FN Clarivate Analytics Web of Science
VR 1.0
PT J
AU Endler, PC
Ludtke, R
Heckmann, C
Zausner, C
Lassnig, H
Scherer-Pongratz, W
Haidvogl, M
Frass, M
AF Endler, PC
Ludtke, R
Heckmann, C
Zausner, C
Lassnig, H
Scherer-Pongratz, W
Haidvogl, M
Frass, M
TI Pretreatment with thyroxine (10(-8) parts by weight) enhances a
'curative' effect of homeopathically prepared thyroxine (10(-13)) on
lowland frogs
SO FORSCHENDE KOMPLEMENTARMEDIZIN UND KLASSISCHE NATURHEILKUNDE
LA English
DT Article
DE amphibia; metamorphosis; hormone hyperstimulation; thyroxine;
homeopathic dilution; hormesis; inverse effect; curative effect
AB We studied the influence of a moderate homeopathically prepared thyroxine dilution (final concentration in the basin water 10(-13) parts by weight) on the metamorphosis of lowland Rana temporaria which had been hyperstimulated with thyroxine. Two groups of animals were pre-treated by immersing them in a molecular thyroxine dilution (10(-8) parts by weight). This pretreatment speeds up development, as is well known. In accordance with the homeopathic/isopathic idea of detoxication or cure, the same hormone was then diluted and agitated in successive steps for further treatment. This homeopathically prepared dilution was administered at 24-hour intervals to one of the groups. An analogously prepared blank solution was used for the control group. Our hypothesis, which was derived from earlier studies, was that animals treated with the test solution would metamorphose more slowly than the control animals, i.e. that the homeopathically prepared thyroxine would have a 'curative' effect. In this new series of experiments this hypothesis was examined by 3 independent researchers. In the experiments carried out by 2 of the 3 researchers the number of animals that reached the four-legged stage at defined points in time was smaller in the group treated with homeopathically prepared thyroxine. In the third laboratory no difference was found between the groups. However, the overall inhibiting effect was statistically significant and more pronounced than in earlier, less promising studies and in parallel experiments in which nonprestimulated animals had been used. Other studies carried out by the 3 researchers involved animals from highland biotopes, where the natural environment probably induces a greater sensitivity towards thyroxine or higher thyroxine levels. These animals reacted to the homeopathically prepared thyroxine with a slowing down of metamorphosis, even when they had not been prestimulated with a molecular dose of the hormone. This effect was observed in all 3 laboratories and is consistent with the results of previous studies.
C1 K&V Carstens Stiftung, Essen, Germany.
Univ Vienna, Inst Zool, A-1090 Vienna, Austria.
Bundesanstalt Vet Med Untersuchungen, Graz, Austria.
Ludwig Boltzman Inst Homoopathie, Graz, Austria.
C3 University of Vienna; Ludwig Boltzmann Institute
RP Endler, PC (corresponding author), Petrifelderstr 4, A-8042 Graz, Austria.
EM lab@inter-uni.net
CR ALEX J, 2002, THESIS U TUBINGEN
Baumgartner S, 1998, FORSCH KOMPLEMENTMED, V5, P27, DOI 10.1159/000021071
Berezin A A, 1994, ULTRA HIGH DILUTION, P137
COX DR, 1972, J R STAT SOC B, V34, P187
DELGIUDICE E, COHERENT ELECTRODYNA, P89
DELLMOUR F, 1996, DURCH AHNLICHES HEIL, P97
ENDLER PC, 1994, VET HUM TOXICOL, V36, P56
ENDLER PC, 1995, VET HUM TOXICOL, V37, P259
ENDLER PC, 2003, HOMEOPATHY EXPEDITIO
ENDLER PC, 1998, EXPEDITION HOMOPATHI
ENDLER PC, 1996, DURCH AHNLICHES HEIL, P203
ENDLER PC, 1991, BERLIN J RES HOM, V1, P151
GERASSIMOS S, 1998, HOMOEPOATHY CRITICAL, P153
Gosner K. L., 1960, Herpetologica, V16, P183
HECKMANN C, 1997, THESIS U TUBINGEN
HERKOVITS J, 1993, COMMUNICATIONES BIOL, V7, P70
HORNUNG J, 1996, FORSCH KOMPLEMENTMED, V3, P91
KAVARAINEN A, 1992, MESOSCOPIC THEORY MA
LAUPPERT E, 1997, HIGH DILUTION EFFECT
Roth C, 1991, BERLIN J RES HOM, V1, P111
SCHULTE J, BIOINFORMATION QUANT, P45
SCHULTE J, 1998, FUNDAMENTAL RES ULTR
VANWIJK R, 1998, HOMEOPATHY CRITICAL, P180
Walach H, 1996, WIEN KLIN WOCHENSCHR, V108, P654
WEIL MR, 1986, GEN COMP ENDOCR, V62, P8, DOI 10.1016/0016-6480(86)90088-2
Zausner C, 2002, PERFUSION-GERMANY, V15, P268
ZAUSNERLUKITSCH C, 2001, THESIS U WIEN
NR 27
TC 21
Z9 22
U1 0
U2 1
PU KARGER
PI BASEL
PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND
SN 1424-7364
J9 FORSCH KOMP KLAS NAT
JI Forsch. Komplementmed. Klass. Naturheilkd.
PD JUN
PY 2003
VL 10
IS 3
BP 137
EP 142
DI 10.1159/000072211
PG 6
WC Integrative & Complementary Medicine
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Integrative & Complementary Medicine
GA 702MC
UT WOS:000184226800004
PM 12853720
DA 2023-03-13
ER
PT J
AU Araujo, SD
Paparella, S
Dondi, D
Bentivoglio, A
Carbonera, D
Balestrazzi, A
AF Araujo, Susana de Sousa
Paparella, Stefania
Dondi, Daniele
Bentivoglio, Antonio
Carbonera, Daniela
Balestrazzi, Alma
TI Physical Methods for Seed Invigoration: Advantages and Challenges in
Seed Technology
SO FRONTIERS IN PLANT SCIENCE
LA English
DT Article
DE hormesis; ionizing radiation; magnetic field; microwaves; seed
germination; seed vigor; ultraviolet radiation
ID ELECTRON-PARAMAGNETIC-RESONANCE; UV-C RADIATION; MAGNETIC-FIELD; X-RAYS;
MOLECULAR MOBILITY; GAMMA-IRRADIATION; DNA-REPAIR;
ELECTROMAGNETIC-FIELDS; ULTRAVIOLET-RADIATION; THERMAL NEUTRONS
AB In the context of seed technology, the use of physical methods for increasing plant production offers advantages over conventional treatments based on chemical substances. The effects of physical invigoration treatments in seeds can be now addressed at multiple levels, ranging from morpho-structural aspects to changes in gene expression and protein or metabolite accumulation. Among the physical methods available, "magneto-priming" and irradiation with microwaves (MWs) or ionizing radiations (IRs) are the most promising pre-sowing seed treatments. "Magneto-priming" is based on the application of magnetic fields and described as an eco-friendly, cheap, non-invasive technique with proved beneficial effects on seed germination, vigor and crop yield. IRs, as gamma-rays and X-rays, have been widely regarded as a powerful tool in agricultural sciences and food technology. Gamma -rays delivered at low dose have showed to enhance germination percentage and seedling establishment, acting as an actual 'priming' treatment. Different biological effects have been observed in seeds subjected to MWs and X-rays but knowledge about their impact as seed invigoration agent or stimulatory effects on germination need to be further extended. Ultraviolet (UV) radiations, namely UV-A and UV-C have shown to stimulate positive impacts on seed health, germination, and seedling vigor. For all mentioned physical treatments, extensive fundamental and applied research is still needed to define the optimal dose, exposition time, genotype- and environment-dependent irradiation conditions. Electron paramagnetic resonance has an enormous potential in seed technology not fully explored to monitor seed invigoration treatments and/or identifying the best suitable irradiation dose or time-point to stop the treatment. The present manuscript describes the use of physical methods for seed invigoration, while providing a critical discussion on the constraints and advantages. The future perspectives related to the use of these approaches to address the need of seed technologists, producers and trade markers will be also highlighted.
C1 [Araujo, Susana de Sousa] Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Plant Cell Technol Lab, P-2780156 Oeiras, Portugal.
[Araujo, Susana de Sousa; Paparella, Stefania; Carbonera, Daniela; Balestrazzi, Alma] Univ Pavia, Dept Biol & Biotechnol L Spallanzani, Via Palestro 3, I-27100 Pavia, Italy.
[Dondi, Daniele; Bentivoglio, Antonio] Univ Pavia, Dept Chem, Via Palestro 3, I-27100 Pavia, Italy.
C3 Universidade Nova de Lisboa; University of Pavia; University of Pavia
RP Araujo, SD (corresponding author), Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Plant Cell Technol Lab, P-2780156 Oeiras, Portugal.; Araujo, SD (corresponding author), Univ Pavia, Dept Biol & Biotechnol L Spallanzani, Via Palestro 3, I-27100 Pavia, Italy.
EM saraujo@itqb.unl.pt
RI Araújo, Susana S/A-5482-2009; Balestrazzi, Alma/AAF-2974-2020
OI Araújo, Susana S/0000-0003-2823-088X; Balestrazzi,
Alma/0000-0003-2003-4120
FU University of Pavia; CAROLO Foundation [2013-1727]; Fundacao para a
Ciencia e a Tecnologia (Lisbon, Portugal) [UID/Multi/04551/2013,
SFRH/BPD/108032/2015]
FX This work was supported by grants from University of Pavia. SA has been
awarded by a research contract funded by CAROLO Foundation (Action 3,
Code 2013-1727) - Integrated Project Advanced Priming Technologies for
the Lombardy Agro-Seed Industry-PRIMTECH.' The financial support from
Fundacao para a Ciencia e a Tecnologia (Lisbon, Portugal) is
acknowledged through research unit "GREEN-it: Bioresources for
Sustainability" (UID/Multi/04551/2013), as well as, SA postdoctoral
grant (SFRH/BPD/108032/2015).
CR Abdel-Hady M. S., 2008, Australian Journal of Basic and Applied Sciences, V2, P401
Afzal I, 2012, INT AGROPHYS, V26, P335, DOI 10.2478/v10247-012-0047-1
Ahmad M, 2007, PLANTA, V225, P615, DOI 10.1007/s00425-006-0383-0
Al-Enezi N. A., 2012, Emirates Journal of Food and Agriculture, V24, P415
Aladjadjiyan A., 2010, Romanian Journal of Biophysics, V20, punpaginated
Aladjadjiyan A, 2012, INT TECH PLOVDIV BUL, P145, DOI [10.5772/32039, DOI 10.5772/32039]
Anand A, 2012, INDIAN J BIOCHEM BIO, V49, P63
Arena C, 2014, ACTA ASTRONAUT, V104, P419, DOI 10.1016/j.actaastro.2014.05.005
Baby SM, 2011, PLANT SIGNAL BEHAV, V6, P1635, DOI 10.4161/psb.6.11.17720
Balakhnina T, 2015, ACTA PHYSIOL PLANT, V37, DOI 10.1007/s11738-015-1802-2
Balestrazzi A, 2011, J PLANT PHYSIOL, V168, P706, DOI 10.1016/j.jplph.2010.10.008
Banik S, 2003, BIORESOURCE TECHNOL, V87, P155, DOI 10.1016/S0960-8524(02)00169-4
BEARD BH, 1958, GENETICS, V43, P728
Belyavskaya NA, 2004, ADV SPACE RES-SERIES, V34, P1566, DOI 10.1016/j.asr.2004.01.021
Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432
Benedict HM, 1934, PLANT PHYSIOL, V9, P173, DOI 10.1104/pp.9.1.173
Bhardwaj J, 2012, PLANT PHYSIOL BIOCH, V57, P67, DOI 10.1016/j.plaphy.2012.05.008
Bilalis DJ, 2012, ELECTROMAGN BIOL MED, V31, P143, DOI 10.3109/15368378.2011.624660
Bless AA, 1938, PLANT PHYSIOL, V13, P209, DOI 10.1104/pp.13.1.209
Borzouei A, 2010, PAK J BOT, V42, P2281
Brown JE, 2001, CROP PROT, V20, P873, DOI 10.1016/S0261-2194(01)00037-0
Buitink J, 2000, P NATL ACAD SCI USA, V97, P2385, DOI 10.1073/pnas.040554797
Buitink J, 1998, PLANT PHYSIOL, V118, P531, DOI 10.1104/pp.118.2.531
Buitink J, 1999, BIOPHYS J, V76, P3315, DOI 10.1016/S0006-3495(99)77484-9
Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602
CALDECOTT RS, 1952, P NATL ACAD SCI USA, V38, P804, DOI 10.1073/pnas.38.9.804
Celestino C, 2000, ELECTRO MAGNETOBIOL, V19, P115, DOI 10.1081/JBC-100100302
Choudhary KK, 2014, ECOTOX ENVIRON SAFE, V100, P178, DOI 10.1016/j.ecoenv.2013.10.032
Confalonieri M, 2014, PLANT CELL TISS ORG, V116, P187, DOI 10.1007/s11240-013-0395-y
da Silva JAT, 2016, PROTOPLASMA, V253, P231, DOI 10.1007/s00709-015-0820-7
De Micco V, 2014, SCI WORLD J, DOI 10.1155/2014/428141
de Souza A, 2006, BIOELECTROMAGNETICS, V27, P247, DOI 10.1002/bem.20206
Dubey A. K., 2007, Progressive Agriculture, V7, P46
Edmondson JL, 2014, J APPL ECOL, V51, P880, DOI 10.1111/1365-2664.12254
Efthimiadou A, 2014, SCI WORLD J, DOI 10.1155/2014/369745
Einset J, 2015, MUTAGENESIS, V30, P45, DOI 10.1093/mutage/geu054
Esnault MA, 2010, ENVIRON EXP BOT, V68, P231, DOI 10.1016/j.envexpbot.2010.01.007
Fae M, 2014, PLANT CELL REP, V33, P1071, DOI 10.1007/s00299-014-1595-6
Fan XT, 2003, J AGR FOOD CHEM, V51, P1231, DOI 10.1021/jf020600c
Farkas J, 2011, TRENDS FOOD SCI TECH, V22, P121, DOI 10.1016/j.tifs.2010.04.002
Farokh P., 2010, Research Journal of Environmental Sciences, V4, P70
Ghodbane S, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/602987
Gicquel M, 2012, PLANT SCI, V195, P106, DOI 10.1016/j.plantsci.2012.06.015
Golovina EA, 1997, PLANT PHYSIOL, V114, P383, DOI 10.1104/pp.114.1.383
Guajardo-Flores D, 2014, CEREAL CHEM, V91, P276, DOI 10.1094/CCHEM-08-13-0172-R
Hamid N., 2011, PAKISTAN J CHEM, V1, P164, DOI [10.15228/2011.v01.i04.p04, DOI 10.15228/2011.V01.I04.P04]
Hegazi A.Z., 2010, J HORT FOR, V2, P38
Heisler GM, 2003, AGR FOREST METEOROL, V120, P3, DOI 10.1016/j.agrformet.2003.08.007
Hernandez-Aguilar C., 2009, ACTA AGROPHYS, V14, P7
Hideg E, 2013, TRENDS PLANT SCI, V18, P107, DOI 10.1016/j.tplants.2012.09.003
Hollosy F, 2002, MICRON, V33, P179, DOI 10.1016/S0968-4328(01)00011-7
Hussain S, 2015, SCI REP-UK, V5, DOI 10.1038/srep08101
Irfaq M., 2001, J BIOL SCI, V1, P935
Iuliana C., 2013, Scientific Papers: Animal Science and Biotechnologies, V46, P185
Jakubowski T., 2010, AGR ENG, V6, P57
Javed N, 2011, PHOTOCHEM PHOTOBIOL, V87, P1354, DOI 10.1111/j.1751-1097.2011.00990.x
Jayasanka SMDH, 2014, ENVIRON REV, V22, P220, DOI 10.1139/er-2013-0061
Jayawardena SD, 1988, BIO NEWS, V4, P22
Knox OGG, 2013, CROP PROT, V50, P12, DOI 10.1016/j.cropro.2013.03.009
Kotwaliwale N, 2014, J FOOD SCI TECH MYS, V51, P1, DOI 10.1007/s13197-011-0485-y
Kovacs E, 2002, MICRON, V33, P199, DOI 10.1016/S0968-4328(01)00012-9
Kovalchuk I, 2007, MUTAT RES-FUND MOL M, V624, P101, DOI 10.1016/j.mrfmmm.2007.04.009
Krylov AV., 1960, PLANT PHYSIOL, V7, P156
Kurdziel M, 2015, J PLANT PHYSIOL, V183, P95, DOI 10.1016/j.jplph.2015.05.018
Labanowska M, 2016, J PLANT PHYSIOL, V190, P54, DOI 10.1016/j.jplph.2015.10.011
Labanowska M, 2012, J PLANT PHYSIOL, V169, P1234, DOI 10.1016/j.jplph.2012.04.020
Leprince O, 1998, PLANT PHYSIOL, V118, P1253, DOI 10.1104/pp.118.4.1253
LEPRINCE O, 1990, NEW PHYTOL, V116, P573, DOI 10.1111/j.1469-8137.1990.tb00541.x
LEPRINCE O, 1995, PHYSIOL PLANTARUM, V94, P233, DOI 10.1111/j.1399-3054.1995.tb05306.x
Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey
Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60
Macovei A, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/676934
Maffei ME, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00445
MAHERCHANDANI N, 1975, RADIAT BOT, V15, P439, DOI 10.1016/0033-7560(75)90018-6
Maity JP, 2005, RADIAT PHYS CHEM, V74, P391, DOI 10.1016/j.radphyschem.2004.08.005
MAJEED A, 2010, INT J BIOL SCI ENG, V1, P147
Marcu D, 2013, J BIOL PHYS, V39, P625, DOI 10.1007/s10867-013-9322-z
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Minisi F. A., 2013, American-Eurasian Journal of Agricultural & Environmental Sciences, V13, P696
Mitchell LM, 1997, SOC STUD SCI, V27, P221, DOI 10.1177/030631297027002002
Mokobia CE, 2005, J RADIOL PROT, V25, P181, DOI 10.1088/0952-4746/25/2/006
Moussa HR, 2006, RUSS J PLANT PHYSL+, V53, P193, DOI 10.1134/S1021443706020075
Ouhibi C, 2014, PLANT PHYSIOL BIOCH, V83, P126, DOI 10.1016/j.plaphy.2014.07.019
Paparella S, 2015, PLANT CELL REP, V34, P1281, DOI 10.1007/s00299-015-1784-y
Perez-Torres E, 2015, PLANT CELL ENVIRON, V38, P2318, DOI 10.1111/pce.12548
Poinapen D, 2013, J PLANT PHYSIOL, V170, P1251, DOI 10.1016/j.jplph.2013.04.016
Pretty JN, 2006, ENVIRON SCI TECHNOL, V40, P1114, DOI 10.1021/es051670d
PRIESTLEY DA, 1985, PHYSIOL PLANTARUM, V64, P88, DOI 10.1111/j.1399-3054.1985.tb01217.x
Qi WC, 2015, ECOTOX ENVIRON SAFE, V115, P243, DOI 10.1016/j.ecoenv.2015.02.026
Ragonnaud M, 2013, EU SEED PLANT REPROD
Rajendra P, 2005, ELECTROMAGN BIOL MED, V24, P39, DOI 10.1081/JBC-200055058
Reddy K. V., 2012, Research Journal of Seed Science, V5, P106
Reddy MVB, 1998, J AGR ENG RES, V71, P113, DOI 10.1006/jaer.1998.0305
Reddy MVB, 1995, J MICROWAVE POWER EE, V30, P199
Sacande M, 2001, J EXP BOT, V52, P919, DOI 10.1093/jexbot/52.358.919
SAHIN Hasan, 2014, Journal of Biosystems Engineering, V39, P304
Sahu ID, 2013, BIOCHEMISTRY-US, V52, P5967, DOI 10.1021/bi400834a
Scialabba A, 2002, ACTA BOT GALLICA, V149, P113, DOI 10.1080/12538078.2002.10515947
Shaukat SS, 2013, PAK J BOT, V45, P779
Shine MB, 2011, BIOELECTROMAGNETICS, V32, P474, DOI 10.1002/bem.20656
Siddiqui A, 2011, PAK J BOT, V43, P2221
SJODIN J, 1962, HEREDITAS, V48, P565
SMIRNOV AI, 1992, J PLANT PHYSIOL, V140, P447, DOI 10.1016/S0176-1617(11)80823-0
SMITH L, 1950, J HERED, V41, P125, DOI 10.1093/oxfordjournals.jhered.a106107
Soran ML, 2014, J PLANT PHYSIOL, V171, P1436, DOI 10.1016/j.jplph.2014.06.013
Steffen-Heins A, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00015
Talei D, 2013, SCI WORLD J, DOI 10.1155/2013/408026
Uhlenbeck GE, 1926, NATURE, V117, P264, DOI 10.1038/117264a0
Vashisth A, 2010, J PLANT PHYSIOL, V167, P149, DOI 10.1016/j.jplph.2009.08.011
Velazquez-Marti B, 2006, BIOSYST ENG, V93, P365, DOI 10.1016/j.biosystemseng.2006.01.005
Ventura L, 2012, PLANT PHYSIOL BIOCH, V60, P196, DOI 10.1016/j.plaphy.2012.07.031
Vian A, 2006, PLANT SIGNAL BEHAV, V1, P67, DOI 10.4161/psb.1.2.2434
Weil J. A., 2006, ELECT PARAMAGNETIC R
Wolff Silje A., 2014, Life-Basel, V4, P189, DOI 10.3390/life4020189
YAGYU P, 1957, GENETICS, V42, P222
Zaka R, 2002, MUTAT RES-GEN TOX EN, V517, P87, DOI 10.1016/S1383-5718(02)00056-6
Zavoisky E, 1945, J PHYS-USSR, V9, P245
Zeeman P., 1897, NATURE, V55, P347, DOI [10.1038/055347a0, DOI 10.1038/055347A0]
NR 118
TC 83
Z9 88
U1 3
U2 57
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-462X
J9 FRONT PLANT SCI
JI Front. Plant Sci.
PD MAY 12
PY 2016
VL 7
AR 646
DI 10.3389/fpls.2016.00646
PG 12
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA DL9PG
UT WOS:000375974600002
PM 27242847
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Zhang, AA
Xu, L
Liu, ZQ
Zhang, JB
Zhao, KJ
Han, LL
AF Zhang, Aonan
Xu, Ling
Liu, Ziqi
Zhang, Jiabo
Zhao, Kuijun
Han, Lanlan
TI Effects of Acetamiprid at Low and Median Lethal Concentrations on the
Development and Reproduction of the Soybean Aphid Aphis glycines
SO INSECTS
LA English
DT Article
DE neonicotinoid; hormesis; life table; survival rate; population
ID MYZUS-PERSICAE; LEPIDOPTERA-NOCTUIDAE; INSECTICIDES; POPULATIONS;
EXPRESSION; PARAMETERS; MANAGEMENT; RESISTANCE
AB Simple Summary We conducted a study on the effects of LC50 and LC30 acetamiprid on the growth and development of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae). We found that exposure to acetamiprid at LC50 significantly extended the mean generation time, adult pre-ovipositional period, and total pre-reproduction period compared to the control, whereas exposure to acetamiprid at LC30 significantly shortened these periods. Acetamiprid at LC50 treatment significantly decreased the growth rate compared with the LC30 treatment. In addition, this study also found that low lethal concentration of acetamiprid could advance the occurrence of a reproductive peak, which could help us understand the major occurrence period of soybean aphids under acetamiprid stress. The present study provides reference data that could facilitate the exploration of the effects of acetamiprid on A. glycines in the field. The soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) is a major pest of soybean and poses a serious threat to soybean production. Studies on the effect of acetamiprid on the life table parameters of A. glycines, provide important information for the effective management of this pest. We found that exposure to acetamiprid at LC50 significantly extended the mean generation time, adult pre-reproductive period, and total pre-reproduction period compared with the control, whereas exposure to acetamiprid at LC30 significantly shortened these periods. Exposure to acetamiprid at both LC30 and LC50 significantly decreased the fecundity of the female adult, net reproductive rate, intrinsic rate of increase, and finite rate of increase compared with the control. The probability of attaining the adult stage was 0.51, 0.38, and 0.86 for a newly born nymph from the LC30 acetamiprid treatment group, LC50 acetamiprid treatment group, and control group, respectively. Acetamiprid at both LC50 and LC30 exerted stress effects on A. glycines, with the LC50 treatment significantly decreased the growth rate compared with the LC30 treatment. The present study provides reference data that could facilitate the exploration of the effects of acetamiprid on A. glycines in the field.
C1 [Zhang, Aonan; Xu, Ling; Liu, Ziqi; Zhang, Jiabo; Zhao, Kuijun; Han, Lanlan] Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China.
C3 Northeast Agricultural University - China
RP Han, LL (corresponding author), Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China.
EM zan826319@163.com; 18846918117@163.com; zan8261314@163.com;
zhangjiabo_1020@163.com; kjzhao@163.com; hanll_neau@aliyun.com
OI Zhang, Aonan/0000-0003-4510-0892
FU Heilongjiang Science Foundation Project [C2018011]; Special Fund for the
Construction of Modern Agricultural Industry Technology Systems
[CARS-04]; Research and Development of Technology and Products on
Nature, Enemy Insects Prevention and Control [2017YFD0201000]
FX This research was funded by Heilongjiang Science Foundation Project
(grant number C2018011), Special Fund for the Construction of Modern
Agricultural Industry Technology Systems (grant number CARS-04) and the
Research and Development of Technology and Products on Nature, Enemy
Insects Prevention and Control (grant number 2017YFD0201000).
CR Aseperi AK, 2020, J ENVIRON MANAGE, V276, DOI 10.1016/j.jenvman.2020.111329
Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532
Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10
CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26
CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225
Chi H, 2020, TWOSEX MSCHART COMPU
Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936
Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7
Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9
Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440
Fenner K, 2013, SCIENCE, V341, P752, DOI 10.1126/science.1236281
GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956
Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646
Han WS, 2019, ECOTOXICOLOGY, V28, P399, DOI 10.1007/s10646-019-02030-4
Hanson AA, 2017, J ECON ENTOMOL, V110, P2235, DOI 10.1093/jee/tox235
Hopper KR, 2017, BIOL CONTROL, V115, P55, DOI 10.1016/j.biocontrol.2017.09.004
Jan MT, 2015, CROP PROT, V78, P247, DOI 10.1016/j.cropro.2015.09.020
Liu LL, 2016, FLA ENTOMOL, V99, P292, DOI 10.1653/024.099.0221
Lu ZT, 2021, PESTIC BIOCHEM PHYS, V174, DOI 10.1016/j.pestbp.2021.104824
Mahmoodi L, 2020, J ECON ENTOMOL, V113, P2713, DOI 10.1093/jee/toaa193
Menger J, 2020, J ECON ENTOMOL, V113, P932, DOI 10.1093/jee/toz351
Mokbel El-Sayed Mohammad Soliman, 2018, Journal of Plant Protection Research, V58, P328, DOI 10.24425/jppr.2018.124641
Paula DP, 2020, PESTIC BIOCHEM PHYS, V164, P100, DOI 10.1016/j.pestbp.2019.12.012
Ragsdale DW, 2011, ANNU REV ENTOMOL, V56, P375, DOI 10.1146/annurev-ento-120709-144755
Ragsdale DW, 2004, ANN ENTOMOL SOC AM, V97, P204, DOI 10.1603/0013-8746(2004)097[0204:SABINA]2.0.CO;2
Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5
Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1
Somar RO, 2019, CROP PROT, V124, DOI 10.1016/j.cropro.2019.104850
Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058
Tuan SJ, 2014, J ECON ENTOMOL, V107, P897, DOI 10.1603/EC13435
Ullah F, 2021, PESTIC BIOCHEM PHYS, V171, DOI 10.1016/j.pestbp.2020.104729
Ullah F, 2020, PESTIC BIOCHEM PHYS, V170, DOI 10.1016/j.pestbp.2020.104687
Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557
Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887
Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7
Zhao YH, 2018, PESTIC BIOCHEM PHYS, V148, P93, DOI 10.1016/j.pestbp.2018.04.003
Zhou C, 2020, J INSECT SCI, V20, DOI 10.1093/jisesa/ieaa099
NR 37
TC 1
Z9 1
U1 10
U2 26
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-4450
J9 INSECTS
JI Insects
PD JAN
PY 2022
VL 13
IS 1
AR 87
DI 10.3390/insects13010087
PG 12
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA YO0KY
UT WOS:000747638600001
PM 35055930
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Kolb, H
Kempf, K
Rohling, M
Lenzen-Schulte, M
Schloot, NC
Martin, S
AF Kolb, Hubert
Kempf, Kerstin
Roehling, Martin
Lenzen-Schulte, Martina
Schloot, Nanette C.
Martin, Stephan
TI Ketone bodies: from enemy to friend and guardian angel
SO BMC MEDICINE
LA English
DT Review
ID CALORIE-KETOGENIC DIET; LOW-FAT DIET; LOW-DENSITY-LIPOPROTEIN;
BETA-HYDROXYBUTYRATE; LOW-CARBOHYDRATE; OXIDATIVE STRESS; FUEL
METABOLISM; WEIGHT-LOSS; MITOCHONDRIAL BIOGENESIS; LIPID-PEROXIDATION
AB During starvation, fasting, or a diet containing little digestible carbohydrates, the circulating insulin levels are decreased. This promotes lipolysis, and the breakdown of fat becomes the major source of energy. The hepatic energy metabolism is regulated so that under these circumstances, ketone bodies are generated from beta-oxidation of fatty acids and secreted as ancillary fuel, in addition to gluconeogenesis. Increased plasma levels of ketone bodies thus indicate a dietary shortage of carbohydrates. Ketone bodies not only serve as fuel but also promote resistance to oxidative and inflammatory stress, and there is a decrease in anabolic insulin-dependent energy expenditure. It has been suggested that the beneficial non-metabolic actions of ketone bodies on organ functions are mediated by them acting as a ligand to specific cellular targets. We propose here a major role of a different pathway initiated by the induction of oxidative stress in the mitochondria during increased ketolysis. Oxidative stress induced by ketone body metabolism is beneficial in the long term because it initiates an adaptive (hormetic) response characterized by the activation of the master regulators of cell-protective mechanism, nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, and AMP-activated kinase. This results in resolving oxidative stress, by the upregulation of anti-oxidative and anti-inflammatory activities, improved mitochondrial function and growth, DNA repair, and autophagy. In the heart, the adaptive response to enhanced ketolysis improves resistance to damage after ischemic insults or to cardiotoxic actions of doxorubicin. Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors may also exert their cardioprotective action via increasing ketone body levels and ketolysis. We conclude that the increased synthesis and use of ketone bodies as ancillary fuel during periods of deficient food supply and low insulin levels causes oxidative stress in the mitochondria and that the latter initiates a protective (hormetic) response which allows cells to cope with increased oxidative stress and lower energy availability. Keywords Ketogenic diet, Ketone bodies, Beta hydroxybutyrate, Insulin, Obesity, Type 2 diabetes, Inflammation, Oxidative stress, Cardiovascular disease, SGLT2, Hormesis
C1 [Kolb, Hubert; Schloot, Nanette C.; Martin, Stephan] Univ Duesseldorf, Fac Med, Moorenstr 5, D-40225 Dusseldorf, Germany.
[Kolb, Hubert; Kempf, Kerstin; Roehling, Martin; Martin, Stephan] Duesseldorf Catholic Hosp Grp, West German Ctr Diabet & Hlth, Hohensandweg 37, D-40591 Dusseldorf, Germany.
[Lenzen-Schulte, Martina] Redakt Deutsch Arzteblatt, Reinhardtstr 34, D-10117 Berlin, Germany.
RP Kempf, K (corresponding author), Duesseldorf Catholic Hosp Grp, West German Ctr Diabet & Hlth, Hohensandweg 37, D-40591 Dusseldorf, Germany.
EM kerstin.kempf@wdgz.de
CR Abdelmegeed MA, 2004, J PHARMACOL EXP THER, V310, P728, DOI 10.1124/jpet.104.066522
Ahmed K, 2009, J BIOL CHEM, V284, P21928, DOI 10.1074/jbc.M109.019455
Al-Zaid NS, 2007, ACTA CARDIOL, V62, P381, DOI 10.2143/AC.62.4.2022282
American Diabetes Association, 2019, Diabetes Care, V42, pS46, DOI 10.2337/dc19-S005
Anderson EJ, 2007, J BIOL CHEM, V282, P31257, DOI 10.1074/jbc.M706129200
Arab HH, 2021, CHEM-BIOL INTERACT, V335, DOI 10.1016/j.cbi.2021.109368
Arencibia-Albite F, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04204
Athinarayanan SJ, 2019, FRONT ENDOCRINOL, V10, DOI 10.3389/fendo.2019.00348
Aubert G, 2016, CIRCULATION, V133, P698, DOI 10.1161/CIRCULATIONAHA.115.017355
Bae HR, 2016, ONCOTARGET, V7, P66444, DOI 10.18632/oncotarget.12119
Baird L, 2020, MOL CELL BIOL, V40, DOI 10.1128/MCB.00099-20
Bedi KC, 2016, CIRCULATION, V133, P706, DOI 10.1161/CIRCULATIONAHA.115.017545
Bhanpuri NH, 2018, CARDIOVASC DIABETOL, V17, DOI 10.1186/s12933-018-0698-8
Bishop NA, 2007, NATURE, V447, P545, DOI 10.1038/nature05904
Bonora BM, 2020, CURR DIABETES REP, V20, DOI 10.1007/s11892-020-01307-x
Brand-Miller J, 2009, J AM COLL NUTR, V28, p446S, DOI 10.1080/07315724.2009.10718110
Brehm BJ, 2003, J CLIN ENDOCR METAB, V88, P1617, DOI 10.1210/jc.2002-021480
Cadenas S, 2018, FREE RADICAL BIO MED, V117, P76, DOI 10.1016/j.freeradbiomed.2018.01.024
Cahill GF, 2006, ANNU REV NUTR, V26, P1, DOI 10.1146/annurev.nutr.26.061505.111258
Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023
Chen H, 2020, CARDIOVASC DRUG THER, V34, P443, DOI 10.1007/s10557-020-06978-y
Choi YJ, 2020, NUTRIENTS, V12, DOI 10.3390/nu12072005
Chriett S, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36941-9
Clarke K, 2012, REGUL TOXICOL PHARM, V63, P401, DOI 10.1016/j.yrtph.2012.04.008
Cohen CW, 2018, J NUTR, V148, P1253, DOI 10.1093/jn/nxy119
Coleman V, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20901-4
Cunha GM, 2020, FRONT ENDOCRINOL, V11, DOI 10.3389/fendo.2020.00607
Dabke P, 2020, NUTRIENTS, V12, DOI 10.3390/nu12082379
Daly ME, 2006, DIABETIC MED, V23, P15, DOI 10.1111/j.1464-5491.2005.01760.x
Dansinger ML, 2005, JAMA-J AM MED ASSOC, V293, P43, DOI 10.1001/jama.293.1.43
Deng QH, 2015, J CELL BIOCHEM, V116, P1070, DOI 10.1002/jcb.25062
Di Lorenzo C, 2019, NUTRIENTS, V11, DOI 10.3390/nu11081742
Duncan SH, 2008, INT J OBESITY, V32, P1720, DOI 10.1038/ijo.2008.155
Duncan SH, 2007, APPL ENVIRON MICROB, V73, P1073, DOI 10.1128/AEM.02340-06
Elamin M, 2017, FRONT MOL NEUROSCI, V10, DOI 10.3389/fnmol.2017.00377
Evans M, 2017, J PHYSIOL-LONDON, V595, P2857, DOI 10.1113/JP273185
Falkenhain K, 2021, AM J CLIN NUTR, V114, P1455, DOI 10.1093/ajcn/nqab212
Fei YQ, 2020, FRONT NEUROL, V11, DOI 10.3389/fneur.2020.592514
Ferrannini E, 2016, DIABETES CARE, V39, P1108, DOI 10.2337/dc16-0330
Ferrannini E, 2016, DIABETES, V65, P1190, DOI 10.2337/db15-1356
Ferrannini G, 2021, DIABETES RES CLIN PR, V175, DOI 10.1016/j.diabres.2021.108796
Fischer T, 2018, J NUTR METAB, V2018, DOI 10.1155/2018/9812806
Flores-Guerrero JL, 2021, EUR J CLIN INVEST, V51, DOI 10.1111/eci.13468
Fuehrlein BS, 2004, J CLIN ENDOCR METAB, V89, P1641, DOI 10.1210/jc.2003-031796
Gano LB, 2014, J LIPID RES, V55, P2211, DOI 10.1194/jlr.R048975
Gardner CD, 2007, JAMA-J AM MED ASSOC, V297, P969, DOI 10.1001/jama.297.9.969
Gerber PA, 2012, CURR OPIN CLIN NUTR, V15, P381, DOI 10.1097/MCO.0b013e3283545a6d
Gershuni Victoria M, 2018, Curr Nutr Rep, V7, P97, DOI 10.1007/s13668-018-0235-0
Goday A, 2016, NUTR DIABETES, V6, DOI 10.1038/nutd.2016.36
Grammatikopoulou MG, 2020, ADV NUTR, V11, P1583, DOI 10.1093/advances/nmaa073
Guo QH, 2019, ACTA HISTOCHEM, V121, P455, DOI 10.1016/j.acthis.2019.03.009
Hallberg SJ, 2018, DIABETES THER, V9, P583, DOI 10.1007/s13300-018-0373-9
Han YM, 2020, EXP MOL MED, V52, P548, DOI 10.1038/s12276-020-0415-z
Bjorkman SH, 2021, ANTIOXID REDOX SIGN, V35, P252, DOI 10.1089/ars.2020.8220
Hasan-Olive MM, 2019, NEUROCHEM RES, V44, P22, DOI 10.1007/s11064-018-2588-6
Hawley SA, 2016, DIABETES, V65, P2784, DOI 10.2337/db16-0058
Ho KL, 2021, CARDIOVASC RES, V117, P1178, DOI 10.1093/cvr/cvaa143
Hoong CWS, 2021, ENDOCRINOLOGY, V162, DOI 10.1210/endocr/bqab079
Horton JL, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.124079
Hyde PN, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.128308
Izuta Y, 2018, AGING CELL, V17, DOI 10.1111/acel.12699
Jabekk PT, 2010, NUTR METAB, V7, DOI 10.1186/1743-7075-7-17
Jain SK, 1999, DIABETES, V48, P1850, DOI 10.2337/diabetes.48.9.1850
Jain SK, 1998, FREE RADICAL BIO MED, V25, P1083, DOI 10.1016/S0891-5849(98)00140-3
Jensen NJ, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21228767
Johnstone AM, 2008, AM J CLIN NUTR, V87, P44, DOI 10.1093/ajcn/87.1.44
JONES AW, 1993, J ANAL TOXICOL, V17, P182, DOI 10.1093/jat/17.3.182
Kalantar-Zadeh K, 2021, LANCET
Kanikarla-Marie P, 2015, CELL PHYSIOL BIOCHEM, V35, P364, DOI 10.1159/000369702
Kanner J, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090797
Kashiwaya Y, 2010, J BIOL CHEM, V285, P25950, DOI 10.1074/jbc.M110.138198
Kimura I, 2011, P NATL ACAD SCI USA, V108, P8030, DOI 10.1073/pnas.1016088108
Kolb H, 2020, BMC MED, V18, DOI 10.1186/s12916-020-01688-6
Kolb H, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1225-1
Koyani CN, 2020, PHARMACOL RES, V158, DOI 10.1016/j.phrs.2020.104870
Laffel L, 1999, DIABETES-METAB RES, V15, P412, DOI 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
Lee JY, 2021, DIABETES METAB J, V45, P921, DOI 10.4093/dmj.2020.0187
Lee SH, 2019, BMB REP, V52, P24, DOI 10.5483/BMBRep.2019.52.1.290
Leng WL, 2019, ANN TRANSL MED, V7, DOI 10.21037/atm.2019.09.03
Ley RE, 2006, NATURE, V444, P1022, DOI 10.1038/4441022a
Li CG, 2019, CARDIOVASC DIABETOL, V18, DOI 10.1186/s12933-019-0816-2
Liu Y., 2020, FRONT PHARMACOL, V11
Longo VD, 2014, CELL METAB, V19, P181, DOI 10.1016/j.cmet.2013.12.008
Lu Y, 2018, NEUROSCI LETT, V683, P13, DOI 10.1016/j.neulet.2018.06.016
Lyons L, 2020, EPILEPSIA, V61, P1261, DOI 10.1111/epi.16543
Martin-McGill KJ, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001903.pub4
McPherson PAC, 2012, J PHYSIOL BIOCHEM, V68, P141, DOI 10.1007/s13105-011-0112-4
Meroni E, 2018, NUTRIENTS, V10, DOI 10.3390/nu10020250
Merry TL, 2016, J PHYSIOL-LONDON, V594, P5195, DOI 10.1113/JP271957
Milder JB, 2010, NEUROBIOL DIS, V40, P238, DOI 10.1016/j.nbd.2010.05.030
Miles JM, 2007, HORM METAB RES, V39, P726, DOI 10.1055/s-2007-990273
Miller VJ, 2018, J NUTR METAB, V2018, DOI 10.1155/2018/5157645
Mizuno Y, 2017, METABOLISM, V77, P65, DOI 10.1016/j.metabol.2017.08.005
Moreno B, 2016, ENDOCRINE, V54, P681, DOI 10.1007/s12020-016-1050-2
Moreno B, 2014, ENDOCRINE, V47, P793, DOI 10.1007/s12020-014-0192-3
Moriconi E, 2021, NUTRIENTS, V13, DOI 10.3390/nu13030758
Murashige D, 2020, SCIENCE, V370, P364, DOI 10.1126/science.abc8861
Muscogiuri G, 2021, OBESITY FACTS, V14, P222, DOI 10.1159/000515381
Nasser S, 2020, WORLD J DIABETES, V11, P584, DOI 10.4239/wjd.v11.i12.584
Neal B, 2017, NEW ENGL J MED, V377, P644, DOI 10.1056/NEJMoa1611925
NEVILLE MC, 1991, AM J CLIN NUTR, V54, P81, DOI 10.1093/ajcn/54.1.81
Norwitz NG, 2021, FRONT PSYCHIATRY, V12, DOI 10.3389/fpsyt.2021.598119
Otsuki A, 2020, ARCH PHARM RES, V43, P275, DOI 10.1007/s12272-019-01193-2
Owen O E, 1979, Adv Exp Med Biol, V111, P169
OWEN OE, 1971, J CLIN INVEST, V50, P1536, DOI 10.1172/JCI106639
Packer M, 2020, CIRC-HEART FAIL, V13, DOI 10.1161/CIRCHEARTFAILURE.120.007197
Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105
Perissiou M, 2020, NUTRIENTS, V12, DOI 10.3390/nu12020482
Perticone M, 2019, MOLECULES, V24, DOI 10.3390/molecules24132499
Piche ME, 2018, J CLIN ENDOCR METAB, V103, P25, DOI 10.1210/jc.2017-01517
Puchalska P, 2017, CELL METAB, V25, P262, DOI 10.1016/j.cmet.2016.12.022
Qin S, 2016, MOL NUTR FOOD RES, V60, P1731, DOI 10.1002/mnfr.201501017
Ren CZ, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.664181
Rondanelli M, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.662591
Rosenstock J, 2015, DIABETES CARE, V38, P1638, DOI 10.2337/dc15-1380
Saasa V, 2019, DIAGNOSTICS, V9, DOI 10.3390/diagnostics9040224
Sabatino J, 2020, CARDIOVASC DIABETOL, V19, DOI 10.1186/s12933-020-01040-5
Sajoux I, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102368
Samaha FF, 2003, NEW ENGL J MED, V348, P2074, DOI 10.1056/NEJMoa022637
SATO K, 1995, FASEB J, V9, P651, DOI 10.1096/fasebj.9.8.7768357
Scheen AJ, 2020, NAT REV ENDOCRINOL, V16, P556, DOI 10.1038/s41574-020-0392-2
Shi XX, 2016, J DAIRY RES, V83, P442, DOI 10.1017/S0022029916000546
Shi XX, 2014, CELL PHYSIOL BIOCHEM, V33, P920, DOI 10.1159/000358664
Shimazu T, 2010, CELL METAB, V12, P654, DOI 10.1016/j.cmet.2010.11.003
Shoar S, 2021, AM J CARDIOVASC DIS, V11, P262
Snorek M, 2012, PHYSIOL RES, V61, P567, DOI 10.33549/physiolres.932338
Soto-Mota A, 2019, REGUL TOXICOL PHARM, V109, DOI 10.1016/j.yrtph.2019.104506
Srivastava S, 2012, FASEB J, V26, P2351, DOI 10.1096/fj.11-200410
St-Pierre J, 2002, J BIOL CHEM, V277, P44784, DOI 10.1074/jbc.M207217200
Sun XD, 2020, DIABETES, V69, P1292, DOI 10.2337/db19-0991
Taggart AKP, 2005, J BIOL CHEM, V280, P26649, DOI 10.1074/jbc.C500213200
Taylor R, 2019, LANCET DIABETES ENDO, V7, P726, DOI 10.1016/S2213-8587(19)30076-2
Taylor SI, 2015, J CLIN ENDOCR METAB, V100, P2849, DOI 10.1210/jc.2015-1884
Tebay LE, 2015, FREE RADICAL BIO MED, V88, P108, DOI 10.1016/j.freeradbiomed.2015.06.021
Thirupathi A, 2017, J PHYSIOL BIOCHEM, V73, P487, DOI 10.1007/s13105-017-0576-y
Truby H, 2006, BMJ-BRIT MED J, V332, P1309, DOI 10.1136/bmj.38833.411204.80
Tsushima M, 2020, ARCH PHARM RES, V43, P286, DOI 10.1007/s12272-019-01188-z
Unoki T, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020545
Veech RL, 2017, IUBMB LIFE, V69, P305, DOI 10.1002/iub.1627
Verma Subodh, 2018, JACC Basic Transl Sci, V3, P575, DOI 10.1016/j.jacbts.2018.07.006
Volek JS, 2008, PROG LIPID RES, V47, P307, DOI 10.1016/j.plipres.2008.02.003
Westman EC, 2006, INT J CARDIOL, V110, P212, DOI 10.1016/j.ijcard.2005.08.034
Wiers CE, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abf6780
Winters-van Eekelen E, 2021, EUR J CLIN NUTR, V75, P588, DOI 10.1038/s41430-020-00778-1
Wiviott SD, 2019, NEW ENGL J MED, V380, P347, DOI 10.1056/NEJMoa1812389
Xie ZY, 2016, MOL CELL, V62, P194, DOI 10.1016/j.molcel.2016.03.036
Yang YM, 2010, WORLD J GASTROENTERO, V16, P3731, DOI 10.3748/wjg.v16.i30.3731
Ye YM, 2017, CARDIOVASC DRUG THER, V31, P119, DOI 10.1007/s10557-017-6725-2
Yin JX, 2019, AGING-US, V11, P4579, DOI 10.18632/aging.102070
Yin JX, 2015, J CEREBR BLOOD F MET, V35, P1783, DOI 10.1038/jcbfm.2015.123
Youm YH, 2015, NAT MED, V21, P263, DOI 10.1038/nm.3804
Yu YS, 2018, EUR J PHARMACOL, V829, P121, DOI 10.1016/j.ejphar.2018.04.019
Zhang XY, 2020, CARDIOL RES PRACT, V2020, DOI 10.1155/2020/5695723
Zhou H, 2018, REDOX BIOL, V15, P335, DOI 10.1016/j.redox.2017.12.019
Zinman B, 2016, NEW ENGL J MED, V374, P1094, DOI 10.1056/NEJMc1600827
Zou ZT, 2002, AM J PHYSIOL-HEART C, V283, pH1968, DOI 10.1152/ajpheart.00250.2002
NR 156
TC 36
Z9 37
U1 6
U2 19
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1741-7015
J9 BMC MED
JI BMC Med.
PD DEC 9
PY 2021
VL 19
IS 1
AR 313
DI 10.1186/s12916-021-02185-0
PG 15
WC Medicine, General & Internal
WE Science Citation Index Expanded (SCI-EXPANDED)
SC General & Internal Medicine
GA XL5FF
UT WOS:000728169500001
PM 34879839
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Requeson, E
Osuna, D
Santiago, AD
Sosa, T
AF Requeson, Elena
Osuna, Dolores
del Rosario Santiago, Ana
Sosa, Teresa
TI Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic
Compounds Present in Cistus ladanifer
SO AGRONOMY-BASEL
LA English
DT Article
DE phytotoxicity; phenolic compounds; allelopathy; hormetic effect; Cistus
ladanifer; bioherbicides
ID ESSENTIAL OIL; HORMESIS; GERMINATION; GROWTH; ALLELOCHEMICALS; ACIDS;
L.; PHYTOTOXICITY; SENSITIVITY; ALLELOPATHY
AB A large number of studies of Cistus ladanifer highlight this Mediterranean shrub as a source of the phenolic compounds responsible for the allelopathic potential of this species. There are few phenolic compounds present in C. ladanifer that have not yet been studied. The objective of this work was to evaluate the activity of estragole and 2-isopropylphenol on filter paper and soil on monocotyledons (Allium cepa) and dicotyledons (Lactuca sativa). The results showed that when the test was carried out on paper, the germination and the growth of the L. sativa was strongly inhibited by 2 isopropylphenol and estragole. 2 isopropylphenol showed an IC50 on the germination of 0.7 mM and 0.1 mM on the germination rate, 0.4 mM on the size of radicle and 0.3 mM on the size of hypocotyl. Estragole showed an IC50 on the germination rate of 1.5 mM and 1.1 mM on the size of hypocotyl. The effects of these pure compounds on A. cepa were lower, and when the assays were performed on the soil, they were dissipated. The mixture of these compounds on A. cepa had 0.6 mM IC50 for the length hypocotyl on paper and 1.1 mM for the length of the radicle on soil. The mixture on L. sativa also inhibited the length of the radicle with an IC50 of 0.6 mM. On the other hand, it was also observed that estragole stimulated the growth of the A. cepa radicle length on soil, showing a hormetic effect with an EC50 of 0.1 mM. In conclusion, it can be said that for a species to be allelopathic in nature, it is essential to verify the effect of its possible allelochemicals on the target species, on the soil in which they will exert their action and at the concentrations found in their usual environment, in addition to taking into account the interaction with other compounds present in the medium.
C1 [Requeson, Elena; Sosa, Teresa] Univ Extremadura, Fac Sci, Dept Plant Biol Ecol & Earth Sci, Badajoz 06006, Spain.
[Osuna, Dolores; del Rosario Santiago, Ana] Ctr Sci & Technol Res Extremadura CICYTEX, Dept Crop Protect, Badajoz 06187, Spain.
C3 Universidad de Extremadura
RP Sosa, T (corresponding author), Univ Extremadura, Fac Sci, Dept Plant Biol Ecol & Earth Sci, Badajoz 06006, Spain.
EM erequeso@alumnos.unex.es; mariadolores.osuna@juntaex.es;
anarosario.santiago@juntaex.es; tesosa@unex.es
OI Sosa, Teresa/0000-0002-1571-3770
FU Regional Government of Extremadura; European Regional Development Fund
[GR18078, IB18105]
FX This research was funded by the Regional Government of Extremadura and
the European Regional Development Fund, grants number GR18078 and
IB18105.
CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020
[Anonymous], NATL CTR BIOTECHNOLO
[Anonymous], 2012, 112691 ISO
Arango M.C., 2013, PRODUCTOS NATURALES
Ashraf M., 2007, SARHAD J AGRIC, V23, P321
Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x
Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002
Belz RG, 2009, J CHEM ECOL, V35, P1137, DOI 10.1007/s10886-009-9698-1
Bhowmik PC, 2003, CROP PROT, V22, P661, DOI 10.1016/S0261-2194(02)00242-9
Blanco Y., 2006, Cultivos Tropicales, V27, P5
Blum U, 1999, CRIT REV PLANT SCI, V18, P673, DOI 10.1016/S0735-2689(99)00396-2
Bouhaouel I, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9070345
Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541]
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Castroviejo S., 2001, FLORA IBERICA PLANTA
Chaves N, 1998, J CHROMATOGR A, V799, P111, DOI 10.1016/S0021-9673(97)01042-X
Chaves N, 2016, ALLELOPATHY J, V38, P113
Chaves N, 2001, J CHEM ECOL, V27, P623, DOI 10.1023/A:1010388905923
Chaves N, 2001, J CHEM ECOL, V27, P611, DOI 10.1023/A:1010336921853
Cheema Z. A., 2001, International Journal of Agriculture and Biology, V3, P515
Chiapusio G, 1997, J CHEM ECOL, V23, P2445, DOI 10.1023/B:JOEC.0000006658.27633.15
Committee on Herbal Medicinal Products (HMPC), EMEAHMPC1372122005
Dayan FE, 2009, BIOORGAN MED CHEM, V17, P4022, DOI 10.1016/j.bmc.2009.01.046
DESAI SM, 1990, ENVIRON TOXICOL CHEM, V9, P473, DOI 10.1002/etc.5620090409
Dias AS, 2005, ALLELOPATHY J, V16, P1
Dorota S., 2013, ALLELOCHEMICALS BIOH, P517, DOI [10.5772/56185, DOI 10.5772/56185]
ECHA Search for Chemicals, 1 METH 4 2 PROP BENZ
EINHELLIG FA, 1995, ACS SYM SER, V582, P1
Fraternale D, 2015, NAT PROD COMMUN, V10, P1469
Ghimire BK, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9101313
Guy I., 1996, Journal of Essential Oil Research, V8, P455
Haugland E, 1996, J CHEM ECOL, V22, P1845, DOI 10.1007/BF02028508
Herranz JM, 2006, PLANT ECOL, V184, P259, DOI 10.1007/s11258-005-9071-6
Hura T, 2006, ACTA PHYSIOL PLANT, V28, P537, DOI 10.1007/s11738-006-0049-3
INDERJIT, 1992, J CHEM ECOL, V18, P713, DOI 10.1007/BF00994609
Inderjit, 2003, CRIT REV PLANT SCI, V22, P221, DOI 10.1080/713610857
Irfan-ur-Rauf Tak, 2014, African Journal of Plant Science, V8, P72
Jamil M, 2009, AGRON SUSTAIN DEV, V29, P475, DOI 10.1051/agro/2009007
Kapanen A, 2001, ECOTOX ENVIRON SAFE, V49, P1, DOI 10.1006/eesa.2000.1927
Kaya C., 2009, V44, P45
Khan EA, 2015, PAK J BOT, V47, P735
KUITERS AT, 1989, J CHEM ECOL, V15, P467, DOI 10.1007/BF01014693
KUULUVAINEN T, 1994, ANN ZOOL FENN, V31, P35
LEHMAN ME, 1994, J CHEM ECOL, V20, P1773, DOI 10.1007/BF02059898
Lehman ME, 1999, J CHEM ECOL, V25, P1517, DOI 10.1023/A:1020828630638
LI HH, 1993, J CHEM ECOL, V19, P1775, DOI 10.1007/BF00982307
Liu De Li, 2003, Nonlinearity Biol Toxicol Med, V1, P37, DOI 10.1080/15401420390844456
LIU DL, 1993, J CHEM ECOL, V19, P2231, DOI 10.1007/BF00979660
Macias FA, 2007, PEST MANAG SCI, V63, P327, DOI 10.1002/ps.1342
Macias Francisco A., 2008, Phytochemistry Reviews, V7, P179, DOI 10.1007/s11101-007-9062-4
Malato-Beliz J., 1992, STATE ART VEGETATION, V75
MULLER C. H., 1970, Biochemical co-evolution. Proceedings of the twenty-ninth annual Biology Colloquium, April 26-27, 1968., P13
MULLER CH, 1968, B TORREY BOT CLUB, V95, P225, DOI 10.2307/2483669
Oliveros A.D.J., 2011, CIENCIA, V19, P187
Organization of Economical Cooperation and Development (OECD), 1984, GUID TEST CHEM, V208, P15
PROKSCH P, 1980, Z NATURFORSCH C, V35, P201
Regino J.M.B., 1987, ESTUDO DA PARTE VOLA, P81
Rice E. L., 1984, Allelopathy.
Ruiz J., 1981, MATORRALES TRATADO M, V2, P501
Sosa T, 2010, PLANT SOIL, V337, P51, DOI 10.1007/s11104-010-0504-1
Tena C, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10061136
Van Agteren M.H., 1998, HDB BIODEGRADATION B
Verdeguer M, 2012, NAT PROD RES, V26, P1602, DOI 10.1080/14786419.2011.592835
Vernin G., 1993, Journal of Essential Oil Research, V5, P563
Vina S., 2013, PRODUCTOS NATURALES
Vyvyan JR, 2002, TETRAHEDRON, V58, P1631, DOI 10.1016/S0040-4020(02)00052-2
WANG WC, 1991, WATER AIR SOIL POLL, V59, P381, DOI 10.1007/BF00211845
Wang Xuezheng, 2007, Frontiers of Agriculture in China, V1, P58, DOI 10.1007/s11703-007-0010-2
Warnecke H.-U., 1978, DRAGOCO REP, V9, P192
Yu JQ, 2003, BIOCHEM SYST ECOL, V31, P129, DOI 10.1016/S0305-1978(02)00150-3
NR 71
TC 1
Z9 1
U1 0
U2 5
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-4395
J9 AGRONOMY-BASEL
JI Agronomy-Basel
PD MAY
PY 2022
VL 12
IS 5
AR 1139
DI 10.3390/agronomy12051139
PG 14
WC Agronomy; Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture; Plant Sciences
GA 1S8WH
UT WOS:000804324200001
OA gold
DA 2023-03-13
ER
PT J
AU Gallagher, MT
Reisinger, AJ
AF Gallagher, Morgan T.
Reisinger, Alexander J.
