, IBMC, Elche, Spain. [Borras-Linares, Isabel; Fernandez-Arroyo, Salvador; Jimenez-Sanchez, Cecilia; Lozano-Sanchez, Jesus; Quirantes-Pine, Rosa; Segura-Carretero, Antonio] Univ Granada, Dept Analyt Chem, Fac Sci, E-18071 Granada, Spain. [Borras-Linares, Isabel; Fernandez-Arroyo, Salvador; Jimenez-Sanchez, Cecilia; Lozano-Sanchez, Jesus; Quirantes-Pine, Rosa; Segura-Carretero, Antonio] Res & Dev Funct Food Ctr CIDAF, Granada, Spain. [Lopez-Bonet, Eugeni] Dr Josep Trueta Univ Hosp, Dept Anat Pathol, Girona, Spain. [Martin-Castillo, Begona] Catalan Inst Oncol, Clin Res Unit, Girona, Spain. C3 Catalan Institute of Oncology; Universitat de Girona; Girona University Hospital Dr. Josep Trueta; Institut d'Investigacio Biomedica de Girona (IDIBGI); Universitat Rovira i Virgili; Institut d'Investigacio Sanitaria Pere Virgili (IISPV); Universidad Miguel Hernandez de Elche; University of Granada; Universitat de Girona; Girona University Hospital Dr. Josep Trueta; Catalan Institute of Oncology RP Menendez, JA (corresponding author), Catalan Inst Oncol, Translat Res Lab, Metab & Canc Grp, Girona, Spain. EM jmenendez@idibgi.org; jjoven@grupsagessa.com; ansegura@ugr.es RI Joven, Jorge/B-3360-2016; Barrajón-Catalán, Enrique/C-2884-2013; Garcia-Heredia, Anabel/ABC-3161-2021; Fernández-Arroyo, Salvador/M-6955-2015; Aragonès, Gerard/AAJ-9150-2021; Carretero, Antonio Segura/B-6867-2014; Aragones, Gerard/F-9673-2016; MENENDEZ, JAVIER A/C-6148-2016; Rull, Anna/A-9438-2017; Rodríguez-Gallego, Esther/B-6581-2016; Herranz-Lopez, Maria/AAB-1933-2020; Camps, Jordi/AAG-3080-2020; Beltrán-Debón, Raúl/A-9287-2014; Micol, Vicente/K-6841-2014; Rodríguez-Gallego, Esther/AAE-5444-2021; Borrás, Isabel/K-9154-2014 OI Joven, Jorge/0000-0003-2749-4541; Barrajón-Catalán, Enrique/0000-0001-8113-0795; Fernández-Arroyo, Salvador/0000-0003-0147-1712; Aragonès, Gerard/0000-0001-8657-5726; Carretero, Antonio Segura/0000-0002-5564-5338; Aragones, Gerard/0000-0001-8657-5726; MENENDEZ, JAVIER A/0000-0001-8733-4561; Rull, Anna/0000-0002-8907-7754; Rodríguez-Gallego, Esther/0000-0002-6363-2510; Herranz-Lopez, Maria/0000-0002-1819-7978; Camps, Jordi/0000-0002-3165-3640; Beltrán-Debón, Raúl/0000-0001-9691-1906; Micol, Vicente/0000-0001-8089-0696; Rodríguez-Gallego, Esther/0000-0002-6363-2510; Borrás, Isabel/0000-0002-5227-9002; Garcia-Heredia, Anabel/0000-0003-2876-1779; Alonso-Villaverde, Carlos/0000-0001-8278-8388; Luciano-Mateo, Fedra/0000-0002-8736-2455; Lopez-Bonet, Eugeni/0000-0002-9199-0702; Martin-Castillo, Begona/0000-0001-8344-8174; Riera-Borrull, Marta/0000-0003-4670-7290; Cufi, Silvia/0000-0002-2476-748X; Martin Paredero, Vicente/0000-0002-2740-5847; Hernandez-Aguilera, Anna/0000-0003-0954-295X FU Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo, Fondo de Investigacion Sanitaria (FIS), Spain) [CP05-00090, PI06-0778, RD06-0020-0028]; Fundacion Cientifica de la Asociacion Espanola Contra el Cancer (AECC, Spain); Ministerio de Ciencia e Innovacion (Plan Nacional de I+D+ I, MICINN, Spain) [SAF2009-11579]; Ministerio de Sanidad y Consumo, Fondo de Investigacion Sanitaria -FIS-, Spain [CD08/00283]; (Formacion de Personal Investigador, FPI) from the Ministerio de Ciencia e Innovacion (MICINN, Spain) FX This work was financially supported by the Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo, Fondo de Investigacion Sanitaria (FIS), Spain, grants CP05-00090, PI06-0778 and RD06-0020-0028), the Fundacion Cientifica de la Asociacion Espanola Contra el Cancer (AECC, Spain) and the Ministerio de Ciencia e Innovacion (SAF2009-11579, Plan Nacional de I+D+ I, MICINN, Spain). Alejandro Vazquez-Martin received the Sara Borrell post-doctoral contract (CD08/00283, Ministerio de Sanidad y Consumo, Fondo de Investigacion Sanitaria -FIS-, Spain). Silvia Cufi received a research fellowship (Formacion de Personal Investigador, FPI) from the Ministerio de Ciencia e Innovacion (MICINN, Spain). CR Agarwal B, 2011, ANN NY ACAD SCI, V1215, P138, DOI 10.1111/j.1749-6632.2010.05850.x Alkhalaf M, 2007, PHARMACOLOGY, V80, P134, DOI 10.1159/000103253 Amat R, 2007, J BIOL CHEM, V282, P34066, DOI 10.1074/jbc.M707114200 Rubiolo JA, 2008, EUR J PHARMACOL, V591, P66, DOI 10.1016/j.ejphar.2008.06.067 Anisimov VN, 2011, CELL CYCLE, V10, P4230, DOI 10.4161/cc.10.24.18486 Anisimov VN, 2010, AGING-US, V2, P760, DOI 10.18632/aging.100230 Antosh M, 2011, AGING-US, V3, P576, DOI 10.18632/aging.100342 Armour SM, 2009, AGING-US, V1, P515, DOI 10.18632/aging.100056 Athar M, 2009, ARCH BIOCHEM BIOPHYS, V486, P95, DOI 10.1016/j.abb.2009.01.018 Baek SJ, 2002, CARCINOGENESIS, V23, P425, DOI 10.1093/carcin/23.3.425 Baidez AG, 2007, J AGR FOOD CHEM, V55, P3373, DOI 10.1021/jf063166d Balliet RM, 2011, CELL CYCLE, V10, P4065, DOI 10.4161/cc.10.23.18254 Banerjee KK, 2012, AGING-US, V4, P206, DOI 10.18632/aging.100435 Barger JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002264 Bass TM, 2007, MECH AGEING DEV, V128, P546, DOI 10.1016/j.mad.2007.07.007 Bauer MA, 2012, CELL CYCLE, V12 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Bay BH, 2006, EXP BIOL MED, V231, P1516, DOI 10.1177/153537020623100910 Bayram B, 2012, REJUV RES, V15, P71, DOI 10.1089/rej.2011.1245 Beauchamp GK, 2005, NATURE, V437, P45, DOI 10.1038/437045a Benavente-Garcia O, 2008, J AGR FOOD CHEM, V56, P6185, DOI 10.1021/jf8006568 Bendini A, 2007, MOLECULES, V12, P1679, DOI 10.3390/12081679 Bennetzen MV, 2012, CELL CYCLE, V11, P1827, DOI 10.4161/cc.20233 Bishayee A, 2010, CANCER PREV RES, V3, P753, DOI 10.1158/1940-6207.CAPR-09-0171 Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965 Blagosklonny MV, 2012, AM J PATHOL, V181, P1142, DOI 10.1016/j.ajpath.2012.06.024 Blagosklonny MV, 2012, AGING-US, V4, P547, DOI 10.18632/aging.100479 Blagosklonny MV, 2012, AGING-US, V4, P350, DOI 10.18632/aging.100461 Blagosklonny MV, 2012, AGING-US, V4, P159, DOI 10.18632/aging.100443 Blagosklonny MV, 2011, ONCOTARGET, V2, P1352 Blagosklonny MV, 2011, AGING-US, V3, P1130, DOI 10.18632/aging.100422 Blagosklonny MV, 2011, CELL CYCLE, V10, P4217, DOI 10.4161/cc.10.24.18595 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Blagosklonny MV, 2010, CELL CYCLE, V9, P3151, DOI 10.4161/cc.9.16.13120 Blagosklonny MV, 2009, AGING-US, V1, P511, DOI 10.18632/aging.100059 Boissy P, 2005, CANCER RES, V65, P9943, DOI 10.1158/0008-5472.CAN-05-0651 Bolasco G, 2012, AGING-US, V4, P402, DOI 10.18632/aging.100464 Borras C, 2011, AGING-US, V3, P262, DOI 10.18632/aging.100279 Brocchieri L, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-19 Brooks CL, 2009, AGING-US, V1, P278, DOI 10.18632/aging.100031 Buckland G, 2011, BRIT J NUTR, V106, P1581, DOI 10.1017/S0007114511002078 Burks TN, 2011, AGING-US, V3, P1142, DOI 10.18632/aging.100409 Cabreiro F, 2011, FREE RADICAL BIO MED, V51, P1575, DOI 10.1016/j.freeradbiomed.2011.07.020 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2012, EXP GERONTOL Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calvanese V, 2011, AGING-US, V3, P162, DOI 10.18632/aging.100272 Canto C, 2011, AGING-US, V3, P543, DOI 10.18632/aging.100326 Canuelo A, 2012, MECH AGEING DEV, V133, P563, DOI 10.1016/j.mad.2012.07.004 Carito V, 2012, CELL CYCLE, V11, P3403, DOI 10.4161/cc.21701 Carrasco-Pancorbo A, 2005, J SEP SCI, V28, P837, DOI 10.1002/jssc.200500032 Chan CH, 2010, THESCIENTIFICWORLDJO, V10, P1001, DOI 10.1100/tsw.2010.89 Chen AP, 1999, J BIOL CHEM, V274, P35505, DOI 10.1074/jbc.274.50.35505 Chen SF, 2012, J NUTR BIOCHEM, V23, P1100, DOI 10.1016/j.jnutbio.2011.06.003 Cheng AS, 2012, J AGR FOOD CHEM, V60, P9180, DOI 10.1021/jf302831d Chiang CT, 2007, MOL CANCER THER, V6, P2127, DOI 10.1158/1535-7163.MCT-07-0107 Chinta SJ, 2009, J MOL NEUROSCI, V39, P157, DOI 10.1007/s12031-008-9170-7 Chondrogianni N, 2010, EXP GERONTOL, V45, P763, DOI 10.1016/j.exger.2010.07.001 Chung JH, 2012, AGING-US, V4, P144, DOI 10.18632/aging.100442 Chung SW, 2010, ARCH BIOCHEM BIOPHYS, V501, P79, DOI 10.1016/j.abb.2010.05.003 Cicerale S, 2009, CRIT REV FOOD SCI, V49, P218, DOI 10.1080/10408390701856223 Colomer R, 2008, CLIN TRANSL ONCOL, V10, P30, DOI 10.1007/s12094-008-0151-7 Colomer Ramon, 2006, Clin Transl Oncol, V8, P15, DOI 10.1007/s12094-006-0090-0 Comas M, 2012, AGING-US, V4, P715, DOI 10.18632/aging.100496 Corominas-Faja B, 2012, AGING-US, V4, P480, DOI 10.18632/aging.100472 Crozier A, 2009, NAT PROD REP, V26, P1001, DOI 10.1039/b802662a Cufi S, 2012, CELL CYCLE, V11, P1235, DOI 10.4161/cc.11.6.19665 Das Samarjit, 2007, Inflammation & Allergy Drug Targets, V6, P168, DOI 10.2174/187152807781696464 Daugaard M, 2007, FEBS LETT, V581, P3702, DOI [10.1016/j.febslet.2007.05.039, 10.1016/j.febsiet.2007.05.039] de la Lastra CA, 2005, MOL NUTR FOOD RES, V49, P405 Debnath J, 2005, AUTOPHAGY, V1, P66, DOI 10.4161/auto.1.2.1738 Del Barco S, 2011, ONCOTARGET, V2, P896, DOI 10.18632/oncotarget.387 Demidenko ZN, 2009, CELL CYCLE, V8, P1901, DOI 10.4161/cc.8.12.8810 Do GM, 2012, MOL NUTR FOOD RES, V56, P1282, DOI 10.1002/mnfr.201200067 Dominguez LJ, 2020, ENCYCLOPEDIA OF BIOMEDICAL GERONTOLOGY, VOL 2, P400, DOI [10.1097/00008469-200410000-00014, 10.1016/B978-0-12-801238-3.62178-5] Donnelly LE, 2004, AM J PHYSIOL-LUNG C, V287, pL774, DOI 10.1152/ajplung.00110.2004 Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Eckschlager T, 2009, CURR PROTEIN PEPT SC, V10, P360, DOI 10.2174/138920309788922243 Edman U, 2009, AGING CELL, V8, P331, DOI 10.1111/j.1474-9726.2009.00480.x Eirew P, 2012, STEM CELLS, V30, P344, DOI 10.1002/stem.1001 Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Endo S, 2007, MOL PHARMACOL, V72, P1337, DOI 10.1124/mol.107.039164 Erkekol FO, 2006, ANN ALLERG ASTHMA IM, V97, P370, DOI 10.1016/S1081-1206(10)60803-4 Escrich E, 2006, Clin Transl Oncol, V8, P868, DOI 10.1007/s12094-006-0150-5 Escrich E, 2007, MOL NUTR FOOD RES, V51, P1279, DOI 10.1002/mnfr.200700213 EVERSE J, 1973, ADV ENZYMOL RAMB, V37, P61 Fantin VR, 2006, CANCER CELL, V9, P425, DOI 10.1016/j.ccr.2006.04.023 Faubert B, 2012, CELL METAB IN PRESS Feng HL, 2001, FERTIL STERIL, V76, P1136, DOI 10.1016/S0015-0282(01)02892-8 Frankel EN, 2011, J AGR FOOD CHEM, V59, P785, DOI 10.1021/jf103813t Froy O, 2010, AGING-US, V2, P7, DOI 10.18632/aging.100116 Fu MF, 2006, MOL CELL BIOL, V26, P8122, DOI 10.1128/MCB.00289-06 Galli C, 1999, LIPIDS, V34, pS23, DOI [10.1007/BF02562224, 10.1007/s11745-999-333-4] Garcia-Villalba R, 2012, J CHROMATOGR B, V898, P69, DOI 10.1016/j.jchromb.2012.04.021 Garcia-Villalba R, 2010, J PHARMACEUT BIOMED, V51, P416, DOI 10.1016/j.jpba.2009.06.021 Garcia-Villalba R, 2009, ELECTROPHORESIS, V30, P2688, DOI 10.1002/elps.200800807 Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595 Ginestier C, 2007, CELL STEM CELL, V1, P555, DOI 10.1016/j.stem.2007.08.014 Gosslau A, 2008, EUR J PHARMACOL, V587, P25, DOI 10.1016/j.ejphar.2008.03.027 Govin J, 2006, J BIOL CHEM, V281, P37888, DOI 10.1074/jbc.M608147200 Guachalla LM, 2010, CELL CYCLE, V9, P4058, DOI 10.4161/cc.9.20.13577 Guido C, 2012, ONCOTARGET, V3, P798, DOI 10.18632/oncotarget.574 Guido C, 2012, CELL CYCLE, V11, P3019, DOI 10.4161/cc.21384 Ha CW, 2011, AGING-US, V3, P319, DOI 10.18632/aging.100299 Halperin-Sheinfeld M, 2012, AGING-US, V4, P436, DOI 10.18632/aging.100468 Hao JJ, 2010, J NUTR BIOCHEM, V21, P634, DOI 10.1016/j.jnutbio.2009.03.012 Hardie DG, 2012, CHEM BIOL, V19, P1222, DOI 10.1016/j.chembiol.2012.08.019 Hardie DG, 2012, NAT REV MOL CELL BIO, V13, P251, DOI 10.1038/nrm3311 Hardie DG, 2011, AM J CLIN NUTR, V93, p891S, DOI 10.3945/ajcn.110.001925 Hawley SA, 2012, SCIENCE, V336, P918, DOI 10.1126/science.1215327 Hayes DP, 2011, MED HYPOTHESES, V77, P765, DOI 10.1016/j.mehy.2011.07.033 Haynes CM, 2010, J CELL SCI, V123, P3849, DOI 10.1242/jcs.075119 He XQ, 2012, J PHARMACOL EXP THER, V342, P81, DOI 10.1124/jpet.112.194142 Hedner T, 1998, CLIN RHEUMATOL, V17, P17, DOI 10.1007/BF01450953 Heiden MGV, 2009, SCIENCE, V324, P1029, DOI 10.1126/science.1160809 Heiss EH, 2007, J BIOL CHEM, V282, P26759, DOI 10.1074/jbc.M703229200 Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008 Herranz D, 2010, NAT REV CANCER, V10, P819, DOI 10.1038/nrc2962 Herranz D, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1001 Herranz D, 2010, AGING-US, V2, P315, DOI 10.18632/aging.100156 Hershko DD, 2008, CANCER-AM CANCER SOC, V112, P1415, DOI 10.1002/cncr.23317 Hirschey MD, 2011, AGING-US, V3, P635, DOI 10.18632/aging.100339 Hofseth LJ, 2010, AGING-US, V2, P183, DOI 10.18632/aging.100143 Hooper PL, 2010, CELL STRESS CHAPERON, V15, P761, DOI 10.1007/s12192-010-0206-x Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hsu CL, 2008, MOL NUTR FOOD RES, V52, P624, DOI 10.1002/mnfr.200890019 Hsu JD, 2011, J AGR FOOD CHEM, V59, P1996, DOI 10.1021/jf103656v Huang CS, 1999, CARCINOGENESIS, V20, P237, DOI 10.1093/carcin/20.2.237 Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211 Huang DW, 2009, NUCLEIC ACIDS RES, V37, P1, DOI 10.1093/nar/gkn923 Huang HC, 2011, J AGR FOOD CHEM, V59, P6765, DOI 10.1021/jf201096v Huang HC, 2008, ENDOCRINOLOGY, V149, P5972, DOI 10.1210/en.2008-0408 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Hursting SD, 2010, CARCINOGENESIS, V31, P83, DOI 10.1093/carcin/bgp280 Hussain AR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024703 Hwang AB, 2011, AGING-US, V3, P304, DOI 10.18632/aging.100292 Hwang JT, 2007, ANN NY ACAD SCI, V1095, P441, DOI 10.1196/annals.1397.047 Iglesias-Bartolome R, 2012, ONCOTARGET, V3, P1061 Jang MS, 1997, SCIENCE, V275, P218, DOI 10.1126/science.275.5297.218 Joseph JA, 2005, AM J CLIN NUTR, V81, p313S, DOI 10.1093/ajcn/81.1.313S Katsiki M, 2007, REJUV RES, V10, P157, DOI 10.1089/rej.2006.0513 Keaney M, 2004, FREE RADICAL BIO MED, V37, P239, DOI 10.1016/j.freeradbiomed.2004.04.005 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Khanal P, 2011, CARCINOGENESIS, V32, P545, DOI 10.1093/carcin/bgr001 Khanna A, 2011, AGING-US, V3, P223, DOI 10.18632/aging.100276 Klappan AK, 2012, HISTOCHEM CELL BIOL, V137, P25, DOI 10.1007/s00418-011-0869-0 Kode A, 2008, AM J PHYSIOL-LUNG C, V294, pL478, DOI 10.1152/ajplung.00361.2007 Koehn FE, 2005, NAT REV DRUG DISCOV, V4, P206, DOI 10.1038/nrd1657 Komarova EA, 2012, AGING-US, V4, P709, DOI 10.18632/aging.100498 Konno K, 1999, P NATL ACAD SCI USA, V96, P9159, DOI 10.1073/pnas.96.16.9159 Kouda K, 2010, J PHYSIOL ANTHROPOL, V29, P127, DOI 10.2114/jpa2.29.127 Koukourakis MI, 2005, CLIN EXP METASTAS, V22, P25, DOI 10.1007/s10585-005-2343-7 Kroemer G, 2008, CANCER CELL, V13, P472, DOI 10.1016/j.ccr.2008.05.005 Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023 Lagiou P, 2006, BRIT J NUTR, V96, P384, DOI 10.1079/BJN20061824 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Lai YY, 2011, RECENT PAT ANTI-CANC, V6, P178, DOI 10.2174/157489211795328495 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lane N, 2010, NATURE, V467, P929, DOI 10.1038/nature09486 Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8 Le A, 2010, P NATL ACAD SCI USA, V107, P2037, DOI 10.1073/pnas.0914433107 Lee C, 2011, ONCOGENE, V30, P3305, DOI 10.1038/onc.2011.91 Lee C, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003293 Lee J, 2010, AGING-US, V2, P527, DOI 10.18632/aging.100184 Lee JH, 2010, AGING-US, V2, P369, DOI 10.18632/aging.100157 Lee OH, 2010, BIORESOURCE TECHNOL, V101, P3751, DOI 10.1016/j.biortech.2009.12.052 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Leontieva OV, 2012, CELL CYCLE, V11, P3926, DOI 10.4161/cc.21908 Leontieva OV, 2011, AGING-US, V3, P1078, DOI 10.18632/aging.100402 LEUNG TKC, 1990, BIOCHEM J, V267, P125, DOI 10.1042/bj2670125 LEUNG TKC, 1992, GENOMICS, V12, P74, DOI 10.1016/0888-7543(92)90409-L Levesque H, 2000, REV MED INTERNE, V21, p8S, DOI 10.1016/S0248-8663(00)88720-2 Li JWH, 2009, SCIENCE, V325, P161, DOI 10.1126/science.1168243 Lin HK, 2010, NATURE, V464, P374, DOI 10.1038/nature08815 Lin JH, 2007, SCIENCE, V318, P944, DOI 10.1126/science.1146361 Liu BQ, 2010, BIOCHEM BIOPH RES CO, V391, P778, DOI 10.1016/j.bbrc.2009.11.137 Liu BL, 2007, CANCER BIOL THER, V6, P1833, DOI 10.4161/cbt.6.12.5161 Liu T, 2009, CANCER RES, V69, P1702, DOI 10.1158/0008-5472.CAN-08-3365 Longo VD, 2011, AGING-US, V3, P1039, DOI 10.18632/aging.100401 Longo VD, 2010, TRENDS PHARMACOL SCI, V31, P89, DOI 10.1016/j.tips.2009.11.004 Lopez-Miranda J, 2010, NUTR METAB CARDIOVAS, V20, P284, DOI 10.1016/j.numecd.2009.12.007 Low ICC, 2010, ANTIOXID REDOX SIGN, V13, P807, DOI 10.1089/ars.2009.3050 Lozano-Sanchez J, 2010, J AGR FOOD CHEM, V58, P9942, DOI 10.1021/jf101502q Lu JB, 2001, CARCINOGENESIS, V22, P321, DOI 10.1093/carcin/22.2.321 Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Madeo F, 2010, AUTOPHAGY, V6, P160, DOI 10.4161/auto.6.1.10600 Mai A, 2011, AGING-US, V3, P819, DOI 10.18632/aging.100387 Malhotra JD, 2007, ANTIOXID REDOX SIGN, V9, P2277, DOI 10.1089/ars.2007.1782 Marcato P, 2011, CELL CYCLE, V10, P1378, DOI 10.4161/cc.10.9.15486 Marcato P, 2011, STEM CELLS, V29, P32, DOI 10.1002/stem.563 Marino G, 2008, AUTOPHAGY, V4, P807, DOI 10.4161/auto.6478 Marino G, 2008, HUM MOL GENET, V17, P2196, DOI 10.1093/hmg/ddn120 Marino G, 2011, AUTOPHAGY, V7, P647, DOI 10.4161/auto.7.6.15191 Martin-Montalvo A, 2011, ONCOGENE, V30, P505, DOI 10.1038/onc.2010.492 Martinez-Outschoorn UE, 2011, CELL CYCLE, V10, P1271, DOI 10.4161/cc.10.8.15330 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Masoro Edward J., 2007, Dose-Response, V5, P163, DOI 10.2203/dose-response.06-005.Masoro Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mayer MP, 2005, CELL MOL LIFE SCI, V62, P670, DOI 10.1007/s00018-004-4464-6 McChesney JD, 2007, PHYTOCHEMISTRY, V68, P2015, DOI 10.1016/j.phytochem.2007.04.032 Menendez JA, 2008, INT J MOL MED, V22, P433, DOI 10.3892/ijmm_00000039 Menendez JA, 2007, BMC CANCER, V7, DOI 10.1186/1471-2407-7-80 Menendez JA, 2006, CURR PHARM BIOTECHNO, V7, P495, DOI 10.2174/138920106779116900 Menendez JA, 2011, AGING-US, V3, P1063, DOI 10.18632/aging.100407 Menendez JA, 2011, CELL CYCLE, V10, P3658, DOI 10.4161/cc.10.21.18128 Menendez JA, 2011, AGING-US, V3, P348, DOI 10.18632/aging.100316 Menendez JA, 2008, BMC CANCER, V8, DOI 10.1186/1471-2407-8-377 Menendez JA, 2009, INT J ONCOL, V34, P43, DOI 10.3892/ijo_00000127 MILNER CM, 1990, IMMUNOGENETICS, V32, P242 Minois N, 2012, CELL DEATH DIS, V3, DOI 10.1038/cddis.2012.139 Minois N, 2011, AGING-US, V3, P716, DOI 10.18632/aging.100361 Molinari G, 2009, ADV EXP MED BIOL, V655, P13, DOI 10.1007/978-1-4419-1132-2_2 Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167 Morselli E, 2009, AGING-US, V1, P961, DOI 10.18632/aging.100110 Mousa SA, 2009, AGING-US, V1, P412, DOI 10.18632/aging.100035 Naiman S, 2012, AGING-US, V4, P521, DOI 10.18632/aging.100478 Nelson LE, 2012, AM J PHYSIOL-CELL PH, V303, pC4, DOI 10.1152/ajpcell.00296.2011 Neznanov N, 2011, ONCOTARGET, V2, P209, DOI 10.18632/oncotarget.246 Nielsen AE, 2006, BIOMARK INSIGHTS, V1, P99 Noonan EJ, 2007, CELL STRESS CHAPERON, V12, P219, DOI 10.1379/CSC-278.1 Oliveras-Ferraros C, 2011, INT J ONCOL, V38, P1533, DOI 10.3892/ijo.2011.993 Owen R W, 2000, Lancet Oncol, V1, P107, DOI 10.1016/S1470-2045(00)00015-2 Owen RW, 2000, EUR J CANCER, V36, P1235, DOI 10.1016/S0959-8049(00)00103-9 Owen RW, 2000, CLIN CHEM, V46, P976 Pani G, 2010, AGING-US, V2, P514, DOI 10.18632/aging.100182 Panieri E, 2010, AGING-US, V2, P487, DOI 10.18632/aging.100183 Pardo PS, 2012, AGING-US, V4, P456, DOI 10.18632/aging.100470 Pardo PS, 2011, AGING-US, V3, P430, DOI 10.18632/aging.100312 Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011 Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105 Pedersen MO, 2009, PROG HISTOCHEM CYTO, V44, P29, DOI 10.1016/j.proghi.2008.10.001 Petrovski G, 2010, J CELL MOL MED, V14, P2543, DOI 10.1111/j.1582-4934.2010.01196.x Pfluger PT, 2008, P NATL ACAD SCI USA, V105, P9793, DOI 10.1073/pnas.0802917105 Pospelova TV, 2012, CELL CYCLE, V11, P2402, DOI 10.4161/cc.20882 Pramanik D, 2012, ONCOTARGET, V3, P640, DOI 10.18632/oncotarget.543 Price NL, 2012, CELL METAB, V15, P675, DOI 10.1016/j.cmet.2012.04.003 Purushotham A, 2009, AGING-US, V1, P669, DOI 10.18632/aging.100076 Queen Brannon L, 2010, Curr Aging Sci, V3, P34 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Raederstorff D, 2009, INT J VITAM NUTR RES, V79, P152, DOI 10.1024/0300-9831.79.3.152 Raffaghello L, 2010, CELL CYCLE, V9, P4474, DOI 10.4161/cc.9.22.13954 Ramadori G, 2011, AGING-US, V3, P325, DOI 10.18632/aging.100311 Rascon B, 2012, AGING-US, V4, P499, DOI 10.18632/aging.100474 Rattan SIS, 2005, EMBO REP, V6, pS25, DOI 10.1038/sj.embor.7400401 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Richardson RB, 2009, AGING-US, V1, P887, DOI 10.18632/aging.100081 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Rockenfeller P, 2010, BBA-MOL CELL RES, V1803, P499, DOI 10.1016/j.bbamcr.2010.01.001 Rodriguez KA, 2011, CURR PHARM DESIGN, V17, P2290 Rohde M, 2005, GENE DEV, V19, P570, DOI 10.1101/gad.305405 Roldan C, 2013, FOOD CHEM, V136, P392, DOI 10.1016/j.foodchem.2012.08.027 Ron D, 2007, NAT REV MOL CELL BIO, V8, P519, DOI 10.1038/nrm2199 Rubinsztein DC, 2011, CELL, V146, P682, DOI 10.1016/j.cell.2011.07.030 Safdie F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044603 Safdie FM, 2009, AGING-US, V1, P988, DOI 10.18632/aging.100114 Sahin K, 2012, J ANIM PHYSIOL AN N, V96, P66, DOI 10.1111/j.1439-0396.2010.01123.x Salminen A, 2012, AGEING RES REV, V11, P230, DOI 10.1016/j.arr.2011.12.005 Sanz A, 2010, AGING-US, V2, P200, DOI 10.18632/aging.100137 SARGENT CA, 1989, P NATL ACAD SCI USA, V86, P1968, DOI 10.1073/pnas.86.6.1968 Saul N, 2008, MECH AGEING DEV, V129, P611, DOI 10.1016/j.mad.2008.07.001 Saunders LR, 2010, AGING-US, V2, P415, DOI 10.18632/aging.100176 Schlicker C, 2011, AGING-US, V3, P852, DOI 10.18632/aging.100388 Schug TT, 2010, AGING-US, V2, P129, DOI 10.18632/aging.100128 Seelinger G, 2008, PLANTA MED, V74, P1667, DOI 10.1055/s-0028-1088314 Sell S, 2004, CRIT REV ONCOL HEMAT, V51, P1, DOI 10.1016/j.critrevonc.2004.04.007 Serganova I, 2011, CLIN CANCER RES, V17, P6250, DOI 10.1158/1078-0432.CCR-11-0397 Servili M., 2009, Inflammopharmacology, V17, P76, DOI 10.1007/s10787-008-8014-y She QB, 2001, CANCER RES, V61, P1604 Shimizu M, 2005, BIOCHEM BIOPH RES CO, V334, P947, DOI 10.1016/j.bbrc.2005.06.182 Shimizu M, 2005, CLIN CANCER RES, V11, P2735, DOI 10.1158/1078-0432.CCR-04-2014 Shimizu M, 2005, J EXP THER ONCOL, V5, P69 Sikora E, 2010, CURR PHARM DESIGN, V16, P884, DOI 10.2174/138161210790883507 Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019 Singh CK, 2012, REPROD SCI, V19, P949, DOI 10.1177/1933719112438972 Smith JJ, 2009, BMC SYST BIOL, V3, DOI 10.1186/1752-0509-3-31 Soare Andreea, 2011, Aging (Albany NY), V3, P374 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Son WY, 1999, MOL HUM REPROD, V5, P1122, DOI 10.1093/molehr/5.12.1122 SOULEIMANI A, 1993, BIOCHEM BIOPH RES CO, V193, P330, DOI 10.1006/bbrc.1993.1628 Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132 Speciale A, 2011, CURR MOL MED, V11, P770, DOI 10.2174/156652411798062395 Steelman LS, 2011, AGING-US, V3, P192, DOI 10.18632/aging.100296 Stefanska B, 2012, BRIT J NUTR, V107, P781, DOI 10.1017/S0007114511003631 Stein S, 2010, AGING-US, V2, P353, DOI 10.18632/aging.100162 Surh YJ, 2011, ANN NY ACAD SCI, V1229, P1, DOI 10.1111/j.1749-6632.2011.06097.x Svard M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022337 Thompson HJ, 2011, CANCER PREV RES, V4, P1736, DOI 10.1158/1940-6207.CAPR-11-0133 Timmers S, 2012, AGING-US, V4, P146, DOI 10.18632/aging.100445 Timmers S, 2011, CELL METAB, V14, P612, DOI 10.1016/j.cmet.2011.10.002 Trichopoulou A, 2004, PUBLIC HEALTH NUTR, V7, P943, DOI 10.1079/PHN2004558 Trichopoulou A, 2005, BMJ-BRIT MED J, V330, P991, DOI 10.1136/bmj.38415.644155.8F Trichopoulou A, 2003, NEW ENGL J MED, V348, P2599, DOI 10.1056/NEJMoa025039 Trichopoulou A, 2007, MOL NUTR FOOD RES, V51, P1275, DOI 10.1002/mnfr.200700134 Tucci P, 2012, AGING-US, V4, P525, DOI 10.18632/aging.100481 Ungvari Z, 2010, AM J PHYSIOL-HEART C, V299, pH18, DOI 10.1152/ajpheart.00260.2010 Vakana E, 2011, ONCOTARGET, V2, P1322 Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 Van Raamsdonk JM, 2010, ANTIOXID REDOX SIGN, V13, P1911, DOI 10.1089/ars.2010.3215 Van Raamsdonk JM, 2010, GENETICS, V185, P559, DOI 10.1534/genetics.110.115378 Vane JR, 2000, J PHYSIOL PHARMACOL, V51, P573 Vang O, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019881 Vazquez-Martin A, 2012, CELL CYCLE, V12 Vazquez-Martin A, 2012, SCI REP-UK, V2, DOI 10.1038/srep00964 Vazquez-Martin A, 2012, CELL CYCLE, V11, P974, DOI 10.4161/cc.11.5.19450 Vazquez-Martin A, 2012, REJUV RES, V15, P3, DOI 10.1089/rej.2011.1203 Vendrell A, 2011, AGING-US, V3, P1163, DOI 10.18632/aging.100419 Vetterli L, 2011, AGING-US, V3, P444, DOI 10.18632/aging.100304 Vinciguerra M, 2010, AGING-US, V2, P43 Visioli F, 2002, MED RES REV, V22, P65, DOI 10.1002/med.1028 Visioli F, 2002, CRIT REV FOOD SCI, V42, P209, DOI 10.1080/10408690290825529 Visioli F, 2001, WORLD REV NUTR DIET, V88, P233 Viswanathan M, 2005, DEV CELL, V9, P605, DOI 10.1016/j.devcel.2005.09.017 Walenta S, 2004, SEMIN RADIAT ONCOL, V14, P267, DOI 10.1016/j.semradonc.2004.04.004 Wang RH, 2008, CANCER CELL, V14, P312, DOI 10.1016/j.ccr.2008.09.001 Wang ZW, 2012, FRONT ONCOL, V1, DOI 10.3389/fonc.2011.00057 Wang ZW, 2012, ONCOTARGET, V3, P1294 Way TD, 2005, FEBS LETT, V579, P145, DOI 10.1016/j.febslet.2004.11.061 Way TD, 2004, J BIOL CHEM, V279, P4479, DOI 10.1074/jbc.M305529200 Weiss EP, 2011, AM J PHYSIOL-HEART C, V301, pH1205, DOI 10.1152/ajpheart.00685.2011 Whitaker-Menezes D, 2011, CELL CYCLE, V10, P1772, DOI 10.4161/cc.10.11.15659 Wietzke JA, 2003, J STEROID BIOCHEM, V84, P149, DOI 10.1016/S0960-0760(03)00024-4 Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x Wiseman RL, 2010, CELL, V140, P590, DOI 10.1016/j.cell.2010.02.006 Wolter F, 2003, CARCINOGENESIS, V24, P469, DOI 10.1093/carcin/24.3.469 Woo KJ, 2007, BIOCHEM PHARMACOL, V73, P68, DOI 10.1016/j.bcp.2006.09.015 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Xiang L, 2011, AGING-US, V3, P1098, DOI 10.18632/aging.100396 Xu J, 2012, CRIT REV FOOD SCI, V52, P373, DOI 10.1080/10408398.2010.500245 Yamaza H, 2010, AGING CELL, V9, P372, DOI 10.1111/j.1474-9726.2010.00563.x Yan W, 2002, P NATL ACAD SCI USA, V99, P15920, DOI 10.1073/pnas.252341799 Yan Y, 2010, BMC CANCER, V10, DOI 10.1186/1471-2407-10-445 Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yang ZH, 2010, AGING-US, V2, P331, DOI 10.18632/aging.100161 Yashin AI, 2010, DOSE-RESPONSE, V8, P41, DOI 10.2203/dose-response.09-024.Yashin Zaveri NT, 2006, LIFE SCI, V78, P2073, DOI 10.1016/j.lfs.2005.12.006 Zhang D, 2011, AGING-US, V3, P158, DOI 10.18632/aging.100283 Zhang KZ, 2006, NEUROLOGY, V66, pS102, DOI 10.1212/01.wnl.0000192306.98198.ec Zhu DH, 1997, DEVELOPMENT, V124, P3007 NR 347 TC 117 Z9 120 U1 1 U2 84 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1538-4101 EI 1551-4005 J9 CELL CYCLE JI Cell Cycle PD FEB 15 PY 2013 VL 12 IS 4 BP 555 EP 578 DI 10.4161/cc.23756 PG 24 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA 089PR UT WOS:000314923000012 PM 23370395 OA Green Published DA 2023-03-13 ER PT J AU Bonilla-Ramirez, L Jimenez-Del-Rio, M Velez-Pardo, C AF Bonilla-Ramirez, Leonardo Jimenez-Del-Rio, Marlene Velez-Pardo, Carlos TI Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: Implication in autosomal recessive juvenile Parkinsonism SO GENE LA English DT Article DE Antioxidant; Deferoxamine dopaminergic neurons; Epicathecin; Epigallocathecin gallate; Propyl gallate ID DOPAMINERGIC-NEURONS; MITOCHONDRIAL-FUNCTION; DJ-1 MUTANTS; DISEASE; DEGENERATION; MODEL; HETEROGENEITY; SENSITIVITY; DYSFUNCTION; POPULATION AB Previous studies have shown that polyphenols might be potent neuroprotective agents in Drosophila melanogaster wild type Canton-S acutely or chronically treated with paraquat (PQ), a selective toxin for elimination of dopaminergic (DAergic) neurons by oxidative stress (OS), as model of Parkinson's disease (PD). This study reports for the first time that knock-down (K-D) parkin Drosophila melanogaster (TH-GAL4; UAS-RNAi-parkin) chronically exposed to PQ (0.1-0.25 mM), FeSO4 (Fe, 0.1 mM), deferoxamine (DFO, 0.01 mM) alone or (0.1 mM) PQ in combination with polyphenols propyl gallate (PG, 0.1 mM) and epigallocathecin gallate (EGCG, 0.1, 0.5 mM) showed significantly higher life span and locomotor activity than untreated K-D flies or treated with (1, 5, 20 mM) PQ alone. Whilst gallic acid (GA, 0.1, 0.5 mM) alone or in the presence of PQ provoked no effect on K-D flies, epicathecin (EC, 0.5 mM) only showed a positive effect on prolonging K-D flies' life span. It is shown that PG (and EGCG) protected protocerebral posterolateral 1 (PPL1) DAergic neurons against PQ. Interestingly, the protective effect of low PQ concentrations, DFO and iron might be explained by a phenomenon known as "hormesis." However, pre-fed K-D flies with (0.1 mM) PQ for 7 days and then exposed to (0.25 mM) for additional 8 days affect neither survival nor climbing of K-D Drosophila compared to flies treated with (0.25 mM) PQ alone. Remarkably, K-D flies treated with 0.1 mM PQ (7 days) and then with (0.25 mM) PQ plus PG (8 days) behaved almost as flies treated with (0.25 mM) PQ. Taken these data suggest that antioxidant supplements that synergistically act with low pro-oxidant stimuli to prolong and increase locomotor activity become inefficient once a threshold of OS has been reached in K-D flies. Our present findings support the notion that genetically altered Drosophila melanogaster as suitable model to study genetic and environmental factors as causal and/or modulators in the development of autosomal recessive juvenile Parkinsonism (AR-JD)/PD. Most importantly, we have shown for the first time that low amounts of stressors induce a health-promoting extending effect in K-D parkin flies. Altogether our present results open new avenues for the screening, testing and development of novel antioxidant drugs against OS stimuli in neurodegenerative disorders. (c) 2012 Elsevier B.V. All rights reserved. C1 [Velez-Pardo, Carlos] Univ Antioquia UdeA, Sch Med, Med Res Inst, Neurosci Res Grp,SIU, Medellin, Colombia. C3 Universidad de Antioquia RP Velez-Pardo, C (corresponding author), Univ Antioquia UdeA, Sch Med, Med Res Inst, Neurosci Res Grp,SIU, Calle 62 52-59,Bldg 1,Room 412, Medellin, Colombia. EM carlos.velez@neurociencias.udea.edu.co OI Bonilla-Ramirez, Leonardo/0000-0002-3203-9896; Jimenez-Del-Rio, Marlene/0000-0003-3477-2386; Velez-Pardo, Carlos/0000-0002-0557-0411 FU Colciencias grant [1115-408-20504] FX This work was supported by Colciencias grant 1115-408-20504 to CV-P and MJ-D-R. LB-R is student at the Master Program in Biomedical Science (CCBB) from UdeA. CR Bekris LM, 2010, J GERIATR PSYCH NEUR, V23, P228, DOI 10.1177/0891988710383572 Bonilla E, 2006, NEUROCHEM RES, V31, P1425, DOI 10.1007/s11064-006-9194-8 Bonilla-Ramirez L, 2011, BIOMETALS, V24, P1045, DOI 10.1007/s10534-011-9463-0 Bretaud S, 2004, NEUROTOXICOL TERATOL, V26, P857, DOI 10.1016/j.ntt.2004.06.014 Burman JL, 2012, P NATL ACAD SCI USA, V109, P10438, DOI 10.1073/pnas.1120688109 Cha GH, 2005, P NATL ACAD SCI USA, V102, P10345, DOI 10.1073/pnas.0500346102 Chaudhuri A, 2007, J NEUROSCI, V27, P2457, DOI 10.1523/JNEUROSCI.4239-06.2007 Clark IE, 2006, NATURE, V441, P1162, DOI 10.1038/nature04779 Cocheme HM, 2008, J BIOL CHEM, V283, P1786, DOI 10.1074/jbc.M708597200 Coulom H, 2004, J NEUROSCI, V24, P10993, DOI 10.1523/JNEUROSCI.2993-04.2004 Cuervo AM, 2010, MOVEMENT DISORD, V25, pS49, DOI 10.1002/mds.22718 Dinis-Oliveira RJ, 2006, NEUROTOXICOLOGY, V27, P1110, DOI 10.1016/j.neuro.2006.05.012 Feany MB, 2000, NATURE, V404, P394, DOI 10.1038/35006074 Ortega-Arellano HF, 2011, NEUROCHEM RES, V36, P1073, DOI 10.1007/s11064-011-0451-0 Forno LS, 1996, J NEUROPATH EXP NEUR, V55, P259, DOI 10.1097/00005072-199603000-00001 Grandison RC, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004067 Greene JC, 2003, P NATL ACAD SCI USA, V100, P4078, DOI 10.1073/pnas.0737556100 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Jankovic J, 2008, J NEUROL NEUROSUR PS, V79, P368, DOI 10.1136/jnnp.2007.131045 Jankovic Joseph, 2008, Neuropsychiatr Dis Treat, V4, P743 Jiang HB, 2004, HUM MOL GENET, V13, P1745, DOI 10.1093/hmg/ddh180 Jimenez-Del-Rio M, 2010, NEUROCHEM RES, V35, P227, DOI 10.1007/s11064-009-0046-1 Kuter K, 2007, BRAIN RES, V1155, P196, DOI 10.1016/j.brainres.2007.04.018 Lavara-Culebras E, 2007, GENE, V400, P158, DOI 10.1016/j.gene.2007.06.013 Lee SB, 2007, BIOCHEM BIOPH RES CO, V358, P534, DOI 10.1016/j.bbrc.2007.04.156 Li X, 2005, CHINESE MED J-PEKING, V118, P1357 Liu YL, 2009, AGING CELL, V8, P370, DOI 10.1111/j.1474-9726.2009.00471.x Mao ZM, 2009, FRONT NEURAL CIRCUIT, V3, DOI 10.3389/neuro.04.005.2009 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McPhail DB, 2003, J AGR FOOD CHEM, V51, P1684, DOI 10.1021/jf025922v Munoz-Soriano V, 2011, PARKINSONS DIS-US, V2011, DOI 10.4061/2011/520640 Nuytemans K, 2010, HUM MUTAT, V31, P763, DOI 10.1002/humu.21277 Park J, 2005, GENE, V361, P133, DOI 10.1016/j.gene.2005.06.040 Pendleton RG, 2002, BEHAV GENET, V32, P89, DOI 10.1023/A:1015279221600 Peng C, 2012, EXP GERONTOL, V47, P170, DOI 10.1016/j.exger.2011.12.001 Peng C, 2011, J AGR FOOD CHEM, V59, P2097, DOI 10.1021/jf1046267 Pesah Y, 2004, DEVELOPMENT, V131, P2183, DOI 10.1242/dev.01095 Pineda-Trujillo N, 2006, AM J MED GENET B, V141B, P885, DOI 10.1002/ajmg.b.30375 Pineda-Trujillo N, 2009, IATREIA, V22, P122 Pineda-Trujillo NL, 2001, NEUROSCI LETT, V298, P87, DOI 10.1016/S0304-3940(00)01733-X Rankin Carolyn A, 2011, Open Biochem J, V5, P9, DOI 10.2174/1874091X01105010009 Sang TK, 2007, J NEUROSCI, V27, P981, DOI 10.1523/JNEUROSCI.4810-06.2007 Sanz A, 2010, J BIOENERG BIOMEMBR, V42, P135, DOI 10.1007/s10863-010-9281-z Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Sian-Hulsmann J, 2011, J NEUROCHEM, V118, P939, DOI 10.1111/j.1471-4159.2010.07132.x Surendran S, 2010, NEUROL SCI, V31, P531, DOI 10.1007/s10072-010-0245-1 Thiruchelvam M, 2000, J NEUROSCI, V20, P9207 Thomas KJ, 2011, HUM MOL GENET, V20, P40, DOI 10.1093/hmg/ddq430 Villano D, 2007, TALANTA, V71, P230, DOI 10.1016/j.talanta.2006.03.050 Wang C, 2007, J NEUROSCI, V27, P8563, DOI 10.1523/JNEUROSCI.0218-07.2007 NR 50 TC 34 Z9 35 U1 1 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1119 J9 GENE JI Gene PD JAN 10 PY 2013 VL 512 IS 2 BP 355 EP 363 DI 10.1016/j.gene.2012.09.120 PG 9 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity GA 073UP UT WOS:000313768900029 PM 23046578 DA 2023-03-13 ER PT J AU Alp, FN Arikan, B Ozfidan-Konakci, C Gulenturk, C Yildiztugay, E Turan, M Cavusoglu, H AF Alp, Fatma Nur Arikan, Busra Ozfidan-Konakci, Ceyda Gulenturk, Cagri Yildiztugay, Evren Turan, Metin Cavusoglu, Halit TI Hormetic activation of nano-sized rare earth element terbium on growth, PSII photochemistry, antioxidant status and phytohormone regulation in Lemna minor SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Antioxidant Chlorophyll fluorescence; Hormetic effect; Lemna minor; Nano-size terbium ID ABSCISIC-ACID; HYDROGEN-PEROXIDE; SEED-GERMINATION; OXIDATIVE STRESS; PHOTOSYSTEM-II; NADPH OXIDASE; LANTHANUM; METABOLISM; CYTOKININ; CERIUM AB Soils contaminated with rare earth elements (REEs) can damage agriculture by causing physiological disorders in plants which are evaluated as the main connection of the human food chain. A biphasic dose response with excitatory responses to low concentrations and inhibitory/harmful responses to high concentrations has been defined as hormesis. However, not much is clear about the ecological effects and potential risks of REEs to plants. For this purpose, here we showed the impacts of different concentrations of nano terbium (Tb) applications (510-25-50-100-250-500 mg L-1) on the accumulation of endogeneous certain ions and hormones, chlorophyll fluoresence, photochemical reaction capacity and antioxidant activity in duckweed (Lemna minor). Tb concentrations less than 100 mg L (-1) increased the contents of nitrogen (N), phosphate (P), potassium (K+), calcium (Ca2+), magnesium (Mg2+), manganese (Mn2+) and iron (Fe2+). Chlorophyll fluorescence (Fv/Fm and Fv/Fo) was suppressed under 250-500 mg L-1 Tb. In addition, Tb toxicity affected the trapped energy adversely by the active reaction center of photosystem II (PSII) and led to accumulation of inactive reaction centers, thus lowering the detected level of electron transport from photosystem II (PSII) to photosystem I (PSI). On the other hand, 5-100 mg L-1 Tb enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), NADPH oxidase (NOX), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST). Tb (5-50 mg L-1) supported the maintenance of cellular redox status by promoting antioxidant pathways involved in the ascorbateglutathione (AsA-GSH) cycle. In addition to the antioxidant system, the contents of some hormones such as indole-3-acetic acid (IAA), gibberellic acid (GA), cytokinin (CK) and salicylic acid (SA) were also induced in the presence of 5-100 mg L-1 Tb. In addition, the levels of hydrogen peroxide (H2O2) and lipid peroxidation (TBARS) were controlled through ascorbate (AsA) regeneration and effective hormonal modulation in L. minor. However, this induction in the antioxidant system and phytohormone contents could not be resumed after applications higher than 250 mg L-1 Tb. TBARS and H2O2, which indicate the level of lipid peroxidation, increased. The results in this study showed that Tb at appropriate concentrations has great potential to confer tolerance of duckweed by supporting the antioxidant system, protecting the biochemical reactions of photosystems and improving hormonal regulation. C1 [Alp, Fatma Nur; Arikan, Busra; Gulenturk, Cagri; Yildiztugay, Evren] Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey. [Ozfidan-Konakci, Ceyda] Necmettin Erbakan Univ, Fac Sci, Dept Mol Biol & Genet, TR-42090 Meram, Konya, Turkey. [Turan, Metin] Yeditepe Univ, Fac Econ & Adm Sci, Dept Agr Trade & Management, TR-34755 Istanbul, Turkey. [Cavusoglu, Halit] Selcuk Univ, Fac Sci, Dept Phys, TR-42130 Selcuklu, Konya, Turkey. C3 Selcuk University; Necmettin Erbakan University; Yeditepe University; Selcuk University RP Yildiztugay, E (corresponding author), Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey. EM fatmanur.alp@selcuk.edu.tr; busra.arikan@selcuk.edu.tr; cozfidan@erbakan.edu.tr; 3816cagri@gmail.com; eytugay@selcuk.edu.tr; metin.turan@yeditepe.edu.tr; hcavusoglu@selcuk.edu.tr CR Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Basiglini E, 2018, ECOTOX ENVIRON SAFE, V153, P54, DOI 10.1016/j.ecoenv.2018.01.053 Battal Peyami, 2001, Turkish Journal of Botany, V25, P123 BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8 Bergmeyer H.U., 1970, METHODEN ENZYMATISCH, V2, DOI 10.1002/pauz.19750040306 Berwal M., 2018, ABIOTIC BIOTIC STRES, P1, DOI [10.5772/intechopen.82079, DOI 10.5772/INTECHOPEN.82079] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Cao ZM, 2017, ENVIRON SCI-NANO, V4, P1086, DOI 10.1039/c7en00015d Checler Frederic, 2017, HUM ECOL RISK ASSESS, V13, P2004, DOI [10.1080/15548627.2017.1363950, DOI 10.1080/10807039.2015.1133242, 10.1080/01904160701209287] Cheeseman JM, 2006, J EXP BOT, V57, P2435, DOI 10.1093/jxb/erl004 Chen CM, 2014, PLANT PHYSIOL, V166, P370, DOI 10.1104/pp.114.245324 Chen HH, 2020, PLANT J, V101, P310, DOI 10.1111/tpj.14542 Cheng J, 2021, BIOTECHNOL APPL BIOC, V68, P1216, DOI 10.1002/bab.2043 Chu-Puga A, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8010009 CUTTING JGM, 1991, J PLANT GROWTH REGUL, V10, P85, DOI 10.1007/BF02279317 d'Aquino L, 2009, CHEMOSPHERE, V75, P900, DOI 10.1016/j.chemosphere.2009.01.026 Demuyakor John, 2015, ENV SCI AMP TECHNOLO, V10, pe202018, DOI [10.29333/ojcmt/8286, DOI 10.1021/ES505027P, 10.1097/FJC.0000000000000699] Dridi N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14074153 Dutilleul C, 2003, PLANT PHYSIOL, V131, P264, DOI 10.1104/pp.011155 Fan ZB, 2020, HORTSCIENCE, V55, P310, DOI 10.21273/HORTSCI14661-19 Gupta R, 2021, PLANT SIGNAL BEHAV, V16, DOI 10.1080/15592324.2020.1865687 HERNANDEZMINANA FM, 1991, J HORTIC SCI BIOTECH, V66, P505, DOI 10.1080/00221589.1991.11516180 HERZOG V, 1973, ANAL BIOCHEM, V55, P554, DOI 10.1016/0003-2697(73)90144-9 Hong FS, 2003, BIOL TRACE ELEM RES, V94, P273, DOI 10.1385/BTER:94:3:273 Hong FS, 2002, BIOL TRACE ELEM RES, V89, P263, DOI 10.1385/BTER:89:3:263 Hossain MZ, 2006, BIOL PLANTARUM, V50, P210, DOI 10.1007/s10535-006-0009-1 Hu HQ, 2016, ENVIRON SCI POLLUT R, V23, P8902, DOI 10.1007/s11356-015-5962-9 Hu X, 2002, CHEMOSPHERE, V48, P621, DOI 10.1016/S0045-6535(02)00109-1 Hu ZY, 2004, J PLANT NUTR, V27, P183, DOI 10.1081/PLN-120027555 Hunt R, 2002, ANN BOT-LONDON, V90, P485, DOI 10.1093/aob/mcf214 Institute of Medicine, 2015, MOL MEMBR BIOL, DOI DOI 10.3109/09687681003616854 Ion R.M., 2021, HDB GREENER SYNTHESI, P355 Ippolito MP, 2011, PLANT BIOSYST, V145, P248, DOI 10.1080/11263504.2010.509937 Ippolito MP, 2007, CARYOLOGIA, V60, P125, DOI 10.1080/00087114.2007.10589559 Jiang MY, 2002, PLANTA, V215, P1022, DOI 10.1007/s00425-002-0829-y Jogawat A., 2019, MOL PLANT ABIOTIC ST, P209, DOI 10.1002/9781119463665.ch11 Khan N, 2020, PLANT GROWTH REGUL, V90, P189, DOI 10.1007/s10725-020-00571-x Kovarikova M, 2019, BIOL PLANTARUM, V63, P20, DOI 10.32615/bp.2019.003 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 Liddelow Shane A., RENEWABLE SUSTAINABL, V41, P820, DOI [10.1016/j.it.2020.07.006, DOI 10.1016/J.RSER.2016.12.110] Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE Liu DW, 2012, J PLANT NUTR SOIL SC, V175, P907, DOI 10.1002/jpln.201200016 Liu DW, 2012, ENVIRON SCI POLLUT R, V19, P3282, DOI 10.1007/s11356-012-0844-x Liu XQ, 2009, BIOL TRACE ELEM RES, V130, P141, DOI 10.1007/s12011-009-8321-1 Liu ZQ, 2022, COMPOS PART B-ENG, V244, DOI 10.1016/j.compositesb.2022.110186 Loktyushkin A. V, 2019, Moscow University Biological Sciences Bulletin, V74, P81, DOI 10.3103/S009639251902007X Luo JP, 2008, J RARE EARTH, V26, P869, DOI 10.1016/S1002-0721(09)60023-5 MITTLER R, 1993, ANAL BIOCHEM, V212, P540, DOI 10.1006/abio.1993.1366 Mubarik MS, 2021, PHYSIOL PLANTARUM, V172, P1269, DOI 10.1111/ppl.13325 NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867 Nyomora AMS, 1997, FRESEN J ANAL CHEM, V357, P1185, DOI 10.1007/s002160050328 Oliveira HC, 2016, NITRIC OXIDE-BIOL CH, V61, P10, DOI 10.1016/j.niox.2016.09.010 PALNI LMS, 1983, PLANT PHYSIOL, V72, P858, DOI 10.1104/pp.72.3.858 Paradiso A, 2008, PLANT CELL PHYSIOL, V49, P362, DOI 10.1093/pcp/pcn013 Qamaruddin M, 1991, SCAND J FOREST RES, V6, P41, DOI 10.1080/02827589109382645 Rachappanavar V, 2022, SCI HORTIC-AMSTERDAM, V304, DOI 10.1016/j.scienta.2022.111302 Rajput VD, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10040267 Ramos SJ, 2016, CURR POLLUT REP, V2, P28, DOI 10.1007/s40726-016-0026-4 Rao KVM, 2000, PLANT SCI, V157, P113, DOI 10.1016/S0168-9452(00)00273-9 Rhaman MS, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10010037 RICCI G, 1984, ANAL BIOCHEM, V143, P226, DOI 10.1016/0003-2697(84)90657-2 Rodziewicz P, 2014, ACTA PHYSIOL PLANT, V36, P1, DOI 10.1007/s11738-013-1402-y Rostami Saeid, VACUUM, V220, P818, DOI [10.1016/j.scs.2018.10.007, DOI 10.1016/J.IJADHADH.2018.10.001, 10.1016/J.CHEMOSPHERE.2018.12.203, DOI 10.1016/J.VACUUM.2018.05.012] Sagi M, 2001, PLANT PHYSIOL, V126, P1281, DOI 10.1104/pp.126.3.1281 Salem SS, 2021, BIOL TRACE ELEM RES, V199, P344, DOI 10.1007/s12011-020-02138-3 Salvi P, 2021, PLANT CELL REP, V40, P1305, DOI 10.1007/s00299-021-02683-8 Sameena P., 2021, J PHOTOCHEM PHOTOB A, V8, DOI [10.1016/j.jpap.2021.100059, DOI 10.1016/J.JPAP.2021.100059] SEEVERS PM, 1971, PLANT PHYSIOL, V48, P353, DOI 10.1104/pp.48.3.353 Shamsipur M, 2018, COORDIN CHEM REV, V374, P153, DOI 10.1016/j.ccr.2018.07.006 Shan CJ, 2020, PROTOPLASMA, V257, P1487, DOI 10.1007/s00709-020-01510-3 Shi HT, 2013, PLANT PHYSIOL BIOCH, V71, P226, DOI 10.1016/j.plaphy.2013.07.021 Soliman SA, 2009, THERMOCHIM ACTA, V491, P84, DOI 10.1016/j.tca.2009.03.006 Song WP, 2002, J RARE EARTH, V20, P658 Stjepanovic N., 2011, HEURISTICS FDN ADAPT, V30, P1558, DOI [10.1093/annonc/mdz233, DOI 10.1093/ACPROF:OSO/9780199744282.001.0001] Syrvatka V, 2022, TRENDS BIOTECHNOL, V40, P1088, DOI 10.1016/j.tibtech.2022.02.006 Wang LH, 2014, P NATL ACAD SCI USA, V111, P12936, DOI 10.1073/pnas.1413376111 Wang LH, 2009, CHEMOSPHERE, V77, P1019, DOI 10.1016/j.chemosphere.2009.07.065 WOODBURY W, 1971, ANAL BIOCHEM, V44, P301, DOI 10.1016/0003-2697(71)90375-7 Xiao R, 2019, LUMINESCENCE, V34, P90, DOI 10.1002/bio.3583 Yao RQ, 2021, J AM CHEM SOC, V143, P17360, DOI 10.1021/jacs.1c09085 Zhang CH, 2013, ACTA PHARM SIN B, V3, P20, DOI 10.1016/j.apsb.2012.12.005 Zicari MA, 2018, ECOTOX ENVIRON SAFE, V163, P536, DOI 10.1016/j.ecoenv.2018.07.113 Zulfiqar F, 2022, J HAZARD MATER, V427, DOI 10.1016/j.jhazmat.2021.127891 NR 84 TC 1 Z9 1 U1 2 U2 2 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0981-9428 EI 1873-2690 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD JAN 1 PY 2023 VL 194 BP 361 EP 373 DI 10.1016/j.plaphy.2022.11.031 PG 13 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 7U0OG UT WOS:000911837200007 OA Bronze DA 2023-03-13 ER PT J AU Ye, RR Peterson, DR Kitamura, SI Segner, H Seemann, F Au, DWT AF Ye, Roy R. Peterson, Drew R. Kitamura, Shin-Ichi Segner, Helmut Seemann, Frauke Au, Doris W. T. TI Sex-specific immunomodulatory action of the environmentalestrogen 17 alpha-ethynylestradiol alongside with reproductive impairment in fish SO AQUATIC TOXICOLOGY LA English DT Article DE Estrogenic EDCs; EE2; E. tarda; Immunotoxicity; Innate immunity; Reproductive impairment; Marine medaka; Oryzias melastigma; Sex-difference; Complement system; Toll-like receptor ID ENDOCRINE-DISRUPTING CHEMICALS; MEDAKA ORYZIAS-MELASTIGMA; BASS DICENTRARCHUS-LABRAX; IMMUNE-SYSTEM; ESTROGEN-RECEPTORS; GENE-EXPRESSION; SYNTHETIC ESTROGEN; GILTHEAD SEABREAM; RAINBOW-TROUT; BONY FISH AB Estrogenic endocrine disrupting chemicals (EEDCs) are present ubiquitously in sediments and aquatic ecosystems worldwide. The detrimental impact of EEDCs on the reproduction of wildlife is widely recognized. Increasing evidence shows the immunosuppressive effects of EEDCs in vertebrates. Yet, no studies have considered concomitantly EEDC-induced impacts on reproductive impairment and immune suppression in vivo, which are deemed essential for risk assessment and environmental monitoring. In this study, EE2 was used as a representative EEDC, for parallel evaluation of EEDC-induced immune suppression (immune marker gene expression, leukocyte numbers, host resistance assay, and immune competence index) and reproductive impairment (estrogen responsive gene expression, fecundity, fertilization success, hatching success, and reproductive competence index) in an established fish model (marine medaka Oryzias melastigma), considering sex-specific induction and adaptation and recovery responses under different EE2 exposure scenarios. The findings in marine medaka reveal distinct sex differences in the EE2-mediated biological responses. For female fish, low concentration of exogenous EE2 (33 ng/L) could induce hormesis (immune enhancement), enable adaptation (restored reproduction) and even boost fish resistance to bacterial challenge after abatement of EE2. However, a prolonged exposure to high levels of EE2 (113 ng/L) not only impaired FO immune function, but also perturbed females recovering from reproductive impairment, resulting in a persistent impact on the F1 generation output. Thus, for female fish, the exposure concentration of EE2 is more critical than the dose of EE2 in determining the impacts of EE2 on immune function and reproduction. Conversely, male fish are far more sensitive than females to the presence of low levels of exogenous EE2 in water and the EE2-mediated biological impacts are clearly dose-dependent. It is also evident in male fish that direct contact of EE2 is essential to sustain impairments of immune competence and reproductive output as well as deregulation of immune function genes in vivo. The immunomodulatory pathways altered by EE2 were deciphered for male and female fish, separately. Downregulation of hepatic tlr3 and c3 (in female) and tlr3, tlr5 and c3 (in male) may be indicative of impaired fish immune competence. Taken together, impaired immune competence in the EE2-exposed fish poses an immediate thread on the survival of FO population. Impaired reproduction in the EE2-exposed fish can directly affect F1 output. Parallel evaluation of immune competence and reproduction are important considerations when assessing the risk of sublethal levels of EE2/EEDCs in aquatic environments. C1 [Ye, Roy R.; Peterson, Drew R.; Seemann, Frauke; Au, Doris W. T.] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Kowloon, Hong Kong, Peoples R China. [Kitamura, Shin-Ichi] Ehime Univ, Ctr Marine Environm Studies, Matsuyama, Ehime 7908577, Japan. [Segner, Helmut] Univ Bern, Ctr Fish & Wildlife Hlth, CH-3012 Bern, Switzerland. [Seemann, Frauke] Texas A&M Univ, Dept Life Sci, 6300 Ocean Dr, Corpus Christi, TX 78412 USA. C3 City University of Hong Kong; Ehime University; University of Bern; Texas A&M University System RP Seemann, F (corresponding author), Texas A&M Univ, Dept Life Sci, 6300 Ocean Dr, Corpus Christi, TX 78412 USA.; Au, DWT (corresponding author), City Univ Hong Kong, Dept Chem, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. EM Frauke.Seemann@tamucc.edu; bhdwtau@cityu.edu.hk RI Seemann, Frauke/AAX-6021-2020; Segner, Helmut/D-5714-2014 OI Seemann, Frauke/0000-0002-7294-6829; Kitamura, Shin-Ichi/0000-0001-7357-3369; Peterson, Drew/0000-0001-7882-629X; Segner, Helmut/0000-0002-1783-1295 FU Research Grants Council of the Hong Kong Special Administrative Region, China [9041943, CityU 160013]; City University of Hong Kong [7004660]; State Key Laboratory in Marine Pollution FX The work described in this paper was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 9041943; CityU 160013), the City University of Hong Kong (Grant no. 7004660) and the State Key Laboratory in Marine Pollution. Prof Peter Yu is acknowledged for his input and support regarding the development of the ICI and RCI formula. The authors would like to acknowledge Dr J. Humble, Dr A. Shanthanagouda, Dr M. Dong and K.L. Wong for their technical assistance. CR Burgos-Aceves MA, 2016, FISH SHELLFISH IMMUN, V58, P42, DOI 10.1016/j.fsi.2016.09.006 Aris AZ, 2014, ENVIRON INT, V69, P104, DOI 10.1016/j.envint.2014.04.011 Armstrong BM, 2016, CHEMOSPHERE, V144, P366, DOI 10.1016/j.chemosphere.2015.08.078 Bo J, 2012, COMP BIOCHEM PHYS D, V7, P191, DOI 10.1016/j.cbd.2012.02.005 Bo J, 2011, MAR POLLUT BULL, V63, P267, DOI 10.1016/j.marpolbul.2011.05.014 Bowden TJ, 2008, FISH SHELLFISH IMMUN, V25, P373, DOI 10.1016/j.fsi.2008.03.017 Burkhardt-Holm P, 2008, CHIMIA, V62, P376, DOI 10.2533/chimia.2008.376 Caballero I, 2017, SCI REP-UK, V7, DOI 10.1038/srep40981 Cabas I, 2012, DEV COMP IMMUNOL, V36, P547, DOI 10.1016/j.dci.2011.09.011 Cabas I, 2011, MOL IMMUNOL, V48, P2079, DOI 10.1016/j.molimm.2011.07.001 Campbell CG, 2006, CHEMOSPHERE, V65, P1265, DOI 10.1016/j.chemosphere.2006.08.003 Casanova-Nakayama A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19040932 Cheung NKM, 2013, J FISH BIOL, V83, P295, DOI 10.1111/jfb.12164 Cuesta A, 2007, FISH SHELLFISH IMMUN, V23, P693, DOI 10.1016/j.fsi.2007.01.015 Danion M, 2011, AQUAT TOXICOL, V105, P300, DOI 10.1016/j.aquatox.2011.06.022 Dong M., 2017, FISH SHELLFISH IMMUN Fuzzen MLM, 2015, AQUAT TOXICOL, V160, P106, DOI 10.1016/j.aquatox.2015.01.009 Hannah MF, 2008, BRAIN BEHAV IMMUN, V22, P503, DOI 10.1016/j.bbi.2007.10.005 Hou YL, 2012, GENE, V511, P398, DOI 10.1016/j.gene.2012.09.060 Jin YX, 2010, FISH SHELLFISH IMMUN, V28, P854, DOI 10.1016/j.fsi.2010.02.009 Jurgens MD, 2002, ENVIRON TOXICOL CHEM, V21, P480, DOI 10.1002/etc.5620210302 Kim H. S., 2018, MOL ECOL RESOUR Kleinbaum D.G., 2010, SURVIVAL ANAL, V3 Kovats S, 2015, CELL IMMUNOL, V294, P63, DOI 10.1016/j.cellimm.2015.01.018 KUMAR D, 1994, RELIAB ENG SYST SAFE, V44, P177, DOI 10.1016/0951-8320(94)90010-8 Lafont AG, 2016, GEN COMP ENDOCR, V235, P177, DOI 10.1016/j.ygcen.2015.11.021 Lange R, 2001, ENVIRON TOXICOL CHEM, V20, P1216, DOI 10.1002/etc.5620200610 Law WY, 2001, GEN COMP ENDOCR, V121, P163, DOI 10.1006/gcen.2000.7593 Lee YS, 2017, EXP MOL MED, V49, DOI 10.1038/emm.2017.207 Lei BL, 2009, CHEMOSPHERE, V76, P36, DOI 10.1016/j.chemosphere.2009.02.035 Lesmeister MJ, 2005, REPROD BIOL ENDOCRIN, V3, DOI 10.1186/1477-7827-3-74 Liarte S, 2011, DEV COMP IMMUNOL, V35, P840, DOI 10.1016/j.dci.2011.03.015 Liebig M, 2005, CHEMOSPHERE, V59, P271, DOI 10.1016/j.chemosphere.2004.10.051 Liu S, 2012, WATER RES, V46, P3754, DOI 10.1016/j.watres.2012.04.006 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Markle JG, 2014, TRENDS IMMUNOL, V35, P97, DOI 10.1016/j.it.2013.10.006 Massart S, 2014, AQUAT TOXICOL, V157, P57, DOI 10.1016/j.aquatox.2014.10.003 Mills LJ, 2005, SCI TOTAL ENVIRON, V343, P1, DOI 10.1016/j.scitotenv.2004.12.070 Nagpal N., 2009, WATER QUALITY GUIDEL Oda K, 2006, MOL SYST BIOL, V2, DOI 10.1038/msb4100057 Owen R, 2012, NATURE, V485, P441, DOI 10.1038/485441a Palaszynski KM, 2005, ENDOCRINOLOGY, V146, P3280, DOI 10.1210/en.2005-0284 Palti Y, 2011, DEV COMP IMMUNOL, V35, P1263, DOI 10.1016/j.dci.2011.03.006 Park CH, 2001, J BIOL CHEM, V276, P7806, DOI 10.1074/jbc.M008922200 Peterson D. R., 2018, THESIS, P203 Pressley ME, 2005, DEV COMP IMMUNOL, V29, P501, DOI 10.1016/j.dci.2004.10.007 R Core Team, 2019, R LANG ENV STAT COMP Rehberger K., 2017, CRIT REV TOXICOL, P1 Robinson CD, 2003, AQUAT TOXICOL, V62, P119, DOI 10.1016/S0166-445X(02)00079-6 Roved J, 2017, HORM BEHAV, V88, P95, DOI 10.1016/j.yhbeh.2016.11.017 Schafers C, 2007, J TOXICOL ENV HEAL A, V70, P768, DOI 10.1080/15287390701236470 Schmid T, 2002, TOXICOL LETT, V131, P65, DOI 10.1016/S0378-4274(02)00043-7 Seemann F, 2017, COMP BIOCHEM PHYS C, V199, P81, DOI 10.1016/j.cbpc.2017.03.010 Seemann F, 2016, J APPL TOXICOL, V36, P815, DOI 10.1002/jat.3215 Seemann F, 2013, MAR ENVIRON RES, V87-88, P44, DOI 10.1016/j.marenvres.2013.03.003 Segner H, 2013, GEN COMP ENDOCR, V191, P190, DOI 10.1016/j.ygcen.2013.05.015 Shike H, 2002, EUR J BIOCHEM, V269, P2232, DOI 10.1046/j.1432-1033.2002.02881.x Song JY, 2012, ENVIRON SCI POLLUT R, V19, P2300, DOI 10.1007/s11356-012-0737-z Sun LW, 2011, FISH SHELLFISH IMMUN, V30, P1131, DOI 10.1016/j.fsi.2011.02.020 Ternes TA, 1999, SCI TOTAL ENVIRON, V225, P81, DOI 10.1016/S0048-9697(98)00334-9 Thilagam H, 2009, ENVIRON TOXICOL CHEM, V28, P1722, DOI 10.1897/08-642.1 Thorpe KL, 2003, ENVIRON SCI TECHNOL, V37, P1142, DOI 10.1021/es0201348 WANG R, 1994, DEV COMP IMMUNOL, V18, P377, DOI 10.1016/0145-305X(94)90003-5 Wang YD, 2010, PEPTIDES, V31, P1026, DOI 10.1016/j.peptides.2010.02.025 Wenger M, 2012, MAR BIOTECHNOL, V14, P530, DOI 10.1007/s10126-012-9473-0 Wenger M, 2011, FISH SHELLFISH IMMUN, V31, P90, DOI 10.1016/j.fsi.2011.04.007 Whitacre CC, 1999, SCIENCE, V283, P1277, DOI 10.1126/science.283.5406.1277 Xu DH, 2008, PARASITOL RES, V103, P979, DOI 10.1007/s00436-008-1044-y Yang Q, 2012, ENDOCRINOLOGY, V153, P3170, DOI 10.1210/en.2011-2045 Ye RR, 2017, ENVIRON SCI POLLUT R, V24, P27687, DOI 10.1007/s11356-016-7208-x Ye RR, 2012, ENVIRON SCI POLLUT R, V19, P2477, DOI 10.1007/s11356-012-0887-z Ying GG, 2003, WATER RES, V37, P3785, DOI 10.1016/S0043-1354(03)00261-6 Zhou JL, 2007, ENVIRON SCI TECHNOL, V41, P206, DOI 10.1021/es0619298 NR 73 TC 17 Z9 17 U1 0 U2 23 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0166-445X EI 1879-1514 J9 AQUAT TOXICOL JI Aquat. Toxicol. PD OCT PY 2018 VL 203 BP 95 EP 106 DI 10.1016/j.aquatox.2018.07.019 PG 12 WC Marine & Freshwater Biology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Marine & Freshwater Biology; Toxicology GA GV5MY UT WOS:000446147500011 PM 30099325 DA 2023-03-13 ER PT J AU Horgan, FG Penalver-Cruz, A AF Horgan, Finbarr G. Penalver-Cruz, Ainara TI Compatibility of Insecticides with Rice Resistance to Planthoppers as Influenced by the Timing and Frequency of Applications SO INSECTS LA English DT Article DE BPH32; cypermethrin; deltamethrin; hormesis; phytotoxicity; prophylactic insecticides; resurgence; secondary outbreak ID NILAPARVATA-LUGENS STAL; PESTICIDE-INDUCED SUSCEPTIBILITY; HOST-PLANT RESISTANCE; BROWN PLANTHOPPER; BIOCHEMICAL-CHANGES; INDUCED RESURGENCE; HOMOPTERA; DELPHACIDAE; CARBOFURAN; TOXICITY AB Simple Summary The brown planthopper, Nilaparvata lugens (Stal)(BPH) is a pest of rice in Asia. Varietal resistance is proposed as an alternative to insecticides that reduces BPH densities. However, in practice, resistance is often combined with insecticide use. We examined the effects of combining seven insecticides with resistance. We applied insecticides as one, two or three applications (experiment 1), or as early or late applications (experiment 2) to resistant (IR62) and susceptible (IR64) rice in a screenhouse environment. Carbofuran and fipronil reduced BPH biomass density. Single applications of cartap hydrochloride, cypermethrin, or buprofezin reduced BPH biomass densities on IR62, but not on IR64 (i.e., synergies); however, the effects were weak and multiple applications of all insecticides (>= 2) eliminated synergies. Multiple applications of deltamethrin were antagonistic to resistance as indicated by higher densities of planthoppers on treated IR62 than on treated IR64. In non-infested plants from experiment 2, late applications reduced rice yields compared to early applications. Results suggest that early applications of some insecticides risk enhancing BPH densities, whereas late applications risk reducing rice yields. To avoid negative effects, applications should be made in compliance with Integrated Pest Management principals and multiple insecticide applications to BPH resistant rice should be avoided. The brown planthopper, Nilaparvata lugens (Stal)(BPH) is a pest of rice in Asia. We examined the effects of seven insecticides combined with host resistance against BPH. In a screenhouse environment, we treated BPH-infested and non-infested resistant (IR62) and susceptible (IR64) rice with buprofezin, carbofuran, cartap hydrochloride, cypermethrin, deltamethrin, fipronil, or thiamethoxam + chlorantraniliprole. In one experiment, plants received one, two or three applications. In a second experiment, plants received one early or late insecticide application. Carbofuran and fipronil reduced planthopper biomass densities but resistance did not contribute to these effects (i.e., resistance was redundant). Single applications of cartap hydrochloride (at 20 or 50 days after sowing (DAS)), cypermethrin (20 DAS), or buprofezin (50 DAS) reduced BPH biomass densities on IR62 (i.e., synergies); other insecticides and application times, and multiple applications of all insecticides did not reduce BPH biomass densities on IR62 more than on IR64 (i.e., either resistance or insecticides were redundant). Deltamethrin (three applications) was antagonistic to resistance, but host resistance tended to buffer against the negative effects of single deltamethrin applications. Yields of infested IR62 were not statistically improved by insecticide applications. Late applications reduced yields of non-infested rice. We discuss how prophylactic insecticide applications could destabilize BPH populations and reduce the productivity and profitability of resistant rice. C1 [Horgan, Finbarr G.] EcoLaVerna Integral Restorat Ecol, Bridestown T56 P499, Cty Cork, Ireland. [Horgan, Finbarr G.] Univ Edinburgh, Univ BHF Ctr Cardiovasc Sci, Ctr Pesticide Suicide Prevent, Edinburgh EH16 4TJ, Midlothian, Scotland. [Horgan, Finbarr G.] Univ Catolica Maule, Escuela Agron, Fac Ciencias Agrarias & Forestales, Casilla 7-D, Curico 3349001, Chile. [Penalver-Cruz, Ainara] Univ Rennes, Inst Natl Rech Agri Alimentat & Environ INRAE, Inst Genet Environm & Protect Plantes IGEPP, Inst Agro, F-49045 Angers, France. [Penalver-Cruz, Ainara] Int Rice Res Inst, Makati 1226, Metro Manila, Philippines. C3 University of Edinburgh; Universidad Catolica del Maule; INRAE; Institut Agro; CGIAR; International Rice Research Institute (IRRI) RP Horgan, FG (corresponding author), EcoLaVerna Integral Restorat Ecol, Bridestown T56 P499, Cty Cork, Ireland.; Horgan, FG (corresponding author), Univ Edinburgh, Univ BHF Ctr Cardiovasc Sci, Ctr Pesticide Suicide Prevent, Edinburgh EH16 4TJ, Midlothian, Scotland.; Horgan, FG (corresponding author), Univ Catolica Maule, Escuela Agron, Fac Ciencias Agrarias & Forestales, Casilla 7-D, Curico 3349001, Chile. EM f.horgan@ecolaverna.org; ainara.penalver@agrocampus-ouest.fr RI Peñalver-Cruz, Ainara/J-7559-2018 OI Peñalver-Cruz, Ainara/0000-0003-4942-5328; Horgan, Finbarr/0000-0003-3796-667X FU Bill and Melinda Gates Foundation [OPP52303]; Global Rice Science Platform (GRiSP) FX This research was funded by the Bill and Melinda Gates Foundation (Cereal Systems Initiative for South Asia (CSISA): OPP52303) and the Global Rice Science Platform (GRiSP) under the directorship of Achim Dobermann. CR ADDELMAN S, 1974, AM STAT, V28, P21, DOI 10.2307/2683524 Anand Kumar A.D.V.S.L.P., 2019, J ENTOMOL ZOOL STUD, V7, P874 Azzam S, 2009, INT J PEST MANAGE, V55, P347, DOI 10.1080/09670870902934872 Bandong JP, 2002, CROP PROT, V21, P803, DOI 10.1016/S0261-2194(02)00043-1 Borkar V., 2018, INT J CHEM STUD, V6, P9 Bottrell DG, 2012, J ASIA-PAC ENTOMOL, V15, P122, DOI 10.1016/j.aspen.2011.09.004 Braganca I., 2018, BIOT ABIOTIC STRESS, P47 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Cheng C. H., 1979, International Rice Research Institute: Brown planthopper: threat to rice production in Asia., P251 Cuong NL, 1997, CROP PROT, V16, P707, DOI 10.1016/S0261-2194(97)00068-9 Deng LL, 2008, ARCH ENVIRON CON TOX, V55, P652, DOI 10.1007/s00244-008-9149-y Dhaka S. S., 2011, Annals of Plant Protection Sciences, V19, P324 FABELLAR LT, 1986, CROP PROT, V5, P254, DOI 10.1016/0261-2194(86)90059-1 Fujita D, 2013, CRIT REV PLANT SCI, V32, P162, DOI 10.1080/07352689.2012.735986 Gallagher Kevin D., 1994, P599 Ghosal Abhijit, 2019, Journal of Basic and Applied Zoology, V80, P6, DOI 10.1186/s41936-019-0077-3 Gimenez-Moolhuyzen M, 2020, INSECTS, V11, DOI 10.3390/insects11020069 Gonzalez-Doncel M, 2004, ARCH ENVIRON CON TOX, V48, P87, DOI 10.1007/s00244-003-0223-1 HAMID A, 1988, J AGRON CROP SCI, V161, P11, DOI 10.1111/j.1439-037X.1988.tb00637.x Heinrichs E. A., 1978, International Rice Research Newsletter, V3, P10 Heinrichs E.A., 1994, BIOL MANAGEMENT RICE HEINRICHS EA, 1982, ENVIRON ENTOMOL, V11, P1269, DOI 10.1093/ee/11.6.1269 HEINRICHS EA, 1982, ENVIRON ENTOMOL, V11, P78, DOI 10.1093/ee/11.1.78 HEINRICHS EA, 1984, ENVIRON ENTOMOL, V13, P455, DOI 10.1093/ee/13.2.455 Horgan FG, 2017, BURL DODDS AGR SCI, V4, P309, DOI 10.19103/AS.2016.0003.23 Horgan F.G., 2021, CROPS, V1, P166, DOI [10.3390/crops1030016, DOI 10.3390/CROPS1030016] Horgan FG, 2021, INSECTS, V12, DOI 10.3390/insects12110989 Horgan FG, 2021, INSECTS, V12, DOI 10.3390/insects12100847 Horgan FG, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80704-4 Horgan FG, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240130 Horgan FG, 2020, ENVIRON MANAGE, V65, P787, DOI 10.1007/s00267-020-01272-x Horgan FG, 2020, CROP PROT, V127, DOI 10.1016/j.cropro.2019.104963 Horgan FG, 2019, INSECTS, V10, DOI 10.3390/insects10100328 Horgan FG, 2019, CROP PROT, V115, P47, DOI 10.1016/j.cropro.2018.09.013 Horgan FG, 2018, CROP PROT, V110, P21, DOI 10.1016/j.cropro.2018.03.013 Horgan FG, 2018, FIELD CROP RES, V217, P53, DOI 10.1016/j.fcr.2017.12.008 Horgan FG, 2017, AGRONOMY-BASEL, V7, DOI 10.3390/agronomy7040062 Horgan FG, 2016, ENTOMOL EXP APPL, V158, P284, DOI 10.1111/eea.12400 Horgan FG, 2015, CROP PROT, V78, P222, DOI 10.1016/j.cropro.2015.09.014 Horgan FG, 2013, ENTOMOL EXP APPL, V148, P1, DOI 10.1111/eea.12080 Jahn GC, 2004, J ECON ENTOMOL, V97, P1923, DOI 10.1603/0022-0493-97.6.1923 JOSHI R C, 1992, International Rice Research Newsletter, V17, P9 Khush G.S., 2005, IR VARIETIES THEIR I Kim J.-b., 1984, Korean Journal of Plant Protection, V23, P233 Kim S.-C, 1987, KOREAN J WEED SCI, V7, P98 Ko K, 2015, J ECON ENTOMOL, V108, P69, DOI 10.1093/jee/tou053 Kumar Anand A. D. V. S. L. P., 2020, Indian Journal of Entomology, V82, P809, DOI 10.5958/0974-8172.2020.00102.9 Kumar R, 2013, B ENVIRON CONTAM TOX, V90, P482, DOI 10.1007/s00128-012-0926-y Mackill DJ, 2018, RICE, V11, DOI 10.1186/s12284-018-0208-3 Maclean J., 2013, RICE ALMANAC Mahabaleshwar Hegde, 2009, Karnataka Journal of Agricultural Sciences, V22, P511 Matteson Patricia C., 1994, P656 Moore MT, 2010, ARCH ENVIRON CON TOX, V59, P574, DOI 10.1007/s00244-010-9519-0 Moriya S., 1975, Proceedings of the Association for Plant Protection of Kyushu, V21, P68 Muthayya S, 2014, ANN NY ACAD SCI, V1324, P7, DOI 10.1111/nyas.12540 NAGATA T, 1986, APPL ENTOMOL ZOOL, V21, P357, DOI 10.1303/aez.21.357 Nakanishi K, 2018, ENVIRON SCI POLLUT R, V25, P35352, DOI 10.1007/s11356-018-3440-x Nanthakumar M, 2012, PESTIC BIOCHEM PHYS, V102, P146, DOI 10.1016/j.pestbp.2011.12.006 Nayak A., 2017, J ENTOMOL ZOOL STUD, V5, P1177 Nguyen CD, 2021, BREEDING SCI, V71, P497, DOI 10.1270/jsbbs.21034 Otieno PO, 2010, J ENVIRON SCI HEAL B, V45, P137, DOI [10.1080/10934520903425459, 10.1080/03601230903472058] Parsaeyan E, 2018, CROP PROT, V110, P269, DOI 10.1016/j.cropro.2017.03.026 PATHAK M. D, 1994, INSECT PEST RICE Pawar R.D., 2020, J ENTOMOL ZOOL STUD, V8, P685 Pazini Juliano de Bastos, 2016, Pesqui. Agropecu. Trop., V46, P327, DOI 10.1590/1983-40632016v4640844 PEDIGO LP, 1986, ANNU REV ENTOMOL, V31, P341, DOI 10.1146/annurev.en.31.010186.002013 Cruz AP, 2011, ENTOMOL EXP APPL, V141, P245, DOI 10.1111/j.1570-7458.2011.01193.x REISSIG WH, 1982, ENVIRON ENTOMOL, V11, P165, DOI 10.1093/ee/11.1.165 Rubia E, 1986, BIOL TOXICOLOGICAL S SALIM M, 1987, CROP PROT, V6, P28, DOI 10.1016/0261-2194(87)90024-X Samanta S., 2020, J ENTOMOL ZOOL STUD, V8, P1529 SATAPATHY MK, 1984, TROP PEST MANAGE, V30, P170, DOI 10.1080/09670878409370873 Sharma RK, 2012, CELL MOL BIOL, V58, P128, DOI 10.1170/T931 Suri KS, 2011, CROP PROT, V30, P118, DOI 10.1016/j.cropro.2010.11.008 Tanaka K, 2000, APPL ENTOMOL ZOOL, V35, P177, DOI 10.1303/aez.2000.177 Thorburn C, 2015, INSECTS, V6, P381, DOI 10.3390/insects6020381 Uddin A. B. M. A., 2020, SAARC Journal of Agriculture, V18, P117, DOI 10.3329/sja.v18i1.48386 Van den Berg H, 2000, J APPL ECOL, V37, P959, DOI 10.1046/j.1365-2664.2000.00543.x Vorley W.T., 1985, International Rice Research Newsletter, V10, P19 Wan Jaafar WN, 2013, ACTA BIOL MALAYS, V2, P115 Wang HY, 2008, CROP PROT, V27, P514, DOI 10.1016/j.cropro.2007.08.004 Wang LP, 2010, CROP PROT, V29, P1280, DOI 10.1016/j.cropro.2010.07.009 Widawsky D, 1998, AGR ECON-BLACKWELL, V19, P203, DOI 10.1016/S0169-5150(98)00049-8 Wu JC, 2004, INT J PEST MANAGE, V50, P55, DOI 10.1080/09670870310001630397 Wu JC, 2001, ENTOMOL EXP APPL, V100, P119, DOI 10.1023/A:1019284703260 Wu Jin-cai, 2003, Scientia Agricultura Sinica, V36, P1163 Wu JC, 2020, ANNU REV ENTOMOL, V65, P409, DOI 10.1146/annurev-ento-011019-025215 Yang GQ, 2017, J ASIA-PAC ENTOMOL, V20, P830, DOI 10.1016/j.aspen.2017.05.005 Zhang CP, 2016, J ENVIRON SCI HEAL B, V51, P351, DOI 10.1080/03601234.2015.1120606 NR 89 TC 3 Z9 3 U1 8 U2 12 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-4450 J9 INSECTS JI Insects PD FEB PY 2022 VL 13 IS 2 AR 106 DI 10.3390/insects13020106 PG 25 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA ZV7CC UT WOS:000770682600001 PM 35206680 OA Green Published, gold DA 2023-03-13 ER PT J AU Xu, Q Qin, JH Sun, H Wang, XQ Chen, WQ Li, Z AF Xu, Qin Qin, Jihong Sun, Hui Wang, Xiaoqin Chen, Wenqing Li, Zhi TI Effects of soil cadmium exposure on physio-ecological characteristics of Bletilla striata SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Bletilla striata; Soil; Heavy metal; Cd; Pollution; Physio-ecological characteristics ID HEAVY-METALS; RISK-ASSESSMENT; POLLUTION; POLYSACCHARIDE; CONTAMINATION; EXPRESSION; GROWTH; PLANTS; CHINA; RICE AB Bletilla striata (Thunb.) Reichb.f. has shown rather extraordinary medicinal and economic value in recent years. However, the artificial cultivation of B. striata faces quite a lot of obstacles, especially the quality degradation and heavy metal pollution problems. Cadmium (Cd) in particular, is reported to generally exceed the standard in the artificial cultivation of B. striata. So far, little attention has been paid to analyze the effects of heavy metals on the growth and the medicinal treatment efficacy of B. striata. Herein, we investigate the physio-ecological response of B. striata under gradient Cd concentration treatment: Control (0.285 mg kg(-1)); Tr-1 (0.655 mg kg(-1)); Tr-2 (1.285 mg kg(-1)); Tr-3 (7.675 mg kg(-1)); Tr-4 (54.885 mg kg(-1)), so as to provide a reference for the study of the Cd response regulation on B. striata. In this work, we examined the biomass, total carbon, total nitrogen, and content of B. striata polysaccharides (BSP, the functional component of B. striata), as well as the absorption proportion of Cd in B. striata. Based on the preliminary research, ecological risk assessment and human health risk assessment were allocated. Experiments were conducted in two batches (2018 and 2019, sampling in the same season) with the following findings: (1) The biomass showed no pronounced differences between the treatments or the sampling dates, only reached significant decrease at 54.885 mg kg(-1) (Tr-4) soil Cd concentration in 2019; (2) The total carbon of B. striata under Cd treatment was in line with the Hormesis effect and reached a peak at 0.655 mg kg(-1) (Tr-1) soil Cd concentration; (3) The total nitrogen content was generally promoted under Cd treatment with the highest content at 1.225 mg kg(-1) (Tr-2); (4) The total BSP content in two sampling years are both sorted in decreasing order: Tr-4 < Tr-3 < Tr-2 < Tr-1 < Control; (5) The Cd content in Bletillae Rhizoma (tuber of B. striata) under 0.655 mg kg(-1) soil Cd treatment was within the threshold stipulated in Chinese Pharmacopoeia in 2018 batch and in 2019 batch, only the control group was qualified with a safe plantation limit of Cd. The results of ecological risk assessment showed moderate toxic risk under Tr-1 (0.655 mg Cd kg(-1)) and the human health risk assessment indicated negligible toxic effects on human health. Overall, the soil Cd concentration should be lower than 0.655 mg kg(-1), if safe cultivation, medicinal effect of B. striata and human health risk are taken into consideration. C1 [Xu, Qin; Sun, Hui; Wang, Xiaoqin; Chen, Wenqing; Li, Zhi] Sichuan Univ, Dept Environm Sci & Engn, Chengdu 610065, Peoples R China. [Qin, Jihong] Chengdu Univ, Dept Environm Engn, Chengdu 610106, Peoples R China. C3 Sichuan University; Chengdu University RP Li, Z (corresponding author), Sichuan Univ, Dept Environm Sci & Engn, Chengdu 610065, Peoples R China. EM xuqin@stu.scu.edu.cn; qinjihong@cdu.edu.cn; sunhui@scu.edu.cn; wangxq_scu@qq.com; chenwenqing@scu.edu.cn; lizhi_scu@scu.edu.cn FU National Key Research and Development Program of China [2017YFC1700705] FX This research was funded by the National Key Research and Development Program of China (No. 2017YFC1700705). CR Bai JunHua, 2007, Agricultural Sciences in China, V6, P437, DOI 10.1016/S1671-2927(07)60067-4 Bastami KD, 2014, MAR POLLUT BULL, V81, P262, DOI 10.1016/j.marpolbul.2014.01.029 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Che T., 2016, YUNNAN KEJI GUANLI, V29, P41 Chen YW, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111311 Chowdhury A, 2021, ENVIRON SCI POLLUT R, V28, P33042, DOI 10.1007/s11356-021-12566-w Clemens S, 2016, ANNU REV PLANT BIOL, V67, P489, DOI 10.1146/annurev-arplant-043015-112301 CPC, 2015, CHINESE PHARMACOPOEI DalCorso G, 2010, PLANT SIGNAL BEHAV, V5, P663, DOI 10.4161/psb.5.6.11425 Diao HJ, 2008, J BIOSCI BIOENG, V105, P85, DOI 10.1263/jbb.105.85 DOELMAN P, 1984, B ENVIRON CONTAM TOX, V32, P717, DOI 10.1007/BF01607562 Duan QN, 2016, B ENVIRON CONTAM TOX, V97, P303, DOI 10.1007/s00128-016-1857-9 Efeoglu B., 2009, EUR ASIA J BIOSCI, P97, DOI [10.5053/ejobios.2009.3.0.13, DOI 10.5053/EJ0BIOS.2009.3.0.13, DOI 10.5053/EJOBIOS.2009.3.0.13] Faller P, 2005, BBA-BIOENERGETICS, V1706, P158, DOI 10.1016/j.bbabio.2004.10.005 Fu Yu-hao, 2017, Shengtaixue Zazhi, V36, P1965, DOI 10.13292/j.1000-4890.201707.025 Fusco N, 2005, J EXP BOT, V56, P3017, DOI 10.1093/jxb/eri299 Guan L-Z., 2009, J SHENYANG AGRI U, V40 Guo Lan-Ping, 2020, Zhongguo Zhong Yao Za Zhi, V45, P1969, DOI 10.19540/j.cnki.cjcmm.20200302.101 HAKANSON L, 1980, WATER RES, V14, P975, DOI 10.1016/0043-1354(80)90143-8 Huang Lu-Qi, 2007, Zhongguo Zhong Yao Za Zhi, V32, P277 Huang Y, 2019, SCI TOTAL ENVIRON, V651, P3034, DOI 10.1016/j.scitotenv.2018.10.185 Ihedioha JN, 2017, ENVIRON GEOCHEM HLTH, V39, P497, DOI 10.1007/s10653-016-9830-4 Ikewuchi JC, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01501 Li, 2014, THESIS CHANGAN U Li F-Q, 2006, LISHIZHEN MED MAT ME, V17, P2457 Lin F, 2019, CENTRAL S PHARM, V17, P74 Liu, 2018, THESIS HUNAN AGR U Lu, 2018, THESIS GUANGXI U [卢红玲 Lu Hongling], 2014, [南方农业学报, Journal of Southern Argiculture], V45, P1986 Luo, 2019, THESIS CENTRAL S U F Ma Shi-hong, 2009, Detergent & Cosmetics, V32, P30 Maret W, 2013, METAL IONS LIFE SCI, V11, P1, DOI 10.1007/978-94-007-5179-8_1 MEP, 1995, ENV QUAL STAND SOILS MEP, 2016, HJ7812016 MEP Miho Y, 2003, NAT MED, V57, P55 Ministry of Environmental Protection of P R China (MEP), 2014, CHIN SOIL POLL SURV [莫争 Mo Zheng], 2002, [环境化学, Environmental Chemistry], V21, P110 Moulick D, 2018, J HAZARD MATER, V355, P187, DOI 10.1016/j.jhazmat.2018.05.017 National Food and Drug Administration, 2015, SAF TECHN STAND COSM Naz A, 2020, ENVIRON GEOCHEM HLTH, V42, P4213, DOI 10.1007/s10653-020-00603-5 [农云军 Nong Yunjun], 2016, [质谱学报, Journal of Chinese Mass Spectrometry Society], V37, P68 Peng, 2019, THESIS JISHOU U Peng Q, 2014, CARBOHYD POLYM, V107, P119, DOI 10.1016/j.carbpol.2014.02.042 Qin RJ, 2007, TREE PHYSIOL, V27, P313, DOI 10.1093/treephys/27.2.313 Qu Y, 2016, CARBOHYD POLYM, V148, P345, DOI 10.1016/j.carbpol.2016.04.081 Raj D, 2017, HUM ECOL RISK ASSESS, V23, P767, DOI 10.1080/10807039.2016.1278519 [任晓航 Ren Xiaohang], 2019, [中草药, Chinese Traditional and Herbal Drugs], V50, P2480 Sharma SS, 2009, TRENDS PLANT SCI, V14, P43, DOI 10.1016/j.tplants.2008.10.007 [宋霄君 Song Xiaojun], 2018, [植物营养与肥料学报, Journal of Plant Nutrition and Fertitizer], V24, P1588 Storelli MM, 2008, FOOD CHEM TOXICOL, V46, P2782, DOI 10.1016/j.fct.2008.05.011 [孙爱静 Sun Aijing], 2016, [中国药学杂志, Chinese Pharmaceutical Journal], V51, P101 Takata T., 1978, Japanese Journal of Hygiene, V32, P691 Tan D., 2015, CHINESE J HLTH LABOR, V25, P471 Tanwir K, 2015, ENVIRON SCI POLLUT R, V22, P9193, DOI 10.1007/s11356-015-4076-8 Tao A., 2013, JIANGSU AGR SCI, V41, P6, DOI [DOI 10.15889/J.ISSN.1002-1302.2013.11.036, 10.15889/j.issn.1002-1302.2013.11.036] Uluturhan E, 2011, MAR POLLUT BULL, V62, P1989, DOI 10.1016/j.marpolbul.2011.06.019 USEPA, 2020, REG SCR LEV RSLS GEN Wang, 2014, THESIS BEIJING U CHE Wang CM, 2006, BIOTECHNOL LETT, V28, P539, DOI 10.1007/s10529-006-0011-x Wang Li-Xin, 2001, Zhongguo Zhongyao Zazhi, V26, P690 Wang XiaoJin, 2019, Journal of Agro-Environment Science, V38, P1218 Wang YR, 2019, INT J BIOL MACROMOL, V122, P628, DOI 10.1016/j.ijbiomac.2018.10.201 Xiao P-G, 2004, CHINA J CHINESE MAT [张曼 Zhang Man], 2019, [中草药, Chinese Traditional and Herbal Drugs], V50, P5103 Zhang Shu-Qi, 2020, Bulletin of Botanical Research, V40, P224, DOI [10.7525/j.issm1673-5102.2020.02.009, 10.7525/j.issn.1673-5102.2020.02.009] Zhuo W-W, 2014, J N PHARM, V11, P69 王爱民, 2009, [中国中药杂志, China Journal of Chinese Materia Medica], V34, P2963 NR 67 TC 0 Z9 0 U1 1 U2 35 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD JAN PY 2022 VL 29 IS 3 BP 4008 EP 4023 DI 10.1007/s11356-021-15809-y EA AUG 2021 PG 16 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA YD3SB UT WOS:000685427100020 PM 34398374 DA 2023-03-13 ER PT J AU Lim, CJ Basri, M Ee, GCL Omar, D AF Lim, Chaw Jiang Basri, Mahiran Ee, Gwendoline Cheng Lian Omar, Dzolkhifli TI Phytoinhibitory activities and extraction optimization of potent invasive plants as eco-friendly weed suppressant against Echinochloa colona (L.) Link SO INDUSTRIAL CROPS AND PRODUCTS LA English DT Article DE Invasive plant; Mikania micrantha Kunth ex HBK; phytoinhibitory activity; Echinochloa colona (L.) Link; response surface methodology; sustainable weed management ID ANTIOXIDANT ACTIVITY; AGERATUM-CONYZOIDES; ALLELOCHEMICALS; GERMINATION; SEEDS; MANAGEMENT; COMPONENTS; RESISTANCE; AGITATION; HORMESIS AB Parasitic Echinochloa colona (L.) Link has globally invaded paddy fields that could devote to severe grain yield loss. Prolonged extensive application of commercial synthetic herbicides could pose the weed evolved resistance, bioaccumulation and environmental deterioration. Hence, this paper pertains to the aim of investigating potent natural products which have shown considerable phytotoxic activities, subsequent phytotoxin studies and extraction optimization for pre -emergent control of E. colona. In the phytotoxicity study, a suite of invasive plants was procured and the leaf, stem and root extracts were evaluated by in vitro germination and seedling growth assays. The invasive plant extracts exhibited multiple Magnitudes of inhibition against E. colona in the plant species-, plant part-and concentration-dependent manners. Along with the dose -response study, the leaf extracts of Mikania micrantha Kunth ex H.B.K., Clidemia hirta (L) D. Don, Dicranopteris linearis (Burm.f.) Underw. and Ageratum conyzoides L. showed the attainable half maximal effective doses (ED50) below the concentration 100 g biomass dry weight equivalent (BDWE)/L, indicating the top -ranked inhibition of E. colona among the investigated plant extracts. The top -ranked phytotoxic leaf extracts Were subjected to qualitative and quantitative characterizations including extraction yield, total phenolic content, phytocheinical screening and spectroscopic analysis of the phytochemicals with possible inhibitory effect. Joint putative allelochemicals consisting of 16 phenolics and 5 aromatics were detected concurrently by liquid chromatography-mass spectrom-try (LC -MS), were found contributed to the appreciable germination inhibition. Amongst the abundant phenolic acids were protocatechuic acid, gallic acid, p-hydroxyphenylatetic acid and chlorogenic acid. To suit the industrial desire in product development, the phytotoxic leaves were processed through extraction optimization using response surface methodology (RSM). A multivariate face -centered cube design (FCCD) was established to seek the functional relationship between the process variables (extraction time, agitation speed and solvent consumption) and the response (germination inhibition). Quadratic response surface models were obtained with the Models significance and significant effect of the process factors at 95% confidence interval were examined by various statistical analyses. Verification experiments at the optimal conditions were well matched with the predicted values, along with absolute errors in the range 3.63% to 6.70%, indicating the proposed quadratic models Were valid and useful prediction of the extraction conditions. These outcomes provide the valuable findings on the possible Use of potent invasive plants as bioeffective, economical and eco-friendly herbicide alternative towards fostering the sustainable weed management.