TI Effects of ciprofloxacin on metabolic activity and algal biomass of
urban stream biofilms
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Ecosystem function; Antibiotics; Pharmaceuticals; Biofilm; Metabolism;
Ciprofloxacin
ID PERSONAL CARE PRODUCTS; WATER TREATMENT PLANTS; FLUOROQUINOLONE
ANTIBIOTICS; DOSE RESPONSES; PHARMACEUTICALS; HORMESIS; TRANSPORT;
TOXICITY; SURFACE; AGENTS
AB Pharmaceuticals and personal care products (PPCPs), such as the commonly prescribed antibiotic ciprofloxacin, are present and persistent in freshwaters, yet their effects on aquatic ecosystem functions at environmentally-relevant concentrations are rarely explored. Stream biofilms provide multiple functions in stream ecosystems, but their functional response to PPCP contaminants such as ciprofloxacin is unclear. To establish the effect of ciprofloxacin on aquatic biofilms, we colonized biofilms in situ on tiles (n = 80) at four sites along an urban stream in Gainesville, Florida, including two sites above and two sites below a wastewater treatment plant (WWTP). We then incubated the tiles and associated biofilms in the laboratory for 6 d exposing biofilms to either 0, 0.01, 0.1, or 1.0 mu g/L (target concentrations) of ciprofloxacin. At the end of the 6 d laboratory exposure, we quantified gross primary production (GPP), respiration (R), and biomass (as chlorophyll a) of biofilms, and calculated response ratios for each response. All response metrics were significantly differed across sites (p < 0.01). Ciprofloxacin significantly decreased GPP (p < 0.05) regardless of treatment concentration, most notably at the site immediately below the WWTP, where there was no measurable GPP on any ciprofloxacin-treated biofilms. In contrast, respiration (R) was not significantly affected by ciprofloxacin, despite an apparent increase in R at the WWTP site. However, the WWTP site R was significantly different from the most upstream and downstream sites (p < (moo but was not significantly different from a nearby site upstream of the WWTP (p > 0.05). These results indicate that chronic exposure to ciprofloxacin through WWTP effluent can alter ecosystem functions performed by biofilms, which can have consequences for higher trophic levels and stream processes. By quantifying biofilm metabolic responses to ciprofloxacin exposure, this study supports the concept that pharmaceuticals and personal care products can induce sub-lethal effects on ecological processes at environmentally-relevant concentrations. (C) 2018 Elsevier B.V. All rights reserved.
C1 [Gallagher, Morgan T.] Virginia Tech, Sch Plant & Environm Sci, Blacksburg, VA 24061 USA.
[Reisinger, Alexander J.] Univ Florida, Soil & Water Sci Dept, Gainesville, FL 32611 USA.
C3 Virginia Polytechnic Institute & State University; State University
System of Florida; University of Florida
RP Reisinger, AJ (corresponding author), 2181 McCarty Hall A, Gainesville, FL 32611 USA.
EM mtg3@vt.edu; reisingera@ufl.edu
OI Reisinger, Alexander/0000-0003-4096-2637
FU University of Florida; USDA-NIFA [FLA-SWS-005731]
FX This research was supported by a Summer Undergraduate Research
Fellowship at the University of Florida awarded to MTG and USDA-NIFA
funds provided to AIR through REEport project #FLA-SWS-005731. This
manuscript was improved by the anonymous comments of one reviewer. We
thank Lindsey Kelly for help in the field and lab, Patrick Inglett and
Sophia Barbour for the use of their spectrophotometer, Dan Snow and the
Water Sciences Laboratory at Nebraska for completing ciprofloxacin
samples.
CR [Anonymous], 2018, R LANG ENV STAT COMP
Batt AL, 2006, ENVIRON POLLUT, V142, P295, DOI 10.1016/j.envpol.2005.10.010
Bernhardt ES, 2017, FRONT ECOL ENVIRON, V15, P84, DOI 10.1002/fee.1450
Bradley PM, 2016, ENVIRON SCI TECH LET, V3, P243, DOI 10.1021/acs.estlett.6b00170
Brooks BW, 2006, HYDROBIOLOGIA, V556, P365, DOI 10.1007/s10750-004-0189-7
Brown D, 2015, J ENVIRON QUAL, V44, P299, DOI 10.2134/jeq2014.08.0334
Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541]
Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003
Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3
Chonova T, 2018, ENVIRON SCI POLLUT R, V25, P9254, DOI 10.1007/s11356-017-0024-0
Costello DM, 2016, FRESHWATER BIOL, V61, P2129, DOI 10.1111/fwb.12641
CUMMINS KW, 1974, BIOSCIENCE, V24, P631, DOI 10.2307/1296676
Dantas G, 2008, SCIENCE, V320, P100, DOI 10.1126/science.1155157
Daughton CG, 1999, ENVIRON HEALTH PERSP, V107, P907, DOI 10.2307/3434573
Eguchi K, 2004, CHEMOSPHERE, V57, P1733, DOI 10.1016/j.chemosphere.2004.07.017
Fatta-Kassinos D, 2011, ANAL BIOANAL CHEM, V399, P251, DOI 10.1007/s00216-010-4300-9
Fick J, 2009, ENVIRON TOXICOL CHEM, V28, P2522, DOI 10.1897/09-073.1
Fu L, 2017, CHEMOSPHERE, V168, P217, DOI 10.1016/j.chemosphere.2016.10.043
Gibs J, 2013, SCI TOTAL ENVIRON, V458, P107, DOI 10.1016/j.scitotenv.2013.03.076
Glassmeyer ST, 2005, ENVIRON SCI TECHNOL, V39, P5157, DOI 10.1021/es048120k
Gurbay A, 2007, TOXICOLOGY, V229, P54, DOI 10.1016/j.tox.2006.09.016
Henjum MB, 2010, J ENVIRON MONITOR, V12, P225, DOI [10.1039/B912544B, 10.1039/b912544b]
Hicks LA, 2015, CLIN INFECT DIS, V60, P1308, DOI 10.1093/cid/civ076
Thuy HTT, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-1940-y
Hubicka U, 2013, CHEM CENT J, V7, DOI 10.1186/1752-153X-7-133
Joss A, 2006, WATER RES, V40, P1686, DOI 10.1016/j.watres.2006.02.014
Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012
Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j
Kostich MS, 2014, ENVIRON POLLUT, V184, P354, DOI 10.1016/j.envpol.2013.09.013
Kummerer K, 2003, J ANTIMICROB CHEMOTH, V52, P5, DOI 10.1093/jac/dkg293
Liao XB, 2016, ENVIRON SCI POLLUT R, V23, P7911, DOI 10.1007/s11356-016-6054-1
Martins N, 2012, ECOTOXICOLOGY, V21, P1167, DOI 10.1007/s10646-012-0871-x
Massey LB, 2010, ECOL ENG, V36, P930, DOI 10.1016/j.ecoleng.2010.04.009
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Michael I, 2013, WATER RES, V47, P957, DOI 10.1016/j.watres.2012.11.027
Monteiro SC, 2010, REV ENVIRON CONTAM T, V202, P53, DOI 10.1007/978-1-4419-1157-5_2
Novo A, 2010, APPL MICROBIOL BIOT, V87, P1157, DOI 10.1007/s00253-010-2583-6
Pal A, 2010, SCI TOTAL ENVIRON, V408, P6062, DOI 10.1016/j.scitotenv.2010.09.026
Pico Y, 2007, ANAL BIOANAL CHEM, V387, P1287, DOI 10.1007/s00216-006-0843-1
Dinh QT, 2017, CHEMOSPHERE, V168, P483, DOI 10.1016/j.chemosphere.2016.10.106
Reisinger AJ, 2016, FRESHW SCI, V35, P474, DOI 10.1086/685829
Richmond EK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06822-w
Richmond EK, 2017, ELEMENTA-SCI ANTHROP, V5, DOI 10.1525/elementa.252
Robinson AA, 2005, ENVIRON TOXICOL CHEM, V24, P423, DOI 10.1897/04-210R.1
Rodriguez-Mozaz S, 2015, WATER RES, V69, P234, DOI 10.1016/j.watres.2014.11.021
Rosi EJ, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2041
Rosi-Marshall EJ, 2015, J HAZARD MATER, V282, P18, DOI 10.1016/j.jhazmat.2014.06.062
Rosi-Marshall EJ, 2013, ECOL APPL, V23, P583, DOI 10.1890/12-0491.1
Sabater S, 2007, ANAL BIOANAL CHEM, V387, P1425, DOI 10.1007/s00216-006-1051-8
Sabater S, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.3389/fenvs.2016.00014
Sallach JB, 2015, ENVIRON POLLUT, V197, P269, DOI 10.1016/j.envpol.2014.11.018
Shaw L, 2015, ENVIRON CHEM, V12, P301, DOI 10.1071/EN14141
SORGEL F, 1991, AM J MED, V91, pS51, DOI 10.1016/0002-9343(91)90312-L
Steinman AD, 2017, METHODS IN STREAM ECOLOGY, VOL 1: ECOSYSTEM STRUCTURE, 3RD EDITION, P223, DOI 10.1016/B978-0-12-416558-8.00012-3
Topp E, 2008, SCI TOTAL ENVIRON, V396, P52, DOI 10.1016/j.scitotenv.2008.02.011
Williams RT, 2005, HUMAN PHARM ASSESSIN
Wilson BA, 2003, ENVIRON SCI TECHNOL, V37, P1713, DOI 10.1021/es0259741
Yang YY, 2017, WATER RES, V123, P258, DOI 10.1016/j.watres.2017.06.054
Zhang YL, 2009, SCI TOTAL ENVIRON, V407, P3702, DOI 10.1016/j.scitotenv.2009.02.013
Zoorob R, 2016, ANTIMICROB AGENTS CH, V60, P5527, DOI 10.1128/AAC.00528-16
Zorita S, 2008, J SEP SCI, V31, P3117, DOI 10.1002/jssc.200800301
NR 61
TC 10
Z9 10
U1 6
U2 113
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD MAR 1
PY 2020
VL 706
AR 135728
DI 10.1016/j.scitotenv.2019.135728
PG 10
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA KB3CF
UT WOS:000506376300051
PM 31940730
OA Bronze
DA 2023-03-13
ER
PT J
AU Chen, X
Wang, XR
Gu, XY
Jiang, Y
Ji, R
AF Chen, Xian
Wang, Xiaorong
Gu, Xueyuan
Jiang, Yang
Ji, Rong
TI Oxidative stress responses and insights into the sensitivity of the
earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Cadmium; Earthworms; Oxidative stress biomarkers; Species-specific
sensitivity; Subcellular distribution
ID BIOMARKER RESPONSES; TOXICITY; COPPER; BIOACCUMULATION; ACCUMULATION;
FIELD; CD; METALLOTHIONEIN; DETOXIFICATION; PARAMETERS
AB Soil toxicological tests are commonly performed using Eisenia fetida as the standard earthworm species, but it is tolerant to a wide range of pollutants. Therefore, the inclusion of susceptible species is crucial for the accurate estimation of soil contamination. In this study, we examined the sensitivity to soil cadmium (Cd) of anecic Metaphire guillelmi and epigeic E. fetida by measuring multiple indexes of oxidative stress. Using subcellular partitioning analysis, we further elucidated the inherent mechanism underlying the species-specific sensitivity of the two earthworm species. Among the battery of biochemical indexes, reactive oxygen species and protein carbonyl groups served as sensitive biomarkers. According to their respective response thresholds, M. guillelmi was more sensitive than E fetida and they differed in their dose-response relationships. In E. fetida, the activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), exhibited a hormesis-like U-shaped dose-response relationship, while in M. guillelmi SOD, glutathione peroxidase (an analogue of CAT) and GST showed an inverted U-shaped relationship. The concentrations of Cd in the subcellular fractions and whole body of the earthworms well fit (R-2 > 0.9) a saturation model versus bioavailable Cd concentrations determined by the diffusive gradients in thin films technique. Despite the lower accumulation capacity of M. guillelmi, the Cd-binding capacity (Cures) of its subcellular heat-stable protein fraction, the so-called biologically detoxified metal pool, was 2.7 times lower than that of E. fetida, whereas the Cd binding affinity (logK) of its heat-denatured protein fraction, i.e. the metal-sensitive fraction, was 3.0 times higher, which accounted for the high susceptibility of M. guillelmi to soil Cd. Our results suggest that because of their sensitivity, as exemplified by M guillelmi, native earthworm species should be taken into account in soil risk assessments to avoid underestimation of the toxicity of various pollutants. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Chen, Xian; Wang, Xiaorong; Gu, Xueyuan; Jiang, Yang; Ji, Rong] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Sch Environm, 163 Xianlin Ave, Nanjing 210023, Peoples R China.
[Chen, Xian] Jiangsu Univ Technol, Sch Chem & Environm Engn, 1801 Zhongwu Ave, Changzhou 213001, Peoples R China.
C3 Nanjing University; Jiangsu University of Technology
RP Ji, R (corresponding author), Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Sch Environm, 163 Xianlin Ave, Nanjing 210023, Peoples R China.
EM ji@nju.edu.cn
RI Ji, Rong/E-5473-2011; wang, xiao/HGB-7081-2022; Gu, Xueyuan/F-5775-2013
OI Ji, Rong/0000-0002-1724-5253; wang, xiao/0000-0002-4088-3341; Gu,
Xueyuan/0000-0002-8521-3667
FU National Natural Science Foundation of China (NSFC) [21237001,
41571130061]; Department of Science and Technology of Jiangsu Province
[BE2015708]
FX This work was supported by the National Natural Science Foundation of
China (NSFC) (grant no. 21237001, 41571130061) and the Department of
Science and Technology of Jiangsu Province (BE2015708). The DGT devices
were kindly provided by Dr. Jun Luo in Nanjing University.
CR Ardestani MM, 2014, ENVIRON POLLUT, V195, P133, DOI 10.1016/j.envpol.2014.08.020
Aslund MLW, 2012, ENVIRON SCI TECHNOL, V46, P1111, DOI 10.1021/es202327k
Beaumelle L, 2014, ENVIRON POLLUT, V191, P182, DOI 10.1016/j.envpol.2014.04.021
Bernard E, 2015, ECOTOX ENVIRON SAFE, V114, P273, DOI 10.1016/j.ecoenv.2014.04.024
Borgmann U, 2004, ENVIRON POLLUT, V131, P469, DOI 10.1016/j.envpol.2004.02.010
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330
Campana O, 2015, ENVIRON SCI TECHNOL, V49, P1806, DOI 10.1021/es505005y
Sinhorin VDG, 2014, ECOTOX ENVIRON SAFE, V106, P181, DOI 10.1016/j.ecoenv.2014.04.040
Givaudan N, 2014, ENVIRON POLLUT, V192, P9, DOI 10.1016/j.envpol.2014.05.001
Gu JQ, 2016, CHEMOSPHERE, V145, P431, DOI 10.1016/j.chemosphere.2015.11.106
HAMILTON SJ, 1987, T AM FISH SOC, V116, P551, DOI 10.1577/1548-8659(1987)116<551:EOMMAA>2.0.CO;2
Huang RX, 2009, ENVIRON SCI TECHNOL, V43, P3688, DOI 10.1021/es900061t
KUROSHIMA R, 1995, COMP BIOCHEM PHYS C, V110, P95, DOI 10.1016/0742-8413(94)00066-J
Li B, 2016, SCI TOTAL ENVIRON, V542, P427, DOI 10.1016/j.scitotenv.2015.10.100
Li ZY, 2014, SCI TOTAL ENVIRON, V468, P843, DOI 10.1016/j.scitotenv.2013.08.090
Luo J, 2014, ENVIRON SCI TECHNOL, V48, P7305, DOI 10.1021/es500173e
Maboeta MS, 2004, ENVIRON RES, V96, P95, DOI 10.1016/S0013-9351(03)00138-5
Niyogi S, 2004, ENVIRON SCI TECHNOL, V38, P6177, DOI 10.1021/es0496524
Organization for Economic Co-operation and Development (OECD), 2004, GUID TEST CHEM EARTH
Pauwels M, 2013, ENVIRON POLLUT, V179, P343, DOI 10.1016/j.envpol.2013.05.005
Pelosi C, 2013, CHEMOSPHERE, V90, P895, DOI 10.1016/j.chemosphere.2012.09.034
Qi YC, 2010, ENVIRON SCI TECHNOL, V44, P323, DOI 10.1021/es902899n
Qiu H, 2014, ECOTOXICOLOGY, V23, P21, DOI 10.1007/s10646-013-1147-9
Qiu H, 2013, ENVIRON SCI TECHNOL, V47, P4796, DOI 10.1021/es305240n
Sivakumar S, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4742-9
Sturzenbaum SR, 2004, ENVIRON SCI TECHNOL, V38, P6283, DOI 10.1021/es049822c
Taylor LN, 2003, ENVIRON TOXICOL CHEM, V22, P2159, DOI 10.1897/02-256
Tsyusko OV, 2012, ENVIRON POLLUT, V171, P249, DOI 10.1016/j.envpol.2012.08.003
USEPA (United states Environmental Protection Agency), 1996, 3050B USEPA
Velki M, 2014, ECOTOX ENVIRON SAFE, V104, P110, DOI 10.1016/j.ecoenv.2014.02.006
Velki M, 2013, ARCH ENVIRON CON TOX, V65, P498, DOI 10.1007/s00244-013-9930-4
Vijver MG, 2006, ENVIRON TOXICOL CHEM, V25, P807, DOI 10.1897/05-128R.1
Vijver MG, 2003, SOIL BIOL BIOCHEM, V35, P125, DOI 10.1016/S0038-0717(02)00245-6
Wallace WG, 2000, ENVIRON TOXICOL CHEM, V19, P962, DOI 10.1002/etc.5620190425
Wallace WG, 2003, MAR ECOL PROG SER, V249, P183, DOI 10.3354/meps249183
Wang F, 2014, ENVIRON POLLUT, V186, P241, DOI 10.1016/j.envpol.2013.12.012
Wang J, 2015, ENVIRON POLLUT, V204, P264, DOI 10.1016/j.envpol.2015.05.006
Wang MJ, 2008, ENVIRON SCI TECHNOL, V42, P940, DOI 10.1021/es0719273
Williams PN, 2012, ENVIRON SCI TECHNOL, V46, P8009, DOI 10.1021/es301195h
Xie XC, 2011, ECOTOXICOLOGY, V20, P993, DOI 10.1007/s10646-011-0645-x
Zaltauskaite J, 2014, ECOTOX ENVIRON SAFE, V103, P9, DOI 10.1016/j.ecoenv.2014.01.036
Zhang LJ, 2014, J HAZARD MATER, V273, P239, DOI 10.1016/j.jhazmat.2014.03.018
Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039
NR 44
TC 73
Z9 73
U1 4
U2 137
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD JAN 1
PY 2017
VL 574
BP 300
EP 306
DI 10.1016/j.scitotenv.2016.09.059
PG 7
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA ED7ZA
UT WOS:000389090100030
PM 27639467
DA 2023-03-13
ER
PT J
AU Atta, B
Rizwan, M
Sabir, AM
Gogi, MD
Farooq, MA
Jamal, A
AF Atta, Bilal
Rizwan, Muhammad
Sabir, Arshed Makhdoom
Gogi, Muhammad Dildar
Farooq, Muhammad Asif
Jamal, Abdullah
TI Lethal and sublethal effects of clothianidin, imidacloprid and
sulfoxaflor on the wheat aphid,Schizaphis graminum(Hemiptera: Aphididae)
and its coccinellid predator,Coccinella septempunctata
SO INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE
LA English
DT Article
DE Schizaphis graminum; Coccinella septempunctata; Lethal effects;
Sublethal effects; Repellency; Imidacloprid; Clothianidin; Sulfoxaflor
ID INSECTICIDE-INDUCED HORMESIS; LIFE TABLE PARAMETERS;
PLUTELLA-XYLOSTELLA; SYSTEMIC INSECTICIDES; RHOPALOSIPHUM-PADI; BROWN
PLANTHOPPER; FEEDING-BEHAVIOR; APHIS-GOSSYPII; IMPACT; COLEOPTERA
AB The use of pesticides for greenbug,Schizaphis graminumin wheat not only can manage the pest population but also can influence its predator,Coccinella septempunctata. Acute and chronic effects of imidacloprid, clothianidin and sulfoxaflor onS. graminumand its predator,C. septempunctatawere investigated. The results showed that LC(50)of imidacloprid, clothianidin and sulfoxaflor toS. graminumat 48 h was 9.80, 34.29 and 4.40 ml a.i. L-1, respectively, while LC(50)of imidacloprid, clothianidin and sulfoxaflor toC. septempunctataat 48 h was 107.80, 49.52 and 379.26 ml a.i. L-1. Sulfoxaflor and clothianidin were found the most toxic toS. graminumandC. septempunctata, respectively. Tested sublethal doses (LC(10)and LC30) of all insecticides had significant effects on percent repellency of bothS. graminumandC. septempunctata. Sulfoxaflor and clothianidin proved the most repellent toS. graminum(67.00 +/- 2.03% at LC(10)and 86.20 +/- 1.62% at LC30) andC. septempunctata(50.60 +/- 2.81% at LC(10)and 60.00 +/- 3.26% at LC30), respectively. Sublethal doses also demonstrated significant and the lowest percentage reduction in feeding byC. septempunctataonS. graminumin sulfoxaflor treatment (LC10: 4.13 +/- 0.61%; LC30: 5.26 +/- 0.69%). Additionally, sublethal doses reduced body-weight ofC. septempunctataadults emerged from its treated grubs. These results revealed that sublethal doses of sulfoxaflor, imidacloprid and clothianidin negatively affected the biological activities ofS. graminumandC. septempunctataas compared to control. Hence it can be concluded that more attention should be paid towards strategic application of these chemicals as a part of an integrated pest management program for an agro-ecosystem exhibiting maximum activity of coccinelid-predators. Overall, sulfoxaflor proved more appropriate for use againstS. graminuminC. septempunctatamanipulated agro-ecosystem. However,C. septempunctatacompatible integration-strategy for field-application of sulfoxaflor should be devised to enhance its effectiveness againstS. graminumand selectivity againstC. septempunctata.
C1 [Atta, Bilal; Rizwan, Muhammad; Sabir, Arshed Makhdoom] Rice Res Inst, Kala Shah Kaku, Punjab, Pakistan.
[Gogi, Muhammad Dildar] Univ Agr Faisalabad, Dept Entomol, Integrated Pest Management Lab, Faisalabad, Punjab, Pakistan.
[Farooq, Muhammad Asif] Univ Agr Faisalabad, Dept Entomol, Vehari Campus, Faisalabad, Punjab, Pakistan.
[Jamal, Abdullah] Univ Punjab, Inst Agr Sci, Dept Zool, Lahore, Pakistan.
C3 University of Agriculture Faisalabad; University of Agriculture
Faisalabad; University of Punjab
RP Atta, B (corresponding author), Rice Res Inst, Kala Shah Kaku, Punjab, Pakistan.
EM bilal.atta@aari.punjab.gov.pk; muhammad.rizwan@aari.punjab.gov.pk;
dr.arshed.aari@punjab.gov.pk; drmdgogi1974@gmail.com;
asiff06@hotmail.com; abdullahjamal712@gmail.com
RI Gogi, Muhammad Dildar/AAE-4596-2019; Farooq, Muhammad Asif/AGQ-2591-2022
OI Gogi, Muhammad Dildar/0000-0001-9622-767X; Farooq, Muhammad
Asif/0000-0001-5983-9327; Atta, Bilal/0000-0002-8000-0005; Rizwan,
Muhammad/0000-0002-6103-4330
CR Akhtar M. S., 2002, Punjab University Journal of Zoology, V17, P14
Akhtar N, 2010, PAK J AGR RES, V23, P59
Alavanja MCR, 2004, ANNU REV PUBL HEALTH, V25, P155, DOI 10.1146/annurev.publhealth.25.101802.123020
Ali Arif, 2017, Science International (Lahore), V29, P1261
Amini Jam N., 2014, J CROP PROT, V3, P89
Atta B., 2015, Bulgarian Journal of Agricultural Science, V21, P367
Atta B, 2020, J INNOV SCI, V6, P1
Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler
Babcock JM, 2011, PEST MANAG SCI, V67, P328, DOI 10.1002/ps.2069
Bacci L., 2018, Journal of Entomological and Acarological Research, V50, P51, DOI 10.4081/jear.2018.7836
Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664
Chagnon M, 2015, ENVIRON SCI POLLUT R, V22, P119, DOI 10.1007/s11356-014-3277-x
Charpentier G, 2014, ENVIRON SCI TECHNOL, V48, P4096, DOI 10.1021/es405331c
Chen Xuewei, 2016, Ecotoxicology, V25, P1841
Costa Vitor, 2001, Molecular Aspects of Medicine, V22, P217, DOI 10.1016/S0098-2997(01)00012-7
Cui L, 2012, PEST MANAG SCI, V68, P1484, DOI 10.1002/ps.3333
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
Danho M, 2002, J STORED PROD RES, V38, P259, DOI 10.1016/S0022-474X(01)00027-3
Daniels M, 2009, J INSECT PHYSIOL, V55, P758, DOI 10.1016/j.jinsphys.2009.03.002
de Castro AA, 2013, CHEMOSPHERE, V93, P1043, DOI 10.1016/j.chemosphere.2013.05.075
Deng ZZ, 2016, B ENTOMOL RES, V106, P378, DOI 10.1017/S000748531600002X
Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9
Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440
Devine GJ, 1996, PESTIC SCI, V48, P57, DOI 10.1002/(SICI)1096-9063(199609)48:1<57::AID-PS435>3.0.CO;2-9
Ding JF, 2018, J ECON ENTOMOL, V111, P2809, DOI 10.1093/jee/toy254
El-Wakeil N, 2013, INSECTICIDES DEV SAF
Fang Y, 2018, J INSECT SCI, V18, DOI 10.1093/jisesa/iey025
Fernandes MES, 2016, CHEMOSPHERE, V156, P45, DOI 10.1016/j.chemosphere.2016.04.115
FINNEY D J, 1971, P333
Franca S., 2017, BIOL CONTROL PEST VE, DOI DOI 10.5772/66461
Gerami S., 2005, Communications in Agricultural and Applied Biological Sciences, V70, P779
Gogi MD, 2006, PEST MANAG SCI, V62, P982, DOI 10.1002/ps.1273
Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x
Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009
Hadi BAR, 2015, CROP PROT, V76, P100, DOI 10.1016/j.cropro.2015.07.002
Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282
He YX, 2012, ECOTOXICOLOGY, V21, P1291, DOI 10.1007/s10646-012-0883-6
Hirata K, 2016, J PESTIC SCI, V41, P87, DOI 10.1584/jpestics.J16-01
Inayat TP, 2011, INT J AGRIC BIOL, V13, P427
Inayatullah C, 1985, GREENBUG BIOTYPES RE
Jiang JG, 2018, ECOTOX ENVIRON SAFE, V161, P208, DOI 10.1016/j.ecoenv.2018.05.076
Kajita H., 1979, Proceedings of the Association for Plant Protection of Kyushu, V25, P112
KOMBLAS KN, 1972, J ECON ENTOMOL, V65, P439, DOI 10.1093/jee/65.2.439
Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260
Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x
Laurent FM, 2003, J AGR FOOD CHEM, V51, P8005, DOI 10.1021/jf034310n
Lee CY., 2000, J BIOSCIENCE, V11, P107, DOI DOI 10.5772/66461
Li GuoYong, 2019, Acta Ecologica Sinica - International Journal, V39, P234, DOI 10.1016/j.chnaes.2018.09.001
Li WQ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204097
Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3
Liu TF, 2019, J ECON ENTOMOL, V112, P2177, DOI 10.1093/jee/toz146
Lu Y, 2009, B ENTOMOL RES, V99, P611, DOI 10.1017/S0007485309006725
Lucas E, 2002, EUR J ENTOMOL, V99, P457, DOI 10.14411/eje.2002.058
Meikle WG, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168603
Gonalons C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140814
MENSAH RK, 1993, J AUST ENTOMOL SOC, V32, P327
Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738
MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169
Mozaddedul HNM, 2002, PAK J BIOL SCI, V5, P915
Nauen R, 1998, ENTOMOL EXP APPL, V88, P287, DOI 10.1023/A:1003430331594
Ngwej LM, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2710-5
Pettersson J, 1971, INSECT SYST EVOL, V2, P6
Piiroinen S, 2014, J APPL ENTOMOL, V138, P149, DOI 10.1111/jen.12088
Piiroinen S, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-13
Plumb R.T., 1983, P185
Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2
Rizvi N. H., 1994, P PAK C ZOOL, V12, P285
Sadeghi A, 2009, J INSECT SCI, V9, DOI 10.1673/031.009.6501
Saleem M. S., 2018, Sarhad Journal of Agriculture, V34, P583
Saran RK, 2014, J ECON ENTOMOL, V107, P1878, DOI 10.1603/EC11393
Sarmad S. Amin, 2015, SCI AGR, V12, P105
Schwarz T, 2019, BIOCONTROL, V64, P323, DOI 10.1007/s10526-019-09931-7
Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1
Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y
Singh J.P., 2000, Shashpa, V7, P181
Sohn L, 2018, ECOTOXICOLOGY, V27, P900, DOI 10.1007/s10646-018-1950-4
Sohrabi F, 2013, CROP PROT, V45, P98, DOI 10.1016/j.cropro.2012.11.024
Sparks TC, 2013, PESTIC BIOCHEM PHYS, V107, P1, DOI 10.1016/j.pestbp.2013.05.014
Sparks TC, 2012, PESTIC BIOCHEM PHYS, V103, P159, DOI 10.1016/j.pestbp.2012.05.006
Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0
Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058
Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221
Unal S, 2017, PAK J ZOOL, V49, P327, DOI 10.17582/journal.pjz/2017.49.1.327.330
Wang NX, 2016, PEST MANAG SCI, V72, P1467, DOI 10.1002/ps.4220
Watson GB, 2017, PESTIC BIOCHEM PHYS, V143, P90, DOI 10.1016/j.pestbp.2017.09.003
Xiao D, 2016, ECOTOXICOLOGY, V25, P1782, DOI 10.1007/s10646-016-1721-z
Xiao D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128936
Xin JJ, 2019, J INTEGR AGR, V18, P1613, DOI [10.1016/S2095-3119(18)62094-5, 10.1016/s2095-3119(18)62094-5]
Xu L, 2016, J ASIA-PAC ENTOMOL, V19, P683, DOI 10.1016/j.aspen.2016.06.013
Yu CH, 2014, ECOTOX ENVIRON SAFE, V110, P168, DOI 10.1016/j.ecoenv.2014.08.022
Zeng XY, 2016, J ECON ENTOMOL, V109, P1595, DOI 10.1093/jee/tow104
Zhu YM, 2011, J AGR FOOD CHEM, V59, P2950, DOI 10.1021/jf102765x
NR 94
TC 8
Z9 8
U1 3
U2 24
PU SPRINGER INT PUBL AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1742-7584
EI 1742-7592
J9 INT J TROP INSECT SC
JI Int. J. Trop. Insect Sci.
PD MAR
PY 2021
VL 41
IS 1
BP 345
EP 358
DI 10.1007/s42690-020-00212-w
EA JUL 2020
PG 14
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA QK8TN
UT WOS:000549218400001
DA 2023-03-13
ER
PT J
AU Urban, N
Tsitsipatis, D
Hausig, F
Kreuzer, K
Erler, K
Stein, V
Ristow, M
Steinbrenner, H
Klotz, LO
AF Urban, Nadine
Tsitsipatis, Dimitrios
Hausig, Franziska
Kreuzer, Katrin
Erler, Katrin
Stein, Vanessa
Ristow, Michael
Steinbrenner, Holger
Klotz, Lars-Oliver
TI Non-linear impact of glutathione depletion on C-elegans life span and
stress resistance
SO REDOX BIOLOGY
LA English
DT Article
DE Glutathione; C. elegans; Aging; Stress resistance; Thiol;
gamma-glutamylcysteine synthetase; Hormesis
ID TRANSCRIPTION FACTOR NRF2; CAENORHABDITIS-ELEGANS; OXIDATIVE-STRESS;
MENADIONE 2-METHYL-1,4-NAPHTHOQUINONE; ROS-GENERATOR; FACTOR SKN-1;
LONGEVITY; DAF-16; REDOX; METABOLISM
AB The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH) representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM), an alpha, beta-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1 mM. In contrast, low and moderate doses of DEM (10-100 mu M) increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100 mu M DEM, but not 1 mM DEM, whereas only 1 mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating gamma-glutamylcysteine synthetase (gcs-1) expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egglaying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly hatched and developing worms.
C1 [Urban, Nadine; Tsitsipatis, Dimitrios; Hausig, Franziska; Kreuzer, Katrin; Erler, Katrin; Steinbrenner, Holger; Klotz, Lars-Oliver] Univ Jena, Inst Nutr, Dept Nutrigenom, D-07743 Jena, Germany.
[Ristow, Michael] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Schwerzenbach Zurich, Schorenstr 16,Bldg SLA C7, Zurich, Switzerland.
C3 Friedrich Schiller University of Jena; Swiss Federal Institutes of
Technology Domain; ETH Zurich
RP Klotz, LO (corresponding author), Univ Jena, Inst Nutr, Dept Nutrigenom, D-07743 Jena, Germany.
EM lars-oliver.klotz@uni-jena.de
RI Tsitsipatis, Dimitrios/J-9064-2019; Steinbrenner, Holger/AAD-6323-2019;
Ristow, Michael/O-9858-2014; Klotz, Lars Oliver/AAC-5051-2019
OI Ristow, Michael/0000-0003-2109-2453; Klotz, Lars
Oliver/0000-0002-1261-8911; Steinbrenner, Holger/0000-0003-2754-2435;
Stein, Vanessa/0000-0001-6285-8553
FU Deutsche Forschungsgemeinschaft (DFG, Bonn, Germany) through Research
Training Group "ProMoAge" [RTG 2155]; European Cooperation in Science
and Technology (COST) Action [BM1203/EU-ROS]; Swiss National Science
Foundation (Schweizerischer Nationalfonds) [SNF 31003A_156031]; NIH
Office of Research Infrastructure Programs [P40 OD010440]
FX This study was supported by Deutsche Forschungsgemeinschaft (DFG, Bonn,
Germany) through Research Training Group "ProMoAge" (RTG 2155), by the
European Cooperation in Science and Technology (COST) Action
BM1203/EU-ROS to L.O.K., and the Swiss National Science Foundation
(Schweizerischer Nationalfonds, SNF 31003A_156031) to M.R.; C. elegans
strains were provided by the Caenorhabditis Genetics Center (CGC,
University of Minnesota, USA), which is funded by NIH Office of Research
Infrastructure Programs (P40 OD010440).
CR Abdelmohsen K, 2003, J BIOL CHEM, V278, P38360, DOI 10.1074/jbc.M306785200
An JH, 2003, GENE DEV, V17, P1882, DOI 10.1101/gad.1107803
Mora-Lorca JA, 2016, FREE RADICAL BIO MED, V96, P446, DOI 10.1016/j.freeradbiomed.2016.04.017
Barsyte D, 2001, FASEB J, V15, P627, DOI 10.1096/fj.99-0966com
Bitto A, 2015, CSH PERSPECT MED, V5, DOI 10.1101/cshperspect.a025114
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
BRENNER S, 1974, GENETICS, V77, P71
BRUNMARK A, 1989, FREE RADICAL BIO MED, V7, P435, DOI 10.1016/0891-5849(89)90126-3
BUS JS, 1984, ENVIRON HEALTH PERSP, V55, P37, DOI 10.2307/3429690
Cascella R, 2014, FREE RADICAL BIO MED, V73, P127, DOI 10.1016/j.freeradbiomed.2014.05.004
Cebula M, 2015, ANTIOXID REDOX SIGN, V23, P823, DOI 10.1089/ars.2015.6378
Conradt B, 1998, CELL, V93, P519, DOI 10.1016/S0092-8674(00)81182-4
Crampton N, 2009, MOL BIOL CELL, V20, P5106, DOI 10.1091/mbc.E09-05-0397
Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109
ELLMAN GL, 1958, ARCH BIOCHEM BIOPHYS, V74, P443, DOI 10.1016/0003-9861(58)90014-6
Fraser AG, 2000, NATURE, V408, P325, DOI 10.1038/35042517
Greiss S, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-334
Hartwig K, 2009, GENES NUTR, V4, P59, DOI 10.1007/s12263-009-0113-x
Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x
Henderson ST, 2001, CURR BIOL, V11, P1975, DOI 10.1016/S0960-9822(01)00594-2
Higgins LG, 2011, CHEM-BIOL INTERACT, V192, P37, DOI 10.1016/j.cbi.2010.09.025
Hoffman S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088828
Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385
Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922
Isani G, 2014, BIOMOLECULES, V4, P435, DOI 10.3390/biom4020435
Kahn NW, 2008, BIOCHEM J, V409, P205, DOI 10.1042/BJ20070521
Klatt P, 2000, EUR J BIOCHEM, V267, P4928, DOI 10.1046/j.1432-1327.2000.01601.x
Klaus V, 2010, ARCH BIOCHEM BIOPHYS, V496, P93, DOI 10.1016/j.abb.2010.02.002
Klotz LO, 2015, REDOX BIOL, V6, P51, DOI 10.1016/j.redox.2015.06.019
Klotz LO, 2014, MOLECULES, V19, P14902, DOI 10.3390/molecules190914902
KOSOWER NS, 1969, BIOCHEM BIOPH RES CO, V37, P593, DOI 10.1016/0006-291X(69)90850-X
Leung MCK, 2008, TOXICOL SCI, V106, P5, DOI 10.1093/toxsci/kfn121
Lin K, 2001, NAT GENET, V28, P139, DOI 10.1038/88850
Lithgow GJ, 2002, MECH AGEING DEV, V123, P765, DOI 10.1016/S0047-6374(01)00422-5
Luersen K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060731
Garcia-Gimenez JL, 2013, ANTIOXID REDOX SIGN, V19, P1305, DOI 10.1089/ars.2012.5021
Markovic J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006413
MEISTER A, 1983, SCIENCE, V220, P472, DOI 10.1126/science.6836290
Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789
NEUSCHWANDERTETRI BA, 1989, ANAL BIOCHEM, V179, P236, DOI 10.1016/0003-2697(89)90121-8
Oh SW, 2006, NAT GENET, V38, P251, DOI 10.1038/ng1723
Oliveira RP, 2009, AGING CELL, V8, P524, DOI 10.1111/j.1474-9726.2009.00501.x
Park SK, 2009, AGING CELL, V8, P258, DOI 10.1111/j.1474-9726.2009.00473.x
Plummer J L, 1981, Methods Enzymol, V77, P50
ROSS D, 1985, CHEM-BIOL INTERACT, V55, P177, DOI 10.1016/S0009-2797(85)80126-5
Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011
Sies H, 1999, FREE RADICAL BIO MED, V27, P916, DOI 10.1016/S0891-5849(99)00177-X
Stenvall J, 2011, P NATL ACAD SCI USA, V108, P1064, DOI 10.1073/pnas.1006328108
Stone JR, 2006, ANTIOXID REDOX SIGN, V8, P243, DOI 10.1089/ars.2006.8.243
Tebay LE, 2015, FREE RADICAL BIO MED, V88, P108, DOI 10.1016/j.freeradbiomed.2015.06.021
THOR H, 1982, J BIOL CHEM, V257, P2419
Tullet JMA, 2008, CELL, V132, P1025, DOI 10.1016/j.cell.2008.01.030
Zhang YQ, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0031849, 10.1371/journal.pone.0044465, 10.1371/journal.pone.0029519, 10.1371/journal.pone.0044593]
NR 53
TC 43
Z9 43
U1 4
U2 17
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2213-2317
J9 REDOX BIOL
JI Redox Biol.
PD APR
PY 2017
VL 11
BP 502
EP 515
DI 10.1016/j.redox.2016.12.003
PG 14
WC Biochemistry & Molecular Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology
GA EQ6RY
UT WOS:000398212000048
PM 28086197
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Ceci, R
Valls, MRB
Duranti, G
Dimauro, I
Quaranta, F
Pittaluga, M
Sabatini, S
Caserotti, P
Parisi, P
Parisi, A
Caporossi, D
AF Ceci, Roberta
Valls, Maria Reyes Beltran
Duranti, Guglielmo
Dimauro, Ivan
Quaranta, Federico
Pittaluga, Monica
Sabatini, Stefania
Caserotti, Paolo
Parisi, Paolo
Parisi, Attilio
Caporossi, Daniela
TI Oxidative stress responses to a graded maximal exercise test in older
adults following explosive-type resistance training
SO REDOX BIOLOGY
LA English
DT Article
DE Explosive-type moderate intensity resistance training (EMRT); Graded
maximal exercise test (GXT); Oxidative stress; HSPs; Apoptosis; Elderly
ID PHYSICAL-ACTIVITY; FREE-RADICALS; DNA-DAMAGE; SKELETAL-MUSCLE;
ANTIOXIDANT; MECHANISMS; PROTEINS; QUANTITATION; HORMESIS; BOUT
AB We recently demonstrated that low frequency, moderate intensity, explosive-type resistance training (EMRT) is highly beneficial in elderly subjects towards muscle strength and power, with a systemic adaptive response of anti-oxidant and stress-induced markers. In the present study, we aimed to evaluate the impact of EMRT on oxidative stress biomarkers induced in old people (70-75 years) by a single bout of acute, intense exercise. Sixteen subjects randomly assigned to either a control, not exercising group (n=8) or a trained group performing EMRT protocol for 12-weeks (n =8), were submitted to a graded maximal exercise stress test (GXT) at baseline and after the 12-weeks of EMRT protocol, with blood samples collected before, immediately after, 1 and 24 h post-GXT test. Blood glutathione (GSH, GSSG, GSH/GSSG), plasma malonaldehyde (MDA), protein carbonyls and creatine kinase (CK) levels, as well as PBMCs cellular damage (Comet assay, apoptosis) and stress-protein response (Hsp70 and Hsp27 expression) were evaluated. The use of multiple biomarkers allowed us to confirm that EMRT per se neither affected redox homeostasis nor induced any cellular and oxidative damage. Following the GXT, the EMRT group displayed a higher GSH/GSSG ratio and a less pronounced increase in MDA, protein carbonyls and CK levels compared to control group. Moreover, we found that Hsp70 and Hsp27 proteins were induced after GXT only in EMRT group, while any significant modification within 2411 was detected in untrained group. Apoptosis rates and DNA damage did not show any significant variation in relation to EMRT and/or GXT.
In conclusion, the adherence to an EMRT protocol is able to induce a cellular adaptation allowing healthy elderly trained subjects to cope with the oxidative stress induced by an acute exercise more effectively than the aged -matched sedentary subjects., 2013 The Authors. Published by Elsevier B.V. All rights reserved.
C1 [Ceci, Roberta; Valls, Maria Reyes Beltran; Duranti, Guglielmo; Dimauro, Ivan; Pittaluga, Monica; Sabatini, Stefania; Parisi, Paolo; Caporossi, Daniela] Univ Rome Foro Italico, Unit Biol Genet & Biochem, I-00135 Rome, Italy.
[Quaranta, Federico; Parisi, Attilio] Univ Rome Foro Italico, Dept Movement Human & Hlth Sci, Unit Internal Med, I-00135 Rome, Italy.
[Caserotti, Paolo] Univ Southern Denmark, Dept Sports Sci & Clin Biomech, DK-5230 Odense M, Denmark.
C3 Foro Italico University of Rome; Foro Italico University of Rome;
University of Southern Denmark
RP Ceci, R (corresponding author), Univ Rome Foro Italico, Unit Biol Genet & Biochem, Piazza Lauro De Bosis 15, I-00135 Rome, Italy.
EM roberta.ceci@uniroma4.it
RI Valls, Maria Reyes Beltran/ABG-7890-2020; Attilio, Parisi/ABA-1396-2021;
Beltran-Valls, Maria Reyes/S-3673-2019; Dimauro, Ivan/AAG-1178-2019;
Caporossi, Daniela/D-7434-2011
OI Valls, Maria Reyes Beltran/0000-0003-1749-9330; Dimauro,
Ivan/0000-0003-0577-3144; Caporossi, Daniela/0000-0001-9628-0665;
sabatini, stefania/0000-0001-6156-5185; Duranti,
Guglielmo/0000-0002-1664-9387; PARISI, Attilio/0000-0003-2648-8406;
quaranta, federico/0000-0002-6249-7513; Ceci,
Roberta/0000-0002-8900-8839
FU University of Rome 'Foro Italico'; Lazio Regional Municipality
[12650/2010]
FX This work was supported by grants from the University of Rome 'Foro
Italico' (Research 2009) to D.C. The Lazio Regional Municipality
(Agreement CRUL-Lazio n. 12650/2010) supported the post-doc scholarship
to ID.
CR Albertini RJ, 2000, MUTAT RES-REV MUTAT, V463, P111, DOI 10.1016/S1383-5742(00)00049-1
ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548
Baird M.F., J NUTR META IN PRESS
Beltran Valls M.R., AGE DORDR IN PRESS
Caserotti P, 2008, SCAND J MED SCI SPOR, V18, P773, DOI 10.1111/j.1600-0838.2007.00732.x
Choi Eun-Young, 2007, Nutr Res Pract, V1, P14, DOI 10.4162/nrp.2007.1.1.14
DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1
Elosua R, 2003, ATHEROSCLEROSIS, V167, P327, DOI 10.1016/S0021-9150(03)00018-2
Fagan JM, 1999, INT J BIOCHEM CELL B, V31, P751, DOI 10.1016/S1357-2725(99)00034-5
Falone S, 2010, PHYSIOL RES, V59, P953, DOI 10.33549/physiolres.931884
Fisher-Wellman Kelsey, 2009, Dyn Med, V8, P1, DOI 10.1186/1476-5918-8-1
Fittipaldi S, 2014, FREE RADICAL RES, V48, P52, DOI 10.3109/10715762.2013.835047
Fulle S, 2004, EXP GERONTOL, V39, P17, DOI 10.1016/j.exger.2003.09.012
Gomez-Cabrera MC, 2008, FREE RADICAL BIO MED, V44, P126, DOI 10.1016/j.freeradbiomed.2007.02.001
Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061
Ji LL, 2001, ANN NY ACAD SCI, V928, P236
Khassaf M, 2003, J PHYSIOL-LONDON, V549, P645, DOI 10.1113/jphysiol.2003.040303
Knez WL, 2007, MED SCI SPORT EXER, V39, P283, DOI 10.1249/01.mss.0000246999.09718.0c
Kowald A, 1996, MUTAT RES-DNAGING G, V316, P209, DOI 10.1016/S0921-8734(96)90005-3
Lovric J, 2008, PERIOD BIOL, V110, P63
McArdle A, 2002, AGEING RES REV, V1, P79, DOI 10.1016/S0047-6374(01)00368-2
MEHLEN P, 1995, J CELL BIOCHEM, V58, P248, DOI 10.1002/jcb.240580213
Mergener M, 2009, CLIN BIOCHEM, V42, P1648, DOI 10.1016/j.clinbiochem.2009.08.001
Musaro A, 2010, CURR OPIN CLIN NUTR, V13, P236, DOI 10.1097/MCO.0b013e3283368188
Muthusamy VR, 2012, FREE RADICAL BIO MED, V52, P366, DOI 10.1016/j.freeradbiomed.2011.10.440
Neubauer O, 2008, EXERC IMMUNOL REV, V14, P51
Pittaluga M, 2006, FREE RADICAL RES, V40, P607, DOI 10.1080/10715760600623015
Pittaluga M, 2013, FREE RADICAL RES, V47, P202, DOI 10.3109/10715762.2012.761696
Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029
Radak Z, 2013, ANTIOXID REDOX SIGN, V18, P1208, DOI 10.1089/ars.2011.4498
Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002
Reddy VP, 2009, J ALZHEIMERS DIS, V16, P763, DOI 10.3233/JAD-2009-1013
Sen CK, 2000, AM J CLIN NUTR, V72, p653S, DOI 10.1093/ajcn/72.2.653S
Simar D., 2004, J GERONTOL A-BIOL, V62A, P1413
SINGH NP, 1988, EXP CELL RES, V175, P184, DOI 10.1016/0014-4827(88)90265-0
Valko M, 2006, CHEM-BIOL INTERACT, V160, P1, DOI 10.1016/j.cbi.2005.12.009
Vina J., CURR PHARM IN PRESS
Vina J, 2013, ANTIOXID REDOX SIGN, V19, P779, DOI 10.1089/ars.2012.5111
VOORRIPS LE, 1991, MED SCI SPORT EXER, V23, P974, DOI 10.1249/00005768-199108000-00015
Yu BP, 2006, MECH AGEING DEV, V127, P436, DOI 10.1016/j.mad.2006.01.023
NR 40
TC 46
Z9 47
U1 0
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2213-2317
J9 REDOX BIOL
JI Redox Biol.
PY 2014
VL 2
BP 65
EP 72
DI 10.1016/j.redox.2013.12.004
PG 8
WC Biochemistry & Molecular Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology
GA CD0MY
UT WOS:000350769600010
PM 25460722
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Du, SH
Meng, FP
Duan, WY
Liu, QQ
Li, H
Peng, XL
AF Du, Shuhao
Meng, Fanping
Duan, Weiyan
Liu, Qunqun
Li, Hao
Peng, Xiaoling
TI Oxidative stress responses in two marine diatoms during acute n-butyl
acrylate exposure and the toxicological evaluation with the IBRv2 index
SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
LA English
DT Article
DE n-Butyl acrylate (nBA); Diatoms; Toxicity; Antioxidants; Integrated
Biomarker Response Version 2(IBRv2)
ID INTEGRATED BIOMARKER RESPONSE; SKELETONEMA-COSTATUM; TOXICITY;
INHIBITION; ORGANISMS; DAMAGE
AB n-Butyl acrylate (nBA), a typical hazardous and noxious substance (HNS), is the largest-volume acrylate ester used to produce various types of polymers. With the increasing volume of nBA subject to maritime transportation, its accidental leakage poses a great risk to the marine organisms. Therefore, it is necessary to evaluate the ecological risk of nBA in marine environments. In this study, two species of marine microalgae, Skeletonema costatum and Phaeodactylum tricornutum, were used to explore the toxic effects of nBA based on their growth, pigment content, and oxidative stress. The growth of each species was significantly inhibited by nBA, showing a 96 h-EC50 value of 2.23 mg/L for P. tricornutum and 8.19 mg/L for S. costatum, respectively. Although chlorophylls a and c exerted a hormesis effect in P. tricornutum, contents of pigments generally decreased at high concentrations. In P. tricornutum, all detected antioxidants (reduced glutathione, GSH; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) were stimulated at concentrations ranging from 1.50 to 3.82 mg/L. However, these elevations were not enough to reduce the oxidative damage caused by nBA, because the content of malondialdehyde (MDA) increased continuously during 96-h exposure. For S. costatum, the activities of only two antioxidants (GSH and CAT) were enhanced, which is enough to prevent the MDA content from rising, even at higher concentrations of nBA (5-10 mg/L). The Integrated Biomarker Response Version 2 (IBRv2) index that combines responses of the above five oxidative stress biomarkers, was not only correlated positively with nBA concentration but could also indicate the occurrence of oxidative stress caused by acute concentration of nBA. These findings showed that P. tricornutum was sensitive to nBA compared to S. costatum, and the IBRv2 index was an effective tool for evaluating ecotoxicological effects on marine micmalgae due to nBA spills.
C1 [Du, Shuhao; Meng, Fanping; Duan, Weiyan; Liu, Qunqun; Li, Hao; Peng, Xiaoling] Ocean Univ China, Key Lab Marine Environm & Ecol, Minist Educ, Qingdao, Shandong, Peoples R China.
[Du, Shuhao; Meng, Fanping; Duan, Weiyan; Liu, Qunqun; Li, Hao; Peng, Xiaoling] Ocean Univ China, Coll Environm Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China.
C3 Ocean University of China; Ocean University of China
RP Meng, FP (corresponding author), Ocean Univ China, Coll Environm Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China.
EM mengfanping@ouc.edu.cn
FU National Natural Science Foundation of China [42077335]
FX This work was financially supported by the National Natural Science
Foundation of China (Grant no. 42077335) .
CR Abrahamson A, 2007, AGONISTS DISS ACTA
Baag S, 2021, CHEMOSPHERE, V264, DOI 10.1016/j.chemosphere.2020.128512
Beghin M, 2021, ECOTOX ENVIRON SAFE, V221, DOI 10.1016/j.ecoenv.2021.112454
Blanco-Rayon E, 2021, ECOL INDIC, V130, DOI 10.1016/j.ecolind.2021.108028
Boberic G, 1998, CHEMOSPHERE, V37, P33, DOI 10.1016/S0045-6535(98)00036-8
Caliani I, 2021, ECOTOX ENVIRON SAFE, V208, DOI 10.1016/j.ecoenv.2020.111486
Cedre, 2007, CEDR SEARCH CAS INT
Chen H, 2011, CHEMOSPHERE, V84, P664, DOI 10.1016/j.chemosphere.2011.03.032
China Water Transport Network, 2007, LEAK 931 TONS BUT AC
Chinanews, 2014, CHINANEWS
Couling DJ, 2006, GREEN CHEM, V8, P82, DOI [10.1039/b511333d, 10.1039/B511333D]
Dou X, 2019, J OCEANOL LIMNOL, V37, P1342, DOI 10.1007/s00343-019-8205-y
Duan WY, 2017, ENVIRON TOXICOL PHAR, V52, P170, DOI 10.1016/j.etap.2017.04.006
FINNEY D J, 1971, P333
Gao K, 2021, MAR POLLUT BULL, V166, DOI 10.1016/j.marpolbul.2021.112222
Gauthier MR, 2020, ALGAL RES, V52, DOI 10.1016/j.algal.2020.102104
GESAMP, 2013, REV GESAMP HAZ EV PR, V2nd
GREIM H, 1995, CHEMOSPHERE, V31, P2637, DOI 10.1016/0045-6535(95)00136-V
Guo JH, 2020, AQUAT TOXICOL, V219, DOI 10.1016/j.aquatox.2019.105376
Halliwell B., 2015, Free radicals in biology and medicine
Huang D.R., 2014, J FISH RES BOARD CAN, V36, P294
International Maritime Organization (IMO), 2002, IMO REP STUD
International Organization for Standardization (ISO), 2016, 102532016 ISO, V10253, P2016
JEFFREY SW, 1975, BIOCHEM PHYSIOL PFL, V167, P191, DOI 10.1016/s0015-3796(17)30778-3
Kalaji M., 2008, PHOTOCHEM RES PROG, V29, P439
KENT RA, 1995, ENVIRON TOXICOL CHEM, V14, P983, DOI [10.1897/1552-8618(1995)14[983:PASTAP]2.0.CO;2, 10.1002/etc.5620140609]
Lee JW, 2019, FISH PHYSIOL BIOCHEM, V45, P873, DOI 10.1007/s10695-018-0584-z
Li F, 2019, B ENVIRON CONTAM TOX, V103, P441, DOI 10.1007/s00128-019-02646-6
Liu Q, 2022, ENVIRON POLLUT, V295, DOI 10.1016/j.envpol.2021.118670
Liu WH, 2012, PLANT PHYSIOL BIOCH, V60, P165, DOI 10.1016/j.plaphy.2012.08.009
Livingstone DR, 2001, MAR POLLUT BULL, V42, P656, DOI 10.1016/S0025-326X(01)00060-1
Ma JX, 2018, ENVIRON TOXICOL, V33, P142, DOI 10.1002/tox.22499
Mao YF, 2021, ECOTOX ENVIRON SAFE, V222, DOI 10.1016/j.ecoenv.2021.112496
Marins MT, 2018, ECOTOX ENVIRON SAFE, V151, P191, DOI 10.1016/j.ecoenv.2018.01.021
Martins PLG, 2015, ECOTOX ENVIRON SAFE, V116, P84, DOI 10.1016/j.ecoenv.2015.03.003
MASTEN LW, 1994, ECOTOX ENVIRON SAFE, V27, P335, DOI 10.1006/eesa.1994.1027
McGowan T., 2013, ARCOPOL PLUS ACTIVIT
Mu WJ, 2018, ENVIRON TOXICOL PHAR, V59, P152, DOI 10.1016/j.etap.2018.03.013
OECD -SID, 2002, SCREEN INF DAT SET N
PAN, 2018, PAN PESTICIDE DATABA
Parfomak P.W., 2005, DEFENSE ACQUISITION
PubChem, 2021, BUT ACR
Rocha ACS, 2016, SCI TOTAL ENVIRON, V542, P728, DOI 10.1016/j.scitotenv.2015.10.049
Samanta L, 2018, J UROLOGY, V200, P414, DOI 10.1016/j.juro.2018.03.009
Sanchez W, 2013, ENVIRON SCI POLLUT R, V20, P2721, DOI 10.1007/s11356-012-1359-1
Schmidt W, 2011, MAR POLLUT BULL, V62, P1389, DOI 10.1016/j.marpolbul.2011.04.043
Sebastiano M, 2022, CURR OPIN TOXICOL, V29, P25, DOI 10.1016/j.cotox.2022.01.002
USEPA, 2012, ECOLOGICAL EFFECTS T
Wang H, 2020, J HAZARD MATER, V399, DOI 10.1016/j.jhazmat.2020.122847
Wang XF, 2021, ENVIRON SCI POLLUT R, V28, P60954, DOI 10.1007/s11356-021-15070-3
Yamano N, 2018, J PHOTOCH PHOTOBIO A, V358, P379, DOI 10.1016/j.jphotochem.2017.09.047
Yang S, 2002, AQUAT TOXICOL, V60, P33, DOI 10.1016/S0166-445X(01)00258-2
Zhang HX, 2018, ENVIRON POLLUT, V240, P549, DOI 10.1016/j.envpol.2018.04.126
Zhang L, 2022, CHEMOSPHERE, V286, DOI 10.1016/j.chemosphere.2021.131674
Zhang QQ, 2015, ENVIRON SCI TECHNOL, V49, P6772, DOI 10.1021/acs.est.5b00729
Zhang YQ, 2020, COMP BIOCHEM PHYS C, V233, DOI 10.1016/j.cbpc.2020.108764
Zhao YY, 2020, ENVIRON POLLUT, V264, DOI 10.1016/j.envpol.2020.114706
NR 57
TC 0
Z9 0
U1 12
U2 15
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0147-6513
EI 1090-2414
J9 ECOTOX ENVIRON SAFE
JI Ecotox. Environ. Safe.