(C) 2017 Elsevier B.V. All rights reserved. C1 [Lim, Chaw Jiang; Basri, Mahiran; Ee, Gwendoline Cheng Lian] Univ Putra Malaysia, Fac Sci, Dept Chem, Upm Serdang 43400, Selangor, Malaysia. [Omar, Dzolkhifli] Univ Putra Malaysia, Fac Agr, Dept Plant Protect, Upm Serdang 43400, Selangor, Malaysia. [Basri, Mahiran] Univ Putra Malaysia, Inst Biosci, Lab Mol Biomed, Upm Serdang 43400, Selangor, Malaysia. C3 Universiti Putra Malaysia; Universiti Putra Malaysia; Universiti Putra Malaysia RP Lim, CJ; Basri, M (corresponding author), Univ Putra Malaysia, Fac Sci, Dept Chem, Upm Serdang 43400, Selangor, Malaysia. EM jj_lim84@yahoo.com.my; mahiran@upm.edu.my OI Lim, Chaw Jiang/0000-0002-9027-4448 FU Ministry of Higher Education (MOHE) Malaysia FX Appreciative thanks to G.T. Goh, M. Arumugam, B. Shammugasamy, A. Rajeendran and K. Venkatachalam for their tremendous assistance in plant materials acquisition, dissection and bioassay evaluation, and Dr. R. Go for plants authentication. The main author (C J. Lim) would like to gratefully acknowledge the Ministry of Higher Education (MOHE) Malaysia for supporting him MyPhD scholarship (MyBrainl5 program) in his PhD degree study. CR Aghilinategh N, 2015, FOOD SCI NUTR, V3, P331, DOI 10.1002/fsn3.224 Al-Charchafchi F., 2006, DIRASAT PURE SCI, V33, P168 Alberti A, 2014, FOOD CHEM, V149, P151, DOI 10.1016/j.foodchem.2013.10.086 Asaduzzaman M, 2012, SCI HORTIC-AMSTERDAM, V134, P26, DOI 10.1016/j.scienta.2011.11.035 Ash GJ, 2010, BIOL CONTROL, V52, P230, DOI 10.1016/j.biocontrol.2009.08.007 Barwal A, 2016, ENVIRON SCI POLLUT R, V23, P9944, DOI 10.1007/s11356-016-6250-z Bas D, 2007, J FOOD ENG, V78, P836, DOI 10.1016/j.jfoodeng.2005.11.024 Batish DR, 2009, PLANT GROWTH REGUL, V57, P137, DOI 10.1007/s10725-008-9329-9 Bhadoria P. B. S., 2011, American Journal of Experimental Agriculture, V1, P7 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cerdeira AL, 2012, WEED SCI, V60, P212, DOI 10.1614/WS-D-11-00160.1 Chauhan BS, 2012, WEED TECHNOL, V26, P1, DOI 10.1614/WT-D-11-00105.1 Chauhan BS, 2009, WEED SCI, V57, P235, DOI 10.1614/WS-08-141.1 Choo WeeSim, 2011, Advances in Applied Science Research, V2, P418 Cruz O.R., 1998, J CHEM ECOL, V24, P2039 Dayan FE, 2012, PEST MANAG SCI, V68, P519, DOI 10.1002/ps.2332 Dayan FE, 2009, PLANT-DERIVED NATURAL PRODUCTS: SYNTHESIS, FUNCTION, AND APPLICATION, P361, DOI 10.1007/978-0-387-85498-4_17 Dayan FE, 2009, BIOORGAN MED CHEM, V17, P4022, DOI 10.1016/j.bmc.2009.01.046 dos Santos WD, 2008, J CHEM ECOL, V34, P1230, DOI 10.1007/s10886-008-9522-3 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Ekta Joshi, 2013, Plant Knowledge Journal, V2, P119 El-Gawad A.M.A., 2015, EGYPT J BASIC APPL S, V2, P303 Esmaeili AK, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/643285 Faravani M, 2008, NOT BOT HORTI AGROBO, V36, P54 Farooq M, 2011, SOIL TILL RES, V111, P87, DOI 10.1016/j.still.2010.10.008 Flory SL, 2009, J APPL ECOL, V46, P434, DOI 10.1111/j.1365-2664.2009.01610.x Gaines TA, 2012, WEED TECHNOL, V26, P480, DOI 10.1614/WT-D-12-00029.1 Gan CY, 2011, FOOD CHEM, V124, P1277, DOI 10.1016/j.foodchem.2010.07.074 Golisz A, 2007, WEED BIOL MANAG, V7, P164, DOI 10.1111/j.1445-6664.2007.00252.x Gressel J, 2009, PEST MANAG SCI, V65, P1164, DOI 10.1002/ps.1842 Gulzar A, 2016, PROTOPLASMA, V253, P1211, DOI 10.1007/s00709-015-0862-x Hagan DL, 2013, J CHEM ECOL, V39, P312, DOI 10.1007/s10886-013-0241-z Harvey JA, 2005, J CHEM ECOL, V31, P287, DOI 10.1007/s10886-005-1341-1 Holm L.G., 1991, WORLDS WORST WEEDS D, P609 Hong C, 2009, BIOMASS BIOENERG, V33, P721, DOI 10.1016/j.biombioe.2008.11.004 Hossain Mohammad Amzad, 2013, Asian Pacific Journal of Tropical Biomedicine, V3, P705, DOI 10.1016/S2221-1691(13)60142-2 Hou XJ, 2008, CARBOHYD POLYM, V72, P67, DOI 10.1016/j.carbpol.2007.07.034 Hussain AI, 2012, FOOD ANAL METHOD, V5, P890, DOI 10.1007/s12161-011-9325-y Ismail AB., 2014, J SAUDI SOC AGR SCI, V15, P112, DOI [10.1016/j.jssas.2014.06.002, DOI 10.1016/J.JSSAS.2014.06.002] Ismaini L., 2015, PROS SEM NAS MAS BIO, V1, P834 JAYAKRISHNAN BM, 2014, EUR J EXP BIOL, V4, P47 Jeganathan PM, 2014, PREP BIOCHEM BIOTECH, V44, P56, DOI 10.1080/10826068.2013.791629 Jones W.P., 2012, NATURAL PRODUCTS ISO, P327 Kato-Noguchi H, 2012, PLANT ECOL, V213, P1937, DOI 10.1007/s11258-012-0096-3 Kocacaliskan I, 2009, FRESEN ENVIRON BULL, V18, P249 Kong CH, 2004, PLANT SOIL, V264, P149, DOI 10.1023/B:PLSO.0000047759.65133.fa Kong CH, 2010, WEED BIOL MANAG, V10, P73, DOI 10.1111/j.1445-6664.2010.00373.x Kovalchuk I, 2003, PLANT CELL ENVIRON, V26, P1531, DOI 10.1046/j.1365-3040.2003.01076.x Krishnaswamy K, 2013, FOOD BIOPROCESS TECH, V6, P441, DOI 10.1007/s11947-012-0800-2 Li JM, 2010, WEED BIOL MANAG, V10, P194, DOI 10.1111/j.1445-6664.2010.00384.x Li ZH, 2010, MOLECULES, V15, P8933, DOI 10.3390/molecules15128933 Lima RB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080542 Macel M, 2011, PHYTOCHEM REV, V10, P75, DOI 10.1007/s11101-010-9181-1 Maran JP, 2015, J FOOD SCI TECH MYS, V52, P92, DOI 10.1007/s13197-013-0985-z Maran JP, 2013, ALEX ENG J, V52, P507, DOI 10.1016/j.aej.2013.06.007 Maran JP, 2012, DYES PIGMENTS, V95, P465, DOI 10.1016/j.dyepig.2012.06.007 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mavroudis NE, 1998, J FOOD ENG, V35, P191, DOI 10.1016/S0260-8774(98)00015-6 Mehrafarin A, 2011, AFR J AGR RES, V6, P4631 Mussatto SI, 2008, CELLULOSE, V15, P711, DOI 10.1007/s10570-008-9215-7 Ng L. Y., 2012, Research Journal of Phytochemistry, V6, P61 Paulucci VP, 2013, REV BRAS FARMACOGN, V23, P94, DOI 10.1590/S0102-695X2012005000117 Phisut N., 2012, International Food Research Journal, V19, P7 Pilkington JL, 2014, IND CROP PROD, V58, P15, DOI 10.1016/j.indcrop.2014.03.016 Pinelo M, 2005, FOOD CHEM, V92, P109, DOI 10.1016/j.foodchem.2004.07.015 Pisula NL, 2010, J TORREY BOT SOC, V137, P81, DOI 10.3159/09-RA-040.1 Rao AN, 2007, ADV AGRON, V93, P153, DOI 10.1016/S0065-2113(06)93004-1 Rao N.K., 2006, BIOVERS INT, V8, P50 Rostami M, 2014, IND CROP PROD, V58, P160, DOI 10.1016/j.indcrop.2014.04.015 Rudrappa T, 2007, J CHEM ECOL, V33, P1898, DOI 10.1007/s10886-007-9353-7 Shao H, 2005, J CHEM ECOL, V31, P1657, DOI 10.1007/s10886-005-5805-0 Silva GF, 2011, FUEL PROCESS TECHNOL, V92, P407, DOI 10.1016/j.fuproc.2010.10.002 Singh K., 2013, J RICE RES, V1, P1, DOI DOI 10.4172/JRR.1000105 Soares AR, 2014, PLANT SIGNAL BEHAV, V9, DOI 10.4161/psb.28275 Sultana B, 2007, FOOD CHEM, V104, P1106, DOI 10.1016/j.foodchem.2007.01.019 Sultana B, 2009, MOLECULES, V14, P2167, DOI 10.3390/molecules14062167 Tawaha AM, 2003, J AGRON CROP SCI, V189, P298, DOI 10.1046/j.1439-037X.2003.00047.x Teerarak M, 2010, BIORESOURCE TECHNOL, V101, P5677, DOI 10.1016/j.biortech.2010.02.038 Tiwari Gaurav, 2010, Pharm Methods, V1, P25, DOI 10.4103/2229-4708.72226 Valle A, 2011, PROCESS BIOCHEM, V46, P358, DOI 10.1016/j.procbio.2010.09.011 Valverde BE, 2007, WEED TECHNOL, V21, P310, DOI 10.1614/WT-06-097.1 Varnalis AI, 2004, J FOOD ENG, V61, P153, DOI 10.1016/S0260-8774(03)00082-7 Wang C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055587 Wang HQ, 2008, ALLELOPATHY J, V22, P205 Wei XY, 2004, BIOCHEM SYST ECOL, V32, P1091, DOI 10.1016/j.bse.2004.04.013 Wu X, 2011, INT J MOL SCI, V12, P6255, DOI 10.3390/ijms12096255 Yang B, 2009, INNOV FOOD SCI EMERG, V10, P610, DOI 10.1016/j.ifset.2009.03.003 Zhou B, 2013, J AGR FOOD CHEM, V61, P5310, DOI 10.1021/jf401605g Zohra S. F., 2012, Journal of Natural Product and Plant Resources, V2, P512 Zuo SP, 2016, ENVIRON SCI POLLUT R, V23, P15703, DOI 10.1007/s11356-016-6770-6 NR 90 TC 13 Z9 14 U1 0 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-6690 EI 1872-633X J9 IND CROP PROD JI Ind. Crop. Prod. PD JUN PY 2017 VL 100 BP 19 EP 34 DI 10.1016/j.indcrop.2017.01.025 PG 16 WC Agricultural Engineering; Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA EP9IL UT WOS:000397687200003 DA 2023-03-13 ER PT J AU O'Brien, PJ Irwin, W Diaz, D Howard-Cofield, E Krejsa, CM Slaughter, MR Gao, B Kaludercic, N Angeline, A Bernardi, P Brain, P Hougham, C AF O'Brien, P. J. Irwin, W. Diaz, D. Howard-Cofield, E. Krejsa, C. M. Slaughter, M. R. Gao, B. Kaludercic, N. Angeline, A. Bernardi, P. Brain, P. Hougham, C. TI High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening SO ARCHIVES OF TOXICOLOGY LA English DT Article DE HCS; hepatotoxicity; human; sublethal; multi-parameter ID COHERENT MULTIPROBE FLUORESCENCE; MECHANISTIC ASSAYS; MALIGNANT HYPERTHERMIA; CHO-CELLS; PERSPECTIVE; TOXICOLOGY; TOXICITY; SUSCEPTIBILITY; LYMPHOCYTES; GLUTATHIONE AB To develop and validate a practical, in vitro, cell-based model to assess human hepatotoxicity potential of drugs, we used the new technology of high content screening (HCS) and a novel combination of critical model features, including (1) use of live, human hepatocytes with drug metabolism capability, (2) preincubation of cells for 3 days with drugs at a range of concentrations up to at least 30 times the efficacious concentration or 100 mu M, (3) measurement of multiple parameters that were (4) morphological and biochemical, (5) indicative of prelethal cytotoxic effects, (6) representative of different mechanisms of toxicity, (7) at the single cell level and (8) amenable to rapid throughput. HCS is based on automated epifluorescence microscopy and image analysis of cells in a microtiter plate format. The assay was applied to HepG2 human hepatocytes cultured in 96-well plates and loaded with four fluorescent dyes for: calcium (Fluo-4 AM), mitochondrial membrane potential (TMRM), DNA content (Hoechst 33342) to determine nuclear area and cell number and plasma membrane permeability (TOTO-3). Assay results were compared with those from 7 conventional, in vitro cytotoxicity assays that were applied to 611 compounds and shown to have low sensitivity (< 25%), although high specificity (similar to 90%) for detection of toxic drugs. For 243 drugs with varying degrees of toxicity, the HCS, sublethal, cytotoxicity assay had a sensitivity of 93% and specificity of 98%. Drugs testing positive that did not cause hepatotoxicity produced other serious, human organ toxicities. For 201 positive assay results, 86% drugs affected cell number, 70% affected nuclear area and mitochondrial membrane potential and 45% affected membrane permeability and 41% intracellular calcium concentration. Cell number was the first parameter affected for 56% of these drugs, nuclear area for 34% and mitochondrial membrane potential for 29% and membrane permeability for 7% and intracellular calcium for 10%. Hormesis occurred for 48% of all drugs with positive response, for 26% of mitochondrial and 34% nuclear area changes and 12% of cell number changes. Pattern of change was dependent on the class of drug and mechanism of toxicity. The ratio of concentrations for in vitro cytotoxicity to maximal efficaciousness in humans was not different across groups (12 +/- 22). Human toxicity potential was detected with 80% sensitivity and 90% specificity at a concentration of 30x the maximal efficacious concentration or 100 mu M when efficaciousness was not considered. We conclude that human hepatotoxicity is highly concordant with in vitro cytotoxicity in this novel model and as detected by HCS. C1 Pfizer Global Res & Dev, Sandwich Labs, Safety Sci Europe, Sandwich, Kent, England. CEREP, Seattle, WA USA. Univ Padua, I-35100 Padua, Italy. C3 Pfizer; University of Padua RP O'Brien, PJ (corresponding author), Pfizer Global Res & Dev, Sandwich Labs, Safety Sci Europe, Sandwich, Kent, England. EM Peter.OBrien@pfizer.com RI Bernardi, Paolo/C-3656-2008; O'Brien, Peter James/AAE-4798-2020 OI Bernardi, Paolo/0000-0001-9187-3736; O'Brien, Peter James/0000-0003-4290-3585 CR Abraham VC, 2004, TRENDS BIOTECHNOL, V22, P15, DOI 10.1016/j.tibtech.2003.10.012 Andrade Raul J, 2004, Expert Opin Drug Saf, V3, P329, DOI 10.1517/14740338.3.4.329 BARHOUMI R, 1995, CYTOMETRY, V19, P226, DOI 10.1002/cyto.990190306 Bernardi P, 2001, TRENDS BIOCHEM SCI, V26, P112, DOI 10.1016/S0968-0004(00)01745-X Boelsterli UA, 2003, CURR OPIN DRUG DISC, V6, P81 Boelsterli UA, 2003, TOXICOL MECH METHOD, V13, P3, DOI 10.1080/15376510309824 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Bugelski PJ, 2000, PHARMACEUT RES, V17, P1265, DOI 10.1023/A:1026495503939 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 *CER, 2005, 90059 CER COLOMBO B, 1965, BIOCHEM BIOPH RES CO, V18, P389, DOI 10.1016/0006-291X(65)90719-9 Fung M, 2001, DRUG INF J, V35, P293, DOI 10.1177/009286150103500134 *GENSTAT, 2002, GENST WIND REL 6 1 Giuliano KA, 2003, ASSAY DRUG DEV TECHN, V1, P565, DOI 10.1089/154065803322302826 *GRAPHP SOFTW INC, 2004, GRAPHP PRISM VERS 4 Gurtu V, 1997, ANAL BIOCHEM, V251, P98, DOI 10.1006/abio.1997.2220 Haskins JR, 2001, ARCH TOXICOL, V75, P425, DOI 10.1007/s002040100251 Jaeschke H, 2002, TOXICOL SCI, V65, P166, DOI 10.1093/toxsci/65.2.166 Kalgutkar AS, 2005, CURR DRUG METAB, V6, P161, DOI 10.2174/1389200054021799 Kaplowitz N, 2005, NAT REV DRUG DISCOV, V4, P489, DOI 10.1038/nrd1750 Kaplowitz N, 2001, DRUG SAFETY, V24, P483, DOI 10.2165/00002018-200124070-00001 Lee WM, 2003, NEW ENGL J MED, V349, P474, DOI 10.1056/NEJMra021844 LEVESQUE A, 1995, J IMMUNOL METHODS, V178, P71, DOI 10.1016/0022-1759(94)00243-P Lewis JH, 2002, CURR OPIN GASTROEN, V18, P307, DOI 10.1097/00001574-200205000-00004 Lewis W, 2003, NAT REV DRUG DISCOV, V2, P812, DOI 10.1038/nrd1201 LORICO A, 1986, BIOCHEM PHARMACOL, V35, P2443, DOI 10.1016/0006-2952(86)90474-0 MESELSON M, 1958, COLD SPRING HARB SYM, V23, P9, DOI 10.1101/SQB.1958.023.01.004 Nociari MM, 1998, J IMMUNOL METHODS, V213, P157, DOI 10.1016/S0022-1759(98)00028-3 OBRIEN PJ, 1989, AM J VET RES, V50, P131 OBRIEN PJ, 1990, AM J VET RES, V51, P1038 OBRIEN PJ, 2003, P TOX 03 LOND UK Olson H, 2000, REGUL TOXICOL PHARM, V32, P56, DOI 10.1006/rtph.2000.1399 Olson H, 1998, TOXICOL LETT, V103, P535, DOI 10.1016/S0378-4274(98)00261-6 Olson HM, 2001, CRIT REV TOXICOL, V31, P659, DOI 10.1080/20014091111910 PHILLIPS GW, 2005, P SOC BIOM SCREEN Plymale DR, 1999, NAT MED, V5, P351, DOI 10.1038/6574 Russo MW, 2004, LIVER TRANSPLANT, V10, P1018, DOI 10.1002/lt.20204 Schoonen WGEJ, 2005, TOXICOL IN VITRO, V19, P491, DOI 10.1016/j.tiv.2005.01.002 Schoonen WGEJ, 2005, TOXICOL IN VITRO, V19, P505, DOI 10.1016/j.tiv.2005.01.003 Slaughter MR, 2002, TOXICOL APPL PHARM, V178, P63, DOI 10.1006/taap.2001.9322 Xu JJ, 2004, CHEM-BIOL INTERACT, V150, P115, DOI 10.1016/j.cbi.2004.09.011 NR 41 TC 464 Z9 502 U1 2 U2 99 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0340-5761 EI 1432-0738 J9 ARCH TOXICOL JI Arch. Toxicol. PD SEP PY 2006 VL 80 IS 9 BP 580 EP 604 DI 10.1007/s00204-006-0091-3 PG 25 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 072HJ UT WOS:000239664200005 PM 16598496 DA 2023-03-13 ER PT J AU Andreazza, F Oliveira, EE Martins, GF AF Andreazza, Felipe Oliveira, Eugenio E. Martins, Gustavo Ferreira TI Implications of Sublethal Insecticide Exposure and the Development of Resistance on Mosquito Physiology, Behavior, and Pathogen Transmission SO INSECTS LA English DT Review DE host-seeking behavior; insecticide exposure; insecticide resistance; mosquito; pathogen transmission ID AEDES-ALBOPICTUS DIPTERA; ANOPHELES-GAMBIAE; SODIUM-CHANNELS; MALARIA VECTOR; PERMETHRIN RESISTANCE; INDUCED HORMESIS; CULICIDAE; AEGYPTI; DELTAMETHRIN; MECHANISMS AB Mosquitoes are one of the greatest threats to human lives; they transmit a wide range of pathogens, including viruses that cause lethal diseases. Mosquitoes are found in both aquatic (as larvae or pupae) and terrestrial (as adults) environments during their complex life cycle. For decades, insecticides have been systematically used on mosquitoes with the aim to reduce their population. Little is known about how the stress resulting from the exposure of mosquitoes to insecticides impacts the tri-partite relationship between the mosquitoes, their vertebrate hosts, and the pathogens they transmit. In this work, we review existing experimental evidence to obtain a broad picture on the potential effects of the (sub)lethal exposure of hematophagous mosquitoes to different insecticides. We have focused on studies that have advanced our understanding of their physiological and behavioral responses (including the mechanisms behind insecticide resistance) and the spread of pathogens by these vectors-understudied but critically important issues for epidemiology. Studying these exposure-related effects is of paramount importance for predicting how they respond to insecticide exposure and whether this exposure makes them more or less likely to transmit pathogens. For many decades, insecticides have been used to control mosquito populations in their larval and adult stages. Although changes in the population genetics, physiology, and behavior of mosquitoes exposed to lethal and sublethal doses of insecticides are expected, the relationships between these changes and their abilities to transmit pathogens remain unclear. Thus, we conducted a comprehensive review on the sublethal effects of insecticides and their contributions to insecticide resistance in mosquitoes, with the main focus on pyrethroids. We discuss the direct and acute effects of sublethal concentrations on individuals and populations, the changes in population genetics caused by the selection for resistance after insecticide exposure, and the major mechanisms underlying such resistance. Sublethal exposures negatively impact the individual's performance by affecting their physiology and behavior and leaving them at a disadvantage when compared to unexposed organisms. How these sublethal effects could change mosquito population sizes and diversity so that pathogen transmission risks can be affected is less clear. Furthermore, despite the beneficial and acute aspects of lethality, exposure to higher insecticide concentrations clearly impacts the population genetics by selecting resistant individuals, which may bring further and complex interactions for mosquitoes, vertebrate hosts, and pathogens. Finally, we raise several hypotheses concerning how the here revised impacts of insecticides on mosquitoes could interplay with vector-mediated pathogens' transmission.

C1 [Andreazza, Felipe; Oliveira, Eugenio E.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Martins, Gustavo Ferreira] Univ Fed Vicosa, Dept Biol Geral, BR-36570900 Vicosa, MG, Brazil. [Andreazza, Felipe] Duke Univ, Dept Biol, Durham, NC 27708 USA. C3 Universidade Federal de Vicosa; Universidade Federal de Vicosa; Duke University RP Martins, GF (corresponding author), Univ Fed Vicosa, Dept Biol Geral, BR-36570900 Vicosa, MG, Brazil. EM felipe.andreazza@ufv.br; eugenio@ufv.br; gmartins@ufv.br RI de Oliveira, Eugênio Eduardo/F-4045-2016; Andreazza, Felipe/D-1702-2016 OI Andreazza, Felipe/0000-0003-3424-3177; Martins, Gustavo/0000-0003-0614-8551 FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil [CAPES-001]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-Brasil [CNPq-142205/2017-6, 404844/2018-9, 301725/2019-5, 308576/2018-7, 427304/2018-0]; Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (Fapemig) FX Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES-001), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-Brasil (CNPq-142205/2017-6 for FA; 404844/2018-9 and 301725/2019-5 for GFM; 308576/2018-7 and 427304/2018-0 for EEO), and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (Fapemig). CR Alkassab AT, 2018, ECOTOX ENVIRON SAFE, V147, P200, DOI 10.1016/j.ecoenv.2017.08.047 Allan SA, 2009, J AM MOSQUITO CONTR, V25, P338, DOI 10.2987/09-5854.1 Alout H, 2008, COMP BIOCHEM PHYS B, V150, P271, DOI 10.1016/j.cbpb.2008.03.008 Alout H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0389 Alout H, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063849 Andreazza F, 2021, PLOS NEGLECT TROP D, V15, DOI 10.1371/journal.pntd.0009546 [Anonymous], 2013, UNDERSTANDING CONSEQ Antonio GE, 2009, PEST MANAG SCI, V65, P323, DOI 10.1002/ps.1683 Arnaud L, 2002, HEREDITY, V89, P425, DOI 10.1038/sj.hdy.6800167 Bara JJ, 2014, PARASITOL RES, V113, P2879, DOI 10.1007/s00436-014-3949-y Bataillard D, 2020, ECOL EVOL, V10, P5079, DOI 10.1002/ece3.6261 Bayoh MN, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-62 Beerntsen BT, 2000, MICROBIOL MOL BIOL R, V64, P115, DOI 10.1128/MMBR.64.1.115-137.2000 Benelli G, 2015, PARASITOL RES, V114, P2801, DOI 10.1007/s00436-015-4586-9 Berticat C, 2002, GENET RES, V79, P41, DOI 10.1017/S001667230100547X Brogdon WG, 1999, J ECON ENTOMOL, V92, P298, DOI 10.1093/jee/92.2.298 Bui M, 2019, BMC NEUROSCI, V20, DOI 10.1186/s12868-019-0511-y Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Carrieri M, 2009, J AM MOSQUITO CONTR, V25, P149, DOI 10.2987/08-5852.1 Casimiro S, 2006, J MED ENTOMOL, V43, P267, DOI 10.1603/0022-2585(2006)043[0267:IRIAFD]2.0.CO;2 Chareonviriyaphap T, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-280 Chen WF, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6549 Chouin-Carneiro T, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004543 Cohnstaedt LW, 2011, J VECTOR ECOL, V36, P395, DOI 10.1111/j.1948-7134.2011.00180.x Cooke MK, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0766-4 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Deletre E, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-019-3343-9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Diop MM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121755 Dong K, 2014, INSECT BIOCHEM MOLEC, V50, P1, DOI 10.1016/j.ibmb.2014.03.012 Du YZ, 2010, TOXICOL APPL PHARM, V247, P53, DOI 10.1016/j.taap.2010.05.016 DUKEEN MYH, 1986, B ENTOMOL RES, V76, P451, DOI 10.1017/S0007485300014942 Ellegren H, 2016, NAT REV GENET, V17, P422, DOI 10.1038/nrg.2016.58 ELLIOTT M, 1977, ACS SYM SER, V42, P1 Essandoh J, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-404 ESTRADA JG, 1986, J AM MOSQUITO CONTR, V2, P57 Fawaz EY, 2014, J VECTOR ECOL, V39, P347, DOI 10.1111/jvec.12110 Fernandes KM, 2015, MED VET ENTOMOL, V29, P245, DOI 10.1111/mve.12122 Fernandes KM, 2019, CHEMOSPHERE, V221, P464, DOI 10.1016/j.chemosphere.2019.01.068 ffrench-Constant RH, 2017, CURR OPIN INSECT SCI, V21, P39, DOI 10.1016/j.cois.2017.04.011 Freitas RCP, 2016, J STORED PROD RES, V69, P257, DOI 10.1016/j.jspr.2016.09.006 Gatton ML, 2013, EVOLUTION, V67, P1218, DOI 10.1111/evo.12063 Gazave L, 2001, HEREDITY, V87, P441, DOI 10.1046/j.1365-2540.2001.00926.x GEORGHIOU GP, 1972, ANNU REV ECOL SYST, V3, P133, DOI DOI 10.1146/ANNUREV.ES.03.110172.001025 Gong YH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00486-0 Gould F., 1984, Bulletin of the Entomological Society of America, V30, P34 Griffin JT, 2010, PLOS MED, V7, DOI 10.1371/journal.pmed.1000324 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2018, J APPL ENTOMOL, V142, P457, DOI 10.1111/jen.12500 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo Q, 2017, INSECT BIOCHEM MOLEC, V84, P15, DOI 10.1016/j.ibmb.2017.03.006 Haddi K, 2017, SCI REP-UK, V7, DOI 10.1038/srep46549 Haddi K, 2015, J ECON ENTOMOL, V108, P362, DOI 10.1093/jee/tou049 Hardstone MC, 2010, J MED ENTOMOL, V47, P188, DOI 10.1603/ME09131 HARDY JL, 1983, ANNU REV ENTOMOL, V28, P229, DOI 10.1146/annurev.en.28.010183.001305 Hauser G, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-3983-9 Jones CM, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-24 Jung JW, 2015, SCI REP-UK, V5, DOI 10.1038/srep13444 Kadala A, 2011, NEUROTOXICOLOGY, V32, P320, DOI 10.1016/j.neuro.2011.02.007 Kasai S, 1998, ARCH INSECT BIOCHEM, V37, P47, DOI 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S Keeling M.J., 2011, MODELING INFECT DIS Kliot A, 2012, PEST MANAG SCI, V68, P1431, DOI 10.1002/ps.3395 Knecht H, 2018, PATHOGENS, V7, DOI 10.3390/pathogens7030067 Kristan M, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1384-x Leal WS, 2013, ANNU REV ENTOMOL, V58, P373, DOI 10.1146/annurev-ento-120811-153635 Liu F, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22847-0 Liu NN, 2015, ANNU REV ENTOMOL, V60, P537, DOI 10.1146/annurev-ento-010814-020828 Liu PY, 2010, J ENVIRON SCI-CHINA, V22, P1123, DOI 10.1016/S1001-0742(09)60227-8 Lopes MP, 2018, PEST MANAG SCI, V74, P1311, DOI 10.1002/ps.4815 Lucas KJ, 2015, CURR OPIN INSECT SCI, V11, P1, DOI 10.1016/j.cois.2015.06.004 LYIMO EO, 1992, PARASITOLOGY, V104, P233, DOI 10.1017/S0031182000061667 Lynch PA, 2016, ELIFE, V5, DOI 10.7554/eLife.15416 Main BJ, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2817-5 Manda H, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002074 Manda H, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001243 Marcombe S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101992 Marcombe S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030989 MENGLE DC, 1958, J ECON ENTOMOL, V51, P750, DOI 10.1093/jee/51.6.750 Meunier L, 2006, INSECT MOL BIOL, V15, P475, DOI 10.1111/j.1365-2583.2006.00659.x Michalski ML, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000875 Mitri C, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0924-8 Moiroux N, 2012, J INFECT DIS, V206, P1622, DOI 10.1093/infdis/jis565 Moltini-Conclois I, 2018, INSECTS, V9, DOI 10.3390/insects9040193 Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001 Mutuku FM, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-356 Muturi EJ, 2011, VECTOR-BORNE ZOONOT, V11, P1157, DOI 10.1089/vbz.2010.0209 Narahashi T, 2000, J PHARMACOL EXP THER, V294, P1 Ndiath MO, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-340 Lien NTK, 2018, J VECTOR ECOL, V43, P184, DOI 10.1111/jvec.12298 Niitepold K, 2009, ECOLOGY, V90, P2223, DOI 10.1890/08-1498.1 Oliveira EE, 2013, NEUROTOXICOLOGY, V38, P42, DOI 10.1016/j.neuro.2013.06.001 Paris M, 2011, PEST MANAG SCI, V67, P122, DOI 10.1002/ps.2046 Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028 Pigeault R., 2021, PARASITOLOGIA, V1, P3, DOI [10.3390/parasitologia1010003, DOI 10.3390/PARASITOLOGIA1010003] Platt N, 2015, HEREDITY, V115, P243, DOI 10.1038/hdy.2015.33 Potikasikorn J, 2005, AM J TROP MED HYG, V73, P343, DOI 10.4269/ajtmh.2005.73.343 Pottier MA, 2012, INSECT MOL BIOL, V21, P568, DOI 10.1111/j.1365-2583.2012.01160.x Quistad GB., 1995, PYRETHRUM FLOWERS PR, P1 Ranson H, 2016, TRENDS PARASITOL, V32, P187, DOI 10.1016/j.pt.2015.11.010 Rascalou G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036858 Reddy MR, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-184 Richards SL, 2017, RES REP TROP MED, V8, P53, DOI 10.2147/RRTM.S133411 Ritthison W, 2014, J VECTOR ECOL, V39, P32, DOI 10.1111/j.1948-7134.2014.12067.x Rivero A, 2011, J MED ENTOMOL, V48, P694, DOI 10.1603/ME10121 ROBERT LL, 1989, J AM MOSQUITO CONTR, V5, P239 Romero A, 2009, J MED ENTOMOL, V46, P51, DOI 10.1603/033.046.0107 Russell TL, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-80 Sanford MR, 2013, J INSECT BEHAV, V26, P494, DOI 10.1007/s10905-012-9368-y Santos HP, 2018, ENVIRON SCI POLLUT R, V25, P1418, DOI 10.1007/s11356-017-0569-y Santos MF, 2016, J PEST SCI, V89, P231, DOI 10.1007/s10340-015-0666-y Seenivasagan T, 2014, PARASITOL RES, V113, P1927, DOI 10.1007/s00436-014-3840-x Siegert PY, 2009, J ECON ENTOMOL, V102, P2061, DOI 10.1603/029.102.0607 Silva SM, 2017, ENTOMOL EXP APPL, V163, P220, DOI 10.1111/eea.12559 Silva-Filha MHNL, 2021, TOXINS, V13, DOI 10.3390/toxins13080523 Silver K, 2017, CURR MED CHEM, V24, P2912, DOI 10.2174/0929867323666161216143844 Silver KS, 2014, ADV INSECT PHYSIOL, V46, P389, DOI 10.1016/B978-0-12-417010-0.00005-7 SILVERMAN J, 1994, ENVIRON ENTOMOL, V23, P425, DOI 10.1093/ee/23.2.425 Singh OP, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-146 Smith T, 2008, PARASITOLOGY, V135, P1507, DOI 10.1017/S0031182008000371 Soderlund DM, 2002, TOXICOLOGY, V171, P3, DOI 10.1016/S0300-483X(01)00569-8 Sougoufara S, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-125 Stehle S, 2015, P NATL ACAD SCI USA, V112, P5750, DOI 10.1073/pnas.1500232112 Sun XH, 2019, PARASITOLOGY, V146, P197, DOI 10.1017/S0031182018001002 Sunday O.O., 2016, INT J MOSQ RES, V3, P20 Tainchum K, 2016, J VECTOR ECOL, V41, P254, DOI 10.1111/jvec.12220 Thomas MB, 2016, P NATL ACAD SCI USA, V113, P8900, DOI 10.1073/pnas.1609889113 Tirados I, 2006, MED VET ENTOMOL, V20, P425, DOI 10.1111/j.1365-2915.2006.652.x Tmimi FZ, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2625-y Tokponnon FT, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-76 Tome HW, 2014, PARASITE VECTOR, V7, DOI 10.1186/1756-3305-7-195 Tosi S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01361-8 Tuelher ES, 2017, J PEST SCI, V90, P397, DOI 10.1007/s10340-016-0777-0 TURELL MJ, 1992, J MED ENTOMOL, V29, P49, DOI 10.1093/jmedent/29.1.49 Vais H, 2000, J GEN PHYSIOL, V115, P305, DOI 10.1085/jgp.115.3.305 Valbon WR, 2019, PESTIC BIOCHEM PHYS, V156, P87, DOI 10.1016/j.pestbp.2019.02.008 Valbon WR, 2018, CHEMOSPHERE, V191, P350, DOI 10.1016/j.chemosphere.2017.10.061 van Breugel F, 2015, CURR BIOL, V25, P2123, DOI 10.1016/j.cub.2015.06.046 Vantaux A, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1514-5 Vezilier J, 2013, EVOL APPL, V6, P497, DOI 10.1111/eva.12037 Vezilier J, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-379 Viana M, 2016, P NATL ACAD SCI USA, V113, P8975, DOI 10.1073/pnas.1603431113 Vinauger C, 2016, TRENDS PARASITOL, V32, P761, DOI 10.1016/j.pt.2016.06.003 Vulule JM, 1999, MED VET ENTOMOL, V13, P239, DOI 10.1046/j.1365-2915.1999.00177.x Wang GL, 2011, PESTIC BIOCHEM PHYS, V101, P227, DOI 10.1016/j.pestbp.2011.09.010 Weetman D, 2015, MOL ECOL, V24, P2656, DOI 10.1111/mec.13197 Wei H, 2004, PESTIC BIOCHEM PHYS, V80, P12, DOI 10.1016/j.pestbp.2004.05.001 WELLING W, 1977, ANNU REV ENTOMOL, V22, P53, DOI 10.1146/annurev.en.22.010177.000413 White MT, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-153 WHO, 2020, WORLD MAL REP 2011 WHO, 2021, FACT SHEETS MAL 1 AP WHO, 2021, FACT SHEETS DENG SEV World Health Organization (WHO), 2012, WHOHTMNTDVEM20125 Xiao CY, 2017, J ASIA-PAC ENTOMOL, V20, P1287, DOI 10.1016/j.aspen.2017.09.013 Xu Q, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047609 Yang L, 2020, PEST MANAG SCI, V76, P118, DOI 10.1002/ps.5562 Yohannes M, 2005, TROP MED INT HEALTH, V10, P1274, DOI 10.1111/j.1365-3156.2005.01512.x Yohannes M, 2012, MED VET ENTOMOL, V26, P103, DOI 10.1111/j.1365-2915.2011.00955.x Zanuncio JC, 2011, B ENVIRON CONTAM TOX, V87, P608, DOI 10.1007/s00128-011-0405-x Zhou C, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27062-4 Zhou GF, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020318 Zhou YH, 2018, FRONT BEHAV NEUROSCI, V12, DOI 10.3389/fnbeh.2018.00086 NR 162 TC 3 Z9 3 U1 3 U2 11 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-4450 J9 INSECTS JI Insects PD OCT PY 2021 VL 12 IS 10 AR 917 DI 10.3390/insects12100917 PG 18 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA WU1XE UT WOS:000716344500001 PM 34680686 OA Green Published, gold DA 2023-03-13 ER PT J AU Akkaya, O Perez-Pantoja, DR Calles, B Nikel, PI de Lorenzo, V AF Akkaya, Ozlem Perez-Pantoja, Danilo R. Calles, Belen Nikel, Pablo I. de Lorenzo, Victor TI The Metabolic Redox Regime of Pseudomonas putida Tunes Its Evolvability toward Novel Xenobiotic Substrates SO MBIO LA English DT Article DE NADPH oxidases; Pseudomonas putida; reactive oxygen species; biodegradation; dinitrotoluene; evolution; oxidative stress ID HORIZONTAL GENE-TRANSFER; GRAM-NEGATIVE BACTERIA; OXIDATIVE STRESS; NITROAROMATIC COMPOUNDS; CATABOLIC PATHWAYS; AROMATIC-COMPOUNDS; BIODEGRADATION; EVOLUTION; HORMESIS; KT2440 AB During evolution of biodegradation pathways for xenobiotic compounds involving Rieske nonheme iron oxygenases, the transition toward novel substrates is frequently associated with faulty reactions. Such events release reactive oxygen species (ROS), which are endowed with high mutagenic potential. In this study, we evaluated how the operation of the background metabolic network by an environmental bacterium may either foster or curtail the still-evolving pathway for 2,4-dinitrotoluene (2,4-DNT) catabolism. To this end, the genetically tractable strain Pseudomonas putida EM173 was implanted with the whole genetic complement necessary for the complete biodegradation of 2,4-DNT (recruited from the environmental isolate Burkholderia sp. R34). By using reporter technology and direct measurements of ROS formation, we observed that the engineered P. putida strain experienced oxidative stress when catabolizing the nitroaromatic substrate. However, the formation of ROS was neither translated into significant activation of the SOS response to DNA damage nor did it result in a mutagenic regime (unlike what has been observed in Burkholderia sp. R34, the original host of the pathway). To inspect whether the tolerance of P. putida to oxidative challenges could be traced to its characteristic reductive redox regime, we artificially altered the NAD(P)H pool by means of a water-forming, NADH-specific oxidase. Under the resulting low-NAD(P)H status, catabolism of 2,4-DNT triggered a conspicuous mutagenic and genomic diversification scenario. These results indicate that the background biochemical network of environmental bacteria ultimately determines the evolvability of metabolic pathways. Moreover, the data explain the efficacy of some bacteria (e.g., pseudomonads) to host and evolve with new catabolic routes. IMPORTANCE Some environmental bacteria evolve with new capacities for the aerobic biodegradation of chemical pollutants by adapting preexisting redox reactions to novel compounds. The process typically starts by cooption of enzymes from an available route to act on the chemical structure of the substrate-to-be. The critical bottleneck is generally the first biochemical step, and most of the selective pressure operates on reshaping the initial reaction. The interim uncoupling of the novel substrate to preexisting Rieske nonheme iron oxygenases usually results in formation of highly mutagenic ROS. In this work, we demonstrate that the background metabolic regime of the bacterium that hosts an evolving catabolic pathway (e.g., biodegradation of the xenobiotic 2,4-DNT) determines whether the cells either adopt a genetic diversification regime or a robust ROS-tolerant status. Furthermore, our results offer new perspectives to the rational design of efficient whole-cell biocatalysts, which are pursued in contemporary metabolic engineering. C1 [Akkaya, Ozlem] Gebze Tech Univ, Fac Sci, Dept Mol Biol & Genet, Kocaeli, Turkey. [Perez-Pantoja, Danilo R.] Univ Tecnol Metropolitana, Programa Inst Fomento Invest Desarrollo & Innovac, Santiago, Chile. [Calles, Belen; de Lorenzo, Victor] Ctr Nacl Biotecnol, Syst & Synthet Biol Program, Madrid, Spain. [Nikel, Pablo I.] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Lyngby, Denmark. C3 Gebze Technical University; Universidad Tecnologica Metropolitana; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro Nacional de Biotecnologia (CNB); Technical University of Denmark RP de Lorenzo, V (corresponding author), Ctr Nacl Biotecnol, Syst & Synthet Biol Program, Madrid, Spain.; Nikel, PI (corresponding author), Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Lyngby, Denmark. EM pabnik@biosustain.dtu.dk; vdlorenzo@cnb.csic.es RI Perez-Pantoja, Danilo/ABD-1286-2020; Akkaya, Özlem/AAB-9755-2019; Nikel, Pablo Ivan/L-4146-2014; Pérez-Pantoja, Danilo/AAF-4197-2019 OI Akkaya, Özlem/0000-0003-0478-1417; Nikel, Pablo Ivan/0000-0002-9313-7481; Pérez-Pantoja, Danilo/0000-0001-5720-2162; de Lorenzo, Victor/0000-0002-6041-2731 FU TUBITAK-BIDEP through the International Postdoctoral Research Scholarship Programme [2219]; HELIOS Project of the Spanish Ministry of Economy and Competitiveness [BIO2015-66960-C3-2-R]; ARISYS contract of the European Union [ERC-2012-ADG-322797]; EmPowerPutida contract of the European Union [EUH2020-BIOTEC-2014-2015-6335536]; MADONNA contract of the European Union [H2020-FET-OPEN-RIA-2017-1-766975]; Novo Nordisk Foundation [NNF10CC1016517]; Danish Council for Independent Research (SWEET, DFF Research Project) [8021-00039B] FX L. Eltis (Canada) for inspiring discussions. O.A. was supported by TUBITAK-BIDEP through the International Postdoctoral Research Scholarship Programme 2219.; This study was supported by HELIOS Project of the Spanish Ministry of Economy and Competitiveness BIO2015-66960-C3-2-R (MINECO/FEDER), and by ARISYS (ERC-2012-ADG-322797), EmPowerPutida (EUH2020-BIOTEC-2014-2015-6335536), and MADONNA (H2020-FET-OPEN-RIA-2017-1-766975) contracts of the European Union to V.D.L. The study was also supported by the Novo Nordisk Foundation (grant NNF10CC1016517) and the Danish Council for Independent Research (SWEET, DFF Research Project 8021-00039B) to P.I.N. CR Abella M, 2007, J BACTERIOL, V189, P8855, DOI 10.1128/JB.01213-07 Artsimovitch I, 2005, CELL, V122, P351, DOI 10.1016/j.cell.2005.07.014 Baharoglu Z, 2014, FEMS MICROBIOL REV, V38, P1126, DOI 10.1111/1574-6976.12077 Baker JL, 2014, J BACTERIOL, V196, P2166, DOI 10.1128/JB.01542-14 Baquero F, 2017, MBIO, V8, DOI 10.1128/mBio.01950-17 Belda E, 2016, ENVIRON MICROBIOL, V18, P3403, DOI 10.1111/1462-2920.13230 Benedetti I, 2016, DATA BRIEF, V6, P738, DOI 10.1016/j.dib.2016.01.022 Benedetti I, 2016, METAB ENG, V33, P109, DOI 10.1016/j.ymben.2015.11.004 Bolton JL, 2000, CHEM RES TOXICOL, V13, P135, DOI 10.1021/tx9902082 Bowman LAH, 2011, ADV MICROB PHYSIOL, V59, P135, DOI 10.1016/B978-0-12-387661-4.00006-9 Cadet J, 2003, MUTAT RES-FUND MOL M, V531, P5, DOI 10.1016/j.mrfmmm.2003.09.001 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calero P, 2019, MICROB BIOTECHNOL, V12, P98, DOI 10.1111/1751-7915.13292 Campbell EA, 2001, CELL, V104, P901, DOI 10.1016/S0092-8674(01)00286-0 Chavez FP, 2004, APPL ENVIRON MICROB, V70, P3064, DOI 10.1128/AEM.70.5.3064-3072.2004 Chen JD, 2017, GENE DEV, V31, P1382, DOI 10.1101/gad.302547.117 Comini MA, 2016, FREE RADICAL RES, V50, P246, DOI 10.3109/10715762.2015.1110241 Copley SD, 2009, NAT CHEM BIOL, V5, P560, DOI 10.1038/nchembio.197 Couce A, 2009, FEMS MICROBIOL REV, V33, P531, DOI 10.1111/j.1574-6976.2009.00165.x Czechowska K, 2012, ENVIRON SCI TECHNOL, V46, P1201, DOI 10.1021/es203352y Danchin A, 2011, GENES-BASEL, V2, P998, DOI 10.3390/genes2040998 de las Heras A, 2011, MOL MICROBIOL, V82, P287, DOI 10.1111/j.1365-2958.2011.07825.x Drlica K, 1997, MICROBIOL MOL BIOL R, V61, P377, DOI 10.1128/.61.3.377-392.1997 Durao P, 2018, TRENDS MICROBIOL, V26, P677, DOI 10.1016/j.tim.2018.01.005 Dvorak P, 2017, BIOTECHNOL ADV, V35, P845, DOI 10.1016/j.biotechadv.2017.08.001 Dvorak P, 2015, MICROB CELL FACT, V14, DOI 10.1186/s12934-015-0393-3 Ebert BE, 2011, APPL ENVIRON MICROB, V77, P6597, DOI 10.1128/AEM.05588-11 Ferraro DJ, 2005, BIOCHEM BIOPH RES CO, V338, P175, DOI 10.1016/j.bbrc.2005.08.222 Foster PL, 2005, MUTAT RES-FUND MOL M, V569, P3, DOI 10.1016/j.mrfmmm.2004.07.017 Fuchs G, 2011, NAT REV MICROBIOL, V9, P803, DOI 10.1038/nrmicro2652 Furusawa C, 2018, CURR OPIN BIOTECH, V54, P45, DOI 10.1016/j.copbio.2018.01.026 Galhardo RS, 2007, CRIT REV BIOCHEM MOL, V42, P399, DOI 10.1080/10409230701648502 Galvao TC, 2005, APPL ENVIRON MICROB, V71, P883, DOI 10.1128/AEM.71.2.883-892.2005 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gibson DT, 2000, CURR OPIN BIOTECH, V11, P236, DOI 10.1016/S0958-1669(00)00090-2 Gomez J. G. C., 2012, ADV APPL BIOTECHNOLO, P41 Gomez-Gil L, 2007, J BACTERIOL, V189, P5705, DOI 10.1128/JB.01476-06 Gutierrez A, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2607 HAIGLER BE, 1994, J BACTERIOL, V176, P3433, DOI 10.1128/jb.176.11.3433-3437.1994 Haigler BE, 1996, J BACTERIOL, V178, P6019, DOI 10.1128/jb.178.20.6019-6024.1996 Harms A, 2016, SCIENCE, V354, DOI 10.1126/science.aaf4268 Ilmjarv T, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182484 Imbeault NYR, 2000, J BIOL CHEM, V275, P12430, DOI 10.1074/jbc.275.17.12430 Jatsenko T, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170719 Jatsenko T, 2010, MUTAT RES-FUND MOL M, V683, P106, DOI 10.1016/j.mrfmmm.2009.10.015 Johnson GR, 2003, APPL MICROBIOL BIOT, V62, P110, DOI 10.1007/s00253-003-1341-4 Johnson GR, 2002, J BACTERIOL, V184, P4219, DOI 10.1128/JB.184.15.4219-4232.2002 Ju KS, 2010, MICROBIOL MOL BIOL R, V74, P250, DOI 10.1128/MMBR.00006-10 Kanaly RA, 2010, MICROB BIOTECHNOL, V3, P136, DOI 10.1111/j.1751-7915.2009.00130.x Kang YS, 2007, MICROBIOL-SGM, V153, P3246, DOI 10.1099/mic.0.2007/008896-0 Kim J, 2014, APPL MICROBIOL BIOT, V98, P6933, DOI 10.1007/s00253-014-5883-4 Kivisaar M, 2011, MOL MICROBIOL, V82, P265, DOI 10.1111/j.1365-2958.2011.07824.x Kivisaar M, 2010, FEMS MICROBIOL LETT, V312, P1, DOI 10.1111/j.1574-6968.2010.02027.x Koonin Eugene V, 2016, F1000Res, V5, DOI 10.12688/f1000research.8737.1 Kurt Z, 2018, APPL ENVIRON MICROB, V84, DOI 10.1128/AEM.00104-18 Lee K, 1999, J BACTERIOL, V181, P2719, DOI 10.1128/JB.181.9.2719-2725.1999 Lemire J, 2017, J APPL MICROBIOL, V123, P798, DOI 10.1111/jam.13509 Lieder S, 2015, MICROB CELL FACT, V14, DOI 10.1186/s12934-015-0207-7 Benedetti IM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052000 Martinez-Garcia E, 2015, ENVIRON MICROBIOL, V17, P76, DOI 10.1111/1462-2920.12492 Martinez-Garcia Esteban, 2014, Front Bioeng Biotechnol, V2, P46, DOI 10.3389/fbioe.2014.00046 Martinez-Garcia E, 2011, METHODS MOL BIOL, V813, P267, DOI 10.1007/978-1-61779-412-4_16 Mathieu A, 2016, CELL REP, V17, P46, DOI 10.1016/j.celrep.2016.09.001 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Migliore L, 2013, DOSE-RESPONSE, V11, P550, DOI 10.2203/dose-response.13-002.Migliore Mishra S, 2012, ARCH BIOCHEM BIOPHYS, V525, P145, DOI 10.1016/j.abb.2012.04.014 MORIYA M, 1993, MOL GEN GENET, V239, P72, DOI 10.1007/BF00281603 Nike PI, 2016, CURR OPIN CHEM BIOL, V34, P20, DOI 10.1016/j.cbpa.2016.05.011 Nikel P. I., 2016, HYDROCARBON LIPID MI, P39, DOI DOI 10.1007/8623_2015_84 Nikel PI, 2018, METAB ENG, V50, P142, DOI 10.1016/j.ymben.2018.05.005 Nikel PI, 2016, ENVIRON MICROBIOL, V18, P3565, DOI 10.1111/1462-2920.13434 Nikel PI, 2015, J BIOL CHEM, V290, P25920, DOI 10.1074/jbc.M115.687749 Nikel PI, 2015, MBIO, V6, DOI 10.1128/mBio.00340-15 Nikel PI, 2014, NEW BIOTECHNOL, V31, P562, DOI 10.1016/j.nbt.2014.02.006 Nikel PI, 2014, NAT REV MICROBIOL, V12, P368, DOI 10.1038/nrmicro3253 Nikel PI, 2014, ENVIRON MICROBIOL, V16, P239, DOI 10.1111/1462-2920.12224 Nikel PI, 2013, MICROB CELL FACT, V12, DOI [10.1186/1475-2859-12-50, 10.1186/s12934-014-0159-3] Nikel PI, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0377 Nikel PI, 2013, METAB ENG, V15, P98, DOI 10.1016/j.ymben.2012.09.006 Nikel PI, 2013, J BIOTECHNOL, V163, P143, DOI 10.1016/j.jbiotec.2012.05.002 Nikel PI, 2014, ENVIRON MICROBIOL, V16, P628, DOI 10.1111/1462-2920.12360 Nishino SF, 2000, APPL ENVIRON MICROB, V66, P2139, DOI 10.1128/AEM.66.5.2139-2147.2000 Ohmori H, 2001, MOL CELL, V8, P7, DOI 10.1016/S1097-2765(01)00278-7 Palmer AC, 2013, NAT REV GENET, V14, P243, DOI 10.1038/nrg3351 Parales RE, 1998, J BACTERIOL, V180, P2337, DOI 10.1128/JB.180.9.2337-2344.1998 Parales RE, 2004, SOIL BIOL, V2, P175 Patrauchan MA, 2008, J BACTERIOL, V190, P37, DOI 10.1128/JB.01122-07 Perez-Pantoja D., 2017, AEROBIC UTILIZATION, P1, DOI [10.1007/978-3-319-39782-5_33-1, DOI 10.1007/978-3-319-39782-5_33-1, 10.1007/978- 3-319-39782-5_33-1] Perez-Pantoja D, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003764 Perez-Pantoja D, 2012, ENVIRON MICROBIOL, V14, P1091, DOI 10.1111/j.1462-2920.2011.02613.x PEREZPANTOJA D, 2010, HDB HYDROCARBON LIPI, P799, DOI DOI 10.1007/978-3-540-77587-4_60 Rosche WA, 2000, METHODS, V20, P4, DOI 10.1006/meth.1999.0901 Sambrook J., 2001, MOL CLONING LAB MANU Seffernick JL, 2016, APPL ENVIRON MICROB, V82, P1638, DOI 10.1128/AEM.03594-15 Silva-Rocha R, 2013, NUCLEIC ACIDS RES, V41, pD666, DOI 10.1093/nar/gks1119 Singh R, 2007, J BACTERIOL, V189, P6665, DOI 10.1128/JB.00555-07 Soucy SM, 2015, NAT REV GENET, V16, P472, DOI 10.1038/nrg3962 SPAIN JC, 1995, ANNU REV MICROBIOL, V49, P523, DOI 10.1146/annurev.mi.49.100195.002515 SPANGGORD RJ, 1991, APPL ENVIRON MICROB, V57, P3200, DOI 10.1128/AEM.57.11.3200-3205.1991 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Tachon S, 2011, J BACTERIOL, V193, P3000, DOI 10.1128/JB.01466-10 Tamburro A, 2004, FEMS MICROBIOL LETT, V241, P151, DOI 10.1016/j.femsle.2004.10.013 Tarassova K, 2009, J BACTERIOL, V191, P3604, DOI 10.1128/JB.01803-08 Tavita K, 2012, MUTAT RES-FUND MOL M, V737, P12, DOI 10.1016/j.mrfmmm.2012.07.004 Thomas CM, 2005, NAT REV MICROBIOL, V3, P711, DOI 10.1038/nrmicro1234 vanderMeer JR, 1997, ANTON LEEUW INT J G, V71, P159, DOI 10.1023/A:1000166400935 Wackett LP, 2004, J BIOL CHEM, V279, P41259, DOI 10.1074/jbc.R400014200 Winkler JR, 2015, Q REV BIOPHYS, V48, P411, DOI 10.1017/S0033583515000062 NR 109 TC 38 Z9 38 U1 2 U2 26 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2018 VL 9 IS 4 AR e01512-18 DI 10.1128/mBio.01512-18 PG 16 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA GS7MC UT