PD JUL
PY 2022
VL 240
AR 113686
DI 10.1016/j.ecoenv.2022.113686
EA MAY 2022
PG 9
WC Environmental Sciences; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Toxicology
GA 3I4VI
UT WOS:000832716100006
PM 35636239
OA gold
DA 2023-03-13
ER
PT J
AU Wolz, M
Schrader, A
Muller, C
AF Wolz, Marina
Schrader, Alia
Mueller, Caroline
TI Direct and delayed effects of exposure to a sublethal concentration of
the insecticide lambda-cyhalothrin on food consumption and reproduction
of a leaf beetle
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Consumption; Pyrethroid; Persistence; Recovery; Reproduction; Sublethal
concentration
ID DETOXIFICATION ENZYME-ACTIVITY; BIOLOGICAL-CONTROL; FOLSOMIA-CANDIDA;
PLANT-QUALITY; RESISTANCE; BIODIVERSITY; PESTICIDES; SURVIVAL; BEHAVIOR;
DELTAMETHRIN
AB Anthropogenic pollution such as the application of pesticides poses a major threat to many (non-target) organisms. However, little is known about the persistence of harmful effects or potential recovery in response to a period of exposure to a sublethal insecticide dose. Adults of the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), were either exposed to a sublethal concentration of the pyrethroid lambda-cyhalothrin for two weeks or kept unexposed as control. During, immediately after and at a delayed time after the exposure, consumption and reproduction, i.e., number of eggs laid and hatching success, were assessed. In addition, longtermeffects on unexposed offspring were investigated. Exposure to lambda-cyhalothrin reduced the consumption during the insecticide exposure, but led to compensatory feeding in females at a delayed time after exposure. The reproductive output of females was impaired during and directly after lambda-cyhalothrin exposure. At the delayed time point there was no clear evidence for a recovery, as the reproduction of heavier females was still negatively affected, while lighter females showed an enhanced reproduction. Persistent negative effects on unexposed offspring had been found when collected from parents directly after lambda-cyhalothrin exposure period. In contrast, in the present experiment neither negative effects on life-history traits nor on consumption were observed in unexposed offspring derived from parents at the delayed time after lambda-cyhalothrin exposure. Moreover, eggs of offspring from insecticide-exposed parents showed a higher hatching success than those of offspring of unexposed parents, which may indicate transgenerational hormesis. Our results highlight that lambda-cyhalothrin exposure has persistent negative effects on fitness parameters of the exposed generation. However, offspring may not be harmed if their parents had sufficient time to recover after such an insecticide exposure. Taken together, our study emphasises that the time-course of exposure to this anthropogenic pollution is crucial when determining the consequences on life-history. (C) 2020 Elsevier B.V. All rights reserved.
C1 [Wolz, Marina; Schrader, Alia; Mueller, Caroline] Bielefeld Univ, Dept Chem Ecol, Univ Str 24, D-33615 Bielefeld, Germany.
C3 University of Bielefeld
RP Muller, C (corresponding author), Bielefeld Univ, Dept Chem Ecol, Univ Str 24, D-33615 Bielefeld, Germany.
EM caroline.mueller@uni-bielefeld.de
RI Muller, Caroline/G-5073-2011
OI Muller, Caroline/0000-0002-8447-534X
CR Arena M, 2014, ECOTOXICOLOGY, V23, P324, DOI 10.1007/s10646-014-1190-1
Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356
Bantz A, 2018, CURR OPIN INSECT SCI, V30, P73, DOI 10.1016/j.cois.2018.09.008
Behmer ST, 2009, ANNU REV ENTOMOL, V54, P165, DOI 10.1146/annurev.ento.54.110807.090537
Behmer ST, 2005, FUNCT ECOL, V19, P55, DOI 10.1111/j.0269-8463.2005.00943.x
Beketov MA, 2008, SCI TOTAL ENVIRON, V405, P96, DOI 10.1016/j.scitotenv.2008.07.001
Berner D, 2005, OIKOS, V111, P525, DOI 10.1111/j.1600-0706.2005.14144.x
Ceuppens B, 2015, J PEST SCI, V88, P777, DOI 10.1007/s10340-015-0676-9
Conrad KF, 2006, BIOL CONSERV, V132, P279, DOI 10.1016/j.biocon.2006.04.020
Costa MA, 2014, ECOTOXICOLOGY, V23, P1399, DOI 10.1007/s10646-014-1282-y
Crawley SE, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177410
Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440
Despres L, 2007, TRENDS ECOL EVOL, V22, P298, DOI 10.1016/j.tree.2007.02.010
Feldlaufer MF, 2013, J ECON ENTOMOL, V106, P988, DOI 10.1603/EC12378
Finch S, 1997, ENTOMOL EXP APPL, V84, P165, DOI 10.1023/A:1003082529819
Franca S., 2017, BIOL CONTROL PEST VE, DOI DOI 10.5772/66461
Fritz LL, 2013, INT J TROP INSECT SC, V33, P178, DOI 10.1017/S1742758413000192
Geiger F, 2010, BASIC APPL ECOL, V11, P97, DOI 10.1016/j.baae.2009.12.001
Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646
Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010
Guedes RNC, 2006, PHYSIOL ENTOMOL, V31, P30, DOI 10.1111/j.1365-3032.2005.00479.x
Hafeez M, 2020, SAUDI J BIOL SCI, V27, P77, DOI 10.1016/j.sjbs.2019.05.005
He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762
HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943
Huang Y, 2002, J STORED PROD RES, V38, P403, DOI 10.1016/S0022-474X(01)00042-X
IRAC, 2020, IRAC MOD ACT CLASS O
Kliot A, 2012, PEST MANAG SCI, V68, P1431, DOI 10.1002/ps.3395
Kohler HR, 2013, SCIENCE, V341, P759, DOI 10.1126/science.1237591
Lease HM, 2011, PHYSIOL ENTOMOL, V36, P29, DOI 10.1111/j.1365-3032.2010.00767.x
Li XC, 2007, ANNU REV ENTOMOL, V52, P231, DOI 10.1146/annurev.ento.51.110104.151104
Liang X, 2015, INT J MOL SCI, V16, P2078, DOI 10.3390/ijms16012078
Liess M, 2006, ENVIRON TOXICOL CHEM, V25, P1326, DOI 10.1897/05-466R.1
Muller T, 2019, ENVIRON POLLUT, V247, P39, DOI 10.1016/j.envpol.2018.12.040
Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001
Muller T, 2019, J APPL ECOL, V56, P1528, DOI 10.1111/1365-2664.13398
Muller T, 2017, ENVIRON POLLUT, V230, P709, DOI 10.1016/j.envpol.2017.07.018
Muller T, 2016, J INSECT PHYSIOL, V88, P24, DOI 10.1016/j.jinsphys.2016.02.009
Nathan SS, 2007, PESTIC BIOCHEM PHYS, V88, P260, DOI 10.1016/j.pestbp.2006.12.004
Newbold T, 2016, SCIENCE, V353, P288, DOI 10.1126/science.aaf2201
Obermaier E, 1999, ENTOMOL EXP APPL, V92, P165, DOI 10.1023/A:1003709622409
Piiroinen S, 2014, J APPL ENTOMOL, V138, P149, DOI 10.1111/jen.12088
Qi SZ, 2020, SCI TOTAL ENVIRON, V700, DOI 10.1016/j.scitotenv.2019.134500
R Core Team, 2020, R LANGUAGE ENV STAT
R Studio Team, 2019, RSTUDIO INT DEV R
Rose D, 2006, PHYSIOL ENTOMOL, V31, P316, DOI 10.1111/j.1365-3032.2006.00525.x
Samia RR, 2019, PEST MANAG SCI, V75, P694, DOI 10.1002/ps.5166
Shannag HK, 2015, J INSECT SCI, V15, DOI 10.1093/jisesa/iev134
Sharma A, 2019, SN APPL SCI, V1, DOI 10.1007/s42452-019-1485-1
SLANSKY F, 1992, ENTOMOL EXP APPL, V65, P171, DOI 10.1007/BF00221368
Spindola AF, 2013, B ENTOMOL RES, V103, P485, DOI 10.1017/S0007485313000072
Stapel JO, 2000, BIOL CONTROL, V17, P243, DOI 10.1006/bcon.1999.0795
Syngenta, 2016, FACT SHEET LAMBDA WG
Szabo B, 2017, POL J ECOL, V65, P110, DOI 10.3161/15052249PJE2017.65.1.010
Tang WX, 2018, CHEMOSPHERE, V191, P990, DOI 10.1016/j.chemosphere.2017.10.115
Tran TT, 2018, EVOL APPL, V11, P906, DOI 10.1111/eva.12605
Tremmel M, 2014, PHYSIOL BEHAV, V129, P95, DOI 10.1016/j.physbeh.2014.02.030
Tremmel M, 2013, J INSECT PHYSIOL, V59, P840, DOI 10.1016/j.jinsphys.2013.05.009
Uddin MM, 2009, J APPL BOT FOOD QUAL, V82, P108
Vandegehuchte MB, 2014, MUTAT RES-GEN TOX EN, V764, P36, DOI 10.1016/j.mrgentox.2013.08.008
Venables W. N., 2002, MODERN APPL STAT S, V4th, DOI [10.1007/978-0-387-21706-2, DOI 10.1007/978-0-387-21706-2]
Vyjayanthi N, 2002, ECOTOX ENVIRON SAFE, V53, P212, DOI 10.1006/eesa.2002.2229
Wang P, 2018, ENTOMOL EXP APPL, V166, P703, DOI 10.1111/eea.12702
Wheeler GS, 2001, ENTOMOL EXP APPL, V98, P225, DOI 10.1023/A:1018913129484
Wu-Smart J, 2016, SCI REP-UK, V6, DOI 10.1038/srep32108
Zortea T, 2015, CHEMOSPHERE, V122, P94, DOI 10.1016/j.chemosphere.2014.11.018
NR 65
TC 5
Z9 5
U1 6
U2 27
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD MAR 15
PY 2021
VL 760
AR 143381
DI 10.1016/j.scitotenv.2020.143381
EA JAN 2021
PG 8
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA PS2TD
UT WOS:000607779400048
PM 33172643
DA 2023-03-13
ER
PT J
AU Floris, I
Appel, K
Rose, T
Lejeune, B
AF Floris, Ilaria
Appel, Kurt
Rose, Thorsten
Lejeune, Beatrice
TI 2LARTH (R), a micro-immunotherapy medicine, exerts anti-inflammatory
effects in vitro and reduces TNF-alpha, and IL-1 beta secretion
SO JOURNAL OF INFLAMMATION RESEARCH
LA English
DT Article
DE ultra-low doses; hormesis; chronic inflammation; rheumatic diseases
ID GENE-EXPRESSION; BLOOD MONOCYTES; DOSE RESPONSES; INTERLEUKIN-1;
INDUCTION; CELLS; MACROPHAGES; SEPARATION; SUCROSE
AB Background: Tumor necrosis factor-alpha (TNF-alpha) and IL-1 beta are 2 pro-inflammatory cytokines known to be involved in rheumatic diseases. The therapeutic strategy used in micro-immunotherapy (MI) to reduce chronic inflammation and attenuate pain consists in mainly targeting these 2 cytokines. 2LARTH (R) is a sublingually administered medicine consisting of lactose-saccharose globules impregnated with ethanolic preparations of immune mediators and nucleic acids at ultra-low doses.
Purpose: The aim of the study is to explore the effect of the MI medicine on TNF-alpha and IL-1 beta secretion in human primary enriched monocytes exposed to lipopolysaccharide (LPS).
Materials and methods: Placebo and active globules were diluted in culture medium to test 5 lactose-saccharose globules concentrations (from 1.75 to 22 mM). Freshly isolated enriched monocytes from 6 healthy donors were treated with or without LPS (10 ng/mL), LPS+placebo, or LPS+ 2LARTH (R) for 24 hours. IL-1 beta, TNF-alpha, and IL-6 release were evaluated by ELISA.
Results: The medicine has significantly decreased the level of IL-1 beta secretion compared with placebo at these concentrations: 22 mM (P<0.0001),11 mM (P=0.0086), 5.5 mM (P= 0.0254), and compared with untreated LPS control at these concentrations: 22 mM, 11 mM (P=0.0008), and 5.5 mM (P=0.002). The effect of active globules on the reduction of TNF-alpha release is significant compared with placebo at these concentrations: 22 mM (P=0.0018),11 mM (P=0.0005), 5.5 mM (P=0.0136), and compared with untreated LPS control at these concentrations: 22 mM (P=0.0021), 11 mM (P=0.0017), 5.5 mM (P=0.0052) and 2.25 mM (P=0.0196). Besides, IL-6 secretion decreased compared with placebo at 22 mM (P=0.0177) and 11 mM (P=0.0031).
Conclusion: The results indicate that the tested product exerts significant anti-inflammatory effects on human LPS-stimulated monocytes.
C1 [Floris, Ilaria] Labo Life France, Clin Affairs, Moutiers Sous Chantemerl, France.
[Appel, Kurt] VivaCell Biotechnol GmbH, Denzlingen, Germany.
[Rose, Thorsten; Lejeune, Beatrice] Labo Life Belgium, Clin Affairs, Gembloux, Belgium.
RP Floris, I (corresponding author), Labo Life France, Rue Francois Bruneau, F-144000 Nantes, France.
EM ilaria.floris@labolife.com
OI Floris, Ilaria/0000-0003-4089-3133; Lejeune,
Beatrice/0000-0001-9067-6116
FU Labo'Life France
FX The authors would like to thank Anne Naedts for preparing and providing
the placebo globules and Alain Lejeune for -providing and sending the
medicine to VivaCell Biotechnology GmbH. This research study was funded
by Labo'Life France.
CR Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z
Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3
Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044
Chen X, 2016, SCI REP-UK, V6, DOI 10.1038/srep28423
DECOURCY K, 1991, EXP CELL RES, V192, P52, DOI 10.1016/0014-4827(91)90156-O
DINARELLO CA, 1987, J IMMUNOL, V139, P1902
ENGLISH D, 1974, J IMMUNOL METHODS, V5, P249, DOI 10.1016/0022-1759(74)90109-4
Excellence NIfHaC, 2020, OST CAR MAN AD CLIN
Floris I, 2018, J BIOL REG HOMEOS AG, V32, P37
Gane JM, 2016, J IMMUNOL RES, V2016, DOI 10.1155/2016/1079851
Guha M, 2001, CELL SIGNAL, V13, P85, DOI 10.1016/S0898-6568(00)00149-2
Higuchi T, 2015, J CELL BIOCHEM, V116, P609, DOI 10.1002/jcb.25012
KOVACS EJ, 1989, J IMMUNOL, V143, P3532
Marcum Zachary A, 2010, Ann Longterm Care, V18, P24
NOBLE PB, 1968, BLOOD, V31, P66, DOI 10.1182/blood.V31.1.66.66
O'Neil CK, 2012, AM J GERIATR PHARMAC, V10, P331, DOI 10.1016/j.amjopharm.2012.09.004
Parashar A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818774421
Rosso M, 2011, CRIT REV IMMUNOL, V31, P379, DOI 10.1615/CritRevImmunol.v31.i5.20
Schaible HG, 2014, ARTHRITIS RES THER, V16, DOI 10.1186/s13075-014-0470-8
Schett G, 2016, NAT REV RHEUMATOL, V12, P14, DOI 10.1038/nrrheum.2016.166
Schwartz A, 2017, REV ESPANOLA OZONOTE, V7, P17
Sommer C, 2004, NEUROSCI LETT, V361, P184, DOI 10.1016/j.neulet.2003.12.007
STRIETER RM, 1989, AM REV RESPIR DIS, V139, P335, DOI 10.1164/ajrccm/139.2.335
Thomas G., 2016, ADV INFECT DIS, V06, P7, DOI [DOI 10.4236/AID.2016.61002, 10.4236/aid.2016.61002]
TOSATO G, 1990, BLOOD, V75, P1305, DOI 10.1182/blood.V75.6.1305.1305
van Laar Mart, 2012, Open Rheumatol J, V6, P320, DOI 10.2174/1874312901206010320
Weis S, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18061273
NR 27
TC 16
Z9 16
U1 1
U2 3
PU DOVE MEDICAL PRESS LTD
PI ALBANY
PA PO BOX 300-008, ALBANY, AUCKLAND 0752, NEW ZEALAND
EI 1178-7031
J9 J INFLAMM RES
JI J. Inflamm. Res.
PY 2018
VL 11
BP 397
EP 405
DI 10.2147/JIR.S174326
PG 9
WC Immunology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Immunology
GA GY5MF
UT WOS:000448620200001
PM 30464572
OA Green Submitted, gold, Green Published
DA 2023-03-13
ER
PT J
AU Rey, B
Degletagne, C
Bodennec, J
Monternier, PA
Mortz, M
Roussel, D
Romestaing, C
Rouanet, JL
Tornos, J
Duchamp, C
AF Rey, Benjamin
Degletagne, Cyril
Bodennec, Jacques
Monternier, Pierre-Axel
Mortz, Mathieu
Roussel, Damien
Romestaing, Caroline
Rouanet, Jean-Louis
Tornos, Jeremy
Duchamp, Claude
TI Hormetic response triggers multifaceted anti-oxidant strategies in
immature king penguins (Aptenodytes patagonicus)
SO FREE RADICAL BIOLOGY AND MEDICINE
LA English
DT Article
DE Redox homeostasis; Oxidative stress; Penguin; Lipid composition;
Hormesis; Mitochondria
ID OXYGEN SPECIES PRODUCTION; AVIAN UNCOUPLING PROTEIN; SKELETAL-MUSCLE;
OXIDATIVE STRESS; SUPEROXIDE-PRODUCTION; METABOLIC-RATE; THYROID STATUS;
UP-REGULATION; LIFE-SPAN; MITOCHONDRIA
AB Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure in diving birds. Initial immersions in cold-water may initiate an hormetic response triggering essential changes in the adaptive antioxidant response to marine life. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Rey, Benjamin] Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, Villeurbanne, France.
[Rey, Benjamin] Univ Witwatersrand, Fac Hlth Sci, Sch Physiol, Brain Funct Res Grp, Johannesburg, South Africa.
[Degletagne, Cyril; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude] Univ Lyon 1, CNRS, Lab Ecol Hydrosyst Nat & Anthropises, Villeurbanne, France.
[Bodennec, Jacques] Univ Lyon 1, CNRS, Neurosci Res Ctr, Villeurbanne, France.
[Degletagne, Cyril] Helmholtz Ctr Polar & Marine Res Funct Ecol, Alfred Wegener Inst, Bremerhaven, Germany.
C3 Centre National de la Recherche Scientifique (CNRS); UDICE-French
Research Universities; Universite Claude Bernard Lyon 1; VetAgro Sup;
University of Witwatersrand; UDICE-French Research Universities;
Universite Claude Bernard Lyon 1; Centre National de la Recherche
Scientifique (CNRS); Centre National de la Recherche Scientifique
(CNRS); UDICE-French Research Universities; Universite Claude Bernard
Lyon 1; Helmholtz Association; Alfred Wegener Institute, Helmholtz
Centre for Polar & Marine Research
RP Rey, B (corresponding author), Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, Villeurbanne, France.
EM benjamin.rey@univ-lyon1.fr; Cyril.degletagne@gmail.com;
jacques.bodennec@univ-lyon1.fr; pierreaxel.monternier@gmail.com;
mathieu.mortz@gmail.com; damien.roussel@univ-lyon1.fr;
Caroline.romestaing@univ-lyon1.fr; jean-louis.rouanet@univ-lyon1.fr;
jeremy.tornos@cefe.cnrs.fr; claude.duchamp@univ-lyon1.fr
RI romestaing, caroline/O-8794-2017
OI romestaing, caroline/0000-0002-6877-9626; Tornos,
Jeremy/0000-0002-8793-2518; Roussel, Damien/0000-0002-8865-5428
FU French Polar Institute (Institute Paul Emile Victor (IPEV) [131]
FX We are very grateful to Dr. Doris Abele for providing constructive
comments on the draft manuscript. This work was supported by grants from
the French Polar Institute (Institute Paul Emile Victor (IPEV),
programme no.131).
CR AEBI H, 1984, METHOD ENZYMOL, V105, P121
Ali SS, 2010, J BIOL CHEM, V285, P32522, DOI 10.1074/jbc.M110.155432
BARRE H, 1986, AM J PHYSIOL, V251, pR456, DOI 10.1152/ajpregu.1986.251.3.R456
Bolstad BM, 2003, BIOINFORMATICS, V19, P185, DOI 10.1093/bioinformatics/19.2.185
Butler PJ, 1997, PHYSIOL REV, V77, P837, DOI 10.1152/physrev.1997.77.3.837
Cheng GJ, 2008, FREE RADICAL BIO MED, V45, P1682, DOI 10.1016/j.freeradbiomed.2008.09.009
Cherel Y, 2004, GEN COMP ENDOCR, V136, P398, DOI 10.1016/j.ygcen.2004.02.003
Christensen LL, 2015, ECOL EVOL, V5, P5096, DOI 10.1002/ece3.1771
Clanton TL, 2007, J APPL PHYSIOL, V102, P2379, DOI 10.1152/japplphysiol.01298.2006
Collin A, 2005, DOMEST ANIM ENDOCRIN, V29, P78, DOI 10.1016/j.domaniend.2005.02.007
Corsolini S, 2001, POLAR BIOL, V24, P365
Criscuolo F, 2005, P ROY SOC B-BIOL SCI, V272, P803, DOI 10.1098/rspb.2004.3044
Culik BM, 1996, J EXP BIOL, V199, P973
D'Autreaux B, 2007, NAT REV MOL CELL BIO, V8, P813, DOI 10.1038/nrm2256
Davies KJA, 2000, IUBMB LIFE, V50, P279, DOI 10.1080/15216540051081010
Degletagne C, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-344
DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915, DOI 10.1146/annurev.bi.63.070194.004411
Donmez G, 2010, AGING CELL, V9, P285, DOI 10.1111/j.1474-9726.2010.00548.x
Froget G, 2004, J EXP BIOL, V207, P3917, DOI 10.1242/jeb.01232
Handrich Y, 1997, NATURE, V388, P64, DOI 10.1038/40392
He HQ, 2009, MOL IMMUNOL, V46, P2218, DOI 10.1016/j.molimm.2009.04.020
Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006
Jarmuszkiewicz W, 2015, FREE RADICAL BIO MED, V83, P12, DOI 10.1016/j.freeradbiomed.2015.02.012
Jenni-Eiermann S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097650
Kalmar B, 2009, ADV DRUG DELIVER REV, V61, P310, DOI 10.1016/j.addr.2009.02.003
Kultz D, 2005, ANNU REV PHYSIOL, V67, P225, DOI 10.1146/annurev.physiol.67.040403.103635
Mujahid A, 2007, FEBS LETT, V581, P3461, DOI 10.1016/j.febslet.2007.06.051
Pamplona R, 2011, AM J PHYSIOL-REG I, V301, pR843, DOI 10.1152/ajpregu.00034.2011
Raclot T, 1998, MAR BIOL, V132, P523, DOI 10.1007/s002270050418
Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029
Rey B., DATA BRIEF UNPUB
Rey B, 2008, AM J PHYSIOL-REG I, V295, pR92, DOI 10.1152/ajpregu.00271.2007
Rey B, 2015, COMP BIOCHEM PHYS A, V183, P72, DOI 10.1016/j.cbpa.2015.01.012
Rey B, 2014, J EXP ZOOL PART A, V321, P415, DOI 10.1002/jez.1872
Rey B, 2013, J COMP PHYSIOL B, V183, P135, DOI 10.1007/s00360-012-0692-5
Rey Benjamin, 2010, BMC Physiology, V10, P5, DOI 10.1186/1472-6793-10-5
Rey B, 2010, J COMP PHYSIOL B, V180, P239, DOI 10.1007/s00360-009-0409-6
Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624
Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow
Smyth GK, 2004, STAT APPL GENET MOL, V3, DOI [DOI 10.2202/1544-6115.1027, 10.2202/1544-6115.1027]
St-Pierre J, 2002, J BIOL CHEM, V277, P44784, DOI 10.1074/jbc.M207217200
Stockard TK, 2005, J EXP BIOL, V208, P2973, DOI 10.1242/jeb.01687
Talbot DA, 2004, J PHYSIOL-LONDON, V558, P123, DOI 10.1113/jphysiol.2004.063768
Talbot DA, 2004, FEBS LETT, V556, P111, DOI 10.1016/S0014-5793(03)01386-3
Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009
Tappel A L, 1978, Methods Enzymol, V52, P506
Teulier L, 2016, J COMP PHYSIOL B, V186, P639, DOI 10.1007/s00360-016-0975-3
Teulier L, 2012, P ROY SOC B-BIOL SCI, V279, P2464, DOI 10.1098/rspb.2011.2664
Thorson Philip H., 1994, P271
Vaisman N, 2008, AM J CLIN NUTR, V87, P1170, DOI 10.1093/ajcn/87.5.1170
van Dam RP, 2002, J EXP BIOL, V205, P3769
Vazquez-Medina JP, 2012, J COMP PHYSIOL B, V182, P741, DOI 10.1007/s00360-012-0652-0
Vazquez-Medina JP, 2006, COMP BIOCHEM PHYS C, V142, P198, DOI 10.1016/j.cbpc.2005.09.004
Wallace DC, 2005, ANNU REV GENET, V39, P359, DOI 10.1146/annurev.genet.39.110304.095751
Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011
Zenteno-Savin T, 2010, COMP BIOCHEM PHYS C, V152, P18, DOI 10.1016/j.cbpc.2010.02.007
Zhu PC, 2011, CANCER CELL, V19, P401, DOI 10.1016/j.ccr.2011.01.018
NR 57
TC 13
Z9 13
U1 0
U2 19
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0891-5849
EI 1873-4596
J9 FREE RADICAL BIO MED
JI Free Radic. Biol. Med.
PD AUG
PY 2016
VL 97
BP 577
EP 587
DI 10.1016/j.freeradbiomed.2016.07.015
PG 11
WC Biochemistry & Molecular Biology; Endocrinology & Metabolism
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Endocrinology & Metabolism
GA DU0VZ
UT WOS:000381924100052
PM 27449544
DA 2023-03-13
ER
PT J
AU Wang, JY
Tan, LJ
Ni, ZQ
Zhang, N
Li, Q
Wang, JT
AF Wang, Jiayin
Tan, Liju
Ni, Ziqi
Zhang, Na
Li, Qi
Wang, Jiangtao
TI Is hydrodynamic diameter the decisive factor?-Comparison of the toxic
mechanism of nSiO2 and mPS on marine microalgae Heterosigma akashiwo
SO AQUATIC TOXICOLOGY
LA English
DT Article
DE Micro -; nano -particles; Microalgae; Heterosigma akashiwo;
Photosynthetic systems; Oxidative damage; Toxic mechanism
ID OXIDE NANOPARTICLES; FRESH-WATER; CHLAMYDOMONAS-REINHARDTII; TIO2
NANOPARTICLES; GROWTH-INHIBITION; OXIDATIVE STRESS; SILICA; SIO2; ZNO;
CYTOTOXICITY
AB To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Heterosigma akashiwo, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 1.5, 2, 5, 10 and 30 mg L-1) and mPS (1, 2, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. It was found that the hydrodynamic diameter of the particles seems to be one of the more important factors to influence the algae. nSiO2 and mPS with similar hydrodynamic diameters have the similar toxic mechanism on H. akashiwo, and the effects were dose-and time-dependent. High concentrations of micro-/nano-particles (MNPs) could inhibit the growth of algal cells, however, low concentrations of MNPs did not restrict or even promoted the growth of algae, known as "Hormesis" phenomenon. The 96 h-EC20 values of nSiO2 and mPS on H. akashiwo were 2.69 and 10.07 mg L-1, respectively, and chlorophyll fluorescence pa-rameters indicated that the microalgal photosynthetic system were inhibited. The hydrophilic surface of nSiO2 increased the likelihood of nSiO2 binding to the hydrophilic functional group of microalgae, which may account for the slightly stronger toxic effect of nSiO2 than mPS. The algae continued to produce reactive oxygen species (ROS) under stress conditions. Total protein (TP) levels reduced, and superoxide dismutase (SOD) and catalase (CAT) levels increased to maintain ROS levels in the cells. The decrease in adenosine triphosphate (ATPase) indicated an impact on cellular energy metabolism. Cell membrane damage, cytoplasm and organelle efflux under stress were confirmed by scanning and transmission electron microscopy (SEM and TEM) images. This study contributes to the understanding of the size effect of MNPs on the growth of marine microalgae.
C1 [Wang, Jiayin; Tan, Liju; Ni, Ziqi; Zhang, Na; Li, Qi; Wang, Jiangtao] Ocean Univ China, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Peoples R China.
C3 Ocean University of China
RP Wang, JT (corresponding author), Ocean Univ China, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Peoples R China.
EM jtwang@ouc.edu.cn
FU National Natural Science Foundation of China; Key Technologies Research
and Development Program; Natural Science Foundation of Shandong
Province; [41876078]; [2019YFC1407802]; [ZR2018MD016]
FX The study was financially supported by the National Natural Science
Foundation of China [grant number 41876078] ; Key Technologies Research
and Development Program [grant number 2019YFC1407802] ; Natural Science
Foundation of Shandong Province [grant number ZR2018MD016] .
CR Adams LK, 2006, WATER SCI TECHNOL, V54, P327, DOI 10.2166/wst.2006.891
Adams LK, 2006, WATER RES, V40, P3527, DOI 10.1016/j.watres.2006.08.004
Ahamed A, 2021, J HAZARD MATER, V404, DOI 10.1016/j.jhazmat.2020.124107
Blasco J, 2015, MAR ENVIRON RES, V111, P1, DOI 10.1016/j.marenvres.2015.10.001
Book F, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150893
Brunner TJ, 2006, ENVIRON SCI TECHNOL, V40, P4374, DOI 10.1021/es052069i
Chen PY, 2012, ENVIRON SCI TECHNOL, V46, P12178, DOI 10.1021/es303303g
Chen YX, 2020, J HAZARD MATER, V399, DOI 10.1016/j.jhazmat.2020.123092
Chtistophe M, 2006, CURR PHARM DESIGN, V12, P739, DOI 10.2174/138161206775474242
Deng CN, 2014, BIOL TRACE ELEM RES, V160, P268, DOI 10.1007/s12011-014-0039-z
Deniel M, 2019, AQUAT TOXICOL, V217, DOI 10.1016/j.aquatox.2019.105311
Du XY, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.118027
Eriksen M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111913
Fu DD, 2019, AQUAT TOXICOL, V216, DOI 10.1016/j.aquatox.2019.105319
Fujiwara K, 2008, J ENVIRON SCI HEAL A, V43, P1167, DOI 10.1080/10934520802171675
Gong N, 2011, CHEMOSPHERE, V83, P510, DOI 10.1016/j.chemosphere.2010.12.059
Gunasekaran D, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104250
Hazeem LJ, 2020, MAR POLLUT BULL, V156, DOI 10.1016/j.marpolbul.2020.111278
Hazeem LJ, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9070914
Hong Y, 2009, AQUAT TOXICOL, V91, P262, DOI 10.1016/j.aquatox.2008.11.014
Huang WQ, 2021, ENVIRON POLLUT, V287, DOI 10.1016/j.envpol.2021.117626
Jambeck JR, 2015, SCIENCE, V347, P768, DOI 10.1126/science.1260352
Jiang ZY, 2014, BRAZ ARCH BIOL TECHN, V57, P595, DOI [10.1590/S1516-8913201401304, 10.1590/S1982-88372014000100018]
Klaine SJ, 2008, ENVIRON TOXICOL CHEM, V27, P1825, DOI 10.1897/08-090.1
Lee SH, 2020, J HAZARD MATER, V389, DOI 10.1016/j.jhazmat.2020.122149
Li CH, 2021, CHEMOSPHERE, V274, DOI 10.1016/j.chemosphere.2021.129771
Li FM, 2015, AQUAT TOXICOL, V158, P1, DOI 10.1016/j.aquatox.2014.10.014
Li SX, 2020, SCI TOTAL ENVIRON, V714, DOI 10.1016/j.scitotenv.2020.136767
Li YQ, 2017, CHEM RES CHINESE U, V33, P107, DOI 10.1007/s40242-017-6246-3
Liu YH, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8020095
Liu ZQ, 2022, CHEMOSPHERE, V291, DOI 10.1016/j.chemosphere.2021.132941
Long M, 2017, ENVIRON POLLUT, V228, P454, DOI 10.1016/j.envpol.2017.05.047
Manzo S, 2015, ENVIRON SCI POLLUT R, V22, P15941, DOI 10.1007/s11356-015-4790-2
Maul J., 2007, ULLMANNS ENCY IND CH, V29, P475, DOI [10.1002/14356007.a21_615.pub2, DOI 10.1002/14356007.A21_615.PUB2]
Miao LZ, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113300
Parsai T, 2022, ENVIRON POLLUT, V308, DOI 10.1016/j.envpol.2022.119626
Pereira MM, 2014, J NANOBIOTECHNOL, V12, DOI 10.1186/1477-3155-12-15
Pikula K, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23020990
Pikula K, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10030485
Salata OV, 2004, J Nanobiotechnology, V2, P3, DOI 10.1186/1477-3155-2-3
Samei M, 2019, ENVIRON SCI POLLUT R, V26, P2409, DOI 10.1007/s11356-018-3787-z
Sendra M, 2017, CHEMOSPHERE, V179, P279, DOI 10.1016/j.chemosphere.2017.03.123
Sendra M, 2019, ENVIRON POLLUT, V249, P610, DOI 10.1016/j.envpol.2019.03.047
Sharma P, 2020, NANOIMPACT, V17, DOI 10.1016/j.impact.2019.100200
Song CF, 2020, SCI TOTAL ENVIRON, V723, DOI 10.1016/j.scitotenv.2020.138146
Sousa CA, 2019, AQUAT TOXICOL, V214, DOI 10.1016/j.aquatox.2019.105265
Taylor NS, 2016, NANOTOXICOLOGY, V10, P32, DOI 10.3109/17435390.2014.1002868
Thiagarajan V, 2021, AQUAT TOXICOL, V232, DOI 10.1016/j.aquatox.2021.105747
Thompson RC, 2009, PHILOS T R SOC B, V364, P2153, DOI 10.1098/rstb.2009.0053
Ugya AY, 2020, CHEM ECOL, V36, P174, DOI 10.1080/02757540.2019.1688308
Van Hoecke K, 2008, ENVIRON TOXICOL CHEM, V27, P1948, DOI 10.1897/07-634.1
Wang F, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9081534
Wang JY, 2022, ENVIRON SCI-NANO, V9, P3094, DOI 10.1039/d2en00246a
Wang JY, 2011, TOXICOL IN VITRO, V25, P242, DOI 10.1016/j.tiv.2010.11.010
Wang SY, 2020, MAR POLLUT BULL, V158, DOI 10.1016/j.marpolbul.2020.111403
Wang SC, 2021, SCI TOTAL ENVIRON, V797, DOI 10.1016/j.scitotenv.2021.149180
Wayman C, 2021, ENVIRON SCI-PROC IMP, V23, DOI 10.1039/d0em00446d
Xia B, 2015, SCI TOTAL ENVIRON, V508, P525, DOI 10.1016/j.scitotenv.2014.11.066
Xu J, 2011, ECOTOXICOLOGY, V20, P73, DOI 10.1007/s10646-010-0557-1
Yan Z, 2021, J WATER PROCESS ENG, V43, DOI 10.1016/j.jwpe.2021.102291
Yang WF, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110484
Yang WF, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117413
Zhang C, 2016, AQUAT TOXICOL, V178, P158, DOI 10.1016/j.aquatox.2016.07.020
Zhang Q, 2018, ENVIRON POLLUT, V243, P1106, DOI 10.1016/j.envpol.2018.09.073
Zhao T, 2020, MAR POLLUT BULL, V154, DOI 10.1016/j.marpolbul.2020.111074
NR 65
TC 1
Z9 1
U1 21
U2 21
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0166-445X
EI 1879-1514
J9 AQUAT TOXICOL
JI Aquat. Toxicol.
PD NOV
PY 2022
VL 252
AR 106309
DI 10.1016/j.aquatox.2022.106309
PG 12
WC Marine & Freshwater Biology; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Marine & Freshwater Biology; Toxicology
GA 5A0UW
UT WOS:000862612600001
PM 36156355
DA 2023-03-13
ER
PT J
AU Glowacka, A
Klikocka, H
Onuch, J
AF Glowacka, Aleksandra
Klikocka, Hanna
Onuch, Joanna
TI CONTENT OF ZINC AND IRON IN COMMON BEAN SEEDS (PHASEOLUS VULGARIS L.) IN
DIFFERENT WEED CONTROL METHODS
SO JOURNAL OF ELEMENTOLOGY
LA English
DT Article
DE herbicides; hormesis; micronutrients; bentazon; linuron; chlomazone;
metribuzin
ID CALCIUM CONTENT; ZN; HERBICIDES; MAGNESIUM; QUALITY; PLANTS; CU
AB A field experiment was conducted in 2010-2012 on a private farm located in the village of Frankaraionka in the administrative district (powiat) of Zamosc, on brown soil with slightly acidic pH, and the average abundance of zinc and iron. The experiment was set up in a random split-plot design with four replications, with seven methods for controlling weed infestation: 1) no weeding control, 2) hand weeding control, 3) linuron (Afalon dyspersyjny 450 SC), 4) linuron + metribuzin (Afalon dyspersyjny 450 SC + Mistral 70 WG), 5) linuron + chlomazone (Harrier 295 ZC), 6) linuron + chlomazone + metribuzin (Harrier 295 ZC +Mistral 70 WG), 7) bentazon (Basagran 480 SL twice). The objective of the study was to determine the effect of weeding control methods on the content of iron and zinc in the seeds of cv. Jag Karlowy common bean (Phaseolus vulgaris L.).
The highest seed yield, on average 29.39 dt ha(-1), was obtained on the plots where weeds were controlled by the application of the herbicides Harrier 295 ZC + Mistral 20 WG just after sowing. The lowest seed yield was harvested on unweeded plots -6.77 dt ha(-1) on average.
Statistical analysis showed a significant effect of the weed control methods and the weather conditions in growing seasons on the content of iron and zinc in bean seeds. The lowest amount of zinc, an average of 36.11 mg kg(-1), was found in beans from unweeded plots. The use of the herbicides Afalon dyspersyjny 450 SC + Mistral 70 WG, Harrier 295 ZC and Harrier 295 ZC + Mistral 70 WG significantly increased the zinc content compared to the un weeded control and manual weeding.
The highest iron concentration, on average 75.12 mg kg(-1), was observed in seeds from unweeded plots. Significantly less iron accumulated in beans from plots weeded manually and by application of the herbicides Harrier 295 ZC and Harrier 295 ZC + Mistral 70 WG.
C1 [Glowacka, Aleksandra; Klikocka, Hanna] Univ Life Sci Lublin, Fac Agrobioengn, PL-20950 Lublin, Poland.
[Onuch, Joanna] Univ Life Sci Lublin, Dept Management & Environm Protect, PL-20950 Lublin, Poland.
C3 University of Life Sciences in Lublin; University of Life Sciences in
Lublin
RP Glowacka, A (corresponding author), Univ Life Sci Lublin, Fac Agrobioengn, Akad 13, PL-20950 Lublin, Poland.
EM aleksandra.glowacka@up.lublin.pl
RI Klikocka, Hanna/T-5290-2018; Głowacka, Aleksandra/U-2374-2018
OI Klikocka, Hanna/0000-0003-2472-9720; Głowacka,
Aleksandra/0000-0003-2835-7426
CR Adomas B., 2007, ZESZ PROB POST NAUK, V522, P87
Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747
Beebe Stephen, 2000, Food and Nutrition Bulletin, V21, P387
Blair M, 2009, MOL BREEDING, V23, P197, DOI 10.1007/s11032-008-9225-z
Bowszys T, 2009, J ELEMENTOL, V14, P23, DOI 10.5601/jelem.2009.14.1.03
Cakmak I, 2002, PLANT SOIL, V247, P3, DOI 10.1023/A:1021194511492
Carvalho LMJ, 2012, FOOD NUTR RES, V56, DOI 10.3402/fnr.v56i0.15618
Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen
DEVINE MD, 1990, WEED SCI, V38, P299, DOI 10.1017/S0043174500056563
Firatligil-Durmus E, 2010, J FOOD ENG, V99, P445, DOI 10.1016/j.jfoodeng.2009.08.005
Frossard E, 2000, J SCI FOOD AGR, V80, P861, DOI [10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P, 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P]
GEIGER DR, 1990, WEED SCI, V38, P324, DOI 10.1017/S0043174500056599
GLOWACKA A, 2010, ROCZ NAUK, V12, P18
Glowacka A, 2013, J ELEMENTOL, V18, P211, DOI 10.5601/jelem.2013.18.2.02
Graham PH, 1997, FIELD CROP RES, V53, P131, DOI 10.1016/S0378-4290(97)00112-3
Gugala M, 2010, J ELEMENTOL, V15, P269, DOI 10.5601/jelem.2010.15.2.269-280
Hekmat S, 2008, CROP PROT, V27, P1491, DOI 10.1016/j.cropro.2008.07.008
Iqbal A, 2006, FOOD CHEM, V97, P331, DOI 10.1016/j.foodchem.2005.05.011
Kahlon TS, 2005, FOOD CHEM, V90, P241, DOI 10.1016/j.foodchem.2004.03.046
Klikocka H, 2013, ACTA SCI POL-HORTORU, V12, P41
Klikocka H, 2011, ACTA SCI POL-HORTORU, V10, P137
Korus J., 2005, ZYWN-NAUK TECHNOL JA, V4, P81
Labuda H, 2010, ACTA SCI POL-HORTORU, V9, P117
Lin LZ, 2008, FOOD CHEM, V107, P399, DOI 10.1016/j.foodchem.2007.08.038
Meyer MRM, 2013, FOOD CHEM, V136, P87, DOI 10.1016/j.foodchem.2012.07.105
Moraghan JT, 2002, PLANT SOIL, V246, P175, DOI 10.1023/A:1020616026728
Nchimbi-Msolla Susan, 2010, Asian Journal of Plant Sciences, V9, P455
Podleny J., 2005, ACTA AGROPHYS, V6, P213
Santalla M, 2001, EUPHYTICA, V121, P45, DOI 10.1023/A:1012080303872
Sikkema PH, 2008, CROP PROT, V27, P124, DOI 10.1016/j.cropro.2007.04.017
Soltani N, 2006, CROP PROT, V25, P476, DOI 10.1016/j.cropro.2005.08.002
Stepniak-Solyga P., 2003, ANN UMCS EE, V76, P175
Tryphone GM, 2010, AFR J AGR RES, V5, P738
VANHEEMST HDJ, 1985, AGR SYST, V18, P81, DOI 10.1016/0308-521X(85)90047-2
Whittaker P, 1998, AM J CLIN NUTR, V68, p442S, DOI 10.1093/ajcn/68.2.442S
NR 35
TC 6
Z9 6
U1 0
U2 6
PU POLISH SOCIETY MAGNESIUM RESEARCH
PI OLSZYTN
PA UNIV WARMIA-MAZURY OLSZTYN, PLAC LODZKI 2, OLSZYTN, PLS 10-957, POLAND
SN 1644-2296
J9 J ELEMENTOL
JI J. Elem.
PD JUN
PY 2015
VL 20
IS 2
BP 293
EP 303
PG 11
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA CL2AD
UT WOS:000356745100004
DA 2023-03-13
ER
PT J
AU Wu, ZX
Liu, QL
Zhong, YD
Xiao, PJ
Yu, FX
AF Wu, Zhaoxiang
Liu, Qiaoli
Zhong, Yongda
Xiao, Pingjiang
Yu, Faxin
TI Additions of Liriodendron sino-americanum Leaf Powder Change Soil
Quality, Improve Sarcandra glabra Growth, and Alter Microbial Community
SO JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION
LA English
DT Article
DE L; sino-americanum leaf litter; Microbial community; Medicinal plant;
Interspecific interaction; Plant growth; Soil properties
ID CHLOROPHYLL-A; L.; PHOTOSYNTHESIS; EXTRACTION; FUMIGATION; PLANTLETS;
ALKALOIDS; NITROGEN; LEAVES; FUNGI
AB The interspecific relationship of plants plays a significant role in the agroforestry ecosystem. Chemical compounds release from litter exudates and decomposition was an important form of plant interspecific interaction and induced a series of biological reaction in adjacent plants. The objectives of the present study are to examine the effects of Liriodendron sino-americanum leaf powder on soil quality, plant growth and second metabolites accumulation, and rhizosphere microbial community, taking Sarcandra glabra (Thunb.) Nakai saplings as the host plant. A pot experiment was carried out under greenhouse conditions. The experiment comprised three treatments (CK (no addition), C75 (7.5% dosage addition), and C100 (10% dosage addition)) laid down in a completely randomized design with three replicates. Plant growth, second metabolites, and chlorophyll content were evaluated. Soil properties were also studied after plants were harvested, and the rhizosphere microbial community was determined via high-throughput sequencing. The addition of L. sino-americanum leaf powder increased the soil quality significantly, including the index of pH, soil organic carbon, and available nutrients of nitrogen, phosphorus, and potassium. With the dosage increase of L. sino-americanum leaf powder, dry weight of plant shoot and root, chlorophyll b concentration, and plant height increased continuously; however, chlorophyll a and rosmarinic acid increased firstly and then decreased. Moreover, the structure and composition of the rhizosphere microbial community were affected by L. sino-americanum leaf powder, and the effects on microbial diversity presented as a hormesis effect in dose. Statistical analyses further revealed that rhizospheric microbial community composition in relative abundance was highly related to the organic matter promoted by the addition of L. sino-americanum leaf powder. L. sino-americanum leaf plays positive effects on the cultivation of Sarcandra glabra under the forest, through litter exudates and decomposition, suggesting that cultivativation of Sarcandra glabra under L. sino-americanum plantation will achieve great economic, ecological, and social benefits.
C1 [Wu, Zhaoxiang; Liu, Qiaoli; Zhong, Yongda; Yu, Faxin] Jiangxi Acad Sci, Inst Biol Resources, Nanchang 330096, Jiangxi, Peoples R China.
[Wu, Zhaoxiang; Liu, Qiaoli; Zhong, Yongda; Yu, Faxin] Key Lab Hort Plant Genet & Improvement Jiangxi Pr, Nanchang 330096, Jiangxi, Peoples R China.
[Xiao, Pingjiang] Wugongshan Forestry Ctr, Jian 343212, Jiangxi, Peoples R China.
RP Yu, FX (corresponding author), Jiangxi Acad Sci, Inst Biol Resources, Nanchang 330096, Jiangxi, Peoples R China.; Yu, FX (corresponding author), Key Lab Hort Plant Genet & Improvement Jiangxi Pr, Nanchang 330096, Jiangxi, Peoples R China.
EM yufaxin@jxas.ac.cn
FU National Natural Science Foundation of China [31960230]; Key Research &
Development projects in Jiangxi Province [20192ACB60014]
FX The study was financially supported by the National Natural Science
Foundation of China (31960230) and Key Research & Development projects
in Jiangxi Province (20192ACB60014).
CR Abarenkov K, 2010, NEW PHYTOL, V186, P281, DOI 10.1111/j.1469-8137.2009.03160.x
Ali A, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.697815
Bahram M, 2018, NATURE, V560, P233, DOI 10.1038/s41586-018-0386-6
Bergmann GT, 2011, SOIL BIOL BIOCHEM, V43, P1450, DOI 10.1016/j.soilbio.2011.03.012
BROOKES PC, 1985, SOIL BIOL BIOCHEM, V17, P837, DOI 10.1016/0038-0717(85)90144-0
Cao HJ, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/236539
Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303
Chinese Pharmacopoeia Commission [CPC], 2020, PHARMACOPOEIA PEOPLE
CORNFIELD AH, 1960, NATURE, V187, P260, DOI 10.1038/187260a0
Graziose R, 2011, J ETHNOPHARMACOL, V133, P26, DOI 10.1016/j.jep.2010.08.059
Guo Lan-ping, 2004, Zhongguo Zhongyao Zazhi, V29, P615
Gyaneshwar P, 2002, PLANT SOIL, V245, P83, DOI 10.1023/A:1020663916259
Hoft M, 1996, OECOLOGIA, V107, P160, DOI 10.1007/BF00327899
Hua B, 2021, BIOTECHNOL LETT, V43, P655, DOI 10.1007/s10529-020-03046-1
Huang WW, 2020, GLOB ECOL CONSERV, V21, DOI 10.1016/j.gecco.2019.e00872
HUFFORD CD, 1975, J PHARM SCI-US, V64, P789, DOI 10.1002/jps.2600640512
Inderjit, 2001, PERSPECT PLANT ECOL, V4, P3, DOI 10.1078/1433-8319-00011
Kapoor R, 2002, J SCI FOOD AGR, V82, P339, DOI 10.1002/jsfa.1039
Kapoor R, 2002, WORLD J MICROB BIOT, V18, P459, DOI 10.1023/A:1015522100497
KIEFER DA, 1989, LIMNOL OCEANOGR, V34, P868, DOI 10.4319/lo.1989.34.5.0868
Killingbeck KT, 1996, ECOLOGY, V77, P1716, DOI 10.2307/2265777
Li H, 2019, INT J BIOL MACROMOL, V123, P957, DOI 10.1016/j.ijbiomac.2018.11.103
Li SH., 2008, JIANGSU AGR SCI, V3, P113, DOI [10.15889/j.issn.1002-1302.2008.03.032, DOI 10.15889/J.ISSN.1002-1302.2008.03.032]
Li YB, 2019, SOIL BIOL BIOCHEM, V130, P33, DOI 10.1016/j.soilbio.2018.11.025
LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350
Liu JJ, 2016, BMC COMPLEM ALTERN M, V16, DOI 10.1186/s12906-016-1383-7
MAY FE, 1990, AUST J BOT, V38, P245, DOI 10.1071/BT9900245
Mushtaq MN, 2013, PLANT PHYSIOL BIOCH, V70, P374, DOI 10.1016/j.plaphy.2013.06.003
Nelson D. W., 1982, Methods of soil analysis. Part 2. Chemical and microbiological properties, P539
Nilsson RH, 2011, NEW PHYTOL, V191, P314, DOI 10.1111/j.1469-8137.2011.03755.x
PORRA RJ, 1989, BIOCHIM BIOPHYS ACTA, V975, P384, DOI 10.1016/S0005-2728(89)80347-0
Pouryousef M, 2015, CROP PROT, V69, P60, DOI 10.1016/j.cropro.2014.12.004
Pruesse E, 2007, NUCLEIC ACIDS RES, V35, P7188, DOI 10.1093/nar/gkm864
Qiu MH, 2012, BIOL FERT SOILS, V48, P807, DOI 10.1007/s00374-012-0675-4
Qu XinJing, 2018, Journal of Anhui Agricultural University, V45, P861
Rajala T, 2012, FEMS MICROBIOL ECOL, V81, P494, DOI 10.1111/j.1574-6941.2012.01376.x
SAEBO A, 1995, PLANT CELL TISS ORG, V41, P177, DOI 10.1007/BF00051588
Sowndhararajan K, 2017, SCI PHARM, V85, DOI 10.3390/scipharm85030033
Toussaint JP, 2007, MYCORRHIZA, V17, P291, DOI 10.1007/s00572-006-0104-3
van der Putten WH, 2013, J ECOL, V101, P265, DOI 10.1111/1365-2745.12054
Venugopalan A, 2015, BIOTECHNOL ADV, V33, P873, DOI 10.1016/j.biotechadv.2015.07.004
Wei SS, 2019, IND CROP PROD, V137, P367, DOI 10.1016/j.indcrop.2019.05.041
WU J, 1990, SOIL BIOL BIOCHEM, V22, P1167, DOI 10.1016/0038-0717(90)90046-3
Xie DJ, 2020, BMC PLANT BIOL, V20, DOI 10.1186/s12870-020-02685-w
Xu QL, 2013, J AGR FOOD CHEM, V61, P7309, DOI 10.1021/jf4017652
Xue Li, 2003, Yingyong Shengtai Xuebao, V14, P1820
Yang AH, 2016, SCI REP-UK, V6, DOI 10.1038/srep25632
Yang LL, 2020, PHYTOCHEMISTRY, V177, DOI 10.1016/j.phytochem.2020.112434
Zahir A, 2014, APPL BIOCHEM BIOTECH, V174, P693, DOI 10.1007/s12010-014-1098-5
Zhang FuYun, 2005, Journal of Yunnan Agricultural University, V20, P697
[张启云 Zhang Qiyun], 2013, [中药新药与临床药理, Traditional Chinese Drug Research and Clinical Plarmacology], V24, P294
Zhao YaQi, 2016, Journal of Nanjing Forestry University (Natural Sciences Edition), V40, P76
Zheng LP, 2016, PLANT GROWTH REGUL, V80, P93, DOI 10.1007/s10725-016-0162-2
Zhou H, 2013, FOOD CHEM, V138, P2390, DOI 10.1016/j.foodchem.2012.12.027
Zhu WY, 2016, SCI REP-UK, V6, DOI 10.1038/srep34290
Zou HT, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153214
NR 56
TC 0
Z9 0
U1 7
U2 7
PU SPRINGER INT PUBL AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0718-9508
EI 0718-9516
J9 J SOIL SCI PLANT NUT
JI J. Soil Sci. Plant Nutr.
PD DEC
PY 2022
VL 22
IS 4
BP 4983
EP 4995
DI 10.1007/s42729-022-00975-w
EA AUG 2022
PG 13
WC Plant Sciences; Environmental Sciences; Soil Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences; Environmental Sciences & Ecology; Agriculture
GA 8J9QT
UT WOS:000842719500001
DA 2023-03-13
ER
PT J
AU Acar, NV
Dursun, A
Aygun, D
Cila, HEG
Lay, I
Gulbakan, B
Ozgul, RK
AF Acar, Nese Vardar
Dursun, Ali
Aygun, Damla
Cila, H. Esra Gurses
Lay, Incilay
Gulbakan, Basri
Ozgul, R. Koksal
TI An investigation of different intracellular parameters for Inborn Errors
of Metabolism: Cellular stress, antioxidant response and autophagy
SO FREE RADICAL BIOLOGY AND MEDICINE
LA English
DT Article
DE Inborn errors of metabolism; Oxidative stress; Reductive stress; Nrf2;
Keap1; p62 pathway; Mitochondrial dysfunction; Autophagy
ID OXIDATIVE STRESS; THERAPEUTIC INTERVENTION; METHYLMALONIC ACIDURIA;
CARDIOMYOCYTE DEATH; REACTIVE OXYGEN; SMALL MOLECULES; IVA PATIENTS;
VITAGENES; HORMESIS; DISORDERS
AB Oxidative stress is associated with various disease pathologies including Inborn Errors of Metabolism (IEMs), among the most important causes of childhood morbidity and mortality. At least as much as oxidative stress in cells, reductive stress poses a danger to the disruption of cell homeostasis. p62/SQSTM1, protects cells from stress by activation of Nrf2/Keap1 and autophagy pathways. In this study, we tested the role of cellular stress, mitochondrial dysfunction and autophagy via Nrf2/Keap1/p62 pathway in the pathophysiology of three main groups of IEMs. Our results showed that antioxidant and oxidant capacity alone would not be sufficient to reflect the true clinical picture of these diseases. ATP, ROS and mitochondrial membrane potantial (MMP) measurements demonstrated increased cellular stress and bioenergetic imbalance in methylmalonic acidemia (MMA), indicating mild mitochondrial dysfunction. In isovaleric acidemia (IVA), no major change was detected in ATP, ROS and MMP values. Propionic acidemia (PA), mitochondrial diseases (MIT) and mucopolysaccharidosis IV (MPS IV) might point out mitohormesis to cope with chronic reductive stress. Induction of Nrf2/Keap1/p62 pathway and increased expression of HMOX1 were detected in all IEMs. LC3B-II and p62 expression results indicated an impaired autophagic flux in MIT and MPS IV and an induction of autophagic flux in MMA, PA and IVA, but also partial expression of Beclin1, enables autophagy activation, was detected in all IEMs. We conclude that individual diagnosis and treatments are of great importance in IEMs. In addition, we assume that the application of therapeutic antioxidant or preventive treatments without determining the cellular stress status in IEMs may disrupt the sensitive oxidant-antioxidant balance in the cell, leading to the potential to further disrupt the clinical picture, especially in patients with reductive stress. To the best of our knowledge, this is the first study to simultaneously relate IEMs with cellular stress, mitochondrial dysfunction, and autophagy.
C1 [Acar, Nese Vardar; Dursun, Ali; Aygun, Damla; Cila, H. Esra Gurses; Gulbakan, Basri; Ozgul, R. Koksal] Hacettepe Univ, Fac Med, Inst Child Hlth, Dept Pediat Metab, Ankara, Turkey.
[Lay, Incilay] Hacettepe Univ, Fac Med, Dept Med Biochem, Ankara, Turkey.
C3 Hacettepe University; Hacettepe University
RP Ozgul, RK (corresponding author), Hacettepe Univ, Fac Med, Inst Child Hlth, Dept Pediat Metab, Ankara, Turkey.
EM rkozgul@hacettepe.edu.tr
FU Hacettepe University Scientific Research Unit [THD-2019-17639]
FX This study was supported by Hacettepe University Scientific Research
Unit (Project No: THD-2019-17639) for doctoral thesis.