WOS:000443884300082 PM 30154264 OA gold, Green Published, Green Submitted DA 2023-03-13 ER PT J AU Jenkins, GJS Zair, Z Johnson, GE Doak, SH AF Jenkins, Gareth J. S. Zair, Zoulikha Johnson, George E. Doak, Shareen H. TI Genotoxic thresholds, DNA repair, and susceptibility in human populations SO TOXICOLOGY LA English DT Review DE DNA damage; Mutation; Dose-response; Threshold; DNA repair; Hormesis ID LUNG-CANCER RISK; IN-VITRO; MGMT; POLYMORPHISMS; GENES; VARIANTS; MUTATION; AGENTS AB It has been long assumed that DNA damage is induced in a linear manner with respect to the dose of a direct acting genotoxin. Thus, it is implied that direct acting genotoxic agents induce DNA damage at even the lowest of concentrations and that no "safe" dose range exists. The linear (non-threshold) paradigm has led to the one-hit model being developed. This "one hit" scenario can be interpreted such that a single DNA damaging event in a cell has the capability to induce a single point mutation in that cell which could (if positioned in a key growth controlling gene) lead to increased proliferation, leading ultimately to the formation of a tumour. There are many groups (including our own) who, for a decade or more, have argued, that low dose exposures to direct acting genotoxins may be tolerated by cells through homeostatic mechanisms such as DNA repair. This argument stems from the existence of evolutionary adaptive mechanisms that allow organisms to adapt to low levels of exogenous sources of genotoxins. We have been particularly interested in the genotoxic effects of known mutagens at low dose exposures in human cells and have identified for the first time, in vitro genotoxic thresholds for several mutagenic alkylating agents (Doak et al., 2007). Our working hypothesis is that DNA repair is primarily responsible for these thresholded effects at low doses by removing low levels of DNA damage but becoming saturated at higher doses. We are currently assessing the roles of base excision repair (BER) and methylguanine-DNA methyltransferase (MGMT) for roles in the identified thresholds (Doak et al., 2008). This research area is currently important as it assesses whether "safe" exposure levels to mutagenic chemicals can exist and allows risk assessment using appropriate safety factors to define such exposure levels. Given human variation, the mechanistic basis for genotoxic thresholds (e.g. DNA repair) has to be well defined in order that susceptible individuals are considered. In terms of industrial exposures to known mutagens, knowing the dose relationships and protective mechanisms involved, offers the possibility of screening workers for susceptibility to mutation through examining DNA repair gene polymorphisms. Hence, thresholds may exist for certain mutagens, but there will undoubtedly be human subpopulations who are more at risk from low dose exposures than others and who should not be exposed, if possible. By studying polymorphisms in DNA repair genes, susceptible individuals may be identified, and additional safety factors appropriately targeted to these populations. (C) 2009 Elsevier Ireland Ltd. All rights reserved. C1 [Jenkins, Gareth J. S.; Zair, Zoulikha; Johnson, George E.; Doak, Shareen H.] Swansea Univ, Swansea Sch Med, Inst Life Sci, Swansea SA2 8PP, W Glam, Wales. C3 Swansea University RP Jenkins, GJS (corresponding author), Swansea Univ, Swansea Sch Med, Inst Life Sci, Singleton Pk, Swansea SA2 8PP, W Glam, Wales. EM g.j.jenkins@swansea.ac.uk RI ; Johnson, George/J-2488-2014 OI jenkins, gareth/0000-0002-5437-8389; Johnson, George/0000-0001-5643-9942; Doak, Shareen/0000-0002-6753-1987 FU European Chemical Industry Council/Long-Range Research Initiative; Hoffman LaRoche FX We acknowledge the funding provided by the European Chemical Industry Council/Long-Range Research Initiative and Hoffman LaRoche which enabled recent experimental work to be carried out. CR [Anonymous], 2000, GUIDANCE STRATEGY TE Armstrong MJ, 1997, MUTAT RES-FUND MOL M, V373, P167, DOI 10.1016/S0027-5107(96)00234-5 Bailey GS, 2009, CHEM RES TOXICOL, V22, P1264, DOI 10.1021/tx9000754 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Crosbie PAJ, 2008, INT J CANCER, V122, P791, DOI 10.1002/ijc.23059 Doak SH, 2007, CANCER RES, V67, P3904, DOI 10.1158/0008-5472.CAN-06-4061 Doak SH, 2008, MUTAT RES-FUND MOL M, V648, P9, DOI 10.1016/j.mrfmmm.2008.09.016 Doecke J, 2008, INT J CANCER, V123, P174, DOI 10.1002/ijc.23410 Elhajouji A, 1997, MUTAGENESIS, V12, P133, DOI 10.1093/mutage/12.3.133 Gocke E., 2009, TOXICOLOGY LETT HANAWALT PC, 1994, SCIENCE, V266, P1957, DOI 10.1126/science.7801121 Hasty P, 2003, SCIENCE, V299, P1355, DOI 10.1126/science.1079161 Henderson L, 2000, MUTAT RES-GEN TOX EN, V464, P123, DOI 10.1016/S1383-5718(99)00173-4 Hoeijmakers JHJ, 2009, NEW ENGL J MED, V361, P1475, DOI 10.1056/NEJMra0804615 Jascur T, 2006, INT J CANCER, V119, P2030, DOI 10.1002/ijc.22023 Johnson G.E., 2009, MUTAT RES Kaina B, 1998, MUTAT RES-FUND MOL M, V405, P179, DOI 10.1016/S0027-5107(98)00135-3 Kaina B, 2007, DNA REPAIR, V6, P1079, DOI 10.1016/j.dnarep.2007.03.008 Kirkland D, 2007, MUTAT RES-GEN TOX EN, V628, P31, DOI 10.1016/j.mrgentox.2006.11.008 Lutz WK, 2000, HUM EXP TOXICOL, V19, P566, DOI 10.1191/096032700701546488 Lynch A, 2003, MUTAGENESIS, V18, P345, DOI 10.1093/mutage/geg003 Ogino S, 2007, CARCINOGENESIS, V28, P1985, DOI 10.1093/carcin/bgm160 Pegg AE, 2007, DNA REPAIR, V6, P1071, DOI 10.1016/j.dnarep.2007.03.012 PERERA FP, 1988, MUTAT RES, V205, P255, DOI 10.1016/0165-1218(88)90021-3 Povey AC, 2007, DNA REPAIR, V6, P1134, DOI 10.1016/j.dnarep.2007.03.022 REBECK GW, 1991, J BACTERIOL, V173, P2068, DOI 10.1128/jb.173.6.2068-2076.1991 Riches LC, 2008, MUTAGENESIS, V23, P331, DOI 10.1093/mutage/gen039 Rusin M, 1999, Hum Mutat, V14, P269, DOI 10.1002/(SICI)1098-1004(1999)14:3<269::AID-HUMU13>3.0.CO;2-6 Sofuni T, 2000, MUTAT RES-GEN TOX EN, V464, P97, DOI 10.1016/S1383-5718(99)00170-9 Swenberg JA, 2008, CHEM RES TOXICOL, V21, P253, DOI 10.1021/tx700408t Szadkowski M, 2005, CANCER RES, V65, P4525, DOI 10.1158/0008-5472.CAN-05-0080 Veld CWOH, 1997, MUTAGENESIS, V12, P417, DOI 10.1093/mutage/12.6.417 Vineis P, 2009, JNCI-J NATL CANCER I, V101, P24, DOI 10.1093/jnci/djn437 Zienolddiny S, 2006, CARCINOGENESIS, V27, P560, DOI 10.1093/carcin/bgi232 Zito R, 2001, J EXP CLIN CANC RES, V20, P315 NR 35 TC 31 Z9 31 U1 0 U2 21 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD DEC 30 PY 2010 VL 278 IS 3 SI SI BP 305 EP 310 DI 10.1016/j.tox.2009.11.016 PG 6 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 703ZK UT WOS:000286020300008 PM 19932733 OA Green Published DA 2023-03-13 ER PT J AU Alp, FN Arikan, B Ozfidan-Konakci, C Gulenturk, C Yildiztugay, E Turan, M Cavusoglu, H AF Alp, Fatma Nur Arikan, Busra Ozfidan-Konakci, Ceyda Gulenturk, Cagri Yildiztugay, Evren Turan, Metin Cavusoglu, Halit TI Hormetic activation of nano-sized rare earth element terbium on growth, PSII photochemistry, antioxidant status and phytohormone regulation in Lemna minor SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Antioxidant; Chlorophyll fluorescence; Hormetic effect; Lemna minor; Nano -size terbium ID ABSCISIC-ACID; OXIDE NANOPARTICLES; HYDROGEN-PEROXIDE; SEED-GERMINATION; OXIDATIVE STRESS; PHOTOSYSTEM-II; NADPH OXIDASE; LANTHANUM; METABOLISM; CERIUM AB Soils contaminated with rare earth elements (REEs) can damage agriculture by causing physiological disorders in plants which are evaluated as the main connection of the human food chain. A biphasic dose response with excitatory responses to low concentrations and inhibitory/harmful responses to high concentrations has been defined as hormesis. However, not much is clear about the ecological effects and potential risks of REEs to plants. For this purpose, here we showed the impacts of different concentrations of nano terbium (Tb) applications (5-10-25-50-100-250-500 mg L-1) on the accumulation of endogeneous certain ions and hormones, chlorophyll fluoresence, photochemical reaction capacity and antioxidant activity in duckweed (Lemna minor). Tb concen-trations less than 100 mg L-1 increased the contents of nitrogen (N), phosphate (P), potassium (K+), calcium (Ca2+), magnesium (Mg2+), manganese (Mn2+) and iron (Fe2+). Chlorophyll fluorescence (Fv/Fm and Fv/Fo) was suppressed under 250-500 mg L-1 Tb. In addition, Tb toxicity affected the trapped energy adversely by the active reaction center of photosystem II (PSII) and led to accumulation of inactive reaction centers, thus lowering the detected level of electron transport from photosystem II (PSII) to photosystem I (PSI). On the other hand, 5-100 mg L-1 Tb enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), NADPH oxidase (NOX), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST). Tb (5-50 mg L-1) supported the maintenance of cellular redox status by promoting antioxidant pathways involved in the ascorbate-glutathione (AsA-GSH) cycle. In addition to the antioxidant system, the contents of some hormones such as indole-3-acetic acid (IAA), gibberellic acid (GA), cytokinin (CK) and salicylic acid (SA) were also induced in the presence of 5-100 mg L-1 Tb. In addition, the levels of hydrogen peroxide (H2O2) and lipid peroxidation (TBARS) were controlled through ascorbate (AsA) regeneration and effective hormonal modulation in L. minor. However, this induction in the antioxidant system and phytohormone contents could not be resumed after ap-plications higher than 250 mg L-1 Tb. TBARS and H2O2, which indicate the level of lipid peroxidation, increased. The results in this study showed that Tb at appropriate concentrations has great potential to confer tolerance of duckweed by supporting the antioxidant system, protecting the biochemical reactions of photosystems and improving hormonal regulation. C1 [Alp, Fatma Nur; Arikan, Busra; Gulenturk, Cagri; Yildiztugay, Evren] Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey. [Ozfidan-Konakci, Ceyda] Necmettin Erbakan Univ, Fac Sci, Dept Mol Biol & Genet, TR-42090 Meram, Konya, Turkey. [Turan, Metin] Yeditepe Univ, Fac Econ & Adm Sci, Dept Agr Trade & Management, TR-34755 Istanbul, Turkey. [Cavusoglu, Halit] Selcuk Univ, Fac Sci, Dept Phys, TR-42130 Selcuklu, Konya, Turkey. C3 Selcuk University; Necmettin Erbakan University; Yeditepe University; Selcuk University RP Yildiztugay, E (corresponding author), Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey. EM fatmanur.alp@selcuk.edu.tr; busra.arikan@selcuk.edu.tr; cozfidan@erbakan.edu.tr; 3816cagri@gmail.com; eytugay@selcuk.edu.tr; metin.turan@yeditepe.edu.tr; hcavusoglu@selcuk.edu.tr CR Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Basiglini E, 2018, ECOTOX ENVIRON SAFE, V153, P54, DOI 10.1016/j.ecoenv.2018.01.053 Battal Peyami, 2001, Turkish Journal of Botany, V25, P123 BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8 Bergmeyer H.U., 1970, METHODEN ENZYMATISCH, V2, DOI 10.1002/pauz.19750040306 Berwal M., 2018, ABIOTIC BIOTIC STRES, P1, DOI [10.5772/intechopen.82079, DOI 10.5772/INTECHOPEN.82079] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Cao ZM, 2017, ENVIRON SCI-NANO, V4, P1086, DOI 10.1039/c7en00015d Cheeseman JM, 2006, J EXP BOT, V57, P2435, DOI 10.1093/jxb/erl004 CHEIKH N, 1994, PLANT PHYSIOL, V106, P45, DOI 10.1104/pp.106.1.45 Chen CM, 2014, PLANT PHYSIOL, V166, P370, DOI 10.1104/pp.114.245324 Chen HH, 2020, PLANT J, V101, P310, DOI 10.1111/tpj.14542 Cheng J, 2021, BIOTECHNOL APPL BIOC, V68, P1216, DOI 10.1002/bab.2043 Chu-Puga A, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8010009 CUTTING JGM, 1991, J PLANT GROWTH REGUL, V10, P85, DOI 10.1007/BF02279317 d'Aquino L, 2009, CHEMOSPHERE, V75, P900, DOI 10.1016/j.chemosphere.2009.01.026 Dridi N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14074153 Dutilleul C, 2003, PLANT PHYSIOL, V131, P264, DOI 10.1104/pp.011155 Fan ZB, 2020, HORTSCIENCE, V55, P310, DOI 10.21273/HORTSCI14661-19 Gupta R, 2021, PLANT SIGNAL BEHAV, V16, DOI 10.1080/15592324.2020.1865687 Gwenzi W, 2018, SCI TOTAL ENVIRON, V636, P299, DOI 10.1016/j.scitotenv.2018.04.235 HERNANDEZMINANA FM, 1991, J HORTIC SCI BIOTECH, V66, P505, DOI 10.1080/00221589.1991.11516180 HERZOG V, 1973, ANAL BIOCHEM, V55, P554, DOI 10.1016/0003-2697(73)90144-9 Hong FS, 2003, BIOL TRACE ELEM RES, V94, P273, DOI 10.1385/BTER:94:3:273 Hong FS, 2002, BIOL TRACE ELEM RES, V89, P263, DOI 10.1385/BTER:89:3:263 Hossain MZ, 2006, BIOL PLANTARUM, V50, P210, DOI 10.1007/s10535-006-0009-1 Hu HQ, 2016, ENVIRON SCI POLLUT R, V23, P8902, DOI 10.1007/s11356-015-5962-9 Hu X, 2002, CHEMOSPHERE, V48, P621, DOI 10.1016/S0045-6535(02)00109-1 Hu ZY, 2004, J PLANT NUTR, V27, P183, DOI 10.1081/PLN-120027555 Hunt R, 2002, ANN BOT-LONDON, V90, P485, DOI 10.1093/aob/mcf214 Ion R.M., 2021, HDB GREENER SYNTHESI, P355 Ippolito MP, 2011, PLANT BIOSYST, V145, P248, DOI 10.1080/11263504.2010.509937 Ippolito MP, 2007, CARYOLOGIA, V60, P125, DOI 10.1080/00087114.2007.10589559 Jiang MY, 2002, PLANTA, V215, P1022, DOI 10.1007/s00425-002-0829-y Jogawat A., 2019, MOL PLANT ABIOTIC ST, P209, DOI 10.1002/9781119463665.ch11 Khan N, 2020, PLANT GROWTH REGUL, V90, P189, DOI 10.1007/s10725-020-00571-x Kovarikova M, 2019, BIOL PLANTARUM, V63, P20, DOI 10.32615/bp.2019.003 KURAISHI S, 1991, PLANT CELL PHYSIOL, V32, P585, DOI 10.1093/oxfordjournals.pcp.a078120 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE Liu DW, 2012, J PLANT NUTR SOIL SC, V175, P907, DOI 10.1002/jpln.201200016 Liu DW, 2012, ENVIRON SCI POLLUT R, V19, P3282, DOI 10.1007/s11356-012-0844-x Liu XQ, 2009, BIOL TRACE ELEM RES, V130, P141, DOI 10.1007/s12011-009-8321-1 Liu ZQ, 2022, COMPOS PART B-ENG, V244, DOI 10.1016/j.compositesb.2022.110186 Loktyushkin A. V, 2019, Moscow University Biological Sciences Bulletin, V74, P81, DOI 10.3103/S009639251902007X Luo JP, 2008, J RARE EARTH, V26, P869, DOI 10.1016/S1002-0721(09)60023-5 Ma YH, 2015, NANOTOXICOLOGY, V9, P262, DOI 10.3109/17435390.2014.921344 MITTLER R, 1993, ANAL BIOCHEM, V212, P540, DOI 10.1006/abio.1993.1366 Mubarik MS, 2021, PHYSIOL PLANTARUM, V172, P1269, DOI 10.1111/ppl.13325 NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867 Nyomora AMS, 1997, FRESEN J ANAL CHEM, V357, P1185, DOI 10.1007/s002160050328 Oliveira HC, 2016, NITRIC OXIDE-BIOL CH, V61, P10, DOI 10.1016/j.niox.2016.09.010 PALNI LMS, 1983, PLANT PHYSIOL, V72, P858, DOI 10.1104/pp.72.3.858 Paradiso A, 2008, PLANT CELL PHYSIOL, V49, P362, DOI 10.1093/pcp/pcn013 Qamaruddin M, 1991, SCAND J FOREST RES, V6, P41, DOI 10.1080/02827589109382645 Rachappanavar V, 2022, SCI HORTIC-AMSTERDAM, V304, DOI 10.1016/j.scienta.2022.111302 Rajput VD, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10040267 Ramos SJ, 2016, CURR POLLUT REP, V2, P28, DOI 10.1007/s40726-016-0026-4 Rao KVM, 2000, PLANT SCI, V157, P113, DOI 10.1016/S0168-9452(00)00273-9 Rhaman MS, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10010037 RICCI G, 1984, ANAL BIOCHEM, V143, P226, DOI 10.1016/0003-2697(84)90657-2 Rodziewicz P, 2014, ACTA PHYSIOL PLANT, V36, P1, DOI 10.1007/s11738-013-1402-y Sagi M, 2001, PLANT PHYSIOL, V126, P1281, DOI 10.1104/pp.126.3.1281 Salem SS, 2021, BIOL TRACE ELEM RES, V199, P344, DOI 10.1007/s12011-020-02138-3 Salvi P, 2021, PLANT CELL REP, V40, P1305, DOI 10.1007/s00299-021-02683-8 Sameena P., 2021, J PHOTOCHEM PHOTOB A, V8, DOI [10.1016/j.jpap.2021.100059, DOI 10.1016/J.JPAP.2021.100059] SEEVERS PM, 1971, PLANT PHYSIOL, V48, P353, DOI 10.1104/pp.48.3.353 Shamsipur M, 2018, COORDIN CHEM REV, V374, P153, DOI 10.1016/j.ccr.2018.07.006 Shan CJ, 2020, PROTOPLASMA, V257, P1487, DOI 10.1007/s00709-020-01510-3 Shi HT, 2013, PLANT PHYSIOL BIOCH, V71, P226, DOI 10.1016/j.plaphy.2013.07.021 Soliman SA, 2009, THERMOCHIM ACTA, V491, P84, DOI 10.1016/j.tca.2009.03.006 Song WP, 2002, J RARE EARTH, V20, P658 Syrvatka V, 2022, TRENDS BIOTECHNOL, V40, P1088, DOI 10.1016/j.tibtech.2022.02.006 Wang LH, 2014, P NATL ACAD SCI USA, V111, P12936, DOI 10.1073/pnas.1413376111 Wang LH, 2009, CHEMOSPHERE, V77, P1019, DOI 10.1016/j.chemosphere.2009.07.065 WOODBURY W, 1971, ANAL BIOCHEM, V44, P301, DOI 10.1016/0003-2697(71)90375-7 Xiao R, 2019, LUMINESCENCE, V34, P90, DOI 10.1002/bio.3583 Xu XK, 2007, J PLANT NUTR, V30, P557, DOI 10.1080/01904160701209287 Yang L, 2006, J CHROMATOGR A, V1104, P230, DOI 10.1016/j.chroma.2005.12.012 Yao RQ, 2021, J AM CHEM SOC, V143, P17360, DOI 10.1021/jacs.1c09085 Zhang CH, 2013, ACTA PHARM SIN B, V3, P20, DOI 10.1016/j.apsb.2012.12.005 Zicari MA, 2018, ECOTOX ENVIRON SAFE, V163, P536, DOI 10.1016/j.ecoenv.2018.07.113 Zulfiqar F, 2022, J HAZARD MATER, V427, DOI 10.1016/j.jhazmat.2021.127891 NR 84 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0981-9428 EI 1873-2690 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD JAN PY 2023 VL 194 BP 361 EP 373 DI 10.1016/j.plaphy.2022.11.031 PG 13 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 8D3QC UT WOS:000918210700003 OA Bronze DA 2023-03-13 ER PT J AU Dolling, R Mendelski, MN Paul, RJ AF Doelling, Ramona Mendelski, Martha N. Paul, Ruediger J. TI Bacterial diet and weak cadmium stress affect the survivability of Caenorhabditis elegans and its resistance to severe stress SO HELIYON LA English DT Article DE Cell biology; Molecular biology; Toxicology; Physiology ID SIGNALING PATHWAY; ESCHERICHIA-COLI; C. ELEGANS; LIFE-SPAN; KINASE; EXPRESSION; LONGEVITY; PROTEIN; LIPOPOLYSACCHARIDE; METABOLISM AB Stress may have negative or positive effects in dependence of its intensity (hormesis). We studied this phenomenon in Caenorhabditis elegans by applying weak or severe abiotic (cadmium, CdCl2) and/or biotic stress (different bacterial diets) during cultivation/breeding of the worms and determining their developmental speed or survival and performing transcriptome profiling and RT-qPCR analyses to explore the genetic basis of the detected phenotypic differences. To specify weak or severe stress, developmental speed was measured at different cadmium concentrations, and survival assays were carried out on different bacterial species as feed for the worms. These studies showed that 0.1 mu mol/L or 10 mmol/L of CdCl2 were weak or severe abiotic stressors, and that E. coli HT115 or Chitinophaga arvensicola feeding can be considered as weak or severe biotic stress. Extensive phenotypic studies on wild type (WT) and different signaling mutants (e.g., kgb-1 Delta and pmk-1 Delta) and genetic studies on WT revealed, inter alia, the following results. WT worms bred on E. coli OP50, which is a known cause of high lipid levels in the worms, showed high resistance to severe abiotic stress and elevated gene expression for protein biosynthesis. WT worms bred under weak biotic stress (E. coli HT115 feeding which causes lower lipid levels) showed an elevated resistance to severe biotic stress, elevated gene expression for the innate immune response and signaling but reduced gene expression for protein biosynthesis. WT worms bred under weak biotic and abiotic stress (E. coli HT115 feeding plus 0.1 mu mol/L of CdCl2) showed high resistance to severe biotic stress, elevated expression of DAF-16 target genes (e.g., genes for small heat shock proteins) but further reduced gene expression for protein biosynthesis. WT worms bred under weak biotic but higher abiotic stress (E. coli HT115 feeding plus 10 mmol/L of CdCl2) showed re-intensified gene expression for the innate immune response, signaling, and protein biosynthesis, which, however, did not caused a higher resistance to severe biotic stress. E. coli OP50 feeding as well as weak abiotic and biotic stress during incubations also improved the age-specific survival probability of adult WT worms. Thus, this study showed that a bacterial diet resulting in higher levels of energy resources in the worms (E. coli OP50 feeding) or weak abiotic and biotic stress promote the resistance to severe abiotic or biotic stress and the age-specific survival probability of WT. C1 [Doelling, Ramona; Mendelski, Martha N.; Paul, Ruediger J.] Univ Munster WWU, Inst Zoophysiol, D-48143 Munster, Germany. C3 University of Munster RP Paul, RJ (corresponding author), Univ Munster WWU, Inst Zoophysiol, D-48143 Munster, Germany. EM paulr@uni-muenster.de RI Paul, Rüdiger/ABG-3698-2020 FU Deutsche Forschungsgemeinschaft [Pa 308/13-1] FX This work was supported by the Deutsche Forschungsgemeinschaft (Pa 308/13-1). CR Bargmann C.I., 2006, WORMBOOK, DOI [DOI 10.1895/WORMBOOK.1.123.1, 10.1895/WORMBOOK.1.123.1] Bargmann CI, 1998, SCIENCE, V282, P2028, DOI 10.1126/science.282.5396.2028 Becker D, 2011, BIOL CELL, V103, P351, DOI 10.1042/BC20100145 Bertin G, 2006, BIOCHIMIE, V88, P1549, DOI 10.1016/j.biochi.2006.10.001 Bolz DD, 2010, J BIOL CHEM, V285, P10832, DOI 10.1074/jbc.M109.091629 Bourne HR, 1997, CURR OPIN CELL BIOL, V9, P134, DOI 10.1016/S0955-0674(97)80054-3 Broeks A, 1996, EMBO J, V15, P6132, DOI 10.1002/j.1460-2075.1996.tb01001.x Brooks KK, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007545 BUTTGEREIT F, 1995, BIOCHEM J, V312, P163, DOI 10.1042/bj3120163 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cash HL, 2006, SCIENCE, V313, P1126, DOI 10.1126/science.1127119 CASTANEDA O, 1995, TOXICON, V33, P603, DOI 10.1016/0041-0101(95)00013-C Dasgupta S, 1998, MOL MICROBIOL, V28, P629, DOI 10.1046/j.1365-2958.1998.00828.x Du M, 2009, ENVIRON TOXICOL PHAR, V27, P314, DOI 10.1016/j.etap.2008.11.011 Feder ME, 2005, J EVOLUTION BIOL, V18, P901, DOI 10.1111/j.1420-9101.2005.00921.x Fujiki K, 2010, MOL CELL BIOL, V30, P995, DOI 10.1128/MCB.01131-09 Garigan D, 2002, GENETICS, V161, P1101 Garsin DA, 2001, P NATL ACAD SCI USA, V98, P10892, DOI 10.1073/pnas.191378698 Gems D, 2000, GENETICS, V154, P1597 Gerke P, 2014, CELL PHYSIOL BIOCHEM, V34, P1951, DOI 10.1159/000366392 Haimes J., 2010, DEMONSTRATION DELTA Halaschek-Wiener J, 2005, GENOME RES, V15, P603, DOI 10.1101/gr.3274805 Hattori A, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003315 Hoogewijs D, 2008, BMC MOL BIOL, V9, DOI 10.1186/1471-2199-9-9 Huffman DL, 2004, P NATL ACAD SCI USA, V101, P10995, DOI 10.1073/pnas.0404073101 Hughes SL, 2009, J PROTEOME RES, V8, P3512, DOI 10.1021/pr9001806 Jia K, 2004, DEVELOPMENT, V131, P3897, DOI 10.1242/dev.01255 Kamath RS, 2001, GENOME BIOL, V2, DOI 10.1186/gb-2000-2-1-research0002 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Keshet A, 2017, MOL GENET GENOMICS, V292, P1341, DOI 10.1007/s00438-017-1351-z Klena J, 2005, J BACTERIOL, V187, P1710, DOI 10.1128/JB.187.5.1710-1715.2005 Klumpen E, 2017, BIOL CELL, V109, P39, DOI 10.1111/boc.201600017 Koga M, 2000, EMBO J, V19, P5148, DOI 10.1093/emboj/19.19.5148 Lackner DH, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-4-r25 Leroy M, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-187 Maier W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000376 Marshall OJ, 2004, BIOINFORMATICS, V20, P2471, DOI 10.1093/bioinformatics/bth254 Martinez-Finley EJ, 2011, J TOXICOL-US, V2011, DOI 10.1155/2011/895236 Matz CJ, 2007, ENVIRON SCI TECHNOL, V41, P5143, DOI 10.1021/es070452c Mertenskotter A, 2013, CELL STRESS CHAPERON, V18, P293, DOI 10.1007/s12192-012-0382-y Miller DL, 2009, CURR BIOL, V19, P1233, DOI 10.1016/j.cub.2009.05.066 Mizuno T, 2008, MOL CELL BIOL, V28, P7041, DOI 10.1128/MCB.00938-08 Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 Oliveira RP, 2009, AGING CELL, V8, P524, DOI 10.1111/j.1474-9726.2009.00501.x Panowski SH, 2009, TRENDS ENDOCRIN MET, V20, P259, DOI 10.1016/j.tem.2009.03.006 PREHM P, 1975, EUR J BIOCHEM, V56, P41, DOI 10.1111/j.1432-1033.1975.tb02205.x Prehm P., 1976, FEBS J, P171 Rai UN, 1998, WATER AIR SOIL POLL, V106, P171, DOI 10.1023/A:1004923908436 Roh JY, 2006, ENVIRON TOXICOL CHEM, V25, P2946, DOI 10.1897/05-676R.1 Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051 Schulenburg H, 2008, IMMUNOBIOLOGY, V213, P237, DOI 10.1016/j.imbio.2007.12.004 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Stiernagle Theresa, 2006, WormBook, P1 Tarazona S, 2011, GENOME RES, V21, P2213, DOI 10.1101/gr.124321.111 Thomas JH, 2006, GENETICS, V172, P127, DOI 10.1534/genetics.104.040030 Troemel ER, 2006, PLOS GENET, V2, P1725, DOI 10.1371/journal.pgen.0020183 Uno M, 2013, CELL REP, V3, P79, DOI 10.1016/j.celrep.2012.12.018 Wullschleger S, 2006, CELL, V124, P471, DOI 10.1016/j.cell.2006.01.016 Xiao R, 2015, CELL REP, V11, P1123, DOI 10.1016/j.celrep.2015.04.024 Young JAT, 2004, P NATL ACAD SCI USA, V101, P12781, DOI 10.1073/pnas.0404890101 NR 60 TC 2 Z9 2 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND EI 2405-8440 J9 HELIYON JI Heliyon PD JAN PY 2019 VL 5 IS 1 AR e01126 DI 10.1016/j.heliyon.2019.e01126 PG 38 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA HN3JZ UT WOS:000460080900028 PM 30705981 OA Green Published, gold DA 2023-03-13 ER PT J AU Rombke, J Moser, T AF Rombke, J Moser, T TI Validating the enchytraeid reproduction test: organisation and results of an international ringtest SO CHEMOSPHERE LA English DT Article DE Enchytraeus albidus; sub-lethal laboratory test; ringtest; soil; carbendazim; 4-nitrophenol ID OLIGOCHAETES ANNELIDA; ORGANIC-CHEMICALS; EARTHWORM; TOXICITY; SOIL; BENOMYL AB In this paper the experiences concerning the organisation and results of the enchytraeid reproduction test (ERT) ringtest are summarised (for details see J. Rombke. T. Moser, Organisation and Performance of an International Ringtest for the Validation of the Enchytraeid Reproduction Test, vols. I and II. UBA-Texte 4/99, 1999 150 223 pp). The performance of this ringtest was in line with requirements published by OECD. It was sponsored by the German Federal Environmental Agency (Umweltbundesamt; UBA, Berlin). The UBA was also actively engaged (together with the European Chemicals Bureau, Ispra) in a scientific task force, which consisted of seven scientists experienced in terrestrial ecology and ecotoxicology. 29 institutions (mainly from universities and contract research laboratories) from 15 countries of Europe and North America participated actively in the ringtest. The co-ordinating laboratory centrally distributed the test chemicals, guidance papers and test organisms to all participants. In addition, several training courses were organised. Most participants performed two tests with the fungicide Carbendazim and two with 4-nitrophenol. For each chemical, one test was designed according to an EC(x) approach and the other according to an NOEC approach. Several aspects of the test protocol were modified based on the experiences gained during the ringtest. A major aspect of the project was the detailed statistical evaluation of the test results (for details see A. Weyers, J. Rombke, T. Moser, T. Ratte, Results of and statistical implications from the enchytraeid reproduction ringtest, 2001, submitted), leading to recommendations for an optimised ecotoxicological test design. A total of 92 tests were performed according to the protocol which is among the highest number ever performed in a ringtest. About 72% met the validity criteria (control mortality <20%, >25 juveniles per 10 adults). The effects of the two test chemicals on enchytraeid reproduction were in the range expected from data in the literature on oligochaete toxicity. However, statistical evaluation of the data was sometimes difficult as a result of the high variability in the number of juveniles. This variability was caused by several reasons, including hormesis effects or lack of experience of some participants. Comparison of the data from the NOEC and EC(x) approaches pointed to a clear advantage in favour of the latter. In most cases EC(10) values were lower than the NOEC values determined in the same test. For details see A. Weyers et al. (loc. cit.). Reproducibility of the test data and practicability of the ERT ringtest were of the same order of magnitude as other ringtests recently performed. As a result of the ringtest, the ERT draft guideline was significantly improved. The new version is currently being standardised by OECD, ISO and ASTM. (C) 2002 Elsevier Science Ltd. All rights reserved. C1 ECT Oekotoxikol GmbH, D-65439 Florsheim, Germany. C3 ECT Oekotoxikologie GmbH RP Rombke, J (corresponding author), ECT Oekotoxikol GmbH, Bottger Str 2-14, D-65439 Florsheim, Germany. EM j.roembke@ect.de OI Rombke, Jorg/0000-0003-1341-634X CR ACHAZI RK, 1995, NEWSLETTER ENCHYTRAE, V4, P7 ADEMA DM, 1985, ACT S INT EC TERR, P199 [Anonymous], 2016, GUID TEST CHEM [Anonymous], 1984, 38402 DIN [Anonymous], 2005, 10390 ISO *ASTM, 2000, E167697 ASTM BALLS M, 1995, 23 ATLA, P129 BBA (Biologische Bundesanstalt fur Landund Forstwirtschaft), 1994, RICHTL PRUF PFLANZ BOCKTING GJM, 1992, 679101013 RIVM BORN H, 1993, THESIS U BREMEN GERM BOUGUENEC V, 1987, THESIS U TOULOUSE 3 BREEMEN D, 1994, 719102025 RIVM *BUA, 1992, BUA STOFFB, V75 CAIRNS J, 1986, BIOSCIENCE, V36, P670, DOI 10.2307/1310388 CHRISTENSEN B, 1995, EFFECTS PESTICIDES M Cluzeau D., 1992, P225 Collado R, 1999, PEDOBIOLOGIA, V43, P625 DIDDEN W, 2002, IN PRESS ECOTOXICOL *DIN, 1981, 5725 DINISO DOMSCH KH, 1992, PESTIZIDE BODEN Dott W., 1995, BIOASSAYS SOILS Edwards C A, 1984, 9360 EUR EN ELZER U, 1993, THESIS FU BERLIN GER *EU, 1996, 148894 EC FEDERSCHMIDT A, 1994, THESIS U FRANKFURT G FUNKE W, 1991, 6487953127147 BER BA Graefe U., 1991, Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, V66, P487 HASSANIZADEH SM, 1992, ADV WATER RESOUR, V15, P1 Heck M, 1995, NEWSLETTER ENCHYTRAE, V4, P69 HEUNGENS A, 1984, PEDOBIOLOGIA, V26, P13714 HUHTA V, 1984, PEDOBIOLOGIA, V27, P245 HUNDRINKE K, 2001, OKOTOXIKOLOGISCHE GE *ISO, 2000, 16387 ISO WD *ISO, 1995, 112682 ISO DIS IVLEVA I. V., 1953, ZOOLOGICHESKII ZHURNAL, V32, P394 KASPRZAK K, 1982, PEDOBIOLOGIA, V23, P217 KAUFMAN ES, 1975, HYDROBIOL J, V11, P4446 Kokta C., 1992, P213 KORINKOVA J, 1968, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V32, P300 Kristufek V, 1995, PEDOBIOLOGIA, V39, P547 KULA H, 1994, SETAC SP P, P241 LEARNER MA, 1972, ANN APPL BIOL, V70, P251, DOI 10.1111/j.1744-7348.1972.tb04711.x LOFSHOLMIN A, 1981, SWED J AGR RES, V11, P141 Lokke H., 1998, HDB SOIL INVERTEBRAT Mallett MJ, 1997, ENVIRON TOXICOL CHEM, V16, P528, DOI [10.1897/1551-5028(1997)016<0528:ICOAMT>2.3.CO;2, 10.1002/etc.5620160319] MOTHESWAGNER U, 1992, CHEMOSPHERE, V24, P1653, DOI 10.1016/0045-6535(92)90408-J NEUHAUSER EF, 1985, J ENVIRON QUAL, V14, P383, DOI 10.2134/jeq1985.00472425001400030015x NEUHAUSER EF, 1986, COMP BIOCHEM PHYS C, V83, P197, DOI 10.1016/0742-8413(86)90036-8 NOTENBOOM J, 1994, 719102029 RIVM I *OECD, 1984, 208 OECD GUID TEST C OECD, 2004, HTTPSATPROMEGACOMENP, DOI [10.1787/9789264123298-en, 10.1787/9789264070264-en, DOI 10.1787/9789264070264-EN] *OECD, 1993, LEITF ENTW OECD PRUF *OECD, 1996, REP OECD WORKSH HARM OECD (Organization for Economic Co-operation and Development), 1998, OECD SER PRINC GOOD PEDERSEN F, 1994, DISCUSSION PAPER REG PURSCHKE G, 1991, COMP BIOCHEM PHYS C, V100, P119, DOI 10.1016/0742-8413(91)90136-H RIEPERT F, 1995, ISOTC190SC4WG2 ROBERTS BL, 1985, ENVIRON TOXICOL CHEM, V4, P307, DOI 10.1897/1552-8618(1985)4[307:HOCTE]2.0.CO;2 Rombke J., 1989, Archives of Toxicology Supplement, V13, P402 ROMBKE J, 1994, SETAC SP P, P229 Rombke J., 1999, ORG PERFORMANCE INT, V1 ROMBKE J, 1995, Z UMWELTWISSENSCHAFT, V8, P158 ROMBKE J, 1996, NEWSLETTER ENCHYTRAE, V5, P73 ROMBKE J, 1991, 1060305101 BATT I FR ROMBKE J, 1995, Z UMWELTCHEM OKOTOX, V7, P246 ROMBKE J, 1989, HYDROBIOLOGIA, V180, P235 *ROY SOC CHEM, 1994, AGR HDB Ruther U., 1990, Acta Biologica Benrodis, V2, P125 VANGESTEL CAM, 1994, SETAC SP P, P205 VANGESTEL CAM, 1991, THESIS RIJKSUNIV UTR WALUM E, 1994, TOXICOL IN VITRO, V8, P807, DOI 10.1016/0887-2333(94)90073-6 Westheide W., 1991, P497 WESTHEIDE W, 1991, COMP BIOCHEM PHYS C, V100, P221, DOI 10.1016/0742-8413(91)90157-O Westheide W., 1989, Verhandlungen der Gesellschaft fuer Oekologie, V17, P793 WEUFFEN W, 1968, Archiv fuer Experimentelle Veterinaermedizin, V22, P127 WEYERS A, 2002, UNPUB *WHO, 1995, CARB ENV HLTH CRIT WILLUHN J, 1994, J BIOL CHEM, V269, P24688 [No title captured] [No title captured] [No title captured] NR 81 TC 74 Z9 77 U1 0 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD FEB PY 2002 VL 46 IS 7 BP 1117 EP 1140 AR PII S0045-6535(01)00113-8 DI 10.1016/S0045-6535(01)00113-8 PG 24 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 527NE UT WOS:000174191500018 PM 11999775 DA 2023-03-13 ER PT J AU Li, K Qian, J Wang, PF Wang, C Lu, BH Jin, W He, XX Tang, SJ Zhang, C Gao, P AF Li, Kun Qian, Jin Wang, Peifang Wang, Chao Lu, Bianhe Jin, Wen He, Xixian Tang, Sijing Zhang, Chao Gao, Pan TI Responses of freshwater biofilm formation processes (from colonization to maturity) to anatase and rutile TiO2 nanoparticles: Effects of nanoparticles aging and transformation SO WATER RESEARCH LA English DT Article DE Aging; TiO2 nanoparticles; Crystalline phase; Physicochemical transformation; Freshwater biofilm formation; Quorum sensing ID EXTRACELLULAR POLYMERIC SUBSTANCES; TO-CELL COMMUNICATION; BOUND HUMIC-ACID; TITANIA NANOPARTICLES; CRYSTALLINE PHASES; ACTIVATED-SLUDGE; TOXICITY; NANO-TIO2; DIATOMS; NANOMATERIALS AB Most of the current studies on the toxicology of pristine nanoparticles (NPs) are environmentally irrelevant, because their "aging" process accompanied by the physicochemical transformation is inevitable in the environment. Considering aging phenomenon will gain a better understanding of the toxicity and fate of NPs in the environment. Here, we focused on the physicochemical transformation of anataseNPs (TiO2-A) and rutile-NPs (TiO2-R) after 90 days of aging and investigated the responses of freshwater biofilm formation to the stress changes of naturally aged TiO2-NPs (aTiO(2)-NPs). We found that after aging, the TiO2-NPs underwent sophisticated physicochemical transformations in the original morphology and microstructure owing to organic and crystal salts inclusions, such as energy band changes and the formation of Ti3+ on the NPs surfaces. These comprehensive transformations increased the stability of NPs in the exposed suspension. However, the physicochemical transformations were crystal-forms-dependent, and aging did not change the crystal structure and crystallinity. Interestingly, compared to pristine NPs, aTiO(2)-NPs showed much lower cytotoxicity and had the weaker ability to promote or inhibit the biofilm formation (p < 0.05) owing to the passivation of photoactivity caused by the comprehensive effect of the inclusions, especially for aTiO 2 -A. Regardless of aging or not of crystal forms, responses of biofilm formation were exposure-concentration-dependent, namely low concentration promotion (0.1 mg/L) and high concentration inhibition (10 mg/L), e.g., role transition of the pioneers (algae or bacteria) in initial colonization, extracellular polymeric substances (EPS) secretion and compositions of development stages with polysaccharide (PS)-rich and protein (PRO)-rich stages, and biomass and cell activity at different depths of mature biofilms. The reactive oxygen species (ROS) induced by TiO2-NPs showed typical hormesis. The changing trends of the autoinducers (c-di-GMP and quorum sensing signals including AHL and AI-2) were highly consistent with the growth stages of biofilms and were stimulated or suppressed by TiO2-NPs. The NPs crystal-dependently changed the microorganism community structures, while the UPGMA clustering of bacteria was based on the growth stages of the biofilms. The toxic mechanisms revealed that photoactivity and nanoscale retention of particles are the main reasons for the differences in the ecological stress capacity of four kinds of TiO2-NPs. Aging reduced characteristic differences of two pristine NPs and even reversed their relative stresses levels (p > 0.05). However, the toxicity of high-concentration aTiO(2)-NPs (10 mg/L) remained serious in a water environment. This study provides a better understanding for the water environmental risks evaluation and policy control of nanoparticles, that is, the effect of time aging has to be considered. (C) 2020 Elsevier Ltd. All rights reserved. C1 [Li, Kun; Qian, Jin; Wang, Peifang; Wang, Chao; Lu, Bianhe; Jin, Wen; He, Xixian; Tang, Sijing; Zhang, Chao; Gao, Pan] Hohai Univ, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Nanjing 210098, Peoples R China. [Li, Kun; Qian, Jin; Wang, Peifang; Wang, Chao; Lu, Bianhe; Jin, Wen; He, Xixian; Tang, Sijing; Zhang, Chao; Gao, Pan] Hohai Univ, Coll Environm, Nanjing 210098, Peoples R China. C3 Hohai University; Hohai University RP Qian, J; Wang, PF (corresponding author), Hohai Univ, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Nanjing 210098, Peoples R China. EM hhuqj@hhu.edu.cn; pfwang2005@hhu.edu.cn RI Wang, Chao/GXF-8353-2022 OI Qian, Jin/0000-0002-9368-387X FU National Key Plan for Research and Development of China [2016YFC0401703]; National Science Funds for Creative Research Groups of China [51421006]; World-Class Universities (Disciplines) and Characteristic Development Guidance Funds for the Central Universities; Fundamental Research Funds for the Central Universities [2019B63314]; Key Program of National Natural Science Foundation of China [91647206]; National Natural Science Foundation of China [51779078]; Natural Science Foundation of Jiangsu Province of China [BK20171438]; Postgraduate Research & Practice Innovation Program of Jiangsu Province [SJKY19_0530]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) FX This project was supported by the National Key Plan for Research and Development of China [grant no. 2016YFC0401703], the National Science Funds for Creative Research Groups of China [grant no. 51421006], the World-Class Universities (Disciplines) and Characteristic Development Guidance Funds for the Central Universities, the Fundamental Research Funds for the Central Universities [grant no. 2019B63314], the Key Program of National Natural Science Foundation of China [grant no. 91647206], the National Natural Science Foundation of China [grant no. 51779078], the Natural Science Foundation of Jiangsu Province of China [grant no. BK20171438], the Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant no. SJKY19_0530), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). CR Baek S, 2020, ENVIRON TOXICOL, V35, P87, DOI 10.1002/tox.22845 Bassler BL, 2002, CELL, V109, P421, DOI 10.1016/S0092-8674(02)00749-3 Bernier SP, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00020 Bi XD, 2012, ISR J AQUACULT-BAMID, V64 Boehm A, 2010, CELL, V141, P107, DOI 10.1016/j.cell.2010.01.018 Bruckner CG, 2011, ENVIRON MICROBIOL, V13, P1052, DOI 10.1111/j.1462-2920.2010.02411.x Chen LK, 2018, CHEM RES CHINESE U, V34, P44, DOI 10.1007/s40242-018-7193-3 Chen MY, 2006, ENVIRON SCI TECHNOL, V40, P6642, DOI 10.1021/es0612955 Chowdhury I, 2012, ENVIRON SCI TECHNOL, V46, P6968, DOI 10.1021/es2034747 Chrost R.J., 1991, ENV CONTROL SYNTHESI, DOI [10.1007/978-1-4612-3090-8_3., DOI 10.1007/978-1-4612-3090-8_3] COOKSEY KE, 1995, AQUAT MICROB ECOL, V9, P87, DOI 10.3354/ame009087 Dignac MF, 1998, WATER SCI TECHNOL, V38, P45, DOI 10.1016/S0273-1223(98)00676-3 Dreszer C, 2014, WATER RES, V50, P200, DOI 10.1016/j.watres.2013.11.024 Gambino M, 2016, BIOFOULING, V32, P167, DOI 10.1080/08927014.2015.1134515 Gil-Allue C, 2015, ENVIRON SCI TECHNOL, V49, P1165, DOI 10.1021/es5050166 Guillard C, 2005, INT J PHOTOENERGY, V7, P1, DOI 10.1155/S1110662X05000012 Guo MM, 2019, J HAZARD MATER, V380, DOI 10.1016/j.jhazmat.2019.120905 Hall-Stoodley L, 2004, NAT REV MICROBIOL, V2, P95, DOI 10.1038/nrmicro821 He XJ, 2016, J ENVIRON SCI, V42, P50, DOI 10.1016/j.jes.2015.05.028 Hoffman LR, 2005, NATURE, V436, P1171, DOI 10.1038/nature03912 Hund-Rinke K, 2006, ENVIRON SCI POLLUT R, V13, P225, DOI 10.1065/espr2006.06.311 Iswarya V, 2015, AQUAT TOXICOL, V161, P154, DOI 10.1016/j.aquatox.2015.02.006 Jassby D, 2012, ENVIRON SCI TECHNOL, V46, P6934, DOI 10.1021/es202009h Joint I, 2002, SCIENCE, V298, P1207, DOI 10.1126/science.1077075 Karaolis DKR, 2005, ANTIMICROB AGENTS CH, V49, P1029, DOI 10.1128/AAC.49.3.1029-1038.2005 Kearns DB, 2010, NAT REV MICROBIOL, V8, P634, DOI 10.1038/nrmicro2405 Kulacki KJ, 2012, ENVIRON TOXICOL CHEM, V31, P2414, DOI 10.1002/etc.1962 Leon A, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7010049 Li K, 2019, ENVIRON SCI TECHNOL, V53, P4542, DOI 10.1021/acs.est.8b04991 Li K, 2017, ENVIRON POLLUT, V231, P1433, DOI 10.1016/j.envpol.2017.09.004 Li WH, 2018, NUCLEIC ACIDS RES, V46, P7270, DOI 10.1093/nar/gky611 Lin DH, 2012, WATER RES, V46, P4477, DOI 10.1016/j.watres.2012.05.035 LIU D, 1993, WATER RES, V27, P361, DOI 10.1016/0043-1354(93)90035-G Liu N, 2016, ACS NANO, V10, P6062, DOI 10.1021/acsnano.6b01657 Lowry GV, 2012, ENVIRON SCI TECHNOL, V46, P6893, DOI 10.1021/es300839e Mathur A, 2017, INT BIODETER BIODEGR, V116, P17, DOI 10.1016/j.ibiod.2016.09.024 Neale PA, 2013, WATER SCI TECHNOL, V68, P1440, DOI 10.2166/wst.2013.388 Neu TR, 1997, FEMS MICROBIOL ECOL, V24, P11, DOI 10.1016/S0168-6496(97)00027-5 Nowack B, 2012, ENVIRON TOXICOL CHEM, V31, P50, DOI 10.1002/etc.726 Ouyang K, 2017, ENVIRON POLLUT, V231, P1104, DOI 10.1016/j.envpol.2017.07.003 Pan L, 2011, J AM CHEM SOC, V133, P10000, DOI 10.1021/ja2035927 PORTER KG, 1980, LIMNOL OCEANOGR, V25, P943, DOI 10.4319/lo.1980.25.5.0943 Qian J, 2017, BIORESOURCE TECHNOL, V241, P276, DOI 10.1016/j.biortech.2017.05.121 Qiang LW, 2015, ENVIRON POLLUT, V206, P644, DOI 10.1016/j.envpol.2015.08.032 Qin YK, 2017, ENVIRON SCI-NANO, V4, P1178, DOI 10.1039/c6en00664g Romani A. M., 2010, BIOFOULING, P137, DOI DOI 10.1002/9781444315462.CH10 Shade A, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00417 Simm R, 2004, MOL MICROBIOL, V53, P1123, DOI 10.1111/j.1365-2958.2004.04206.x Smith KA, 2019, J MATER SCI, V54, P13221, DOI 10.1007/s10853-019-03825-w Sun J, 2014, ENVIRON SCI TECHNOL, V48, P11962, DOI 10.1021/es502360c Tait K, 2005, ENVIRON MICROBIOL, V7, P229, DOI 10.1111/j.1462-2920.2004.00706.x Tan LR, 2018, ENVIRON SCI POLLUT R, V25, P17128, DOI 10.1007/s11356-018-1894-5 Tan LR, 2016, RSC ADV, V6, P78132, DOI 10.1039/c6ra15025j Tang J, 2018, TRENDS BIOTECHNOL, V36, P1171, DOI 10.1016/j.tibtech.2018.06.009 Thuptimdang P, 2015, J HAZARD MATER, V290, P127, DOI 10.1016/j.jhazmat.2015.02.073 Tong TZ, 2015, ENVIRON SCI TECH LET, V2, P12, DOI 10.1021/ez5004023 Vance ME, 2015, BEILSTEIN J NANOTECH, V6, P1769, DOI 10.3762/bjnano.6.181 Vevers WF, 2008, ECOTOXICOLOGY, V17, P410, DOI 10.1007/s10646-008-0226-9 Vu B, 2009, MOLECULES, V14, P2535, DOI 10.3390/molecules14072535 Wang MM, 2015, NANOTOXICOLOGY, V9, P972, DOI 10.3109/17435390.2014.992816 Wang PF, 2019, ENVIRON SCI-NANO, V6, P2626, DOI [10.1039/c9en00389d, 10.1039/C9EN00389D] Wang PF, 2018, WATER RES, V133, P208, DOI 10.1016/j.watres.2018.01.031 Wang R, 1997, NATURE, V388, P431, DOI 10.1038/41233 Wolska KI, 2016, J APPL GENET, V57, P225, DOI 10.1007/s13353-015-0309-2 Xu J, 2013, EARTH PLANET SC LETT, V363, P156, DOI 10.1016/j.epsl.2012.12.008 Xu Y, 2019, ENVIRON SCI POLLUT R, V26, P9293, DOI 10.1007/s11356-019-04340-w Yan JQ, 2013, PHYS CHEM CHEM PHYS, V15, P10978, DOI 10.1039/c3cp50927c Yang CY, 2016, MAR POLLUT BULL, V107, P118, DOI 10.1016/j.marpolbul.2016.04.010 Yang CY, 2016, CHEM ECOL, V32, P169, DOI 10.1080/02757540.2015.1120722 Zhang HN, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06289-7 Zhang H, 2016, NANOIMPACT, V3-4, P75, DOI 10.1016/j.impact.2016.08.004 Zhang Li-li, 2007, Huanjing Kexue, V28, P795 Zhou ZX, 2017, ECOL MODEL, V360, P150, DOI 10.1016/j.ecolmodel.2017.06.027 NR 73 TC 13 Z9 13 U1 15 U2 117 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD SEP 1 PY 2020 VL 182 AR 115953 DI 10.1016/j.watres.2020.115953 PG 17 WC Engineering, Environmental; Environmental Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Water Resources GA NO0CU UT WOS:000569156100012 PM 32559664 DA 2023-03-13 ER PT J AU Gomez-Merino, FC Trejo-Tellez, LI Garcia-Jimenez, A Escobar-Sepulveda, HF Ramirez-Olvera, SM AF Carlos Gomez-Merino, Fernando Iris Trejo-Tellez, Libia Garcia-Jimenez, Atonaltzin Fernando Escobar-Sepulveda, Hugo Monzerrat Ramirez-Olvera, Sara TI Silicon flow from root to shoot in pepper: a comprehensive in silico analysis reveals a potential linkage between gene expression and hormone signaling that stimulates plant growth and metabolism SO PEERJ LA English DT Article DE Solanaceae; Capsicum annuum; in silico analysis; Gene expression; Beneficial elements; Silicon; Hormesis ID FUNCTIONAL-CHARACTERIZATION; TRANSPORTER GENES; MULTIPLE LEVELS; NUTRIENT-UPTAKE; ARABIDOPSIS; TOMATO; RICE; STRAWBERRY; IDENTIFICATION; ACCUMULATION AB Background: Silicon (Si) is categorized as a quasi-essential element for plants thanks to the benefits on growth, development and metabolism in a hormetic manner. Si uptake is cooperatively mediated by Lsi1 and Lsi2. Nevertheless, Lsi channels have not yet been identified and characterized in pepper (Capsicum annuum), while genes involved in major physiological processes in pepper are Si-regulated. Furthermore, Si and phytohormones may act together in regulating plant growth, metabolism and tolerance against stress. Our aim was to identify potential synergies between Si and phytohormones stimulating growth and metabolism in pepper, based on in silico data. Methods: We established a hydroponic system to test the effect of Si (0, 60, 125 and 250 mg L-1 Si) on the concentrations of this element in different pepper plant tissues. We also performed an in silico analysis of putative Lsi genes from pepper and other species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum) and Arabidopsis thaliana, to look for cis-acting elements responsive to phytohormones in their promoter regions. With the Lsi1 and Lsi2 protein sequences from various plant species, we performed a phylogenetic analysis. Taking into consideration the Lsi genes retrieved from tomato, potato and Arabidopsis, an expression profiling analysis in different plant tissues was carried out. Expression of Si-regulated genes was also analyzed in response to phytohormones and different plant tissues and developmental stages in Arabidopsis. Results: Si concentrations in plant tissues exhibited the following gradient: roots > stems > leaves. We were able to identify 16 Lsi1 and three Lsi2 genes in silico in the pepper genome, while putative Lsi homologs were also found in other plant species. They were mainly expressed in root tissues in the genomes analyzed. Both Lsi and Si-regulated genes displayed cis-acting elements responsive to diverse phytohormones. In Arabidopsis, Si-regulated genes were transcriptionally active in most tissues analyzed, though at different expressed levels. From the set of Si-responsive genes, the NOCS2 gene was highly expressed in germinated seeds, whereas RABH1B, and RBCS-1A, were moderately expressed in developed flowers. All genes analyzed showed responsiveness to phytohormones and phytohormone precursors. Conclusion: Pepper root cells are capable of absorbing Si, but small amounts of this element are transported to the upper parts of the plant. We could identify putative Si influx (Lsi1) and efflux (Lsi2) channels that potentially participate in the absorption and transport of Si, since they are mainly expressed in roots. Both Lsi and Si-regulated genes exhibit cis-regulatory elements in their promoter regions, which are involved in phytohormone responses, pointing to a potential connection among Si, phytohormones, plant growth, and other vital physiological processes triggered by Si in pepper. C1 [Carlos Gomez-Merino, Fernando; Iris Trejo-Tellez, Libia] Coll Postgrad Agr Sci, Dept Soil Sci Lab, Texcoco, State Of Mexico, Mexico. [Garcia-Jimenez, Atonaltzin; Monzerrat Ramirez-Olvera, Sara] Coll Postgrad Agr Sci, Dept Plant Physiol, Texcoco, State Of Mexico, Mexico. [Fernando Escobar-Sepulveda, Hugo] Univ Talca, Inst Biol Sci, Talca, Chile. C3 Universidad de Talca RP Gomez-Merino, FC (corresponding author), Coll Postgrad Agr Sci, Dept Soil Sci Lab, Texcoco, State Of Mexico, Mexico. EM fernandg@colpos.mx RI Gómez-Merino, Fernando Carlos/D-2224-2014; LIBIA, TREJO-TÉLLEZ/AAV-8118-2021; Gomez-Merino, Fernando Carlos/B-2423-2015 OI Gomez-Merino, Fernando Carlos/0000-0001-8496-2095 FU Mexico's National Science and Technology Council (CONACYT); Secretariat of Foreign Affairs, through the Mexican Agency for International Development Cooperation (AMEXCID) FX This study was funded by Mexico's National Science and Technology Council (CONACYT) and its Secretariat of Foreign Affairs, through the Mexican Agency for International Development Cooperation (AMEXCID), for the scholarships granted to Atonaltzin Garcia-Jimemnez and Hugo Fernando Escobar-Sepulveda, respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Abdel-Haliem MEF, 2017, ECOL ENG, V99, P282, DOI 10.1016/j.ecoleng.2016.11.060 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Ahanger MA, 2020, J EXP BOT, V71, P6758, DOI 10.1093/jxb/eraa291 Alcantar GG, 1999, HDB CHEM ANAL PLANT, V10 Ali N, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01475 ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2 [Anonymous], 2009, THESIS Artyszak A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8050136 Balazadeh S, 2008, PLANT BIOLOGY, V10, P63, DOI 10.1111/j.1438-8677.2008.00088.x Bateman A, 2019, NUCLEIC ACIDS RES, V47, pD506, DOI 10.1093/nar/gky1049 Beitz E, 2006, P NATL ACAD SCI USA, V103, P269, DOI 10.1073/pnas.0507225103 Bhalerao R, 2003, PLANT PHYSIOL, V131, P430, DOI 10.1104/pp.012732 Braga FT, 2009, PESQUI AGROPECU BRAS, V44, P128, DOI 10.1590/S0100-204X2009000200003 Broadley M, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P191, DOI 10.1016/B978-0-12-384905-2.00007-8 Brunings AM, 2009, ANN APPL BIOL, V155, P161, DOI 10.1111/j.1744-7348.2009.00347.x Bui ATK, 2020, ENVIRON GEOCHEM HLTH, V42, P3753, DOI 10.1007/s10653-020-00626-y Chang CR, 2016, CELL, V167, P325, DOI 10.1016/j.cell.2016.08.031 Choi WG, 2007, J BIOL CHEM, V282, P24209, DOI 10.1074/jbc.M700982200 Coskun D, 2019, NEW PHYTOL, V223, P514, DOI 10.1111/nph.15764 Coskun D, 2019, NEW PHYTOL, V221, P67, DOI 10.1111/nph.15343 Deren C. W., 2001, SILICON AGR, P149, DOI DOI 10.1016/S0928-3420(01)80012-4 Deshmukh R, 2016, FUNCT ECOL, V30, P1277, DOI 10.1111/1365-2435.12570 Deshmukh RK, 2013, PLANT MOL BIOL, V83, P303, DOI 10.1007/s11103-013-0087-3 Deshmukh RK, 2015, PLANT J, V83, P489, DOI 10.1111/tpj.12904 Elsokkary I. H., 2018, Alexandria Science Exchange, V39, P534 EPSTEIN E, 1994, P NATL ACAD SCI USA, V91, P11, DOI 10.1073/pnas.91.1.11 Epstein E, 1999, ANNU REV PLANT PHYS, V50, P641, DOI 10.1146/annurev.arplant.50.1.641 Exley C, 2019, NEW PHYTOL, V223, P511, DOI 10.1111/nph.15752 Exley C, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00853 Fauteux F, 2005, FEMS MICROBIOL LETT, V249, P1, DOI 10.1016/j.femsle.2005.06.034 Fauteux F, 2006, P NATL ACAD SCI USA, V103, P17554, DOI 10.1073/pnas.0606330103 FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x Ghareeb H, 2011, PHYSIOL MOL PLANT P, V75, P83, DOI 10.1016/j.pmpp.2010.11.004 Gomez-Merino FC, 2018, BIOTIC ABIOTIC STRES, P137, DOI DOI 10.1007/978-981-10-9029-5_6 Guntzer F, 2012, AGRON SUSTAIN DEV, V32, P201, DOI 10.1007/s13593-011-0039-8 Haddad C, 2019, PLANTA, V249, P1645, DOI 10.1007/s00425-019-03120-7 HANDRECK KA, 1968, PLANT SOIL, V29, P449, DOI 10.1007/BF01348976 Hawkins C, 2017, HORTIC RES-ENGLAND, V4, DOI 10.1038/hortres.2017.29 Heine G, 2005, J PLANT NUTR SOIL SC, V168, P600, DOI 10.1002/jpln.200420508 Hodson MJ, 2005, ANN BOT-LONDON, V96, P1027, DOI 10.1093/aob/mci255 Hruz Tomas, 2008, Advances in Bioinformatics, V2008, P420747, DOI 10.1155/2008/420747 Trejo-Tellez LI, 2020, PEERJ, V8, DOI 10.7717/peerj.9224 Kaur H, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8040081 Khan A, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9050620 Khan A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55651-4 Kim YH, 2014, BMC PLANT BIOL, V14, DOI 10.1186/1471-2229-14-13 Kim YH, 2011, BIOL TRACE ELEM RES, V144, P1175, DOI 10.1007/s12011-011-9047-4 Krebs R. E, 2006, HIST USE OUR EARTHS Kumar S, 2016, MOL BIOL EVOL, DOI [DOI 10.1093/M0LBEV/MSW054, 10.1093/molbev/msw054] Latef AAA, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00243 Lee SK, 2010, AGROFOREST SYST, V80, P333, DOI 10.1007/s10457-010-9299-6 Lescot M, 2002, NUCLEIC ACIDS RES, V30, P325, DOI 10.1093/nar/30.1.325 Luyckx M, 2017, PLANTS-BASEL, V6, DOI 10.3390/plants6030037 Luyckx M, 2016, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00411 Ma J. F., 2001, SILICON AGR, V8, P17, DOI DOI 10.1016/S0928-3420(01)80006-9 Ma JF, 2006, NATURE, V440, P688, DOI 10.1038/nature04590 Ma JF, 2002, SOIL FERTILIZER PLAN Ma JF, 2007, PLANT PHYSIOL, V145, P919, DOI 10.1104/pp.107.107599 Ma JF, 2015, TRENDS PLANT SCI, V20, P435, DOI 10.1016/j.tplants.2015.04.007 Ma JF, 2010, ADV EXP MED BIOL, V679, P99 Macias-Bobadilla I, 2020, GENET RESOUR CROP EV, V67, P1331, DOI 10.1007/s10722-020-00912-9 Mandlik R, 2020, J EXP BOT, V71, P6703, DOI 10.1093/jxb/eraa301 Manivannan A, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/3076357 Manivannan A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01346 Markovich O, 2017, PLANT CELL ENVIRON, V40, P1189, DOI 10.1111/pce.12913 Marodin JC, 2014, HORTIC BRAS, V32, P220, DOI 10.1590/S0102-05362014000200018 Marschner P, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P1 Mitani N, 2005, PLANT CELL PHYSIOL, V46, P279, DOI 10.1093/pcp/pci018 Mitani-Ueno N, 2011, J EXP BOT, V62, P4391, DOI 10.1093/jxb/err158 Montpetit J, 2012, PLANT MOL BIOL, V79, P35, DOI 10.1007/s11103-012-9892-3 Muneer S, 2017, J PLANT GROWTH REGUL, V36, P836, DOI 10.1007/s00344-017-9687-5 Nikolic M, 2007, PLANT PHYSIOL, V143, P495, DOI 10.1104/pp.106.090845 Ouellette S, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00949 Pareek A, 2020, J EXP BOT, V71, P451, DOI 10.1093/jxb/erz518 Pereira HS, 2003, REV BRAS CIENC SOLO, V27, P101, DOI 10.1590/S0100-06832003000100011 Pontigo S, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00642 Potter SC, 2018, NUCLEIC ACIDS RES, V46, pW200, DOI 10.1093/nar/gky448 R Core Team, 2022, R LANG ENV STAT COMP Rogalla H, 2002, PLANT CELL ENVIRON, V25, P549, DOI 10.1046/j.1365-3040.2002.00835.x Sahebi M, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/396010 SAITOU N, 1987, MOL BIOL EVOL, V4, P406, DOI 10.1093/oxfordjournals.molbev.a040454 Sakurai G, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01187 SAS, 2011, SAS STAT US GUID VER Sasaki A, 2016, J EXP BOT, V67, P3645, DOI 10.1093/jxb/erw060 Savvas D, 2015, SCI HORTIC-AMSTERDAM, V196, P66, DOI 10.1016/j.scienta.2015.09.010 Shivaraj SM, 2017, SCI REP-UK, V7, DOI 10.1038/srep46137 Sievers F, 2011, MOL SYST BIOL, V7, DOI 10.1038/msb.2011.75 Singh A, 2020, J EXP BOT, V71, P6730, DOI 10.1093/jxb/eraa300 Song A, 2009, J HAZARD MATER, V172, P74, DOI 10.1016/j.jhazmat.2009.06.143 Steiner A. A., 1984, Proceedings of the Sixth International Congress on Soilless Culture., P633 Sun H, 2020, PLANT CELL ENVIRON, V43, P732, DOI 10.1111/pce.13679 Takahashi E., 1990, Comments on Agricultural and Food Chemistry, V2, P99 Takano J, 2006, PLANT CELL, V18, P1498, DOI 10.1105/tpc.106.041640 Cuong TX, 2017, RICE SCI, V24, P283, DOI 10.1016/j.rsci.2017.06.002 Tubaa BS, 2015, SILICON PLANT DIS, P7, DOI 10.1007/978-3-319-22930-0_2 Tubana BS, 2016, SOIL SCI, V181, P393, DOI 10.1097/SS.0000000000000179 Vaculik M, 2020, J EXP BOT, V71, P6744, DOI 10.1093/jxb/eraa288 Vatansever R, 2017, BIOMETALS, V30, P185, DOI 10.1007/s10534-017-9992-2 Waese J, 2016, CURR PLANT BIOL, V7-8, P2, DOI 10.1016/j.cpb.2016.12.001 Waese J, 2017, PLANT CELL, V29, P1806, DOI 10.1105/tpc.17.00073 Wallace IS, 2005, BIOCHEMISTRY-US, V44, P16826, DOI 10.1021/bi0511888 Winter D, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000718 Wu JW, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00453 Xu DH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-67333-7 Yan GC, 2018, J INTEGR AGR, V17, P2138, DOI 10.1016/S2095-3119(18)62037-4 Zargar SM, 2019, 3 BIOTECH, V9, DOI 10.1007/s13205-019-1613-z Zellner W, 2019, J PLANT NUTR, V42, P1028, DOI 10.1080/01904167.2019.1589500 Zhang XH, 2018, ENVIRON SCI POLLUT R, V25, P25916, DOI 10.1007/s11356-018-2595-9 Zhang Y, 2018, J INTEGR AGR, V17, P2151, DOI 10.1016/S2095-3119(18)62038-6 Zhao XQ, 2010, PLANT PHYSIOL, V153, P1871, DOI 10.1104/pp.110.157867 Zhu YX, 2014, AGRON SUSTAIN DEV, V34, P455, DOI 10.1007/s13593-013-0194-1 Zimmermann P, 2014, BIODATA MIN, V7, DOI 10.1186/1756-0381-7-18 NR 113 TC 7 Z9 7 U1 1 U2 13 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD NOV 4 PY 2020 VL 8 AR e10053 DI 10.7717/peerj.10053 PG 41 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA OK9HH UT WOS:000584954300001 PM 33194376 OA gold, Green Published DA 2023-03-13 ER PT J AU Medo, I Stojnic, B Marcic, D AF Medo, Irena Stojnic, Bojan Marcic, Dejan TI Acaricidal activity and sublethal effects of the microbial pesticide spinosad on Tetranychus urticae (Acari: Tetranychidae) SO SYSTEMATIC AND APPLIED ACAROLOGY LA English DT Article DE T. urticae; spinosad; toxicity; life history traits; population growth ID 2-SPOTTED SPIDER-MITE; LIFE-TABLE PARAMETERS; RED MITE; HORMESIS; INSECTICIDES; EFFICACY; IMPACT AB Laboratory bioassays were conducted to evaluate the toxicity of the microbial pesticide spinosad to different life stages of the two-spotted spider mite, Tetranychus urticae Koch, as well as its sublethal effects on reproduction and population growth of this important mite pest. The biopesticide was applied to bean primary leaves or leaf discs carrying spider mites using a Potter spray tower (2.7 mg/cm(2) aqueous deposit). The following LC50 and LC90 (mg/L) estimates for motile stages were obtained in acute toxicity bioassays: 27.52 and 116.72 (larvae), 36.55 and 136.20 (protonymphs), 82.76 and 721.28 (female deutonymphs), and 61.47 and 457.21 (adult females). Spinosad showed no significant ovicidal action: toxic effect observed after spraying eggs (LC50 = 105.78 mg/L, LC90 = 596.95 mg/L) was the result of its residual action on larvae that hatched from the treated eggs. The effects of spinosad on life history traits and population growth of adult female survivors from treatments with 240, 120 and 60 mg/L were evaluated in two successive 7-day bioassays on untreated leaf discs. In the first bioassay, females that survived treatments as 24 h old eggs and completed their juvenile development on treated leaves had significantly lower gross fecundity, net fecundity and instantaneous rate of increase (r(i)) but the reduction was merely 4-6%, 9-11%, and 2-3%, respectively. Female longevity was significantly reduced (approximately by half a day) only after treatment with 240 mg/L. In the second bioassay, in which females were treated during their pre-ovipositional period, the treatments with 240 and 120 mg/L significantly reduced their gross fecundity (16-17%), net fecundity (28-31%), ri values (8-9%) and female longevity (approximately by one day). Spinosad effects on the intrinsic rate of increase (rm) and other demographic parameters were evaluated in two successive bioassays in which life tables were constructed for females that survived treatment with 120 mg/L at the egg stage (first demographic bioassay) or pre-ovipositional period (second demographic bioassay). In the first bioassay, the intrinsic rate of increase was significantly higher in treated (r(m) = 0.278) than control mites (r(m) = 0.267) as a result of higher net fertility at the beginning of reproduction of treated females. In the second bioassay, treated females had significantly lower rm than control females (0.254 and 0.283, respectively). The results obtained in this study indicate that spinosad, applied against insect pests (at field relevant rates of 60-240 mg/L), could eliminate a part of T. urticae population as well, but survivors would retain a significant potential for population recovery. C1 [Medo, Irena; Marcic, Dejan] Inst Pesticides & Environm Protect, Dept Appl Entomol, Banatska 31B,POB 163, Belgrade 11080, Serbia. [Stojnic, Bojan] Univ Belgrade, Fac Agr, Nemanjina 6, Belgrade 11080, Serbia. C3 University of Belgrade RP Marcic, D (corresponding author), Inst Pesticides & Environm Protect, Dept Appl Entomol, Banatska 31B,POB 163, Belgrade 11080, Serbia. EM dejan.marcic@pesting.org.rs RI Marčić, Dejan/J-4228-2019 OI Marčić, Dejan/0000-0001-9696-0273; Stojnic, Bojan/0000-0002-0189-1330 FU Ministry of Education, Science and Technological Development of the Republic of Serbia [TR31043] FX This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. TR31043) CR Akca I, 2015, J ECON ENTOMOL, V108, P1466, DOI 10.1093/jee/tov187 [Anonymous], 2015, TWOSEX MSCHART COMPU BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Carey J.R., 1993, APPL DEMOGRAPHY BIOL CAREY JR, 1982, OECOLOGIA, V52, P389, DOI 10.1007/BF00367964 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cote KW, 2002, HORTSCIENCE, V37, P906, DOI 10.21273/HORTSCI.37.6.906 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler DITTRICH V, 1974, ENVIRON ENTOMOL, V3, P534, DOI 10.1093/ee/3.3.534 Dripps JE, 2011, RSC GREEN CHEM SER, V11, P163 Efron B., 1994, INTRO BOOTSTRAP, V57 Forbes VE, 2002, PHILOS T R SOC B, V357, P1299, DOI 10.1098/rstb.2002.1129 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 He HG, 2011, INT J ACAROL, V37, P1, DOI 10.1080/01647954.2010.491798 Hoy CW, 1998, ANNU REV ENTOMOL, V43, P571, DOI 10.1146/annurev.ento.43.1.571 Huang Y. B., 2012, J AGRIC FOR, V61, P37, DOI DOI 10.1016/B978-0-12-803265-7.00011-7 Ismail MSM, 2007, EXP APPL ACAROL, V43, P129, DOI 10.1007/s10493-007-9108-8 James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729 Jones T, 2005, PEST MANAG SCI, V61, P179, DOI 10.1002/ps.939 JONES VP, 1984, CAN ENTOMOL, V116, P1033, DOI 10.4039/Ent1161033-7 Kim M, 2006, CROP PROT, V25, P542, DOI 10.1016/j.cropro.2005.08.010 Marcic D, 2003, EXP APPL ACAROL, V30, P249, DOI 10.1023/B:APPA.0000006541.68245.94 Marcic D, 2015, SYST APPL ACAROL-UK, V20, P25 Marcic D, 2014, EXP APPL ACAROL, V64, P375, DOI 10.1007/s10493-014-9831-x Martini X, 2012, PEST MANAG SCI, V68, P1471, DOI 10.1002/ps.3330 MEYER JS, 1986, ECOLOGY, V67, P1156, DOI 10.2307/1938671 Miles M., 2006, IOBC-WPRS Bulletin, V29, P53 Robertson J. L., 2007, PESTICIDE BIOASSAYS ROBERTSON JL, 1990, J ECON ENTOMOL, V83, P8, DOI 10.1093/jee/83.1.8 Sabelis M.W., 1985, P265 Saito Y, 2010, PLANT MITES AND SOCIALITY: DIVERSITY AND EVOLUTION, P1, DOI 10.1007/978-4-431-99456-5 Santis EL, 2012, PEST MANAG SCI, V68, P914, DOI 10.1002/ps.3250 Stark JD, 1997, ECOTOX ENVIRON SAFE, V37, P273, DOI 10.1006/eesa.1997.1552 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Stavrinides MC, 2009, BIOL CONTROL, V48, P267, DOI 10.1016/j.biocontrol.2008.10.017 Thompson GD, 2000, PEST MANAG SCI, V56, P696, DOI 10.1002/1526-4998(200008)56:8<696::AID-PS182>3.0.CO;2-5 Tjosvold SA, 2001, ACTA HORTIC, P93, DOI 10.17660/ActaHortic.2001.547.11 Tuan SJ, 2016, J ECON ENTOMOL, V109, P502, DOI 10.1093/jee/tov386 van der Linden A., 2011, IOBC WPRS B, V68, P97 van Leeuwen T, 2005, EXP APPL ACAROL, V37, P93, DOI 10.1007/s10493-005-0139-8 Villanueva RT, 2006, J ECON ENTOMOL, V99, P843, DOI 10.1603/0022-0493-99.3.843 Wang L, 2016, PESTIC BIOCHEM PHYS, V132, P102, DOI 10.1016/j.pestbp.2016.02.002 Zhang ZhiQiang, 2003, Mites of greenhouses: identification, biology and control, DOI 10.1079/9780851995908.0000 [No title captured] NR 46 TC 5 Z9 5 U1 2 U2 33 PU SYSTEMATIC & APPLIED ACAROLOGY SOC LONDON, NATURAL HISTORY MUSEUM PI LONDON PA DEPT ENTOMOLOGY, LONDON, SW7 5BD, ENGLAND SN 1362-1971 J9 SYST APPL ACAROL-UK JI Syst. Appl. Acarol. PD OCT PY 2017 VL 22 IS 10 BP 1748 EP 1762 DI 10.11158/saa.22.10.14 PG 15 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA FJ5FL UT WOS:000412773300014 DA 2023-03-13 ER PT J AU Hussain, S Iqbal, N Brestic, M Raza, MA Pang, T Langham, DR Safdar, ME Ahmed, S Wen, BX Gao, Y Liu, WG Yang, WY AF Hussain, Sajad Iqbal, Nasir Brestic, Marian Raza, Muhammad Ali Pang, Ting Langham, Derald Ray Safdar, Muhammad Ehsan Ahmed, Shoaib Wen, Bingxiao Gao, Yang Liu, Weiguo Yang, Wenyu TI Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Titanium; Photosynthesis; Chlorophyll fluorescence; Rubisco; Leaf area ID PHOTOSYNTHETIC RESPONSES; NANOPARTICLE TOXICITY; OXIDE NANOPARTICLES; TIO2 NANOPARTICLES; DIOXIDE; GROWTH; BULK; ACCUMULATION; NANO-TIO2; PLANTS AB Titanium (Ti) is considered an essential element for plant growth; however, its role in crop performance through stimulating the activities of certain enzymes, enhancing chlorophyll content and photosynthesis, and improving crop morphology and growth requires more study. We therefore conducted a laboratory experiments to study the effects of ionic Ti application on morphology, growth, biomass distribution, chlorophyll fluorescence performance and Rubisco activity of soybean (Glycine max L.) under normal light (NL) and shade conditions (SC). In this study, we sprayed soybean plants with five different levels of ionic Ti (T1 = 0, T2 = 1.25, T3 = 2.5, T4 = 5 and T5 = 10 mg Ti Plant(-1)) through foliar application method. Our results show that with increasing moderate (2.5 mg Ti Plant(-1)) Ti concentration, the chlorophyll pigments (chlorophyll [Chl] a, b, carotenoid [Car]), plant biomass, photochemical efficiency of photosystem 11 (Fv/Fm), and electron transport rate (ETR) of soybean increased, but higher levels (5-10 mg Ti Plant 1), resulted in leaf anatomical and chloroplast structural disruptions under both NL and SC. Soybean plants showed maximum biomass, leaf area, leaf thickness, Chl a, b, Car, Rubisco activity, Fv/Fm and ETR for T3 at 2.5 mg Ti Plant 1; however, declined significantly for T5 at high concentration of 10 mg Plant(-1).In NL, the application of 2.5 mg Ti Plant(-1)(T3) increased the Chl a,b, and total Chl contents 40,20, and 27%, as compared to control treatment (T1). In SC, the application of 1.25 mg Ti mg Plant(-1)(T2) increased the Chl a, b, and total Chl contents 38, 19, and 14% as compared to control treatment. In NL, the Fv/Fm, (qP, PSII, and ETR were higher in the T3 treatment over the T1 (control) by 7, 0.3, 16, and 16%, respectively. In SC, the Fv/Fm, (LP, PSII, and ETR were higher in the T3 treatment over the T1 (control) by 5, 5, 19, and 19%, respectively. Moreover, Rubisco activity was at peak (55 and 6% increase under NL and SC) at 2.5 mg Ti Plant and decreased with increasing Ti concentration, reaching the lowest at 10 mg Ti Plant(-1), which indicates that leaf cells were damaged as observed in the leaf anatomy. We concluded that ionic Ti expresses a hormesis effect: at lower concentrations, promoting soybean growth, however, at higher concentrations, suppressing soybean growth both under NL and SC. We therefore suggest that under different light stress conditions, Ti application could serve to mitigate abiotic stresses, especially in intercropping systems. (C) 2018 Published by Elsevier B.V. C1 [Hussain, Sajad; Iqbal, Nasir; Raza, Muhammad Ali; Pang, Ting; Ahmed, Shoaib; Wen, Bingxiao; Gao, Yang; Liu, Weiguo; Yang, Wenyu] Sichuan Agr Univ, Coll Agron, 211 Huimin Rd, Chengdu 611130, Sichuan, Peoples R China. [Hussain, Sajad; Iqbal, Nasir; Raza, Muhammad Ali; Pang, Ting; Ahmed, Shoaib; Wen, Bingxiao; Gao, Yang; Liu, Weiguo; Yang, Wenyu] Sichuan Agr Univ, Key Lab Crop Ecophysiol & Farming Syst Southwest, Minist Agr, Sichuan Engn Res Ctr Crop Strip Intercropping Sys, Chengdu, Sichuan, Peoples R China. [Brestic, Marian] Slovak Univ Agr, Nitra, Slovakia. [Langham, Derald Ray] Sesame Res LLC, San Antonio, TX 78217 USA. [Safdar, Muhammad Ehsan] Univ Sargodha, Coll Agr, Sargodha, Pakistan. C3 Sichuan Agricultural University; Ministry of Agriculture & Rural Affairs; Sichuan Agricultural University; Slovak University of Agriculture Nitra; University of Sargodha RP Liu, WG (corresponding author), Sichuan Agr Univ, Coll Agron, 211 Huimin Rd, Chengdu 611130, Sichuan, Peoples R China. EM lwgsy@126.com; mssiyangwy@sicau.edu.cn RI Brestic, Marian/A-8263-2012; Hussain, Sajad/GZL-5573-2022; Raza, Muhammad Ali/R-8597-2019; Hussain, Sajad/S-4261-2019; Safdar, Muhammad/AFO-2376-2022 OI Brestic, Marian/0000-0003-3470-6100; Raza, Muhammad Ali/0000-0003-3817-6848; Hussain, Sajad/0000-0001-9100-360X; Safdar, Muhammad/0000-0002-1865-5182; Iqbal, Nasir/0000-0003-1133-8229 FU National Key Research and Development Program of China [2018YFD1000905]; National Natural Science Foundation of China [31671626, 31201170] FX This work was funded by the National Key Research and Development Program of China (2018YFD1000905) and the National Natural Science Foundation of China (31671626 and 31201170). I would like to say humble thanks to my respected parents Bashir Ahmed (Father) and my Mother for their prayers and wishes. CR Arif N, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.3389/fenvs.2016.00069 Boykov I. N., 2018, GENOMICS Carvajal M., 1995, LEAF SPRAY TI 4 ASCO Castiglione MR, 2016, ENVIRON EXP BOT, V130, P11, DOI 10.1016/j.envexpbot.2016.05.002 Castiglione MR, 2011, J NANOPART RES, V13, P2443, DOI 10.1007/s11051-010-0135-8 Choi HG, 2015, HORTIC ENVIRON BIOTE, V56, P575, DOI 10.1007/s13580-015-0023-3 Cox A, 2016, PLANT PHYSIOL BIOCH, V107, P147, DOI 10.1016/j.plaphy.2016.05.022 Dai YJ, 2009, ENVIRON EXP BOT, V65, P177, DOI 10.1016/j.envexpbot.2008.12.008 Fan YF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0198159 Feizi H, 2013, CHEMOSPHERE, V91, P506, DOI 10.1016/j.chemosphere.2012.12.012 Gao FQ, 2008, BIOMETALS, V21, P211, DOI 10.1007/s10534-007-9110-y Gururani MA, 2015, MOL PLANT, V8, P1304, DOI 10.1016/j.molp.2015.05.005 Haghighi M, 2012, BIOL TRACE ELEM RES, V150, P381, DOI 10.1007/s12011-012-9481-y Hruby M, 2002, J PLANT NUTR, V25, P577, DOI 10.1081/PLN-120003383 Huang D, 2011, PHOTOSYNTHETICA, V49, P611, DOI 10.1007/s11099-011-0076-1 Jaberzadeh A, 2013, NOT BOT HORTI AGROBO, V41, P201 Jun L., 2015, PLOS ONE, V10 KELEMEN G, 1993, FOOD STRUCT, V12, P67 Kunderlikova K, 2016, J CENT EUR AGRIC, V17, P950, DOI 10.5513/JCEA01/17.4.1797 Latef AAHA, 2018, LAND DEGRAD DEV, V29, P1065, DOI 10.1002/ldr.2780 Li CX, 2019, MICROB ECOL, V77, P967, DOI 10.1007/s00248-018-1273-2 Liu X, 2017, FIELD CROP RES, V200, P38, DOI 10.1016/j.fcr.2016.10.003 LYU SH, 2017, FRONT PLANT SCI, V8 Moaveni P, 2011, INT C ENV AGR ENG IC Morteza E, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-247 Nautsch-Laufer C., 1974, WIRKUNG TITAN STOFFW Pan YH, 2017, PLANT PHYSIOL BIOCH, V113, P110, DOI 10.1016/j.plaphy.2017.01.027 Paradies J, 2006, J INORG BIOCHEM, V100, P1260, DOI 10.1016/j.jinorgbio.2006.02.011 Qu MN, 2017, PLANT PHYSIOL, V175, P248, DOI 10.1104/pp.17.00332 Rafique R, 2018, DATA BRIEF, V17, P890, DOI 10.1016/j.dib.2018.02.002 Raliya R, 2015, METALLOMICS, V7, P1584, DOI [10.1039/c5mt00168d, 10.1039/C5MT00168D] Raliya Ramesh, 2015, Biotechnol Rep (Amst), V5, P22, DOI 10.1016/j.btre.2014.10.009 RAMAKRISHNA RS, 1989, ENVIRON EXP BOT, V29, P293, DOI 10.1016/0098-8472(89)90002-6 Samadi N., 2015, INT J PLANT SOIL SCI, V3, P408 Servin AD, 2013, ENVIRON SCI TECHNOL, V47, P11592, DOI 10.1021/es403368j Shao QS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085996 Song U, 2013, BIOL TRACE ELEM RES, V155, P93, DOI 10.1007/s12011-013-9765-x Szymanska R, 2016, ENVIRON POLLUT, V213, P957, DOI 10.1016/j.envpol.2016.03.026 Tumburu L, 2015, ENVIRON TOXICOL CHEM, V34, P70, DOI 10.1002/etc.2756 Vu JCV, 2001, J PLANT PHYSIOL, V158, P295, DOI 10.1078/0176-1617-00290 Wang WN, 2013, J NANOPART RES, V15, DOI 10.1007/s11051-013-1417-8 Wojcik P, 2004, J PLANT NUTR, V27, P2033, DOI [10.1081/PLN-200030108, 10.1081/LPLA-200030108] Wu Y, 2019, J PLANT GROWTH REGUL, V38, P359, DOI 10.1007/s00344-018-9844-5 Wu YS, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10026-5 Xie Ting, 2018, HUNAN AGR SCI, V1, P51 YANG F, 2018, FRONT PLANT SCI, V9 Yao X., 2017, PLANT GROWTH REGUL, V83, P1 Zahra Z, 2015, J AGR FOOD CHEM, V63, P6876, DOI 10.1021/acs.jafc.5b01611 Ze YG, 2011, BIOL TRACE ELEM RES, V143, P1131, DOI 10.1007/s12011-010-8901-0 Zhang X., 2012, CONTINUOUS METHOD PR ZHOU T, 2016, FRONT PLANT SCI, V7 Zivcak M, 2014, PHOTOSYNTH RES, V119, P339, DOI 10.1007/s11120-014-9969-8 NR 52 TC 73 Z9 80 U1 13 U2 171 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 25 PY 2019 VL 658 BP 626 EP 637 DI 10.1016/j.scitotenv.2018.12.182 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA HI1AI UT WOS:000456175700060 PM 30580217 DA 2023-03-13 ER PT J AU Petcu, V Oprea, G Ciontu, C Stefanic, G AF Petcu, Victor Oprea, Georgeta Ciontu, Costica Stefanic, Gheorghe TI STUDIES ON THE EFFECT OF SOME HERBICIDES (SINGLE AND DIFFERENT MIXTURES) ON WEEDS CONTROL AND SOIL QUALITY IN MAIZE SO ROMANIAN AGRICULTURAL RESEARCH LA English DT Article DE aryloxiacid herbicides; combined herbicides; maize; weed infestation; efficiency; soil cellulolytic activity; soil respiration AB Maize or corn is the third most important crop worldwide; the area occupied by this crop is over 157 million acres. In Romania, corn is the main crop. One of the main problems linked to this crop facing Romania is the weeds control. Different types of pre and post-emergence herbicides are available in the market, but their effectiveness on different weed species in the field still needs to be determined under different agro-climatic conditions. During the period 2012-2013 on the experimental field of the SC Profarma Holding SRL from Fundulea, under non irrigated conditions on cambic chernozem soil a field experiment with maize (Zea mays) was carried out. The paper presents the results concerning the efficiency of some herbicides (aryloxiacid and different mixtures) on weeds control in maize crop and their impact on soil quality. In the year 2013 the degree of weed infestation was higher due to heavy rainfall, but we got a good weed control with the combined herbicides in both years. Higher effect of new combined herbicides applied in vegetation against annual weeds, is due to their broad spectrum, including annual "resistant" dicotyledonous, such as Xanthium strumarium, Solanum nigrum, Sinapis arvensis. The treatments with pre-emergence herbicide with dimethenamide P + pendimethalin (trade name Wing P) and post-emergence herbicide with bentazone + dicamba (trade name Cambio), achieved a rate of weed control of 97%, being qualified as having very good efficiency. The treatments with acetochlor (trade name Guardian) and 2,4D + dicamba (trade name Ceredin) achieved a level of weed control of 88%, because the foxtail (Setaria spp.) could not be controlled effectively by a this single post-emergence herbicide. Corn yields in control variants were 4430 kg ha(-1) and 4830 kg ha(-1) in the two years of experimentation. All of the herbicides tested, ensured higher average yields compared to the control. Yields were very significantly correlated with weed control efficiency of herbicides (r = 0.91***; r = 0.93***). Cellulolytic activity of soil was influenced by climatic conditions, type of herbicide used and time of applications. Water stress negatively influenced soil cellulolytic activity. In optimal conditions of soil humidity, cellulolytic activity increased, except after applying dimethenamide P + terbuthylazine herbicide (Akris), suggesting an improvement of biological conditions in soil (except for the above mentioned herbicide). Soil respiration was influenced by herbicides applied. Among the herbicides studied Izoxaflutole + terbuthylazine (Merlin Duo) negatively influenced soil respiration. Herbicides dimethenamide P (Frontier Forte), dimethenamide P + terbuthylazine (Akris) and dimethenamide P + pendimethalin (Wing) had a beneficial effect, suggesting (1) a possible use of herbicides and/or their breakdown products by certain microorganisms in soil as a carbon source, leading to an increase in soil respiration, or (2) the effects of simulation (hormesis) of vital processes from the soil. C1 [Petcu, Victor; Ciontu, Costica] Univ Agron Sci & Vet Med Bucharest, Fac Agr, Bucharest 011464, Romania. [Oprea, Georgeta; Stefanic, Gheorghe] Natl Agr Res & Dev Inst Fundulea, Fundulea 915200, Calarasi County, Romania. C3 University of Agronomic Science & Veterinary Medicine - Bucharest RP Petcu, V (corresponding author), Univ Agron Sci & Vet Med Bucharest, Fac Agr, 59 Marasti Blvd,Dist 1, Bucharest 011464, Romania. EM petcuvictor86@yahoo.com RI Petcu, Victor/AAD-8038-2019 OI Petcu, Victor/0000-0002-7126-4324 CR Avidano L, 2005, APPL SOIL ECOL, V30, P21, DOI 10.1016/j.apsoil.2005.01.003 Berca M., 2004, MANAGEMENTUL INTEGRA Ghinea L., 1998, Romanian Agricultural Research, P55 Nadasy E., 2007, RELATIONSHIP HERBICI Petsikos-Panagiotarou N., 2000, P 1 EUR C PEST REL O, P185 Popescu Alexandrina, 2007, AN INCDA FUNDULEA, VLXXV, P343 Sannino F, 2001, CHEMOSPHERE, V45, P417, DOI 10.1016/S0045-6535(01)00045-5 Stefanic G., 2006, BIOL SOLURILOR AGRIC Stefanic G, 2011, ROM AGRIC RES, V28, P165 Yao XH, 2006, EUR J SOIL BIOL, V42, P120, DOI 10.1016/j.ejsobi.2005.12.001 Zabaloy MC, 2008, COMMUN SOIL SCI PLAN, V39, P370, DOI 10.1080/00103620701826506 NR 11 TC 8 Z9 9 U1 0 U2 17 PU NATL AGRICULTURAL RESEARCH & DEVELOPMENT INST PI FUNDULEA PA CALARASI COUNTY, FUNDULEA, 915200, ROMANIA SN 1222-4227 J9 ROM AGRIC RES JI Rom. Agric. Res. PY 2015 VL 32 BP 245 EP 252 PG 8 WC Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA CV7EC UT WOS:000364434200029 DA 2023-03-13 ER PT J AU Garcia-de Blas, E Mateo, R Alonso-Alvarez, C AF Garcia-de Blas, Esther Mateo, Rafael Alonso-Alvarez, Carlos TI Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals SO PEERJ LA English DT Article DE Sexual signaling; Sexual selection; Carotenoids; Color signaling; Oxidative stress; Avian coloration; Carotenoid supplementation; Handicap theory; Carotenoid transformation; Hormesis ID MALE AMERICAN GOLDFINCHES; TREATED SEED INGESTION; HISTORY TRADE-OFFS; SEXUAL ATTRACTIVENESS; IMMUNE ACTIVATION; INTESTINAL-ABSORPTION; ANTIOXIDANT CAPACITY; COLOR PATTERNS; MATE CHOICE; METABOLISM AB Colorful ornaments have been the focus of sexual selection studies since the work of Darwin. Yellow to red coloration is often produced by carotenoid pigments. Different hypotheses have been formulated to explain the evolution of these traits as signals of individual quality. Many of these hypotheses involve the existence of a signal production cost. The carotenoids necessary for signaling can only be obtained from food. In this line, carotenoid-based signals could reveal an individual's capacity to find sufficient dietary pigments. However, the ingested carotenoids are often yellow and became transformed by the organism to produce pigments of more intense color (red ketocarotenoids). Biotransformation should involve oxidation reactions, although the exact mechanism is poorly known. We tested the hypothesis that carotenoid biotransformation could be costly because a certain level of oxidative stress is required to correctly perform the conversion. The carotenoid-based signals could thus reveal the efficiency of the owner in successfully managing this challenge. In a bird with ketocarotenoid-based ornaments (the red-legged partridge; Alectoris rufa), the availability of different carotenoids in the diet (i.e. astaxanthin, zeaxanthin and lutein) and oxidative stress were manipulated. The carotenoid composition was analyzed and quantified in the ornaments, blood, liver and fat. A number of oxidative stress biomarkers were also measured in the same tissues. First, we found that color and pigment levels in the ornaments depended on food levels of those carotenoids used as substrates in biotransformation. Second, we found that birds exposed to mild levels of a free radical generator (diquat) developed redder bills and deposited higher amounts of ketocarotenoids (astaxanthin) in ornaments. Moreover, the same diquat-exposed birds also showed a weaker resistance to hemolysis when their erythrocytes were exposed to free radicals, with females also enduring higher oxidative damage in plasma lipids. Thus, higher color production would be linked to higher oxidative stress, supporting the biotransformation hypothesis. The recent discovery of an avian oxygenase enzyme involved in converting yellow to red carotenoids may support our results. Nonetheless, the effect could also depend on the abundance of specific substrate carotenoids in the diet. Birds fed with proportionally higher levels of zeaxanthin showed the reddest ornaments with the highest astaxanthin concentrations. Moreover, these birds tended to show the strongest diquat-mediated effect. Therefore, in the evolution of carotenoid-based sexual signals, a biotransformation cost derived from maintaining a well-adjusted redox machinery could coexist with a cost linked to carotenoid acquisition and allocation (i.e. a resource allocation trade-off). C1 [Garcia-de Blas, Esther; Mateo, Rafael; Alonso-Alvarez, Carlos] CSIC UCLM JCCM, Inst Invest Recursos Cineget IREC, Ciudad Real, Spain. [Alonso-Alvarez, Carlos] CSIC, MNCN, Ecol Evolituva, Madrid, Spain. C3 Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Instituto de Investigacion en Recursos Cinegeticos (IREC); Universidad de Castilla-La Mancha; Consejo Superior de Investigaciones Cientificas (CSIC) RP Alonso-Alvarez, C (corresponding author), CSIC UCLM JCCM, Inst Invest Recursos Cineget IREC, Ciudad Real, Spain.; Alonso-Alvarez, C (corresponding author), CSIC, MNCN, Ecol Evolituva, Madrid, Spain. EM carlos.alonso@csic.es RI Mateo, Rafael/A-3117-2011; Mateo, Rafael/AAU-1480-2020; Alonso-Alvarez, Carlos/M-6804-2014 OI Mateo, Rafael/0000-0003-1307-9152; Mateo, Rafael/0000-0003-1307-9152; Alonso-Alvarez, Carlos/0000-0002-4765-551X FU Consejo Superior de Investigaciones Cientificas (CSIC) - Fondo Social Europeo (EU); Consejeria de Educacion y Ciencia, Junta de Comunidades de Castilla la Mancha [PII1I09-0271-5037]; Ministerio de Economia y Competitividad from the Spanish Government [CGL2009-10883-C02-02, CGL2015-69338-C2-2-P] FX Esther Garcia-de Blas was supported by a predoctoral grant (JAE-PRE) from the Consejo Superior de Investigaciones Cientificas (CSIC) co-financed by Fondo Social Europeo (EU). This study was funded by Consejeria de Educacion y Ciencia, Junta de Comunidades de Castilla la Mancha (project ref.: PII1I09-0271-5037) and Ministerio de Economia y Competitividad (CGL2009-10883-C02-02 and CGL2015-69338-C2-2-P) from the Spanish Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Alonso-Alvarez C, 2008, J EVOLUTION BIOL, V21, P1789, DOI 10.1111/j.1420-9101.2008.01591.x Alonso-Alvarez C, 2004, AM NAT, V164, P651, DOI 10.1086/424971 Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x Alonso-Alvarez C, 2012, BEHAV ECOL SOCIOBIOL, V66, P731, DOI 10.1007/s00265-012-1321-8 Alonso-Alvarez C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019403 Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395 Andersson Malte, 1994 Romero-Haro AA, 2015, AM NAT, V185, P390, DOI 10.1086/679613 Romero-Haro AA, 2014, PHYSIOL BIOCHEM ZOOL, V87, P353, DOI 10.1086/674432 Bize P, 2014, OECOLOGIA, V174, P1097, DOI 10.1007/s00442-013-2840-3 