CR Almeciga-Diaz CJ, 2019, J MED CHEM, V62, P6175, DOI 10.1021/acs.jmedchem.9b00428
Bellezza I., 2020, CELLULAR MOL LIFE SC, P1
Brasil S, 2015, CLIN GENET, V87, P576, DOI 10.1111/cge.12426
Calabrese V, 2014, J CELL COMMUN SIGNAL, V8, P369, DOI 10.1007/s12079-014-0253-7
Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002
Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007
Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074
Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250
Cammarata A, 2019, BIOMED ENG, P90
Carretero A, 2020, FREE RADICAL RES, V54, P173, DOI 10.1080/10715762.2020.1735632
Consoli V, 2021, BIOMOLECULES, V11, DOI 10.3390/biom11040589
Cornelius C, 2013, HORM MOL BIOL CLIN I, V16, P73, DOI 10.1515/hmbci-2013-0051
Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15
Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8
de Keyzer Y, 2009, PEDIATR RES, V66, P91, DOI 10.1203/PDR.0b013e3181a7c270
Dodson M, 2019, ANNU REV PHARMACOL, V59, P555, DOI 10.1146/annurev-pharmtox-010818-021856
Donida B, 2017, MOL GENET METAB REP, V11, P46, DOI 10.1016/j.ymgmr.2017.04.005
Donida B, 2015, BBA-MOL BASIS DIS, V1852, P1012, DOI 10.1016/j.bbadis.2015.02.004
Ebrahimi-Fakhari D, 2016, BRAIN, V139, P317, DOI 10.1093/brain/awv371
El-Hattab AW, 2015, CLIN PERINATOL, V42, P413, DOI 10.1016/j.clp.2015.02.010
Erel O, 2004, CLIN BIOCHEM, V37, P277, DOI 10.1016/j.clinbiochem.2003.11.015
Erel O, 2005, CLIN BIOCHEM, V38, P1103, DOI 10.1016/j.clinbiochem.2005.08.008
Esparza-Molto PB, 2017, CELL MOL LIFE SCI, V74, P2151, DOI 10.1007/s00018-017-2462-8
Ezgu F, 2016, ADV CLIN CHEM, V73, P195, DOI 10.1016/bs.acc.2015.12.001
Fang CC, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/8495160
Fernandes CG, 2011, CELL MOL NEUROBIOL, V31, P775, DOI 10.1007/s10571-011-9675-4
Gallego-Villar L, 2014, BIOCHEM BIOPH RES CO, V452, P457, DOI 10.1016/j.bbrc.2014.08.091
Gallego-Villar L, 2013, J INHERIT METAB DIS, V36, P731, DOI 10.1007/s10545-012-9545-3
Garcia-Aguilar A, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01322
Ghosh N, 2011, FREE RADICAL RES, V45, P888, DOI 10.3109/10715762.2011.574290
Haberle J, 2018, ORPHANET J RARE DIS, V13, DOI 10.1186/s13023-018-0963-7
Ialongo C, 2017, CLIN BIOCHEM, V50, P356, DOI 10.1016/j.clinbiochem.2016.11.037
Kim JH, 2019, KIDNEY RES CLIN PRAC, V38, P318, DOI 10.23876/j.krcp.18.0152
Knerr I, 2012, J INHERIT METAB DIS, V35, P29, DOI 10.1007/s10545-010-9269-1
Kongara S, 2012, FRONT ONCOL, V2, DOI 10.3389/fonc.2012.00171
Lee J, 2012, BIOCHEM J, V441, P523, DOI 10.1042/BJ20111451
Li LL, 2015, CELL MOL NEUROBIOL, V35, P615, DOI 10.1007/s10571-015-0166-x
Luciani A, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-14729-8
Lushchak VI, 2014, CHEM-BIOL INTERACT, V224, P164, DOI 10.1016/j.cbi.2014.10.016
Lushchak Volodymyr I, 2012, J Amino Acids, V2012, P736837, DOI 10.1155/2012/736837
Ma XC, 2015, MOL CELL BIOL, V35, P956, DOI 10.1128/MCB.01091-14
Ma XC, 2012, CIRCULATION, V125, P3170, DOI 10.1161/CIRCULATIONAHA.111.041814
Mancuso M, 2009, CURR MOL MED, V9, P1095, DOI 10.2174/156652409789839099
Matalonga L, 2017, J INHERIT METAB DIS, V40, P177, DOI 10.1007/s10545-016-0005-3
Mc Guire PJ, 2009, MOL GENET METAB, V98, P173, DOI 10.1016/j.ymgme.2009.06.007
Melo DR, 2011, J BIOENERG BIOMEMBR, V43, P39, DOI 10.1007/s10863-011-9330-2
Olsen RKJ, 2015, J INHERIT METAB DIS, V38, P703, DOI 10.1007/s10545-015-9861-5
Pall Martin L., 2015, Shengli Xuebao, V67, P1
Paz MV, 2016, EXPERT OPIN THER TAR, V20, P487, DOI 10.1517/14728222.2016.1101068
Peluso Ilaria, 2016, Patholog Res Int, V2016, P5480267, DOI 10.1155/2016/5480267
Perez-Torres I, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102098
Peris E, 2019, J BIOL CHEM, V294, P2340, DOI 10.1074/jbc.RA118.004253
Pesta D, 2017, CURR DIABETES REP, V17, DOI 10.1007/s11892-017-0867-2
Ribas GS, 2012, CELL MOL NEUROBIOL, V32, P77, DOI 10.1007/s10571-011-9736-8
Richard E, 2007, J PATHOL, V213, P453, DOI 10.1002/path.2248
Richard E, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/1246069
Ruppert T, 2015, HUM MOL GENET, V24, P7049, DOI 10.1093/hmg/ddv405
Sanchez-Martin P, 2018, J CELL SCI, V131, DOI 10.1242/jcs.222836
Saudubray J., 2016, INBORN METABOLIC DIS, V6th ed.
Saudubray JM, 2018, PEDIATR CLIN N AM, V65, P179, DOI 10.1016/j.pcl.2017.11.002
Scherz-Shouval R, 2011, TRENDS BIOCHEM SCI, V36, P30, DOI 10.1016/j.tibs.2010.07.007
Schumann A, 2017, NOVEL INSIGHTS PATHO, P128
Scialo F, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00428
Shokolenko Inna N, 2014, World J Exp Med, V4, P46
Singh F, 2015, BBA-MOL CELL RES, V1853, P1574, DOI 10.1016/j.bbamcr.2015.03.006
Soiferman D, 2014, BIOCHIMIE, V100, P184, DOI 10.1016/j.biochi.2013.08.024
Stepien KM, 2017, J CLIN MED, V6, DOI 10.3390/jcm6070071
Suliman HB, 2017, JCI INSIGHT, V2, DOI 10.1172/jci.insight.89676
Surai PF, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8070235
Tebani A, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17071167
Teinert J, 2020, J INHERIT METAB DIS, V43, P51, DOI 10.1002/jimd.12084
Tonelli C, 2018, ANTIOXID REDOX SIGN, V29, P1727, DOI 10.1089/ars.2017.7342
Vasconcellos LR, 2018, CURR PHARM DESIGN, V24, P2311, DOI 10.2174/1381612824666180727100909
Victor K.A, 2016, EVALUATION MITOCHOND
Wang XT, 2019, FREE RADICAL BIO MED, V136, P87, DOI 10.1016/j.freeradbiomed.2018.12.039
Ward C, 2016, BBA-MOL CELL BIOL L, V1861, P269, DOI 10.1016/j.bbalip.2016.01.006
Wible Daric J., 2018, Current Opinion in Toxicology, V7, P28, DOI 10.1016/j.cotox.2017.10.006
Xiao WS, 2020, ANTIOXID REDOX SIGN, V32, P1330, DOI 10.1089/ars.2019.7803
Yurdakok M., 2014, YENIDOGANDA KALITSAL
NR 79
TC 2
Z9 2
U1 2
U2 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0891-5849
EI 1873-4596
J9 FREE RADICAL BIO MED
JI Free Radic. Biol. Med.
PD FEB 1
PY 2022
VL 179
BP 190
EP 199
DI 10.1016/j.freeradbiomed.2021.12.312
EA JAN 2022
PG 10
WC Biochemistry & Molecular Biology; Endocrinology & Metabolism
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Endocrinology & Metabolism
GA YW8BV
UT WOS:000753639100006
PM 34974126
DA 2023-03-13
ER
PT J
AU Ermakov, AM
Ermakova, ON
Afanasyeva, VA
Popov, AL
AF Ermakov, Artem M.
Ermakova, Olga N.
Afanasyeva, Vera A.
Popov, Anton L.
TI Dose-Dependent Effects of Cold Atmospheric Argon Plasma on the
Mesenchymal Stem and Osteosarcoma Cells In Vitro
SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
LA English
DT Article
DE cold atmospheric argon plasma; low-dose; normal and cancer cells; cells
proliferation; necrosis; apoptosis; gene expression; oxidative stress
ID PRESSURE PLASMA; NONTHERMAL PLASMA; HACAT KERATINOCYTES; OXIDATIVE
STRESS; DNA-DAMAGE; APOPTOSIS; JET; EXPRESSION; INDUCTION; MOLECULES
AB The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10-15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses. Using flow cytometry, we found that these effects are associated with cell cycle arrest and extended death of cancer cells by necrosis. Reactive oxygen species (ROS) formation was detected in both types of cells after 15 min of CAAP treatment. Evaluation of the genes' transcriptional activity showed that exposure to low doses of CAAP activates the expression of genes responsible for proliferation, DNA replication, and transition between phases of the cell cycle in MSCs. There was a decrease in the transcriptional activity of most of the studied genes in MNNG/HOS osteosarcoma cancer cells. However, increased transcription of osteogenic differentiation genes was observed in normal and cancer cells. The selective effects of low and high doses of CAAP treatment on cancer and normal cells that we found can be considered in terms of hormesis. The low dose of cold argon plasma irradiation stimulated the vital processes in stem cells due to the slight generation of reactive oxygen species. In cancer cells, the same doses evidently lead to the formation of oxidative stress, which was accompanied by a proliferation inhibition and cell death. The differences in the cancer and normal cells' responses are probably due to different sensitivity to exogenous oxidative stress. Such a selective effect of CAAP action can be used in the combined therapy of oncological diseases such as skin neoplasms, or for the removal of remaining cancer cells after surgical removal of a tumor.
C1 [Ermakov, Artem M.; Ermakova, Olga N.; Afanasyeva, Vera A.; Popov, Anton L.] Russian Acad Sci, Inst Theoret & Expt Biophys, Pushchino 142290, Russia.
[Popov, Anton L.] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia.
C3 Russian Academy of Sciences; Pushchino Scientific Center for Biological
Research (PSCBI) of the Russian Academy of Sciences; Institute of
Theoretical & Experimental Biophysics; Russian Academy of Sciences;
Kurnakov Institute of General & Inorganic Chemistry of the Russian
Academy of Sciences
RP Ermakov, AM (corresponding author), Russian Acad Sci, Inst Theoret & Expt Biophys, Pushchino 142290, Russia.
EM ao_ermakovy@rambler.ru; beoluchi@yandex.ru; va_vera_afanaseva@mail.ru;
antonpopovleonid@gmail.com
RI Artem, Ermakov/A-3409-2014; Anton, Popov/N-5245-2015; Afanasyeva,
Vera/ABH-1611-2021
OI Artem, Ermakov/0000-0001-7810-0675; Anton, Popov/0000-0003-2643-4846;
FU Russian Foundation for Basic Research [20-33-70236]; Russian Federation
[IE-138.2020.3]
FX The work was funded by Russian Foundation for Basic Research, project
number 20-33-70236. A.L.P. is grateful to the Grant from the President
of the Russian Federation, project No. IE-138.2020.3.
CR Azzariti A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40637-z
Babaeva Natalia Yu, 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), DOI 10.1109/PLASMA.2013.6633301
Bekeschus S, 2016, CLIN PLASMA MED, V4, P19, DOI 10.1016/j.cpme.2016.01.001
Belousov VV, 2006, NAT METHODS, V3, P281, DOI 10.1038/NMETH866
Bernhardt T, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/3873928
Blackert S, 2013, J DERMATOL SCI, V70, P173, DOI 10.1016/j.jdermsci.2013.01.012
Brany D, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21082932
Chang JW, 2014, ARCH BIOCHEM BIOPHYS, V545, P133, DOI 10.1016/j.abb.2014.01.022
Choi JH, 2014, ARCH DERMATOL RES, V306, P635, DOI 10.1007/s00403-014-1463-9
Craighead S, 2020, J FOOD PROTECT, V83, P794, DOI 10.4315/0362-028X.JFP-19-442
Fiebrandt M, 2018, PLASMA PROCESS POLYM, V15, DOI 10.1002/ppap.201800139
Fridman G, 2008, PLASMA PROCESS POLYM, V5, P503, DOI 10.1002/ppap.200700154
Girard F, 2018, PHYS CHEM CHEM PHYS, V20, P9198, DOI [10.1039/C8CP00264A, 10.1039/c8cp00264a]
Graves DB, 2014, PHYS PLASMAS, V21, DOI 10.1063/1.4892534
Gumbel D, 2017, ANTICANCER RES, V37, P1031, DOI 10.21873/anticanres.11413
Guo L, 2018, APPL ENVIRON MICROB, V84, DOI 10.1128/AEM.00726-18
Guo YL, 2010, STEM CELLS DEV, V19, P1321, DOI 10.1089/scd.2009.0313
Haertel B, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/761451
Haertel B, 2012, CELL BIOL INT, V36, P1217, DOI 10.1042/CBI20120139
Haertel B, 2011, EXP DERMATOL, V20, P282, DOI 10.1111/j.1600-0625.2010.01159.x
Iida M, 2014, EUR J DERMATOL, V24, P392, DOI 10.1684/ejd.2014.2330
Izadjoo M, 2018, J WOUND CARE, V27, pS4, DOI 10.12968/jowc.2018.27.Sup9.S4
Kalghatgi S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016270
Kalghatgi S, 2010, ANN BIOMED ENG, V38, P748, DOI 10.1007/s10439-009-9868-x
Kim CH, 2010, J BIOTECHNOL, V150, P530, DOI 10.1016/j.jbiotec.2010.10.003
Kim SJ, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/5381692
Kwon BS, 2016, PHYS BIOL, V13, DOI 10.1088/1478-3975/13/5/056001
Laroussi M., 2018, PLASMA, V1, P47, DOI [10.3390/plasma1010005, DOI 10.3390/PLASMA1010005]
Laroussi M, 2009, IEEE T PLASMA SCI, V37, P714, DOI 10.1109/TPS.2009.2017267
Lee JH, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0150279
Liou GY, 2010, FREE RADICAL RES, V44, P479, DOI 10.3109/10715761003667554
Ma YH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091947
Metelmann HR, 2018, CLIN PLASMA MED, V9, P6, DOI 10.1016/j.cpme.2017.09.001
Morales-Ramirez P, 2013, RADIAT RES, V179, P669, DOI 10.1667/RR3223.1
Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003
Nan YN, 2014, ASIAN PAC J CANCER P, V15, P3575, DOI 10.7314/APJCP.2014.15.8.3575
Park J, 2019, FREE RADICAL BIO MED, V134, P374, DOI 10.1016/j.freeradbiomed.2019.01.032
Park J, 2016, SCI REP-UK, V6, DOI 10.1038/srep39298
Privat-Maldonado A, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/9062098
Ptasinska S, 2010, PHYS CHEM CHEM PHYS, V12, P7779, DOI [10.1039/e001188f, 10.1039/c001188f]
Raza MH, 2017, J CANCER RES CLIN, V143, P1789, DOI 10.1007/s00432-017-2464-9
Rutkowski R, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10040210
Schmidt A, 2019, THERANOSTICS, V9, P1066, DOI 10.7150/thno.29754
Schuster M, 2018, CLIN PLASMA MED, V10, P9, DOI 10.1016/j.cpme.2018.04.001
Selezneva II, 2006, B EXP BIOL MED+, V142, P119, DOI 10.1007/s10517-006-0308-8
Sensenig R, 2011, ANN BIOMED ENG, V39, P674, DOI 10.1007/s10439-010-0197-x
Shashurin A, 2010, PLASMA PROCESS POLYM, V7, P294, DOI 10.1002/ppap.200900086
Shcherbo D, 2009, BMC BIOTECHNOL, V9, DOI 10.1186/1472-6750-9-24
Siu A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126313
Song H, 2010, STEM CELLS, V28, P555, DOI 10.1002/stem.302
Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649
Stoffels Eva, 2004, Critical Reviews in Biomedical Engineering, V32, P427, DOI 10.1615/CritRevBiomedEng.v32.i56.20
Sturn A, 2002, BIOINFORMATICS, V18, P207, DOI 10.1093/bioinformatics/18.1.207
Szili EJ, 2015, J PHYS D APPL PHYS, V48, DOI 10.1088/0022-3727/48/49/495401
Thiyagarajan M, 2014, BIOTECHNOL BIOENG, V111, P565, DOI 10.1002/bit.25114
Tuhvatulin AI, 2012, ACTA NATURAE, V4, P82, DOI 10.32607/20758251-2012-4-3-82-87
Utsumi F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081576
Vasilets V, 2013, APPL PLASMA SOURCES
Volotskova O, 2012, SCI REP-UK, V2, DOI 10.1038/srep00636
von Woedtke T, 2019, IN VIVO, V33, P1011, DOI 10.21873/invivo.11570
Walk RM, 2013, J PEDIATR SURG, V48, P67, DOI 10.1016/j.jpedsurg.2012.10.020
Wang JK, 2017, CELL DEATH DIS, V8, DOI 10.1038/cddis.2017.272
Wang XQ, 2016, SCI REP-UK, V6, DOI 10.1038/srep35353
Wende K, 2014, CELL BIOL INT, V38, P412, DOI 10.1002/cbin.10200
Wu SJ, 2019, CANCER MED-US, V8, P2252, DOI 10.1002/cam4.2101
Yan DY, 2015, BIOINTERPHASES, V10, DOI 10.1116/1.4938020
Zhang XH, 2008, APPL PHYS LETT, V93, DOI 10.1063/1.2959735
NR 67
TC 5
Z9 5
U1 2
U2 12
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1422-0067
J9 INT J MOL SCI
JI Int. J. Mol. Sci.
PD JUL
PY 2021
VL 22
IS 13
AR 6797
DI 10.3390/ijms22136797
PG 20
WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Chemistry
GA TG0BK
UT WOS:000671078200001
PM 34202684
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Lu, P
Obata, D
Watanabe, T
Mitsutake, K
Abe, K
Katsuki, S
Akiyama, H
Zhang, CH
AF Lu, Peng
Obata, Daichi
Watanabe, Tetsuya
Mitsutake, Kazunori
Abe, Keisuke
Katsuki, Sunao
Akiyama, Hidenori
Zhang, C. H.
TI Influence of Intense Pulsed UV Irradiation on the Viability and
Proliferation of HeLa Cells
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE HeLa cell; proliferation; pulsed ultraviolet (PUV) irradiation;
viability
ID DOUBLE-STRAND BREAKS; SINGLE-STRAND; VACUUM-UV; LIGHT; ACTIVATION;
HORMESIS; DNA; DECONTAMINATION; INACTIVATION; EFFICIENCY
AB This paper presents viability and proliferation response of HeLa cells to intense pulsed UV (PUV) irradiation. The PUV source was driven by a pulse current capillary discharge with discharge energy of 15 J and a repetition rate of 10 pulses per second. The measured UV spectral region is from 150 to 380 nm. After cell irradiation, dead cells were identified using a propidium iodide fluorescent molecular probe, and the cell death ratio was statistically analyzed using a flow cytometer. A cell viability curve against UV pulse number was created, which shows that the threshold of the significant increase in cell mortality is 600 pulses. The effective action spectral region was less than 300 nm. PUV irradiation lethality may be due to severe intracellular damage to DNA or the membrane, which induced the cell apoptosis. The Caspase-3 activation of HeLa cells was detected as a marker of apoptosis. HeLa cells exposed to 600 UV pulses begin to show an increasing level of Caspase-3 activation compared with the sham sample. A real-time cell imaging system was employed to monitor cell proliferation over 96 h. Quantitative cell growth was examined by measuring monolayer cell confluence, and the proliferative effect was found to be in the sublethal region, which demonstrates a hormetic response of HeLa cells to PUV irradiation: Irradiation with UV pulse number between 10 and 100 promotes cell growth. The average growth rate rose to about 1.4 times that of the sham control after exposure to 50 UV pulses. When the UV pulses number exceeds 100, the toxicity of PUV tends to be severe, inhibiting cell growth and raising the cell death rate. This UV pulse number dependence suggests an accumulating effect on the cells. Application of a small number of UV pulses may activate some protein kinases and signal pathways related to cell proliferation, such as c-Jun N-terminal kinases and extracellular signal-regulated protein kinases. Further studies will examine the level of specific protein expression and actual DNA damage.
C1 [Lu, Peng; Obata, Daichi; Watanabe, Tetsuya; Mitsutake, Kazunori; Abe, Keisuke; Akiyama, Hidenori] Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan.
[Lu, Peng; Zhang, C. H.] Harbin Inst Technol, Dept Elect Engn, Harbin 150001, Peoples R China.
[Katsuki, Sunao] Kumamoto Univ, Bioelect Res Ctr, Kumamoto 8608555, Japan.
C3 Kumamoto University; Harbin Institute of Technology; Kumamoto University
RP Lu, P (corresponding author), Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan.
EM lvp490@gmail.com
RI Katsuki, Sunao/Q-7227-2019
OI Akiyama, Hidenori/0000-0002-9675-1209
FU Grants-in-Aid for Scientific Research [24700499] Funding Source: KAKEN
CR Adler V, 1996, CARCINOGENESIS, V17, P2073, DOI 10.1093/carcin/17.9.2073
Anderson JG, 2000, IEEE T PLASMA SCI, V28, P83, DOI 10.1109/27.842870
Bohrerova Z, 2008, WATER RES, V42, P2975, DOI 10.1016/j.watres.2008.04.001
Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x
Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023
Elmnasser N, 2007, CAN J MICROBIOL, V53, P813, DOI 10.1139/W07-042
Erofeev MV, 2006, IEEE T PLASMA SCI, V34, P1359, DOI 10.1109/TPS.2006.876503
Farrell HP, 2010, J APPL MICROBIOL, V108, P1494, DOI 10.1111/j.1365-2672.2009.04545.x
Farrell H, 2011, J MICROBIOL METH, V84, P317, DOI 10.1016/j.mimet.2010.12.021
Fine F, 2004, J FOOD PROTECT, V67, P787, DOI 10.4315/0362-028X-67.4.787
Folkard M, 2002, RADIAT PROT DOSIM, V99, P147, DOI 10.1093/oxfordjournals.rpd.a006746
Fulda S., 2010, INT J CELL BIOL, V2010
HIEDA K, 1994, J RADIAT RES, V35, P104, DOI 10.1269/jrr.35.104
Jean J, 2011, FOOD MICROBIOL, V28, P568, DOI 10.1016/j.fm.2010.11.012
Karu Tiina, 1993, P203
Kim CS, 2007, J RADIAT RES, V48, P407, DOI 10.1269/jrr.07032
Koyyalamudi SR, 2011, J FOOD COMPOS ANAL, V24, P976, DOI 10.1016/j.jfca.2011.02.007
Pongprasert N., 2011, INT FOOD RES J, V18, P741
Rajkovic A, 2010, J FOOD ENG, V100, P446, DOI 10.1016/j.jfoodeng.2010.04.029
Rastogi RP, 2010, J NUCLEIC ACIDS, V2010, DOI 10.4061/2010/592980
Rosette C, 1996, SCIENCE, V274, P1194, DOI 10.1126/science.274.5290.1194
Schoenbach KH, 2002, IEEE T PLASMA SCI, V30, P293, DOI 10.1109/TPS.2002.1003873
Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001
Somosy Z, 2000, MICRON, V31, P165, DOI 10.1016/S0968-4328(99)00083-9
Sosnin EA, 2004, IEEE T PLASMA SCI, V32, P1544, DOI 10.1109/TPS.2004.833401
Wang T, 2005, WATER RES, V39, P2921, DOI 10.1016/j.watres.2005.04.067
Winsor CP, 1932, P NATL ACAD SCI USA, V18, P1, DOI 10.1073/pnas.18.1.1
Yano K, 2009, J RADIAT RES, V50, P97, DOI 10.1269/jrr.08119
Zhang W, 2002, CELL RES, V12, P9, DOI 10.1038/sj.cr.7290105
ZWIETERING MH, 1990, APPL ENVIRON MICROB, V56, P1875
NR 30
TC 3
Z9 3
U1 2
U2 20
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD AUG
PY 2012
VL 40
IS 8
BP 2020
EP 2027
DI 10.1109/TPS.2012.2201961
PG 8
WC Physics, Fluids & Plasmas
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physics
GA 992UW
UT WOS:000307806400009
DA 2023-03-13
ER
PT J
AU Charles, MT
Makhlouf, J
Arul, J
AF Charles, Marie Therese
Makhlouf, Joseph
Arul, Joseph
TI Physiological basis of UV-C induced resistance to Botrytis cinerea in
tomato fruit - II. Modification of fruit surface and changes in fungal
colonization
SO POSTHARVEST BIOLOGY AND TECHNOLOGY
LA English
DT Article
DE cuticular wax; gray mold; UV-light; hormesis; Lycopersicon esculentum;
postharvest; pre-storage treatment; scanning electron microscopy
ID ULTRAVIOLET-RADIATION; CUTICULAR WAXES; FINE-STRUCTURE; LIGHT; GLOSS;
MORPHOLOGY; RESPONSES; QUALITY; LEAVES; LIFE
AB Effect of pre-storage treatment with hormic dose of UV-light and ripening on the changes in topography and fine structure of postharvest tomato fruit during storage was studied by scanning electron microscopy (SEM). Both ripening and UV-treatment induced significant structural modifications in tomato fruit surface. Flattening of cellular mounds associated with normal ripening process was more intense with UV-treatment, and the fruit surface was also more wrinkled with treatment. The formation of an operculum over broken trichomes was a common feature of ripened control fruit, while this structure was incompletely formed in the treated fruit. Surface of senescent control fruit was characterized by the presence of an amorphous epicuticular wax, which was quasi-absent on UV-treated fruit. Surface colonization of UV-treated fruit by Botrytis cinerea was also different from untreated control. Colonization was sparse on the treated fruit, although direct cuticle penetration as well as penetration through damaged trichomes was observed in both cases. Fewer adhesion structures (appressoria) were observed on UV-treated fruit than on non-irradiated control, suggesting that structural modification of the epicuticular wax induced by UV may be a factor affecting the ability of B. cinerea to attach to the treated fruit surface. This study shows that UV-treatment causes alteration in the amount of epicuticular wax and its ultrastructural arrangement, presumably due to changes in its chemical composition. These changes could affect light reflectance characteristics of the fruit surface, and possibly increase transpiration loss leading to changes in fruit appearance. Another consequence of UV-induced physical and chemical modifications of tomato fruit surface could be an improved ability of the tissue to resist infection by B. cinerea. However, the reduced colonization of the UV-treated fruit by the pathogen cannot be attributed solely to changes in surface topography. (c) 2007 Elsevier B.V. All fights reserved.
C1 [Charles, Marie Therese; Makhlouf, Joseph; Arul, Joseph] Univ Laval, Hort Res Ctr, Ste Foy, PQ G1K 7P4, Canada.
[Charles, Marie Therese; Makhlouf, Joseph; Arul, Joseph] Univ Laval, Dept Nutr & Food Sci, Ste Foy, PQ G1K 7P4, Canada.
C3 Laval University; Laval University
RP Arul, J (corresponding author), Univ Laval, Hort Res Ctr, Ste Foy, PQ G1K 7P4, Canada.
EM joseph.arul@aln.ulaval.ca
OI Charles, Marie Therese/0000-0001-7485-906X
CR Arul J, 2001, PHYSICAL CONTROL METHODS IN PLANT PROTECTION, P146
Barnes JD, 1996, J EXP BOT, V47, P99, DOI 10.1093/jxb/47.1.99
BENHAMOU N, 1995, PLANTA, V197, P89, DOI 10.1007/BF00239944
BENYEHOSHUA S, 1992, J AGR FOOD CHEM, V40, P1217, DOI 10.1021/jf00019a029
BLANKE MM, 1986, GARTENBAUWISSENSCHAF, V51, P225
BRUNO SR, 2001, HDB NUTRACEUTICALS F, P157
CAMERON RJ, 1970, AUST J BOT, V18, P275, DOI 10.1071/BT9700275
Charles M. T., 1999, Phytopathology, V89, pS14
Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P10, DOI 10.1016/j.postharvbio.2007.05.013
Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P27, DOI 10.1016/j.postharvbio.2007.05.015
COREY KA, 1988, HORTSCIENCE, V23, P730
COREY KA, 1988, SCI HORTIC-AMSTERDAM, V34, P211, DOI 10.1016/0304-4238(88)90094-5
Cruickshank RH, 1995, J PHYTOPATHOL, V143, P519, DOI 10.1111/j.1439-0434.1995.tb00656.x
DENNA DW, 1970, AUST J BIOL SCI, V23, P27, DOI 10.1071/BI9700027
GETZ S, 1983, PHYTOPATHOLOGY, V73, P39, DOI 10.1094/Phyto-73-39
Greenberg JT, 1996, P NATL ACAD SCI USA, V93, P12094, DOI 10.1073/pnas.93.22.12094
HUNT GM, 1980, PHYTOCHEMISTRY, V19, P1415, DOI 10.1016/0031-9422(80)80185-3
Jenks M. A., 1999, Horticultural Reviews, V23, P1, DOI 10.1002/9780470650752.ch1
JUNIPER BE, 1983, PLANT SURFACES, P83
Li L, 2004, PLANT CELL, V16, P126, DOI 10.1105/tpc.017954
LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868
Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7
MAHARAJ R, 1993, ANN M CHIC JUN
MERCIER J, 1993, J PHYTOPATHOL, V139, P17, DOI 10.1111/j.1439-0434.1993.tb01397.x
Nussinovitch A, 1996, J FOOD SCI, V61, P383, DOI 10.1111/j.1365-2621.1996.tb14199.x
Nussinovitch A, 1996, FOOD SCI TECHNOL-LEB, V29, P184
Pezet R., 1996, Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, V28, P103
Prusky D, 1996, ANNU REV PHYTOPATHOL, V34, P413, DOI 10.1146/annurev.phyto.34.1.413
ROBBERECHT R, 1978, OECOLOGIA, V32, P277, DOI 10.1007/BF00345107
RODOV V, 1992, J AM SOC HORTIC SCI, V117, P788, DOI 10.21273/JASHS.117.5.788
Rozema J, 1997, TRENDS ECOL EVOL, V12, P22, DOI 10.1016/S0169-5347(96)10062-8
SCHUCH W, 1994, FOOD TECHNOL-CHICAGO, V48, P78
SINCLAIR R, 1970, AUST J BOT, V18, P261, DOI 10.1071/BT9700261
SKENE DS, 1963, ANN BOT-LONDON, V27, P581, DOI 10.1093/oxfordjournals.aob.a083871
STEINMULLER D, 1985, PLANTA, V164, P557, DOI 10.1007/BF00395975
WADE NL, 1993, J HORTIC SCI, V68, P637, DOI 10.1080/00221589.1993.11516395
WADE NL, 1993, J HORTIC SCI, V68, P409, DOI 10.1080/00221589.1993.11516368
Ward G, 1996, J FOOD SCI, V61, P973, DOI 10.1111/j.1365-2621.1996.tb10914.x
WILSON CL, 1994, PLANT DIS, V78, P837, DOI 10.1094/PD-78-0837
WILSON LA, 1976, Z PFLANZENPHYSIOL, V77, P359, DOI 10.1016/S0044-328X(76)80009-8
NR 40
TC 36
Z9 44
U1 1
U2 34
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0925-5214
EI 1873-2356
J9 POSTHARVEST BIOL TEC
JI Postharvest Biol. Technol.
PD JAN
PY 2008
VL 47
IS 1
BP 21
EP 26
DI 10.1016/j.postharvbio.2007.05.014
PG 6
WC Agronomy; Food Science & Technology; Horticulture
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture; Food Science & Technology
GA 261KK
UT WOS:000253077300003
DA 2023-03-13
ER
PT J
AU Andoh, T
Chock, PB
Murphy, DL
Chiueh, CC
AF Andoh, T
Chock, PB
Murphy, DL
Chiueh, CC
TI Role of the redox protein thioredoxin in cytoprotective mechanism evoked
by (-)-deprenyl
SO MOLECULAR PHARMACOLOGY
LA English
DT Article
ID STRESS-INDUCED APOPTOSIS; MONOAMINE-OXIDASE-B; SUPEROXIDE-DISMUTASE;
GLUTATHIONE-PEROXIDASE; PARKINSONS-DISEASE; OXIDATIVE STRESS;
DOPAMINERGIC TOXICITY; DEPRENYL PROTECTS; NEUROTOXICITY; NEURONS
AB Through the inhibition of monoamine oxidase type B (MAO-B), (-)-deprenyl (selegiline) prevents the conversion of 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the toxic metabolite 1-methyl-4- phenylpyridinium ion (MPP+) and also prevents the neurotoxicity in the dopaminergic neurons in animal models. Cumulative observations suggest that selegiline may also protect against MPP+-induced neurotoxicity, possibly through the induction of pro-survival genes. We have observed that thioredoxin (Trx) mediates the induction of mitochondrial manganese superoxide dismutase (MnSOD) and Bcl-2 during preconditioning-induced hormesis. We therefore investigated whether the redox protein Trx plays any role in the neuroprotective mechanism of selegiline against MPP+-induced cytotoxicity in human SH-SY5Y neuroblastoma cells and also in primary neuronal cultures of mouse midbrain dopaminergic neurons. After confirming that selegiline protects against MPP+-induced cytotoxicity, we observed further that selegiline, at 1 mu M or less, induced Trx for protection against oxidative injury caused by MPP+. The induction of Trx was blocked by protein kinase A (PKA) inhibitor and mediated by a PKA-sensitive phospho-activation of mitogen-activated protein (MAP) kinase Erk1/2 and the transcription factor c-Myc. Selegiline-induced Trx and associated neuroprotection were concomitantly blocked by the antisense against Trx mRNA, but not the sense or antisense mutant phosphothionate oligonucleotides, not only in human SH-SY5Y cells but also in mouse primary neuronal culture of midbrain dopaminergic neurons. Furthermore, the redox cycling of Trx may mediate the protective action of selegiline because the inhibition of Trx reductase by 1-chloro-2,4-dinitrobenzene ameliorated the effect of selegiline. Trx (1 mu M) consistently increased the expression of mitochondrial proteins MnSOD and Bcl-2, supporting cell survival (Andoh et al., 2002). In conclusion, without modifying MAO-B activity, selegiline augments the gene induction of Trx, leading to elevated expression of antioxidative MnSOD and antiapoptotic Bcl-2 proteins for protecting against MPP+-induced neurotoxicity.
C1 Taipei Med Univ, Sch Pharm, Ctr Brain Dis & Aging, Taipei 110, Taiwan.
NIMH, Clin Sci Lab, NIH, Bethesda, MD 20892 USA.
NHLBI, Biochem Lab, NIH, Bethesda, MD 20892 USA.
Toyama Med & Pharmaceut Univ, Dept Appl Pharmacol, Toyama, Japan.
C3 Taipei Medical University; National Institutes of Health (NIH) - USA;
NIH National Institute of Mental Health (NIMH); National Institutes of
Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI);
University of Toyama
RP Chiueh, CC (corresponding author), Taipei Med Univ, Sch Pharm, Ctr Brain Dis & Aging, 250 Wu Xing St, Taipei 110, Taiwan.
EM chiueh@tmu.edu.tw
CR ABATE C, 1990, SCIENCE, V249, P1157, DOI 10.1126/science.2118682
Andoh T, 2003, J BIOL CHEM, V278, P885, DOI 10.1074/jbc.M209914200
Andoh T, 2002, ANN NY ACAD SCI, V962, P1, DOI 10.1111/j.1749-6632.2002.tb04051.x
Andoh T, 2002, J BIOL CHEM, V277, P9655, DOI 10.1074/jbc.M110701200
Andrews AM, 1996, MOL PHARMACOL, V50, P1511
Bai J, 2002, NEUROSCI LETT, V321, P81, DOI 10.1016/S0304-3940(02)00058-7
Birkmayer W, 1983, Mod Probl Pharmacopsychiatry, V19, P170
BURNS RS, 1983, P NATL ACAD SCI-BIOL, V80, P4546, DOI 10.1073/pnas.80.14.4546
CARRILLO MC, 1991, LIFE SCI, V48, P517, DOI 10.1016/0024-3205(91)90466-O
CHIUEH CC, 1994, ANN NY ACAD SCI, V738, P25
CHIUEH CC, 1988, ANN NY ACAD SCI, V515, P226, DOI 10.1111/j.1749-6632.1988.tb32990.x
Chiueh CC, 2002, ADV BEHAV BIOL, V51, P447
COHEN G, 1984, EUR J PHARMACOL, V106, P209, DOI 10.1016/0014-2999(84)90700-3
DAVIS RJ, 1995, MOL REPROD DEV, V42, P459, DOI 10.1002/mrd.1080420414
Ebadi M, 2002, J NEUROSCI RES, V67, P285, DOI 10.1002/jnr.10148
Gille G, 2002, J NEURAL TRANSM, V109, P633, DOI 10.1007/s007020200052
HEIKKILA RE, 1991, NATURE, V311, P467
HEINONEN EH, 1991, ACTA NEUROL SCAND, V84, P44, DOI 10.1111/j.1600-0404.1991.tb05020.x
Kang SW, 1998, J BIOL CHEM, V273, P6297, DOI 10.1074/jbc.273.11.6297
KITANI K, 1994, ANN NY ACAD SCI, V717, P60, DOI 10.1111/j.1749-6632.1994.tb12073.x
Knoll J., 2000, Neurobiology (Budapest), V8, P179
Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7
Kordower JH, 2000, SCIENCE, V290, P767, DOI 10.1126/science.290.5492.767
Kunikowska G, 2002, BRAIN RES, V953, P1, DOI 10.1016/S0006-8993(02)03187-6
LEWITT PA, 1991, ACTA NEUROL SCAND, V84, P79, DOI 10.1111/j.1600-0404.1991.tb05025.x
Moskovitz J, 1999, METHOD ENZYMOL, V300, P239
Murphy D L, 1983, Mod Probl Pharmacopsychiatry, V19, P287
MYTILINEOU C, 1985, J NEUROCHEM, V45, P1951, DOI 10.1111/j.1471-4159.1985.tb10556.x
Rauhala P, 1998, FASEB J, V12, P165, DOI 10.1096/fasebj.12.2.165
Revuelta M, 1997, GLIA, V21, P204, DOI 10.1002/(SICI)1098-1136(199710)21:2<204::AID-GLIA4>3.3.CO;2-U
Saitoh M, 1998, EMBO J, V17, P2596, DOI 10.1093/emboj/17.9.2596
Semkova I, 1996, EUR J PHARMACOL, V315, P19, DOI 10.1016/S0014-2999(96)00593-6
Shoulson I, 2002, ANN NEUROL, V51, P604, DOI 10.1002/ana.10191
SPRAGUE JE, 1995, J PHARMACOL EXP THER, V273, P667
TARIOT PN, 1987, PSYCHOPHARMACOLOGY, V91, P489, DOI 10.1007/BF00216016
Tatton W, 2003, J NEURAL TRANSM, V110, P509, DOI 10.1007/s00702-002-0827-z
Tatton WG, 1996, J NEURAL TRANSM-SUPP, P45
VIZUETE ML, 1993, NEUROSCI LETT, V152, P113, DOI 10.1016/0304-3940(93)90496-8
WU RM, 1995, J NEURAL TRANSM-GEN, V100, P53, DOI 10.1007/BF01276865
Yang LC, 1998, J NEUROSCI, V18, P8145
NR 40
TC 22
Z9 26
U1 0
U2 6
PU AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3995 USA
SN 0026-895X
EI 1521-0111
J9 MOL PHARMACOL
JI Mol. Pharmacol.
PD NOV
PY 2005
VL 68
IS 5
BP 1408
EP 1414
DI 10.1124/mol.105.012302
PG 7
WC Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy
GA 977VZ
UT WOS:000232832900021
PM 16099847
DA 2023-03-13
ER
PT J
AU Sachkova, AS
Kovel, ES
Churilov, GN
Stom, DI
Kudryasheva, NS
AF Sachkova, Anna S.
Kovel, Ekaterina S.
Churilov, Grigoriy N.
Stom, Devard, I
Kudryasheva, Nadezhda S.
TI Biological activity of carbonic nano-structurescomparison via enzymatic
bioassay
SO JOURNAL OF SOILS AND SEDIMENTS
LA English
DT Article
DE Antioxidant activity; Bioactive compounds; Fullerenol; Humic substances;
Toxicity; Reactive oxygen species
ID HUMIC SUBSTANCES; DETOXIFICATION PROCESSES; BIOLUMINESCENCE;
FLUORESCENCE; FULLERENES; HORMESIS
AB PurposeThe aim of the work is to compare the biological activity of carbonic nano-structures of natural and artificial origination, namely, humic substances (HS) and fullerenols.Materials and methodsThe representative of the fullerenol group, C-60?(y)(OH)(x) where ?+x=20-22, was chosen. Enzyme-based luminescent bioassay was applied to evaluate toxicity and antioxidant properties of HS and fullerenol (F); chemiluminescent luminol method was used to study a content of reactive oxygen species (ROS) in the solutions. Toxicity of the bioactive compounds was evaluated using effective concentrations ?C-50; detoxification coefficients D-OxT were applied to study and compare antioxidant activity of the compounds. Antioxidant activity and ranges of active concentrations of the bioactive compounds were determined in model solutions of organic and inorganic oxidizers1,4-benzoquinone and potassium ferricianide.Results and discussionValues of ?C-50 revealed higher toxicity of HS than F (0.005 and 0.108gL(-1), respectively); detoxifying concentrations of F were found to be lower. Antioxidant ability of HS was demonstrated to be time-dependent; the 50-min preliminary incubation in oxidizer solutions was suggested as optimal for the detoxification procedure. On the contrary, F' antioxidant effect demonstrated independency on time. Antioxidant effect of HS did not depend on amphiphilic characteristics of the media (values of D-OxT were 1.3 in the solutions of organic and inorganic oxidizers), while this of F was found to depend: it was maximal (D-OxT=2.0) in solutions of organic oxidizer, 1,4-benzoquinone.ConclusionsBoth HS and F demonstrated toxicity and low-concentration antioxidant ability; however, quantitative characteristics of their effects were different. The differences were explained with HS polyfunctionality, higher ability to decrease ROS content, non-rigidity, and diffusion restrictions in their solutions. Antioxidant effect of the bioactive compounds was presumably attributed to catalytic redox activity of their -fragments. The paper demonstrates a high potential of luminescent enzymatic bioassay to study biological activity of nano-structures of natural and artificial origination.
C1 [Sachkova, Anna S.] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia.
[Kovel, Ekaterina S.; Kudryasheva, Nadezhda S.] FRC KSC SB RAS, Inst Biophys, Krasnoyarsk 660036, Russia.
[Kovel, Ekaterina S.; Kudryasheva, Nadezhda S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia.
[Kovel, Ekaterina S.; Churilov, Grigoriy N.] FRC KSC SB RAS, Inst Phys, Krasnoyarsk 660036, Russia.
[Stom, Devard, I] Irkutsk Natl Res Tech Univ, Irkutsk 664074, Russia.
C3 Tomsk Polytechnic University; Russian Academy of Sciences; Krasnoyarsk
Science Center of the Siberian Branch of the Russian Academy of
Sciences; Biophysics Institute, Siberian Branch, Russian Academy of
Sciences; Siberian Federal University; Irkutsk National Research
Technical University (INRTU)
RP Sachkova, AS (corresponding author), Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia.
EM as421@yandex.ru
RI Sushko (Kovel), Ekaterina/AAG-8927-2020; Stom, Devard I/A-4144-2017
OI Sushko (Kovel), Ekaterina/0000-0002-4524-6413; Stom,
Devard/0000-0001-9496-2961; Churilov, Grigory/0000-0003-2889-490X
FU Russian Academy of Sciences [0356-2017-0017]; Russian Science Foundation
[16-14-10115]; Russian Science Foundation [16-14-10115] Funding Source:
Russian Science Foundation
FX This work was supported by the state budget allocated to the fundamental
research at the Russian Academy of Sciences, project 0356-2017-0017;
PRAN-32, Program: "Nanostructures: physics, chemistry, biology,
technological basis." Study of ROS involvement to antioxidant activity
of humic substances was supported by the Russian Science Foundation,
grant 16-14-10115.
CR Abbas M, 2018, SCI TOTAL ENVIRON, V626, P1295, DOI 10.1016/j.scitotenv.2018.01.066
Alexandrova M, 2011, J ENVIRON RADIOACTIV, V102, P407, DOI 10.1016/j.jenvrad.2011.02.011
Anesio AM, 2005, APPL ENVIRON MICROB, V71, P6267, DOI 10.1128/AEM.71.10.6267-6275.2005
Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145
Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007
Churilov GN, 2013, CARBON, V62, P389, DOI 10.1016/j.carbon.2013.06.022
Fedorova E, 2007, J PHOTOCH PHOTOBIO B, V88, P131, DOI 10.1016/j.jphotobiol.2007.05.007
Foley S, 2002, BIOCHEM BIOPH RES CO, V294, P116, DOI 10.1016/S0006-291X(02)00445-X
Giachin G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0188308
Girotti S, 2008, ANAL CHIM ACTA, V608, P2, DOI 10.1016/j.aca.2007.12.008
Goncharova E.A., 2009, VESTN SIBGAU, V22, P90
Grebowski J, 2013, BBA-BIOMEMBRANES, V1828, P2007, DOI 10.1016/j.bbamem.2013.05.009
Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805
Isakova VG, 2011, RUSS J APPL CHEM+, V84, P1165, DOI 10.1134/S107042721107007X
Kratasyuk VA, 2015, COMB CHEM HIGH T SCR, V18, P952, DOI 10.2174/1386207318666150917100257
Kudryasheva N, 2002, ECOTOX ENVIRON SAFE, V53, P221, DOI 10.1006/eesa.2002.2214
Kudryasheva NS, 2015, ENVIRON SCI POLLUT R, V22, P155, DOI 10.1007/s11356-014-3459-6
Kudryasheva NS, 2017, PHOTOCHEM PHOTOBIOL, V93, P536, DOI 10.1111/php.12639
Kuznetsov A.M., 1996, BIOTEKHNOLOGIYA, V9, P57
Levinsky B, 2000, KORF POLIGRAF, P70
Li J, 2012, CARBON, V50, P460, DOI 10.1016/j.carbon.2011.08.073
Lipczynska-Kochany E, 2018, CHEMOSPHERE, V202, P420, DOI 10.1016/j.chemosphere.2018.03.104
Nemtseva EV, 2007, USP KHIM+, V76, P101
Orlov, 1997, SOROS ED ZH
Perelomov LV, 2018, ECOTOX ENVIRON SAFE, V151, P178, DOI 10.1016/j.ecoenv.2018.01.018
Perminova IV, 2001, ENVIRON SCI TECHNOL, V35, P3841, DOI 10.1021/es001699b
Petrov D, 2017, ENVIRON SCI TECHNOL, V51, P5414, DOI 10.1021/acs.est.7b00266
Piccolo A, 2001, SOIL SCI, V166, P810, DOI 10.1097/00010694-200111000-00007
Remmel' NN, 2003, B EXP BIOL MED+, V136, P209, DOI 10.1023/A:1026347830283
Richard C, 2009, ENVIRON CHEM LETT, V7, P61, DOI 10.1007/s10311-008-0136-3
Sachkova A S, 2017, Biochem Biophys Rep, V9, P1, DOI 10.1016/j.bbrep.2016.10.011
Tarasova AS, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4304-1
Tarasova AS, 2012, J PHOTOCH PHOTOBIO B, V117, P164, DOI 10.1016/j.jphotobiol.2012.09.020
Tarasova AS, 2011, ENVIRON TOXICOL CHEM, V30, P1013, DOI 10.1002/etc.472
Trubetskoj OA, 2009, WATER RESOUR, V36, P518, DOI 10.1134/S0097807809050042
Vanysek P, 1983, CRC HDB CHEM PHYS, V64, P156
Vetrova EV, 2007, PHOTOCH PHOTOBIO SCI, V6, P35, DOI 10.1039/b608152e
Zheng YL, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603229
NR 38
TC 16
Z9 16
U1 1
U2 10
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1439-0108
EI 1614-7480
J9 J SOIL SEDIMENT
JI J. Soils Sediments
PD JUN
PY 2019
VL 19
IS 6
BP 2689
EP 2696
DI 10.1007/s11368-018-2134-9
PG 8
WC Environmental Sciences; Soil Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Agriculture
GA IG3FH
UT WOS:000473687600005
OA Green Submitted
DA 2023-03-13
ER
PT J
AU Garcia-Angulo, P
Alonso-Simon, A
Encina, A
Alvarez, JM
Acebes, JL
AF Garcia-Angulo, Penelope
Alonso-Simon, Ana
Encina, Antonio
Alvarez, Jesus M.
Acebes, Jose L.
TI Cellulose Biosynthesis Inhibitors: Comparative Effect on Bean Cell
Cultures
SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
LA English
DT Article
DE AE F150944; cell wall; cell cultures; cellulose biosynthesis-inhibitor
(CBI) herbicides; CGA 325 ' 615; compound 1; dichlobenil; Phaseolus
vulgaris L.; quinclorac; triazofenamide
ID WALL MODIFICATIONS; QUINCLORAC; HERBICIDE; HABITUATION; HORMESIS;
PROTEIN; TARGET; MICROTUBULES; MECHANISM; ALIGNMENT
AB The variety of bioassays developed to evaluate different inhibition responses for cellulose biosynthesis inhibitors makes it difficult to compare the results obtained. This work aims (i) to test a single inhibitory assay for comparing active concentrations of a set of putative cellulose biosynthesis inhibitors and (ii) to characterize their effect on cell wall polysaccharides biosynthesis following a short-term exposure. For the first aim, dose-response curves for inhibition of dry-weight increase following a 30 days exposure of bean callus-cultured cells to these inhibitors were obtained. The compound concentration capable of inhibiting dry weight increase by 50% compared to control (I-50) ranged from subnanomolar (CGA 325'615) to nanomolar (AE F150944, flupoxam, triazofenamide and oxaziclomefone) and micromolar (dichlobenil, quinclorac and compound 1) concentrations. In order to gain a better understanding of the effect of the putative inhibitors on cell wall polysaccharides biosynthesis, the [C-14] glucose incorporation into cell wall fractions was determined after a 20 h exposure of cell suspensions to each inhibitor at their I-50 value. All the inhibitors tested decreased glucose incorporation into cellulose with the exception of quinclorac, which increased it. In some herbicide treatments, reduction in the incorporation into cellulose was accompanied by an increase in the incorporation into other fractions. In order to appreciate the effect of the inhibitors on cell wall partitioning, a cluster and Principal Component Analysis (PCA) based on the relative contribution of [C-14] glucose incorporation into the different cell wall fractions were performed, and three groups of compounds were identified. The first group included quinclorac, which increased glucose incorporation into cellulose; the second group consisted of compound 1, CGA 325'615, oxaziclomefone and AE F150944, which decreased the relative glucose incorporation into cellulose but increased it into tightly-bound cellulose fractions; and the third group, comprising flupoxam, triazofenamide and dichlobenil, decreased the relative glucose incorporation into cellulose and increased it into a pectin rich fraction.
C1 [Garcia-Angulo, Penelope; Alonso-Simon, Ana; Encina, Antonio; Alvarez, Jesus M.; Acebes, Jose L.] Univ Leon, Dept Agr Engn & Sci, Plant Physiol Lab, E-24071 Leon, Spain.
C3 Universidad de Leon
RP Acebes, JL (corresponding author), Univ Leon, Dept Agr Engn & Sci, Plant Physiol Lab, E-24071 Leon, Spain.
EM penelope.garcia@unileon.es; ana.alonso@unileon.es; a.encina@unileon.es;
jmalvf@unileon.es; jl.acebes@unileon.es
RI García-Angulo, Penélope/K-6451-2014; Acebes, José-Luis/ABF-1601-2021;
Encina, Antonio/L-3016-2014; Acebes, José Luis/HLP-5487-2023; Acebes,
José L/K-6634-2014
OI García-Angulo, Penélope/0000-0001-5517-2238; Acebes,
José-Luis/0000-0002-0960-085X; Encina, Antonio/0000-0002-1559-1136;
Alonso-Simon, Ana/0000-0002-4117-0159
FU Junta de Castilla y Leon [LE 48A07]; Spanish Ministry of Science and
Innovation [CGL2008-02470, AGL2011-30545-C02-02]
FX We wish to thank D. Phelps for correcting the English within the
manuscript. We are grateful for the generous gifts of inhibitors to:
Kreuz Klaus Eugen for CGA 325'615 and compound 1, Tsutomu Sato for
flupoxam and triazofenamide, S. C. Fry and Ken Pallet for oxaziclomefone
and Bernd Laber for AE F150944. This work was partly supported by grants
from Junta de Castilla y Leon (LE 48A07) and the Spanish Ministry of
Science and Innovation programs (CGL2008-02470 and
AGL2011-30545-C02-02).
CR Abdallah I, 2006, PESTIC BIOCHEM PHYS, V84, P38, DOI 10.1016/j.pestbp.2005.05.003
Alonso-Simon A, 2008, ANN BOT-LONDON, V101, P1329, DOI 10.1093/aob/mcn051
[Anonymous], 2001, STAT SOFTW VERS 6 0
Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x
Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028
Coimbra M.A., 1996, PLANT CELL WALL ANAL, P19
Crowell EF, 2009, PLANT CELL, V21, P1141, DOI 10.1105/tpc.108.065334
DeBolt S, 2007, PLANT PHYSIOL, V145, P334, DOI 10.1104/pp.107.104703
DeBolt S, 2007, P NATL ACAD SCI USA, V104, P5854, DOI 10.1073/pnas.0700789104
DELMER DP, 1987, PLANT PHYSIOL, V84, P415, DOI 10.1104/pp.84.2.415
Diaz-Cacho P, 1999, PHYSIOL PLANTARUM, V107, P54, DOI 10.1034/j.1399-3054.1999.100108.x
Dische Z, 1958, METHODS CARBOHYDRATE, V1, P475
Doblin MS, 2010, FUNCT PLANT BIOL, V37, P357, DOI 10.1071/FP09279
DUGGER WM, 1986, PLANT PHYSIOL, V81, P464, DOI 10.1104/pp.81.2.464
Encina A, 2002, PHYSIOL PLANTARUM, V114, P182, DOI 10.1034/j.1399-3054.2002.1140204.x
Encina AE, 2001, PLANT SCI, V160, P331, DOI 10.1016/S0168-9452(00)00397-6
Grossmann K, 1998, WEED SCI, V46, P707, DOI 10.1017/S004317450008975X
Grossmann K, 2000, TRENDS PLANT SCI, V5, P506, DOI 10.1016/S1360-1385(00)01791-X
Grossmann K, 2001, Z NATURFORSCH C, V56, P559
Guerriero G, 2010, J INTEGR PLANT BIOL, V52, P161, DOI 10.1111/j.1744-7909.2010.00935.x
Heim DR, 1998, PESTIC BIOCHEM PHYS, V59, P163, DOI 10.1006/pest.1998.2317
Himmelspach R, 2003, PLANT J, V36, P565, DOI 10.1046/j.1365-313X.2003.01906.x
Hoffman JC, 1996, PESTIC BIOCHEM PHYS, V55, P49, DOI 10.1006/pest.1996.0034
Hofmannova J, 2008, J EXP BOT, V59, P3963, DOI 10.1093/jxb/ern250
Kiedaisch BM, 2003, PLANTA, V217, P922, DOI 10.1007/s00425-003-1071-y
Kojima H, 2009, PESTIC BIOCHEM PHYS, V93, P58, DOI 10.1016/j.pestbp.2008.11.003
Kojima H, 2010, PESTIC BIOCHEM PHYS, V98, P359, DOI 10.1016/j.pestbp.2010.08.001
Koo SJ, 1997, PESTIC BIOCHEM PHYS, V57, P44, DOI 10.1006/pest.1997.2258
Kurek I, 2002, P NATL ACAD SCI USA, V99, P11109, DOI 10.1073/pnas.162077099
Acebes JL, 2010, BIOTECH AGR IND MED, P39
Melida H, 2010, MOL PLANT, V3, P842, DOI 10.1093/mp/ssq027
MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x
Nakagawa N, 1998, PLANT CELL PHYSIOL, V39, P779, DOI 10.1093/oxfordjournals.pcp.a029434
O'Looney N, 2005, NEW PHYTOL, V168, P323, DOI 10.1111/j.1469-8137.2005.01501.x
O'Looney N., 2005, ANN BOT, V96, P1
Parrish M.D., 2009, N CENTR WEED SOC P K
Peng LC, 2002, SCIENCE, V295, P147, DOI 10.1126/science.1064281
Peng LC, 2001, PLANT PHYSIOL, V126, P981, DOI 10.1104/pp.126.3.981
Rajangam AS, 2008, PLANT PHYSIOL, V148, P1283, DOI 10.1104/pp.108.121913
Ringli C, 2010, PLANT PHYSIOL, V153, P1445, DOI 10.1104/pp.110.154518
Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x
Seifert GJ, 2010, PLANT PHYSIOL, V153, P467, DOI 10.1104/pp.110.153940
Sharples KR, 1998, PESTIC SCI, V54, P368, DOI 10.1002/(SICI)1096-9063(199812)54:4<368::AID-PS845>3.0.CO;2-6
Sunohara Y, 2008, PHYTOCHEMISTRY, V69, P2312, DOI 10.1016/j.phytochem.2008.06.012
Tresch S, 2003, PESTIC BIOCHEM PHYS, V75, P73, DOI 10.1016/S0048-3575(03)00013-0
UPDEGRAFF DM, 1969, ANAL BIOCHEM, V32, P420, DOI 10.1016/S0003-2697(69)80009-6
Vaughn KC, 2001, PROTOPLASMA, V216, P80, DOI 10.1007/BF02680135
Whistler R.L., 1963, METHODS CARBOHYDRATE, V3, P54
Wightman R, 2010, PLANT PHYSIOL, V153, P427, DOI 10.1104/pp.110.154666
Yoneda A, 2007, PLANT CELL PHYSIOL, V48, P1393, DOI 10.1093/pcp/pcm120
Yoneda A, 2010, PLANT J, V64, P657, DOI 10.1111/j.1365-313X.2010.04356.x
NR 51
TC 12
Z9 16
U1 2
U2 36
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1422-0067
J9 INT J MOL SCI
JI Int. J. Mol. Sci.