BLACHE D, 1992, LUNAR-BASED CHEMICAL ANALYSIS LABORATORY, P82 Black AT, 2008, TOXICOL APPL PHARM, V231, P384, DOI 10.1016/j.taap.2008.05.014 Blem Charles R., 2000, P327, DOI 10.1016/B978-012747605-6/50014-6 Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142 Bradbury Jack W., 1998, pi Britton G, 1995, FASEB J, V9, P1551, DOI 10.1096/fasebj.9.15.8529834 Britton G, 2009, CAROTENOIDS SER, V5, P173, DOI 10.1007/978-3-7643-7501-0_3 BRUSH AH, 1976, AUK, V93, P725 BRUSH AH, 1990, FASEB J, V4, P2969, DOI 10.1096/fasebj.4.12.2394316 Canene-Adams K, 2009, CAROTENOIDS SER, V5, P115, DOI 10.1007/978-3-7643-7501-0_7 Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027 Cohen A, 2007, COMP BIOCHEM PHYS B, V147, P110, DOI 10.1016/j.cbpb.2006.12.015 Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Costantini D, 2012, BEHAV ECOL SOCIOBIOL, V66, P1195, DOI 10.1007/s00265-012-1362-z Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cristovao AC, 2009, ANTIOXID REDOX SIGN, V11, P2105, DOI [10.1089/ars.2009.2459, 10.1089/ARS.2009.2459] Darwin C., 1871, P423 del Val E, 2009, NATURWISSENSCHAFTEN, V96, P989, DOI 10.1007/s00114-009-0554-5 del Val E, 2009, NATURWISSENSCHAFTEN, V96, P797, DOI 10.1007/s00114-009-0534-9 Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791 El-Agamey Ali, 2008, V4, P119 ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861 ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x Foley J.D., 1984, FUNDAMENTALS INTERAC FOX DL, 1970, COMP BIOCHEM PHYSIOL, V34, P707, DOI 10.1016/0010-406X(70)90296-3 Fraser PD, 1997, J BIOL CHEM, V272, P6128, DOI 10.1074/jbc.272.10.6128 Furr HC, 1997, J NUTR BIOCHEM, V8, P364, DOI 10.1016/S0955-2863(97)00060-0 Fussell KC, 2011, FREE RADICAL BIO MED, V50, P874, DOI 10.1016/j.freeradbiomed.2010.12.035 Galvan I, 2009, P ROY SOC B-BIOL SCI, V276, P3089, DOI 10.1098/rspb.2009.0774 Garcia-de Blas E, 2015, OECOLOGIA, V177, P259, DOI 10.1007/s00442-014-3163-8 Garcia-de Blas E, 2014, NATURWISSENSCHAFTEN, V101, P407, DOI 10.1007/s00114-014-1169-z Garcia-de Blas E, 2013, PHYSIOL BIOCHEM ZOOL, V86, P483, DOI 10.1086/671812 Garcia-de Blas E, 2011, J CHROMATOGR B, V879, P341, DOI 10.1016/j.jchromb.2010.12.019 Getty T, 2006, TRENDS ECOL EVOL, V21, P83, DOI 10.1016/j.tree.2005.10.016 Girard A, 2005, NUTRITION, V21, P240, DOI 10.1016/j.nut.2004.04.022 Giraudeau M, 2013, COMP BIOCHEM PHYS A, V166, P406, DOI 10.1016/j.cbpa.2013.07.014 Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194 GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8 Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x Halliwell B, 2007, RADICALS IN BIOLOGY Hartley RC, 2004, TRENDS ECOL EVOL, V19, P353, DOI 10.1016/j.tree.2004.04.002 Hasson O, 1997, J THEOR BIOL, V185, P139, DOI 10.1006/jtbi.1996.0258 HATA M, 1972, B JPN SOC SCI FISH, V38, P339 Hill G. E., 2006, BIRD COLORATION HILL GE, 1994, ETHOL ECOL EVOL, V6, P351, DOI 10.1080/08927014.1994.9522986 HILL GE, 1990, ANIM BEHAV, V40, P563, DOI 10.1016/S0003-3472(05)80537-8 Hill GE, 2002, RED BIRD BROWN BAG, DOI DOI 10.1093/ACPROF:OSO/9780195148480.001.0001 Hill GE, 2012, AM NAT, V180, pE127, DOI 10.1086/667861 Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x Horak P, 2007, AM NAT, V170, P625, DOI 10.1086/521232 Hurd T.R., 2009, REDOX SIGNALING REGU, P13, DOI DOI 10.1002/9783527627585.CH2 Isaksson C, 2008, P ROY SOC B-BIOL SCI, V275, P309, DOI 10.1098/rspb.2007.1474 Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5 Jenni-Eiermann S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097650 Johnson JD, 2013, BIOCHIMIE, V95, P436, DOI 10.1016/j.biochi.2012.10.021 Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865 Koch RE, 2017, FUNCT ECOL, V31, P9, DOI 10.1111/1365-2435.12664 Koch RE, 2016, PHYSIOL BIOCHEM ZOOL, V89, P61, DOI 10.1086/684485 KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137 LaFountain AM, 2013, ARCH BIOCHEM BIOPHYS, V539, P126, DOI 10.1016/j.abb.2013.07.001 Lesgards JF, 2002, ENVIRON HEALTH PERSP, V110, P479, DOI 10.1289/ehp.02110479 Littell R.C., 2006, SAS SYSTEM MIXED MOD, V2nd ed. Lopes RJ, 2016, CURR BIOL, V26, P1427, DOI 10.1016/j.cub.2016.03.076 Lopez-Antia A, 2015, ENVIRON TOXICOL CHEM, V34, P1320, DOI 10.1002/etc.2925 Lopez-Antia A, 2015, ENVIRON RES, V136, P97, DOI 10.1016/j.envres.2014.10.023 LOZANO GA, 1994, OIKOS, V70, P309, DOI 10.2307/3545643 Martinez A, 2008, J PHYS CHEM A, V112, P9037, DOI 10.1021/jp803218e Maynard-Smith J., 2003, ANIMAL SIGNALS McClean CM, 2011, RES SPORTS MED, V19, P1, DOI 10.1080/15438627.2011.534963 McGraw KJ, 2010, PHYSIOL BIOCHEM ZOOL, V83, P97, DOI 10.1086/648396 McGraw KJ, 2009, NATURWISSENSCHAFTEN, V96, P987, DOI 10.1007/s00114-009-0544-7 McGraw KJ, 2005, NATURWISSENSCHAFTEN, V92, P375, DOI 10.1007/s00114-005-0003-z McGraw KJ, 2006, PHYSIOL BEHAV, V87, P103, DOI 10.1016/j.physbeh.2005.09.001 McGraw KJ, 2004, J AVIAN BIOL, V35, P471, DOI 10.1111/j.0908-8857.2004.03405.x McGraw KJ, 2004, BIOL J LINN SOC, V83, P273, DOI 10.1111/j.1095-8312.2004.00388.x McGraw KJ, 2004, PHYSIOL BIOCHEM ZOOL, V77, P484, DOI 10.1086/383506 McGraw KJ, 2001, FUNCT ECOL, V15, P732, DOI 10.1046/j.0269-8463.2001.00574.x Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3 Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x MILLER NJ, 1993, CLIN SCI, V84, P407, DOI 10.1042/cs0840407 Miller NJ, 1996, FEBS LETT, V384, P240, DOI 10.1016/0014-5793(96)00323-7 Moller AP, 2000, AVIAN POULT BIOL REV, V11, P137 Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x Mortensen A, 2001, ARCH BIOCHEM BIOPHYS, V385, P13, DOI 10.1006/abbi.2000.2172 Mougeot F, 2009, J AVIAN BIOL, V40, P67, DOI 10.1111/j.1600-048X.2008.04439.x Mundy NI, 2016, CURR BIOL, V26, P1435, DOI 10.1016/j.cub.2016.04.047 Negro JJ, 2000, COMP BIOCHEM PHYS B, V126, P347, DOI 10.1016/S0305-0491(00)00180-2 Ohkubo M, 1999, COMP BIOCHEM PHYS B, V124, P333, DOI 10.1016/S0305-0491(99)00124-8 Ohno M, 2011, FOOD CHEM TOXICOL, V49, P1285, DOI 10.1016/j.fct.2011.03.009 Panfili G, 2004, J AGR FOOD CHEM, V52, P6373, DOI 10.1021/jf0402025 Perez-Rodriguez L, 2008, NATURWISSENSCHAFTEN, V95, P821, DOI 10.1007/s00114-008-0389-5 Perez-Rodriguez L, 2008, J EXP BIOL, V211, P2155, DOI 10.1242/jeb.017178 Perez-Rodriguez L, 2008, BEHAV ECOL SOCIOBIOL, V62, P995, DOI 10.1007/s00265-007-0527-7 Perez-Rodriguez L, 2010, J EXP BIOL, V213, P1685, DOI 10.1242/jeb.039982 Perez-Rodriguez L, 2009, BIOESSAYS, V31, P1116, DOI 10.1002/bies.200900070 Pietsch W, 2005, AGGLOMERATION IND, V1 Rodriguez-Estival J, 2010, ENVIRON RES, V110, P469, DOI 10.1016/j.envres.2010.03.008 Romero-Haro AA, 2015, FRONT ECOL EVOL, V3, DOI 10.3389/fevo.2015.00035 Saks L, 2003, FUNCT ECOL, V17, P555, DOI 10.1046/j.1365-2435.2003.00765.x Sato Y, 2012, J PHARM PHARM SCI, V15, P256, DOI 10.18433/J38K56 Schoefs B, 2001, FEBS LETT, V500, P125, DOI 10.1016/S0014-5793(01)02596-0 Sewalk CJ, 2000, J TOXICOL ENV HEAL A, V62, P33, DOI 10.1080/00984100050201659 Simons MJP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043088 Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151 Stirnemann I, 2009, EMU, V109, P344, DOI 10.1071/MU08069 Stradi R, 1998, COLOUR FLIGHT CAROTE Sun LY, 2011, FASEB J, V25, P398, DOI 10.1096/fj.10-164376 Surai PF, 2012, WORLD POULTRY SCI J, V68, P465, DOI 10.1017/S0043933912000578 Surai PF, 2001, COMP BIOCHEM PHYS B, V128, P743, DOI 10.1016/S1096-4959(00)00369-9 Toomey MB, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-3 Toomey MB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021653 Toomey MB, 2010, ARCH BIOCHEM BIOPHYS, V504, P161, DOI 10.1016/j.abb.2010.06.033 Tyssandier V, 2002, AM J CLIN NUTR, V75, P526, DOI 10.1093/ajcn/75.3.526 Vallverdu-Coll N, 2015, ENVIRON SCI TECHNOL, V49, P3839, DOI 10.1021/es505148d van den Berg H, 1999, NUTR REV, V57, P1, DOI 10.1111/j.1753-4887.1999.tb01769.x VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480 Volker O., 1957, Journal fuer Ornithologie, V98, P210, DOI 10.1007/BF01676225 von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1, DOI 10.1098/rspb.1999.0597 Wahl RUR, 1998, J CHEM SOC PERK T 2, P2009, DOI 10.1039/a801624k Wang YM, 2010, EUR J NUTR, V49, P327, DOI 10.1007/s00394-009-0089-8 Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2 Wilmes A, 2011, TOXICOL IN VITRO, V25, P613, DOI 10.1016/j.tiv.2010.12.009 Xu JM, 2007, J PINEAL RES, V42, P166, DOI 10.1111/j.1600-079X.2006.00401.x ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 Zeman M, 2005, BIOLOGIA, V60, P61 NR 137 TC 21 Z9 21 U1 4 U2 39 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD SEP 1 PY 2016 VL 4 AR e2237 DI 10.7717/peerj.2237 PG 48 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA DV9MQ UT WOS:000383265000001 PM 27635308 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Batta, Y Juhasz, J Farrell, T AF Batta, Yashvardhan Juhasz, Janos Farrell, Tom TI Accuracy of Dose Calculation for Hemibody Treatments at Extended Distance Using a Commercial Treatment Planning System SO JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES LA English DT Article DE Radiation hormesis; hemibody irradiation; treatment planning; low-dose radiation therapy AB Purpose: The objective of this study was to assess the accuracy of monitor units (MUs) calculation for extended distance hemibody (HB) treatments in Pinnacle, a commercial treatment planning system. The agreement between planning and delivery of low-dose radiation therapy (LD-RT) was assessed with direct comparison to expected doses and tabulated total body irradiation (TBI) calculations. Studies over the past decades indicate that LD-RT has strong potential to be an effective treatment modality for cancer patients with minimal toxicities. This physics-based study aims to provide sufficient conclusions required for prospective clinical studies involving HB irradiation regimes. Specifically, this study may provide reassurance of MU calculation in the Pinnacle system for an upcoming trial regarding nontargeted LD-RT for recurrent prostate cancer. Methods: Water phantom: A plan was created in Pinnacle to deliver 100 cGy to a water phantom with an ion chamber mount. A percent depth dose was obtained. Electrometer readings were recorded with each irradiation of 400 MUs at varying ion chamber depths at extended distance. A percent depth dose was created from tabulated data. Anthropomorphic phantom: A parallel opposed pair plan was created in Pinnacle to deliver 150 cGy over 10 fractions to the umbilicus of the phantom at 4 m extended source-to-surface distance. The MUs required to deliver 150 cGy, as per Pinnacle were delivered to the phantom using 6 MV photons. Thermoluminescent dosimeters (TLD), used to measure exposure using light-emitting crystals, were placed along six reference locations (lung, mid-T-spine, abdomen, mid-pelvis, thigh, and mid-abdomen) on the phantom. TLD measurements were then compared with the Pinnacle-derived ROI mean doses. For experiment 2, TBI calculation factors were used to determine the required MUs to deliver 150 cGy to the prescription (Rx) point. The calculated MUs were delivered, and TLD readings were recorded to compare the level of agreement of using TBI calculations for HB treatments. Results: Water phantom: Pinnacle did not accurately estimate dmax at extended distance; however, it did accurately estimate the dose past d(max). Anthropomorphic phantom: A 10% variation to expected dose was deemed significant. Both Pinnacle and TBI calculations were accurate methods of planning HB LD-RT treatment, with insignificant difference. Pinnacle's overall average variation across ROIs was borderline significant at 12.1%. Conclusion: At extended source-to-surface distance, Pinnacle inaccurately estimated the entrance dose and dmax. Anthropomorphic phantom studies indicated borderline significant variation, as per the implemented 10% limit. TBI calculations presented similar conclusions. For purposes of HB LD-RT, a borderline 10% variation will have insignificant impact to the patient's ability to tolerate treatment. Trial-eligible prostate cancer patients are currently being treated for HB LD-RT at the Juravinski Cancer Centre. C1 [Batta, Yashvardhan] McMaster Univ, Med Radiat Sci, Hamilton, ON, Canada. [Juhasz, Janos; Farrell, Tom] Juravinski Canc Ctr, Dept Med Phys, Hamilton, ON, Canada. C3 McMaster University; McMaster University RP Batta, Y (corresponding author), McMaster Univ, Dept Radiat Therapy, Med Radiat Sci, Juravinski Canc Ctr,Hamilton Hlth Sci, 3040 Mallbridge Crescent, Mississauga, ON L4T2C6, Canada. EM battay@mcmaster.ca CR [Anonymous], 2013, PEREZ BRADYS PRINCIP Bockel S, 2017, CANCER RADIOTHER, V21, P244, DOI 10.1016/j.canrad.2016.12.005 CANELLOS GP, 1975, BRIT J CANCER, V31, P474 Derer A, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00505 Ganapathy K, 2012, J MED PHYS, V37, P214, DOI 10.4103/0971-6203.103607 Gyurkocza B, 2014, BLOOD, V124, P344, DOI 10.1182/blood-2014-02-514778 Hayes A. R., 2013, COMPUT MATH METHOD M, V2013, P1 Lavallee M-C, 2008, Med Phys, V35, P3408, DOI 10.1118/1.2965958 Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327 Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 Wills C., 2016, APPL RAD ONCOLOGY NR 11 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1939-8654 J9 J MED IMAGING RADIAT JI J. Med. Imaging Radiat. Sci. PD JUN PY 2019 VL 50 IS 2 BP 261 EP 271 DI 10.1016/j.jmir.2018.12.004 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging WE Emerging Sources Citation Index (ESCI) SC Radiology, Nuclear Medicine & Medical Imaging GA IB2VV UT WOS:000470127700012 PM 31176434 DA 2023-03-13 ER PT J AU Heininger, K AF Heininger, K TI Aging is a deprivation syndrome driven by a germ-soma conflict SO AGEING RESEARCH REVIEWS LA English DT Review DE aging; longevity; deprivation syndrome; evolution; reproduction; gonadal hormones; stress resistance; metabolism; oxidative stress; mitochondria; caloric restriction; hormesis; metabolic syndrome; mutagenesis; glucocorticosteroids; insulin; leptin; NPY; differentiation; apoptosis; cancer; Alzheimer's disease; diabetes mellitus; glucose-fatty acid cycle; germ-soma conflict theory ID GONADOTROPIN-RELEASING-HORMONE; PROGRAMMED CELL-DEATH; MITOCHONDRIAL-DNA MUTATIONS; LIFE-SPAN EXTENSION; HYPOTHALAMIC ARCUATE NUCLEUS; PITUITARY-GONADAL AXIS; CENTRAL-NERVOUS-SYSTEM; CYTOCHROME-C-OXIDASE; RAT SKELETAL-MUSCLE; AGE-RELATED-CHANGES AB Evolution through natural selection can be described as driven by a perpetual conflict of individuals competing for limited resources. Recently, I postulated that the shortage of resources godfathered the evolutionary achievements of the differentiation-apoptosis programming [Rev. Neurosci. 12 (2001) 217]. Unicellular deprivation-induced differentiation into germ cell-like spores can be regarded as the archaic reproduction events which were fueled by the remains of the fratricided cells of the apoptotic fruiting body. Evidence has been accumulated suggesting that conserved through the ages as the evolutionary legacy of the germ-soma conflict, the somatic loss of immortality during the ontogenetic segregation of primordial germ cells recapitulates the archaic fate of the fruiting body. In this heritage, somatic death is a germ cell-triggered event and has been established as evolutionary-fixed default state following asymmetric reproduction in a world of finite resources. Aging, on the other hand, is the stress resistance-dependent phenotype of the somatic resilience that counteracts the germ cell-inflicted death pathway. Thus, aging is a survival response and, in contrast to current beliefs, is antagonistically linked to death that is not imposed by group selection but enforced upon the soma by the selfish genes of the "enemy within". Environmental conditions shape the trade-off solutions as compromise between the conflicting germ-soma interests. Mechanistically, the neuroendocrine system, particularly those components that control energy balance, reproduction and stress responses, orchestrate these events. The reproductive phase is a self-limited process that moulds onset and progress of senescence with germ cell-dependent factors, e.g. gonadal hormones. These degenerate the regulatory pacemakers of the pineal-hypothalamic-pituitary network and its peripheral, e.g. thymic, gonadal and adrenal targets thereby eroding the trophic milieu. The ensuing cellular metabolic stress engenders adaptive adjustments of the glucose-fatty acid cycle, responses that are adequate and thus fitness-boosting under fuel shortage (e.g. during caloric restriction) but become detrimental under fuel abundance. In a Janus-faced capacity, the cellular stress response apparatus expresses both tolerogenic and mutagenic features of the social and asocial deprivation responses [Rev. Neurosci. 12 (2001) 217]. Mediated by the derangement of the energy-Ca2+-redox homeostatic triangle, a mosaic of dedifferentiation/apoptosis and mutagenic responses actuates the gradual exhaustion of functional reserves and eventually results in a multitude of aging-related diseases. This scenario reconciles programmed and stochastic features of aging and resolves the major inconsistencies of current theories by linking ultimate and proximate causes of aging. Reproduction, differentiation, apoptosis, stress response and metabolism are merged into a coherent regulatory network that stages aging as a naturally selected, germ cell-triggered and reproductive phase-modulated deprivation response. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved. C1 Univ Dusseldorf, Dept Neurol, D-4000 Dusseldorf, Germany. C3 Heinrich Heine University Dusseldorf RP Heininger, K (corresponding author), Univ Dusseldorf, Dept Neurol, D-4000 Dusseldorf, Germany. EM kurt.heininger@web.de CR Abel TW, 1999, J CLIN ENDOCR METAB, V84, P2111, DOI 10.1210/jc.84.6.2111 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI [10.2307/2410191, 10.1111/j.1558-5646.1993.tb01241.x] Adler CM, 2001, SYNAPSE, V42, P252, DOI 10.1002/syn.1111 Agarwal S, 1995, MECH AGEING DEV, V85, P55, DOI 10.1016/0047-6374(95)01655-4 Agata K, 1999, SEMIN CELL DEV BIOL, V10, P377, DOI 10.1006/scdb.1999.0324 AKIYAMA T, 1992, DEVELOPMENT, V115, P1175 AlonsoSolis R, 1996, CELL MOL NEUROBIOL, V16, P357, DOI 10.1007/BF02088101 Andersen LB, 2000, ARCH INTERN MED, V160, P1621, DOI 10.1001/archinte.160.11.1621 ANDRES R, 1984, PRINCIPLES GERIATRIC, P759 Anisimov VN, 2001, MECH AGEING DEV, V122, P41, DOI 10.1016/S0047-6374(00)00184-6 [Anonymous], 1991, EVOLUTIONARY BIOL AG [Anonymous], 1994, EVOLUTION AGE STRUCT, DOI DOI 10.1017/CBO9780511525711 Apfeld J, 1999, NATURE, V402, P804, DOI 10.1038/45544 ARAUJO FB, 1995, ATHEROSCLEROSIS, V117, P61, DOI 10.1016/0021-9150(94)05558-Z ARKING R, 1998, BIOL AGING Ashrafi K, 2000, GENE DEV, V14, P1872 Ashrafi K, 1999, P NATL ACAD SCI USA, V96, P9100, DOI 10.1073/pnas.96.16.9100 Aspinall R, 2000, BIOGERONTOLOGY, V1, P273, DOI 10.1023/A:1010046532657 AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x Azhar G, 1999, MECH AGEING DEV, V112, P5, DOI 10.1016/S0047-6374(99)00048-2 AZUMA T, 1993, J NEUROL SCI, V120, P87, DOI 10.1016/0022-510X(93)90030-3 Balser EJ, 1998, BIOL BULL-US, V194, P187, DOI 10.2307/1543049 BALTRUSCH HJF, 1988, ANN NY ACAD SCI, V521, P1, DOI 10.1111/j.1749-6632.1988.tb35261.x Barazzoni R, 2000, J BIOL CHEM, V275, P3343, DOI 10.1074/jbc.275.5.3343 Barazzoni R, 2001, AM J PHYSIOL-ENDOC M, V280, pE413, DOI 10.1152/ajpendo.2001.280.3.E413 Barja G, 2000, AGING CLIN EXP RES, V12, P342, DOI 10.1007/BF03339859 Barker MG, 1999, FEMS MICROBIOL LETT, V177, P199, DOI 10.1111/j.1574-6968.1999.tb13732.x Bartke A, 1998, EXP GERONTOL, V33, P675, DOI 10.1016/S0531-5565(98)00032-1 Baynes JW, 2000, BIOGERONTOLOGY, V1, P235, DOI 10.1023/A:1010034213093 Behrman HR, 2001, J SOC GYNECOL INVEST, V8, pS40, DOI 10.1016/S1071-5576(00)00106-4 Bejma J, 1999, J APPL PHYSIOL, V87, P465, DOI 10.1152/jappl.1999.87.1.465 BELL G, 1984, AM NAT, V124, P600, DOI 10.1086/284300 Berker M, 1996, ACTA NEUROCHIR, V138, P1224, DOI 10.1007/BF01809752 Bernardis LL, 1998, P SOC EXP BIOL MED, V218, P284 BERTRAND H, 1993, MOL CELL BIOL, V13, P6778, DOI 10.1128/MCB.13.11.6778 BJORNTORP P, 1995, J INTERN MED, V238, P401 Bjorntorp P, 1999, ANN NY ACAD SCI, V892, P297, DOI 10.1111/j.1749-6632.1999.tb07803.x BLAAK EE, 2001, J CLIN ENDOCR METAB, V84, P3764 Blair SN, 2001, MED SCI SPORT EXER, V33, pS379, DOI 10.1097/00005768-200105001-01549 BLOCH GJ, 1988, J COMP NEUROL, V275, P613, DOI 10.1002/cne.902750409 BODE H, 1986, CURR TOP DEV BIOL, V20, P257, DOI 10.1016/S0070-2153(08)60668-7 Bohni R, 1999, CELL, V97, P865, DOI 10.1016/S0092-8674(00)80799-0 Bonavera JJ, 1998, J NEUROENDOCRINOL, V10, P93, DOI 10.1046/j.1365-2826.1998.00177.x Boss O, 2000, DIABETES, V49, P143, DOI 10.2337/diabetes.49.2.143 Bossis I, 2000, BIOL REPROD, V62, P1436, DOI 10.1095/biolreprod62.5.1436 Boulianne GL, 2001, MECH AGEING DEV, V122, P883, DOI 10.1016/S0047-6374(01)00245-7 Braeckman BP, 1999, TRENDS MICROBIOL, V7, P270, DOI 10.1016/S0966-842X(99)01534-6 Braeckman BP, 2001, MECH AGEING DEV, V122, P673, DOI 10.1016/S0047-6374(01)00222-6 BRANN DW, 1995, NEUROENDOCRINOLOGY, V61, P213, DOI 10.1159/000126843 BRAWER JR, 1993, BIOL REPROD, V49, P647, DOI 10.1095/biolreprod49.4.647 Brehm A, 1999, MOL CELL BIOL, V19, P2635 Brierley EJ, 1998, ANN NEUROL, V43, P217, DOI 10.1002/ana.410430212 Brody JA, 2000, AGE AGEING, V29, P75, DOI 10.1093/ageing/29.1.75 BRONSON RT, 1981, AM J VET RES, V42, P1606 Brugger P, 1998, BIOL RHYTHM RES, V29, P121, DOI 10.1076/brhm.29.2.121.1450 Bruning JC, 2000, SCIENCE, V289, P2122, DOI 10.1126/science.289.5487.2122 BUCK S, 1993, HEREDITY, V71, P23, DOI 10.1038/hdy.1993.103 BUENO J, 1976, BRAIN RES, V101, P67, DOI 10.1016/0006-8993(76)90988-4 Burdon RH, 1996, FEBS LETT, V383, P150, DOI 10.1016/0014-5793(96)00230-X Burkle A, 2000, BIOGERONTOLOGY, V1, P41, DOI 10.1023/A:1010089924898 Burks DJ, 2000, NATURE, V407, P377, DOI 10.1038/35030105 Buszczak M, 2000, CELL DEATH DIFFER, V7, P1071, DOI 10.1038/sj.cdd.4400755 CALLESESCANDON J, 1995, J APPL PHYSIOL, V78, P266, DOI 10.1152/jappl.1995.78.1.266 Campisi J, 2001, EXP GERONTOL, V36, P607, DOI 10.1016/S0531-5565(00)00230-8 Carey JR, 1997, BETWEEN ZEUS AND THE SALMON, P127 Caruso C, 2001, MECH AGEING DEV, V122, P445, DOI 10.1016/S0047-6374(00)00255-4 Castrillon DH, 2000, P NATL ACAD SCI USA, V97, P9585, DOI 10.1073/pnas.160274797 Ceriello A, 1997, DIABETIC MED, V14, pS45, DOI 10.1002/(SICI)1096-9136(199708)14:3+3.3.CO;2-I Chainy GBN, 1997, ANDROLOGIA, V29, P343 Chan SJ, 2000, AM ZOOL, V40, P213 Chen HL, 1999, P NATL ACAD SCI USA, V96, P14877, DOI 10.1073/pnas.96.26.14877 CHEN Q, 1995, P NATL ACAD SCI USA, V92, P4337, DOI 10.1073/pnas.92.10.4337 Cherkasova V, 2000, J MOL BIOL, V300, P433, DOI 10.1006/jmbi.2000.3880 CHIK CL, 1989, ACTA ENDOCRINOL-COP, V120, P569, DOI 10.1530/acta.0.1200569 Chippindale AK, 1996, EVOLUTION, V50, P753, DOI 10.1111/j.1558-5646.1996.tb03885.x Chu SC, 1999, LIFE SCI, V64, P2299, DOI 10.1016/S0024-3205(99)00181-2 Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991 CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67 Clark WR, 1999, BIOL BASIS AGING DEA CLARKE CH, 1976, MUTAT RES, V36, P147, DOI 10.1016/0027-5107(76)90003-8 Cohen P, 2001, J CLIN INVEST, V108, P1113, DOI 10.1172/JCI200113914 Cohen PG, 2001, MED HYPOTHESES, V56, P702, DOI 10.1054/mehy.2000.1169 Comfort A., 1979, BIOL SENESCENCE CORBISIER P, 1993, MECH AGEING DEV, V71, P47, DOI 10.1016/0047-6374(93)90034-O Cunningham MJ, 1999, BIOL REPROD, V60, P216, DOI 10.1095/biolreprod60.2.216 CURTIS HJ, 1963, SCIENCE, V141, P686, DOI 10.1126/science.141.3582.686 Curtiss LK, 2000, IMMUNOL RES, V21, P167, DOI 10.1385/IR:21:2-3:167 Curtsinger JW, 1995, ANNU REV GENET, V29, P553 DaCunha GL, 1996, EXP GERONTOL, V31, P705, DOI 10.1016/S0531-5565(96)00056-3 DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010 Dallman MF, 1995, ANN NY ACAD SCI, V771, P730, DOI 10.1111/j.1749-6632.1995.tb44724.x Danzer SC, 1999, MOL BRAIN RES, V66, P200, DOI 10.1016/S0169-328X(99)00024-8 DARR D, 1995, FREE RADICAL BIO MED, V18, P195, DOI 10.1016/0891-5849(94)00118-4 Das UN, 1999, PROSTAG LEUKOTR ESS, V61, P157, DOI 10.1054/plef.1999.0085 DAWKINS R, 1995, RIVER EDEN DARWINIAN Dawkins Richard, 1989, SELFISH GENE De Benedictis G, 2001, MECH AGEING DEV, V122, P909, DOI 10.1016/S0047-6374(01)00247-0 De Benedictis G, 2000, EXP GERONTOL, V35, P795, DOI 10.1016/S0531-5565(00)00169-8 Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141 DENCKLA WD, 1975, LIFE SCI, V16, P31 Derventzi A, 1996, ANTICANCER RES, V16, P2901 DESJARDINS GC, 1995, EXP GERONTOL, V30, P253 DEWINDE JH, 1997, YEAST STRESS RESPONS, P7 Doria G, 2000, VACCINE, V18, P1591, DOI 10.1016/S0264-410X(99)00491-0 Drapeau MD, 2000, EXP GERONTOL, V35, P71, DOI 10.1016/S0531-5565(99)00082-0 Draye X, 1996, EXP GERONTOL, V31, P717, DOI 10.1016/S0531-5565(96)00073-3 Drygas W, 2000, INT J SPORTS MED, V21, P235, DOI 10.1055/s-2000-309 Du XL, 1999, FREE RADICAL BIO MED, V27, P752, DOI 10.1016/S0891-5849(99)00079-9 Dubey DP, 2000, MECH AGEING DEV, V113, P117, DOI 10.1016/S0047-6374(99)00102-5 Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x Duffy PH, 1997, ENVIRON RES, V73, P242, DOI 10.1006/enrs.1997.3714 DULLAART RPF, 1995, J CLIN ENDOCR METAB, V80, P3002, DOI 10.1210/jc.80.10.3002 El-Haschimi K, 2000, J CLIN INVEST, V105, P1827, DOI 10.1172/JCI9842 Endrich MM, 1996, BIOL CELL, V88, P15, DOI 10.1016/S0248-4900(97)86826-8 Ereskovsky AV, 2000, BIOL BULL, V198, P77, DOI 10.2307/1542805 Ergon T, 2001, NATURE, V411, P1043, DOI 10.1038/35082553 Esposito LA, 1999, P NATL ACAD SCI USA, V96, P4820, DOI 10.1073/pnas.96.9.4820 ESPOSITODELPUENTE A, 1994, INT J OBESITY, V18, P766 EVERITT AV, 1995, MECH AGEING DEV, V78, P39, DOI 10.1016/0047-6374(94)01514-M Facchini FS, 2000, FREE RADICAL BIO MED, V29, P1302, DOI 10.1016/S0891-5849(00)00438-X Fannin SW, 1999, ARCH BIOCHEM BIOPHYS, V372, P399, DOI 10.1006/abbi.1999.1508 Ferrini M, 1999, NEUROENDOCRINOLOGY, V69, P129, DOI 10.1159/000054411 Festa A, 2000, CIRCULATION, V102, P42, DOI 10.1161/01.CIR.102.1.42 Finch C., 2000, CHANCE DEV AGING Finch C. E., 1990, LONGEVITY SENESCENCE Finch CE, 1997, BETWEEN ZEUS AND THE SALMON, P245 Finch CE, 1997, SCIENCE, V278, P407, DOI 10.1126/science.278.5337.407 Finch CE, 2001, ANNU REV GENOM HUM G, V2, P435, DOI 10.1146/annurev.genom.2.1.435 Finch CE, 1998, J GERONTOL A-BIOL, V53, pB235, DOI 10.1093/gerona/53A.4.B235 Flurkey K, 2001, P NATL ACAD SCI USA, V98, P6736, DOI 10.1073/pnas.111158898 Frame LT, 1998, ENVIRON HEALTH PERSP, V106, P313 Franceschi C, 1999, AGING CLIN EXP RES, V11, P69, DOI 10.1007/BF03399643 Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117 Fukagawa NK, 1999, FREE RADICAL BIO MED, V27, P1437, DOI 10.1016/S0891-5849(99)00189-6 Gabbita SP, 1997, FREE RADICAL BIO MED, V23, P191, DOI 10.1016/S0891-5849(97)00043-9 Gabriely I, 2001, MECH AGEING DEV, V122, P1565, DOI 10.1016/S0047-6374(01)00287-1 GAGE MJG, 1995, P ROY SOC B-BIOL SCI, V261, P25, DOI 10.1098/rspb.1995.0112 Gartenberg MR, 2000, CURR OPIN MICROBIOL, V3, P132, DOI 10.1016/S1369-5274(00)00064-3 Gatto M, 1996, J OPTIMIZ THEORY APP, V90, P79, DOI 10.1007/BF02192247 Gavis ER, 1997, TRENDS CELL BIOL, V7, P485, DOI 10.1016/S0962-8924(97)01162-8 Gems D, 2000, BIOGERONTOLOGY, V1, P289, DOI 10.1023/A:1026546719091 Gershon D, 1999, EXP GERONTOL, V34, P613, DOI 10.1016/S0531-5565(99)00010-8 Gibbs RB, 1997, BRAIN RES, V757, P10, DOI 10.1016/S0006-8993(96)01432-1 GILAD GM, 1995, MECH AGEING DEV, V78, P75, DOI 10.1016/0047-6374(94)01529-U Gilchrest BA, 1997, FASEB J, V11, P322, DOI 10.1096/fasebj.11.5.9141498 Ginsberg HN, 2000, J CLIN INVEST, V106, P453, DOI 10.1172/JCI10762 Giordano M, 2001, BEHAV BRAIN RES, V120, P97, DOI 10.1016/S0166-4328(00)00367-3 GIRALDI T, 1994, ANN NY ACAD SCI, V719, P526, DOI 10.1111/j.1749-6632.1994.tb56856.x Godon C, 1998, J BIOL CHEM, V273, P22480, DOI 10.1074/jbc.273.35.22480 Golden TR, 2001, MECH AGEING DEV, V122, P1577, DOI 10.1016/S0047-6374(01)00288-3 GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777 Gould, 1977, EVER DARWIN GOULD SJ, 1992, BIOESSAYS, V14, P275, DOI 10.1002/bies.950140413 GOYA RG, 1992, EXP CLIN IMMUNOGENET, V9, P188 Grachev ID, 2001, J NEUROCHEM, V76, P582, DOI 10.1046/j.1471-4159.2001.00026.x GRADY D, 1992, ANN INTERN MED, V117, P1016, DOI 10.7326/0003-4819-117-12-1016 GRAVES JL, 1993, GROWTH DEVELOP AGING, V57, P233 GRAVES JL, 1993, GENETICA, V91, P99, DOI 10.1007/BF01435991 Greenberg JA, 2000, MECH AGEING DEV, V115, P107, DOI 10.1016/S0047-6374(00)00108-1 GREENSTEIN BD, 1992, INT J IMMUNOPHARMACO, V14, P541, DOI 10.1016/0192-0561(92)90115-2 Grzelak A, 2001, FEBS LETT, V492, P123, DOI 10.1016/S0014-5793(01)02244-X Guarente L, 1999, NAT GENET, V23, P281, DOI 10.1038/15458 Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700 Guralnik JM, 2000, AGING CLIN EXP RES, V12, P65, DOI 10.1007/BF03339893 Ha HJ, 2000, KIDNEY INT, V58, pS19, DOI 10.1046/j.1523-1755.2000.07704.x HALEYZITLIN V, 1993, MUTAT RES, V295, P237, DOI 10.1016/0921-8734(93)90023-V HALL KY, 1984, MECH AGEING DEV, V24, P163, DOI 10.1016/0047-6374(84)90068-X Hamet P, 1997, J HYPERTENS, V15, P1573, DOI 10.1097/00004872-199715120-00058 HAMILTON JB, 1969, J GERONTOL, V24, P395, DOI 10.1093/geronj/24.4.395 Hammond CB, 2000, AM J MANAG CARE, V6, pS746 Han ES, 2001, J NUTR, V131, P1687, DOI 10.1093/jn/131.6.1687 Hansen BC, 1999, ANN NY ACAD SCI, V892, P1, DOI 10.1111/j.1749-6632.1999.tb07782.x HANSEN ES, 1990, MUTAT RES, V239, P163, DOI 10.1016/0165-1110(90)90004-U HAOURIGUI M, 1994, STEROIDS, V59, P46, DOI 10.1016/0039-128X(94)90044-2 Harlow BL, 2000, MATURITAS, V35, P3, DOI 10.1016/S0378-5122(00)00092-X HARMAN D, 1983, AGE, V6, P86, DOI 10.1007/BF02432509 Harris RBS, 2000, ANNU REV NUTR, V20, P45, DOI 10.1146/annurev.nutr.20.1.45 Hart RW, 1999, TOXICOL SCI, V52, P3 Havel PJ, 2000, NEUROENDOCRINOLOGY IN PHYSIOLOGY AND MEDICINE, P335 Hayflick L, 1994, WHY WE AGE Heininger K, 1999, HUM PSYCHOPHARM CLIN, V14, P525, DOI 10.1002/(SICI)1099-1077(199912)14:8<525::AID-HUP140>3.0.CO;2-T Heininger K, 2000, REV NEUROSCIENCE, V11, P213 Heininger K, 1999, HUM PSYCHOPHARM CLIN, V14, P363, DOI 10.1002/(SICI)1099-1077(199908)14:6<363::AID-HUP125>3.0.CO;2-R Heininger K, 2001, REV NEUROSCIENCE, V12, P217 Hekimi S, 1998, TRENDS GENET, V14, P14, DOI 10.1016/S0168-9525(97)01299-7 Helenius M, 1999, EXP CELL RES, V248, P194, DOI 10.1006/excr.1999.4393 Henden Thale, 1992, Biological Signals, V1, P34 Hensey C, 1998, DEV BIOL, V203, P36, DOI 10.1006/dbio.1998.9028 Herrington DM, 1995, ANN NY ACAD SCI, V774, P271 HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 Heyer BS, 2000, GENE DEV, V14, P2072 HIROKAWA K, 1992, ACTA PATHOL JAPON, V42, P537 Hirokawa K, 2001, CELL MOL BIOL, V47, P97 HOLLSTEIN M, 1991, SCIENCE, V253, P49, DOI 10.1126/science.1905840 HORVITZ HR, 1992, CELL, V68, P237, DOI 10.1016/0092-8674(92)90468-R HOSONO R, 1989, EXP GERONTOL, V24, P251, DOI 10.1016/0531-5565(89)90016-8 HSIEH RH, 1994, BIOCHEM MOL BIOL INT, V32, P1009 Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694 HUANG HH, 1987, NEUROBIOL AGING, V8, P465, DOI 10.1016/0197-4580(87)90042-X Hudson EK, 1998, FREE RADICAL RES, V29, P573, DOI 10.1080/10715769800300611 Hulbert AJ, 2000, ANNU REV PHYSIOL, V62, P207, DOI 10.1146/annurev.physiol.62.1.207 Hung SH, 1997, J FORMOS MED ASSOC, V96, P812 HUNT JV, 1991, FREE RADICAL RES COM, V12-3, P115, DOI 10.3109/10715769109145775 Huppert FA, 1998, EXP GERONTOL, V33, P593, DOI 10.1016/S0531-5565(98)00033-3 Ichikawa M, 2000, MECH AGEING DEV, V113, P23, DOI 10.1016/S0047-6374(99)00093-7 Iida T, 1998, P NATL ACAD SCI USA, V95, P11274, DOI 10.1073/pnas.95.19.11274 Ikenishi K, 1998, DEV GROWTH DIFFER, V40, P1 Ikeno Y, 1997, AGE, V20, P107, DOI 10.1007/s11357-997-0010-4 Imai S, 2000, NATURE, V403, P795, DOI 10.1038/35001622 Inazu Y, 1999, DEV GENET, V25, P339, DOI 10.1002/(SICI)1520-6408(1999)25:4<339::AID-DVG8>3.0.CO;2-3 Ishii N, 2000, FREE RADICAL RES, V33, P857, DOI 10.1080/10715760000301371 Itahana K, 2001, EUR J BIOCHEM, V268, P2784, DOI 10.1046/j.1432-1327.2001.02228.x Jakubowski W, 2000, FREE RADICAL BIO MED, V28, P659, DOI 10.1016/S0891-5849(99)00266-X JAZWINSKI SM, 1993, GENETICA, V91, P35, DOI 10.1007/BF01435986 Jazwinski SM, 2001, MECH AGEING DEV, V122, P865, DOI 10.1016/S0047-6374(01)00244-5 Jazwinski SM, 2000, TRENDS GENET, V16, P506, DOI 10.1016/S0168-9525(00)02119-3 Johnson TE, 1997, BETWEEN ZEUS AND THE SALMON, P108 Johnson TE, 2000, EXP GERONTOL, V35, P687, DOI 10.1016/S0531-5565(00)00138-8 JOHNSON TE, 1984, MECH AGEING DEV, V28, P23, DOI 10.1016/0047-6374(84)90150-7 JUCKETT DA, 1987, MECH AGEING DEV, V38, P49, DOI 10.1016/0047-6374(87)90110-2 Judd SJ, 1998, REPROD FERT DEVELOP, V10, P65, DOI 10.1071/R98024 KADENBACH B, 1995, MUTAT RES-DNAGING G, V338, P161, DOI 10.1016/0921-8734(95)00021-W Kagawa Y, 1999, BIOCHEM BIOPH RES CO, V266, P662, DOI 10.1006/bbrc.1999.1884 Kale SP, 1996, DEV GENET, V18, P154, DOI 10.1002/(SICI)1520-6408(1996)18:2<154::AID-DVG8>3.0.CO;2-8 Kalra SP, 1996, FRONT NEUROENDOCRIN, V17, P371, DOI 10.1006/frne.1996.0010 KALRA SP, 1993, J REPROD FERTIL, P11 Kaplan JR, 1996, PSYCHOSOM MED, V58, P598, DOI 10.1097/00006842-199611000-00008 Kashikawa M, 1999, DEV GROWTH DIFFER, V41, P495 Kastin AJ, 2001, NEUROSCI LETT, V310, P69, DOI 10.1016/S0304-3940(01)02074-2 Kaufmann JA, 2001, J NEUROCHEM, V76, P1099, DOI 10.1046/j.1471-4159.2001.00118.x Kawamura K, 2000, ZOOL SCI, V17, P281, DOI 10.2108/jsz.17.281 Kayser EB, 2001, J BIOL CHEM, V276, P20551, DOI 10.1074/jbc.M011066200 Kelly JJ, 1998, CLIN EXP PHARMACOL P, V25, pS51, DOI 10.1111/j.1440-1681.1998.tb02301.x KENDALL MD, 1990, CELL TISSUE RES, V261, P555, DOI 10.1007/BF00313535 Kennaway DJ, 1997, BIOL SIGNAL, V6, P247 KENNEDY BK, 1995, CELL, V80, P485, DOI 10.1016/0092-8674(95)90499-9 Kim JD, 1996, AGING-CLIN EXP RES, V8, P123, DOI 10.1007/BF03339566 KINCADE PW, 1994, IMMUNOL REV, V137, P119, DOI 10.1111/j.1600-065X.1994.tb00661.x Kipling D, 2001, MATURITAS, V38, P25, DOI 10.1016/S0378-5122(00)00189-4 Kirk DL, 1997, ANNU REV GENET, V31, P359, DOI 10.1146/annurev.genet.31.1.359 Kirkwood TBL, 1997, PHILOS T R SOC B, V352, P1765, DOI 10.1098/rstb.1997.0160 Kirkwood TBL, 2000, J ANAT, V197, P587, DOI 10.1046/j.1469-7580.2000.19740587.x Kirkwood TBL, 2001, EXP GERONTOL, V36, P413, DOI 10.1016/S0531-5565(00)00255-2 KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0 KISSEBAH AH, 1994, PHYSIOL REV, V74, P761, DOI 10.1152/physrev.1994.74.4.761 Klapper W, 2001, MECH AGEING DEV, V122, P695, DOI 10.1016/S0047-6374(01)00223-8 KLEBANOV S, 1995, J GERONTOL A-BIOL, V50, pB78, DOI 10.1093/gerona/50A.2.B78 KLOEDEN PE, 1994, ANN NY ACAD SCI, V719, P474, DOI 10.1111/j.1749-6632.1994.tb56852.x Knaut H, 2000, J CELL BIOL, V149, P875, DOI 10.1083/jcb.149.4.875 Koistinen HA, 1998, MED SCI SPORT EXER, V30, P805, DOI 10.1097/00005768-199806000-00005 Koll F, 2001, MECH AGEING DEV, V122, P205, DOI 10.1016/S0047-6374(00)00232-3 KOLTER R, 1993, ANNU REV MICROBIOL, V47, P855, DOI 10.1146/annurev.micro.47.1.855 Kopsidas G, 1998, MUTAT RES-FUND MOL M, V421, P27, DOI 10.1016/S0027-5107(98)00150-X KORF HW, 1994, ANN NY ACAD SCI, V719, P13, DOI 10.1111/j.1749-6632.1994.tb56818.x Korpelainen H, 1999, HUM HERED, V49, P183, DOI 10.1159/000022871 KOUFOPANOU V, 1993, P ROY SOC B-BIOL SCI, V254, P107, DOI 10.1098/rspb.1993.0134 Kowald A, 1999, EXP GERONTOL, V34, P605, DOI 10.1016/S0531-5565(99)00011-X Kozloff EN, 2000, INVERTEBR REPROD DEV, V37, P95, DOI 10.1080/07924259.2000.9652408 Krebs CJ, 1999, P NATL ACAD SCI USA, V96, P1686, DOI 10.1073/pnas.96.4.1686 Krebs RA, 1999, HEREDITY, V83, P46, DOI 10.1038/sj.hdy.6885410 Kristal BS, 1998, AGE, V21, P1, DOI 10.1007/s11357-998-0001-0 Kujala UM, 1998, JAMA-J AM MED ASSOC, V279, P440, DOI 10.1001/jama.279.6.440 Kumazawa T, 1998, TERATOLOGY, V57, P146, DOI 10.1002/(SICI)1096-9926(199803)57:3<146::AID-TERA4>3.0.CO;2-Z Lackey BR, 2000, THERIOGENOLOGY, V53, P1147, DOI 10.1016/S0093-691X(00)00259-4 Lan CT, 2001, BRAIN RES, V910, P1, DOI 10.1016/S0006-8993(01)02714-7 Lane MA, 2000, J AM AGING ASSOC, V23, P1, DOI 10.1007/s11357-000-0001-1 LANG E, 1994, Z GERONTOL, V27, P10 LANTHIER A, 1986, J STEROID BIOCHEM, V25, P445, DOI 10.1016/0022-4731(86)90259-1 Lanza RP, 2000, SCIENCE, V288, P665, DOI 10.1126/science.288.5466.665 LAPOLT PS, 1995, ENDOCRINOLOGY, V136, P5533, DOI 10.1210/en.136.12.5533 LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 LARSEN PL, 1995, GENETICS, V139, P1567 Lass A, 1999, BIOFACTORS, V9, P199, DOI 10.1002/biof.5520090215 Laun P, 2001, MOL MICROBIOL, V39, P1166, DOI 10.1046/j.1365-2958.2001.02317.x Lee A. K., 1985, EVOLUTIONARY ECOLOGY Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390 LEE IM, 1995, JAMA-J AM MED ASSOC, V273, P1179, DOI 10.1001/jama.273.15.1179 Lee IM, 1997, AGING CLIN EXP RES, V9, P2, DOI 10.1007/BF03340123 Lee IM, 2000, AM J EPIDEMIOL, V151, P293, DOI 10.1093/oxfordjournals.aje.a010205 LEEDOM L, 1994, ANN NY ACAD SCI, V743, P61, DOI 10.1111/j.1749-6632.1994.tb55787.x LEOPOLD AC, 1961, SCIENCE, V134, P1727, DOI 10.1126/science.134.3492.1727 Lewis K, 2000, MICROBIOL MOL BIOL R, V64, P503, DOI 10.1128/MMBR.64.3.503-514.2000 LI HY, 1994, ENDOCRINOLOGY, V135, P240, DOI 10.1210/en.135.1.240 Liang P, 1997, DIABETES, V46, P920, DOI 10.2337/diabetes.46.5.920 Lin K, 2001, NAT GENET, V28, P139, DOI 10.1038/88850 Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 Lin SS, 2001, J BIOL CHEM, V276, P36000, DOI 10.1074/jbc.M103509200 Lin Y L, 1990, Chin J Physiol, V33, P291 Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943 Linnane AW, 1998, ANN NY ACAD SCI, V854, P202, DOI 10.1111/j.1749-6632.1998.tb09903.x Lithgow Gordon J., 1996, P55 Liu JK, 1999, NEUROCHEM RES, V24, P1479, DOI 10.1023/A:1022597010078 Longo VD, 1999, NEUROBIOL AGING, V20, P479, DOI 10.1016/S0197-4580(99)00089-5 Longo VD, 1996, J BIOL CHEM, V271, P12275, DOI 10.1074/jbc.271.21.12275 Lopez JF, 1999, BIOL PSYCHIAT, V46, P1461, DOI 10.1016/S0006-3223(99)00266-8 Luo JY, 2001, CELL, V107, P137, DOI 10.1016/S0092-8674(01)00524-4 MacArthur R., 1967, THEORY ISLAND BIOGEO Machesky LM, 1998, CURR BIOL, V8, P607, DOI 10.1016/S0960-9822(98)70233-7 MacMillan-Crow LA, 1998, BIOCHEMISTRY-US, V37, P1613, DOI 10.1021/bi971894b MAEKAWA H, 1994, MOL GEN GENET, V244, P456, DOI 10.1007/BF00583896 Maestroni GJM, 2001, EXPERT OPIN INV DRUG, V10, P467, DOI 10.1517/13543784.10.3.467 Maiello M, 1998, GERONTOLOGY, V44, P15, DOI 10.1159/000021977 MALABU UH, 1992, PEPTIDES, V13, P1097, DOI 10.1016/0196-9781(92)90013-S Maldonado TA, 2000, BRAIN RES, V858, P237, DOI 10.1016/S0006-8993(99)02328-8 Malone EA, 1996, GENETICS, V143, P1193 Manova K, 1998, DEV DYNAM, V213, P293, DOI 10.1002/(SICI)1097-0177(199811)213:3<293::AID-AJA6>3.0.CO;2-D Martinez DE, 1998, EXP GERONTOL, V33, P217, DOI 10.1016/S0531-5565(97)00113-7 Martinez DE, 1996, EXP GERONTOL, V31, P699, DOI 10.1016/S0531-5565(96)00099-X MARTINEZ DE, 1992, P NATL ACAD SCI USA, V89, P9920, DOI 10.1073/pnas.89.20.9920 MASLIAH E, 1993, NEUROLOGY, V43, P192, DOI 10.1212/WNL.43.1_Part_1.192 Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X MASORO EJ, 1992, ANN NY ACAD SCI, V663, P403, DOI 10.1111/j.1749-6632.1992.tb38684.x Masoro EJ, 1998, J TOXICOL ENV HEAL B, V1, P243, DOI 10.1080/10937409809524554 Masoro EJ, 1995, AGING-CLIN EXP RES, V7, P407, DOI 10.1007/BF03324354 Matsuyama SI, 1998, PROTOPLASMA, V201, P172, DOI 10.1007/BF01287413 Mattson MP, 2000, BRAIN RES, V886, P47, DOI 10.1016/S0006-8993(00)02790-6 MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832 McArdle A, 2000, J ANAT, V197, P539, DOI 10.1046/j.1469-7580.2000.19740539.x McCall K, 1998, SCIENCE, V279, P230, DOI 10.1126/science.279.5348.230 MCCARTER RJ, 1992, AM J PHYSIOL, V263, pE448, DOI 10.1152/ajpendo.1992.263.3.E448 McCarter RJM, 1997, AGING-CLIN EXP RES, V9, P73, DOI 10.1007/BF03340130 MCCARTER RJM, 1996, GERONTOLOGIST, V36, P165 MCCARTY MF, 1994, MED HYPOTHESES, V43, P253, DOI 10.1016/0306-9877(94)90076-0 McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398 Meaney MJ, 2001, ANN NY ACAD SCI, V935, P50 Mecocci P, 2000, FREE RADICAL BIO MED, V28, P1243, DOI 10.1016/S0891-5849(00)00246-X Medawar P. B., 1952, UNSOLVED PROBLEM BIO MEDVEDEV ZA, 1981, MECH AGEING DEV, V17, P331, DOI 10.1016/0047-6374(81)90052-X Meissner M, 1999, CURR GENET, V36, P363, DOI 10.1007/s002940050511 MEITES J, 1990, P SOC EXP BIOL MED, V195, P304, DOI 10.3181/00379727-195-43150B Melov S, 1999, MUTAT RES-DNA REPAIR, V434, P233, DOI 10.1016/S0921-8777(99)00031-2 Michikawa Y, 1999, SCIENCE, V286, P774, DOI 10.1126/science.286.5440.774 Mihaylova VT, 1999, P NATL ACAD SCI USA, V96, P7427, DOI 10.1073/pnas.96.13.7427 Miller MA, 2000, DEV BIOL, V224, P326, DOI 10.1006/dbio.2000.9790 Miller RA, 2000, J GERONTOL A-BIOL, V55, pB455, DOI 10.1093/gerona/55.9.B455 Miller SM, 1999, DEVELOPMENT, V126, P649 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Miquel J, 1998, EXP GERONTOL, V33, P113, DOI 10.1016/S0531-5565(97)00060-0 MIZOGUCHI K, 1992, NEUROSCI LETT, V138, P157, DOI 10.1016/0304-3940(92)90495-S Mlekusch W, 1996, MECH AGEING DEV, V92, P43, DOI 10.1016/S0047-6374(96)01801-5 MOBBS CV, 1992, J GERONTOL, V47, pB48, DOI 10.1093/geronj/47.2.B48 MOBBS CV, 1993, GENETICA, V91, P239, DOI 10.1007/BF01436001 Moore MA, 1998, EUR J CANCER PREV, V7, P89 Morales AV, 1997, ENDOCRINOLOGY, V138, P3967, DOI 10.1210/en.138.9.3967 MORLEY JE, 2000, SCI GERIATRICS, P143 Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0 Mosinger BJ, 1999, BBA-MOL BASIS DIS, V1453, P180, DOI 10.1016/S0925-4439(98)00100-8 Mott JL, 1999, ANN NY ACAD SCI, V893, P353, DOI 10.1111/j.1749-6632.1999.tb07853.x Mott JL, 2001, MUTAT RES-FUND MOL M, V474, P35, DOI 10.1016/S0027-5107(00)00159-7 MUNKRES KD, 1984, MECH AGEING DEV, V24, P83, DOI 10.1016/0047-6374(84)90177-5 Murakami K, 1999, MATURITAS, V33, P71, DOI 10.1016/S0378-5122(99)00040-7 MYDLARSKI MB, 1995, NEUROBIOL AGING, V16, P977, DOI 10.1016/0197-4580(95)02018-7 MYERS RB, 1988, J STEROID BIOCHEM, V31, P305, DOI 10.1016/0022-4731(88)90354-8 Mystkowski P, 2000, NUTRITION, V16, P937, DOI 10.1016/S0899-9007(00)00458-5 NAGATA T, 1994, INT J DEV BIOL, V38, P321 Nathan L, 1998, SEMIN REPROD ENDOCR, V16, P309, DOI 10.1055/s-2007-1016289 NELSON JF, 1995, NEUROBIOL AGING, V16, P837, DOI 10.1016/0197-4580(95)00072-M Nestelbacher R, 2000, EXP GERONTOL, V35, P63, DOI 10.1016/S0531-5565(99)00087-X Neuberg M, 1997, ENDOCRINE, V7, P107, DOI 10.1007/BF02778075 NICHOLS NR, 1995, NEUROBIOL AGING, V16, P105, DOI 10.1016/0197-4580(95)80013-H Nicoletti VG, 1998, NEUROCHEM RES, V23, P55, DOI 10.1023/A:1022449403619 Nilsson PM, 1996, MED HYPOTHESES, V47, P39, DOI 10.1016/S0306-9877(96)90041-9 Nishikawa T, 2000, NATURE, V404, P787, DOI 10.1038/35008121 Nooden Larry D., 1996, P94 Nooden LD, 2001, J EXP BOT, V52, P2151, DOI 10.1093/jexbot/52.364.2151 Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432 Norwood TH, 1996, EXP GERONTOL, V31, P61, DOI 10.1016/0531-5565(95)02020-9 Nulton-Persson AC, 2001, J BIOL CHEM, V276, P23357, DOI 10.1074/jbc.M100320200 Nystrom T, 1999, CURR OPIN MICROBIOL, V2, P214, DOI 10.1016/S1369-5274(99)80037-X OBRIEN IAD, 1986, CLIN ENDOCRINOL, V24, P359, DOI 10.1111/j.1365-2265.1986.tb01639.x OHKOSHI N, 1995, MUSCLE NERVE, V18, P1265, DOI 10.1002/mus.880181108 OHTSU T, 1993, J BIOL CHEM, V268, P1830 Okasha SA, 2001, TOXICOLOGY, V163, P49, DOI 10.1016/S0300-483X(01)00374-2 Okatani Y, 1998, J PINEAL RES, V25, P245, DOI 10.1111/j.1600-079X.1998.tb00394.x Okatani Y, 2000, J PINEAL RES, V28, P111, DOI 10.1034/j.1600-079X.2001.280207.x OLSEN NJ, 1991, ENDOCRINOLOGY, V129, P2471, DOI 10.1210/endo-129-5-2471 ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730 Osiewacz HD, 1999, EXP GERONTOL, V34, P901, DOI 10.1016/S0531-5565(99)00063-7 Osiewacz HD, 2001, ARCH GERONTOL GERIAT, V32, P185, DOI 10.1016/S0167-4943(01)00096-6 OYEYINKA GO, 1984, GERONTOLOGY, V30, P188, DOI 10.1159/000212628 Ozawa T, 1999, J BIOENERG BIOMEMBR, V31, P377, DOI 10.1023/A:1005479920097 PABLOS MI, 1993, NEUROSCI LETT, V159, P211, DOI 10.1016/0304-3940(93)90836-A Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910 Pahlavani MA, 2000, FRONT BIOSCI-LANDMRK, V5, pD580, DOI 10.2741/Pahlavani Pahlavani MA, 1997, DRUG TODAY, V33, P25 Pampfer S, 2000, PLACENTA, V21, pS3, DOI 10.1053/plac.1999.0519 Paolisso G, 2000, EUR J CLIN INVEST, V30, P888, DOI 10.1046/j.1365-2362.2000.00729.x Paolisso G, 1998, J AM GERIATR SOC, V46, P833, DOI 10.1111/j.1532-5415.1998.tb02716.x Papaconstantinou John, 1996, P150 PARCHMENT RE, 1993, INT J DEV BIOL, V37, P75 PARDUCZ A, 1993, NEUROSCIENCE, V53, P395, DOI 10.1016/0306-4522(93)90203-R Park PU, 1999, MOL CELL BIOL, V19, P3848 Parr T, 1999, GERONTOLOGY, V45, P121, DOI 10.1159/000022075 PARSONS PA, 1995, HEREDITY, V75, P216, DOI 10.1038/hdy.1995.126 PARTRIDGE L, 1993, GENETICA, V91, P89, DOI 10.1007/BF01435990 Partridge L., 1986, P45 PASQUALINI C, 1986, ENDOCRINOLOGY, V119, P2484, DOI 10.1210/endo-119-6-2484 Pawelec G, 2001, TRENDS IMMUNOL, V22, P422, DOI 10.1016/S1471-4906(01)01987-1 Pecqueur C, 2001, J BIOL CHEM, V276, P8705, DOI 10.1074/jbc.M006938200 Pennisi E, 2000, SCIENCE, V289, P1131, DOI 10.1126/science.289.5482.1131 Pesce M, 2000, MOL REPROD DEV, V55, P452, DOI 10.1002/(SICI)1098-2795(200004)55:4<452::AID-MRD14>3.0.CO;2-S Pickup JC, 1998, DIABETOLOGIA, V41, P1241, DOI 10.1007/s001250051058 Pierpaoli W, 1997, EXP GERONTOL, V32, P587, DOI 10.1016/S0531-5565(96)00163-5 Pierpaoli W, 2001, J ANTI-AGING MED, V4, P31, DOI 10.1089/109454501750225668 Piers LS, 1998, J APPL PHYSIOL, V85, P2196, DOI 10.1152/jappl.1998.85.6.2196 Ping L, 1997, NEUROENDOCRINOLOGY, V66, P246, DOI 10.1159/000127245 Piraino S, 1996, BIOL BULL-US, V190, P302, DOI 10.2307/1543022 Pla M, 2000, FEBS LETT, V472, P14, DOI 10.1016/S0014-5793(00)01424-1 Pletcher SD, 1998, EVOLUTION, V52, P454, DOI [10.1111/j.1558-5646.1998.tb01645.x, 10.2307/2411081] Poindexter JS, 2000, APPL ENVIRON MICROB, V66, P4105, DOI 10.1128/AEM.66.9.4105-4111.2000 Ponnappan Usha, 1998, Frontiers in Bioscience, V3, pD152 Porte D, 1999, ANN NY ACAD SCI, V892, P73, DOI 10.1111/j.1749-6632.1999.tb07786.x Prolla TA, 2001, TRENDS NEUROSCI, V24, pS21, DOI 10.1016/S0166-2236(00)01957-3 Puca AA, 2001, P NATL ACAD SCI USA, V98, P10505, DOI 10.1073/pnas.181337598 Raffa RB, 1998, NEUROSCI BIOBEHAV R, V22, P789, DOI 10.1016/S0149-7634(97)00070-5 Ramsey JJ, 2000, EXP GERONTOL, V35, P1131, DOI 10.1016/S0531-5565(00)00166-2 Ramsey JJ, 2000, FREE RADICAL BIO MED, V29, P946, DOI 10.1016/S0891-5849(00)00417-2 Randerath Kurt, 1996, P198 RAO G, 1990, J NUTR, V120, P602, DOI 10.1093/jn/120.6.602 Rasmussen DD, 2001, J PINEAL RES, V31, P89, DOI 10.1034/j.1600-079X.2001.310113.x RASMUSSEN JE, 1990, ENDOCRINOLOGY, V126, P235, DOI 10.1210/endo-126-1-235 Reaven GM, 1999, ANN NY ACAD SCI, V892, P45, DOI 10.1111/j.1749-6632.1999.tb07784.x Redins CA, 1999, TISSUE CELL, V31, P233, DOI 10.1054/tice.1999.0010 Reiter RJ, 1999, MECH AGEING DEV, V110, P157, DOI 10.1016/S0047-6374(99)00058-5 Reznick D, 2001, EXP GERONTOL, V36, P791, DOI 10.1016/S0531-5565(00)00241-2 Reznick DN, 1997, EXP GERONTOL, V32, P245, DOI 10.1016/S0531-5565(96)00129-5 Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147 Ricklefs RE, 1995, AGING NATURAL HIST Riddle DL, 1999, NATURE, V399, P308, DOI 10.1038/20557 Riha VF, 1996, J GERONTOL A-BIOL, V51, pB284, DOI 10.1093/gerona/51A.4.B284 Risby TH, 1999, J APPL PHYSIOL, V86, P617, DOI 10.1152/jappl.1999.86.2.617 Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137 Rohner-Jeanrenaud F, 1999, ANN NY ACAD SCI, V892, P261, DOI 10.1111/j.1749-6632.1999.tb07800.x ROUSSELL D, 1994, PARASITOL TODAY, V10, P110, DOI 10.1016/0169-4758(94)90011-6 ROWE JW, 1983, J CLIN INVEST, V71, P1581, DOI 10.1172/JCI110914 Rudolph KL, 1999, CELL, V96, P701, DOI 10.1016/S0092-8674(00)80580-2 Rustin P, 2000, MECH AGEING DEV, V114, P201, DOI 10.1016/S0047-6374(00)00102-0 SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171 Saffman EE, 1999, CELL MOL LIFE SCI, V55, P1141, DOI 10.1007/s000180050363 Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x Salvioli S, 2001, FEBS LETT, V492, P9, DOI 10.1016/S0014-5793(01)02199-8 Samec S, 1999, DIABETES, V48, P436, DOI 10.2337/diabetes.48.2.436 Sanders EJ, 1997, CELL DEATH DIFFER, V4, P188, DOI 10.1038/sj.cdd.4400235 Scarpace PJ, 2000, DIABETES, V49, P431, DOI 10.2337/diabetes.49.3.431 Scarpace PJ, 2000, J ENDOCRINOL, V164, P331, DOI 10.1677/joe.0.1640331 Schafer KH, 1997, BRAIN RES PROTOC, V1, P109, DOI 10.1016/S1385-299X(96)00017-7 SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343 SCHMID HA, 1993, GERONTOLOGY, V39, P189 Schultz C, 1997, NEUROSCI LETT, V237, P93, DOI 10.1016/S0304-3940(97)00817-3 SCHWARTZ AG, 1994, J GERONTOL, V49, pB37, DOI 10.1093/geronj/49.2.B37 Schwartz MW, 1999, AM J CLIN NUTR, V69, P584 Schwarze SR, 1998, FREE RADICAL BIO MED, V25, P740, DOI 10.1016/S0891-5849(98)00153-1 Scrofano MM, 1998, MECH AGEING DEV, V105, P31, DOI 10.1016/S0047-6374(98)00077-3 Seeman TE, 2001, P NATL ACAD SCI USA, V98, P4770, DOI 10.1073/pnas.081072698 Sehl ME, 2001, J GERONTOL A-BIOL, V56, pB198, DOI 10.1093/gerona/56.5.B198 SEIFER DB, 1994, MENOPAUSE, V1, P83 Sell DR, 2000, FASEB J, V14, P145, DOI 10.1096/fasebj.14.1.145 SELTZER A, 1992, ENDOCRINOLOGY, V130, P1896, DOI 10.1210/en.130.4.1896 Selye H, 1975, STRESS LIFE Serrano M, 2001, CURR OPIN CELL BIOL, V13, P748, DOI 10.1016/S0955-0674(00)00278-7 Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521 Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x Sharma P, 1998, GERONTOLOGY, V44, P78, DOI 10.1159/000021988 Sharma SP, 1997, BIOCHEM MOL BIOL INT, V41, P869 Sheeba V, 2000, J BIOL RHYTHM, V15, P380, DOI 10.1177/074873000129001477 Shibata N, 1999, DEV BIOL, V206, P73, DOI 10.1006/dbio.1998.9130 SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771 Shimokawa I, 2001, MECH AGEING DEV, V122, P1511, DOI 10.1016/S0047-6374(01)00284-6 SIEDE W, 1990, MUTAT RES, V245, P287, DOI 10.1016/0165-7992(90)90158-G Silbermann R, 2000, EVOLUTION, V54, P2038 Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1 Simon VR, 1997, CELL MOTIL CYTOSKEL, V37, P199, DOI 10.1002/(SICI)1097-0169(1997)37:3<199::AID-CM2>3.0.CO;2-2 Simpson L, 2001, EXP CELL RES, V264, P29, DOI 10.1006/excr.2000.5130 Skalicky M, 1999, AGING-CLIN EXP RES, V11, P227, DOI 10.1007/BF03339663 Skulachev VP, 1998, BBA-BIOENERGETICS, V1363, P100, DOI 10.1016/S0005-2728(97)00091-1 Smith BJ, 1997, J APPL TOXICOL, V17, P265, DOI 10.1002/(SICI)1099-1263(199709)17:5<265::AID-JAT451>3.0.CO;2-6 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Solano JM, 1999, AM J PHYSIOL-ENDOC M, V277, pE708, DOI 10.1152/ajpendo.1999.277.4.E708 Sonntag WE, 1999, J GERONTOL A-BIOL, V54, pB521, DOI 10.1093/gerona/54.12.B521 Sorensen JG, 1999, HEREDITAS, V131, P155, DOI 10.1111/j.1601-5223.1999.00155.x Souza-Pinto NC, 1999, NUCLEIC ACIDS RES, V27, P1935, DOI 10.1093/nar/27.8.1935 SPENCER RP, 1993, MED HYPOTHESES, V40, P102, DOI 10.1016/0306-9877(93)90137-F Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597 Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763 STEWART J, 1988, ENDOCRINOLOGY, V123, P1934, DOI 10.1210/endo-123-4-1934 Storz G, 2000, BACTERIAL STRESS RESPONSES, P47 Stragier P, 1996, ANNU REV GENET, V30, P297, DOI 10.1146/annurev.genet.30.1.297 Stratakis CA, 1995, ANN NY ACAD SCI, V771, P1, DOI 10.1111/j.1749-6632.1995.tb44666.x Sugiyama M, 1999, CURR OPIN PLANT BIOL, V2, P61, DOI 10.1016/S1369-5266(99)80012-0 Surwit RS, 1996, PSYCHOSOM MED, V58, P582, DOI 10.1097/00006842-199611000-00006 Suzuki M, 1999, ENDOCR J, V46, P521, DOI 10.1507/endocrj.46.521 SWAAB DF, 1994, J NEUROENDOCRINOL, V6, P681, DOI 10.1111/j.1365-2826.1994.tb00635.x Sweet DH, 1997, MOL CELL BIOL, V17, P6223, DOI 10.1128/MCB.17.11.6223 Tam PPL, 1997, MECH DEVELOP, V68, P3, DOI 10.1016/S0925-4773(97)00123-8 Tanaka M, 2000, MECH AGEING DEV, V116, P65, DOI 10.1016/S0047-6374(00)00149-4 Tannenbaum BM, 1997, AM J PHYSIOL-ENDOC M, V273, pE1168, DOI 10.1152/ajpendo.1997.273.6.E1168 Tarin JJ, 1998, MOL HUM REPROD, V4, P281, DOI 10.1093/molehr/4.3.281 Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987 Tatar M, 2001, EXP GERONTOL, V36, P723, DOI 10.1016/S0531-5565(00)00238-2 Tatar M, 1999, AM ZOOL, V39, P920 Taub J, 1999, NATURE, V399, P162, DOI 10.1038/20208 TAYLOR GT, 1993, J ENDOCRINOL, V137, P115, DOI 10.1677/joe.0.1370115 TELFORD N, 1987, NEUROENDOCRINOLOGY, V46, P481, DOI 10.1159/000124869 Temple JL, 2000, BIOL REPROD, V63, P1721, DOI 10.1095/biolreprod63.6.1721 TETZ VV, 1993, J GEN MICROBIOL, V139, P855, DOI 10.1099/00221287-139-4-855 THACKER J, 1976, MUTAT RES, V38, P43, DOI 10.1016/0165-1161(76)90078-9 Theodoridis GC, 1996, J THEOR BIOL, V178, P61, DOI 10.1006/jtbi.1996.0007 Thomas F, 2001, HUM BIOL, V73, P271, DOI 10.1353/hub.2001.0029 Thomas JN, 1997, J PINEAL RES, V23, P123, DOI 10.1111/j.1600-079X.1997.tb00344.x Thorpe SR, 1996, DRUG AGING, V9, P69, DOI 10.2165/00002512-199609020-00001 Tissenbaum HA, 2000, P NATL ACAD SCI USA, V97, P460, DOI 10.1073/pnas.97.1.460 Toussaint O, 2000, EXP GERONTOL, V35, P927, DOI 10.1016/S0531-5565(00)00180-7 Tower J, 2000, MECH AGEING DEV, V118, P1, DOI 10.1016/S0047-6374(00)00152-4 Toyooka Y, 2000, MECH DEVELOP, V93, P139, DOI 10.1016/S0925-4773(00)00283-5 Tran PV, 2001, INVERTEBR REPROD DEV, V39, P21, DOI 10.1080/07924259.2001.9652464 TRENTINI GP, 1992, NEUROENDOCRINOLOGY, V56, P364, DOI 10.1159/000126250 Tretter L, 2000, J NEUROSCI, V20, P8972 TROSKO JE, 1980, MED HYPOTHESES, V6, P455, DOI 10.1016/0306-9877(80)90098-5 TROXLER RG, 1977, ATHEROSCLEROSIS, V26, P151, DOI 10.1016/0021-9150(77)90098-3 Tsai HW, 2001, BIOL REPROD, V64, P684, DOI 10.1095/biolreprod64.2.684 Tsang WY, 2001, J BIOL CHEM, V276, P32240, DOI 10.1074/jbc.M103999200 Tsunekawa N, 2000, DEVELOPMENT, V127, P2741 Tucic N, 1997, EVOLUTION, V51, P1896, DOI 10.1111/j.1558-5646.1997.tb05112.x Turker MS, 2000, MECH AGEING DEV, V117, P1, DOI 10.1016/S0047-6374(00)00133-0 Tuzcu EM, 2001, CIRCULATION, V103, P2705 Unger RH, 2001, FASEB J, V15, P312, DOI 10.1096/fj.00-0590 Vaillant GE, 2001, AM J PSYCHIAT, V158, P839, DOI 10.1176/appi.ajp.158.6.839 Van Voorhies WA, 2001, EXP GERONTOL, V36, P55, DOI 10.1016/S0531-5565(00)00208-4 Vandenbroucke JP, 1998, LANCET, V351, P1064, DOI 10.1016/S0140-6736(05)79038-3 VANVOLLENHOVEN RF, 1994, CLEV CLIN J MED, V61, P276, DOI 10.3949/ccjm.61.4.276 VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0 Vardi P, 2000, MED HYPOTHESES, V55, P521, DOI 10.1054/mehy.2000.1112 Vaskivuo TE, 2001, J CLIN ENDOCR METAB, V86, P3421, DOI 10.1210/jc.86.7.3421 Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855 VAWTER L, 1986, SCIENCE, V234, P194, DOI 10.1126/science.3018931 Velde ERT, 1998, MATURITAS, V30, P119 Veldhuis JD, 2000, J ANTI-AGING MED, V3, P269, DOI 10.1089/rej.1.2000.3.269 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Vieira HLA, 2001, ONCOGENE, V20, P4305, DOI 10.1038/sj.onc.1204575 Vijg J, 2000, MUTAT RES-FUND MOL M, V447, P117, DOI 10.1016/S0027-5107(99)00202-X Viveros MP, 2001, J NEUROIMMUNOL, V114, P80, DOI 10.1016/S0165-5728(00)00457-4 Volkers N, 2000, J NATL CANCER I, V92, P192, DOI 10.1093/jnci/92.3.192 Volloch V, 1999, EXP CELL RES, V253, P483, DOI 10.1006/excr.1999.4682 Von Zglinicki T, 2000, ANN NY ACAD SCI, V908, P99, DOI 10.1111/j.1749-6632.2000.tb06639.x VRIEND J, 1990, GROWTH DEVELOP AGING, V54, P165 Wadhwa R, 2000, Prog Mol Subcell Biol, V24, P191 WALLACE DC, 1967, J CHRON DIS, V20, P475, DOI 10.1016/0021-9681(67)90079-3 Wanagat J, 2000, FACT RES INTERV GER, V1-2, P153 WANG E, 1995, CANCER RES, V55, P2284 Wang HS, 1999, J ENDOCRINOL, V161, P1, DOI 10.1677/joe.0.1610001 Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X Warner HR, 1997, CURR TOP CELL REGUL, V35, P107, DOI 10.1016/S0070-2137(97)80004-0 Waters DJ, 2000, PROSTATE, V43, P272, DOI 10.1002/1097-0045(20000601)43:4<272::AID-PROS6>3.0.CO;2-D Wei YH, 1998, ANN NY ACAD SCI, V854, P155, DOI 10.1111/j.1749-6632.1998.tb09899.x Weindruch R, 2001, J NUTR, V131, p918S, DOI 10.1093/jn/131.3.918S Weindruch R., 1988, RETARDATION AGING DI Weismann A., 1889, ESSAYS HEREDITY KIND WHEELER JC, 1995, P NATL ACAD SCI USA, V92, P10408, DOI 10.1073/pnas.92.22.10408 WIDMAIER EP, 1995, PROSTAG LEUKOTR ESS, V52, P179, DOI 10.1016/0952-3278(95)90019-5 WILAMOWSKA A, 1992, J PINEAL RES, V13, P1, DOI 10.1111/j.1600-079X.1992.tb00047.x Williams G. C., 1966, P307 WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x WilschBrauninger M, 1997, J CELL BIOL, V139, P817, DOI 10.1083/jcb.139.3.817 Wilson JB, 1997, PHYSIOL PLANTARUM, V99, P511, DOI 10.1034/j.1399-3054.1997.990321.x Windmill KF, 1998, TISSUE CELL, V30, P104, DOI 10.1016/S0040-8166(98)80011-6 Wise PM, 1997, RECENT PROG HORM RES, V52, P279 WOITCZAK L, 1993, BIOCHIM BIOPHYS ACTA, V1183, P41, DOI 10.1016/0005-2728(93)90004-Y Wylie C, 1999, CELL, V96, P165, DOI 10.1016/S0092-8674(00)80557-7 WYNDHAM JR, 1987, ARCH GERONTOL GERIAT, V6, P323, DOI 10.1016/0167-4943(87)90012-4 WynfordThomas D, 1996, ONCOL RES, V8, P387 Yan H, 1997, BIOCHEM J, V328, P599, DOI 10.1042/bj3280599 Yan LJ, 2000, FREE RADICAL BIO MED, V29, P1143, DOI 10.1016/S0891-5849(00)00423-8 Yan LJ, 1998, P NATL ACAD SCI USA, V95, P12896, DOI 10.1073/pnas.95.22.12896 Yang HC, 1999, CURR BIOL, V9, P1111, DOI 10.1016/S0960-9822(99)80480-1 YANG SL, 1993, ACTA ENDOCRINOL-COP, V129, P543, DOI 10.1530/acta.0.1290543 Yeo EJ, 2000, MOL CELLS, V10, P415 YIE SM, 1995, NEUROENDOCRINOLOGY, V62, P93, DOI 10.1159/000126993 Young TE, 2000, PLANT MOL BIOL, V44, P283, DOI 10.1023/A:1026588408152 Zahn RK, 2000, MECH AGEING DEV, V119, P101, DOI 10.1016/S0047-6374(00)00170-6 Zhou JN, 1999, MICROSC RES TECHNIQ, V44, P36, DOI 10.1002/(SICI)1097-0029(19990101)44:1<36::AID-JEMT5>3.0.CO;2-F Zimmet P, 1999, ANN NY ACAD SCI, V892, P25, DOI 10.1111/j.1749-6632.1999.tb07783.x Zirkin BR, 1997, EXP GERONTOL, V32, P529, DOI 10.1016/S0531-5565(96)00165-9 Zou S, 2000, P NATL ACAD SCI USA, V97, P13726, DOI 10.1073/pnas.260496697 Zuo Z, 1996, ENDOCRINOLOGY, V137, P2334, DOI 10.1210/en.137.6.2334 NR 584 TC 22 Z9 23 U1 0 U2 21 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD JUN PY 2002 VL 1 IS 3 BP 481 EP 536 AR PII S1568-1637(02)00015-6 DI 10.1016/S1568-1637(02)00015-6 PG 56 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 603AP UT WOS:000178536900012 PM 12067599 DA 2023-03-13 ER PT J AU Durak, R Jedryczka, M Czajka, B Dampc, J Wielgusz, K Borowiak-Sobkowiak, B AF Durak, Roma Jedryczka, Malgorzata Czajka, Beata Dampc, Jan Wielgusz, Katarzyna Borowiak-Sobkowiak, Beata TI Mild Abiotic Stress Affects Development and Stimulates Hormesis of Hemp Aphid Phorodon cannabis SO INSECTS LA English DT Article DE temperature; herbicide; enzymatic markers; Cannabis sativa; demographic parameters ID GLUTATHIONE S-TRANSFERASES; SITOBION-AVENAE; HEMIPTERA APHIDIDAE; RESISTANCE; HERBICIDES; PLANT; TEMPERATURE; PARAMETERS; POPULATION; ADAPTATION AB Simple Summary For centuries, hemp has been used by humans as a source of natural fiber. Nowadays, it is a multipurpose crop with many uses, but the most valuable are hemp metabolites including terpenes and cannabinoids. During the cultivation of hemp, farmers encounter wilting plants, inhabited by the hemp aphid-a persistent plant-damaging insect. The species lives mainly on the undersides of leaves and on flower stalks and feeds on the phloem sap. We studied the effects of temperature and the herbicide used by farmers in routine hemp cultivation on the population biology of hemp aphids. Hemp aphids thrived best at moderate temperatures between 20 and 25 degrees C. At this temperature range, they lived for about 25 days, during which they reproduced for 15 days, producing between 54.5 and 111.6 nymphs in total per female. At 28 degrees C, aphid survival and reproductive capacity were much lower. Treatment of plants with herbicide caused mild stress in aphids and resulted in increased aphid reproduction and a change in their behavior; aphids settled on lower parts of the plant rather than on the top part of the plant (growing point), which is normal in untreated plants. This new knowledge may help to manage the hemp aphid and reduce damage to hemp crops in the future. The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of meteorological (temperature) and agronomical (herbicide) factors on the biology of the hemp aphid. In one experiment, hemp plants were kept at constant temperatures ranging from 20 to 30 degrees C, and aphid survival and fecundity were measured. In a related experiment conducted at 20 degrees C, plants were treated with field-appropriate rates of a selective graminicide containing quizalofop-P-tefuryl (40 gL(-1), 4.38%, HRAC group 1), commonly used to control weeds in hemp, and aphid enzyme activity was measured in addition to population parameters. We found that hemp aphids could live, feed and reproduce within the whole studied range of temperatures, demonstrating its great evolutionary plasticity. However, the optimal temperature for development was 25 degrees C, at which the insect lived and reproduced for 25 and 15 days, respectively, with an average fecundity of 7.5 nymphs per reproduction day. The herbicide treatment increased the activity of superoxide dismutase (SOD), catalase (CAT), beta-glucosidase, S-glutathione transferase (GST), oxidoreductive peroxidase (POD), and polyphenol oxidase (PPO) in the aphids, but only on certain days after treatment, which indicates a mild stress in aphid tissues, related to a higher reproduction and changed feeding behavior; aphids moved from the actively growing tips compared to untreated plants. The results of these experiments are discussed in terms of the impact on the future management of this pest. C1 [Durak, Roma; Dampc, Jan] Univ Rzeszow, Dept Expt Biol & Chem, Pigonia 1, PL-35310 Rzeszow, Poland. [Jedryczka, Malgorzata] Polish Acad Sci, Inst Plant Genet, Strzeszynska 34, PL-60479 Poznan, Poland. [Czajka, Beata; Borowiak-Sobkowiak, Beata] Poznan Univ Life Sci, Dept Entomol & Environm Protect, Dabrowskiego 159, PL-60594 Poznan, Poland. [Wielgusz, Katarzyna] Natl Res Inst, Dept Breeding & Agron Fibrous & Energy Plants, Inst Nat Fibers & Med Plants, Wojska Polskiego 71B, PL-60630 Poznan, Poland. C3 University of Rzeszow; Polish Academy of Sciences; Institute of Plant Genetics of the Polish Academy of Sciences; Poznan University of Life Sciences; Institute of Natural Fibres & Medicinal Plants RP Borowiak-Sobkowiak, B (corresponding author), Poznan Univ Life Sci, Dept Entomol & Environm Protect, Dabrowskiego 159, PL-60594 Poznan, Poland. EM rdurak@univ.rzeszow.pl; mjed@igr.poznan.pl; beataczajka1996@gmail.com; jdampc@ur.edu.pl; katarzyna.wielgusz@iwnirz.pl; beata.borowiak@up.poznan.pl OI Dampc, Jan/0000-0001-5180-0292; Durak, Roma/0000-0001-9100-766X; Jedryczka, Malgorzata/0000-0001-8583-0772; Wielgusz, Katarzyna/0000-0002-0241-3621; Borowiak-Sobkowiak, Beata/0000-0002-4485-7925 FU Institute of Natural Fibers and Medicinal Plants; Polish Ministry of Science and Higher Education [005/RID/2018/19]; Institute of Plant Genetics, PAS FX This research was funded by the Institute of Natural Fibers and Medicinal Plants, project agreement with the Institute of Plant Genetics, PAS, signed on 15 March 2020. Publication was co-financed within the framework of the Polish Ministry of Science and Higher Education's program: Regional Initiative Excellence"in the years 2019-2022 (No. 005/RID/2018/19). All authors have read and agreed to the published version of the manuscript. CR Aebi H., 1984, METHOD ENZYMOL, V105, P121 Ahn JJ, 2020, INSECTS, V11, DOI 10.3390/insects11080481 Alford L, 2018, INSECT SCI, V25, P905, DOI 10.1111/1744-7917.12460 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bakro F., 2018, IOBC/WPRS Bulletin, V136, P9 Bakro F, 2020, J SEP SCI, V43, P2817, DOI 10.1002/jssc.201900822 Bale JS, 2002, GLOBAL CHANGE BIOL, V8, P1, DOI 10.1046/j.1365-2486.2002.00451.x BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605 Birgucu AK, 2016, J KANSAS ENTOMOL SOC, V89, P72 Blackman RL, 2007, APHIDS AS CROP PESTS, P1, DOI 10.1079/9780851998190.0001 Borowiak-Sobkowiak B, 2017, ACTA SCI POL-HORTORU, V16, P39 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cantele C, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9111131 Carelli G, 2002, HUM EXP TOXICOL, V21, P103, DOI 10.1191/0960327102ht219oa Ceballos G, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400253 Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10 Chown SL, 2004, INSECT PHYSL ECOLOGY, P1 Chrzanowski G, 2012, CROP PROT, V35, P71, DOI 10.1016/j.cropro.2012.01.005 Cividanes FJ, 2012, PESQUI AGROPECU BRAS, V47, P505, DOI 10.1590/S0100-204X2012000400005 Cranshaw W, 2019, J INTEGR PEST MANAG, V10, DOI 10.1093/jipm/pmz023 Cranshaw Whitney S., 2018, Insecta Mundi, V662, P1 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dampc J, 2020, INSECTS, V11, DOI 10.3390/insects11070436 Dawidziuk A, 2012, GRANA, V51, P240, DOI 10.1080/00173134.2011.649016 DeJong RJ, 2007, P NATL ACAD SCI USA, V104, P2121, DOI 10.1073/pnas.0608407104 Despres L, 2007, TRENDS ECOL EVOL, V22, P298, DOI 10.1016/j.tree.2007.02.010 Dixon A.F.G., 1987, World Crop Pests, V2A, P269 Dixon A.F.G., 1998, APHID ECOLOGY OPTIMI, V2nd ed., P1 Durak R, 2016, ETHOL ECOL EVOL, V28, P188, DOI 10.1080/03949370.2015.1034785 Durak R, 2020, ENVIRON EXP BOT, V176, DOI 10.1016/j.envexpbot.2020.104100 Durak R, 2018, ETHOL ECOL EVOL, V30, P416, DOI 10.1080/03949370.2017.1409272 Durak R, 2014, PHYSIOL ENTOMOL, V39, P313, DOI 10.1111/phen.12077 FAO, 2018, FUT FOOD AGR ALT PAT Ferman H, 1969, PHYTOPATHOLOGY, V57, P69 Francis F, 2005, ARCH INSECT BIOCHEM, V58, P166, DOI 10.1002/arch.20049 Grotenhermen F, 2016, CRIT REV PLANT SCI, V35, P378, DOI 10.1080/07352689.2016.1265360 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Gupta G, 2008, J PEST SCI, V81, P9, DOI 10.1007/s10340-007-0175-8 Halbert S, 2016, TRIOLOGY ENT SECT, V55, P6 Heie Ole E., 1994, Fauna Entomologica Scandinavica, V28, P1 Hill MP, 2012, BIOCONTROL SCI TECHN, V22, P1321, DOI 10.1080/09583157.2012.725825 Hulle M, 2010, CR BIOL, V333, P497, DOI 10.1016/j.crvi.2010.03.005 Jaworski Tomasz, 2013, Lesne Prace Badawcze, V74, P345 KATAGIRI C, 1979, INSECT BIOCHEM, V9, P199, DOI 10.1016/0020-1790(79)90051-9 Kellermann V, 2009, SCIENCE, V325, P1244, DOI 10.1126/science.1175443 Kraus EC, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43361-w Krishnan N, 2007, J INSECT PHYSIOL, V53, P67, DOI 10.1016/j.jinsphys.2006.10.001 Krzyzanowski R., 2018, Agronomy Science, V73, P29, DOI 10.24326/as.2018.3.3 Lalouette L, 2011, COMP BIOCHEM PHYS A, V158, P229, DOI 10.1016/j.cbpa.2010.11.007 LAUREMA S, 1985, INSECT BIOCHEM, V15, P211, DOI 10.1016/0020-1790(85)90010-1 LESZCZYNSKI B, 1992, J APPL ENTOMOL, V113, P61, DOI 10.1111/j.1439-0418.1992.tb00636.x Lipok J, 2009, ECOTOX ENVIRON SAFE, V72, P1701, DOI 10.1016/j.ecoenv.2009.03.007 Lopez-Martinez G, 2008, INSECT BIOCHEM MOLEC, V38, P796, DOI 10.1016/j.ibmb.2008.05.006 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Lubawy J, 2019, J EXP BIOL, V222, DOI 10.1242/jeb.213744 Lukasik I, 2013, BIOCHEM SYST ECOL, V51, P232, DOI 10.1016/j.bse.2013.09.001 Lukaszewicz S, 2021, EUR ZOOL J, V88, P58, DOI 10.1080/24750263.2020.1853831 Mackos-Iwaszko E, 2015, ACTA SCI POL-HORTORU, V14, P189 Matsumura T, 2017, ARCH INSECT BIOCHEM, V96, DOI 10.1002/arch.21421 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McPartland J.M, 1996, J INT HEMP ASS, V3, P52 Mehrparvar M, 2007, EUR J ENTOMOL, V104, P631, DOI 10.14411/eje.2007.078 MILES PW, 1964, J INSECT PHYSIOL, V10, P121, DOI 10.1016/0022-1910(64)90100-3 Saska P, 2016, SCI REP-UK, V6, DOI 10.1038/srep27801 Schluttenhofer C, 2017, TRENDS PLANT SCI, V22, P917, DOI 10.1016/j.tplants.2017.08.004 Shrestha S., 2019, ACTA SCI-AGRON, V3, P74, DOI [10.31080/ASAG.2019.03.0727, DOI 10.31080/ASAG.2019.03.0727] Small E., 2017, CANNABIS SATIVA L BO, P1, DOI 10.1007/978-3-319-54564-6_1 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 SZELEGIEWICZ H, 1968, Katalog Fauny Polski, P1 Urbanska A., 2009, EJPAU, V12, P27 Wachowska U, 2018, ECOTOX ENVIRON SAFE, V162, P77, DOI 10.1016/j.ecoenv.2018.06.042 Wang Y, 2001, FREE RADICAL BIO MED, V30, P1254, DOI 10.1016/S0891-5849(01)00520-2 Watson D.P., 2000, HEMP DIS PESTS MANAG, P1 Wilkaniec A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245398 Wozniak A, 2019, J PLANT PHYSIOL, V240, DOI 10.1016/j.jplph.2019.152996 WYATT IJ, 1977, J APPL ECOL, V14, P757, DOI 10.2307/2402807 Zhang SZ, 2015, J INSECT PHYSIOL, V73, P47, DOI 10.1016/j.jinsphys.2015.01.004 NR 80 TC 3 Z9 3 U1 1 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-4450 J9 INSECTS JI Insects PD MAY PY 2021 VL 12 IS 5 AR 420 DI 10.3390/insects12050420 PG 19 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA SH3HE UT WOS:000654025400001 PM 34066736 OA Green Published, gold DA 2023-03-13 ER PT J AU Nunn, AVW Guy, GW Bell, JD AF Nunn, Alistair V. W. Guy, Geoffrey W. Bell, Jimmy D. TI Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point - The view from two systems SO IMMUNOBIOLOGY LA English DT Article DE Endocannabinoid; FOXO; metabolic syndrome; Tipping point; Redox; Hormesis; Mitochondria ID NF-KAPPA-B; ACTIVATED-RECEPTOR-GAMMA; CANNABINOID RECEPTORS; OXIDATIVE STRESS; LIFE-SPAN; TRANSCRIPTION FACTORS; CALORIC RESTRICTION; GENE-EXPRESSION; ADIPOSE-TISSUE; PROTEIN-KINASE AB The endocannabinoid system (ECS) was only 'discovered' in the 1990s. Since then, many new ligands have been identified, as well as many new intracellular targets - ranging from the PPARs, to mitochondria, to lipid rafts. It was thought that blocking the CB-1 receptor might reverse obesity and the metabolic syndrome. This was based on the idea that the ECS was dysfunctional in these conditions. This has met with limited success. The reason may be that the ECS is a homeostatic system, which integrates energy seeking and storage behaviour with resistance to oxidative stress. It could be viewed as having thrifty actions. Thriftiness is an innate property of life, which is programmed to a set point by both environment and genetics, resulting in an epigenotype perfectly adapted to its environment. This thrifty set point can be modulated by hormetic stimuli, such as exercise, cold and plant micronutrients. We have proposed that the physiological and protective insulin resistance that underlies thriftiness encapsulates something called 'redox thriftiness', whereby insulin resistance is determined by the ability to resist oxidative stress. Modern man has removed most hormetic stimuli and replaced them with a calorific sedentary lifestyle, leading to increased risk of metabolic inflexibility. We suggest that there is a tipping point where lipotoxicity in adipose and hepatic cells induces mild inflammation, which switches thrifty insulin resistance to inflammation-driven insulin resistance. To understand this, we propose that the metabolic syndrome could be seen from the viewpoint of the ECS, the mitochondrion and the FOXO group of transcription factors. FOX has many thrifty actions, including increasing insulin resistance and appetite, suppressing oxidative stress and shifting the organism towards using fatty acids. In concert with factors such as PGC-1, they also modify mitochondrial function and biogenesis. Hence, the ECS and FOX() may interact at many points: one of which may be via intracellular redox signalling. As cannabinoids have been shown to modulate reactive oxygen species production, it is possible that they can upregulate anti-oxidant defences. This suggests they may have an 'endohormetic' signalling function. The tipping point into the metabolic syndrome may be the result of a chronic lack of hormetic stimuli (in particular, physical activity), and thus, stimulus for PGC-1, with a resultant reduction in mitochondrial function and a reduced lipid capacitance. This, in the context of a positive calorie environment, will result in increased visceral adipose tissue volume, abnormal ectopic fat content and systemic inflammation. This would worsen the inflammatory-driven pathological insulin resistance and inability to deal with lipids. The resultant oxidative stress may therefore drive a compensatory anti-oxidative response epitomised by the ECS and FOXO. Thus, although blocking the ECS (e.g. via rimonabant) may induce temporary weight loss, it may compromise long-term stress resistance. Clues about how to modulate the system more safely are emerging from observations that some polyphenols, such as resveratrol and possibly, some phytocannabinoids, can modulate mitochondrial function and might improve resistance to a modern lifestyle. (C) 2009 Elsevier GmbH. All rights reserved. C1 [Nunn, Alistair V. W.; Bell, Jimmy D.] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, London W12 0HS, England. [Guy, Geoffrey W.] GW Pharmaceut, Salisbury SP4 0JQ, Wilts, England. C3 Imperial College London RP Nunn, AVW (corresponding author), Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, Du Cane Rd, London W12 0HS, England. EM alistair.nunn@btconnect.com; gwg@gwpharm.com; jimmy.bell@csc.mrc.co.uk RI Sanguansri, Luz/B-6630-2011; Nunn, Alistair/ABE-2462-2020 OI Sanguansri, Luz/0000-0003-1908-7604; Bell, Jimmy/0000-0003-3804-1281 FU MRC [MC_U120061305] Funding Source: UKRI; Medical Research Council [MC_U120061305] Funding Source: researchfish; Medical Research Council [MC_U120061305] Funding Source: Medline CR Adler AS, 2007, GENE DEV, V21, P3244, DOI 10.1101/gad.1588507 Alikhani M, 2005, J BIOL CHEM, V280, P12096, DOI 10.1074/jbc.M412171200 Andersson U, 2004, J BIOL CHEM, V279, P12005, DOI 10.1074/jbc.C300557200 Andrews ZB, 2008, NATURE, V454, P846, DOI 10.1038/nature07181 Athanasiou A, 2007, BIOCHEM BIOPH RES CO, V364, P131, DOI 10.1016/j.bbrc.2007.09.107 Bab IA, 2007, ANN NY ACAD SCI, V1116, P414, DOI 10.1196/annals.1402.014 Bandyopadhyay GK, 2005, DIABETES, V54, P2351, DOI 10.2337/diabetes.54.8.2351 Bari M, 2005, J BIOL CHEM, V280, P12212, DOI 10.1074/jbc.M411642200 Bastelica D, 2002, ARTERIOSCL THROM VAS, V22, P173, DOI 10.1161/hq0102.101552 Batkai S, 2007, AM J PHYSIOL-HEART C, V293, pH909, DOI 10.1152/ajpheart.00373.2007 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Bluher M, 2006, DIABETES, V55, P3053, DOI 10.2337/db06-0812 Bonnard C, 2008, J CLIN INVEST, V118, P789, DOI 10.1172/JCI32601 Brady NR, 2004, BIOPHYS J, V87, P2022, DOI 10.1529/biophysj.103.035097 Bromberg KD, 2008, SCIENCE, V320, P903, DOI 10.1126/science.1152662 Brookes PS, 2004, AM J PHYSIOL-CELL PH, V287, pC817, DOI 10.1152/ajpcell.00139.2004 Chen J, 2005, MOL BRAIN RES, V134, P215, DOI 10.1016/j.molbrainres.2004.10.044 Chen YQ, 2008, AUTOPHAGY, V4, P246, DOI 10.4161/auto.5432 Chevaleyre V, 2007, NEURON, V54, P801, DOI 10.1016/j.neuron.2007.05.020 Choi SL, 2001, BIOCHEM BIOPH RES CO, V287, P92, DOI 10.1006/bbrc.2001.5544 Christensen R, 2007, LANCET, V370, P1706, DOI 10.1016/S0140-6736(07)61721-8 Chung HY, 2006, ANTIOXID REDOX SIGN, V8, P572, DOI 10.1089/ars.2006.8.572 Civitarese AE, 2007, PLOS MED, V4, P485, DOI 10.1371/journal.pmed.0040076 Coll T, 2006, DIABETES, V55, P2779, DOI 10.2337/db05-1494 Corton JC, 2005, J GERONTOL A-BIOL, V60, P1494, DOI 10.1093/gerona/60.12.1494 Corton JC, 2004, J BIOL CHEM, V279, P46204, DOI 10.1074/jbc.M406739200 Crossland H, 2008, J PHYSIOL-LONDON, V586, P5589, DOI 10.1113/jphysiol.2008.160150 Curtis C, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-12-r262 D'Eon TM, 2008, DIABETES, V57, P1262, DOI 10.2337/db07-1186 Dandona P, 2005, CIRCULATION, V111, P1448, DOI 10.1161/01.CIR.0000158483.13093.9D De Petrocellis L, 1995, BIOCHEM MOL BIOL INT, V36, P1127 Delerive P, 1999, J BIOL CHEM, V274, P32048, DOI 10.1074/jbc.274.45.32048 DeMorrow S, 2007, J BIOL CHEM, V282, P13098, DOI 10.1074/jbc.M608238200 DeMorrow S, 2008, AM J PHYSIOL-GASTR L, V295, pG1150, DOI 10.1152/ajpgi.90455.2008 Derkinderen P, 2003, J NEUROSCI, V23, P2371 Di Marzo V, 2001, NATURE, V410, P822, DOI 10.1038/35071088 Dietrich A, 2004, BRIT J SPORT MED, V38, P536, DOI 10.1136/bjsm.2004.011718 Do Y, 2004, J IMMUNOL, V173, P2373, DOI 10.4049/jimmunol.173.4.2373 Dowell P, 2003, J BIOL CHEM, V278, P45485, DOI 10.1074/jbc.M309069200 Downer EJ, 2007, EUR J PHARMACOL, V564, P57, DOI 10.1016/j.ejphar.2007.02.025 Doyon C, 2006, DIABETES, V55, P3403, DOI 10.2337/db06-0504 Dumitru CA, 2007, ANTIOXID REDOX SIGN, V9, P1535, DOI 10.1089/ars.2007.1692 Eikelis N, 2005, EXP PHYSIOL, V90, P673, DOI 10.1113/expphysiol.2005.031385 El-Remessy AB, 2003, AM J PATHOL, V163, P1997, DOI 10.1016/S0002-9440(10)63558-4 Engeli S, 2005, DIABETES, V54, P2838, DOI 10.2337/diabetes.54.10.2838 Erusalimsky JD, 2007, ARTERIOSCL THROM VAS, V27, P2524, DOI 10.1161/ATVBAHA.107.151167 Esposito K, 2008, INT J IMPOT RES, V20, P358, DOI 10.1038/ijir.2008.9 Essers MAG, 2004, EMBO J, V23, P4802, DOI 10.1038/sj.emboj.7600476 Fehm HL, 2006, PROG BRAIN RES, V153, P129, DOI 10.1016/S0079-6123(06)53007-9 Feingold K, 2004, AM J PHYSIOL-ENDOC M, V286, pE201, DOI 10.1152/ajpendo.00205.2003 Ferrara N, 2008, REJUV RES, V11, P139, DOI 10.1089/rej.2007.0576 Freedland Eric S, 2004, Nutr Metab (Lond), V1, P12, DOI 10.1186/1743-7075-1-12 Fride E, 2001, EUR J PHARMACOL, V419, P207, DOI 10.1016/S0014-2999(01)00953-0 FRIDE E, 1993, EUR J PHARMACOL, V231, P313, DOI 10.1016/0014-2999(93)90468-W Fujita K, 2006, CIRC J, V70, P1437, DOI 10.1253/circj.70.1437 Gammon CM, 2005, ENDOCRINOLOGY, V146, P4491, DOI 10.1210/en.2004-1672 Gary-Bobo M, 2006, MOL PHARMACOL, V69, P471, DOI 10.1124/mol.105.015040 Gledhill JR, 2007, P NATL ACAD SCI USA, V104, P13632, DOI 10.1073/pnas.0706290104 Goldstein BJ, 2005, ANTIOXID REDOX SIGN, V7, P1021, DOI 10.1089/ars.2005.7.1021 Gomes AR, 2008, CELL CYCLE, V7, P3133, DOI 10.4161/cc.7.20.6920 Gross DN, 2008, ONCOGENE, V27, P2320, DOI 10.1038/onc.2008.25 Guarente L, 2008, CELL, V132, P171, DOI 10.1016/j.cell.2008.01.007 Guzman M, 2004, J BIOL CHEM, V279, P27849, DOI 10.1074/jbc.M404087200 Hampson AJ, 1998, P NATL ACAD SCI USA, V95, P8268, DOI 10.1073/pnas.95.14.8268 Handschin C, 2008, NATURE, V454, P463, DOI 10.1038/nature07206 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Hayden MS, 2008, CELL, V132, P344, DOI 10.1016/j.cell.2008.01.020 He F, 2007, MOL PHARMACOL, V72, P1289, DOI 10.1124/mol.107.036566 Horbinski C, 2005, FREE RADICAL BIO MED, V38, P2, DOI 10.1016/j.freeradbiomed.2004.09.030 Hosaka T, 2004, P NATL ACAD SCI USA, V101, P2975, DOI 10.1073/pnas.0400093101 Hotamisligil GS, 2005, DIABETES, V54, pS73, DOI 10.2337/diabetes.54.suppl_2.S73 Housley MP, 2008, J BIOL CHEM, V283, P16283, DOI 10.1074/jbc.M802240200 Hu MCT, 2004, CELL, V117, P225, DOI 10.1016/S0092-8674(04)00302-2 Huang HJ, 2007, J CELL SCI, V120, P2479, DOI 10.1242/jcs.001222 Hudson NJ, 2008, MED HYPOTHESES, V70, P693, DOI 10.1016/j.mehy.2007.05.042 Incerpi S, 2007, J PHARM PHARMACOL, V59, P1711, DOI 10.1211/jpp.59.12.0014 Jacobs KM, 2008, INT J BIOL SCI, V4, P291 Jbilo O, 2005, FASEB J, V19, P1567, DOI 10.1096/fj.04-3177fje Jeong SK, 2008, J KOREAN MED SCI, V23, P789, DOI 10.3346/jkms.2008.23.5.789 Jia W, 2006, MOL CANCER RES, V4, P549, DOI 10.1158/1541-7786.MCR-05-0193 Juan-Pico P, 2006, CELL CALCIUM, V39, P155, DOI 10.1016/j.ceca.2005.10.005 Kadoi Y, 2005, CRIT CARE MED, V33, P2629, DOI 10.1097/01.CCM.0000187010.14426.CC Kirkham TC, 2001, PSYCHOPHARMACOLOGY, V153, P267, DOI 10.1007/s002130000596 Kitamura T, 2006, NAT MED, V12, P534, DOI 10.1038/nm1392 Kola B, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001797 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Laviola L, 2006, DIABETES, V55, P952, DOI 10.2337/diabetes.55.04.06.db05-1414 Lecour S, 2006, J CARDIOVASC PHARM, V47, P158, DOI 10.1097/01.fjc.0000198520.28674.41 Lee BH, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000213 Lee CY, 2008, INT IMMUNOPHARMACOL, V8, P732, DOI 10.1016/j.intimp.2008.01.018 Linnane AW, 2007, BIOGERONTOLOGY, V8, P445, DOI 10.1007/s10522-007-9096-4 Lopez-Alemany R, 2003, EUR J BIOCHEM, V270, P814, DOI 10.1046/j.1432-1033.2003.03453.x Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103 Malcher-Lopes R, 2008, EUR J PHARMACOL, V583, P322, DOI 10.1016/j.ejphar.2007.12.033 Mathias S, 1998, BIOCHEM J, V335, P465, DOI 10.1042/bj3350465 Matias I, 2008, J NEUROENDOCRINOL, V20, P100, DOI 10.1111/j.1365-2826.2008.01678.x MAYERS JR, 2008, FASEB J McKallip RJ, 2002, J PHARMACOL EXP THER, V302, P451, DOI 10.1124/jpet.102.033506 Mechoulam R, 2002, Sci STKE, V2002, pre5, DOI 10.1126/stke.2002.129.re5 Menon SG, 2007, ONCOGENE, V26, P1101, DOI 10.1038/sj.onc.1209895 Morris BJ, 2005, J HYPERTENS, V23, P1285, DOI 10.1097/01.hjh.0000173509.45363.dd Motaghedi R, 2008, OBESITY, V16, P1727, DOI 10.1038/oby.2008.309 Nakamura T, 2008, MOL CELL ENDOCRINOL, V281, P47, DOI 10.1016/j.mce.2007.10.007 Nalam Roopa L, 2008, J Biol, V7, P23, DOI 10.1186/jbiol84 Narbonne P, 2009, NATURE, V457, P210, DOI 10.1038/nature07536 Narkar VA, 2008, CELL, V134, P405, DOI 10.1016/j.cell.2008.06.051 Nunn Alistair V W, 2007, Nucl Recept, V5, P1 NUNN AV, 2007, P BRIT PHARM SOC NUNN AV, 2009, NUTR METAB IN PRESS O'Sullivan SE, 2007, BRIT J PHARMACOL, V152, P576, DOI 10.1038/sj.bjp.0707423 Oh SW, 2005, P NATL ACAD SCI USA, V102, P4494, DOI 10.1073/pnas.0500749102 Olusi SO, 2002, INT J OBESITY, V26, P1159, DOI 10.1038/sj.ijo.0802066 Pacher P, 2008, BRIT J PHARMACOL, V153, P252, DOI 10.1038/sj.bjp.0707582 Palomer X, 2009, CARDIOVASC RES, V81, P703, DOI 10.1093/cvr/cvn327 Panikashvili D, 2005, J CEREBR BLOOD F MET, V25, P477, DOI 10.1038/sj.jcbfm.9600047 Parsons PA, 2007, BIOGERONTOLOGY, V8, P613, DOI 10.1007/s10522-007-9101-y Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011 Pertwee RG, 2005, LIFE SCI, V76, P1307, DOI 10.1016/j.lfs.2004.10.025 Pfluger PT, 2008, P NATL ACAD SCI USA, V105, P9793, DOI 10.1073/pnas.0802917105 Pitsavos Christos, 2006, Review of Diabetic Studies, V3, P118, DOI 10.1900/RDS.2006.3.118 Planavila A, 2005, CARDIOVASC RES, V65, P832, DOI 10.1016/j.cardiores.2004.11.011 Powles T, 2005, BLOOD, V105, P1214, DOI 10.1182/blood-2004-03-1182 PSARRA AM, 2008, BIOCH BIOPHYS ACTA Ramsey MR, 2006, NAT CELL BIOL, V8, P1213, DOI 10.1038/ncb1106-1213 Rector RS, 2007, AM J PHYSIOL-ENDOC M, V293, pE500, DOI 10.1152/ajpendo.00116.2007 Rival Y, 2002, EUR J PHARMACOL, V435, P143, DOI 10.1016/S0014-2999(01)01589-8 Rockwell CE, 2006, MOL PHARMACOL, V70, P101, DOI 10.1124/mol.105.019117 Salih DAM, 2008, CURR OPIN CELL BIOL, V20, P126, DOI 10.1016/j.ceb.2008.02.005 Salminen A, 2008, CELL MOL LIFE SCI, V65, P1049, DOI 10.1007/s00018-008-7461-3 Sandstrom ME, 2006, J PHYSIOL-LONDON, V575, P251, DOI 10.1113/jphysiol.2006.110601 Sarafian TA, 2006, AM J PHYSIOL-LUNG C, V290, pL1202, DOI 10.1152/ajplung.00371.2005 Sareen D, 2006, INVEST OPHTH VIS SCI, V47, P3708, DOI 10.1167/iovs.06-0119 Sarker KP, 2003, J NEUROCHEM, V85, P50, DOI 10.1046/j.1471-4159.2003.01663.x SIEGMUND SV, 2007, FASEB J Skulachev VP, 2001, TRENDS BIOCHEM SCI, V26, P23, DOI 10.1016/S0968-0004(00)01735-7 St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024 Steiner MA, 2008, PSYCHONEUROENDOCRINO, V33, P54, DOI 10.1016/j.psyneuen.2007.09.008 Stoger R, 2008, BIOESSAYS, V30, P156, DOI 10.1002/bies.20700 