PD MAR
PY 2012
VL 13
IS 3
BP 3685
EP 3702
DI 10.3390/ijms13033685
PG 18
WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Chemistry
GA 917KQ
UT WOS:000302174500068
PM 22489176
OA Green Published, Green Submitted, gold
DA 2023-03-13
ER
PT J
AU Liu, Y
Li, N
Lou, YD
Liu, YX
Zhao, XD
Wang, GG
AF Liu, Yu
Li, Na
Lou, Yadi
Liu, Yuxin
Zhao, Xinda
Wang, Guoguang
TI Effect of water accommodated fractions of fuel oil on fixed carbon and
nitrogen by microalgae: Implication by stable isotope analysis
SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
LA English
DT Article
DE Oil spill; Platymonas helgolandica; Nitzschia closterium; Heterosigma
akashiwo; Stable isotope; Carbon and nitrogen
ID AROMATIC-HYDROCARBONS; NITZSCHIA-CLOSTERIUM; CRUDE-OIL; GROWTH; SPILL;
CO2; PHOTOSYNTHESIS; CHLOROPHYLL; DIVERSITY; RESPONSES
AB Effect of water accommodated fractions (WAF) of #180 fuel oil on fixed carbon and nitrogen in microalgae was studied by stable isotopes. Platymonas helgolandica, Heterosigma akashiwo and Nitzschia closterium were exposed to five WAF concentrations for 96 h. The delta C-13 value of microalgae was significantly lower than that of the control group, indicated that carbon was limited in the WAF concentrations. The delta C-13 value of microalgae appeared peak valley at 48 h in control group, corresponding to the enhanced capacity in carbon fixation during microalgae photosynthesis. The physiological acclimation capacity of microalgae was revealed by the occurrence time when the delta 13C value was in peak valley, and thus the physiological acclimation capacity of microalgae decreased in the order of Nitzschia closterium > Heterosigma akashiwo > Platymonas helgolandica. Principal component analysis (PCA) were applied to the delta 13C value in order to verify the "hormesis" phenomenon in microalgae. The delta 13C value could discriminate between stimulatory effects at low doses and inhibitory effects at high doses. In addition, the present study also investigated the effect of the nitrogen on microalgae growth. Because microalgae could still absorb the NO3-N and release of NO2-N and NH4-N in present study, the nitrogen cycle in microalgae was in the equilibrium status. The delta N-15 value in microalgae exhibited no obvious change with the increasing of WAF concentrations at the same time. However, due to the enrichment of nitrogen, the delta N-15 value first increased gradually with the time and finally was stable. Overall, the fractionation of carbon and nitrogen stable isotopes illustrated that the effect of carbon on the growth of microalgae was more prominent than nitrogen. Stable isotopes was used to investigate the influence of WAF on fixed carbon and nitrogen in microalgae growth, providing a fundamental theoretical guidance for risk assessment of marine ecological environment.
C1 [Liu, Yu; Li, Na; Lou, Yadi; Liu, Yuxin; Zhao, Xinda; Wang, Guoguang] Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, Peoples R China.
[Liu, Yu] Dalian Maritime Univ, Environm Informat Inst, Dalian, Peoples R China.
C3 Dalian Maritime University; Dalian Maritime University
RP Liu, Y; Wang, GG (corresponding author), Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, Peoples R China.
EM ylsibo@foxmail.com; ggwang2018@126.com
RI Wang, Guoguang/AAA-2629-2021; liu, yuxin/GRY-3592-2022
FU Innovative Talent Training Program [CXXM2019BS007]; Fundamental Research
Funds for the Central Universities [3132019333, 3132019150]
FX This study was supported by the Innovative Talent Training Program
(grant number CXXM2019BS007) and the Fundamental Research Funds for the
Central Universities (grant number 3132019333, 3132019150). We
especially thank the National Marine Environmental Monitoring Center for
providing P. helgolandica, H. akashiwo and N. closterium.
CR Aksmann A, 2011, AQUAT TOXICOL, V104, P205, DOI 10.1016/j.aquatox.2011.04.017
Aksmann A, 2008, CHEMOSPHERE, V74, P26, DOI 10.1016/j.chemosphere.2008.09.064
Albert KR, 2011, J PLANT PHYSIOL, V168, P1550, DOI 10.1016/j.jplph.2011.02.011
Brekke C, 2005, REMOTE SENS ENVIRON, V95, P1, DOI 10.1016/j.rse.2004.11.015
Bretherton L, 2019, HARMFUL ALGAE, V86, P55, DOI 10.1016/j.hal.2019.05.008
Bretherton L, 2018, J PHYCOL, V54, P317, DOI 10.1111/jpy.12625
Bukata AR, 2007, ENVIRON SCI TECHNOL, V41, P1331, DOI 10.1021/es061414g
Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874
Carrera-Martinez D, 2010, AQUAT TOXICOL, V97, P151, DOI 10.1016/j.aquatox.2009.12.016
Carvalho RN, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026985
COLLOS Y, 1982, LIMNOL OCEANOGR, V27, P528
Colman B, 2002, FUNCT PLANT BIOL, V29, P261, DOI 10.1071/PP01184
Del Vento S, 2002, ENVIRON TOXICOL CHEM, V21, P2099, DOI 10.1002/etc.5620211013
Denk TRA, 2017, SOIL BIOL BIOCHEM, V105, P121, DOI 10.1016/j.soilbio.2016.11.015
Dodds WK, 2000, ECOSYSTEMS, V3, P574, DOI 10.1007/s100210000050
Echeveste P, 2010, ENVIRON POLLUT, V158, P299, DOI 10.1016/j.envpol.2009.07.006
El-Dib MA, 2001, INT J ENVIRON HEAL R, V11, P189, DOI 10.1080/09603120020047582
Faksness LG, 2008, MAR POLLUT BULL, V56, P1746, DOI 10.1016/j.marpolbul.2008.07.001
Flood PJ, 2011, TRENDS PLANT SCI, V16, P327, DOI 10.1016/j.tplants.2011.02.005
Gilde K, 2012, ESTUAR COAST, V35, P853, DOI 10.1007/s12237-011-9473-8
GLIBERT PM, 1988, MAR ECOL PROG SER, V42, P303, DOI 10.3354/meps042303
Gonzalez JJ, 2006, MAR POLLUT BULL, V53, P250, DOI 10.1016/j.marpolbul.2005.09.039
Gruber N, 2008, NITROGEN IN THE MARINE ENVIRONMENT, 2ND EDITION, P1, DOI 10.1016/B978-0-12-372522-6.00001-3
Guieysse B, 2013, BIOGEOSCI DISCUSS, V10, P9739, DOI DOI 10.5194/BGD-10-9739-2013
Hook SE, 2012, AQUAT TOXICOL, V124, P139, DOI 10.1016/j.aquatox.2012.08.005
Hylland K, 2006, J TOXICOL ENV HEAL A, V69, P109, DOI 10.1080/15287390500259327
Kainz MJ, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P93, DOI 10.1007/978-0-387-89366-2_5
KARL DM, 2001, ENCY OCEANOGRAPHY, V4, P1876
Kennedy CJ, 2005, J EXP MAR BIOL ECOL, V323, P43, DOI 10.1016/j.jembe.2005.02.021
KRAUSE GH, 1991, ANNU REV PLANT PHYS, V42, P313, DOI 10.1146/annurev.pp.42.060191.001525
Kuypers MMM, 2018, NAT REV MICROBIOL, V16, P263, DOI 10.1038/nrmicro.2018.9
Li N, 2019, SCI TOTAL ENVIRON, V653, P1095, DOI 10.1016/j.scitotenv.2018.11.021
Li Y, 2017, J HAZARD MATER, V327, P28, DOI 10.1016/j.jhazmat.2016.12.029
Lou YD, 2019, ECOTOX ENVIRON SAFE, V177, P7, DOI 10.1016/j.ecoenv.2019.03.110
Mishra AK, 2015, AQUAT PR, V4, P435, DOI 10.1016/j.aqpro.2015.02.058
Ozhan K, 2014, ECOTOXICOLOGY, V23, P370, DOI 10.1007/s10646-014-1195-9
Pi YR, 2015, ENVIRON SCI-PROC IMP, V17, P877, DOI 10.1039/c5em00005j
Racchetti E, 2017, AQUAT SCI, V79, P487, DOI 10.1007/s00027-016-0512-1
REDDIN A, 1981, MAR POLLUT BULL, V12, P339, DOI 10.1016/0025-326X(81)90107-7
Stepaniyan OV, 2008, RUSS J MAR BIOL, V34, P131, DOI 10.1134/S1063074008020077
Thyssen C, 2002, FUNCT PLANT BIOL, V29, P251, DOI 10.1071/PP01198
Toseland A, 2013, NAT CLIM CHANGE, V3, P979, DOI 10.1038/NCLIMATE1989
Whitney SM, 2015, P NATL ACAD SCI USA, V112, P3564, DOI 10.1073/pnas.1420536112
Yang B, 2017, BIOTECHNOL BIOFUELS, V10, DOI 10.1186/s13068-017-0916-8
Yu HT, 2002, J ENVIRON SCI HEAL C, V20, P149, DOI 10.1081/GNC-120016203
Zhang C, 2017, ENVIRON POLLUT, V220, P1282, DOI 10.1016/j.envpol.2016.11.005
NR 46
TC 7
Z9 8
U1 6
U2 41
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0147-6513
EI 1090-2414
J9 ECOTOX ENVIRON SAFE
JI Ecotox. Environ. Safe.
PD JUN 1
PY 2020
VL 195
AR 110488
DI 10.1016/j.ecoenv.2020.110488
PG 9
WC Environmental Sciences; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Toxicology
GA LD0ZU
UT WOS:000525762800017
PM 32200143
DA 2023-03-13
ER
PT J
AU Awoyemi, OM
Subbiah, S
Thompson, KN
Velazquez, A
Peace, A
Mayer, GD
AF Awoyemi, Olushola M.
Subbiah, Seenivasan
Thompson, Kelsey N.
Velazquez, Anahi
Peace, Angela
Mayer, Gregory D.
TI Trophic-Level Interactive Effects of Phosphorus Availability on the
Toxicities of Cadmium, Arsenic, and Their Binary Mixture in
Media-Exposed Scenedesmus acutus and Media and Dietary-Exposed Daphnia
pulex
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID SILVER NANOPARTICLES; METAL UPTAKE; MAGNA; ZINC; COPPER; ALGAE;
BIOACCUMULATION; RESPONSES; NITROGEN; HORMESIS
AB Various anthropogenic activities simultaneously alter essential mineral nutrients and contaminant content in the environment. Depending on essential nutrient conditions, the uptake and effects of contaminants in exposed organisms may be altered. The addressing of ecological risk assessment (ERA) of contaminant mixtures has proven difficult. Furthermore, most assessments involving single contaminant exposures do not consider the interaction of essential nutrients on toxicological end points. Hypotheses for toxicological effects of cadmium (Cd), arsenic (As), and their binary mixture (Cd/As-mix) include alteration under varying dietary and media phosphorus (P) conditions. However, interactive effects and effect size (eta(2)) are largely unknown. Here, we investigated the toxicities of Cd-, As-, and Cd/As-mix-treated media and diets on Scenedesmus acutus ( a primary producer) and Daphnia pulex (a primary consumer), under varied media and dietary P conditions [low (LP), median (MP), and optimum (COMBO)]. Our results showed significant (p < 0.05) interactive effects and concentration dependent growth inhibition of S. acutus. The toxicity (at day 7) of Cd against S. acutus was 2X, 11X, and 4X that of As in LP, MP, and COMBO conditions, respectively, while the joint toxicity effects of Cd/As-mix were partially additive in LP and COMBO, and synergistic in MP media. Furthermore, acute lethal toxicity (96 h) of Cd in D. pulex was, similar to 60X that of As, while Cd/As-mix joint toxicity was synergistic. Chronic toxicity (14 d) in D. pulex showed significant (p < 0.05) interaction of As and P-availability on survival, reproduction, and behavior (distance moved, velocity, acceleration and mobility), while Cd and P availability showed significant interactive effect on rotational behavior. Dose response effects of Cd, As, and Cd/As-mix in S. acutus and D. pulex were either monophasic or biphasic under varying nutrient conditions. This study provides empirical evidence of the interactive effects of media/dietary P and toxic metals (Cd, As, and Cd/As-mix) at environmentally relevant concentrations, emphasizing the need for consideration of such interactions during ERA.
C1 [Awoyemi, Olushola M.; Subbiah, Seenivasan; Thompson, Kelsey N.; Velazquez, Anahi; Mayer, Gregory D.] Texas Tech Univ, Inst Environm & Human Hlth, Dept Environm Toxicol, Lubbock, TX 79416 USA.
[Peace, Angela] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA.
C3 Texas Tech University System; Texas Tech University; Texas Tech
University System; Texas Tech University
RP Awoyemi, OM (corresponding author), Texas Tech Univ, Inst Environm & Human Hlth, Dept Environm Toxicol, Lubbock, TX 79416 USA.
EM doctoroma@yahoo.com
RI Peace, Angela/AFR-4935-2022; Mayer, Gregory/A-8459-2017
OI AWOYEMI, OLUSHOLA/0000-0002-2093-0091; Mayer,
Gregory/0000-0002-2652-9856
FU National Science Foundation (NSF) [NSF DMS-1615697]; Graduate School at
Texas Tech University; Society of Environmental Toxicology and Chemistry
(SETAC); SOT Toxicologists of African Origin Specialty Interest Group
(TAO SIG); Society of Toxicology (SOT)
FX This study was supported by National Science Foundation (NSF), Grant
number NSF DMS-1615697. We wish to thank Dr. Kaz Surowiec (Manager, Mass
Spectrometry Facility) at the Department of Chemistry and Biochemistry,
Texas Tech University for assisting with elemental analysis of our
samples using the CHNS/O analyzer. Also, we wish to thank Dr. Nathaniel
Miller (Manager, Laser Ablation and ICP-MS Laboratory) at the Jackson
School of Geosciences, The University of Texas at Austin for assisting
with elemental (metals and nonmetals) analysis of or samples using
ICP-MS. Finally, we appreciate the financial supports and research
awards provided by the Graduate School at Texas Tech University, Society
of Toxicology (SOT), Society of Environmental Toxicology and Chemistry
(SETAC), and SOT Toxicologists of African Origin Specialty Interest
Group (TAO SIG) to present parts of the findings of this study at
national and international conferences.
CR Acharya K, 2004, LIMNOL OCEANOGR, V49, P656, DOI 10.4319/lo.2004.49.3.0656
Ahmed H, 2011, WATER AIR SOIL POLL, V216, P547, DOI 10.1007/s11270-010-0552-4
Al-Homaidan AA, 2015, SAUDI J BIOL SCI, V22, P795, DOI 10.1016/j.sjbs.2015.06.010
Altenburger R, 2003, ENVIRON TOXICOL CHEM, V22, P1900, DOI 10.1897/01-386
Arce-Funck J, 2018, SCI TOTAL ENVIRON, V645, P1484, DOI 10.1016/j.scitotenv.2018.07.227
Awoyemi O.M., 2017, WORLD J AGR RES, V5, P47, DOI 10.12691/WJAR-5-3-4
Awoyemi O. M., 2017, COAL COMBUSTION GASI, V9, P42, DOI 10.4177/CCGP-D-14-00004.1
Beene LC, 2011, ZEBRAFISH, V8, P125, DOI 10.1089/zeb.2011.0701
Bownik A, 2017, SCI TOTAL ENVIRON, V601, P194, DOI 10.1016/j.scitotenv.2017.05.199
Cai XH, 1999, INT J PHYTOREMEDIAT, V1, P53, DOI 10.1080/15226519908500004
Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222
Catarecha P, 2007, PLANT CELL, V19, P1123, DOI 10.1105/tpc.106.041871
Chekroun KB, 2013, J MAT ENV SCI, V4, P873
Cheng YY, 2019, TOXICOL APPL PHARM, V379, DOI 10.1016/j.taap.2019.114684
Conley DJ, 2009, SCIENCE, V323, P1014, DOI 10.1126/science.1167755
Crenier C, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00732
Danger M., 2013, ENCY AQUATIC ECOTOXI, P317
Das P, 2012, ENVIRON TOXICOL CHEM, V31, P122, DOI 10.1002/etc.716
De Borba BM, 2014, J CHROMATOGR A, V1369, P131, DOI 10.1016/j.chroma.2014.10.027
De Schamphelaere KAC, 2007, AQUAT TOXICOL, V81, P409, DOI 10.1016/j.aquatox.2007.01.002
Ellison MB, 2014, PEERJ, V2, DOI 10.7717/peerj.401
Elser JJ, 2016, INLAND WATERS, V6, P136, DOI 10.5268/IW-6.2.908
Erzinger D.-P., 2017, OPEN J ENV BIOL, V2
Feng TY, 2015, SCI REP-UK, V5, DOI 10.1038/srep10373
Fikirdesici S, 2012, TURK J ZOOL, V36, P543, DOI 10.3906/zoo-1006-36
French AD, 2017, INT J ENVIRON AN CH, V97, P499, DOI 10.1080/03067319.2017.1328060
Geffard O., 2008, ENVIRON TOXICOL CHEM, V27, P54
Held P., 2011, USE MULTIMODE MONOCH
Hellweger FL, 2003, LIMNOL OCEANOGR, V48, P2275
Hood JM, 2014, FRESHW SCI, V33, P1093, DOI 10.1086/678693
Houserova P, 2007, ENVIRON POLLUT, V145, P185, DOI 10.1016/j.envpol.2006.03.027
Hughes MF, 2011, TOXICOL SCI, V123, P305, DOI 10.1093/toxsci/kfr184
Ieromina O, 2014, ENVIRON TOXICOL CHEM, V33, P621, DOI 10.1002/etc.2472
Jahan K, 2004, WASTE MANAGEMENT AND THE ENVIRONMENT II, P223
KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868
Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456
Kim Yoon-Jae, 2015, Dev Reprod, V19, P167, DOI 10.12717/DR.2015.19.4.167
Knodle R, 2012, BIOMOLECULES, V2, P282, DOI 10.3390/biom2020282
KONEMANN H, 1981, TOXICOLOGY, V19, P229, DOI 10.1016/0300-483X(81)90132-3
Kumar Manoj, 2012, Indian J Occup Environ Med, V16, P40, DOI 10.4103/0019-5278.99696
Lamai Chantana, 2005, ScienceAsia, V31, P121, DOI 10.2306/scienceasia1513-1874.2005.31.121
Lessard CR, 2012, SCI TOTAL ENVIRON, V421, P124, DOI 10.1016/j.scitotenv.2012.01.040
Li ML, 2012, ECOTOX ENVIRON SAFE, V83, P41, DOI 10.1016/j.ecoenv.2012.06.004
Luoma SN, 2005, ENVIRON SCI TECHNOL, V39, P1921, DOI 10.1021/es048947e
Lyles RH, 2008, CONTEMP CLIN TRIALS, V29, P878, DOI 10.1016/j.cct.2008.05.009
Mason RP, 2000, ARCH ENVIRON CON TOX, V38, P283, DOI 10.1007/s002449910038
Mooney RJ, 2016, FRESHW SCI, V35, P873, DOI 10.1086/686699
Naddy RB, 2015, ENVIRON TOXICOL CHEM, V34, P809, DOI 10.1002/etc.2870
NALEWAJKO C, 1995, J PHYCOL, V31, P332, DOI 10.1111/j.0022-3646.1995.00332.x
Norman BC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129328
Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06
Nys C, 2017, ENVIRON SCI TECHNOL, V51, P4615, DOI 10.1021/acs.est.6b05688
Nys C, 2015, ENVIRON TOXICOL CHEM, V34, P1091, DOI 10.1002/etc.2902
Okamoto A, 2015, J APPL TOXICOL, V35, P824, DOI 10.1002/jat.3078
Perera P. C. T., 2016, ACHIEV LIFE SCI, V10, P144, DOI [10.1016/j, DOI 10.1016/J.ALS.2016.11.002, 10.1016/j.als.2016.11.002]
Perez E, 2018, CHEMOSPHERE, V208, P991, DOI 10.1016/j.chemosphere.2018.06.063
Perez E, 2017, ENVIRON TOXICOL CHEM, V36, P2739, DOI 10.1002/etc.3830
Rai S, 2015, HDB ARSENIC TOXICOLO, P627, DOI [10.1016/B978-0-12-418688-0.00027-7, DOI 10.1016/B978-0-12-418688-0.00027-7]
Rajamani S, 2014, PLANT PHYSIOL, V164, P1059, DOI 10.1104/pp.113.229765
Roberts TL, 2014, PROCEDIA ENGINEER, V83, P52, DOI 10.1016/j.proeng.2014.09.012
Rodgher S, 2020, WATER AIR SOIL POLL, V231, DOI 10.1007/s11270-019-4370-z
Saibu Y, 2018, COMP BIOCHEM PHYS C, V211, P48, DOI 10.1016/j.cbpc.2018.05.009
Sarret G, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47183-8
Sbihi K., 2012, J MAT ENV SCI, V3, P497
Serra A, 2010, ECOTOXICOLOGY, V19, P770, DOI 10.1007/s10646-009-0454-7
Shaw JR, 2007, ENVIRON TOXICOL CHEM, V26, P1532, DOI 10.1897/06-389R.1
Shaw JR, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-477
Shaw JR, 2006, ENVIRON TOXICOL CHEM, V25, P182, DOI 10.1897/05-243R.1
SPRAGUE JB, 1965, J FISH RES BOARD CAN, V22, P425, DOI 10.1139/f65-042
Stanley JK, 2013, ENVIRON SCI TECHNOL, V47, P9424, DOI 10.1021/es401115q
Tawfik DS, 2011, BIOCHEMISTRY-US, V50, P1128, DOI 10.1021/bi200002a
USEPA, 2016, AQ LIF AMB WAT QUAL
USEPA, 2002, EPA821R02013
Valko M, 2016, ARCH TOXICOL, V90, P1, DOI 10.1007/s00204-015-1579-5
Wang WX, 2001, ENVIRON POLLUT, V111, P233, DOI 10.1016/S0269-7491(00)00071-3
Webster RE, 2011, ENVIRON SCI TECHNOL, V45, P7489, DOI 10.1021/es200814c
Xing W., 2008, ENVIRON TOXICOL, V25, P103
Yan CZ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0116099
Yoo-iam M, 2014, CHEM SPEC BIOAVAILAB, V26, P257, DOI 10.3184/095422914X14144332205573
Zeb B, 2017, APPL WATER SCI, V7, P2043, DOI 10.1007/s13201-016-0385-4
Zeng J, 2012, CHINESE SCI BULL, V57, P3790, DOI 10.1007/s11434-012-5337-2
Zhang R, 2012, FRESEN ENVIRON BULL, V21, P2891
NR 82
TC 6
Z9 6
U1 1
U2 77
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD MAY 5
PY 2020
VL 54
IS 9
BP 5651
EP 5666
DI 10.1021/acs.est.9b07657
PG 16
WC Engineering, Environmental; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Environmental Sciences & Ecology
GA LK1XK
UT WOS:000530651900040
PM 32255616
DA 2023-03-13
ER
PT J
AU Hruby, M
Cigler, P
Kuzel, S
AF Hruby, M
Cigler, P
Kuzel, S
TI Contribution to understanding the mechanism of titanium action in plant
SO JOURNAL OF PLANT NUTRITION
LA English
DT Article
ID CAPSICUM-ANNUUM; TI(IV)
AB The biological effects of titanium (Ti) in the form of Ti(IV)-ascorbate on oats (Avena sativa L. cv. Zlatak) were studied in hydroponic experiments on defined nutrient solutions, determining the influence (i) of the chemical form of nitrogen (N) in nutrient solution on the Ti effects on plants (nitrate and an ammonium salt (acetate) were the only N species used) and (ii) of various Ti concentrations in nutrient solution while changing the magnesium (Mg) concentration on the Ti, Mg, iron (Fe), and potassium (K) content in tops and roots, top and root dry weights, chlorophyll a and b content, top height, and root length. It was found that (i) Ti was beneficial for plants grown on the nitrate-containing nutrient solutions as compared to the ammonium-containing nutrient solutions where Ti results in inhibitory effects on plant health status (decrease of top and root dry weights, chlorophyll a and b contents, top height, and root length), therefore, it was deducted that the increase of nitrate reductase activity was mainly responsible for the Ti beneficial effect on plants and (ii) Ti increased the Fe, Mg, and Ti content in plant tissues and this effect was independent of N form in the nutrient solution, chlorophyll a and b content or plant health status. It is suggested that the biological effects of Ti (the synthesis of the Ti chelating alpha-hydroxy carboxylic acids (citric and malic), and ascorbic acid, the increase of the Fe and Mg contents in plant tissues, the increased nitrate reductase activity, the increased chlorophyll a and b biosynthesis, and the effects on the other enzymatic activities) are the defense mechanisms of the plant against Ti replacing some essential elements from their binding sites (probably mainly from the phosphate-based ones). These defense mechanisms are, in the case of the usual Ti application doses, much stronger than adequate for the elimination of the Ti toxic effects (this "paradox" effect called hormesis has already been described for lead (Pb) and its effect on the hemoglobin content in blood of animals and humans).
C1 S Bohemian Univ, Fac Agr, Dept Gen Plant Prod, Eske Budjovice 37005, Czech Republic.
Charles Univ, Fac Sci, Dept Organ Chem, Prague 12843 2, Czech Republic.
C3 University of South Bohemia Ceske Budejovice; Charles University Prague
RP Kuzel, S (corresponding author), S Bohemian Univ, Fac Agr, Dept Gen Plant Prod, Studentska 13, Eske Budjovice 37005, Czech Republic.
RI Kuzel, Stanislav/D-9510-2016; Hruby, Martin/H-6479-2014; Cigler,
Petr/B-1142-2012
OI Kuzel, Stanislav/0000-0002-4058-6240; Hruby, Martin/0000-0002-5075-261X;
Cigler, Petr/0000-0003-0283-647X
CR BENZIONI A, 1970, PLANT PHYSIOL, V23, P1037
CARVAJAL M, 1994, J HORTIC SCI BIOTECH, V69, P427, DOI 10.1080/14620316.1994.11516471
Carvajal M, 1998, J PLANT NUTR, V21, P655, DOI 10.1080/01904169809365433
CARVAJAL M, 1995, PHYTOCHEMISTRY, V35, P977
Cigler P, 1999, J PLANT NUTR, V22, P1241, DOI 10.1080/01904169909365709
DAOOD HG, 1988, J PLANT NUTR, V11, P505, DOI 10.1080/01904168809363818
DUMON JC, 1988, J PLANT PHYSIOL, V133, P203, DOI 10.1016/S0176-1617(88)80138-X
FEHER M, 1984, ACTA AGRON HUNG, V33, P95
GIMENEZ J.L, 1990, P 3 S NAC NUTR MIN P, p123
Greenwood N. N., 1993, CHEM ELEMENTS
HOAGLAND DR, 1939, WATER CULTURE METHOD, P347
KELEMEN G, 1993, FOOD STRUCT, V12, P67
KIMURA S, 1990, P 4 INT TRAC EL S, P325
KIRCHGESSNER K, 1986, SPURENELEMENTSYMP, P1006
KISS F, 1985, J PLANT NUTR, V8, P825, DOI 10.1080/01904168509363387
KLENER P, 1987, CHEMOTHERAPY COMPLEX, P263
Konishi K., 1936, J AGRI CHEM SOC, V12, P916, DOI [10.1271/nogeikagaku1924.12.328, DOI 10.1271/NOGEIKAGAKU1924.12.328]
LopezMoreno JL, 1996, FERT RES, V43, P131, DOI 10.1007/BF00747692
MARTINEZSANCHEZ F, 1993, J PLANT NUTR, V16, P975, DOI 10.1080/01904169309364586
PAIS I, 1983, J PLANT NUTR, V6, P3, DOI 10.1080/01904168309363075
PORRA RJ, 1989, BIOCHIM BIOPHYS ACTA, V975, P384, DOI 10.1016/S0005-2728(89)80347-0
PROKES J, 1993, BASICS TOXICOLOGY, P46
SIMON L, 1990, NEW RESULTS RES HARD, P49
Simon L, 1988, NEW RESULTS RES HARD, P87
STANKOVIANSKY S, 1965, QUALITATIVE ANAL CHE, P256
NR 25
TC 65
Z9 67
U1 0
U2 28
PU MARCEL DEKKER INC
PI NEW YORK
PA 270 MADISON AVE, NEW YORK, NY 10016 USA
SN 0190-4167
J9 J PLANT NUTR
JI J. Plant Nutr.
PY 2002
VL 25
IS 3
BP 577
EP 598
DI 10.1081/PLN-120003383
PG 22
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA 537NM
UT WOS:000174764700011
DA 2023-03-13
ER
PT J
AU Olivieri, F
Prattichizzo, F
Lattanzio, F
Bonfigli, AR
Spazzafumo, L
AF Olivieri, Fabiola
Prattichizzo, Francesco
Lattanzio, Fabrizia
Bonfigli, Anna Rita
Spazzafumo, Liana
TI Antifragility and antiinflammaging: Can they play a role for a healthy
longevity?
SO AGEING RESEARCH REVIEWS
LA English
DT Article
DE Aging; Inflammaging; Hormesis; Longevity; Centenarians; Genetics;
Epigenetics; Frailty
ID METABOLIC MEMORY; TRANSGENERATIONAL INHERITANCE; CALORIC RESTRICTION;
CELLULAR SENESCENCE; OLDEST-OLD; MORTALITY; INFLAMMATION; DISEASE;
STRESS; AGE
AB One of the most exciting challenges of the research on aging is to explain how the environmental factors interact with the genetic background to modulate the chances to reach the extreme limit of human life in healthy con-ditions. The complex epigenetic mechanisms can explain both the interaction between DNA and environmental factors, and the long-distance persistence of lifestyle effects, due to the so called "epigenetic memory". One of the most extensively investigated theories on aging focuses on the inflammatory responses, suggesting that the age -related progression of low-grade and therefore for long time subclinical, chronic, systemic, inflammatory process, named "inflammaging", could be the most relevant risk factor for the development and progression of the most common age-related diseases and ultimately of death. The results of many studies on long-lived people, espe-cially on centenarians, suggested that healthy old people can cope with inflammaging upregulating the antiin-flammaging responses. Overall, a genetic make-up coding for a strong antiinflammaging response and an age -related ability to remodel key metabolic pathways to cope with a plethora of antigens and stressors seem to be the best ways for reach the extreme limit of human lifespan in health status. In this scenario, we wondered if the antifragility concept, recently developed in the framework of business and risk analysis, could add some information to disentangle the heterogeneous nature of the aging process in human. The antifragility is the property of the complex systems to increase their performances because of high stress. Based on this theory we were wondering if some subjects could be able to modulate faster than others their epigenome to cope with a plethora of stressors during life, probably modulating the inflammatory and anti-inflammatory responses. In this framework, antifragility could share some common mechanisms with anti-inflammaging, modulating the ability to restrain the inflammatory responses, so that antifragility and antiinflammaging could be viewed as different pieces of the same puzzle, both impinging upon the chances to travel along the healthy aging trajectory.
C1 [Olivieri, Fabiola] Univ Politecn Marche, Dept Clin & Mol Sci, DISCLIMO, Ancona, Italy.
[Olivieri, Fabiola] IRCCS INRCA, Clin Med Lab & Precis, Ancona, Italy.
[Prattichizzo, Francesco] IRCCS Multimed, PST, Via Fantoli 16-15, I-20138 Milan, Italy.
[Lattanzio, Fabrizia; Bonfigli, Anna Rita; Spazzafumo, Liana] IRCCS INRCA, Sci Direct, Ancona, Italy.
C3 Marche Polytechnic University; IRCCS INRCA; IRCCS Multimedica; IRCCS
INRCA
RP Olivieri, F (corresponding author), Univ Politecn Marche, Dept Clin & Mol Sci, DISCLIMO, Ancona, Italy.; Olivieri, F (corresponding author), IRCCS INRCA, Clin Med Lab & Precis, Ancona, Italy.
EM f.olivieri@univpm.it
RI Olivieri, Fabiola/K-6465-2016; Prattichizzo, Francesco/J-3046-2018
OI Olivieri, Fabiola/0000-0002-9606-1144; Prattichizzo,
Francesco/0000-0002-2959-2658
FU Italian Ministry of Health (Ricerca Corrente); Universita Politecnica
delle Marche
FX This work was supported by the Italian Ministry of Health (Ricerca
Corrente to IRCCS INRCA and IRCCS MultiMedica) and by Universita
Politecnica delle Marche (RSA grant to FO) .
CR Akushevich I, 2013, EXP GERONTOL, V48, P1395, DOI 10.1016/j.exger.2013.09.005
Anderson RM, 2009, TOXICOL PATHOL, V37, P47, DOI 10.1177/0192623308329476
Arai Y, 2015, EBIOMEDICINE, V2, P1549, DOI 10.1016/j.ebiom.2015.07.029
Aven T, 2015, RISK ANAL, V35, P476, DOI 10.1111/risa.12279
Avogaro A, 2020, DIABETES CARE, V43, P501, DOI 10.2337/dc19-1410
Barth E, 2019, AGING-US, V11, P8556, DOI 10.18632/aging.102345
Beker N, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2020.0094
Bekkering S, 2019, CELL METAB, V30, P1, DOI 10.1016/j.cmet.2019.05.014
Bekkering S, 2014, ARTERIOSCL THROM VAS, V34, P1731, DOI 10.1161/ATVBAHA.114.303887
Bell CG, 2010, BMC MED GENOMICS, V3, DOI 10.1186/1755-8794-3-33
Bender R, 1999, JAMA-J AM MED ASSOC, V281, P1498, DOI 10.1001/jama.281.16.1498
Bonafe M, 2009, MOL CELL ENDOCRINOL, V299, P118, DOI 10.1016/j.mce.2008.10.038
Bouma HR, 2010, VET IMMUNOL IMMUNOP, V136, P319, DOI 10.1016/j.vetimm.2010.03.016
Boyd A, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10092381
Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015
Calabrese EJ, 2022, BIOGERONTOLOGY, V23, P381, DOI 10.1007/s10522-022-09964-z
Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8
Capurso C, 2007, ANN HUM GENET, V71, P843, DOI 10.1111/j.1469-1809.2007.00368.x
Chen Z, 2016, P NATL ACAD SCI USA, V113, pE3002, DOI 10.1073/pnas.1603712113
Chiappelli J, 2021, J AFFECT DISORDERS, V295, P711, DOI 10.1016/j.jad.2021.08.112
Childs BG, 2015, NAT MED, V21, P1424, DOI 10.1038/nm.4000
Cohen AA, 2020, MECH AGEING DEV, V191, DOI 10.1016/j.mad.2020.111316
Cohen AA, 2016, BIOGERONTOLOGY, V17, P205, DOI 10.1007/s10522-015-9584-x
Cohen S, 2018, CIRCULATION, V137, P1334, DOI 10.1161/CIRCULATIONAHA.117.029138
Collado M, 2007, CELL, V130, P223, DOI 10.1016/j.cell.2007.07.003
Colman RJ, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4557
Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635
Danchin A, 2011, GENES-BASEL, V2, P998, DOI 10.3390/genes2040998
de Cabo R, 2019, NEW ENGL J MED, V381, P2541, DOI 10.1056/NEJMra1905136
de Gonzalez AB, 2010, NEW ENGL J MED, V363, P2211, DOI 10.1056/NEJMoa1000367
Divangahi M, 2021, NAT IMMUNOL, V22, P2, DOI 10.1038/s41590-020-00845-6
Dunn GA, 2011, ENDOCRINOLOGY, V152, P2228, DOI 10.1210/en.2010-1461
Edgar L, 2021, CIRCULATION, V144, P961, DOI 10.1161/CIRCULATIONAHA.120.046464
Equihua M, 2020, PEERJ, V8, DOI 10.7717/peerj.8533
Fernandez-Oto C, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.048101
Ferrucci L, 2018, NAT REV CARDIOL, V15, P505, DOI 10.1038/s41569-018-0064-2
Franceschi C, 2000, ANN NY ACAD SCI, V908, P244
Franceschi C, 2007, MECH AGEING DEV, V128, P92, DOI 10.1016/j.mad.2006.11.016
Franceschi C, 2020, J AM COLL CARDIOL, V75, P968, DOI 10.1016/j.jacc.2019.12.032
Franceschi C, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00982
Fulop T, 2020, SEMIN IMMUNOPATHOL, V42, P521, DOI 10.1007/s00281-020-00818-9
Fulop T, 2016, BIOGERONTOLOGY, V17, P147, DOI 10.1007/s10522-015-9615-7
Fulop T, 2018, SEMIN IMMUNOL, V40, P17, DOI 10.1016/j.smim.2018.09.003
Furman D, 2019, NAT MED, V25, P1822, DOI 10.1038/s41591-019-0675-0
Godeau D, 2021, SCAND J WORK ENV HEA, V47, P408, DOI 10.5271/sjweh.3960
Gonzalez B, 2023, GEROSCIENCE, V45, P311, DOI 10.1007/s11357-022-00634-z
Grajower MM, 2019, NUTRIENTS, V11, DOI 10.3390/nu11040873
Gurau F, 2018, AGEING RES REV, V46, P14, DOI 10.1016/j.arr.2018.05.001
Hauptmann Michael, 2020, Journal of the National Cancer Institute Monographs, P188, DOI 10.1093/jncimonographs/lgaa010
Heard E, 2014, CELL, V157, P95, DOI 10.1016/j.cell.2014.02.045
Hemmingsen B, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008143.pub3
Irizar PA, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02395-2
Johnstone SE, 2010, NAT REV GENET, V11, P806, DOI 10.1038/nrg2881
Kaati G, 2002, EUR J HUM GENET, V10, P682, DOI 10.1038/sj.ejhg.5200859
Kaempf JW, 2017, J PERINATOL, V37, P740, DOI 10.1038/jp.2017.7
Kato M, 2019, NAT REV NEPHROL, V15, P327, DOI 10.1038/s41581-019-0135-6
Kizer JR, 2011, J GERONTOL A-BIOL, V66, P1100, DOI 10.1093/gerona/glr098
Ko YA, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-10-r108
Kriete A, 2013, BIOSYSTEMS, V112, P37, DOI 10.1016/j.biosystems.2013.03.014
Kulminski AM, 2011, MECH AGEING DEV, V132, P195, DOI 10.1016/j.mad.2011.03.006
Li H, 2022, BIOMED RES INT, V2022, DOI 10.1155/2022/2810379
Li JY, 2018, PEERJ, V6, DOI 10.7717/peerj.4225
Lio D, 2004, J MED GENET, V41, P790, DOI 10.1136/jmg.2004.019885
Liu RT, 2015, J ABNORM PSYCHOL, V124, P80, DOI 10.1037/abn0000043
Longo VD, 2022, CELL, V185, P1455, DOI 10.1016/j.cell.2022.04.002
de Toda IM, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/4574276
Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013
Matacchione G, 2020, AGEING RES REV, V61, DOI 10.1016/j.arr.2020.101074
Mathews JD, 2013, BMJ-BRIT MED J, V346, DOI 10.1136/bmj.f2360
Mehdi MM, 2021, ARCH GERONTOL GERIAT, V95, DOI 10.1016/j.archger.2021.104413
Miao F, 2014, DIABETES, V63, P1748, DOI 10.2337/db13-1251
Mladenov V, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22137118
Nagareddy PR, 2013, CELL METAB, V17, P695, DOI 10.1016/j.cmet.2013.04.001
Natarajan R, 2021, DIABETES, V70, P328, DOI 10.2337/dbi20-0030
Netea MG, 2020, NAT REV IMMUNOL, V20, P375, DOI 10.1038/s41577-020-0285-6
Neuman Y, 2006, PROG BIOPHYS MOL BIO, V92, P258, DOI 10.1016/j.pbiomolbio.2005.11.001
Olivieri F, 2018, MEDIAT INFLAMM, V2018, DOI 10.1155/2018/9076485
Orellana R, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02309
Ouyang WJ, 2011, ANNU REV IMMUNOL, V29, P71, DOI 10.1146/annurev-immunol-031210-101312
Pavlidis N, 2012, CRIT REV ONCOL HEMAT, V83, P145, DOI 10.1016/j.critrevonc.2011.09.007
Pawelec G, 2020, MECH AGEING DEV, V192, DOI 10.1016/j.mad.2020.111357
Iv LJP, 2022, NUTRITION, V99-100, DOI 10.1016/j.nut.2022.111629
Piraino S, 1996, BIOL BULL-US, V190, P302, DOI 10.2307/1543022
Prattichizzo F, 2020, METABOLISM, V110, DOI 10.1016/j.metabol.2020.154308
Prospero-Garcia OE, 2021, SOC NEUROSCI-UK, V16, P145, DOI 10.1080/17470919.2021.1876759
Rattan SIS, 2022, CURR OPIN TOXICOL, V29, P19, DOI 10.1016/j.cotox.2022.01.001
Rechavi O, 2014, CELL, V158, P277, DOI 10.1016/j.cell.2014.06.020
Rose SMSF, 2019, NAT MED, V25, P792, DOI 10.1038/s41591-019-0414-6
Ryu S, 2021, AGING CELL, V20, DOI 10.1111/acel.13362
Sakaniwa R, 2022, AGE AGEING, V51, DOI 10.1093/ageing/afac080
Salminen A, 2021, J MOL MED, V99, P1, DOI 10.1007/s00109-020-01988-7
Salminen A, 2012, CELL SIGNAL, V24, P835, DOI 10.1016/j.cellsig.2011.12.006
Salvioli S, 2006, FREE RADICAL RES, V40, P1303, DOI 10.1080/10715760600917136
Salvioli S, 2013, CURR PHARM DESIGN, V19, P1675
Sebastiani P, 2017, J GERONTOL A-BIOL, V72, P1453, DOI 10.1093/gerona/glx027
Singh V, 2020, INFLAMMATION, V43, P1589, DOI 10.1007/s10753-020-01242-9
Sivandzade F, 2019, REDOX BIOL, V21, DOI 10.1016/j.redox.2018.11.017
Spazzafumo L, 2013, AGE, V35, P419, DOI 10.1007/s11357-011-9348-8
Stegemann R, 2015, SEMIN CELL DEV BIOL, V43, P131, DOI 10.1016/j.semcdb.2015.04.007
Taleb NN, 2013, QUANT FINANC, V13, P1677, DOI 10.1080/14697688.2013.800219
Taleb N.N., 2012, ANTIFRAGILE THINGS G, P430
Taleb N.N., 2011, EDGE
Taleb NN, 2013, NATURE, V494, P430, DOI 10.1038/494430e
Thiagalingam S, 2020, BBA-REV CANCER, V1873, DOI 10.1016/j.bbcan.2020.188349
Tominaga K, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20205002
Torres GG, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms231810949
Vaiserman A, 2021, BIOGERONTOLOGY, V22, P145, DOI 10.1007/s10522-020-09908-5
Nguyen VK, 2021, LANCET HEALTH LONGEV, V2, pE651, DOI [10.1016/s2666-7568(21)00212-9, 10.1016/S2666-7568(21)00212-9]
Walston JD, 2009, EXP GERONTOL, V44, P350, DOI 10.1016/j.exger.2009.02.004
Woodhead JST, 2021, BBA-GEN SUBJECTS, V1865, DOI 10.1016/j.bbagen.2021.130011
Yashin AI, 2001, J GERONTOL A-BIOL, V56, pB432, DOI 10.1093/gerona/56.10.B432
Yoon TK, 2022, DIABETES METAB J, V46, P402, DOI 10.4093/dmj.2022.0092
Zaccardi F, 2017, DIABETOLOGIA, V60, P240, DOI 10.1007/s00125-016-4162-6
Zimmet P, 2018, NAT REV ENDOCRINOL, V14, P738, DOI 10.1038/s41574-018-0106-1
NR 114
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 1568-1637
EI 1872-9649
J9 AGEING RES REV
JI Ageing Res. Rev.
PD FEB
PY 2023
VL 84
AR 101836
DI 10.1016/j.arr.2022.101836
EA DEC 2022
PG 9
WC Cell Biology; Geriatrics & Gerontology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Cell Biology; Geriatrics & Gerontology
GA 8K6MP
UT WOS:000923213600001
PM 36574863
DA 2023-03-13
ER
PT J
AU Zhang, TT
Shi, M
Yan, H
Li, C
AF Zhang, Tingting
Shi, Mei
Yan, Hao
Li, Cheng
TI Effects of Salicylic Acid on Heavy Metal Resistance in Eukaryotic Algae
and Its Mechanisms
SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
LA English
DT Article
DE Cd2+ pollution; eutrophication; salicylic acid; S. obliquus; C.
pyrenoidosa
AB Heavy metal pollution and water eutrophication are still the main issues to be solved in the environmental field. To find a biological control method for Cd2+-contaminated water or combined eutrophication and Cd2+ pollution water, the effects of salicylic acid on heavy metal Cd2+ resistance in eukaryotic algae Scenedesmus obliquus and Chlorella pyrenoidosa and its mechanisms were studied. The results showed that the inhibition rates of 3.0 mg/L Cd2+ stress group at 96 h were 67.0% on S. obliquus and 61.4% on C. pyrenoidosa and their uptake of Cd2+ was 0.31 mg/g and 0.35 mg/g, respectively. When adding the different concentrations of salicylic acid while stressed by 3.0 mg/L Cd2+, the hormesis phenomenon of low dose stimulation and high dose inhibition could be seen, and the inhibition rates of 30 mg/L similar to 90 mg/L salicylic acid addition groups were significantly lower than those of the Cd2+ stress group alone, which were statistically significant (p < 0.05) and the absorption of Cd2+ was dramatically improved. Except for the 120 mg/L salicylic acid addition group, the chlorophyll fluorescence parameters (Fv/Fm and YII), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) activities of all the other concentration groups were significantly higher than those of the Cd2+ stress group alone, p < 0.05.; the algal cell morphology in low concentration groups (30 mg/L and 60 mg/L) was also less damaged than those in the Cd2+ stress group alone. These indicate that the low concentrations of salicylic acid can counteract or protect the algal cells from Cd2+ attack, the mechanisms, on the one hand, might be related to the chelation of heavy metals by salicylic acid, resulting in the decrease of the toxicity of Cd2+; on the other hand, low concentrations of salicylic acid can stimulate the growth of these two algae, improve their photosynthetic efficiency and antioxidant capacity, as well as maintain the relative integrity of algal morphological structure.
C1 [Zhang, Tingting; Shi, Mei; Yan, Hao; Li, Cheng] Anhui Normal Univ, Sch Life Sci, Wuhu 241000, Peoples R China.
C3 Anhui Normal University
RP Zhang, TT (corresponding author), Anhui Normal Univ, Sch Life Sci, Wuhu 241000, Peoples R China.
EM cyhztt@ahnu.edu.cn
FU National Natural Science Foundation of China [41977402]
FX The authors gratefully acknowledge the financial support provided by the
National Natural Science Foundation of China (No. 41977402).
CR Ajitha V, 2021, ENVIRON SCI POLLUT R, V28, P32475, DOI 10.1007/s11356-021-12950-6
Zamora-Barrios CA, 2019, ENVIRON POLLUT, V249, P267, DOI 10.1016/j.envpol.2019.03.029
Chandrashekharaiah P, 2021, CHEMOSPHERE, V269, DOI 10.1016/j.chemosphere.2020.128755
Cheng SY, 2019, TRENDS BIOTECHNOL, V37, P1255, DOI 10.1016/j.tibtech.2019.04.007
Costa GB, 2019, ENVIRON EXP BOT, V167, DOI 10.1016/j.envexpbot.2019.103818
Danouche M, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104460
Danouche M, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e07609
Exposito N, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18031037
Fan ZQ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19106320
Guo B, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20122960
Guo WJ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19010608
Hu LiJing, 2017, Journal of Southern Agriculture, V48, P169
Huang JC, 2019, ENVIRON INT, V123, P96, DOI 10.1016/j.envint.2018.11.048
Imron MF, 2021, SUSTAIN ENVIRON RES, V31, DOI 10.1186/s42834-021-00088-6
Kadim MK, 2022, EMERG CONTAM, V8, P195, DOI 10.1016/j.emcon.2022.02.003
Lad A, 2022, LIFE-BASEL, V12, DOI 10.3390/life12030418
Li XM, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13060575
Liang Y, 2020, AQUAT ECOL, V54, P243, DOI 10.1007/s10452-019-09739-8
[刘吉祥 Liu Jixiang], 2021, [植物资源与环境学报, Journal of Plant Resources and Environment], V30, P10
Liu JX, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10122653
Liu Lu, 2014, China Environmental Science, V34, P478
Liu Weigan, 2022, Hupo Kexue, V34, P675, DOI 10.18307/2022.0226
Lu S.S., 2020, AGR TECHNOL EQUIP, V5, P9
Moreira VR, 2019, MICROCHEM J, V145, P119, DOI 10.1016/j.microc.2018.10.027
Nowicka B, 2022, ENVIRON SCI POLLUT R, V29, P16860, DOI 10.1007/s11356-021-18419-w
Qin SY, 2022, ENVIRON SCI POLLUT R, V29, P34701, DOI 10.1007/s11356-021-17123-z
Salama ES, 2019, WORLD J MICROB BIOT, V35, DOI 10.1007/s11274-019-2648-3
Suhani I, 2021, CURR OPIN TOXICOL, V27, P1, DOI 10.1016/j.cotox.2021.04.004
Tan KT, 2019, MICROBIOL-SGM, V165, P587, DOI 10.1099/mic.0.000776
Tarhan L, 2016, BIOL PLANTARUM, V60, P163, DOI 10.1007/s10535-015-0570-6
Wang F, 2022, CHEMOSPHERE, V298, DOI 10.1016/j.chemosphere.2022.134245
Wu GX, 2018, J GEN APPL MICROBIOL, V64, P42, DOI 10.2323/jgam.2017.06.001
Yan Hao, 2014, Wei Sheng Yan Jiu, V43, P290
You H.K., 2022, CHINA OILS FATS, DOI [10.19902/j.cnki.zgyz.1003-7969.220126, DOI 10.19902/J.CNKI.ZGYZ.1003-7969.220126]
Zheng Yi, 2019, Environmental Science & Technology (China), V42, P31
Zhu L.Y., 2019, HUNAN AGR SCI, V5, P59
[朱志雄 Zhu Zhixiong], 2020, [海洋湖沼通报, Transactions of Oceanology and Limnology], P131
NR 37
TC 1
Z9 1
U1 9
U2 9
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1660-4601
J9 INT J ENV RES PUB HE
JI Int. J. Environ. Res. Public Health
PD OCT
PY 2022
VL 19
IS 20
AR 13415
DI 10.3390/ijerph192013415
PG 12
WC Environmental Sciences; Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA 5R0ZP
UT WOS:000874248600001
PM 36293995
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Lourdes, GCM
Stephane, D
Maryline, CS
AF Lourdes, Gil-Cardeza Maria
Stephane, Declerck
Maryline, Calonne-Salmon
TI Impact of increasing chromium (VI) concentrations on growth, phosphorus
and chromium uptake of maize plants associated to the mycorrhizal fungus
Rhizophagus irregularis MUCL 41833
SO HELIYON
LA English
DT Article
DE Arbuscular mycorrhizal fungi; Chromium(VI); Phosphorus dynamics;
Chromium dynamics; Phyto-remediation
ID ARBUSCULAR MYCORRHIZA; HEXAVALENT CHROMIUM; CONTAMINATED SOIL; TOXICITY;
GLOMUS; ACCUMULATION; TRANSPORTER; REMEDIATION; RESPONSES
AB Arbuscular mycorhizal fungi (AMF) associated to plants may represent a promising phyto-remediation avenue due to the widely documented role of these fungi in alleviation of numerous abiotic (e.g. heavy metals) stresses. In the present work, it was the objective to study the dynamics of inorganic phosphorus (Pi) and chromium (VI) (Cr(VI))and total Cr uptake by the plant-AMF associates Zea mays thorn R. irregularis MUCL 41833, under increasing (i.e. 0,0.1, 1 and 10 mg L-1) concentrations of Cr(VI). The plant-AMF associates were grown in a circulatory semi-hydroponiccultivation system under greenhouse conditions. We demonstrated that Cr(VI) had an hormesis effecton root colonization of maize. Indeed, at 0.1 and 1 mg L-1 Cr(VI), root colonization was increased by approximately 55% as compared to the control (i.e. in absence of Cr(VI) in the solution), while no difference was noticed at 10 mg L-1 Cr(VI) (P <= 0.05). However, this did not result in an increased uptake of Pi by the AMF-colonizedplants in presence of 0.1 mg L-1 Cr(VI) as compared to the AMF control in absence of Cr(VI) (P <= 0.05). Conversely, the presence of 1 mg L-1 Cr(VI) stimulated the Pi uptake by non-mycorrhizal plants, which absorbed 17% more Pi than their mycorrhizal counterparts (P <= 0.05). In addition, the non-mycorrhizal plants absorbed, in average, 8% more Cr(VI) than the mycorrhizal plants. Overall, our results prompt the hypothesis that in presence of AMF, the regulation of uptake of Cr(VI) and Pi by plant roots is done mostly by the fungus rather than the root cells. This regulated uptake of roots associated to AMF would indicate that the symbiosis could benefit the plants by providing a stable Pi uptake in a Cr(VI) polluted environment.
C1 [Lourdes, Gil-Cardeza Maria] Univ Nacl Rosario, Inst Invest Cs Agr Rosario IICAR, Fac Cs Agr, CONICET,UNR, RA-2123 Campo Exp Villarino, Zavalla, Argentina.
[Stephane, Declerck; Maryline, Calonne-Salmon] Catholic Univ Louvain, Earth & Life Inst, Mycol, 2 Box L7-05-06, B-1348 Louvain La Neuve, Belgium.
C3 Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET);
National University of Rosario; Universite Catholique Louvain
RP Lourdes, GCM (corresponding author), Univ Nacl Rosario, Inst Invest Cs Agr Rosario IICAR, Fac Cs Agr, CONICET,UNR, RA-2123 Campo Exp Villarino, Zavalla, Argentina.
EM lourgilcardeza@gmail.com
OI Calonne, Maryline/0000-0001-6241-6659
FU CONICET; Operational Directorate for Agriculture, Natural Resources and
Environment (DGO3) [D31-1388-S1]
FX M.L. Gil-Cardeza is a researcher at the Consejo Nacional de
Investigaciones Cientificas y Tecnicas (CONICET, Argentina). Her stay at
UCL was financed by CONICET. M. Calonne-Salmon is financed by the
Operational Directorate for Agriculture, Natural Resources and
Environment (DGO3) (2018-2021) for the project MICROSOILSYSTEM:
Reduction of chemical inputs by application of microbial consortia with
bio-stimulant and bio-control effects adapted to soil functioning in
conventional and conservation agriculture - D31-1388-S1).
CR Ali H, 2013, CHEMOSPHERE, V91, P869, DOI 10.1016/j.chemosphere.2013.01.075
Arias JA, 2010, ENVIRON SCI TECHNOL, V44, P7272, DOI 10.1021/es1008664
Benjamin J.G., 2014, OPEN J SOIL SCI, V4, p151?160, DOI [10.4236/ojss.2014.44018, DOI 10.4236/OJSS.2014.44018]
Brundrett MC, 2018, NEW PHYTOL, V220, P1108, DOI 10.1111/nph.14976
Calonne-Salmon M, 2018, MYCORRHIZA, V28, P761, DOI 10.1007/s00572-018-0861-9
Cornejo P, INTA ED ARGENTINA, pP407
Cranenbrouck S, 2005, SOIL BIOL, V4, P341
Davies FT, 2001, J PLANT PHYSIOL, V158, P777, DOI 10.1078/0176-1617-00311
de Oliveira LM, 2016, CHEMOSPHERE, V147, P36, DOI 10.1016/j.chemosphere.2015.12.088
Declerck S, 1998, MYCOLOGIA, V90, P579, DOI 10.2307/3761216
Dhal B, 2013, J HAZARD MATER, V250, P272, DOI 10.1016/j.jhazmat.2013.01.048
DODD JC, 1987, NEW PHYTOL, V107, P163, DOI 10.1111/j.1469-8137.1987.tb04890.x
Fargasova A, 2012, ECOTOXICOLOGY, V21, P1476, DOI 10.1007/s10646-012-0901-8
Ferrol N, 2016, J EXP BOT, V67, P6253, DOI 10.1093/jxb/erw403
Fiorilli V, 2013, PLANTA, V237, P1267, DOI 10.1007/s00425-013-1842-z
Galan E., 2008, MACLA REV SOC ESP MI, V10, P48
Garces-Ruiz M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01471
Gil-Cardeza ML, 2018, SCI TOTAL ENVIRON, V625, P1113, DOI 10.1016/j.scitotenv.2017.12.278
Gil-Cardeza ML, 2014, SCI TOTAL ENVIRON, V493, P828, DOI 10.1016/j.scitotenv.2014.06.080
Giovannetti M, 2014, NEW PHYTOL, V204, P609, DOI 10.1111/nph.12949
Guo W, 2013, APPL SOIL ECOL, V72, P85, DOI 10.1016/j.apsoil.2013.06.001
Hermans C, 2006, TRENDS PLANT SCI, V11, P610, DOI 10.1016/j.tplants.2006.10.007
Hoagland DR., 1950, CALIF AES C, V347, P32, DOI DOI 10.1016/S0140-6736(00)73482-9
Jagupilla SC, 2009, J HAZARD MATER, V168, P121, DOI 10.1016/j.jhazmat.2009.02.012
James BR, 1996, ENVIRON SCI TECHNOL, V30, pA248, DOI 10.1021/es962269h
JAMES BR, 1995, ENVIRON SCI TECHNOL, V29, P2377, DOI 10.1021/es00009a033
Jarup L, 2003, BRIT MED BULL, V68, P167, DOI 10.1093/bmb/ldg032
Kalra A, 2013, ENV SCI, V13, P2098
Keymer A, 2017, ELIFE, V6, DOI [10.7554/eLife.29107.001, 10.7554/eLife.29107]
Khan AG, 2001, ENVIRON INT, V26, P417, DOI 10.1016/S0160-4120(01)00022-8
Kleiman ID, 1997, ENVIRON POLLUT, V97, P131, DOI 10.1016/S0269-7491(97)00063-8
Krishnamoorthy R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128784
Labidi S, 2011, PHYTOCHEMISTRY, V72, P2335, DOI 10.1016/j.phytochem.2011.08.016
Gil-Cardeza ML, 2017, CHEMOSPHERE, V187, P27, DOI 10.1016/j.chemosphere.2017.08.079
LOWRY OH, 1951, J BIOL CHEM, V193, P265
Luginbuehl LH, 2017, SCIENCE, V356, P1175, DOI 10.1126/science.aan0081
Maiti Saborni, 2012, Braz. J. Plant Physiol., V24, P203, DOI 10.1590/S1677-04202012000300007
Meier S, 2012, CRIT REV ENV SCI TEC, V42, P741, DOI 10.1080/10643389.2010.528518
Moon DH, 2009, J HAZARD MATER, V166, P27, DOI 10.1016/j.jhazmat.2008.09.079
Panda J, 2012, ENVIRON SCI POLLUT R, V19, P1809, DOI 10.1007/s11356-011-0702-2
Parniske M, 2008, NAT REV MICROBIOL, V6, P763, DOI 10.1038/nrmicro1987
Plenchette C, 1996, BIOL FERT SOILS, V21, P303, DOI 10.1007/BF00334907
Plouznikoff K, 2016, SIGNAL COMMUN PLANTS, P341, DOI 10.1007/978-3-319-42319-7_15
Qi YL, 2019, GLOB ECOL CONSERV, V18, DOI 10.1016/j.gecco.2019.e00606
Qian HF, 2013, CHEMOSPHERE, V93, P885, DOI 10.1016/j.chemosphere.2013.05.035
Schneider J, 2013, J HAZARD MATER, V262, P1105, DOI 10.1016/j.jhazmat.2012.09.063
SEN R, 1986, SOIL BIOL BIOCHEM, V18, P29, DOI 10.1016/0038-0717(86)90099-4
Shahid M, 2017, CHEMOSPHERE, V178, P513, DOI 10.1016/j.chemosphere.2017.03.074
Shanker AK, 2005, ENVIRON INT, V31, P739, DOI 10.1016/j.envint.2005.02.003
Smith FA, 2015, NEW PHYTOL, V205, P1381, DOI 10.1111/nph.13202
Taboada M.A., 2018, BIORREMEDIACION RECU, P12
Taiz L., 2010, PLANT PHYSIOL, P106
Walker C., 2005, INOCULUM, V56, P68
Wu SL, 2014, ENVIRON TOXICOL CHEM, V33, P2105, DOI 10.1002/etc.2661
Wu SL, 2019, SOIL ECOL LETT, V1, P94, DOI 10.1007/s42832-019-0015-9
Wu SL, 2016, J HAZARD MATER, V316, P34, DOI 10.1016/j.jhazmat.2016.05.017
Zarei M, 2010, ENVIRON POLLUT, V158, P2757, DOI 10.1016/j.envpol.2010.04.017
NR 57
TC 4
Z9 4
U1 10
U2 25
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
EI 2405-8440
J9 HELIYON
JI Heliyon
PD JAN
PY 2021
VL 7
IS 1
AR e05891
DI 10.1016/j.heliyon.2020.e05891
EA JAN 2021
PG 10
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA QH1NV
UT WOS:000618044100008
PM 33474511
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Dabney, BL
Patino, R
AF Dabney, Brittanie L.
Patino, Reynaldo
TI Low-dose stimulation of growth of the harmful alga, Prymnesium parvum,
by glyphosate and glyphosate-based herbicides
SO HARMFUL ALGAE
LA English
DT Article
DE N-(phosphonomethyl) glycine; Phosphonate; Golden alga; HAB; Hormesis
ID COMMUNITY STRUCTURE; RISK-ASSESSMENT; WATER; BLOOMS; IMPACT; ECOSYSTEM;
EUTROPHICATION; CYANOBACTERIA; PRODUCTIVITY; INSECTICIDES
AB Glyphosate-based herbicides (GBH) are widely used around the globe. While generally toxic to phototrophs, organic phosphorus in glyphosate can become available to glyphosate-resistant phytoplankton and contribute to algal bloom development. Few studies have examined the effects of GBH on growth of eukaryotic microalgae and information for the toxic bloom-forming haptophyte, Prymnesium parvum, is limited. Using a batch-culture system, this study examined the effects on P. parvum growth of a single application of Roundup Weed and Grass Killer Super Concentrate Plus (R) (Roundup SC), Roundup Weed and Grass Killer Ready-to-Use III (R) (Roundup RtU), and technical-grade glyphosate at low concentrations [0-1000 mu g glyphosate acid equivalent (ae) l(-1)]. Roundup formulations differ in the percent of glyphosate as active ingredient (Roundup SC, similar to 50%; Roundup RtU, 2%), allowing indirect evaluation of the influence of inactive ingredients. Roundup SC enhanced exponential growth rate at 10-1000 mu g glyphosate ae l-1, and a positive monotonic association was noted between Roundup SC concentration and early (pre-exponential growth) but not maximum cell density. Glyphosate and both Roundup formulations enhanced growth rate at 100 mu g glyphosate l(-1), but only Roundup SC and glyphosate significantly stimulated early and maximum density. This observation suggests the higher concentration of inactive ingredients and other compounds in Roundup RtU partially counteracts glyphosate-dependent growth stimulation. When phosphate concentration was varied while maintaining other conditions constant, addition of Roundup SC and glyphosate at 100 mu g l(-1) influenced growth more strongly than equivalent changes in phosphate-associated phosphorus. It appears, therefore, that low doses of glyphosate stimulate growth by mechanisms unrelated to the associated small increases in total phosphorus. In conclusion, glyphosate and GBH stimulate P. parvum growth at low, environmentally relevant concentrations. This finding raises concerns about the potential contribution to P. parvum blooms by glyphosate-contaminated runoff or by direct application of GBH to aquatic environments.
C1 [Dabney, Brittanie L.] Texas Tech Univ, Dept Environm Toxicol, Lubbock, TX 79409 USA.
[Dabney, Brittanie L.] Texas Tech Univ, Texas Cooperat Fish & Wildlife Res Unit, Lubbock, TX 79409 USA.
[Patino, Reynaldo] US Geol Survey, Texas Cooperat Fish & Wildlife Res Unit, Lubbock, TX 79409 USA.
[Patino, Reynaldo] Texas Tech Univ, Dept Nat Resources Management, Lubbock, TX 79409 USA.
[Patino, Reynaldo] Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA.
C3 Texas Tech University System; Texas Tech University; Texas Tech
University System; Texas Tech University; United States Department of
the Interior; United States Geological Survey; Texas Tech University
System; Texas Tech University; Texas Tech University System; Texas Tech
University
RP Patino, R (corresponding author), US Geol Survey, Texas Cooperat Fish & Wildlife Res Unit, Lubbock, TX 79409 USA.; Patino, R (corresponding author), Texas Tech Univ, Dept Nat Resources Management, Lubbock, TX 79409 USA.; Patino, R (corresponding author), Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA.
EM Reynaldo.patino@ttu.edu
RI Dabney, Brittanie/ABC-7423-2020
FU U.S. Geological Survey, Texas Tech University; Texas Parks and Wildlife
Department; Wildlife Management Institute; U.S. Fish and Wildlife
Service; Texas Tech University
FX Dr. Rick Relyea provided a detailed critique of an early draft of this
manuscript. The Texas Cooperative Fish and Wildlife Research Unit is
jointly supported by U.S. Geological Survey, Texas Tech University,
Texas Parks and Wildlife Department, The Wildlife Management Institute,
and U.S. Fish and Wildlife Service. This study was supported by Texas
Tech University intramural funds. Any use of trade, firm, or product
names is for descriptive purposes only and does not imply endorsement by
the U.S. Government. [SS]
CR Anderson C. R., 2015, COASTAL MARINE HAZAR, P495, DOI [10.1016/b978-0-12-396483-0.00017-0, DOI 10.1016/B978-0-12-396483-0.00017-0]
Anderson DM, 2002, ESTUARIES, V25, P704, DOI 10.1007/BF02804901
Battaglin WA, 2014, J AM WATER RESOUR AS, V50, P275, DOI 10.1111/jawr.12159
Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726
Benbrook CM, 2016, ENVIRON SCI EUR, V28, DOI 10.1186/s12302-016-0070-0
Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523
Brooks BW, 2010, J AM WATER RESOUR AS, V46, P45, DOI 10.1111/j.1752-1688.2009.00390.x
Burkholder JM, 2008, HARMFUL ALGAE, V8, P77, DOI 10.1016/j.hal.2008.08.010
Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223
Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x
Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002
Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016
Daouk S, 2013, ENVIRON TOXICOL CHEM, V32, P2035, DOI 10.1002/etc.2276
Dolger J, 2017, SCI REP-UK, V7, DOI 10.1038/srep39892
Drzyzga D, 2018, J APPL PHYCOL, V30, P299, DOI 10.1007/s10811-017-1231-2
Duke SO, 2018, PEST MANAG SCI, V74, P1027, DOI 10.1002/ps.4652
Fistarol GO, 2003, MAR ECOL PROG SER, V255, P115, DOI 10.3354/meps255115
Forlani G, 2008, PLANT CELL PHYSIOL, V49, P443, DOI 10.1093/pcp/pcn021
Gattas F, 2016, ENVIRON SCI POLLUT R, V23, P18869, DOI 10.1007/s11356-016-7005-6
Giesy JP, 2000, REV ENVIRON CONTAM T, V167, P35
Graneli E, 2003, HARMFUL ALGAE, V2, P135, DOI 10.1016/S1568-9883(03)00006-4
Graneli E, 2003, MAR ECOL PROG SER, V254, P49, DOI 10.3354/meps254049
Grube A, 2011, PESTICIDES IND SALES
Guillard R. R. L., 1973, HDB PHYCOLOGICAL MET, P290
Guillard RR., 1975, CULTURE MARINE INVER, P29, DOI DOI 10.1007/978-1-4615-8714-9_3
Guyton KZ, 2015, LANCET ONCOL, V16, P490, DOI 10.1016/S1470-2045(15)70134-8
Hanke I, 2010, CHEMOSPHERE, V81, P422, DOI 10.1016/j.chemosphere.2010.06.067
Ho JC, 2017, J GREAT LAKES RES, V43, P221, DOI 10.1016/j.jglr.2017.04.001
Israel NMD, 2014, HARMFUL ALGAE, V39, P81, DOI 10.1016/j.hal.2014.06.012
Lipok J, 2007, ENZYME MICROB TECH, V41, P286, DOI 10.1016/j.enzmictec.2007.02.004
Lipok J, 2010, ECOTOX ENVIRON SAFE, V73, P1681, DOI 10.1016/j.ecoenv.2010.08.017
Lutz-Carrillo DJ, 2010, J AM WATER RESOUR AS, V46, P24, DOI 10.1111/j.1752-1688.2009.00388.x
Mahler BJ, 2017, SCI TOTAL ENVIRON, V579, P149, DOI 10.1016/j.scitotenv.2016.10.236
Michaloudi E, 2009, J PLANKTON RES, V31, P301, DOI 10.1093/plankt/fbn114
Myers JP, 2016, ENVIRON HEALTH-GLOB, V15, DOI 10.1186/s12940-016-0117-0
Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606
O'Neil JM, 2012, HARMFUL ALGAE, V14, P313, DOI 10.1016/j.hal.2011.10.027
Perez GL, 2007, ECOL APPL, V17, P2310, DOI 10.1890/07-0499.1
Peruzzo PJ, 2008, ENVIRON POLLUT, V156, P61, DOI 10.1016/j.envpol.2008.01.015
Pizarro H, 2016, ENVIRON SCI POLLUT R, V23, P5143, DOI 10.1007/s11356-015-5748-0
Pollegioni L, 2011, FEBS J, V278, P2753, DOI 10.1111/j.1742-4658.2011.08214.x
Qiu HM, 2013, J HAZARD MATER, V248, P172, DOI 10.1016/j.jhazmat.2012.12.033
Rashel RH, 2017, HARMFUL ALGAE, V66, P97, DOI 10.1016/j.hal.2017.05.010
Relyea RA, 2005, ECOL APPL, V15, P618, DOI 10.1890/03-5342
Roelke DL, 2016, HYDROBIOLOGIA, V764, P29, DOI DOI 10.1007/s10750-015-2273-6
Saxton MA, 2011, J GREAT LAKES RES, V37, P683, DOI 10.1016/j.jglr.2011.07.004
Schindler DW, 2006, LIMNOL OCEANOGR, V51, P356, DOI 10.4319/lo.2006.51.1_part_2.0356
SCHINDLER DW, 1987, CAN J FISH AQUAT SCI, V44, P6
Vera MS, 2012, ECOTOXICOLOGY, V21, P1805, DOI 10.1007/s10646-012-0915-2
Solomon KR, 2003, J TOXICOL ENV HEAL B, V6, P289, DOI 10.1080/10937400306468
Southard GM, 2010, J AM WATER RESOUR AS, V46, P14, DOI 10.1111/j.1752-1688.2009.00387.x
Svendsen MBS, 2018, FISHES-BASEL, V3, DOI 10.3390/fishes3010011
Thompson DG, 2006, ECOL APPL, V16, P2022, DOI 10.1890/1051-0761(2006)016[2022:TIOIAH]2.0.CO;2
Tsui MTK, 2003, CHEMOSPHERE, V52, P1189, DOI 10.1016/S0045-6535(03)00306-0
Uronen P, 2005, MAR ECOL PROG SER, V299, P137, DOI 10.3354/meps299137
Van Bruggen AHC, 2018, SCI TOTAL ENVIRON, V616, P255, DOI 10.1016/j.scitotenv.2017.10.309
VanLandeghem MM, 2015, J AM WATER RESOUR AS, V51, P487, DOI 10.1111/jawr.12261
Vera MS, 2010, ECOTOXICOLOGY, V19, P710, DOI 10.1007/s10646-009-0446-7
Wang C., 2016, PLOS ONE, V11
Wehtje G, 2009, WEED TECHNOL, V23, P544, DOI 10.1614/WT-08-044.1
Wong PK, 2000, CHEMOSPHERE, V41, P177, DOI 10.1016/S0045-6535(99)00408-7
Wood A.M., 2005, ALGAL CULTURING TECH, P269, DOI DOI 10.1016/B978-012088426-1/50019-6
Yates BS, 2011, ECOTOXICOLOGY, V20, P2003, DOI 10.1007/s10646-011-0742-x
NR 63
TC 18
Z9 22
U1 9
U2 89
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1568-9883
EI 1878-1470
J9 HARMFUL ALGAE
JI Harmful Algae
PD DEC
PY 2018
VL 80
BP 130
EP 139
DI 10.1016/j.hal.2018.11.004
PG 10
WC Marine & Freshwater Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Marine & Freshwater Biology
GA HE7ME
UT WOS:000453621000013
PM 30502805
DA 2023-03-13
ER
PT J
AU Duarte-Sierra, A
Nadeau, F
Angers, P
Michaud, D
Arul, J
AF Duarte-Sierra, Arturo
Nadeau, Francoise
Angers, Paul
Michaud, Dominique
Arul, Joseph
TI UV-C hormesis in broccoli florets: Preservation, phyto-compounds and
gene expression
SO POSTHARVEST BIOLOGY AND TECHNOLOGY
LA English
DT Article
DE UV-C radiation; Broccoli; Preservation; Amino acids; Glucosinolates;
Phenolic compounds; Phytochemicals
ID ASCORBIC-ACID CONTENT; BRASSICA-OLERACEA; BOTRYTIS-CINEREA;
PHYSIOLOGICAL-BASIS; INDUCED RESISTANCE; TOMATO FRUIT;
ULTRAVIOLET-LIGHT; POSTHARVEST QUALITY; OXIDATIVE STRESS; VAR. ITALICA
AB The effect of pre-storage exposure to ultra-violet radiation (UV-C) on preservation of broccoli (Brassica oleraceae var. Italica) florets and glucosinolates, phenolic acids and their precursor amino acids as well the expression of genes related to the biosynthetic pathways of glucosinolates and phenolic compounds in broccoli stored at 4 degrees C and 90-95% HR was investigated. The UV-C dose of 1.2 kJ m(-2) was found to be hormetic in delaying the yellowing and in lowering the weight loss of broccoli florets during storage. The time-averages over the storage period of both ascorbic acid titer and ORAC (oxygen radical absorbance capacity) value of the tissue exposed to hormetic dose of 1.2 kJ Im(-2) or a high dose of 3.0 kJ m(-2) were lower. The overexpression of genes (phenylalanine N-hydroxylase, tryptophan N-hydroxylase, dihomo-methionine N-hydroxylase and flavonoid monooxygenase) in UV-C exposed broccoli, hours after exposure (0 d), and that of chalcone synthase and coumarate ligase was observed on day 0, 2 and 4. The titers of glucosinolate-precursor amino acids, methionine, tryptophan and phenylalanine in tissue were dose-dependent, where the doses of 1.2 and 3.0 kJ m(-2) UV-C caused a decrease in their concentrations compared to the control. Hormetic dose of UV-C significantly increased the concentration of total glucobrassicins and 4-hydroxyglucobrassicin. In addition, UV-C treated florets with the dose of 1.2 or 3.0 kJ m(-2) contained a higher level of hydroxycinnamic acids in broccoli compared to the control during the storage. The results suggest that the application of hormetic dose of UV-C can be beneficial in maintaining not only the quality of broccoli florets, but also in enhancing the phyto-compounds during the low-temperature storage.
C1 [Duarte-Sierra, Arturo; Nadeau, Francoise; Angers, Paul; Michaud, Dominique; Arul, Joseph] Laval Univ, Dept Food Sci & Hort Res Ctr, Quebec City, PQ G1V 0A6, Canada.
[Duarte-Sierra, Arturo] Inst Tecnol Sonora, Dept Biotechnol & Food Sci, Obregon 85130, Sonora, Mexico.
C3 Laval University
RP Arul, J (corresponding author), Laval Univ, Dept Food Sci & Hort Res Ctr, Quebec City, PQ G1V 0A6, Canada.
EM joseph.arul@fsaa.ulaval.ca
OI Duarte-Sierra, Arturo/0000-0002-8215-9597
FU Natural Science and Engineering Research Council (NSERC); Quebec
Ministry of Agriculture, Fisheries and Food (MAPAQ); National Council of
Science and Technology of Mexico (CONACyT)
FX This study was supported by the Natural Science and Engineering Research
Council (NSERC) and the Quebec Ministry of Agriculture, Fisheries and
Food (MAPAQ). Arturo Duarte-Sierra acknowledges the award of scholarship
from the National Council of Science and Technology of Mexico (CONACyT).
CR Abdel-Farid IB, 2010, BIOCHEM SYST ECOL, V38, P612, DOI 10.1016/j.bse.2010.07.008
Acosta-Estrada BA, 2014, FOOD CHEM, V152, P46, DOI 10.1016/j.foodchem.2013.11.093
Agati G, 2012, PLANT SCI, V196, P67, DOI 10.1016/j.plantsci.2012.07.014
Agrawal GK, 2003, BIOCHEM BIOPH RES CO, V310, P1073, DOI 10.1016/j.bbrc.2003.09.123
Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701
Arul J, 2001, PHYSICAL CONTROL METHODS IN PLANT PROTECTION, P146
Baka M, 1997, PHOTOCHEMICAL THERAP
Barka EA, 2000, AUST J PLANT PHYSIOL, V27, P147
Barka EA, 2000, J AGR FOOD CHEM, V48, P667, DOI 10.1021/jf9906174
Martinez-Hernandez GB, 2011, POSTHARVEST BIOL TEC, V62, P327, DOI 10.1016/j.postharvbio.2011.06.015
BENYEHOSHUA S, 1992, J AGR FOOD CHEM, V40, P1217, DOI 10.1021/jf00019a029
Bintsis T, 2000, J SCI FOOD AGR, V80, P637, DOI 10.1002/(SICI)1097-0010(20000501)80:6<637::AID-JSFA603>3.0.CO;2-1
Boscaiu M, 2013, J PLANT ECOL, V6, P177, DOI 10.1093/jpe/rts017
Burg MB, 2008, J BIOL CHEM, V283, P7309, DOI 10.1074/jbc.R700042200
Cabello-Hurtado F, 2012, FOOD CHEM, V132, P1003, DOI 10.1016/j.foodchem.2011.11.086
Cartea ME, 2011, MOLECULES, V16, P251, DOI 10.3390/molecules16010251
Charles M. T., 2007, Stewart Postharvest Review, V3, P6, DOI 10.2212/spr.2007.3.6
Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P10, DOI 10.1016/j.postharvbio.2007.05.013
Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P21, DOI 10.1016/j.postharvbio.2007.05.014
Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019
Charles MT, 2009, POSTHARVEST BIOL TEC, V51, P414, DOI 10.1016/j.postharvbio.2008.08.016
Crupi P, 2013, FOOD CHEM, V141, P802, DOI 10.1016/j.foodchem.2013.03.055
Diaz C, 2005, PLANT PHYSIOL, V138, P898, DOI 10.1104/pp.105.060764
Duarte-Sierra A, 2017, POSTHARVEST BIOL TEC, V128, P44, DOI 10.1016/j.postharvbio.2017.01.017
Fredericks IN, 2011, FOOD MICROBIOL, V28, P510, DOI 10.1016/j.fm.2010.10.018
Gergoff G, 2010, PLANT SCI, V178, P207, DOI 10.1016/j.plantsci.2009.12.003
GNANASEKHARAN V, 1992, J FOOD SCI, V57, P149, DOI 10.1111/j.1365-2621.1992.tb05444.x
Gonda I, 2010, J EXP BOT, V61, P1111, DOI 10.1093/jxb/erp390
Gonzalez-Aguilar GA, 2007, POSTHARVEST BIOL TEC, V45, P108, DOI 10.1016/j.postharvbio.2007.01.012
Halkier BA, 2006, ANNU REV PLANT BIOL, V57, P303, DOI 10.1146/annurev.arplant.57.032905.105228
Joshi V, 2009, PLANT PHYSIOL, V151, P367, DOI 10.1104/pp.109.138651
Kaplan F, 2004, PLANT PHYSIOL, V136, P4159, DOI 10.1104/pp.104.052142
Katerova Z., 2013, GENET PLANT PHYSL, V2, P113
Klepacka J, 2011, PLANT FOOD HUM NUTR, V66, P64, DOI 10.1007/s11130-010-0205-1
Lee J, 2005, J AGR FOOD CHEM, V53, P9105, DOI 10.1021/jf051221x
Lemoine ML, 2007, J SCI FOOD AGR, V87, P1132, DOI 10.1002/jsfa.2826
Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7
Maharaj R., 2010, Advances in Environmental Biology, V4, P308
Maharaj R, 2014, INNOV FOOD SCI EMERG, V21, P99, DOI 10.1016/j.ifset.2013.10.001
MAKHLOUF J, 1990, SCI HORTIC-AMSTERDAM, V42, P9, DOI 10.1016/0304-4238(90)90143-3
Mditshwa A, 2017, J FOOD SCI TECH MYS, V54, P3025, DOI 10.1007/s13197-017-2802-6
MERCIER J, 1993, J PHYTOPATHOL, V139, P17, DOI 10.1111/j.1439-0434.1993.tb01397.x
MERCIER J, 1993, J PHYTOPATHOL, V137, P44, DOI 10.1111/j.1439-0434.1993.tb01324.x
Mewis I, 2012, PLANT CELL PHYSIOL, V53, P1546, DOI 10.1093/pcp/pcs096
Nadeau F, 2012, ACTA HORTIC, V945, P145
Obata T, 2012, CELL MOL LIFE SCI, V69, P3225, DOI 10.1007/s00018-012-1091-5
Perkins-Veazie P, 2008, POSTHARVEST BIOL TEC, V47, P280, DOI 10.1016/j.postharvbio.2007.08.002
Pombo MA, 2011, POSTHARVEST BIOL TEC, V59, P94, DOI 10.1016/j.postharvbio.2010.08.003
Rangkadilok N, 2002, J AGR FOOD CHEM, V50, P7386, DOI 10.1021/jf0203592
REED DW, 1982, J AM SOC HORTIC SCI, V107, P417
Robbins RJ, 2005, J MED FOOD, V8, P204, DOI 10.1089/jmf.2005.8.204
Rybarczyk-Plonska A, 2016, POSTHARVEST BIOL TEC, V116, P16, DOI 10.1016/j.postharvbio.2015.12.010
Selmar D, 2013, PLANT CELL PHYSIOL, V54, P817, DOI 10.1093/pcp/pct054
Severo J, 2015, POSTHARVEST BIOL TEC, V102, P9, DOI 10.1016/j.postharvbio.2015.02.001
Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001
Shama G, 2007, POSTHARVEST BIOL TEC, V44, P1, DOI 10.1016/j.postharvbio.2006.11.004
Sheng KL, 2018, POSTHARVEST BIOL TEC, V138, P74, DOI 10.1016/j.postharvbio.2018.01.002
Sonderby IE, 2010, TRENDS PLANT SCI, V15, P283, DOI 10.1016/j.tplants.2010.02.005
STAPLETON AE, 1992, PLANT CELL, V4, P1353, DOI 10.1105/tpc.4.11.1353
Stevens C, 1998, CROP PROT, V17, P75, DOI 10.1016/S0261-2194(98)80015-X
Stevens C, 1996, CROP PROT, V15, P129, DOI 10.1016/0261-2194(95)00082-8
Stewart R. F., 2008, ENCY ECOLOGY, P2682, DOI [10.1016/B978-008045405-4.00417-1, DOI 10.1016/B978-008045405-4.00417-1]
Techavuthiporn C, 2008, POSTHARVEST BIOL TEC, V47, P373, DOI 10.1016/j.postharvbio.2007.07.007
Textor S, 2009, PHYTOCHEM REV, V8, P149, DOI 10.1007/s11101-008-9117-1
Tiecher A, 2013, POSTHARVEST BIOL TEC, V86, P230, DOI 10.1016/j.postharvbio.2013.07.016
Tiwari BS, 2002, PLANT PHYSIOL, V128, P1271, DOI 10.1104/pp.010999
Vallejo F, 2003, J AGR FOOD CHEM, V51, P3029, DOI 10.1021/jf021065j
Wang YX, 2011, AGR ECOSYST ENVIRON, V141, P271, DOI 10.1016/j.agee.2011.03.017
Wu J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04778-3
Xu YQ, 2017, J AGR FOOD CHEM, V65, P9970, DOI 10.1021/acs.jafc.7b04252
Yoshida A, 2010, FOOD SCI TECHNOL RES, V16, P215, DOI 10.3136/fstr.16.215
YYSTA L, 2006, POSTHARVEST BIOL TEC, V39, P204, DOI DOI 10.1016/J.POSTHARVBIO.2005.10.012
ZHUANG H, 1995, J AGR FOOD CHEM, V43, P2585, DOI 10.1021/jf00058a006
NR 73
TC 23
Z9 25
U1 6
U2 49
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0925-5214
EI 1873-2356
J9 POSTHARVEST BIOL TEC
JI Postharvest Biol. Technol.
PD NOV
PY 2019
VL 157
AR 110965
DI 10.1016/j.postharvbio.2019.110965
PG 10
WC Agronomy; Food Science & Technology; Horticulture
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture; Food Science & Technology
GA IW1VM
UT WOS:000484758500007
DA 2023-03-13
ER
PT J
AU McGinnis, M
Sun, CL
Dudley, S
Gan, J
AF McGinnis, Michelle
Sun, Chengliang
Dudley, Stacia
Gan, Jay
TI Effect of low-dose, repeated exposure of contaminants of emerging
concern on plant development and hormone homeostasis
SO ENVIRONMENTAL POLLUTION
LA English
DT Article
DE Contaminants of emerging concern; Plant uptake; Recycled water;
Phytohormones; Phytotoxicity
ID PERSONAL CARE PRODUCTS; WATER TREATMENT PLANTS; DETOXIFICATION
MECHANISMS; HUMAN PHARMACEUTICALS; BIOSOLIDS; GROWTH; PPCPS;
OXYTETRACYCLINE; METABOLITES; TRICLOSAN
AB Treated wastewater is increasingly used to meet agriculture's water needs; however, treated wastewater contains numerous contaminants of emerging concern (CECs). With exposure and uptake of CECs, phytotoxicity and health of crop plants is of concern, but is poorly understood. This study evaluated the effect of low-dose, chronic exposure to a mixture of 10 CECs, including 4 antibiotics, 3 anti-inflammatory drugs, 1 antiepileptic, 1 beta-blocker, and 1 antimicrobial, on lettuce (Lactuca sativa) and cucumber (Cucumis sativa L.) plants. The CEC mixture was added in nutrient media at 1 to 20X of their typical levels in treated wastewater effluents. Biological endpoints including germination, growth, phytohormone homeostasis, and CEC bioaccumulation were determined. Exposure to the CEC mixture did not affect the germination rate of lettuce seeds, but stimulated root elongation and increased the root-to-shoot biomass ratio during a 7 d cultivation. A dose-dependent decrease in biomass was observed in cucumber seedling after a 30 d exposure, with the highest rate CEC treatment resulting in decreases of 51.2 +/- 20.9, 26.3 +/- 34.1, and 33.2 +/- 41.7% in the below-ground, above-ground, and total biomass, respectively. Levels of abscisic acid were significantly elevated (p < 0.05) in the leaves, but decreased (p < 0.05) in the roots. The dose-response of auxin was characterized by a hormesis effect. A significant 6-fold increase in the stem auxin level was observed at the 1X CEC rate, followed by a decrease to 2-fold the control at the 20X rate. Leaf auxin concentrations also significantly increased at the 1X CEC rate to 16-fold, followed by a decrease at the highest CEC rate. The results of this study suggeste that chronic exposure to low levels of CEC mixtures may compromise the fitness of plants, and the impairments are underlined by alterations in hormone balances. (C) 2019 Elsevier Ltd. All rights reserved.
C1 [McGinnis, Michelle; Sun, Chengliang; Dudley, Stacia; Gan, Jay] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA.
[Dudley, Stacia] Univ Calif Riverside, Grad Program Environm Toxicol, Riverside, CA 92521 USA.
C3 University of California System; University of California Riverside;
University of California System; University of California Riverside
RP Gan, J (corresponding author), Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA.
EM jgan@ucr.edu
FU U.S. Environmental Protection Agency [835829]; USDA-National Institute
of Food and Agriculture [2018-67019-27800]
FX This research was supported by the U.S. Environmental Protection Agency
(Grant No. 835829) and USDA-National Institute of Food and Agriculture
(Award No. 2018-67019-27800).
CR Ahammed G J, 2016, PLANT HORMONES CHALL, P1
[Anonymous], 2006, FRONT BIOL CHINA, DOI DOI 10.1007/S11515-006-0039-2
Archer E, 2017, CHEMOSPHERE, V174, P437, DOI 10.1016/j.chemosphere.2017.01.101
BATCHELDER AR, 1982, J ENVIRON QUAL, V11, P675, DOI 10.2134/jeq1982.00472425001100040023x
Boyd GR, 2003, SCI TOTAL ENVIRON, V311, P135, DOI 10.1016/S0048-9697(03)00138-4
Burns EE, 2017, ENVIRON TOXICOL CHEM, V36, P2823, DOI 10.1002/etc.3842
Carter LJ, 2015, ENVIRON SCI TECHNOL, V49, P12509, DOI 10.1021/acs.est.5b03468
Christou A, 2018, ENVIRON INT, V114, P360, DOI 10.1016/j.envint.2018.03.003
Christou A, 2016, SCI TOTAL ENVIRON, V557, P652, DOI 10.1016/j.scitotenv.2016.03.054
Du LF, 2012, AGRON SUSTAIN DEV, V32, P309, DOI 10.1007/s13593-011-0062-9
Herklotz PA, 2010, CHEMOSPHERE, V78, P1416, DOI 10.1016/j.chemosphere.2009.12.048
Holling CS, 2012, J ENVIRON MONITOR, V14, P3029, DOI 10.1039/c2em30456b
Jones-Lepp TL, 2007, ANAL BIOANAL CHEM, V387, P1173, DOI 10.1007/s00216-006-0942-z
Kinney CA, 2006, ENVIRON TOXICOL CHEM, V25, P317, DOI 10.1897/05-187R.1
Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j
Kostich MS, 2014, ENVIRON POLLUT, V184, P354, DOI 10.1016/j.envpol.2013.09.013
Li ZJ, 2011, AGR SCI CHINA, V10, P1545, DOI 10.1016/S1671-2927(11)60150-8
Lishman L, 2006, SCI TOTAL ENVIRON, V367, P544, DOI 10.1016/j.scitotenv.2006.03.021
Liu F, 2009, ENVIRON POLLUT, V157, P1636, DOI 10.1016/j.envpol.2008.12.021
Macherius A, 2014, J AGR FOOD CHEM, V62, P1001, DOI 10.1021/jf404784q
Macherius A, 2012, ENVIRON SCI TECHNOL, V46, P10797, DOI 10.1021/es3028378
Miege C, 2009, ENVIRON POLLUT, V157, P1721, DOI 10.1016/j.envpol.2008.11.045
Munemasa S, 2015, CURR OPIN PLANT BIOL, V28, P154, DOI 10.1016/j.pbi.2015.10.010
Novak P. J., 2011, NEED NATL US RES PRO
Ostonen I, 2007, PLANT BIOSYST, V141, P426, DOI 10.1080/11263500701626069
Prosser RS, 2015, ENVIRON INT, V75, P223, DOI 10.1016/j.envint.2014.11.020
Rogers HH, 1996, PLANT SOIL, V187, P229, DOI 10.1007/BF00017090
Schmidt W, 2015, ECOTOX ENVIRON SAFE, V112, P212, DOI 10.1016/j.ecoenv.2014.11.008
Sun CL, 2018, ENVIRON POLLUT, V234, P39, DOI 10.1016/j.envpol.2017.11.041
Tanoue R, 2012, J AGR FOOD CHEM, V60, P10203, DOI 10.1021/jf303142t
Trapp S., 2009, ECOTOXICOLOGY MODELI, V2, P299, DOI [DOI 10.1007/978-1-4419-0197-2_, 10.1007/978-1-4419-0197-2_11, DOI 10.1007/978-1-4419-0197-2_11]
UNESCO, 2012, MAN WAT UNC RISK MAN WAT UNC RISK
Wani SH, 2016, CROP J, V4, P162, DOI 10.1016/j.cj.2016.01.010
Wu XQ, 2015, SCI TOTAL ENVIRON, V536, P655, DOI 10.1016/j.scitotenv.2015.07.129
Wu XQ, 2014, ENVIRON SCI TECHNOL, V48, P11286, DOI 10.1021/es502868k
Wu XQ, 2013, ENVIRON INT, V60, P15, DOI 10.1016/j.envint.2013.07.015
NR 36
TC 13
Z9 13
U1 4
U2 95
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0269-7491
EI 1873-6424
J9 ENVIRON POLLUT
JI Environ. Pollut.
PD SEP
PY 2019
VL 252
BP 706
EP 714
DI 10.1016/j.envpol.2019.05.159
PN A
PG 9
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA IT6SQ
UT WOS:000483005500075
PM 31185360
OA Bronze, Green Submitted
DA 2023-03-13
ER
PT J
AU Mels, CMC
Schutte, AE
Schutte, R
Pretorius, PJ
Smith, W
Huisman, HW
van der Westhuizen, FH
Fourie, CMT
van Rooyen, JM
Kruger, R
Louw, R
Malan, NT
Malan, L
AF Mels, C. M. C.
Schutte, A. E.
Schutte, R.
Pretorius, P. J.
Smith, W.
Huisman, H. W.
van der Westhuizen, F. H.
Fourie, C. M. T.
van Rooyen, J. M.
Kruger, R.
Louw, R.
Malan, N. T.
Malan, L.
TI 8-Oxo-7,8-dihydro-2 '-deoxyguanosine, reactive oxygen species and
ambulatory blood pressure in African and Caucasian men: The SABPA study
SO FREE RADICAL RESEARCH
LA English
DT Article
DE 8-oxo-7,8-dihydro-2 '-deoxyguanosine; ambulatory blood pressure;
reactive oxygen species; hormesis; ethnicity
ID OXIDATIVE DNA-DAMAGE; RISK-FACTORS; ENDOTHELIAL DYSFUNCTION;
ESSENTIAL-HYPERTENSION; ANTIOXIDANT STATUS; URINARY 8-OHDG; BY-PRODUCTS;
STRESS; ATHEROSCLEROSIS; POPULATION
AB Various studies indicate a relationship between increased oxidative stress and hypertension, resulting in increased DNA damage and consequent excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). The aim of this study was to compare urinary 8-oxodG levels in African and Caucasian men and to investigate the association between ambulatory blood pressure (BP) and pulse pressure (PP) with 8-oxodG in these groups.
We included 98 African and 92 Caucasian men in the study and determined their ambulatory BP and PP. Biochemical analyses included, urinary 8-oxodG, reactive oxygen species (ROS) (measured as serum peroxides), ferric reducing antioxidant power (FRAP), total glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) activity.
The African men had significantly higher systolic (SBP) and diastolic blood pressure (DBP) (both p < 0.001). Assessment of the oxidative stress markers indicated significantly lower 8-oxodG levels (p < 0.001) in the African group. The African men also had significantly higher ROS (p = 0.002) with concomitant lower FRAP (p < 0.001), while their GSH levels (p = 0.013) and GR activity (p < 0.001) were significantly higher. Single and partial regression analyses indicated a negative association between urinary 8-oxodG levels with SBP, DBP and PP only in African men. These associations were confirmed in multiple regression analyses (SBP: R-2 = 0.41; beta = -0.25; p = 0.002, DBP: R-2 = 0.30; beta = -0.21; p = 0.022, PP: R-2 = 0.30; beta = -0.19; p = 0.03).
Our results revealed significantly lower urinary 8-oxodG in African men, accompanied by a negative association with BP and PP. We propose that this may indicate a dose-response relationship in which increased oxidative stress may play a central role in the up-regulation of antioxidant defence and DNA repair mechanisms
C1 [Mels, C. M. C.; Schutte, A. E.; Schutte, R.; Smith, W.; Huisman, H. W.; Fourie, C. M. T.; van Rooyen, J. M.; Kruger, R.; Malan, N. T.; Malan, L.] North West Univ, Hypertens Africa Res Team, ZA-2520 Potchefstroom, South Africa.
[Pretorius, P. J.; van der Westhuizen, F. H.; Louw, R.] North West Univ, Ctr Human Metabon, ZA-2520 Potchefstroom, South Africa.
C3 North West University - South Africa; North West University - South
Africa
RP Mels, CMC (corresponding author), North West Univ, Hypertens Africa Res Team, Private Bag X6001, ZA-2520 Potchefstroom, South Africa.
EM Carina.Mels@nwu.ac.za
RI Smith, Wayne/HKE-7358-2023; Malan, Leone/Q-8187-2019; Schutte, Aletta
E/E-5126-2018; van der Westhuizen, Francois H/E-6959-2011; Mels,
Carina/K-3172-2013; Fourie, Carla/AAJ-6506-2020; Malan,
Leoné/D-7203-2014; Kruger, Ruan/N-7618-2015; Malan, Leone/AFQ-8773-2022
OI Smith, Wayne/0000-0002-7101-7331; Malan, Leone/0000-0003-3187-2410;
Schutte, Aletta E/0000-0001-9217-4937; van der Westhuizen, Francois
H/0000-0002-7879-1776; Mels, Carina/0000-0003-0138-3341; Malan,
Leoné/0000-0003-3187-2410; Kruger, Ruan/0000-0001-7680-2032; Huisman,
Hugo/0000-0002-2114-4789; Louw, Roan/0000-0002-6542-8644
FU National Research Foundation; National Research Foundation Thuthuka
[80643]; North-West University, Potchefstroom; Roche Products (Pty) Ltd,
South Africa; Metabolic Syndrome Institute, France
FX The Sympathetic Activity and Ambulatory Blood Pressure in Africans
(SABPA) Study would not have been possible without the voluntary
collaboration of the participants and the Department of Education,
North-West Province, South Africa. We gratefully acknowledge the
technical assistance of Mrs Tina Scholtz, Dr Szabolcs Peter and Sr
Chrissie Lessing. This study was supported by the National Research
Foundation; the National Research Foundation Thuthuka (80643); the
North-West University, Potchefstroom; Roche Products (Pty) Ltd, South
Africa and the Metabolic Syndrome Institute, France.
CR Ahmad A, 2013, J CLIN DIAGN RES, V7, P987, DOI 10.7860/JCDR/2013/5829.3091
Benzie IFF, 1996, ANAL BIOCHEM, V239, P70, DOI 10.1006/abio.1996.0292
Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3
COCKCROFT DW, 1976, NEPHRON, V16, P31, DOI 10.1159/000180580
Elahi MM, 2009, OXID MED CELL LONGEV, V2, P259, DOI 10.4161/oxim.2.5.9441
Franco MCP, 2007, PEDIATR RES, V62, P204, DOI 10.1203/PDR.0b013e3180986d04
Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160
Gao R, 2008, MOL CANCER THER, V7, P1246, DOI 10.1158/1535-7163.MCT-07-2206
Gray K, 2011, BIOCHEM PHARMACOL, V82, P693, DOI 10.1016/j.bcp.2011.06.025
Hayashi I, 2007, MUTAT RES-GEN TOX EN, V631, P55, DOI 10.1016/j.mrgentox.2007.04.006
Hinokio Y, 2002, DIABETOLOGIA, V45, P877, DOI 10.1007/s00125-002-0831-8
Hojo Y, 1997, J HUM HYPERTENS, V11, P665, DOI 10.1038/sj.jhh.1000515
Hu CW, 2004, RAPID COMMUN MASS SP, V18, P505, DOI 10.1002/rcm.1367
Huang HE, 2000, CANCER EPIDEM BIOMAR, V9, P647
(ISAK) ISftAoK, 2001, INT STANDARDS ANTHRO
Jung O, 2004, CIRCULATION, V109, P1795, DOI 10.1161/01.CIR.0000124223.00113.A4
Kagota S, 2007, J CARDIOVASC PHARM, V50, P677, DOI 10.1097/FJC.0b013e3181583d80
KOHARA K, 1995, HYPERTENSION, V26, P808, DOI 10.1161/01.HYP.26.5.808
Kruger R, 2012, J HUM HYPERTENS, V26, P91, DOI 10.1038/jhh.2010.134
Lavi S, 2008, HYPERTENSION, V51, P127, DOI 10.1161/HYPERTENSIONAHA.107.099986
Mancia G, 2013, J HYPERTENS, V31, P1281, DOI 10.1097/01.hjh.0000431740.32696.cc
Martinet W, 2002, CIRCULATION, V106, P927, DOI 10.1161/01.CIR.0000026393.47805.21
Morris AA, 2012, METAB SYNDR RELAT D, V10, P252, DOI 10.1089/met.2011.0117
Negishi H, 2001, J HYPERTENS, V19, P529, DOI 10.1097/00004872-200103001-00002
Negishi H, 2000, HYPERTENS RES, V23, P285, DOI 10.1291/hypres.23.285
Redon J, 2003, HYPERTENSION, V41, P1096, DOI 10.1161/01.HYP.0000068370.21009.38
Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010
Rodrigo R, 2007, HYPERTENS RES, V30, P1159, DOI 10.1291/hypres.30.1159
Rybka J, 2011, CARDIOVASC TOXICOL, V11, P1, DOI 10.1007/s12012-010-9096-5
Saude EJ, 2007, METABOLOMICS, V3, P439, DOI 10.1007/s11306-007-0091-1
Schutte AE, 2012, INT J EPIDEMIOL, V41, P1114, DOI 10.1093/ije/dys106
Schutte R, 2009, AM J HYPERTENS, V22, P1154, DOI 10.1038/ajh.2009.158
Simic DV, 2006, J HUM HYPERTENS, V20, P149, DOI 10.1038/sj.jhh.1001945
Sliwa K, 2008, LANCET, V371, P915, DOI 10.1016/S0140-6736(08)60417-1
Subash P, 2010, INDIAN J CLIN BIOCHE, V25, P127, DOI 10.1007/s12291-010-0024-z
Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001
van Rooyen JM, 2000, J HUM HYPERTENS, V14, P779, DOI 10.1038/sj.jhh.1001098
Wood RD, 2005, MUTAT RES-FUND MOL M, V577, P275, DOI 10.1016/j.mrfmmm.2005.03.007
Wu LL, 2004, CLIN CHIM ACTA, V339, P1, DOI 10.1016/j.cccn.2003.09.010
Zalba G, 2000, HYPERTENSION, V35, P1055, DOI 10.1161/01.HYP.35.5.1055
NR 40
TC 12
Z9 12
U1 0
U2 10
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1071-5762
EI 1029-2470
J9 FREE RADICAL RES
JI Free Radic. Res.
PD NOV
PY 2014
VL 48
IS 11
BP 1291
EP 1299
DI 10.3109/10715762.2014.951840
PG 9
WC Biochemistry & Molecular Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology
GA AQ4LC
UT WOS:000342767500003
PM 25096646
DA 2023-03-13
ER
PT J
AU Dickerson, AS
Ransome, Y
Karlsson, O
AF Dickerson, Aisha S.
Ransome, Yusuf
Karlsson, Oskar
TI Human prenatal exposure to polychlorinated biphenyls (PCBs) and risk
behaviors in adolescence
SO ENVIRONMENT INTERNATIONAL
LA English
DT Article
DE Endocrine disrupting chemicals; Alcohol; Smoking; In utero;
Polychlorinated biphenyls; Hormesis; Environmental contaminants
ID PERSISTENT ORGANIC POLLUTANTS; LIPID-METABOLISM; BREAST-CANCER;
CONGENERS; PREGNANCY; DOPAMINE; FETAL; BIRTH; ALCOHOL; SERUM
AB Polychlorinated biphenyls (PCBs) are chemicals used in a variety of products before they were widely banned due to toxic effects in humans and wildlife. Because of continued persistence and ubiquity of these contaminants, risk of exposure to people living in industrialized countries is still high. Experimental research show that developmental exposure to PCB may alter function of brain pleasure centers and potentially influence disinhibitory behaviors, including tobacco and alcohol use. Yet, the potential effects of developmental PCB exposure on adolescent substance use have not been studied in humans. We used the Child Health and Development Studies (CHDS), a prospective birth cohort study in the Oakland and East Bay areas of California, to investigate associations between prenatal exposure to PCB congeners (66, 74, 99, 118, 138, 153, 170, 180, 187, and 203) and later disinhibitory behaviors in adolescents, specifically alcohol consumption and smoking, in a randomly selected sample (n = 554). Total prenatal PCB exposure was not associated with disinhibitory behaviors, among adolescents. However, the adjusted odds ratio (aOR) for being a current smoker, was higher in subjects within the third quartile of maternal PCB 66 exposure compared to those below the median (aOR = 1.93; 95% CI 1.05, 3.55). The aOR for drinking > 2 alcoholic beverages per week, were also higher for adolescents within the third (aOR = 1.46; 95% CI 0.86, 2.47) and fourth quartile of PCB 66 exposure (aOR = 1.39; 95% CI 0.83, 2.35), but the differences did not reach statistical significance. These results suggest that this specific PCB congener may play a role inducing neurodevelopmental alterations that could potentially increase the risk of becoming a long-term user of tobacco and possibly alcohol. There were no notable differences between magnitude or direction of effect between boys and girls. Future replicate analyses with larger longitudinal samples and animal experimental studies of potential underlying mechanisms are warranted.
C1 [Dickerson, Aisha S.] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 665 Huntington Ave, Boston, MA 02215 USA.
[Ransome, Yusuf] Yale Sch Publ Hlth, Dept Social & Behav Sci, 60 Coll St,LEPH 4th Floor, New Haven, CT 06510 USA.
[Karlsson, Oskar] Stockholm Univ, Dept Environm Sci & Analyt Chem, Sci Life Lab, S-11418 Stockholm, Sweden.
C3 Harvard University; Harvard T.H. Chan School of Public Health; Yale
University; Stockholm University
RP Karlsson, O (corresponding author), Stockholm Univ, Dept Environm Sci & Analyt Chem, Sci Life Lab, S-11418 Stockholm, Sweden.
EM Oskar.Karlsson@aces.su.se
RI Dickerson, Aisha S./AAF-5762-2020; Dickerson, Aisha/AAG-5444-2021
OI Dickerson, Aisha/0000-0003-3929-9540; Ransome, Yusuf/0000-0003-4170-2001
FU National Institute of Mental Health Sciences [K01-MH111374]; Swedish
Research Council Vetenskapsradet; Swedish Research Council Formas;
National Institutes of Health [T32 ES007069]
FX We thank the CHDS families for their participation in this study. We
acknowledge the late Jacob Yerushalmy who had the foresight to design
and implement the CHDS; the late Barbara van den Berg, the second
Director of the CHDS, whose steadfast allegiance and tireless efforts
were responsible for granting the CHDS longevity; Barbara A. Cohn and
Lauren Zimmermann for access to the CHDS data and assistance with file
preparation. The National Institute of Mental Health Sciences
(K01-MH111374, YR), the Swedish Research Council Vetenskapsradet (OK)
and Swedish Research Council Formas (OK) are acknowledged for financial
support. Dr. Aisha S. Dickerson was supported in part by a National
Institutes of Health training grant T32 ES007069. The authors declare no
conflict of interest.
CR ALLEN JR, 1980, J TOXICOL ENV HEALTH, V6, P55, DOI 10.1080/15287398009529830
Altmann L, 2001, TOXICOL SCI, V61, P321, DOI 10.1093/toxsci/61.2.321
Aschengrau A, 2011, ENVIRON HEALTH-GLOB, V10, DOI 10.1186/1476-069X-10-102
Axelrad DA, 2009, ENVIRON RES, V109, P368, DOI 10.1016/j.envres.2009.01.003
Behforooz B, 2017, NEUROTOXICOL TERATOL, V64, P29, DOI 10.1016/j.ntt.2017.08.004
Bell MR, 2014, CURR OPIN PHARMACOL, V19, P134, DOI 10.1016/j.coph.2014.09.020
Berghuis SA, 2018, ENVIRON INT, V121, P13, DOI 10.1016/j.envint.2018.08.030
Bernard A, 2002, INT J TOXICOL, V21, P333, DOI 10.1080/10915810290096540
Bressan RA, 2005, ACTA PSYCHIAT SCAND, V111, P14, DOI 10.1111/j.1600-0447.2005.00540.x
Brock JW, 1996, J ANAL TOXICOL, V20, P528, DOI 10.1093/jat/20.7.528
Carrico C, 2015, J AGR BIOL ENVIR ST, V20, P100, DOI 10.1007/s13253-014-0180-3
Centers for Disease Control and Prevention, 2002, MMWR-MORBID MORTAL W, V51, P1
Cohn BA, 2012, BREAST CANCER RES TR, V136, P267, DOI 10.1007/s10549-012-2257-4
Cohn BA, 2011, REPROD TOXICOL, V31, P290, DOI 10.1016/j.reprotox.2011.01.004
Davison A. N., 1968, APPLIED NEUROCHEMIST, P253
Dekoning EP, 2000, J EXPO ANAL ENV EPID, V10, P285, DOI 10.1038/sj.jea.7500090
Dunaway KW, 2016, CELL REP, V17, P3035, DOI 10.1016/j.celrep.2016.11.058
DuRant RH, 1999, ARCH PEDIAT ADOL MED, V153, P286
Fukata H, 2005, ENVIRON HEALTH PERSP, V113, P297, DOI 10.1289/ehp.7330
Gammon MD, 2002, CANCER EPIDEM BIOMAR, V11, P686
Gaum PM, 2017, ENVIRON HEALTH-GLOB, V16, DOI 10.1186/s12940-017-0316-3
Gennings C, 2013, ENVIRON HEALTH-GLOB, V12, DOI 10.1186/1476-069X-12-66
Glynn AW, 2000, SCI TOTAL ENVIRON, V263, P197, DOI 10.1016/S0048-9697(00)00703-8
Govarts E, 2012, ENVIRON HEALTH PERSP, V120, P162, DOI 10.1289/ehp.1103767
Gupta KK, 2016, ALCOHOL CLIN EXP RES, V40, P1594, DOI 10.1111/acer.13135
Harrad S, 2003, J ENVIRON MONITOR, V5, P224, DOI 10.1039/b211406b
Herrera E, 2002, ENDOCRINE, V19, P43, DOI 10.1385/ENDO:19:1:43
Herrera E, 2014, CURR PHARM BIOTECHNO, V15, P24, DOI 10.2174/1389201015666140330192345
Hopf NB, 2009, SCI TOTAL ENVIRON, V407, P6109, DOI 10.1016/j.scitotenv.2009.08.035
Iacono WG, 2008, ANNU REV CLIN PSYCHO, V4, P325, DOI 10.1146/annurev.clinpsy.4.022007.141157
Johnson RA, 1998, AM J PUBLIC HEALTH, V88, P27, DOI 10.2105/AJPH.88.1.27
Keyes Katherine M, 2011, Ment Health Subst Use, V4, P22
Kezios K, 2017, REPROD TOXICOL, V71, P166, DOI 10.1016/j.reprotox.2017.02.015
Kezios KL, 2012, ENVIRON HEALTH-GLOB, V11, DOI 10.1186/1476-069X-11-49
King SM, 2009, ADDICTION, V104, P578, DOI 10.1111/j.1360-0443.2008.02469.x
Kipping RR, 2012, J PUBLIC HEALTH-UK, V34, pI1, DOI 10.1093/pubmed/fdr122
Koob GF, 2009, PHARMACOPSYCHIATRY, V42, pS32, DOI 10.1055/s-0029-1216356
Lactation IoMUCiNSDPa, 1991, WHO BREASTF US NUTR
Lagarde F, 2015, ENVIRON HEALTH-GLOB, V14, DOI 10.1186/1476-069X-14-13
Lombardo JP, 2018, ENVIRON POLLUT, V236, P334, DOI 10.1016/j.envpol.2018.01.072
Longnecker MP, 1999, ARCH ENVIRON HEALTH, V54, P110, DOI 10.1080/00039899909602244
Lovallo WR, 2006, INT J PSYCHOPHYSIOL, V59, P193, DOI 10.1016/j.ijpsycho.2005.10.006
Mariussen E, 2001, TOXICOLOGY, V159, P11, DOI 10.1016/S0300-483X(00)00374-7
Mccarthy MM, 2008, PHYSIOL REV, V88, P91, DOI 10.1152/physrev.00010.2007
Mitchell MM, 2012, ENVIRON MOL MUTAGEN, V53, P589, DOI 10.1002/em.21722
Moghaddam B, 2002, BIOL PSYCHIAT, V51, P775, DOI 10.1016/S0006-3223(01)01362-2
Nieuwenhuijsen MJ, 2013, ENVIRON HEALTH-GLOB, V12, DOI 10.1186/1476-069X-12-6
Olsson CA, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-010455
Park JS, 2008, CHEMOSPHERE, V70, P1676, DOI 10.1016/j.chemosphere.2007.07.049
Piazza PV, 1996, P NATL ACAD SCI USA, V93, P8716, DOI 10.1073/pnas.93.16.8716
Ribas-Fito N, 2001, J EPIDEMIOL COMMUN H, V55, P537, DOI 10.1136/jech.55.8.537
Rice D, 2000, ENVIRON HEALTH PERSP, V108, P511, DOI 10.2307/3454543
Roelens SA, 2005, ANN NY ACAD SCI, V1040, P454, DOI 10.1196/annals.1327.088
Rogers E, 2004, J CHROMATOGR B, V813, P269, DOI 10.1016/j.jchromb.2004.09.051
Rosenquist AH, 2017, ENVIRON HEALTH PERSP, V125, DOI [10.1289/EHP553, 10.1289/ehp553]
Rouge-Pont F, 1998, EUR J NEUROSCI, V10, P3903, DOI 10.1046/j.1460-9568.1998.00438.x
Seegal RF, 2005, TOXICOL SCI, V86, P125, DOI 10.1093/toxsci/kfi174
Sharot T, 2009, CURR BIOL, V19, P2077, DOI 10.1016/j.cub.2009.10.025
Tang ML, 2018, ENVIRON POLLUT, V237, P581, DOI 10.1016/j.envpol.2018.02.044
Tatsuta N, 2017, ENVIRON HEALTH PREV, V22, DOI 10.1186/s12199-017-0635-6
Tian YH, 2011, SYNAPSE, V65, P1032, DOI 10.1002/syn.20934
van den Berg B J, 1988, Paediatr Perinat Epidemiol, V2, P265
Van den Berg M, 1998, ENVIRON HEALTH PERSP, V106, P775, DOI 10.1289/ehp.98106775
Vizcaino E, 2014, ENVIRON INT, V65, P107, DOI 10.1016/j.envint.2014.01.004
Warner J, 2012, SCI TOTAL ENVIRON, V414, P81, DOI 10.1016/j.scitotenv.2011.10.044
WOLFF MS, 1993, JNCI-J NATL CANCER I, V85, P648, DOI 10.1093/jnci/85.8.648
Wolff MS, 1997, ENVIRON HEALTH PERSP, V105, P13, DOI 10.2307/3433043
Zimmer K., 2012, ACTA VET SCAND S1, V54, DOI [10.1186/1751-0147-54-S1-S17.(S17-S17), DOI 10.1186/1751-0147-54-S1-S17.(S17-S17)]
Zimmer KE, 2009, J TOXICOL ENV HEAL A, V72, P164, DOI 10.1080/15287390802539004
NR 69
TC 15
Z9 15
U1 0
U2 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0160-4120
EI 1873-6750
J9 ENVIRON INT
JI Environ. Int.
PD AUG
PY 2019
VL 129
BP 247
EP 255
DI 10.1016/j.envint.2019.04.051
PG 9
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology
GA IB4KC
UT WOS:000470239200025
PM 31146159
OA Green Accepted, gold
DA 2023-03-13
ER
PT J
AU Trovato, A
Siracusa, R
Di Paola, R
Scuto, M
Ontario, ML
Bua, O
Di Mauro, P
Toscano, MA
Petralia, CCT
Maiolino, L
Serra, A
Cuzzocrea, S
Calabrese, V
AF Trovato, A.
Siracusa, R.
Di Paola, R.
Scuto, M.
Ontario, M. L.
Bua, Ornella
Di Mauro, Paola
Toscano, M. A.
Petralia, C. C. T.
Maiolino, L.
Serra, A.
Cuzzocrea, S.
Calabrese, Vittorio
TI Redox modulation of cellular stress response and lipoxin A4 expression
by Hericium Erinaceus in rat brain: relevance to Alzheimer's disease
pathogenesis
SO IMMUNITY & AGEING
LA English
DT Article
DE Lipoxin A4; Heat shock protein70; Heme Oxygenase-1; Nutritional
mushrooms; Alzheimer's disease
ID MILD COGNITIVE IMPAIRMENT; HEAT-SHOCK PROTEINS; MEDICINAL MUSHROOM;
HORMESIS; ANTIOXIDANT; DIAGNOSIS; PATHWAY; CANCER; MODEL
AB Background: There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses.
Results: Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase -1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding.
Conclusions: Conceivably, activation of LXA4 signaling and modulation of stress responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
C1 [Trovato, A.; Scuto, M.; Ontario, M. L.; Bua, Ornella; Di Mauro, Paola; Toscano, M. A.; Petralia, C. C. T.; Maiolino, L.; Serra, A.; Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Viale Andrea Doria 6, I-95125 Catania, Italy.