Storlien L, 2004, P NUTR SOC, V63, P363, DOI 10.1079/PNS2004349 Sugiura T, 2004, J PHARMACOL SCI, V96, P367, DOI 10.1254/jphs.FMJ04003X3 Sun G, 2005, DIABETES, V54, P3336, DOI 10.2337/diabetes.54.11.3336 Takamura T, 2007, BIOCHEM BIOPH RES CO, V361, P379, DOI 10.1016/j.bbrc.2007.07.006 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Taylor AH, 2007, HUM REPROD UPDATE, V13, P501, DOI 10.1093/humupd/dmm018 Tedesco L, 2008, DIABETES, V57, P2028, DOI 10.2337/db07-1623 Tham DM, 2002, PHYSIOL GENOMICS, V11, P21, DOI 10.1152/physiolgenomics.00062.2002 van der Poorten D, 2008, HEPATOLOGY, V48, P449, DOI 10.1002/hep.22350 Vellai T, 2009, CELL DEATH DIFFER, V16, P94, DOI 10.1038/cdd.2008.126 Vellani V, 2001, J PHYSIOL-LONDON, V534, P813, DOI 10.1111/j.1469-7793.2001.00813.x Viveros M. P., 2008, Endocrine Metabolic & Immune Disorders-Drug Targets, V8, P220, DOI 10.2174/187153008785700082 Volek Jeff S, 2005, Nutr Metab (Lond), V2, P31, DOI 10.1186/1743-7075-2-31 Wajchenberg BL, 2000, ENDOCR REV, V21, P697, DOI 10.1210/er.21.6.697 WANG F, 2008, MOL BIOL CELL Wang HB, 2007, PROSTAG OTH LIPID M, V83, P62, DOI 10.1016/j.prostaglandins.2006.09.009 Wang MC, 2005, CELL, V121, P115, DOI 10.1016/j.cell.2005.02.030 Wang MC, 2008, SCIENCE, V322, P957, DOI 10.1126/science.1162011 Wei YZ, 2008, WORLD J GASTROENTERO, V14, P193, DOI 10.3748/wjg.14.193 Williams J, 2006, AAPS J, V8, pE655, DOI 10.1208/aapsj080474 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Yamaji K, 2003, THROMB HAEMOSTASIS, V89, P875, DOI 10.1055/s-0037-1613475 Yamazaki S, 2006, EMBO J, V25, P3515, DOI 10.1038/sj.emboj.7601236 Yasuda H, 2008, P NATL ACAD SCI USA, V105, P3106, DOI 10.1073/pnas.0708349105 Zhang XQ, 2008, CELL, V135, P61, DOI 10.1016/j.cell.2008.07.043 Zimmer A, 1999, P NATL ACAD SCI USA, V96, P5780, DOI 10.1073/pnas.96.10.5780 NR 164 TC 12 Z9 13 U1 1 U2 12 PU ELSEVIER GMBH PI MUNICH PA HACKERBRUCKE 6, 80335 MUNICH, GERMANY SN 0171-2985 EI 1878-3279 J9 IMMUNOBIOLOGY JI Immunobiology PD AUG PY 2010 VL 215 IS 8 BP 617 EP 628 DI 10.1016/j.imbio.2009.03.005 PG 12 WC Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Immunology GA 640JR UT WOS:000281048000006 PM 19457573 DA 2023-03-13 ER PT J AU Karasyova, TA Klose, EO Menzel, R Steinberg, CEW AF Karasyova, Tatyana A. Klose, Edgar O. Menzel, Ralph Steinberg, Christian E. W. TI Natural organic matter differently modulates growth of two closely related coccal green algal species SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE growth promotion; growth reduction; humic substances; Monoraphidium convolutum; Monoraphidium minutum; natural organic matter ID NEMATODE CAENORHABDITIS-ELEGANS; SIZE-EXCLUSION CHROMATOGRAPHY; PLANKTONIC FOOD-CHAINS; HUMIC SUBSTANCES; MICROCYSTIN-LR; MASS-SPECTROMETRY; REVERSE-OSMOSIS; CRUDE EXTRACTS; DANIO-RERIO; LIFE-SPAN AB Background and Aim. Humic substances (HS) comprise the majority of dead and living organic carbon, including organisms. In the environment, they are considered to be chemically inert or at least refractory. Recent papers, however, show that HS (including natural organic matter - NOM, isolated by reverse osmosis) are natural chemicals which interact with aquatic organisms. They are taken up and cause a variety of stress defense reactions which are well known from man-made chemicals. These reactions include chaperon activation, induction and modulation of biotransformation enzymes, or induction of antioxidant defense enzymes. One specific reaction with freshwater plants is the reduction of photosynthetic oxygen release. In this contribution, we compare the susceptibilities (cell yield) of two closely related coccal green algae, Monoraphidium convolutum and M. minutum, towards various NOM isolates. Methods. Cultures of M. convolutum and M. minutum were obtained from the algal collection of the Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, and from the Culture Collection of Algae, Gottingen, and maintained in a common medium. The cultures were non-axenic. The algae were exposed to 5 mg L-1 DOC of each humic material, an environmentally realistic concentration. Cell numbers were counted microscopically in Neugebauer cuvettes in 5 replicates on days 1, 4, 7, 10, 14, and 21. Results and Discussion. Almost all NOM isolates modulated the growth of the algae. Only the NOM of a Norwegian raised peat bog lake did not reveal any significant effect with M. convolutum. In general, the results with two algal species are by no means uniform. For instance, Suwannee River NOM causes a decrease in cell density with M. minutum, but temporarily stimulates the growth of M. convolutum. The opposite applies to Aurevann NOM: Growth increase in M. minutum, but a bi-phasic response in M. convolutum. Different responses of both Monoraphidium species must be attributed to intrinsic factors of the algae rather than only to chemical features of the exposed materials, because the exposures were identical with both algal species. The reduction in growth yields can be explained as a herbicide-like mode of action that affects the photosystem 11 most prevalently. The growth promoting effect remains somewhat obscure. It may be due to (1) an increase in bioavailability of some trace nutrients in the presence of HS, (2) the release of some growth promoting substances by microbial or photochemical processing of the humic materials, and (3) a hormetic effect upon the exposure of HS. Hormesis means stimulation of organisms or metabolic activities when exposed to noxes in low concentrations. However, it is still open to discussion why the growth promotion only applies to one or the other, but not simultaneously to both Monoraphidium species. Conclusion. Exposure of the closely related coccal green algal species to humic material changes their growth characteristics. Since the reactions are not consistent within the two species and the various humic materials, it seems that the less sensitive species is favored by HS exposure. The environmental relevance, however, is subject to future studies. C1 Humboldt Univ, Inst Biol, D-12437 Berlin, Germany. Leibniz Inst Freshwater Ecol & Inland Fisheries, IGB, Berlin, Germany. NIGMI, Cent Asian Hydrometeorol Inst, Tashkent, Uzbekistan. Garzauer Chaussee, STIC, INNO Concept GmbH, D-15344 Strausberg, Germany. C3 Humboldt University of Berlin; Leibniz Institut fur Gewasserokologie und Binnenfischerei (IGB) RP Steinberg, CEW (corresponding author), Arboretum, Spathstr 80-81, D-12437 Berlin, Germany. EM christian_ew_steinberg@web.de RI Steinberg, Christian/O-8572-2019 OI Steinberg, Christian E.W./0000-0002-3132-8901 CR [Anonymous], 1985, AQUATIC HUMIC SUBSTA [Anonymous], 2001, J PHYCOL, DOI DOI 10.1016/J.JGLR.2021.05.008 Babica P, 2005, ENVIRON SCI POLLUT R, V12, P369, DOI 10.1065/espr2005.05.259 Baganz D, 1998, WATER RES, V32, P948, DOI 10.1016/S0043-1354(97)00207-8 Bierkens J, 1998, COMP BIOCHEM PHYS A, V120, P29, DOI 10.1016/S1095-6433(98)10006-5 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Chen W, 2005, ENVIRON TOXICOL, V20, P323, DOI 10.1002/tox.20108 Cole JJ, 1999, ECOSYSTEMS, V2, P215, DOI 10.1007/s100219900069 *DIN EN, 1998, 1484 DIN EN GELLER A, 1985, SCHWEIZ Z HYDROL, V47, P27, DOI 10.1007/BF02538182 Gems D, 2005, MECH AGEING DEV, V126, P381, DOI 10.1016/j.mad.2004.09.001 Gjessing ET, 1999, ENVIRON INT, V25, P145, DOI 10.1016/S0160-4120(98)00119-6 Gjessing ET, 1998, WATER RES, V32, P3108, DOI 10.1016/S0043-1354(98)00060-8 Hoque E, 2003, J CHROMATOGR A, V1017, P97, DOI 10.1016/j.chroma.2003.08.038 Hoss S, 2001, FRESHWATER BIOL, V46, P1, DOI 10.1046/j.1365-2427.2001.00639.x Hu ZQ, 2004, ENVIRON TOXICOL, V19, P571, DOI 10.1002/tox.20064 Jansson M, 2003, LIMNOL OCEANOGR, V48, P1711, DOI 10.4319/lo.2003.48.4.1711 JONES RI, 1992, HYDROBIOLOGIA, V229, P73, DOI 10.1007/BF00006992 Korner S, 2002, J PHYCOL, V38, P862, DOI 10.1046/j.1529-8817.2002.t01-1-02001.x Ladakis M, 2006, J SOIL SEDIMENT, V6, P46, DOI 10.1065/jss2005.10.150 Leu E, 2002, PLANT PHYSIOL, V130, P2011, DOI 10.1104/pp.011593 Liu YM, 2006, ENVIRON TOXICOL, V21, P289, DOI 10.1002/tox.20182 Meinelt T, 2004, AQUAT SCI, V66, P239, DOI 10.1007/s00027-004-0706-9 Menzel R, 2005, ENVIRON SCI TECHNOL, V39, P8324, DOI 10.1021/es050884s Morrow G, 2004, J BIOL CHEM, V279, P43382, DOI 10.1074/jbc.C400357200 Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 Nicklisch A, 1999, INT REV HYDROBIOL, V84, P233 Oberemm A, 1999, ENVIRON TOXICOL, V14, P77, DOI 10.1002/(SICI)1522-7278(199902)14:1<77::AID-TOX11>3.0.CO;2-F Oberemm A, 1997, WATER RES, V31, P2918, DOI 10.1016/S0043-1354(97)00120-6 Ou DY, 2005, ENVIRON TOXICOL, V20, P373, DOI 10.1002/tox.20114 PAUL A, 2004, SITZUNGSBER AKAD MN, V12, P209 Pflugmacher S, 2006, SCI TOTAL ENVIRON, V357, P169, DOI 10.1016/j.scitotenv.2005.03.021 Pflugmacher S, 2004, HUMIC SUBSTANCES: NATURE'S MOST VERSATILE MATERIALS, P327 Prokhotskaya VY, 2000, RUSS J PLANT PHYSL+, V47, P772, DOI 10.1023/A:1026659228774 Reemtsma T, 2003, ANAL CHEM, V75, P1500, DOI 10.1021/ac0261294 Reemtsma T, 2005, ENVIRON SCI TECHNOL, V39, P3507, DOI 10.1021/es0480466 Rohrlack T, 2005, ENVIRON MICROBIOL, V7, P1667, DOI 10.1111/j.1462-2920.2005.00877.x Rohrlack T, 2005, LIMNOL OCEANOGR, V50, P440, DOI 10.4319/lo.2005.50.2.0440 Rohrlack T, 2004, APPL ENVIRON MICROB, V70, P5047, DOI 10.1128/AEM.70.8.5047-5050.2004 Rohrlack T, 2001, APPL ENVIRON MICROB, V67, P3523, DOI 10.1128/AEM.67.8.3523-3529.2001 Rohrlack T, 1999, J PLANKTON RES, V21, P1489, DOI 10.1093/plankt/21.8.1489 SALONEN K, 1992, HYDROBIOLOGIA, V229, P143, DOI 10.1007/BF00006997 Seitzinger SP, 2005, LIMNOL OCEANOGR, V50, P1 SERKIZ SM, 1990, WATER RES, V24, P911, DOI 10.1016/0043-1354(90)90142-S Steinberg C, 2003, ECOLOGY HUMIC SUBSTA Steinberg CEW, 2003, FRESEN ENVIRON BULL, V12, P391 Steinberg CEW, 2002, INT REV HYDROBIOL, V87, P121, DOI 10.1002/1522-2632(200201)87:1<121::AID-IROH121>3.0.CO;2-Z Steinberg CEW, 2002, ACTA HYDROCH HYDROB, V29, P399 Steinberg CEW, 1996, ACTA HYDROCH HYDROB, V24, P98, DOI 10.1002/aheh.19960240207 Steinberg CEW, 2006, FRESHWATER BIOL, V51, P1189, DOI 10.1111/j.1365-2427.2006.01571.x Timofeyev MA, 2006, ENVIRON TOXICOL, V21, P104, DOI 10.1002/tox.20161 Timofeyev MA, 2004, SCI TOTAL ENVIRON, V319, P115, DOI 10.1016/S0048-9697(03)00444-3 TIMOFEYEV MA, 2006, IN PRESS COMP BIOC B TRANVIK LJ, 1992, HYDROBIOLOGIA, V229, P107, DOI 10.1007/BF00006994 VOGT RD, 2001, NATURAL ORGANIC MATT Xian QM, 2006, ENVIRON SCI POLLUT R, V13, P233, DOI 10.1065/espr2006.06.314 NR 57 TC 19 Z9 21 U1 0 U2 32 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD MAR PY 2007 VL 14 IS 2 BP 88 EP 93 DI 10.1065/espr2006.06.317 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 150LO UT WOS:000245218500003 PM 17455817 DA 2023-03-13 ER PT J AU Singh, VP Kumar, J Singh, S Prasad, SM AF Singh, Vijay Pratap Kumar, Jitendra Singh, Samiksha Prasad, Sheo Mohan TI Dimethoate modifies enhanced UV-B effects on growth, photosynthesis and oxidative stress in mung bean (Vigna radiata L.) seedlings: Implication of salicylic acid SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY LA English DT Article DE Antioxidants; Dimethoate; Mung bean; Oxidative stress; Reactive oxygen species; Salicylic acid; UV-B radiation ID ANTIOXIDANT DEFENSE SYSTEM; NITRIC-OXIDE; GLUTATHIONE; RESPONSES; TOLERANCE; CULTIVARS; COPPER; WHEAT; CHLOROPLASTS; ALLEVIATION AB The present study is aimed to investigate implication of salicylic acid (SA) in regulation of dimethoate (30 and 150 ppm designated as D-1 and D-2, respectively) and enhanced UV-B radiation (ambient + supplemental; ambient + 4.0 kJ m(-2) and ambient + 8.0 kJ m(-2), designated as UV-B-1 and UV-B-2, respectively) induced responses in mung bean seedlings. Seeds of Vigna radiata L. cv. Narendra 1 were surface sterilized, washed thoroughly and soaked for 24 h in sterilized distilled water. Soaked seeds were sown in acid washed sterilized sand filled in plastic trays, and incubated in dark at 26 +/- 2 degrees C for 2 days. The seedlings were grown in growth chamber at 26 +/- 2 degrees C with 12 h photoperiod (350 mu mol photons m(-2) s(-1), PAR) and watered regularly. Six day old seedlings of equal size were gently transferred in 0.2 strength Rorison nutrient medium (pH 6.8) for acclimatization. Thereafter, dimethoate (30 and 150 ppm designated as D-1 and D-2, respectively) and enhanced UV-B radiation treatments were given. On the 12th day, seedlings of each set were harvested and various parameters related to growth, pigments, photosynthesis, oxidative stress and antioxidant system were analyzed. The D-2 dose of dimethoate and UV-B-1 and UV-B-2 alone and together significantly (P < 0.05) declined growth, photosynthetic pigments and photosynthesis (Fv/Fm and qP except NPQ) which were accompanied by significant decrease in SA level. Similarly, D-2 and UV-B also enhanced (P < 0.05) accumulation of reactive oxygen species and concomitantly damaging effects on lipids, proteins and membrane stability were observed. In contrast, in SA-pretreated seedlings damaging impacts of D-2, UV-B-1 and UV-B-2 alone and together were significantly (P < 0.05) alleviated. Besides this, interestingly D-1 dose of dimethoate alone had stimulatory effect on growth and it also ameliorated damaging effects of both the doses of UV-B. The activity of superoxide dismutase was stimulated by all the combinations. However, catalase, glutathione reductase and dehydroascorbate reductase activities were significantly (P < 0.05) inhibited by D-2, UV-B-1 and UV-B-2 while SA-pretreatment ameliorated D-2 and UV-B-induced inhibitions in activities of these enzymes. Total ascorbate and glutathione pools also decreased by D-2 and both doses of UV-B; however, in SA-pretreated seedlings their amounts were significantly (P < 0.05) higher than D-2, UV-B-1 and UV-B-2 alone. Interestingly, D-1 also alleviated damaging impact of UV-B-1 and UV-B-2 on total ascorbate and glutathione pools. Results revealed that D-2, UV-B-1 and UV-B-2 might alter SA biosynthesis that results into declined SA level which might be related with their toxicity. However, SA-pretreatment might act as a signal that reduces oxidative stress by triggering up-regulation of antioxidants hence improved growth and photosynthesis noticed. Alleviation of UV-B toxicity by D-1 suggests about hormesis that triggers SA biosynthesis and hence protection against both doses of UV-B was observed. (C) 2014 Elsevier Inc. All rights reserved. C1 [Singh, Vijay Pratap] Govt Ramanuj Pratap Singhdev Post Grad Coll, Korea 497335, Chhattisgarh, India. [Kumar, Jitendra; Prasad, Sheo Mohan] Univ Allahabad, Dept Bot, Ranjan Plant Physiol & Biochem Lab, Allahabad 211002, Uttar Pradesh, India. [Singh, Samiksha; Prasad, Sheo Mohan] Univ Lucknow, Dept Environm Sci, Lucknow 226025, Uttar Pradesh, India. C3 University of Allahabad; Lucknow University RP Prasad, SM (corresponding author), Univ Allahabad, Dept Bot, Ranjan Plant Physiol & Biochem Lab, Allahabad 211002, Uttar Pradesh, India. EM vijaypratap.au@gmail.com RI Kumar, Jitendra/AGH-1864-2022; Singh, Samiksha/GSJ-1944-2022; Singh, Vijay Pratap/AAD-6157-2021 OI Kumar, Jitendra/0000-0002-7208-3111; Singh, Vijay Pratap/0000-0002-5772-5438; Singh, Samiksha/0000-0003-2068-3059 FU University Grants Commission, New Delhi, India [41-460/2012(SR)]; UGC [RGNF-2012-13-SC-UTT-33185] FX The University Grants Commission, New Delhi, India is thankfully acknowledged for providing financial assistant to Dr. S.M. Prasad as PI (Project no: 41-460/2012(SR)). Authors are also thankful to Dr. Devinder Kaur, Centre of Food Technology, University of Allahabad, Allahabad for conducting HPLC analysis. One of the authors, Jitendra Kumar, is thankful to UGC for providing financial assistance as JRF (RGNF-2012-13-SC-UTT-33185). CR Aebi H, 1984, Methods Enzymol, V105, P121 Alla MMN, 2008, PESTIC BIOCHEM PHYS, V90, P8, DOI 10.1016/j.pestbp.2007.07.003 Alla MMN, 2008, ACTA PHYSIOL PLANT, V30, P371, DOI 10.1007/s11738-008-0134-x BABBS CF, 1989, PLANT PHYSIOL, V90, P1267, DOI 10.1104/pp.90.4.1267 Bandurska H, 2013, ENVIRON EXP BOT, V94, P9, DOI 10.1016/j.envexpbot.2012.03.001 Biever J.J., 2014, J EXP BOT IN PRESS BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 BREHE JE, 1976, ANAL BIOCHEM, V74, P189, DOI 10.1016/0003-2697(76)90323-7 Buettner G.R., 1996, HDB ANTIOXIDANTS, P91 Cambrolle J, 2011, ENVIRON EXP BOT, V71, P57, DOI 10.1016/j.envexpbot.2010.10.017 Chen F, 2010, PLANT PHYSIOL BIOCH, V48, P663, DOI 10.1016/j.plaphy.2010.05.001 Choudhary KK, 2014, ECOTOX ENVIRON SAFE, V100, P178, DOI 10.1016/j.ecoenv.2013.10.032 Dong CJ, 2011, SCI HORTIC-AMSTERDAM, V129, P629, DOI 10.1016/j.scienta.2011.05.005 Durrant WE, 2004, ANNU REV PHYTOPATHOL, V42, P185, DOI 10.1146/annurev.phyto.42.040803.140421 ELSTNER EF, 1976, ANAL BIOCHEM, V70, P616, DOI 10.1016/0003-2697(76)90488-7 FAO/WHO, 1968, MON FAO WHO, P1 Flint SD, 2003, PHYSIOL PLANTARUM, V117, P145, DOI 10.1034/j.1399-3054.2003.1170118.x Foyer CH, 2003, PHYSIOL PLANTARUM, V119, P355, DOI 10.1034/j.1399-3054.2003.00223.x Freeman JL, 2005, PLANT PHYSIOL, V137, P1082, DOI 10.1104/pp.104.055293 Gangwar S, 2011, SCI HORTIC-AMSTERDAM, V129, P321, DOI 10.1016/j.scienta.2011.03.026 Gao Q, 2008, J PLANT PHYSIOL, V165, P138, DOI 10.1016/j.jplph.2007.04.002 Garcia MXU, 2000, BBA-GENE STRUCT EXPR, V1492, P295, DOI 10.1016/S0167-4781(00)00063-4 Gayatridevi S, 2012, PLANT PHYSIOL BIOCH, V52, P154, DOI 10.1016/j.plaphy.2011.12.005 GENTY B, 1990, PHOTOSYNTH RES, V25, P249, DOI 10.1007/BF00033166 GIANNOPOLITIS CN, 1977, PLANT PHYSIOL, V59, P315, DOI 10.1104/pp.59.2.309 GOSSETT DR, 1994, CROP SCI, V34, P706, DOI 10.2135/cropsci1994.0011183X003400030020x HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 Hopkins L, 2002, PLANT CELL ENVIRON, V25, P617, DOI 10.1046/j.1365-3040.2002.00834.x Kalinowska R, 2010, ENVIRON POLLUT, V158, P2778, DOI 10.1016/j.envpol.2010.03.003 Kang GZ, 2013, BIOL PLANTARUM, V57, P718, DOI 10.1007/s10535-013-0335-z Katagi T., 2000, METABOLISM AGROCHEMI, P43 Kazemi N, 2010, SCI HORTIC-AMSTERDAM, V126, P402, DOI 10.1016/j.scienta.2010.07.037 Lee S, 2010, NEW PHYTOL, V188, P626, DOI 10.1111/j.1469-8137.2010.03378.x LEVINE RL, 1994, METHOD ENZYMOL, V233, P346 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 Lucier G.W., 1967, THESIS U MARYLAND CO Mishra V, 2008, PESTIC BIOCHEM PHYS, V92, P30, DOI 10.1016/j.pestbp.2008.05.003 Mishra V, 2009, SCI HORTIC-AMSTERDAM, V120, P373, DOI 10.1016/j.scienta.2008.11.024 Mohammed AR, 2011, ENVIRON EXP BOT, V70, P174, DOI 10.1016/j.envexpbot.2010.09.001 NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867 Nault BA, 2004, CROP PROT, V23, P147, DOI 10.1016/j.cropro.2003.08.002 O'Donnell PJ, 2001, PLANT J, V25, P315, DOI 10.1046/j.1365-313x.2001.00968.x Qiu ZH, 2004, CROP PROT, V23, P1131, DOI 10.1016/j.cropro.2004.04.005 Sairam RK, 2002, PLANT SCI, V163, P1037, DOI 10.1016/S0168-9452(02)00278-9 SANTI R, 1959, NATURE, V183, P398, DOI 10.1038/183398a0 SCHAEDLE M, 1977, PLANT PHYSIOL, V59, P1011, DOI 10.1104/pp.59.5.1011 Singh DP, 2014, PESTIC BIOCHEM PHYS, V110, P63, DOI 10.1016/j.pestbp.2014.03.002 Singh VP, 2013, PLANT PHYSIOL BIOCH, V71, P155, DOI 10.1016/j.plaphy.2013.07.003 Singh VP, 2012, PLANT PHYSIOL BIOCH, V61, P61, DOI 10.1016/j.plaphy.2012.09.005 Srivastava AK, 2008, PESTIC BIOCHEM PHYS, V91, P186, DOI 10.1016/j.pestbp.2008.04.002 STRID A, 1994, PHOTOSYNTH RES, V39, P475, DOI 10.1007/BF00014600 Tang XK, 2014, PESTIC BIOCHEM PHYS, V110, P44, DOI 10.1016/j.pestbp.2014.02.006 Velikova V, 2000, PLANT SCI, V151, P59, DOI 10.1016/S0168-9452(99)00197-1 W.M.O. (World Meteorological Organization), 2007, SCI ASS OZ DEPL, V50, P572 Wirstam M, 1999, J AM CHEM SOC, V121, P10178, DOI 10.1021/ja991997c Xie YJ, 2012, J EXP BOT, V63, P3869, DOI [10.1093/jxb/ers078, 10.1093/jxb/ers201] Xing W, 2010, PLANT PHYSIOL BIOCH, V48, P873, DOI 10.1016/j.plaphy.2010.08.006 Xu K, 2007, PLANT SCI, V172, P139, DOI 10.1016/j.plantsci.2006.08.001 Zancan S, 2008, ENVIRON EXP BOT, V63, P71, DOI 10.1016/j.envexpbot.2007.11.013 Zhou ZS, 2009, ENVIRON EXP BOT, V65, P27, DOI 10.1016/j.envexpbot.2008.06.001 NR 60 TC 30 Z9 30 U1 0 U2 27 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0048-3575 EI 1095-9939 J9 PESTIC BIOCHEM PHYS JI Pest. Biochem. Physiol. PD NOV PY 2014 VL 116 BP 13 EP 23 DI 10.1016/j.pestbp.2014.09.007 PG 11 WC Biochemistry & Molecular Biology; Entomology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Entomology; Physiology GA AU7YN UT WOS:000345814300002 PM 25454516 DA 2023-03-13 ER PT J AU Williams, GM Iatropoulos, MJ AF Williams, GM Iatropoulos, MJ TI Alteration of liver cell function and proliferation: Differentiation between adaptation and toxicity SO TOXICOLOGIC PATHOLOGY LA English DT Article DE liver cell function; liver cell structure; proliferation; adaptation; toxicity; adverse effects; nonadverse effects ID MICROSOMAL-ENZYME-INDUCTION; ACYL-COA OXIDASE; RAT-LIVER; DNA-REPAIR; GENE-EXPRESSION; RISK-ASSESSMENT; NEOPLASTIC CONVERSION; MECHANISTIC DATA; FREE-RADICALS; LONG-TERM AB Exposure of experimental animals to biologically effective levels of chemicals, either endogenous or exogenous, the latter of either synthetic or natural origin, elicits a response(s) that reflects the diverse ways in which the various units of organization of an organism deal with chemical perturbation. For some chemicals, an initial response constitutes an adaptive effect that maintains homeostasis. Disruption of this equilibrium at any level of organization leads to an adverse effect, or toxicity. The livers of laboratory animals and humans, like other organs, undergo programmed phases of growth and development, characterized by proliferation followed by differentiation. With organ maturity, the process of differentiation leads to the commitment of differentiated cells to constitutive functions that maintain homeostasis and to specialized functions that serve organismal needs. In the mature livers of all species, proliferation of all cell types subsides to a low level. Thus, the mature liver consists of 2 types of cells: intermediate cells, the hepatocytes, which replicate infrequently, but can respond to signals for replication, and replicating cells, the stemcells, endothelial, Kupffer, and stellate cells (Ito or pericytes), bile duct epithelium, and granular lymphocytes (pit cells). Quantifiable alterations or effects at the molecular level underlie alterations at the organelle level, which in turn lead to alterations at the cellular level, which can ultimately be manifested as a change in the whole organism. Alterations can be quantal (binary), either all or none, as with cell replication, cell necrosis or apoptosis, and cell differentiation, which take place at the cellular level. They can also be graded or continuous (nonbinary), as with enzyme induction, organelle hypertrophy, and extracellular matrix elaboration, occurring either at the intra- or extra (supra) cellular level. Any quantifiable change induced in the function or structure of a cell or tissue constitutes a response or effect. Each of the several types of cell in the liver responds to a given stimulus according to its localization and function. Generally, renewing cells are more vulnerable to chemical injury than intermediate cells, which are largely quiescent. Hepatic adaptive responses usually involve actions of the chemical on cellular regulatory pathways, often receptor mediated, leading to changes in gene expression and ultimately alteration of the metabolome. The response is directed toward maintaining homeostasis through modulation of various cellular and extracellular functions. At all levels of organization, adaptive responses are beneficial in that they enhance the capacity of all units to respond to chemical induced stress, are reversible and preserve viability. Such adaptation at subtoxic exposures is also referred to as hormesis. In contrast, adverse or toxic effects in the liver often involve chemical reaction with cellular macromolecules and produce disruption of homeostasis. Such effects diminish the capacity for response, can be nonreversible at all levels of organization, and can compromise viability. An exposure that elicits an adaptive response can produce toxicity with longer or higher exposures (ie, above a threshold) and the mechanism of action changes with the effective dose. A variety of hepatic adaptive and toxic effects has been identified. Examples of adaptive effects are provided by phenobarbital and ciprofibrate, whereas p-dichlorobenzene and 2-acetylamino fluorene illustrate different toxic effects. The effects of chemicals in the liver are, in general, similar between experimental animals and humans, although exceptions exist. Thus, identification and monitoring of both types of effect are integral in the safety assessment of chemical exposures. C1 New York Med Coll, Dept Pathol, Valhalla, NY 10595 USA. C3 New York Medical College RP Williams, GM (corresponding author), New York Med Coll, Dept Pathol, Basic Sci Bldg,Sunshine Cottage Rd, Valhalla, NY 10595 USA. CR Abdo KM, 1996, EXP TOXICOL PATHOL, V48, P129, DOI 10.1016/S0940-2993(96)80033-9 Amacher DE, 1997, TOXICOL APPL PHARM, V142, P143, DOI 10.1006/taap.1996.8007 Amacher DE, 1998, FOOD CHEM TOXICOL, V36, P831, DOI 10.1016/S0278-6915(98)00066-0 [Anonymous], 1987, Natl Inst Health Consens Dev Conf Consens Statement, V6, P1 ANUGWA FOI, 1989, GROWTH DEVELOP AGING, V53, P167 ARIAS IM, 1993, HEPATOLOGY, V17, P318, DOI 10.1016/0270-9139(93)90095-5 ARTHUR MJP, 1985, GASTROENTEROLOGY, V89, P1114, DOI 10.1016/0016-5085(85)90218-5 BAKER GT, 1991, POTENTIAL NUTRITIONA, P3 BLAZKA ME, 1995, TOXICOL APPL PHARM, V133, P43, DOI 10.1006/taap.1995.1125 BLOMHOFF R, 1991, FASEB J, V5, P271, DOI 10.1096/fasebj.5.3.2001786 Borst P, 1999, BBA-BIOMEMBRANES, V1461, P347, DOI 10.1016/S0005-2736(99)00167-4 BRAUER RW, 1963, PHYSIOL REV, V43, P115, DOI 10.1152/physrev.1963.43.1.115 BREEN AP, 1995, FREE RADICAL BIO MED, V18, P1033, DOI 10.1016/0891-5849(94)00209-3 BRESNICK E, 1997, CANC MED, V1, P143 BRESNICK E, 1997, CANC MED, V4 Brues AM, 1936, ARCH PATHOL, V22, P658 BUCHER NLR, 1963, INT REV CYTOL, V15, P245, DOI 10.1016/S0074-7696(08)61119-5 BUDROE JD, 1992, TOXICOL APPL PHARM, V113, P192, DOI 10.1016/0041-008X(92)90114-8 BUDUNOVA IV, 1994, CELL BIOL TOXICOL, V10, P71, DOI 10.1007/BF00756491 Butterworth B E, 1992, IARC Sci Publ, P279 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Capen CC, 2001, TOXICOL PATHOL, V29, P8, DOI 10.1080/019262301301418829 CARDELL EL, 1997, COMPREHENSIVE TOXICO, V9, P11 Carthew P, 1998, TOXICOL SCI, V44, P46, DOI 10.1006/toxs.1998.2473 Casciano DA, 2000, DRUG METAB REV, V32, P1, DOI 10.1081/DMR-100100561 COHEN AJ, 1981, FOOD COSMET TOXICOL, V19, P585, DOI 10.1016/0015-6264(81)90509-5 Cohen SD, 1997, DRUG METAB REV, V29, P59, DOI 10.3109/03602539709037573 COHEN SM, 1990, SCIENCE, V249, P1007, DOI 10.1126/science.2204108 CONNEY AH, 1960, J PHARMACOL EXP THER, V130, P1 CONNEY AH, 1956, CANCER RES, V16, P450 CONNEY AH, 1982, CANCER RES, V42, P4875 COUNTS JL, 1995, REGUL TOXICOL PHARM, V21, P418, DOI 10.1006/rtph.1995.1056 CRADDOCK VM, 1971, JNCI-J NATL CANCER I, V47, P899 CRAMPTON RF, 1977, TOXICOLOGY, V7, P289, DOI 10.1016/0300-483X(77)90049-X CRAMPTON RF, 1977, TOXICOLOGY, V7, P307, DOI 10.1016/0300-483X(77)90050-6 D'Amours D, 1999, BIOCHEM J, V342, P249, DOI 10.1042/0264-6021:3420249 DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1 Davis J. R. E., 1997, P13 DESMET VJ, 1999, CLIN HEPATOLOGY, V1, P51 DESMET VJ, 1999, CLIN HEPATOLOGY, V2 DESMEULES J, 1999, CLIN HEPATOLOGY, V1, P145 Elia M, 1991, ENERGY METABOLISM TI, P61 ELIA M, 1991, ENERGY METABOLISM TI, P19 FARBER E, 1956, CANCER RES, V16, P142 Farber J, 1979, TOXIC INJURY LIVER A, P215 FARBER JL, 1982, PROG LIVER DIS, V7, P347 Fey G H, 1990, Prog Liver Dis, V9, P89 Fishback FC, 1929, ARCH PATHOL, V7, P955 FRENKEL K, 1992, PHARMACOL THERAPEUT, V53, P127, DOI 10.1016/0163-7258(92)90047-4 GANT TW, 1995, TOXICOL APPL PHARM, V133, P269, DOI 10.1006/taap.1995.1151 Gilbert D, 1965, Food Cosmet Toxicol, V3, P417, DOI 10.1016/S0015-6264(65)80129-8 GRAEVES P, 1990, HISTOPATHOLOGY PRECL Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309 GRISHAM JW, 1962, CANCER RES, V22, P842 HADDAD FG, 1999, CLIN HEPATOLOGY, V1, P65 HADDAD FG, 1999, CLIN HEPATOLOGY, V2 Hart RW, 1996, EXP TOXICOL PATHOL, V48, P121, DOI 10.1016/S0940-2993(96)80032-7 Hathway DE, 2000, BIOL REV, V75, P95, DOI 10.1017/S0006323199005447 Hipfner DR, 1999, BBA-BIOMEMBRANES, V1461, P359, DOI 10.1016/S0005-2736(99)00168-6 Hoffmann WE., 1999, CLIN CHEM LAB ANIMAL, P399 Iatropoulos Michael J., 1993, V9, P245 Iatropoulos MJ, 1996, EXP TOXICOL PATHOL, V48, P175, DOI 10.1016/S0940-2993(96)80039-X IATROPOULOS MJ, 1994, EXP TOXICOL PATHOL, V45, P391, DOI 10.1016/S0940-2993(11)80365-9 International Agency for Research on Cancer, 1994, 24 IARC JULIANO RL, 1976, BIOCHIM BIOPHYS ACTA, V455, P152, DOI 10.1016/0005-2736(76)90160-7 JUNGERMANN K, 1995, HISTOCHEM CELL BIOL, V103, P81, DOI 10.1007/BF01454004 Kacew S, 1996, J TOXICOL ENV HEALTH, V47, P1 KATAYAMA S, 1984, J NATL CANCER I, V73, P141 Kauffmann HM, 1997, HEPATOLOGY, V26, P980, DOI 10.1053/jhep.1997.v26.pm0009328323 KIM NW, 1994, SCIENCE, V266, P2011, DOI 10.1126/science.7605428 KIRKWOOD TBL, 2000, GERIATRIC MED, P35 KLAUNIG JE, 1988, TOXICOL PATHOL, V16, P381, DOI 10.1177/019262338801600310 Kool M, 1997, CANCER RES, V57, P3537 LASKIN DL, 1991, ADV EXP MED BIOL, V283, P499 LEWIS W, 1995, NAT MED, V1, P417, DOI 10.1038/nm0595-417 Lindahl T, 1999, SCIENCE, V286, P1897, DOI 10.1126/science.286.5446.1897 LOEWENSTEIN WR, 1979, BIOCHIM BIOPHYS ACTA, V560, P1, DOI 10.1016/0304-419X(79)90002-7 MACSWEEN RNM, 1994, PATHOLOGY LIVER, V3, P1 MAJNO G, 1996, CELLS TISSUES DIS PR, P16 Martin DS, 2000, CANCER RES, V60, P6776 MASLANSKY CJ, 1985, MECH AGEING DEV, V29, P191, DOI 10.1016/0047-6374(85)90018-1 Matthews Dwight E., 1994, P1 MCCUSKEY RS, 1997, COMPREHENSIVE TOXICO, V9, P1 Meyer UA, 1999, DRUG METAB REV, V31, P365, DOI 10.1081/DMR-100101924 Michalopoulos GK, 1997, SCIENCE, V276, P60, DOI 10.1126/science.276.5309.60 Moennikes O, 2000, CANCER RES, V60, P5087 NATHANSON MH, 1991, HEPATOLOGY, V14, P551, DOI 10.1016/0270-9139(91)90198-5 NEBERT DW, 1987, ANNU REV BIOCHEM, V56, P945, DOI 10.1146/annurev.biochem.56.1.945 Nicholson JK, 1999, XENOBIOTICA, V29, P1181, DOI 10.1080/004982599238047 Nover L., 1991, HEAT SHOCK RESPONSE O'Connor PJ, 2000, TOXICOL PATHOL, V28, P375, DOI 10.1177/019262330002800304 Oda K, 2000, CELL, V102, P849, DOI 10.1016/S0092-8674(00)00073-8 OLSEN JH, 1995, CANCER RES, V55, P294 Olson H, 2000, REGUL TOXICOL PHARM, V32, P56, DOI 10.1006/rtph.2000.1399 Pandha H. S., 1997, P323 PAOLINI M, 1995, CHEM-BIOL INTERACT, V95, P127, DOI 10.1016/0009-2797(94)03352-8 Parkinson A, 1996, CASARETT DOULLS TOXI, P113 PATEL T, 1995, HEPATOLOGY, V21, P1725, DOI 10.1002/hep.1840210635 PELKONEN O, 1994, DRUG INF J, V28, P225 PERAINO C, 1971, CANCER RES, V31, P1506 Perrone CE, 1998, TOXICOL APPL PHARM, V150, P277, DOI 10.1006/taap.1998.8413 Pieper AA, 1999, TRENDS PHARMACOL SCI, V20, P171, DOI 10.1016/S0165-6147(99)01292-4 PLAA GL, 2001, PRINCIPLES METHODS T, P1145 POPP JA, 1994, PROG CLIN BIOL RES, V387, P193 RATAIN MJ, 1997, CANC MED, P875 REED JC, 1994, J CELL BIOL, V124, P1, DOI 10.1083/jcb.124.1.1 REMMER H, 1959, N-S ARCH EX PATH PH, V235, P279 Rice JM, 1999, TOXICOL SCI, V49, P166, DOI 10.1093/toxsci/49.2.166 RINGER DP, 1987, CARCINOGENESIS, V8, P1749, DOI 10.1093/carcin/8.11.1749 RUSSELL RM, 1992, AM J CLIN NUTR, V55, P1203 Santoro MG, 2000, BIOCHEM PHARMACOL, V59, P55, DOI 10.1016/S0006-2952(99)00299-3 SCAMPINI G, 1993, TOXICOL PATHOL, V21, P369, DOI 10.1177/019262339302100404 SCHULTEHERMANN R, 1979, TOXIC INJURY LIVER, P385 SEARLE J, 1987, J GASTROEN HEPATOL, V2, P77, DOI 10.1111/j.1440-1746.1987.tb00152.x SELL S, 1990, CANCER RES, V50, P3811 Sirma H, 1996, LIVER, V16, P166 STENBACK F, 1986, J NATL CANCER I, V76, P327 TANAKA T, 1986, CHEM-BIOL INTERACT, V58, P13, DOI 10.1016/S0009-2797(86)80083-7 TANAKA T, 1987, CARCINOGENESIS, V8, P1171, DOI 10.1093/carcin/8.9.1171 TGROSKO JE, 1990, MOUSE LIVER CARCINOG TONG C, 1980, P NATL ACAD SCI-BIOL, V77, P7377, DOI 10.1073/pnas.77.12.7377 Trepicchio WL, 2001, TOXICOL PATHOL, V29, P242, DOI 10.1080/019262301317052521 Tugwood JD, 1996, ANN NY ACAD SCI, V804, P252, DOI 10.1111/j.1749-6632.1996.tb18620.x Umemura T, 1998, DRUG CHEM TOXICOL, V21, P57, DOI 10.3109/01480549809017851 UMEMURA T, 1993, CANCER LETT, V73, P1, DOI 10.1016/0304-3835(93)90181-8 Umemura T, 1999, CARCINOGENESIS, V20, P1115, DOI 10.1093/carcin/20.6.1115 Verna L, 1996, PHARMACOL THERAPEUT, V71, P83, DOI 10.1016/0163-7258(96)00063-0 Wallace DC, 1999, SCIENCE, V283, P1482, DOI 10.1126/science.283.5407.1482 Waxman DJ, 1999, ARCH BIOCHEM BIOPHYS, V369, P11, DOI 10.1006/abbi.1999.1351 WEISIGER RA, 1988, AM J PHYSIOL, V255, pG822, DOI 10.1152/ajpgi.1988.255.6.G822 Whysner J, 1996, PHARMACOL THERAPEUT, V71, P153, DOI 10.1016/0163-7258(96)00067-8 Williams G M, 1980, Ann N Y Acad Sci, V349, P273, DOI 10.1111/j.1749-6632.1980.tb29532.x WILLIAMS GM, 1989, MUTAT RES, V221, P263, DOI 10.1016/0165-1110(89)90039-0 Williams GM, 1996, ANN NY ACAD SCI, V804, P554, DOI 10.1111/j.1749-6632.1996.tb18645.x Williams GM, 2000, REGUL TOXICOL PHARM, V32, P283, DOI 10.1006/rtph.2000.1433 Williams GM, 2000, TOXICOL PATHOL, V28, P388, DOI 10.1177/019262330002800306 Williams GM, 1998, TOXICOL SCI, V45, P152 WILLIAMS GM, 1981, FOOD COSMET TOXICOL, V19, P577, DOI 10.1016/0015-6264(81)90508-3 WISSE E, 1999, CLIN HEPATOLOGY, P33 YAMAMOTO K, 1985, LAB INVEST, V52, P103 YAMASAKI H, 1990, CARCINOGENESIS, V11, P1051, DOI 10.1093/carcin/11.7.1051 Zhu BT, 1997, CANCER RES, V57, P2419 NR 142 TC 126 Z9 130 U1 0 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0192-6233 EI 1533-1601 J9 TOXICOL PATHOL JI Toxicol. Pathol. PD JAN 1 PY 2002 VL 30 IS 1 BP 41 EP 53 DI 10.1080/01926230252824699 PG 13 WC Pathology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pathology; Toxicology GA 558ED UT WOS:000175952600007 PM 11890475 OA Bronze DA 2023-03-13 ER PT J AU Kostoff, RN AF Kostoff, Ronald N. TI Literature-related discovery and innovation - update SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Literature-related discovery; Literature-Related Discovery and Innovation; Text mining; Multiple sclerosis; Discovery; Innovation; Disease prevention; Disease treatment AB Literature-Related Discovery and Innovation (LRDI - formerly LRD - literature-related discovery) integrates 1) discovery generation from disparate literatures with 2) the wealth of knowledge contained in prior art to 3) potentially reverse chronic and infectious diseases and/or 4) potentially solve technical problems that appear intractable. This article describes the evolution of LRDI by the author and the insights gained/lessons learned over the past decade. To illustrate the potential power of LRDI, the article emphasizes the relationship between the results of our 2008 LRDI multiple sclerosis (MS) study and a recent demonstration of MS reversal. Lessons learned from the six LRDI medical studies done so far include: The main operational problem in the author's LRDI approach is selecting the most important concepts from extremely large volumes of potential discovery retrieval. This is contrary to most published LRDI research, where the discovery focus is searching for rare events. It is important to have topical specialist(s) working closely with information technologist(s); the topical specialist(s) applies judgment in selecting the most important concepts. A functional form of the information retrieval query with proximity searching capability provides highly selective filtering for discovery retrieval and core prevention/treatment retrieval; the functional form of the query with proximity searching capability allows the use of full-text for discovery and core prevention/treatment. Bibliographic coupling (identifying papers that share common references) combined with text-based relationships strengthens selection for potential discovery further. Having 'skin-in-the-game' (being affected personally) relative to the medical outcome is a strong incentive to do whatever is necessary to solve the research problem. Hormesis is critical to healing; relatively modest doses of stimuli tend to be beneficial, whereas relatively large doses may be harmful. The synergy of hormetic treatment doses produces effects larger than combinations of individual doses and requires smaller doses when combined; the synergy of hormetic doses allows conversion of megadoses of nutrients typically reported in lab/clinical studies to physiological (food-level) doses and associated increased safety. Co-promoters (combinations of toxic stimuli required to produce disease symptoms) are extremely important for explaining seemingly conflicting results; if true co-promotion is present, elimination of one of the co-promoters may be adequate for removing symptoms, even though the overall problem persists. Prior art (potential treatments already published in the literature but not pursued by mainline medicine) may have much to contribute to potentially solve many serious medical problems; much of prior art is overlooked, especially low-tech prior art (e.g., foods, food extracts, herbs, etc.). Systemic and focused treatments are both necessary components of healing, but neither will be fully, or many times even partially, effective until the cause(s) is identified and removed. Any medical approach that involves administering treatments for chronic and infectious diseases without addressing the cause(s) results in a broad range of outcomes mainly involving substitution of one set of symptoms for another. Past results of LRDI medical studies showed much overlap among preventatives/systemic treatments for different diseases. Differences will arise mainly in focused treatments, especially those involving high technology. The central parameters to healing in much medical research are never identified nor reported. Many treatments require a combination of skilled practitioners, cause removal, and immune/neural/endocrine/circulatory systems to be healthy for full effectiveness, yet practitioner skill, degree of cause removal, and immune system et al. health are never reported. A lack of this information does not allow efficacy of different treatments to be compared. Reviews and meta-analyses that compare and draw conclusions about the effectiveness of these different treatments without the above critical information being reported are of extremely limited value and credibility. Finally, the most important deficiency for fully reversing chronic and infectious diseases, as well as rapidly accelerating healing of injuries and wounds, is the credibility and integrity of the medical literature itself, especially in areas that concern commercial and government/political sensitivities. In the evaluation of many concepts that deviated from the norm, it was difficult to ascertain whether the difference was based on solid high-quality research, poor research, or deliberately skewed research. (C) 2012 Elsevier Inc. All rights reserved. C1 Georgia Inst Technol, Sch Publ Policy, Gainesville, VA 20155 USA. C3 University System of Georgia; Georgia Institute of Technology RP Kostoff, RN (corresponding author), Georgia Inst Technol, Sch Publ Policy, 13500 Tallyrand Way, Gainesville, VA 20155 USA. EM ronald.kostoff@pubpolicy.gatech.edu CR [Anonymous], 2006, RAD RES CULT NEGATIV Hardell L, 2011, INT J ONCOL, V38, P1465, DOI 10.3892/ijo.2011.947 Havas M, 2006, ELECTROMAGN BIOL MED, V25, P259, DOI 10.1080/15368370601044192 Kostoff RN, 2007, ADA473643 DTIC Kostoff RN, JASIST IN PRESS Kostoff RN, 2010, ADA525269 DTIC Kostoff RN, 2009, ANNU REV INFORM SCI, V43, P241 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P226, DOI 10.1016/j.techfore.2007.11.007 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P165, DOI 10.1016/j.techfore.2007.11.004 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P239, DOI 10.1016/j.techfore.2007.11.002 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P256, DOI 10.1016/j.techfore.2007.11.009 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P203, DOI 10.1016/j.techfore.2007.11.005 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P276, DOI 10.1016/j.techfore.2007.11.003 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P215, DOI 10.1016/j.techfore.2007.11.006 Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P186, DOI 10.1016/j.techfore.2007.11.010 Kostoff RN, 2011, TECHNOL FORECAST SOC, V78, P1164, DOI 10.1016/j.techfore.2011.03.022 Oreskes N., 2011, MERCHANTS DOUBTS HAN Schraub S, 2010, ONCOLOGIE, V12, P675, DOI 10.1007/s10269-010-1960-1 Sismondo S, 2010, BIOETHICS, V24, P273, DOI 10.1111/j.1467-8519.2008.01702.x Steen RG, 2011, J MED ETHICS, V37, P688, DOI 10.1136/jme.2011.043133 SWANSON DR, 1986, PERSPECT BIOL MED, V30, P7 Swanson DR, 2001, J AM SOC INF SCI TEC, V52, P797, DOI 10.1002/asi.1135 Swanson DR, 1999, LIBR TRENDS, V48, P48 Wahls T.L., 2010, MINDING MY MITOCHOND Wahls TL, 2011, J GEN INTERN MED, V26, P1215, DOI 10.1007/s11606-010-1631-3 Wise J, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d7201 NR 26 TC 19 Z9 19 U1 2 U2 62 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD MAY PY 2012 VL 79 IS 4 BP 789 EP 800 DI 10.1016/j.techfore.2012.02.002 PG 12 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 929TD UT WOS:000303087700017 PM 32287411 OA Green Published DA 2023-03-13 ER EF