[Siracusa, R.; Di Paola, R.; Cuzzocrea, S.] Univ Messina, Dept Chem Biol Pharmaceut & Environm Sci, Messina, Italy.
C3 University of Catania; University of Messina
RP Calabrese, V (corresponding author), Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Viale Andrea Doria 6, I-95125 Catania, Italy.
EM calabres@unict.it
RI Trovato Salinaro, Angela/AAC-1326-2022; di paola, rosanna/U-4356-2019;
Siracusa, Rosalba/AAC-3110-2022; Di Mauro, Paola/AAC-1502-2019;
Calabrese, Vittorio/AAC-8157-2021; Bua, Rosaria Ornella/AAA-5755-2022
OI di paola, rosanna/0000-0001-6725-8581; Siracusa,
Rosalba/0000-0001-7868-2505; Calabrese, Vittorio/0000-0002-0478-985X;
Bua, Rosaria Ornella/0000-0002-3358-1564; TROVATO SALINARO,
Angela/0000-0003-2377-858X; Cuzzocrea, Salvatore/0000-0001-6131-3690
CR Abdelmoaty S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075543
Buratti L, 2015, J ALZHEIMERS DIS, V45, P883, DOI 10.3233/JAD-143135
Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0
Calabrese V, 2015, FREE RADICAL RES, V49, P511, DOI 10.3109/10715762.2015.1020799
CALABRESE V, 1988, BIOCHEM PHARMACOL, V37, P2287, DOI 10.1016/0006-2952(88)90595-3
Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x
Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074
Candore G, 2006, ANN NY ACAD SCI, V1089, P516, DOI 10.1196/annals.1386.051
Castellani RJ, 2010, DM-DIS MON, V56, P484, DOI 10.1016/j.disamonth.2010.06.001
Castello MA, 2014, AGEING RES REV, V13, P10, DOI 10.1016/j.arr.2013.10.001
Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-41
Cui T, 2003, BIOTECHNOL ADV, V21, P109, DOI 10.1016/S0734-9750(03)00002-8
da Silva AF, 2013, HUM EXP TOXICOL, V32, P647, DOI 10.1177/0960327112468173
Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8
Di Bona D, 2014, CURR VASC PHARMACOL, V12, P674
Dunn HC, 2015, J ALZHEIMERS DIS, V43, P893, DOI 10.3233/JAD-141335
El Enshasy H, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/620451
Elsayed EA, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/805841
Feeney M. J., 2014, Nutrition Today, V49, P301
Hawkins KE, 2014, J NEUROCHEM, V129, P130, DOI 10.1111/jnc.12607
Jeong SC, 2013, INT J MED MUSHROOMS, V15, P251, DOI 10.1615/IntJMedMushr.v15.i3.30
Joshi YB, 2015, FRONT CELL NEUROSCI, V8, DOI 10.3389/fncel.2014.00436
Junn E, 2001, J NEUROCHEM, V78, P374, DOI 10.1046/j.1471-4159.2001.00425.x
Komura DL, 2014, INT J BIOL MACROMOL, V70, P354, DOI 10.1016/j.ijbiomac.2014.06.007
Lin PY, 2013, MOL NEURODEGENER, V8, DOI 10.1186/1750-1326-8-43
Lindequist U, 2014, EVID-BASED COMPL ALT, V2014, DOI 10.1155/2014/806180
Martorana Adriana, 2012, Longev Healthspan, V1, P8, DOI 10.1186/2046-2395-1-8
McGeer Patrick L, 2002, Sci Aging Knowledge Environ, V2002, pre3, DOI 10.1126/sageke.2002.29.re3
Monro JA, 2003, ARCH ENVIRON HEALTH, V58, P533, DOI 10.3200/AEOH.58.8.533-537
Mori K, 2015, INT J MED MUSHROOMS, V17, P609, DOI 10.1615/IntJMedMushrooms.v17.i7.10
Mori K, 2011, BIOMED RES-TOKYO, V32, P67, DOI 10.2220/biomedres.32.67
Mori K, 2009, PHYTOTHER RES, V23, P367, DOI 10.1002/ptr.2634
Nagano M, 2010, BIOMED RES-TOKYO, V31, P231, DOI 10.2220/biomedres.31.231
Paterson R Russell M, 2014, Biomed J, V37, P357, DOI 10.4103/2319-4170.143502
Sulistio YA, 2016, MOL NEUROBIOL, V53, P905, DOI 10.1007/s12035-014-9063-4
Taylor JP, 2002, SCIENCE, V296, P1991, DOI 10.1126/science.1067122
Trovato A, 2016, NEUROTOXICOLOGY, V53, P350, DOI 10.1016/j.neuro.2015.09.012
Uhl GR, 1998, ANN NEUROL, V43, P555, DOI 10.1002/ana.410430503
Walton Emma L, 2014, Biomed J, V37, P339, DOI 10.4103/2319-4170.146538
Wang J, 2012, METAB BRAIN DIS, V27, P159, DOI 10.1007/s11011-012-9282-1
Wasser Solomon P, 2014, Biomed J, V37, P345, DOI 10.4103/2319-4170.138318
Wu J, 2011, BIOCHEM BIOPH RES CO, V408, P382, DOI 10.1016/j.bbrc.2011.04.013
Xu TT, 2012, ANTI-CANCER AGENT ME, V12, P1255, DOI 10.2174/187152012803833017
Yang FJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108525
NR 44
TC 50
Z9 50
U1 1
U2 30
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1742-4933
J9 IMMUN AGEING
JI Immun. Ageing
PD JUL 9
PY 2016
VL 13
AR 23
DI 10.1186/s12979-016-0078-8
PG 11
WC Geriatrics & Gerontology; Immunology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Geriatrics & Gerontology; Immunology
GA DR9FT
UT WOS:000380203200001
PM 27398086
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Prosnier, L
Loreau, M
Hulot, FD
AF Prosnier, Loic
Loreau, Michel
Hulot, Florence D.
TI Modeling the direct and indirect effects of copper on
phytoplankton-zooplankton interactions
SO AQUATIC TOXICOLOGY
LA English
DT Article
DE Ecotoxicology model; Prey-predator interaction; Copper; Eutrophication;
Daphnia; Scenedesmus
ID INDUCED COLONY FORMATION; DAPHNIA-MAGNA; POPULATION-DYNAMICS; FOOD
CONCENTRATION; FEEDING-BEHAVIOR; SCENEDESMUS; COMMUNITY; TOXICITY;
PLANKTON; BIOACCUMULATION
AB Predicting the effects of pollution at the community level is difficult because of the complex impacts of ecosystem dynamics and properties. To predict the effects of copper on a plant-herbivore interaction in a freshwater ecosystem, we built a model that focuses on the interaction between an alga, Scenedesmus sp., and a herbivore, Daphnia sp. The model assumes logistic growth for Scenedesmus and a type II functional response for Daphnia. Internal copper concentrations in Scenedesmus and Daphnia are calculated using a biodynamic model. We include two types of direct effects of copper on Scenedesmus and Daphnia that results from hormesis: a deficiency effect at low concentration and a toxic effect at high concentration. We perform a numerical analysis to predict the combined effects of copper and nutrient enrichment on the Scenedesmus-Daphnia interaction. Results show three types of outcomes depending on copper concentration. First, low (4 mu g L-1) and high (50 mu g L-1) copper concentrations cause deficiency and toxicity, respectively, leading to the extinction of all populations; for less extreme concentrations (between 4 and 5 mu g L-1 and between 16.5 and 50 mu g L-1), only the consumer population becomes extinct. The two populations survive with intermediate concentrations. Second, when population dynamics present oscillations, copper has a stabilizing effect and reduces or suppresses oscillations. Third, copper, on account of its stabilizing effect, opposes the destabilizing effect of nutrient enrichment. Our model shows that (1) Daphnia is affected by copper at lower concentrations when community interactions are taken into account than when analyzed alone, and (2) counterintuitive effects may arise from the interaction between copper pollution and nutrient enrichment. Our model also suggests that single-value parameters such as NOEC and LOEC, which do not take community interactions into account to characterize pollutants effects, are unable to determine pollutant effects in complex ecosystems. More generally, our model underscores the importance of ecosystem-scale studies to predict the effects of pollutants. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Prosnier, Loic; Hulot, Florence D.] Univ Paris Sud, Lab Ecol Systemat & Evolut, UMR 8079, F-91405 Orsay, France.
[Loreau, Michel] CNRS, Ctr Biodivers Theory & Modelling, Stn Ecol Expt, F-09200 Moulis, France.
C3 AgroParisTech; Centre National de la Recherche Scientifique (CNRS); CNRS
- Institute of Ecology & Environment (INEE); UDICE-French Research
Universities; Universite Paris Saclay; Centre National de la Recherche
Scientifique (CNRS)
RP Prosnier, L (corresponding author), Univ Paris Sud, Lab Ecol Systemat & Evolut, UMR 8079, Bat 362, F-91405 Orsay, France.
EM loic.prosnier@u-psud.fr
RI Prosnier, Loïc/AAL-1215-2020; Prosnier, Loïc/F-2561-2015
OI Prosnier, Loïc/0000-0001-5576-3601; Prosnier, Loïc/0000-0001-5576-3601;
Hulot, Florence D./0000-0002-8897-3987
FU PULSE project [ANR-2010-CEPL-010-04]; TULIP Laboratory of Excellence
[ANR-10-LABX-41]
FX This work was financially supported by the PULSE project
ANR-2010-CEPL-010-04. ML was supported by the TULIP Laboratory of
Excellence (ANR-10-LABX-41). FDH, ML, and LP would like to thank Nicolas
Labrune who developed a previous version of the model and the referees
for their comments. LP is also grateful to Nicolas Delpierre for the
asymmetric double-sigmoid equation.
CR Abrams PA, 1996, ECOLOGY, V77, P1125, DOI 10.2307/2265581
ATSDR, 1990, TOX PROF COPP
BAIRD DJ, 1991, ECOTOX ENVIRON SAFE, V21, P257, DOI 10.1016/0147-6513(91)90064-V
Berlow EL, 1999, ECOLOGY, V80, P2206, DOI 10.2307/176904
Berlow EL, 2004, J ANIM ECOL, V73, P585, DOI 10.1111/j.0021-8790.2004.00833.x
Bossuyt BTA, 2003, COMP BIOCHEM PHYS C, V136, P253, DOI 10.1016/j.cca.2003.09.007
BRIAND F, 1978, NATURE, V273, P228, DOI 10.1038/273228a0
BURNS CW, 1968, LIMNOL OCEANOGR, V13, P675, DOI 10.4319/lo.1968.13.4.0675
Campfens J, 1997, ENVIRON SCI TECHNOL, V31, P577, DOI 10.1021/es960478w
Clement B, 2004, CHEMOSPHERE, V55, P1429, DOI 10.1016/j.chemosphere.2003.10.065
CLEMENTS WH, 1992, CAN J FISH AQUAT SCI, V49, P1686, DOI 10.1139/f92-187
De Schamphelaere KAC, 2002, ENVIRON SCI TECHNOL, V36, P48, DOI 10.1021/es000253s
DEMOTT WR, 1982, LIMNOL OCEANOGR, V27, P518, DOI 10.4319/lo.1982.27.3.0518
Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950
Fargasova A, 1999, CHEMOSPHERE, V38, P1165, DOI 10.1016/S0045-6535(98)00346-4
Fathi AA, 2000, BIOL PLANTARUM, V43, P99, DOI 10.1023/A:1026563232101
FERRANDO MD, 1993, COMP BIOCHEM PHYS C, V106, P327, DOI 10.1016/0742-8413(93)90141-7
Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4
Gutierrez MF, 2012, ECOTOXICOLOGY, V21, P428, DOI 10.1007/s10646-011-0803-1
Garay-Narvaez L, 2013, OIKOS, V122, P1247, DOI 10.1111/j.1600-0706.2012.00218.x
GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008
HAVENS KE, 1994, ENVIRON POLLUT, V86, P259, DOI 10.1016/0269-7491(94)90166-X
INGERSOLL C G, 1982, Environmental Toxicology and Chemistry, V1, P321, DOI 10.1897/1552-8618(1982)1[321:EODPDG]2.0.CO;2
Knops M, 2001, AQUAT TOXICOL, V53, P79, DOI 10.1016/S0166-445X(00)00170-3
KOIVISTO S, 1992, HYDROBIOLOGIA, V248, P125, DOI 10.1007/BF00006080
Kramer VJ, 2011, ENVIRON TOXICOL CHEM, V30, P64, DOI 10.1002/etc.375
LAMPERT W, 1989, HYDROBIOLOGIA, V188, P415, DOI 10.1007/BF00027809
Lebrun JD, 2012, ECOTOXICOLOGY, V21, P2022, DOI 10.1007/s10646-012-0955-7
Luoma SN, 2005, ENVIRON SCI TECHNOL, V39, P1921, DOI 10.1021/es048947e
Lurling M, 2000, OIKOS, V88, P111, DOI 10.1034/j.1600-0706.2000.880113.x
Manyin T, 2008, AQUAT TOXICOL, V88, P111, DOI 10.1016/j.aquatox.2008.03.012
MCCAULEY E, 1987, AM NAT, V129, P97, DOI 10.1086/284624
MCCAULEY E, 1988, AM NAT, V132, P383, DOI 10.1086/284859
McCauley E, 2008, NATURE, V455, P1240, DOI 10.1038/nature07220
MERTZ W, 1981, SCIENCE, V213, P1332, DOI 10.1126/science.7022654
Murdoch WW, 1998, ECOLOGY, V79, P1339, DOI 10.1890/0012-9658(1998)079[1339:PAADAN]2.0.CO;2
Muyssen BTA, 2007, ECOTOX ENVIRON SAFE, V68, P436, DOI 10.1016/j.ecoenv.2006.12.003
NISBET RM, 1991, THEOR POPUL BIOL, V40, P125, DOI 10.1016/0040-5809(91)90050-P
Nomkoko ET, 2003, INORG CHEM COMMUN, V6, P335, DOI 10.1016/S1387-7003(02)00759-1
Nriagu J. O., 1979, COPPER ENV 1, P1
Paquin PR, 2002, COMP BIOCHEM PHYS C, V133, P3, DOI 10.1016/S1532-0456(02)00112-6
Pena-Castro JM, 2004, CHEMOSPHERE, V57, P1629, DOI 10.1016/j.chemosphere.2004.06.041
PORTER KG, 1973, NATURE, V244, P179, DOI 10.1038/244179a0
PORTER KG, 1982, LIMNOL OCEANOGR, V27, P935, DOI 10.4319/lo.1982.27.5.0935
Reynolds C., 2011, FRESHWATER REV, V4, P85, DOI [10.1608/FRJ-4.1.425, DOI 10.1608/FRJ-4.1.425]
Rinke K, 2005, ECOL MODEL, V186, P326, DOI 10.1016/j.ecolmodel.2005.01.031
ROSENZWE.ML, 1971, SCIENCE, V171, P385, DOI 10.1126/science.171.3969.385
ROSENZWEIG ML, 1963, AM NAT, V97, P209, DOI 10.1086/282272
Roussel H, 2007, AQUAT TOXICOL, V81, P168, DOI 10.1016/j.aquatox.2006.12.006
Roy S, 2007, BIOSYSTEMS, V90, P151, DOI 10.1016/j.biosystems.2006.07.009
Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770
SANDMANN G, 1980, Z PFLANZENPHYSIOL, V98, P53, DOI 10.1016/S0044-328X(80)80219-4
Scharler Ursula M., 2005, P451
Shurin JB, 2006, P ROY SOC B-BIOL SCI, V273, P1, DOI 10.1098/rspb.2005.3377
STRAUSS SY, 1991, TRENDS ECOL EVOL, V6, P206, DOI 10.1016/0169-5347(91)90023-Q
SULLIVAN BK, 1983, MAR BIOL, V77, P299, DOI 10.1007/BF00395819
Town RM, 2000, AQUAT SCI, V62, P252, DOI 10.1007/PL00001335
Traas Theo P., 1998, Aquatic Ecology, V32, P179, DOI 10.1023/A:1009920226083
Trudel M, 2001, ECOL APPL, V11, P517, DOI 10.1890/1051-0761(2001)011[0517:PMCIFU]2.0.CO;2
Untersteiner H, 2003, AQUAT TOXICOL, V65, P435, DOI 10.1016/S0166-445X(03)00157-7
den Brink PJ, 2006, HUM ECOL RISK ASSESS, V12, P645, DOI 10.1080/10807030500430559
van Holthoon FL, 2003, HYDROBIOLOGIA, V491, P241, DOI 10.1023/A:1024414515222
Van Veen E, 2002, ENVIRON TOXICOL CHEM, V21, P275, DOI 10.1897/1551-5028(2002)021<0275:SOCISE>2.0.CO;2
Villeneuve DL, 2011, ENVIRON TOXICOL CHEM, V30, P1, DOI 10.1002/etc.396
WINNER RW, 1976, J FISH RES BOARD CAN, V33, P1685, DOI 10.1139/f76-215
World Health Organization (WHO), 1998, ENV HLTH CRIT
Wu XY, 2013, BIOCHEM SYST ECOL, V50, P286, DOI 10.1016/j.bse.2013.05.001
Yan H, 2002, CHEMOSPHERE, V49, P471, DOI 10.1016/S0045-6535(02)00285-0
NR 68
TC 18
Z9 19
U1 1
U2 107
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0166-445X
EI 1879-1514
J9 AQUAT TOXICOL
JI Aquat. Toxicol.
PD MAY
PY 2015
VL 162
BP 73
EP 81
DI 10.1016/j.aquatox.2015.03.003
PG 9
WC Marine & Freshwater Biology; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Marine & Freshwater Biology; Toxicology
GA CH2NA
UT WOS:000353860700009
PM 25781394
OA Green Submitted
DA 2023-03-13
ER
PT J
AU Kinoshita, A
Wanibuchi, H
Morimura, K
Wei, M
Shen, J
Imaoka, S
Funae, Y
Fukushima, S
AF Kinoshita, A
Wanibuchi, H
Morimura, K
Wei, M
Shen, J
Imaoka, S
Funae, Y
Fukushima, S
TI Phenobarbital at low dose exerts hormesis in rat hepatocarcinogenesis by
reducing oxidative DNA damage, altering cell proliferation, apoptosis
and gene expression
SO CARCINOGENESIS
LA English
DT Article
ID LIVER; STRESS; FOCI; CYTOCHROME-P-450; FORM;
8-HYDROXY-2'-DEOXYGUANOSINE; HEPATOCYTES; ENHANCEMENT; THRESHOLD;
RESPONSES
AB Our recent research indicated that phenobarbital (PB) may inhibit the development of N-diethylnitrosamine (DEN)-initiated pre-neoplastic lesions at low doses in a rat liver medium-term bioassay (Ito test), while high doses exhibit promoting activity. This raises the question of whether treatment with low doses of PB might reduce cancer risk. For clarification, male 6-week-old F344 rats were treated with PB at doses of 0, 2, 15 and 500 p.p.m. in the diet for 10 or 33 weeks after initiation of hepatocarcinogenesis with DEN. In a second, short-term experiment, animals were given PB at doses of 2, 4, 15, 60 and 500 p.p.m. for 8 days. Formation of glutathione S-transferase placental form (GST-P) positive foci and liver tumors was inhibited at 2 p.p.m. Generation of oxidative DNA damage marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG), cellular proliferation within the areas of GST-P positive foci and apoptosis in background liver parenchyma were suppressed. Suppression of 8-OHdG formation by PB at low dose might be related to the enhanced mRNA expression of 8-OHdG repair enzyme, oxoguanine glycosylase 1 (Ogg1). Moreover, as detected by cDNA microarray analysis, PB treatment at low dose enhanced mRNA expression of glutamic acid decarboxylase (GAD65), an enzyme involved in the synthesis of gamma-aminobutyric acid (GABA), and suppressed MAP kinase p38 and other intracellular kinases gene expression. On the contrary, when PB was applied at a high dose, GST-P positive foci numbers and areas, tumor multiplicity, hydroxyl radicals and 8-OHdG levels were greatly elevated with the increase in CYP2B1/2 and CYP3A2 mRNA, protein, activity and gene expression of GST, nuclear tyrosine phosphatase, NADPH- cytochrome P-450 reductase and guanine nucleotide binding protein G(O) alpha subunit. These results indicate that PB exhibits hormetic effect on rat hepatocarcinogenesis initiated with DEN by differentially altering cell proliferation, apoptosis and oxidative DNA damage at high and low doses.
C1 Osaka City Univ, Dept Pathol, Sch Med, Abeno Ku, Osaka 5458585, Japan.
Osaka City Univ, Dept Biol Chem, Sch Med, Abeno Ku, Osaka 5458585, Japan.
C3 Osaka Metropolitan University; Osaka Metropolitan University
RP Fukushima, S (corresponding author), Osaka City Univ, Dept Pathol, Sch Med, Abeno Ku, Asahi Machi 1-4-3, Osaka 5458585, Japan.
EM fukuchan@med.osaka-cu.ac.jp
CR Anderson E.L., 1983, RISK ANAL, V3, P277
Biju Mangatt P, 2002, J Biochem Mol Biol Biophys, V6, P209, DOI 10.1080/10258140290018667
Biju MP, 2001, HEPATOL RES, V21, P136, DOI 10.1016/S1386-6346(01)00092-4
BUTLER WH, 1978, J PATHOL, V125, P155, DOI 10.1002/path.1711250306
Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330
Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15
CHOMCZYNSKI P, 1993, BIOTECHNIQUES, V15, P532
Christensen JG, 1999, MOL CARCINOGEN, V25, P273
Christensen JG, 1999, CARCINOGENESIS, V20, P1583, DOI 10.1093/carcin/20.8.1583
Denda A, 1995, TOXICOL LETT, V82-3, P413, DOI 10.1016/0378-4274(95)03492-7
Dhanasekaran N, 1998, BIOL SIGNAL RECEPT, V7, P109
DUTTON DR, 1989, ARCH BIOCHEM BIOPHYS, V268, P605, DOI 10.1016/0003-9861(89)90328-7
Erlitzki R, 2000, AM J PHYSIOL-GASTR L, V279, pG733, DOI 10.1152/ajpgi.2000.279.4.G733
FARBER E, 1987, ENVIRON HEALTH PERSP, V75, P65, DOI 10.2307/3430578
FELDMAN D, 1981, CANCER RES, V41, P2151
FRAGA CG, 1990, P NATL ACAD SCI USA, V87, P4533, DOI 10.1073/pnas.87.12.4533
FUNAE Y, 1985, BIOCHIM BIOPHYS ACTA, V842, P119, DOI 10.1016/0304-4165(85)90193-X
Gonzalez-Angarita A, 2001, NORTHEAST NAT, V8, P3, DOI 10.1656/1092-6194(2001)8[3:AVHNHL]2.0.CO;2
Hagiwara A, 1996, CANCER LETT, V110, P155, DOI 10.1016/S0304-3835(96)04478-3
IMAIDA K, 1989, JPN J CANCER RES, V80, P326, DOI 10.1111/j.1349-7006.1989.tb02314.x
Kasai H, 1997, MUTAT RES-REV MUTAT, V387, P147, DOI 10.1016/S1383-5742(97)00035-5
KASAI H, 1986, CARCINOGENESIS, V7, P1849, DOI 10.1093/carcin/7.11.1849
Kinoshita A, 2002, CARCINOGENESIS, V23, P341, DOI 10.1093/carcin/23.2.341
KITADA M, 1989, RES COMMUN CHEM PATH, V63, P175
KITAGAWA T, 1984, CARCINOGENESIS, V5, P1653, DOI 10.1093/carcin/5.12.1653
Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475
Klaunig JE, 1998, ENVIRON HEALTH PERSP, V106, P289, DOI 10.2307/3433929
KOLAJA KL, 1996, CARCINOGENESIS, V5, P67
Kondo S, 2000, CLIN CANCER RES, V6, P1394
LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63
Lawrence J, 2000, EUR J COMBIN, V21, P3, DOI 10.1006/eujc.1999.0322
MAEKAWA A, 1992, CARCINOGENESIS, V13, P501, DOI 10.1093/carcin/13.3.501
MANJESHWAR S, 1994, CARCINOGENESIS, V15, P1963, DOI 10.1093/carcin/15.9.1963
MARTIN YC, 1996, ADV QUANTITAT STRUCT, V1, P1
MASON RP, 1994, ENVIRON HEALTH PERSP, V102, P33, DOI 10.2307/3432210
Nakae D, 1997, CANCER RES, V57, P1281
Nishikawa T, 2002, INT J CANCER, V100, P136, DOI 10.1002/ijc.10471
OMURA T, 1964, J BIOL CHEM, V239, P2370
PERAINO C, 1971, CANCER RES, V31, P1506
PERAINO C, 1980, CANCER RES, V40, P3268
PITOT HC, 1987, CARCINOGENESIS, V8, P1491, DOI 10.1093/carcin/8.10.1491
SHIBUTANI S, 1991, NATURE, V349, P431, DOI 10.1038/349431a0
SHIMADA M, 1989, ARCH BIOCHEM BIOPHYS, V270, P578, DOI 10.1016/0003-9861(89)90540-7
SOLT DB, 1977, AM J PATHOL, V88, P595
SONDERFAN AJ, 1987, ARCH BIOCHEM BIOPHYS, V255, P27, DOI 10.1016/0003-9861(87)90291-8
Sugimura K, 1997, NEPHRON, V75, P7, DOI 10.1159/000189492
Szabo G, 2000, NEUROSCIENCE, V100, P287, DOI 10.1016/S0306-4522(00)00275-X
Ueda A, 2002, MOL PHARMACOL, V61, P1, DOI 10.1124/mol.61.1.1
Watanabe I, 1999, JPN J CANCER RES, V90, P188, DOI 10.1111/j.1349-7006.1999.tb00732.x
WAXMAN DJ, 1990, BIOCHEM J, V271, P113, DOI 10.1042/bj2710113
NR 51
TC 63
Z9 64
U1 0
U2 13
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0143-3334
EI 1460-2180
J9 CARCINOGENESIS
JI Carcinogenesis
PD AUG
PY 2003
VL 24
IS 8
BP 1389
EP 1399
DI 10.1093/carcin/bgg079
PG 11
WC Oncology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Oncology
GA 710HU
UT WOS:000184675400011
PM 12807726
OA Bronze
DA 2023-03-13
ER
PT J
AU Jiang, Q
Feng, MB
Ye, CS
Yu, X
AF Jiang, Qi
Feng, Mingbao
Ye, Chengsong
Yu, Xin
TI Effects and relevant mechanisms of non-antibiotic factors on the
horizontal transfer of antibiotic resistance genes in water
environments: A review
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Review
DE HGT; ARGs; ARB; Contaminants from human activities; Water treatment
processes
ID DISINFECTION BY-PRODUCTS; OUTER-MEMBRANE VESICLES; SUB-INHIBITORY
CONCENTRATIONS; WASTE-WATER; DRINKING-WATER; HUMAN HEALTH; SUBINHIBITORY
CONCENTRATIONS; CONJUGATIVE TRANSFER; POSITIVE BACTERIA; METAL
RESISTANCE
AB Antibiotic resistance has created obstacles in the treatment of infectious diseases with antibiotics. The horizontal transfer of antibiotic resistance genes (ARGs) can exacerbate the dissemination of antibiotic resistance in water environments. In addition to antibiotic selective pressure, multiple non-antibiotic factors can affect the horizontal transfer of ARGs. Herein, we seek to comprehensively review the effects and relevant mechanisms of nonantibiotic factors on the horizontal transfer of ARGs in water environments, especially contaminants from human activities and water treatment processes. Four pathways have been identified to accomplish horizontal gene transfer (HGT), i.e., conjugation, transformation, transduction, and vesiduction. Changes in conjugative frequencies by non-antibiotic factors are mainly related to their concentrations, which conform to hormesis. Relevant mechanisms involve the alteration in cell membrane permeability, reactive oxygen species, SOS response, pilus, and mRNA expression of relevant genes. Transformation induced by extracellular DNA may be more vulnerable to non-antibiotic factors than other pathways. Except bacteriophage infection, the effects of non-antibiotic factors on transduction exhibit many similarities with that of conjugation. Given the secretion of membrane vesicles stimulated by non-antibiotic factors, their effects on vesiduction can be inferred. Furthermore, contaminants from human activities at sub-inhibitory or environmentally relevant concentrations usually promote HGT, resulting in further dissemination of antibiotic resistance. The horizontal transfer of ARGs is difficult to be inhibited by individual water treatment processes (e.g., chlorination, UV treatment, and photocatalysis) unless they attain sufficient intensity. Accordingly, the synergistic application containing two or more water treatment processes is recommended. Overall, we believe this review can elucidate the significance for risk assessments of contaminants from human activities and provide insights into the development of environment-friendly and cost-efficient water treatment processes to inhibit the horizontal transfer of ARGs. (c) 2021 Elsevier B.V. All rights reserved.
C1 [Jiang, Qi; Feng, Mingbao; Ye, Chengsong; Yu, Xin] Xiamen Univ, Coll Environm & Ecol, Xiamen 361102, Peoples R China.
C3 Xiamen University
RP Yu, X (corresponding author), Xiamen Univ, Coll Environm & Ecol, Xiamen 361102, Peoples R China.
EM xyu@xmu.edu.cn
FU National Natural Science Foundation of China [41861144023, U2005206]
FX This study was financially supported by the National Natural Science
Foundation of China (grant nos. 41861144023 and U2005206).
CR Abe K, 2020, FEMS MICROBIOL ECOL, V96, DOI 10.1093/femsec/fiaa031
Alekshun MN, 2007, CELL, V128, P1037, DOI 10.1016/j.cell.2007.03.004
Allen HK, 2010, NAT REV MICROBIOL, V8, P251, DOI 10.1038/nrmicro2312
Aminov RI, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00158
Andersson DI, 2014, NAT REV MICROBIOL, V12, P465, DOI 10.1038/nrmicro3270
Annett R, 2014, J APPL TOXICOL, V34, P458, DOI 10.1002/jat.2997
Anthony ET, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2019.113791
Augsburger N, 2019, ENVIRON SCI TECHNOL, V53, P10312, DOI 10.1021/acs.est.9b01206
Baharoglu Z, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003421
Baker-Austin C, 2006, TRENDS MICROBIOL, V14, P176, DOI 10.1016/j.tim.2006.02.006
Balcazar JL, 2018, CLIN MICROBIOL INFEC, V24, P447, DOI 10.1016/j.cmi.2017.10.010
Barancheshme F, 2018, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.02603
Beceiro A, 2013, CLIN MICROBIOL REV, V26, P185, DOI 10.1128/CMR.00059-12
Bellanger X, 2014, SCI TOTAL ENVIRON, V493, P872, DOI 10.1016/j.scitotenv.2014.06.070
Blokesch M, 2016, CURR BIOL, V26, pR1126, DOI 10.1016/j.cub.2016.08.058
Boto L, 2019, FEBS J, V286, P3959, DOI 10.1111/febs.15054
Bower CK, 1999, INT J FOOD MICROBIOL, V50, P33, DOI 10.1016/S0168-1605(99)00075-6
Boxall ABA, 2012, ENVIRON HEALTH PERSP, V120, P1221, DOI 10.1289/ehp.1104477
Brown L, 2015, NAT REV MICROBIOL, V13, P620, DOI 10.1038/nrmicro3480
Buffet-Bataillon S, 2012, INT J ANTIMICROB AG, V39, P381, DOI 10.1016/j.ijantimicag.2012.01.011
Cascales E, 2003, NAT REV MICROBIOL, V1, P137, DOI 10.1038/nrmicro753
Cen TY, 2020, ENVIRON INT, V138, DOI 10.1016/j.envint.2020.105544
Chang PH, 2017, ENVIRON SCI TECHNOL, V51, P6185, DOI 10.1021/acs.est.7b01120
Chen I, 2004, NAT REV MICROBIOL, V2, P241, DOI 10.1038/nrmicro844
Chen XF, 2019, WATER RES, V149, P282, DOI 10.1016/j.watres.2018.11.019
Colavecchio A, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01108
Crecchio C, 1998, SOIL BIOL BIOCHEM, V30, P1061, DOI 10.1016/S0038-0717(97)00248-4
Dalrymple OK, 2010, APPL CATAL B-ENVIRON, V98, P27, DOI 10.1016/j.apcatb.2010.05.001
de Almeida Maganha, TRENDS MICROBIOL, V29, P517
Ding CS, 2021, J HAZARD MATER, V405, DOI 10.1016/j.jhazmat.2020.124224
Dodd MC, 2012, J ENVIRON MONITOR, V14, P1754, DOI 10.1039/c2em00006g
Domingues S, 2017, CURR OPIN MICROBIOL, V38, P16, DOI 10.1016/j.mib.2017.03.012
Domingues Sara, 2012, Mob Genet Elements, V2, P257
Dong HR, 2015, WATER RES, V79, P128, DOI 10.1016/j.watres.2015.04.038
Dong PY, 2019, ENVIRON INT, V125, P90, DOI 10.1016/j.envint.2019.01.050
Dunlop PSM, 2015, CATAL TODAY, V240, P55, DOI 10.1016/j.cattod.2014.03.049
Feng GQ, 2021, J HAZARD MATER, V420, DOI 10.1016/j.jhazmat.2021.126602
Frassinetti S, 2020, MICROB PATHOGENESIS, V147, DOI 10.1016/j.micpath.2020.104267
Gao SH, 2016, ENVIRON SCI TECHNOL, V50, P5305, DOI 10.1021/acs.est.6b00288
Giannakis S, 2016, APPL CATAL B-ENVIRON, V199, P199, DOI 10.1016/j.apcatb.2016.06.009
Grandclement C, 2017, WATER RES, V111, P297, DOI 10.1016/j.watres.2017.01.005
Guo MT, 2019, CHEMOSPHERE, V224, P827, DOI 10.1016/j.chemosphere.2019.03.004
Guo MT, 2017, CHEMOSPHERE, V183, P197, DOI 10.1016/j.chemosphere.2017.04.145
Guo MT, 2015, ENVIRON SCI TECHNOL, V49, P5771, DOI 10.1021/acs.est.5b00644
Haaber J, 2017, TRENDS MICROBIOL, V25, P893, DOI 10.1016/j.tim.2017.05.011
Hajipour MJ, 2012, TRENDS BIOTECHNOL, V30, P499, DOI 10.1016/j.tibtech.2012.06.004
Halden RU, 2005, ENVIRON SCI TECHNOL, V39, P1420, DOI 10.1021/es049071e
Han X, 2020, ENVIRON SCI-NANO, V7, P1214, DOI 10.1039/c9en01279f
Han Y, 2019, ENVIRON SCI POLLUT R, V26, P28352, DOI 10.1007/s11356-019-05673-2
Hasegawa H, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02365
He H, 2019, ENVIRON SCI TECHNOL, V53, P2013, DOI 10.1021/acs.est.8b04393
Hiller CX, 2019, SCI TOTAL ENVIRON, V685, P596, DOI 10.1016/j.scitotenv.2019.05.315
Horikoshi S, 2020, CATAL TODAY, V340, P334, DOI 10.1016/j.cattod.2018.10.020
Hu XJ, 2020, ENVIRON SCI TECH LET, V7, P421, DOI 10.1021/acs.estlett.0c00311
Hu XJ, 2019, ENVIRON SCI-NANO, V6, P1310, DOI 10.1039/c8en01447g
Huang HN, 2019, WATER RES, V158, P383, DOI 10.1016/j.watres.2019.04.046
Huang H, 2019, APPL MICROBIOL BIOT, V103, P1115, DOI 10.1007/s00253-018-9511-6
Huddleston JR, 2014, INFECT DRUG RESIST, V7, P167, DOI 10.2147/IDR.S48820
Jebri S, 2021, J APPL MICROBIOL, V130, P688, DOI 10.1111/jam.14851
Ji QK, 2020, FRONT ENV SCI ENG, V14, DOI 10.1007/s11783-020-1287-0
Jiao YN, 2017, CHEMOSPHERE, V184, P53, DOI 10.1016/j.chemosphere.2017.05.149
Jin M, 2020, ISME J, V14, P1847, DOI 10.1038/s41396-020-0656-9
Jjemba PK, 2010, APPL ENVIRON MICROB, V76, P4169, DOI 10.1128/AEM.03147-09
Johnston C, 2014, NAT REV MICROBIOL, V12, P181, DOI 10.1038/nrmicro3199
Jong MC, 2020, ENVIRON SCI TECHNOL, V54, P14984, DOI 10.1021/acs.est.0c03714
Jutkina J, 2016, SCI TOTAL ENVIRON, V548, P131, DOI 10.1016/j.scitotenv.2016.01.044
Keeling PJ, 2008, NAT REV GENET, V9, P605, DOI 10.1038/nrg2386
Kikuchi Y, 1997, J PHOTOCH PHOTOBIO A, V106, P51, DOI 10.1016/S1010-6030(97)00038-5
Kim S, 2014, SCI TOTAL ENVIRON, V468, P813, DOI 10.1016/j.scitotenv.2013.08.100
Kitis M, 2004, ENVIRON INT, V30, P47, DOI 10.1016/S0160-4120(03)00147-8
Klumper U, 2015, ISME J, V9, P934, DOI 10.1038/ismej.2014.191
Kulkarni HM, 2015, MICROBIOL RES, V181, P1, DOI 10.1016/j.micres.2015.07.008
Lebaron P, 1993, Microb Releases, V2, P127
Lehtola MJ, 2006, WATER RES, V40, P2151, DOI 10.1016/j.watres.2006.04.010
Li G, 2018, EUR J SOIL SCI, V69, P196, DOI 10.1111/ejss.12518
Li GY, 2020, ENVIRON INT, V136, DOI 10.1016/j.envint.2020.105497
Li LG, 2017, ISME J, V11, P651, DOI 10.1038/ismej.2016.155
Li SN, 2021, J HAZARD MATER, V411, DOI 10.1016/j.jhazmat.2021.125148
Liao JQ, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.113045
Liao JQ, 2019, ENVIRON INT, V129, P333, DOI 10.1016/j.envint.2019.05.060
Lin WF, 2016, WATER RES, V91, P331, DOI 10.1016/j.watres.2016.01.020
Liu Y, 2020, MICROORGANISMS, V8, DOI 10.3390/microorganisms8081211
Lopatkin AJ, 2016, BIOESSAYS, V38, P1283, DOI 10.1002/bies.201600133
Lopatkin AJ, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.44, 10.1038/nmicrobiol.2016.44]
LORENZ MG, 1994, MICROBIOL REV, V58, P563, DOI 10.1128/MMBR.58.3.563-602.1994
Lu J, 2020, SCI TOTAL ENVIRON, V713, DOI 10.1016/j.scitotenv.2020.136621
Lu J, 2020, WATER RES, V169, DOI 10.1016/j.watres.2019.115229
Lu J, 2018, ENVIRON INT, V121, P1217, DOI 10.1016/j.envint.2018.10.040
Luukkonen T, 2017, CRIT REV ENV SCI TEC, V47, P1, DOI 10.1080/10643389.2016.1272343
Lv L, 2014, ENVIRON SCI TECHNOL, V48, P8188, DOI 10.1021/es501646n
Maertens H, 2019, POULTRY SCI, V98, P2972, DOI 10.3382/ps/pez185
Malato S, 2009, CATAL TODAY, V147, P1, DOI 10.1016/j.cattod.2009.06.018
Mantilla-Calderon D, 2019, ENVIRON SCI TECHNOL, V53, P6520, DOI 10.1021/acs.est.9b00692
Martinez JL, 2015, NAT REV MICROBIOL, V13, P116, DOI 10.1038/nrmicro3399
McCarthy AJ, 2012, FRONT CELL INFECT MI, V2, DOI 10.3389/fcimb.2012.00006
McDonnell G, 1999, CLIN MICROBIOL REV, V12, P147, DOI 10.1128/CMR.12.1.147
McInnes RS, 2020, CURR OPIN MICROBIOL, V53, P35, DOI 10.1016/j.mib.2020.02.002
Michael-Kordatou I, 2018, WATER RES, V129, P208, DOI 10.1016/j.watres.2017.10.007
Mishra S, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149174
Morikawa K, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003003
Muniesa M, 2013, FUTURE MICROBIOL, V8, P739, DOI 10.2217/fmb.13.32
Nadeem SF, 2020, CRIT REV MICROBIOL, V46, P578, DOI 10.1080/1040841X.2020.1813687
Tran NH, 2019, SCI TOTAL ENVIRON, V676, P252, DOI 10.1016/j.scitotenv.2019.04.160
Nguyen AQ, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.146964
Ngwenya N, 2013, REV ENVIRON CONTAM T, V222, P111, DOI 10.1007/978-1-4614-4717-7_4
Norman A, 2009, PHILOS T R SOC B, V364, P2275, DOI 10.1098/rstb.2009.0037
O'Neill J., 2016, Tackling drug-resistant infections globally: final report and recommendations
Ochman H, 2000, NATURE, V405, P299, DOI 10.1038/35012500
Pal C, 2017, ADV MICROB PHYSIOL, V70, P261, DOI 10.1016/bs.ampbs.2017.02.001
Patangia DV, 2022, TRENDS MICROBIOL, V30, P47, DOI 10.1016/j.tim.2021.05.006
Penades JR, 2015, CURR OPIN MICROBIOL, V23, P171, DOI 10.1016/j.mib.2014.11.019
Perry JA, 2014, CURR OPIN MICROBIOL, V21, P45, DOI 10.1016/j.mib.2014.09.002
Pruden A, 2014, ENVIRON SCI TECHNOL, V48, P5, DOI 10.1021/es403883p
Pu Q, 2021, ENVIRON INT, V152, DOI 10.1016/j.envint.2021.106453
Qiao M, 2018, ENVIRON INT, V110, P160, DOI 10.1016/j.envint.2017.10.016
Qiu ZG, 2015, NANOTOXICOLOGY, V9, P895, DOI 10.3109/17435390.2014.991429
Qiu ZG, 2012, P NATL ACAD SCI USA, V109, P4944, DOI 10.1073/pnas.1107254109
Reddy PAK, 2016, ENVIRON INT, V91, P94, DOI 10.1016/j.envint.2016.02.012
Richardson SD, 2007, MUTAT RES-REV MUTAT, V636, P178, DOI 10.1016/j.mrrev.2007.09.001
Rizzo L, 2013, SCI TOTAL ENVIRON, V447, P345, DOI 10.1016/j.scitotenv.2013.01.032
Rodriguez-Beltran J, 2021, NAT REV MICROBIOL, V19, P347, DOI 10.1038/s41579-020-00497-1
Rumbo C, 2011, ANTIMICROB AGENTS CH, V55, P3084, DOI 10.1128/AAC.00929-10
Sabra W, 2003, MICROBIOL-SGM, V149, P2789, DOI 10.1099/mic.0.26443-0
Salmond GPC, 2015, NAT REV MICROBIOL, V13, P777, DOI 10.1038/nrmicro3564
Sanganyado E, 2019, SCI TOTAL ENVIRON, V669, P785, DOI 10.1016/j.scitotenv.2019.03.162
Schwechheimer C, 2015, NAT REV MICROBIOL, V13, P605, DOI 10.1038/nrmicro3525
Seier-Petersen MA, 2014, J ANTIMICROB CHEMOTH, V69, P343, DOI 10.1093/jac/dkt370
Seiler C, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00399
Sharma VK, 2016, CHEMOSPHERE, V150, P702, DOI 10.1016/j.chemosphere.2015.12.084
Shi JH, 2019, ENVIRON SCI-NANO, V6, P2141, DOI 10.1039/c9en00068b
SIMONSEN L, 1990, J GEN MICROBIOL, V136, P2319, DOI 10.1099/00221287-136-11-2319
Simpson DR, 2008, WATER RES, V42, P2839, DOI 10.1016/j.watres.2008.02.025
Singh R, 2019, J CLEAN PROD, V234, P1484, DOI 10.1016/j.jclepro.2019.06.243
Soler N, 2020, ENVIRON MICROBIOL, V22, P2457, DOI 10.1111/1462-2920.15056
Song L, 2018, 3 BIOTECH, V8, DOI 10.1007/s13205-018-1247-6
Song Z, 2021, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.616792
Sorensen SJ, 2005, NAT REV MICROBIOL, V3, P700, DOI 10.1038/nrmicro1232
Stanczak-Mrozek KI, 2017, J ANTIMICROB CHEMOTH, V72, P1624, DOI 10.1093/jac/dkx056
Starling V. M., SCI TOTAL ENVIRON, V786
Suez J, 2014, NATURE, V514, P181, DOI 10.1038/nature13793
Sun LH, 2020, ENVIRON ENG SCI, V37, P365, DOI 10.1089/ees.2019.0397
Tan QW, 2019, FRONT ENV SCI ENG, V13, DOI 10.1007/s11783-019-1120-9
Toyofuku M, 2019, NAT REV MICROBIOL, V17, P13, DOI 10.1038/s41579-018-0112-2
Uddin MJ, 2020, MICROORGANISMS, V8, DOI 10.3390/microorganisms8050670
Umar M, 2019, SCI TOTAL ENVIRON, V662, P923, DOI 10.1016/j.scitotenv.2019.01.289
von Wintersdorff CJH, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00173
Wagner ED, 2017, J ENVIRON SCI-CHINA, V58, P64, DOI 10.1016/j.jes.2017.04.021
Walsh TR, 2011, LANCET INFECT DIS, V11, P355, DOI 10.1016/S1473-3099(11)70059-7
Wang HC, 2020, WATER RES, V185, DOI 10.1016/j.watres.2020.116290
Wang HG, 2020, COLLOID SURFACE B, V185, DOI 10.1016/j.colsurfb.2019.110569
Wang HG, 2019, ECOTOX ENVIRON SAFE, V186, DOI 10.1016/j.ecoenv.2019.109781
Wang JL, 2022, CRIT REV ENV SCI TEC, V52, P571, DOI 10.1080/10643389.2020.1835124
Wang J, 2020, ENVIRON POLLUT, V262, DOI 10.1016/j.envpol.2020.114665
Wang MZ, 2018, ENVIRON POLLUT, V238, P291, DOI 10.1016/j.envpol.2018.03.024
Wang Q., ENVIRON POLLUT, V268
Wang Q, 2020, SCI TOTAL ENVIRON, V717, DOI 10.1016/j.scitotenv.2020.137055
Wang Q, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00864
Wang Q, 2015, ENVIRON SCI TECHNOL, V49, P8731, DOI 10.1021/acs.est.5b01129
Wang Q, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126784
Wang XL, 2018, NANOIMPACT, V10, P61, DOI 10.1016/j.impact.2017.11.006
Wang Y, 2021, ISME J, V15, P2493, DOI 10.1038/s41396-021-00945-7
Wang Y, 2020, ISME J, V14, P2179, DOI 10.1038/s41396-020-0679-2
Wang Y, 2019, ISME J, V13, P509, DOI 10.1038/s41396-018-0275-x
WHO, 2014, ANT RES GLOB REP SUR
Wu JW, 2020, SCI TOTAL ENVIRON, V723, DOI 10.1016/j.scitotenv.2020.137991
Xiao X, 2021, SCI TOTAL ENVIRON, V760, DOI 10.1016/j.scitotenv.2020.144040
Yin H.L., APPL CATAL B, V287
Yoon Y, 2018, ENVIRON SCI-WAT RES, V4, P1239, DOI [10.1039/c8ew00200b, 10.1039/C8EW00200B]
Yu KQ, 2020, ENVIRON SCI TECHNOL, V54, P10012, DOI 10.1021/acs.est.0c01870
Yu ZG, 2021, ISME J, V15, P2117, DOI 10.1038/s41396-021-00909-x
Zarei-Baygi A, 2021, BIORESOURCE TECHNOL, V319, DOI 10.1016/j.biortech.2020.124181
Zhang CQ, 2019, SCI TOTAL ENVIRON, V685, P419, DOI 10.1016/j.scitotenv.2019.05.074
Zhang GS, 2020, CHEMOSPHERE, V254, DOI 10.1016/j.chemosphere.2020.126831
Zhang HN, 2021, BIOENGINEERED, V12, P63, DOI 10.1080/21655979.2020.1862995
Zhang JY, 2020, BIORESOURCE TECHNOL, V295, DOI 10.1016/j.biortech.2019.122191
Zhang S, 2019, ENVIRON INT, V129, P478, DOI 10.1016/j.envint.2019.05.054
Zhang X, 2019, ENVIRON SCI TECHNOL, V53, P10732, DOI 10.1021/acs.est.9b03096
Zhang Y, 2018, ENVIRON POLLUT, V237, P74, DOI 10.1016/j.envpol.2018.01.032
Zhang Y, 2017, ENVIRON SCI TECHNOL, V51, P570, DOI 10.1021/acs.est.6b03132
Zheng Ji, 2018, Sci Total Environ, V612, P1, DOI 10.1016/j.scitotenv.2017.08.072
Zhong X, 2010, J THEOR BIOL, V262, P711, DOI 10.1016/j.jtbi.2009.10.013
Zhu B, 2006, WATER RES, V40, P3231, DOI 10.1016/j.watres.2006.06.040
Zhu L, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134236
Zhu YG, 2017, NAT MICROBIOL, V2, DOI 10.1038/nmicrobiol.2016.270
NR 184
TC 25
Z9 26
U1 75
U2 298
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD FEB 1
PY 2022
VL 806
AR 150568
DI 10.1016/j.scitotenv.2021.150568
EA OCT 2021
PG 19
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA WH4MS
UT WOS:000707654600012
PM 34627113
DA 2023-03-13
ER
PT J
AU Janani, B
Alarjani, KM
Raju, LL
Thomas, AM
Das, A
Khan, SS
AF Janani, B.
Alarjani, Khaloud Mohammed
Raju, Lija L.
Thomas, Ajith Mesmin
Das, Arunava
Khan, S. Sudheer
TI A potent multifunctional Ag/Co-polyvinylpyrrolidone nanocomposite for
enhanced detection of Cr(III) from environmental samples and its
photocatalytic and antibacterial applications
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE Ag/Co-polyvinylpyrrolidone nanocomposite; Trivalent chromiurn;
Nanomolar; Photocatalytic; Antibacterial
ID SILVER NANOPARTICLES; GOLD NANOPARTICLES; FLUORESCENT SENSOR;
COLORIMETRIC DETECTION; CHROMOGENIC VESICLES; AQUEOUS DETECTION; CR(VI);
CR3+; QUANTIFICATION; CHEMOSENSOR
AB Trivalent chromium (Cr(III)) is considered to exhibit hormesis (bi-phasic dose-response) properly, where low dose be beneficial and high dose shows toxic effect. The present work describe the development of a bimetallic Ag/Co-polyvinylpyrrolidone nanocomposite (Ag/Co-PVP NPs) probe to detect and quantify Cr(III) ions from aqueous samples. The hydrodynamic size and zeta potential of the particle was determined to be 29 +/- 13 nm and -37.19 +/- 2.4 mV respectively. The interaction of Cr(III) with Ag/Co-PVP probe showed drastic change in colour of NPs from dark brown to pale yellow, with corresponding blue shift, tapering width and increased peak intensity. The probe showed high specificity towards Cr(III) among the tested metal ions. A linearity was observed between various dilutions of Cr(III) ions (10 to 50 nM) and the absorbance of Ag/Co-PVP NPs at 428 nm with R-2 value of 0.998. The minimum detectable limit of Cr(III) was calculated to be 0.6 nM. The influence of salinity, temperature and pH on detection was studied. The probe was found to detect Cr(III) at acidic pH effectively. Competitive metal ions did not interfere the detection of Cr(III). The water sample collected from Noyyal river was taken to estimate Cr(III) by using the prepared probe to ensure practical applicability. The sample contains 93 nM of Cr (III) that was cross verified with AAS analysis. Hence, it is understood that the reported probe can be used to detect Cr(III) selectively with high accuracy from aqueous samples. In addition, the particles also exhibited excellent photocatalytic activity under visible light. Ag/Co-PVP nanocomposites exhibited excellent antibacterial activity against both gram +ve (B. subtilis) and gram -ve (E. coli) bacteria. (C) 2020 Elsevier B.V. All rights reserved.
C1 [Janani, B.; Das, Arunava; Khan, S. Sudheer] Bannari Amman Inst Technol, Dept Biotechnol, Nanobiotechnol Lab, Sathyamangalam, Tamil Nadu, India.
[Alarjani, Khaloud Mohammed] King Saud Univ, Dept Bot & Microbiol, Coll Sci, Riyadh 11451, Saudi Arabia.
[Raju, Lija L.] Mar Ivanios Coll, Dept Zool, Thiruvananthapuram, Kerala, India.
[Thomas, Ajith Mesmin] St Xaviers Coll, Dept Bot & Biotechnol, Thiruvananthapuram, Kerala, India.
C3 Bannari Amman Institute of Technology; King Saud University
RP Khan, SS (corresponding author), Bannari Amman Inst Technol, Dept Biotechnol, Nanobiotechnol Lab, Sathyamangalam, Tamil Nadu, India.
EM sudheerkhan@bitsathy.ac.in
RI Khan, Sudheer/ABG-6209-2021; Das, Arunava/L-3356-2019; Alarjani, Khaloud
Mohammed/AAX-4155-2021
OI Khan, Sudheer/0000-0002-9666-7672; Das, Arunava/0000-0002-0165-866X;
Alarjani, Khaloud Mohammed/0000-0002-3762-1498
FU King Saud University, Riyadh, Saudi Arabia [RSP-2020/185]
FX Authors sincerely thank the management of Bannari Amman Institute of
Technology, Tamil Nadu for providing the necessary facilities for
carrying out this work. The authors extend their appreciation to the
Researchers supporting project number (RSP-2020/185) King Saud
University, Riyadh, Saudi Arabia.
CR Alijani S, 2020, CATALYSTS, V10, DOI 10.3390/catal10010011
Anderson RA, 1998, J AM COLL NUTR, V17, P548, DOI 10.1080/07315724.1998.10718802
Ashraf MA, 2020, CERAM INT, V46, P8379, DOI 10.1016/j.ceramint.2019.12.070
Barnhart J, 1997, J SOIL CONTAM, V6, P561, DOI 10.1080/15320389709383589
Bohrn U, 2013, SENSOR ACTUAT B-CHEM, V182, P58, DOI 10.1016/j.snb.2013.02.105
Boldeiu A, 2019, J PHOTOCH PHOTOBIO B, V197, DOI 10.1016/j.jphotobiol.2019.111519
Burridge K, 2011, J MATER CHEM, V21, P734, DOI 10.1039/c0jm02702b
Cai YC, 2017, CERAM INT, V43, P1066, DOI 10.1016/j.ceramint.2016.10.041
Chen NY, 2020, CHEM ENG J, V387, DOI 10.1016/j.cej.2020.124079
Das A., 2013, COMPUTER SCI INFORM, P461
Devi TB, 2019, J IND ENG CHEM, V76, P160, DOI 10.1016/j.jiec.2019.03.032
Dhumale VA, 2012, MATER EXPRESS, V2, P311, DOI 10.1166/mex.2012.1082
Es-Souni M, 2008, ADV FUNCT MATER, V18, P3179, DOI 10.1002/adfm.200800354
Fakhri A, 2019, MATER RES EXPRESS, V6, DOI 10.1088/2053-1591/ab3bdb
Fakhri A, 2019, J INORG ORGANOMET P, V29, P1119, DOI 10.1007/s10904-019-01074-7
Filinchuk Y, 2008, EUR J INORG CHEM, P3127, DOI 10.1002/ejic.200800053
He LL, 2018, APPL SURF SCI, V434, P265, DOI 10.1016/j.apsusc.2017.10.155
He SZ, 2019, ANAL METHODS-UK, V11, P5819, DOI 10.1039/c9ay02010a
He XY, 2020, INT J BIOL MACROMOL, V143, P952, DOI 10.1016/j.ijbiomac.2019.09.155
Huang KW, 2008, ORG LETT, V10, P2557, DOI 10.1021/ol800778a
Ismail M, 2018, PHYSICA E, V103, P367, DOI 10.1016/j.physe.2018.06.015
Jin WW, 2015, J NANOPART RES, V17, DOI 10.1007/s11051-015-3156-5
Jug K, 2009, J PHYS CHEM A, V113, P11651, DOI 10.1021/jp902532a
Kadam AN, 2014, J MATER SCI-MATER EL, V25, P1887, DOI 10.1007/s10854-014-1816-3
Khan Z, 2016, J MOL LIQ, V222, P272, DOI 10.1016/j.molliq.2016.07.043
Kim YB, 2010, J APPL POLYM SCI, V116, P449, DOI 10.1002/app.31480
Konstantinou IK, 2004, APPL CATAL B-ENVIRON, V49, P1, DOI 10.1016/j.apcatb.2003.11.010
Leonardo C.G.D.S.R., 2017, J COLLOID INTERF SCI, V512, P792
Li H, 2012, RSC ADV, V2, P12413, DOI 10.1039/c2ra21590j
Li N, 2014, LIGHT-SCI APPL, V3, DOI 10.1038/lsa.2014.107
Li S, 2017, COLLOID SURFACE A, V535, P215, DOI 10.1016/j.colsurfa.2017.09.028
Li ZX, 2011, TETRAHEDRON, V67, P7096, DOI 10.1016/j.tet.2011.07.008
Liu MH, 2000, REACT FUNCT POLYM, V44, P55, DOI 10.1016/S1381-5148(99)00077-2
Liu XH, 2008, CRYST GROWTH DES, V8, P1916, DOI 10.1021/cg701128b
Losev VN, 2015, MICROCHEM J, V123, P84, DOI 10.1016/j.microc.2015.05.022
Lu M, 2020, J PHOTOCH PHOTOBIO B, V205, DOI 10.1016/j.jphotobiol.2020.111842
Maturana HA, 2000, POLYM BULL, V45, P425, DOI 10.1007/s002890070017
Mohapatra SK, 2008, LANGMUIR, V24, P11276, DOI 10.1021/la801253f
Okoli CU, 2018, ULTRASON SONOCHEM, V41, P427, DOI 10.1016/j.ultsonch.2017.09.049
Radhu S, 2020, MATER TODAY-PROC, V25, P285, DOI 10.1016/j.matpr.2020.01.413
Rasheed T, 2019, J MOL LIQ, V296, DOI 10.1016/j.molliq.2019.111966
Rasheed T, 2019, COORDIN CHEM REV, V401, DOI 10.1016/j.ccr.2019.213065
Rasheed T, 2019, J MOL LIQ, V292, DOI 10.1016/j.molliq.2019.111425
Rasheed T, 2019, BIOCATAL AGR BIOTECH, V19, DOI 10.1016/j.bcab.2019.101154
Rasheed T, 2019, J MOL LIQ, V282, P489, DOI 10.1016/j.molliq.2019.03.048
Rasheed T, 2019, BIOCATAL AGRIC BIOTE, V17, P696, DOI 10.1016/j.bcab.2019.01.032
Rasheed T, 2019, J MOL LIQ, V274, P461, DOI 10.1016/j.molliq.2018.11.014
Rasheed T, 2019, J LUMIN, V208, P519, DOI 10.1016/j.jlumin.2019.01.032
Rasheed T, 2018, J MOL LIQ, V272, P440, DOI 10.1016/j.molliq.2018.09.112
Rasheed T, 2019, CHEM ENG J, V358, P101, DOI 10.1016/j.cej.2018.09.216
Rasheed T, 2018, SCI TOTAL ENVIRON, V640, P174, DOI 10.1016/j.scitotenv.2018.05.232
Rasheed T, 2018, SCI TOTAL ENVIRON, V615, P476, DOI 10.1016/j.scitotenv.2017.09.126
Reddy YVM, 2018, COLLOID SURFACE A, V546, P293, DOI 10.1016/j.colsurfa.2018.03.032
Salimi F, 2018, OPTIK, V158, P813, DOI 10.1016/j.ijleo.2018.01.006
Saluja P, 2012, TETRAHEDRON, V68, P8551, DOI 10.1016/j.tet.2012.08.022
Sankar M, 2012, CHEM SOC REV, V41, P8099, DOI 10.1039/c2cs35296f
Saravanakumar K, 2020, POSTHARVEST BIOL TEC, V160, DOI 10.1016/j.postharvbio.2019.111039
Shanmugaraj K, 2020, SPECTROCHIM ACTA A, V236, DOI 10.1016/j.saa.2020.118281
Shkilnyy A, 2009, ANALYST, V134, P1868, DOI 10.1039/b905694g
Sutka A, 2016, SOLID STATE SCI, V56, P54, DOI 10.1016/j.solidstatesciences.2016.04.008
Swaidan A, 2019, SENSOR ACTUAT B-CHEM, V294, P253, DOI 10.1016/j.snb.2019.05.052
Tokman N, 2004, TALANTA, V63, P699, DOI 10.1016/j.talanta.2003.12.018
Tomer VK, 2019, APPL MATER TODAY, V16, P193, DOI 10.1016/j.apmt.2019.05.010
Trindade ASN, 2015, FOOD CHEM, V185, P145, DOI 10.1016/j.foodchem.2015.03.118
Wang DP, 2010, TETRAHEDRON LETT, V51, P2545, DOI 10.1016/j.tetlet.2010.03.013
Wang H, 2015, ANALYST, V140, P5619, DOI 10.1039/c5an00736d
Wang HX, 2020, J PHOTOCH PHOTOBIO B, V207, DOI 10.1016/j.jphotobiol.2020.111882
Wang M, 2013, DYES PIGMENTS, V97, P475, DOI 10.1016/j.dyepig.2013.02.005
Wang XK, 2015, COLLOID SURFACE A, V472, P57, DOI 10.1016/j.colsurfa.2015.02.033
Weerasinghe AJ, 2009, TETRAHEDRON LETT, V50, P6407, DOI 10.1016/j.tetlet.2009.08.025
WHO, 2003, CHOROM DRINK WAT
WU Z, 2016, ANAL METHODS, V8, P7237
Xu ZC, 2007, J AM CHEM SOC, V129, P8698, DOI 10.1021/ja073057v
Yu SJ, 2015, NANO LETT, V15, P6282, DOI 10.1021/acs.nanolett.5b03227
Zada S, 2018, ARTIF CELL NANOMED B, V46, pS471, DOI 10.1080/21691401.2018.1499663
Zhang DM, 2020, MACROMOL BIOSCI, V20, DOI 10.1002/mabi.202000036
Zhang L, 2016, ANAL CHIM ACTA, V947, P23, DOI 10.1016/j.aca.2016.10.011
Zhou ZG, 2008, CHEM COMMUN, P3387, DOI 10.1039/b801503a
Zielinska-Jurek A, 2014, J NANOMATER, V2014, DOI 10.1155/2014/208920
NR 79
TC 14
Z9 14
U1 5
U2 45
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
EI 1873-3557
J9 SPECTROCHIM ACTA A
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD DEC 15
PY 2020
VL 243
AR 118766
DI 10.1016/j.saa.2020.118766
PG 10
WC Spectroscopy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Spectroscopy
GA NZ1HV
UT WOS:000576843400015
PM 32799187
DA 2023-03-13
ER
PT J
AU Sillen, WMA
Thijs, S
Abbamondi, GR
Roche, RD
Weyens, N
White, JC
Vangronsveld, J
AF Sillen, Wouter M. A.
Thijs, Sofie
Abbamondi, Gennaro Roberto
De la Torre Roche, Roberto
Weyens, Nele
White, Jason C.
Vangronsveld, Jaco
TI Nanoparticle treatment of maize analyzed through the metatranscriptome:
compromised nitrogen cycling, possible phytopathogen selection, and
plant hormesis
SO MICROBIOME
LA English
DT Article
DE Plant microbiome; Maize; Silver nanoparticles; Rhizosphere;
Metatranscriptome; Phytopathogens
ID AMMONIA-OXIDIZING BACTERIA; RHIZOSPHERE MICROBIOME; SILVER
NANOPARTICLES; OXIDATIVE STRESS; PATHOGENIC FUNGI; OXALATE OXIDASE;
BIOCONTROL; GROWTH; RESISTANCE; ARCHAEA
AB Background The beneficial use of nanoparticle silver or nanosilver may be confounded when its potent antimicrobial properties impact non-target members of natural microbiomes such as those present in soil or the plant rhizosphere. Agricultural soils are a likely sink for nanosilver due to its presence in agrochemicals and land-applied biosolids, but a complete assessment of nanosilver's effects on this environment is lacking because the impact on the natural soil microbiome is not known. In a study assessing the use of nanosilver for phytopathogen control with maize, we analyzed the metatranscriptome of the maize rhizosphere and observed multiple unintended effects of exposure to 100 mg kg(-1)nanosilver in soil during a growth period of 117 days.
Results We found several unintended effects of nanosilver which could interfere with agricultural systems in the long term. Firstly, the archaea community was negatively impacted with a more than 30% decrease in relative abundance, and as such, their involvement in nitrogen cycling and specifically, nitrification, was compromised. Secondly, certain potentially phytopathogenic fungal groups showed significantly increased abundances, possibly due to the negative effects of nanosilver on bacteria exerting natural biocontrol against these fungi as indicated by negative interactions in a network analysis. Up to 5-fold increases in relative abundance have been observed for certain possibly phytopathogenic fungal genera. Lastly, nanosilver exposure also caused a direct physiological impact on maize as illustrated by increased transcript abundance of aquaporin and phytohormone genes, overall resulting in a stress level with the potential to yield hormetically stimulated plant root growth.
Conclusions This study indicates the occurrence of significant unintended effects of nanosilver use on corn, which could turn out to be negative to crop productivity and ecosystem health in the long term. We therefore highlight the need to include the microbiome when assessing the risk associated with nano-enabled agriculture.
C1 [Sillen, Wouter M. A.; Thijs, Sofie; Abbamondi, Gennaro Roberto; Weyens, Nele; Vangronsveld, Jaco] Hasselt Univ, Ctr Environm Sci, Agoralaan,Bldg D, B-3590 Diepenbeek, Belgium.
[Abbamondi, Gennaro Roberto] Natl Res Council Italy, Inst Biomol Chem, Via Campi Flegrei 34, I-80078 Naples, Italy.
[De la Torre Roche, Roberto; White, Jason C.] Connecticut Agr Expt Stn, Dept Analyt Chem, 123 Huntington St, New Haven, CT 06504 USA.
[Vangronsveld, Jaco] Marie Curie Sklodowska Univ, Fac Biol & Biotechnol, Dept Plant Physiol, Lublin, Poland.
C3 Hasselt University; Connecticut Agricultural Experiment Station; Maria
Curie-Sklodowska University
RP Sillen, WMA (corresponding author), Hasselt Univ, Ctr Environm Sci, Agoralaan,Bldg D, B-3590 Diepenbeek, Belgium.
EM wouter.sillen@uhasselt.be
RI Abbamondi, Gennaro Roberto/B-9343-2014; Vangronsveld, Jaco/ABE-5907-2020
OI Abbamondi, Gennaro Roberto/0000-0003-4772-3989; Vangronsveld,
Jaco/0000-0003-4423-8363; Sillen, Wouter/0000-0003-1903-7826
FU Hasselt University Bijzonder Onderzoeksfonds Methusalem Project
[08M03VGRJ]; USDA [AFRI 2016-6702124985]; USDA Hatch [CONH00147]
FX This work was supported by Hasselt University Bijzonder Onderzoeksfonds
Methusalem Project 08M03VGRJ. JCW acknowledges USDA AFRI 2016-6702124985
and USDA Hatch CONH00147. W.S., S.T. and N.W. were research fellows and
a postdoctoral fellow, respectively, of the Research Foundation-Flanders
(FWO).
CR [Anonymous], 2016, R LANG ENV STAT COMP
Barka EA, 2016, MICROBIOL MOL BIOL R, V80, P1, DOI 10.1128/MMBR.00019-15
Beddow J, 2017, ENVIRON MICROBIOL, V19, P500, DOI 10.1111/1462-2920.13441
Berendsen RL, 2012, TRENDS PLANT SCI, V17, P478, DOI 10.1016/j.tplants.2012.04.001
Berg G, 2014, FRONT MICROBIOL, V5, DOI [10.3389/fmicb.2014.00491, 10.3389/fmicb.2014.00148]
Bini E, 2010, FEMS MICROBIOL ECOL, V73, P1, DOI 10.1111/j.1574-6941.2010.00876.x
Buchfink B, 2015, NAT METHODS, V12, P59, DOI 10.1038/nmeth.3176
Bull CT, 2002, PLANT DIS, V86, P889, DOI 10.1094/PDIS.2002.86.8.889
Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585
Chaparro JM, 2014, ISME J, V8, P790, DOI 10.1038/ismej.2013.196
Chhipa H, 2017, ENVIRON CHEM LETT, V15, P15, DOI 10.1007/s10311-016-0600-4
Compant S, 2019, J ADV RES, V19, P29, DOI 10.1016/j.jare.2019.03.004
Dahm H, 2015, DENDROBIOLOGY, V74, P13, DOI 10.12657/denbio.074.002
Danish Consumer Counsil, NAN
Davis MPA, 2013, METHODS, V63, P41, DOI 10.1016/j.ymeth.2013.06.027
Develey-Riviere MP, 2007, NEW PHYTOL, V175, P405, DOI 10.1111/j.1469-8137.2007.02130.x
Dimkpa CO, 2013, ENVIRON SCI TECHNOL, V47, P1082, DOI 10.1021/es302973y
Doolette CL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161979
El-Tarabily KA, 2006, SOIL BIOL BIOCHEM, V38, P1505, DOI 10.1016/j.soilbio.2005.12.017
Faust K, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002606
Franke S, 2007, PHYSIOLOGY AND BIOCHEMISTRY OF EXTREMOPHILES, P271
Gottschalk F, 2009, ENVIRON SCI TECHNOL, V43, P9216, DOI 10.1021/es9015553
Gupta A, 1999, NAT MED, V5, P183, DOI 10.1038/5545
Holden PA, 2016, ENVIRON SCI TECHNOL, V50, P6124, DOI 10.1021/acs.est.6b00608
Huson DH, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1004957
Ilic SB, 2007, MICROBIOLOGY+, V76, P421, DOI 10.1134/S0026261707040066
Kanehisa M, 2000, NUCLEIC ACIDS RES, V28, P27, DOI 10.1093/nar/28.1.27
Kopylova E, 2012, BIOINFORMATICS, V28, P3211, DOI 10.1093/bioinformatics/bts611
Lambkin DC, 2003, WATER AIR SOIL POLL, V144, P41, DOI 10.1023/A:1022949015848
Li XF, 2009, PLANT SOIL, V324, P209, DOI 10.1007/s11104-009-9947-7
Lin RZ, 2007, CHEMOSPHERE, V69, P89, DOI 10.1016/j.chemosphere.2007.04.041
Loh JV, 2009, INT WOUND J, V6, P32, DOI 10.1111/j.1742-481X.2008.00563.x
Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
Mahakham W, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08669-5
McMurdie PJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061217
Mendes R, 2013, FEMS MICROBIOL REV, V37, P634, DOI 10.1111/1574-6976.12028
Mertens J, 2009, ISME J, V3, P916, DOI 10.1038/ismej.2009.39
Minot S. S, 2015, ONE CODEX SENSITIVE, DOI [10.1101/027607, DOI 10.1101/027607]
Mitchell A, 2015, NUCLEIC ACIDS RES, V43, pD213, DOI 10.1093/nar/gku1243
Nicol GW, 2006, TRENDS MICROBIOL, V14, P207, DOI 10.1016/j.tim.2006.03.004
Niemietz CM, 2002, FEBS LETT, V531, P443, DOI 10.1016/S0014-5793(02)03581-0
Nowack B, 2011, ENVIRON SCI TECHNOL, V45, P1177, DOI 10.1021/es103316q
Pinton R, 2007, RHIZOSPHERE BIOCH OR
Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012
Pradas del Real AE, 2016, ENVIRON SCI TECHNOL, V50, P1759, DOI 10.1021/acs.est.5b04550
Qian HF, 2013, J ENVIRON SCI, V25, P1947, DOI 10.1016/S1001-0742(12)60301-5
Quast C, 2013, NUCLEIC ACIDS RES, V41, pD590, DOI 10.1093/nar/gks1219
Rho MN, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq747
Roche RD, 2018, NANOIMPACT, V11, P136, DOI 10.1016/j.impact.2018.07.001
Rodriguez PA, 2019, MOL PLANT, V12, P804, DOI 10.1016/j.molp.2019.05.006
Schluesener JK, 2013, ARCH TOXICOL, V87, P569, DOI 10.1007/s00204-012-1007-z
Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
Sillen WMA, 2015, SOIL BIOL BIOCHEM, V91, P14, DOI 10.1016/j.soilbio.2015.08.019
Spang A, 2010, TRENDS MICROBIOL, V18, P331, DOI 10.1016/j.tim.2010.06.003
Staehlin BM, 2016, GENOME BIOL EVOL, V8, P811, DOI 10.1093/gbe/evw031
Valentine DL, 2007, NAT REV MICROBIOL, V5, P316, DOI 10.1038/nrmicro1619
Vasileiadis S, 2012, MICROB ECOL, V64, P1028, DOI 10.1007/s00248-012-0081-3
Wan XQ, 2009, PHYSIOL PLANTARUM, V136, P30, DOI 10.1111/j.1399-3054.2009.01210.x
Whipps JM, 2001, J EXP BOT, V52, P487, DOI 10.1093/jexbot/52.suppl_1.487
White JC, 2018, NAT NANOTECHNOL, V13, P627, DOI 10.1038/s41565-018-0223-y
Woo EJ, 2000, NAT STRUCT BIOL, V7, P1036
Yin HQ, 2015, SCI REP-UK, V5, DOI 10.1038/srep14266
Zhang LM, 2012, ISME J, V6, P1032, DOI 10.1038/ismej.2011.168
NR 63
TC 14
Z9 14
U1 9
U2 50
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2049-2618
J9 MICROBIOME
JI Microbiome
PD SEP 9
PY 2020
VL 8
IS 1
AR 127
DI 10.1186/s40168-020-00904-y
PG 17
WC Microbiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Microbiology
GA NR4RP
UT WOS:000571551800001
PM 32907632
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Ng, LF
Ng, LT
van Breugel, M
Halliwell, B
Gruber, J
AF Ng, Li Fang
Ng, Li Theng
van Breugel, Michiel
Halliwell, Barry
Gruber, Jan
TI Mitochondrial DNA Damage Does Not Determine C. elegans Lifespan
SO FRONTIERS IN GENETICS
LA English
DT Article
DE mitochondrial DNA; DNA damage; lifespan; healthspan; aging; hormesis;
quantitative PCR; radiation
ID AGE-DEPENDENT INCREASES; OXIDATIVE DAMAGE; CAENORHABDITIS-ELEGANS;
GAMMA-RADIATION; ENERGY-METABOLISM; HYDROGEN-SULFIDE; COMET ASSAY;
DILATED CARDIOMYOPATHY; MASS-SPECTROMETRY; PROTEIN CARBONYL
AB The mitochondrial free radical theory of aging (mFRTA) proposes that accumulation of oxidative damage to macromolecules in mitochondria is a causative mechanism for aging. Accumulation of mitochondrial DNA (mtDNA) damage may be of particular interest in this context. While there is evidence for age-dependent accumulation of mtDNA damage, there have been only a limited number of investigations into mtDNA damage as a determinant of longevity. This lack of quantitative data regarding mtDNA damage is predominantly due to a lack of reliable assays to measure mtDNA damage. Here, we report adaptation of a quantitative real-time polymerase chain reaction (qRT-PCR) assay for the detection of sequence-specific mtDNA damage in C. elegans and apply this method to investigate the role of mtDNA damage in the aging of nematodes. We compare damage levels in old and young animals and also between wild-type animals and long-lived mutant strains or strains with modifications in ROS detoxification or production rates. We confirm an age-dependent increase in mtDNA damage levels in C. elegans but found that there is no simple relationship between mtDNA damage and lifespan. MtDNA damage levels were high in some mutants with long lifespan (and vice versa). We next investigated mtDNA damage, lifespan and healthspan effects in nematode subjected to exogenously elevated damage (UV- or gamma-radiation induced). We, again, observed a complex relationship between damage and lifespan in such animals. Despite causing a significant elevation in mtDNA damage, gamma-radiation did not shorten the lifespan of nematodes at any of the doses tested. When mtDNA damage levels were elevated significantly using UV-radiation, nematodes did suffer from shorter lifespan at the higher end of exposure tested. However, surprisingly, we also found hormetic lifespan and healthspan benefits in nematodes treated with intermediate doses of UV-radiation, despite the fact that mtDNA damage in these animals was also significantly elevated. Our results suggest that within a wide physiological range, the level of mtDNA damage does not control lifespan in C. elegans.
C1 [Ng, Li Fang; Ng, Li Theng; Gruber, Jan] Yale NUS Coll, Sci Div, Ageing Res Lab, Singapore, Singapore.
[Ng, Li Theng] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Pharmacol, Singapore, Singapore.
[Ng, Li Theng] Natl Univ Singapore, Life Sci Inst, Neurobiol Programme, Singapore, Singapore.
[van Breugel, Michiel] Yale NUS Coll, Sci Div, Environm Sci Lab, Singapore, Singapore.
[Halliwell, Barry; Gruber, Jan] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore.
C3 Yale NUS College; National University of Singapore; National University
of Singapore; Yale NUS College; National University of Singapore
RP Gruber, J (corresponding author), Yale NUS Coll, Sci Div, Ageing Res Lab, Singapore, Singapore.; Gruber, J (corresponding author), Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore.
EM yncjg@nus.edu.sg
OI Halliwell, Barry/0000-0002-3560-7123
FU Ministry of Education Singapore [MOE2010-T2-2-048, MOE2014-T2-2-120]
FX Financial assistance from the Ministry of Education Singapore (Grants
MOE2010-T2-2-048 and MOE2014-T2-2-120) is also acknowledged.
CR Adachi H, 1998, J GERONTOL A-BIOL, V53, pB240, DOI 10.1093/gerona/53A.4.B240
ADELMAN R, 1988, P NATL ACAD SCI USA, V85, P2706, DOI 10.1073/pnas.85.8.2706
AGARWAL S, 1994, P NATL ACAD SCI USA, V91, P12332, DOI 10.1073/pnas.91.25.12332
Alexeyev MF, 2004, CLIN SCI, V107, P355, DOI 10.1042/CS20040148
Alexeyev M, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a012641
ALLEN RG, 1982, MECH AGEING DEV, V20, P369, DOI 10.1016/0047-6374(82)90104-X
AMES BN, 1993, P NATL ACAD SCI USA, V90, P7915, DOI 10.1073/pnas.90.17.7915
An J, 2011, BMC BIOCHEM, V12, DOI 10.1186/1471-2091-12-2
Bailly A, 2011, CURR CANCER RES, P101, DOI 10.1007/978-1-4419-8044-1_5
Balajee AS, 2000, GENE, V250, P15, DOI 10.1016/S0378-1119(00)00172-4
Bansal A, 2015, P NATL ACAD SCI USA, V112, pE277, DOI 10.1073/pnas.1412192112
Barja G, 2000, FASEB J, V14, P312, DOI 10.1096/fasebj.14.2.312
Bianchi L., 2006, WORMBOOK ONLINE REV
Birch-Machin MA, 2006, CLIN EXP DERMATOL, V31, P548, DOI 10.1111/j.1365-2230.2006.02161.x
Borek C, 2004, J NUTR, V134, p3207S, DOI 10.1093/jn/134.11.3207S
Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2
Bratic I, 2010, BBA-BIOENERGETICS, V1797, P961, DOI 10.1016/j.bbabio.2010.01.004
BRITT AB, 1995, PLANT PHYSIOL, V108, P891, DOI 10.1104/pp.108.3.891
Brys K, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-91
Buisset-Goussen A, 2014, J ENVIRON RADIOACTIV, V137, P190, DOI 10.1016/j.jenvrad.2014.07.014
Cadet J, 1998, FREE RADICAL RES, V29, P541, DOI 10.1080/10715769800300581
Chaubey RC, 2001, MUTAT RES-GEN TOX EN, V490, P187, DOI 10.1016/S1383-5718(00)00166-2
Chung HC, 2001, TOXICOLOGY, V161, P79, DOI 10.1016/S0300-483X(01)00332-8
Cline SD, 2012, BBA-GENE REGUL MECH, V1819, P979, DOI 10.1016/j.bbagrm.2012.06.002
Collins AR, 2008, MUTAGENESIS, V23, P143, DOI 10.1093/mutage/gem051
Collins AR, 1996, ENVIRON HEALTH PERSP, V104, P465, DOI 10.2307/3432805
Cui HJ, 2012, CASE REP ONCOL MED, V2012, DOI 10.1155/2012/296286
Cummings S. R., 2007, Journal of Musculoskeletal & Neuronal Interactions, V7, P340
D'Orazio J, 2013, INT J MOL SCI, V14, P12222, DOI 10.3390/ijms140612222
David DC, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000450
DeLaAsuncion JG, 1996, FASEB J, V10, P333, DOI 10.1096/fasebj.10.2.8641567
Depuydt G, 2016, J GERONTOL A-BIOL, V71, P1553, DOI 10.1093/gerona/glv221
Dhawan A, 2009, ISSUES TOXICOL, V5, P151, DOI 10.1039/9781847559746-00151
Diffey BL, 2018, PHOTOCH PHOTOBIO SCI, V17, P1941, DOI 10.1039/c7pp00228a
DIZDAROGLU M, 1992, MUTAT RES, V275, P331, DOI 10.1016/0921-8734(92)90036-O
Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808
Dusinska M, 2008, MUTAGENESIS, V23, P191, DOI 10.1093/mutage/gen007
Edwards JG, 2009, MITOCHONDRION, V9, P31, DOI 10.1016/j.mito.2008.11.004
El-Brolosy MA, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006780
Elchuri S, 2005, ONCOGENE, V24, P367, DOI 10.1038/sj.onc.1208207
Essers PB, 2015, CELL REP, V10, P339, DOI 10.1016/j.celrep.2014.12.029
Flemming AJ, 2000, P NATL ACAD SCI USA, V97, P5285, DOI 10.1073/pnas.97.10.5285
Fong S, 2017, BIOGERONTOLOGY, V18, P189, DOI 10.1007/s10522-016-9672-6
FRAGA CG, 1990, P NATL ACAD SCI USA, V87, P4533, DOI 10.1073/pnas.87.12.4533
Gan W, 2012, FREE RADICAL BIO MED, V52, P1700, DOI 10.1016/j.freeradbiomed.2012.02.016
GEDIK CM, 1992, INT J RADIAT BIOL, V62, P313, DOI 10.1080/09553009214552161
GOVAN HL, 1990, NUCLEIC ACIDS RES, V18, P3823, DOI 10.1093/nar/18.13.3823
Gruber J, 2015, ANTIOXID REDOX SIGN, V23, P256, DOI 10.1089/ars.2014.6210
Gruber J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019444
HALLIWELL B, 1992, FREE RADICAL RES COM, V16, P75, DOI 10.3109/10715769209049161
HALLIWELL B, 1991, FEBS LETT, V281, P9, DOI 10.1016/0014-5793(91)80347-6
Halliwell B., 2015, FREE RADICAL BIO MED, DOI [10.1093/acprof:oso/9780198717478.001, DOI 10.1093/ACPROF:OSO/9780198717478.001]
Hamilton ML, 2001, P NATL ACAD SCI USA, V98, P10469, DOI 10.1073/pnas.171202698
Hanawalt PC, 2002, ONCOGENE, V21, P8949, DOI 10.1038/sj.onc.1206096
HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x
HARMAN D, 1981, P NATL ACAD SCI-BIOL, V78, P7124, DOI 10.1073/pnas.78.11.7124
HAYAKAWA M, 1993, MOL CELL BIOCHEM, V119, P95, DOI 10.1007/BF00926859
Hemminki K, 2001, IARC Sci Publ, V154, P69
HENNER WD, 1982, J BIOL CHEM, V257, P1750
Herndon LA, 2002, NATURE, V419, P808, DOI 10.1038/nature01135
Hinerfeld D, 2004, J NEUROCHEM, V88, P657, DOI 10.1046/j.1471-4159.2003.02195.x
Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385
Honda Y, 2008, EXP GERONTOL, V43, P520, DOI 10.1016/j.exger.2008.02.009
Huang TT, 2001, FREE RADICAL BIO MED, V31, P1101, DOI 10.1016/S0891-5849(01)00694-3
Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006
Hunter SE, 2010, METHODS, V51, P444, DOI 10.1016/j.ymeth.2010.01.033
ISHII N, 1990, MUTAT RES, V237, P165, DOI 10.1016/0921-8734(90)90022-J
Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331
Ishii T, 2011, BMB REP, V44, P298, DOI 10.5483/BMBRep.2011.44.5.298
JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137
KALINOWSKI DP, 1992, NUCLEIC ACIDS RES, V20, P3485, DOI 10.1093/nar/20.13.3485
KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0
Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942
Kokoszka JE, 2001, P NATL ACAD SCI USA, V98, P2278, DOI 10.1073/pnas.051627098
Lakshmanan LN, 2018, AGING CELL, V17, DOI 10.1111/acel.12814
Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8
Laws GM, 2001, MUTAT RES-FUND MOL M, V484, P3, DOI 10.1016/S0027-5107(01)00263-9
Lehmann G, 2008, REJUV RES, V11, P409, DOI 10.1089/rej.2008.0676
Lehmann Gilad, 2013, Frontiers in Genetics, V4, P111, DOI 10.3389/fgene.2013.00111
Lenaz G, 1998, BBA-BIOENERGETICS, V1366, P53, DOI 10.1016/S0005-2728(98)00120-0
Lenaz G, 2001, IUBMB LIFE, V52, P159, DOI 10.1080/15216540152845957
Leung MCK, 2013, BMC PHARMACOL TOXICO, V14, DOI 10.1186/2050-6511-14-9
LI YB, 1995, NAT GENET, V11, P376, DOI 10.1038/ng1295-376
Lim KS, 2006, FREE RADICAL BIO MED, V40, P1939, DOI 10.1016/j.freeradbiomed.2006.01.030
Lim KS, 2005, ANN NY ACAD SCI, V1042, P210, DOI 10.1196/annals.1338.023
Loft S, 1996, J MOL MED, V74, P297, DOI 10.1007/BF00207507
Mabon ME, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007937
MECOCCI P, 1993, ANN NEUROL, V34, P609, DOI 10.1002/ana.410340416
MECOCCI P, 1994, ANN NEUROL, V36, P747, DOI 10.1002/ana.410360510
Mecocci P, 1999, FREE RADICAL BIO MED, V26, P303, DOI 10.1016/S0891-5849(98)00208-1
Meyer JN, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-5-r70
Meyer JN, 2010, ECOTOXICOLOGY, V19, P804, DOI 10.1007/s10646-009-0457-4
Miller DL, 2007, P NATL ACAD SCI USA, V104, P20618, DOI 10.1073/pnas.0710191104
Min JH, 2003, RADIAT ENVIRON BIOPH, V42, P189, DOI 10.1007/s00411-003-0205-8
MITCHELL DL, 1989, PHOTOCHEM PHOTOBIOL, V49, P805, DOI 10.1111/j.1751-1097.1989.tb05578.x
Modis K, 2013, FASEB J, V27, P601, DOI 10.1096/fj.12-216507
MOLE RH, 1984, BRIT J RADIOL, V57, P355, DOI 10.1259/0007-1285-57-677-355
Moskalev AA, 2013, AGEING RES REV, V12, P661, DOI 10.1016/j.arr.2012.02.001
Ng LT, 2018, BIOCHEM PHARMACOL, V149, P91, DOI 10.1016/j.bcp.2018.01.030
Olive PL, 2006, NAT PROTOC, V1, P23, DOI 10.1038/nprot.2006.5
Poovathingal SK, 2012, NUCLEIC ACIDS RES, V40, DOI 10.1093/nar/gkr1221
Qabazard B, 2014, ANTIOXID REDOX SIGN, V20, P2621, DOI 10.1089/ars.2013.5448
Reddy MV, 2000, REGUL TOXICOL PHARM, V32, P256, DOI 10.1006/rtph.2000.1430
Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010
Roberts SB, 2006, PHYSIOL REV, V86, P651, DOI 10.1152/physrev.00019.2005
Santella RM, 1999, CANCER EPIDEM BIOMAR, V8, P733
Santos Janine H, 2002, Methods Mol Biol, V197, P159, DOI 10.1385/1-59259-284-8:159
Schaffer S, 2011, BIOGERONTOLOGY, V12, P195, DOI 10.1007/s10522-010-9310-7
Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653
Senoo-Matsuda N, 2003, J BIOL CHEM, V278, P22031, DOI 10.1074/jbc.M211377200
Senoo-Matsuda N, 2001, J BIOL CHEM, V276, P41553, DOI 10.1074/jbc.M104718200
Senturker S, 1999, FREE RADICAL BIO MED, V27, P370, DOI 10.1016/S0891-5849(99)00069-6
Serrano J, 1996, RAPID COMMUN MASS SP, V10, P1789, DOI 10.1002/(SICI)1097-0231(199611)10:14<1789::AID-RCM752>3.0.CO;2-6
SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771
Sobkowiak R, 2009, DRUG CHEM TOXICOL, V32, P252, DOI 10.1080/01480540902882184
Stadtman ER, 2006, FREE RADICAL RES, V40, P1250, DOI 10.1080/10715760600918142
Stiernagle Theresa, 2006, WormBook, P1
Strange K, 2007, NAT PROTOC, V2, P1003, DOI 10.1038/nprot.2007.143
STREHLER BL, 1977, TIME CELLS AGING
Stuart Jeffrey A, 2014, Longev Healthspan, V3, P4, DOI 10.1186/2046-2395-3-4
Studer A, 2012, INT J PARASITOL, V42, P453, DOI 10.1016/j.ijpara.2012.02.014
Sudprasert W, 2006, INT J HYG ENVIR HEAL, V209, P503, DOI 10.1016/j.ijheh.2006.06.004
Syntichaki P, 2007, ANN NY ACAD SCI, V1119, P289, DOI 10.1196/annals.1404.001
Toren D, 2016, NUCLEIC ACIDS RES, V44, pD1262, DOI 10.1093/nar/gkv1187
Uno M, 2016, NPJ AGING MECH DIS, V2, DOI 10.1038/npjamd.2016.10
Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361
Van Raamsdonk JM, 2010, ANTIOXID REDOX SIGN, V13, P1911, DOI 10.1089/ars.2010.3215
Van Remmen H, 2003, PHYSIOL GENOMICS, V16, P29, DOI 10.1152/physiolgenomics.00122.2003
Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399
Vina J, 2007, IUBMB LIFE, V59, P249, DOI 10.1080/15216540601178067
von Zglinicki T, 2001, EXP GERONTOL, V36, P1049, DOI 10.1016/S0531-5565(01)00111-5
Walther DM, 2015, CELL, V161, P919, DOI 10.1016/j.cell.2015.03.032
Wang JQ, 2006, J NEUROCHEM, V96, P825, DOI 10.1111/j.1471-4159.2005.03615.x
Yanai H, 2018, AGEING RES REV, V41, P18, DOI 10.1016/j.arr.2017.10.004
Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788
Yasuda K, 1999, J GERONTOL A-BIOL, V54, pB47, DOI 10.1093/gerona/54.2.B47
Yasuda K, 2006, MECH AGEING DEV, V127, P763, DOI 10.1016/j.mad.2006.07.002
NR 137
TC 9
Z9 10
U1 1
U2 17
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1664-8021
J9 FRONT GENET
JI Front. Genet.
PD APR 12
PY 2019
VL 10
AR 311
DI 10.3389/fgene.2019.00311
PG 17
WC Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Genetics & Heredity
GA HT3LG
UT WOS:000464464700003
PM 31031801
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Horowitz, M
AF Horowitz, Michal
TI Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life
Epigenetics?
SO FRONTIERS IN PHYSIOLOGY
LA English
DT Review
DE heat acclimation; heat acclimation-mediated cross-tolerance; epigenetic
mechanisms of gene expression; HSP72; HIF-1 alpha; attenuated Ca2+
overload injuries
ID ISCHEMIC TOLERANCE; SEDENTARY HUMANS; HSP72; REPERFUSION; PERFORMANCE;
RESPONSES; MEMORY; STRESS; INJURY; CYTOPROTECTION
AB The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce "ON CALL" molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance-HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower "doses" of the stressor, which induce adaptation to higher "doses" of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1 alpha nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1 alpha and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the associated cellular and molecular mechanisms leading to HACT and its difference from short-acting cross-tolerance strategies will be discussed.
C1 [Horowitz, Michal] Hebrew Univ Jerusalem, Fac Dent, Lab Environm Physiol, Jerusalem, Israel.
C3 Hebrew University of Jerusalem
RP Horowitz, M (corresponding author), Hebrew Univ Jerusalem, Fac Dent, Lab Environm Physiol, Jerusalem, Israel.
EM m.horowitz@mail.huji.ac.il
FU Israel Science Foundation - Academy of Science and Humanities; US-Israel
Binational Fund
FX The author's research has been supported over the years by the Israel
Science Foundation, founded by the Israel Academy of Science and
Humanities), and by the US-Israel Binational Fund.
CR Adolph EF, 1964, HDB PHYSL 4, P27
Alexander-Shani R, 2017, AM J PHYSIOL-REG I, V312, pR753, DOI 10.1152/ajpregu.00461.2016
Assayag M, 2012, AM J PHYSIOL-REG I, V303, pR870, DOI 10.1152/ajpregu.00155.2012
Assayag M, 2010, CELL STRESS CHAPERON, V15, P651, DOI 10.1007/s12192-010-0178-x
Bolli R, 2007, AM J PHYSIOL-HEART C, V292, pH19, DOI 10.1152/ajpheart.00712.2006
Brunt VE, 2016, J PHYSIOL-LONDON, V594, P5329, DOI 10.1113/JP272453
Brunt VE, 2016, J APPL PHYSIOL, V121, P716, DOI 10.1152/japplphysiol.00424.2016
Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015
Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021
Canaana H., 2003, THESIS
Cheung P, 2000, MOL CELL, V5, P905, DOI 10.1016/S1097-2765(00)80256-7
Chong KY, 2013, BIOCHEM BIOPH RES CO, V430, P774, DOI 10.1016/j.bbrc.2012.11.072
Cohen O., 2002, THESIS
Cohen O, 2007, J APPL PHYSIOL, V103, P266, DOI 10.1152/japplphysiol.01351.2006
Das M, 2008, IUBMB LIFE, V60, P199, DOI 10.1002/iub.31
Ely Brett R, 2014, Temperature (Austin), V1, P107, DOI 10.4161/temp.29800
Eynan M, 2002, J APPL PHYSIOL, V93, P2095, DOI 10.1152/japplphysiol.00304.2002
Fregly MJ, 1996, HDB PHYSL ENV PHYSL, P3
Garrett AT, 2012, EUR J APPL PHYSIOL, V112, P1827, DOI 10.1007/s00421-011-2153-3
Gibson OR, 2016, CELL STRESS CHAPERON, V21, P1021, DOI 10.1007/s12192-016-0726-0
Gibson OR, 2015, J APPL PHYSIOL, V119, P889, DOI 10.1152/japplphysiol.00332.2015
Gidday JM, 2015, FRONT NEUROL, V6, DOI 10.3389/fneur.2015.00042
Horowitz M, 2004, J APPL PHYSIOL, V97, P1496, DOI 10.1152/japplphysiol.00306.2004
HOROWITZ M, 1983, COMP BIOCHEM PHYS A, V74, P945, DOI 10.1016/0300-9629(83)90374-2
Horowitz M, 1998, NEWS PHYSIOL SCI, V13, P218
Horowitz M., 2006, APS INT M COMP PHYS
Horowitz M, 2016, J APPL PHYSIOL, V120, P702, DOI 10.1152/japplphysiol.00552.2015
Horowitz M, 2014, COMPR PHYSIOL, V4, P199, DOI 10.1002/cphy.c130025
Khoury Nathalie, 2016, J Neurol Neuromedicine, V1, P6
Kodesh E, 2011, AM J PHYSIOL-REG I, V301, pR1786, DOI 10.1152/ajpregu.00465.2011
Lee BJ, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00078
LEVI E, 1993, J APPL PHYSIOL, V75, P833, DOI 10.1152/jappl.1993.75.2.833
Levy E, 1997, AM J PHYSIOL-HEART C, V272, pH2085, DOI 10.1152/ajpheart.1997.272.5.H2085
Li P, 2015, ONCOL REP, V33, P3099, DOI 10.3892/or.2015.3911
Maloyan A, 2005, PHYSIOL GENOMICS, V23, P79, DOI 10.1152/physiolgenomics.00279.2004
Maloyan A, 1999, AM J PHYSIOL-REG I, V276, pR1506, DOI 10.1152/ajpregu.1999.276.5.R1506
Maloyan A, 2002, J APPL PHYSIOL, V93, P107, DOI 10.1152/japplphysiol.01122.2001
MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124
Papandreou I, 2006, CELL METAB, V3, P187, DOI 10.1016/j.cmet.2006.01.012
Pollak A., 1998, J NORWEGIAN SOC C S2, V11, P74
Powers SK, 2014, PHYSIOLOGY, V29, P27, DOI 10.1152/physiol.00030.2013
Racinais S, 2017, AM J PHYSIOL-REG I, V312, pR101, DOI 10.1152/ajpregu.00431.2016
Saleh A, 2000, NAT CELL BIOL, V2, P476, DOI 10.1038/35019510
Schulz C, 2015, TRENDS CELL BIOL, V25, P265, DOI 10.1016/j.tcb.2014.12.001
SELYE H, 1961, AM J PATHOL, V38, P481
Semenza GL, 2011, BBA-MOL CELL RES, V1813, P1263, DOI 10.1016/j.bbamcr.2010.08.006
Shein NA, 2005, J CEREBR BLOOD F MET, V25, P1456, DOI 10.1038/sj.jcbfm.9600142
Storey KB, 2015, J EXP BIOL, V218, P150, DOI 10.1242/jeb.106369
Tetievsky A, 2008, PHYSIOL GENOMICS, V34, P78, DOI 10.1152/physiolgenomics.00215.2007
Tetievsky A, 2014, J APPL PHYSIOL, V117, P1262, DOI 10.1152/japplphysiol.00422.2014
Tetievsky A, 2010, J APPL PHYSIOL, V109, P1552, DOI 10.1152/japplphysiol.00469.2010
Thompson JW, 2013, NEUROTHERAPEUTICS, V10, P789, DOI 10.1007/s13311-013-0202-9
Umschweif G, 2014, J CEREBR BLOOD F MET, V34, P1381, DOI 10.1038/jcbfm.2014.93
WYNDHAM CH, 1976, J APPL PHYSIOL, V40, P779, DOI 10.1152/jappl.1976.40.5.779
Yacobi Assaf, 2014, Temperature (Austin), V1, P57, DOI 10.4161/temp.29719
Yamada PM, 2007, J APPL PHYSIOL, V103, P1196, DOI 10.1152/japplphysiol.00242.2007
Yellon DM, 2003, PHYSIOL REV, V83, P1113, DOI 10.1152/physrev.00009.2003
NR 57
TC 15
Z9 18
U1 2
U2 19
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 1664-042X
J9 FRONT PHYSIOL
JI Front. Physiol.
PD JUL 28
PY 2017
VL 8
AR 548
DI 10.3389/fphys.2017.00548
PG 10
WC Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physiology
GA FC0MF
UT WOS:000406531800001
PM 28804462
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Macias-Benitez, S
Navarro-Torre, S
Caballero, P
Martin, L
Revilla, E
Castano, A
Parrado, J
AF Macias-Benitez, Sandra
Navarro-Torre, Salvadora
Caballero, Pablo
Martin, Luis
Revilla, Elisa
Castano, Angelica
Parrado, Juan
TI Biostimulant Capacity of an Enzymatic Extract From Rice Bran Against
Ozone-Induced Damage in Capsicum annum
SO FRONTIERS IN PLANT SCIENCE
LA English
DT Article
DE ozone; ROS; rice bran; enzymatic extract; MAPK
ID ACTIVATED PROTEIN-KINASE; GENE-EXPRESSION; GAMMA-ORYZANOL; OXIDATIVE
STRESS; ANTIOXIDANT; ACID; TOCOTRIENOLS; TOLERANCE; CASCADES; HORMESIS
AB Ozone is a destructive pollutant, damaging crops, and decreasing crop yield. Therefore, there is great interest in finding strategies to alleviate ozone-induced crop losses. In plants, ozone enters leaves through the stomata and is immediately degraded into reactive oxygen species (ROS), producing ROS stress in plants. ROS stress can be controlled by ROS-scavenging systems that include enzymatic or non-enzymatic mechanisms. Our research group has developed a product from rice bran, a by-product of rice milling which has bioactive molecules that act as an antioxidant compound. This product is a water-soluble rice bran enzymatic extract (RBEE) which preserves all the properties and improves the solubility of proteins and the antioxidant components of rice bran. In previous works, the beneficial properties of RBEE have been demonstrated in animals. However, to date, RBEE has not been used as a protective agent against oxidative damage in agricultural fields. The main goal of this study was to investigate the ability of RBEE to be used as a biostimulant by preventing oxidative damage in plants, after ozone exposure. To perform this investigation, pepper plants (Capsicum annuum) exposed to ozone were treated with RBEE. RBEE protected the ozone-induced damage, as revealed by net photosynthetic rate and the content of photosynthetic pigments. RBEE also decreased the induction of antioxidant enzyme activities in leaves (catalase, superoxide dismutase, and ascorbate peroxidase) due to ozone exposure. ROS generation is a common consequence of diverse cellular traumas that also activate the mitogen-activated protein kinase (MAPK) cascade. Thus, it is known that the ozone damages are triggered by the MAPK cascade. To examine the involvement of the MAPK cascade in the ozone damage CaMPK6-1, CaMPK6-2, and CaMKK5 genes were analyzed by qRT-PCR. The results showed the involvement of the MAPK pathway in both, not only in ozone damage but especially in its protection by RBEE. Taken together, these results support that RBEE protects plants against ozone exposure and its use as a new biostimulant could be proposed.
C1 [Macias-Benitez, Sandra; Navarro-Torre, Salvadora; Caballero, Pablo; Martin, Luis; Revilla, Elisa; Castano, Angelica; Parrado, Juan] Univ Seville, Fac Farm, Dept Bioquim & Biol Mol, Seville, Spain.
C3 University of Sevilla
RP Parrado, J (corresponding author), Univ Seville, Fac Farm, Dept Bioquim & Biol Mol, Seville, Spain.
EM parrado@us.es
CR Afzal F, 2014, OXIDATIVE DAMAGE TO PLANTS: ANTIOXIDANT NETWORKS AND SIGNALING, P397, DOI 10.1016/B978-0-12-799963-0.00013-7
Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263
Ahkami AH, 2017, RHIZOSPHERE-NETH, V3, P233, DOI 10.1016/j.rhisph.2017.04.012
Ahlfors R, 2004, PLANT J, V40, P512, DOI 10.1111/j.1365-313X.2004.02229.x
Ainsworth EA, 2012, ANNU REV PLANT BIOL, V63, P637, DOI 10.1146/annurev-arplant-042110-103829
Archambault D.J., 2000, OZONE PROTECTION PLA, DOI [10.5962/bhl.title.115607, DOI 10.5962/BHL.TITLE.115607]
ARNON DI, 1949, PLANT PHYSIOL, V24, P1, DOI 10.1104/pp.24.1.1
Avnery S, 2011, ATMOS ENVIRON, V45, P2297, DOI 10.1016/j.atmosenv.2011.01.002
Bail S, 2008, FOOD CHEM, V108, P1122, DOI 10.1016/j.foodchem.2007.11.063
Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658
Bigeard J, 2015, MOL PLANT, V8, P521, DOI 10.1016/j.molp.2014.12.022
Bortolin RC, 2016, ECOTOX ENVIRON SAFE, V129, P16, DOI 10.1016/j.ecoenv.2016.03.004
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002
Castagna A, 2009, ENVIRON POLLUT, V157, P1461, DOI 10.1016/j.envpol.2008.09.029
Chen JN, 2019, RSC ADV, V9, P40109, DOI 10.1039/c9ra08771k
Colla G, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00448
Didyk NP, 2011, ACTA PHYSIOL PLANT, V33, P25, DOI 10.1007/s11738-010-0527-5
Dong CX, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109355
du Jardin P, 2015, SCI HORTIC-AMSTERDAM, V196, P3, DOI 10.1016/j.scienta.2015.09.021
Duarte B, 2015, PLANT PHYSIOL BIOCH, V97, P217, DOI 10.1016/j.plaphy.2015.10.015
ESTERBAUER H, 1990, METHOD ENZYMOL, V186, P407
Foyer CH, 2009, ANTIOXID REDOX SIGN, V11, P861, DOI 10.1089/ars.2008.2177
Franco D, 2007, BIORESOURCE TECHNOL, V98, P3506, DOI 10.1016/j.biortech.2006.11.012
Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016
Goufo P, 2014, FOOD SCI NUTR, V2, P75, DOI 10.1002/fsn3.86
Guo WL, 2012, GENET MOL RES, V11, P4063, DOI 10.4238/2012.September.10.5
Gurav RG, 2013, ENVIRON SCI POLLUT R, V20, P4532, DOI 10.1007/s11356-012-1405-z
He M, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.562785
Hettenhausen C, 2015, INSECT SCI, V22, P157, DOI 10.1111/1744-7917.12128
HISCOX JD, 1979, CAN J BOT, V57, P1332, DOI 10.1139/b79-163
Kangasjarvi J, 2005, PLANT CELL ENVIRON, V28, P1021, DOI 10.1111/j.1365-3040.2005.01325.x
Komis G, 2011, CURR OPIN PLANT BIOL, V14, P650, DOI 10.1016/j.pbi.2011.07.008
Lemus C, 2014, WHEAT AND RICE IN DISEASE PREVENTION AND HEALTH: BENEFITS, RISKS AND MECHANISMS OF WHOLE GRAINS IN HEALTH PROMOTION, P409, DOI 10.1016/B978-0-12-401716-0.00032-5
Li YH, 2008, FOOD CHEM, V106, P444, DOI 10.1016/j.foodchem.2007.04.067
Liu YK, 2017, REDOX BIOL, V11, P192, DOI 10.1016/j.redox.2016.12.009
Liu YK, 2012, PLANT CELL REP, V31, P1, DOI 10.1007/s00299-011-1130-y
Liu ZQ, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00780
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Lopez-Jurado J, 2020, ENVIRON EXP BOT, V171, DOI 10.1016/j.envexpbot.2019.103956
Mandal MK, 2012, PLANT CELL, V24, P1654, DOI 10.1105/tpc.112.096768
Massarolo KC, 2017, FOOD CHEM, V228, P43, DOI 10.1016/j.foodchem.2017.01.127
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Miles GP, 2005, ENVIRON POLLUT, V138, P230, DOI 10.1016/j.envpol.2005.04.017
Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016
Minatel IO, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17081107
Oszlanyi R, 2020, INT J BIOL MACROMOL, V161, P864, DOI 10.1016/j.ijbiomac.2020.06.050
Paredes-Paliz K, 2018, PLANT BIOLOGY, V20, P497, DOI 10.1111/plb.12693
Parrado J, 2006, FOOD CHEM, V98, P742, DOI 10.1016/j.foodchem.2005.07.016
Parrado J, 2003, EUR J NUTR, V42, P307, DOI 10.1007/s00394-003-0424-4
Perez-Palaciosa P, 2017, ENVIRON TECHNOL, V38, P2877, DOI 10.1080/09593330.2017.1281350
Perez-Ternero C, 2017, J FUNCT FOODS, V32, P58, DOI 10.1016/j.jff.2017.02.014
Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012
Revilla E, 2013, FOOD CHEM, V136, P526, DOI 10.1016/j.foodchem.2012.08.044
Revilla E, 2009, FOOD RES INT, V42, P387, DOI 10.1016/j.foodres.2009.01.010
Rodriguez-Morgado B, 2015, ENVIRON TECHNOL, V36, P2217, DOI 10.1080/09593330.2015.1024760
Sachdev S, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10020277
Samajova O, 2013, BIOTECHNOL ADV, V31, P118, DOI 10.1016/j.biotechadv.2011.12.002
Samuel MA, 2000, PLANT J, V22, P367, DOI 10.1046/j.1365-313x.2000.00741.x
Maria CS, 2016, J CEREAL SCI, V72, P54, DOI 10.1016/j.jcs.2016.09.010
Santa-Maria C, 2010, FOOD CHEM TOXICOL, V48, P83, DOI 10.1016/j.fct.2009.09.019
Sharma P., 2012, J BOT, V2012, P26, DOI [DOI 10.1155/2012/217037, 10.1155/2012/21703]
Smekalova V, 2014, BIOTECHNOL ADV, V32, P2, DOI 10.1016/j.biotechadv.2013.07.009
Sofo A, 2015, INT J MOL SCI, V16, P13561, DOI 10.3390/ijms160613561
Vainonen JP, 2015, PLANT CELL ENVIRON, V38, P240, DOI 10.1111/pce.12273
Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762
Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant
Xu J, 2015, TRENDS PLANT SCI, V20, P56, DOI 10.1016/j.tplants.2014.10.001
Xu S, 2017, NEW ZEAL J MAR FRESH, V51, P223, DOI 10.1080/00288330.2016.1197286
Xu ZM, 2001, J AGR FOOD CHEM, V49, P2077, DOI 10.1021/jf0012852
Yaeno T, 2004, PLANT J, V40, P931, DOI 10.1111/j.1365-313X.2004.02260.x
Yakhin OI, 2017, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.02049
Zdunska K, 2018, SKIN PHARMACOL PHYS, V31, P332, DOI 10.1159/000491755
Zhang Y, 2019, BMC PLANT BIOL, V19, DOI 10.1186/s12870-019-2148-5
NR 74
TC 2
Z9 3
U1 1
U2 3
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-462X
J9 FRONT PLANT SCI
JI Front. Plant Sci.
PD NOV 19
PY 2021
VL 12
AR 749422
DI 10.3389/fpls.2021.749422
PG 13
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA XJ0JW
UT WOS:000726486800001
PM 34868133
DA 2023-03-13
ER
PT J
AU Gonzalez-Paramas, AM
Brighenti, V
Bertoni, L
Marcelloni, L
Ayuda-Duran, B
Gonzalez-Manzano, S
Pellati, F
Santos-Buelga, C
AF Gonzalez-Paramas, Ana M.
Brighenti, Virginia
Bertoni, Laura
Marcelloni, Laura
Ayuda-Duran, Begona
Gonzalez-Manzano, Susana
Pellati, Federica
Santos-Buelga, Celestino
TI Assessment of the In Vivo Antioxidant Activity of an Anthocyanin-Rich
Bilberry Extract Using theCaenorhabditis elegansModel
SO ANTIOXIDANTS
LA English
DT Article
DE Vaccinium myrtillusL; ROS; thermal stress; insulin; IGF-1 signaling;
DAF-16; HSF-1
ID VACCINIUM-MYRTILLUS L.; LIFE-SPAN; CAENORHABDITIS-ELEGANS; OXIDATIVE
STRESS; METHYLATED METABOLITES; HEALTH-BENEFITS; FREE-RADICALS;
RESISTANCE; BIOAVAILABILITY; POLYPHENOLS
AB Anthocyanins have been associated with several health benefits, although the responsible mechanisms are not well established yet. In the present study, an anthocyanin-rich extract from bilberry (Vaccinium myrtillusL.) was tested in order to evaluate its capacity to modulate reactive oxygen species (ROS) production and resistance to thermally induced oxidative stress, using the nematodeCaenorhabditis elegansas an in vivo model. The assays were carried out with the wild-type N2 strain and the mutant strainsdaf-16(mu86)I andhsf-1(sy441), which were grown in the presence of two anthocyanin extract concentrations (5 and 10 mu g/mL in the culture medium) and further subjected to thermal stress. The treatment with the anthocyanin extract at 5 mu g/mL showed protective effects on the accumulation of ROS and increased thermal resistance inC. elegans, both in stressed and non-stressed young and aged worms. However, detrimental effects were observed in nematodes treated with 10 mu g/mL, leading to a higher worm mortality rate compared to controls, which was interpreted as a hormetic response. These findings suggested that the effects of the bilberry extract onC. elegansmight not rely on its direct antioxidant capacity, but other mechanisms could also be involved. Additional assays were performed in two mutant strains with loss-of-function for DAF-16 (abnormal DAuer Formation factor 16) and HSF-1 (Heat Shock Factor 1) transcription factors, which act downstream of the insulin/insulin like growth factor-1 (IGF-1) signaling pathway. The results indicated that the modulation of these factors could be behind the improvement in the resistance against thermal stress produced by bilberry anthocyanins in young individuals, whereas they do not totally explain the effects produced in worms in the post-reproductive development stage. Further experiments are needed to continue uncovering the mechanisms behind the biological effects of anthocyanins in living organisms, as well as to establish whether they fall within the hormesis concept.
C1 [Gonzalez-Paramas, Ana M.; Ayuda-Duran, Begona; Gonzalez-Manzano, Susana; Santos-Buelga, Celestino] Univ Salamanca, Fac Farm, Unidad Nutr & Bromatol, Grp Invest Polifenoles, Campus Miguel de Unamuno, Salamanca 37007, Spain.
[Brighenti, Virginia; Bertoni, Laura; Marcelloni, Laura; Pellati, Federica] Univ Modena & Reggio Emilia, Dept Life Sci, Via G Campi 103, I-41125 Modena, Italy.
C3 University of Salamanca; Universita di Modena e Reggio Emilia
RP Santos-Buelga, C (corresponding author), Univ Salamanca, Fac Farm, Unidad Nutr & Bromatol, Grp Invest Polifenoles, Campus Miguel de Unamuno, Salamanca 37007, Spain.; Pellati, F (corresponding author), Univ Modena & Reggio Emilia, Dept Life Sci, Via G Campi 103, I-41125 Modena, Italy.
EM paramas@usal.es; virginia.brighenti@unimore.it;
laurabertoni21@gmail.com; 186958@studenti.unimore.it;
bego_ayuda@usal.es; susanagm@usal.es; federica.pellati@unimore.it;
csb@usal.es
RI Ayuda-Durán, Begoña/AAH-6908-2019; Santos-Buelga, Celestino/A-1071-2008;
González-Paramás, Ana M/D-2229-2011; González-Paramás, Ana
María/O-3771-2019
OI Ayuda-Durán, Begoña/0000-0001-9001-7399; Santos-Buelga,
Celestino/0000-0001-6592-5299; González-Paramás, Ana
M/0000-0001-5477-0703; González-Paramás, Ana María/0000-0001-5477-0703;
Gonzalez Manzano, Susana/0000-0002-5739-515X
FU Spanish Ministerio de Economia y Competitividad (MINECO)
[AGL2015-64522-C2]; Fondo Europeo de Desarrollo Regional
(FEDER)-Interreg Espana-Portugal Programme [0377_IBERPHENOL_6_E];
University of Modena and Reggio Emilia, Italy
FX This research was funded by the Spanish Ministerio de Economia y
Competitividad (MINECO Projects AGL2015-64522-C2) and Fondo Europeo de
Desarrollo Regional (FEDER)-Interreg Espana-Portugal Programme (Project
ref. 0377_IBERPHENOL_6_E). The research was also funded by the
Departmental FAR2015 project "Innovative methods for the extraction and
chromatographic analysis of bioactive polyphenols in berry fruits" (P.I.
Prof. Federica Pellati) by the University of Modena and Reggio Emilia,
Italy.
CR Ancillotti C, 2016, FOOD CHEM, V204, P176, DOI 10.1016/j.foodchem.2016.02.106
[Anonymous], 2015, DRIED BILB FRUIT VAC
Ayuda-Duran B, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8120585
Ayuda-Duran B, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0199483
Basu A, 2010, NUTR REV, V68, P168, DOI 10.1111/j.1753-4887.2010.00273.x
Blackwell TK, 2015, FREE RADICAL BIO MED, V88, P290, DOI 10.1016/j.freeradbiomed.2015.06.008
Bruskov VI, 2002, NUCLEIC ACIDS RES, V30, P1354, DOI 10.1093/nar/30.6.1354
Burdulis D, 2009, ACTA POL PHARM, V66, P399
Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z
Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3
Castro L, 2001, NUTRITION, V17, P161, DOI 10.1016/S0899-9007(00)00570-0
Chen W, 2013, J PHARM PHARMACOL, V65, P682, DOI 10.1111/jphp.12023
Chen W, 2013, J AGR FOOD CHEM, V61, P3047, DOI 10.1021/jf3054643
Chu W, 2011, HERBAL MED BIOMOLECU, P55, DOI DOI 10.1201/B10787-5
Czank C, 2013, AM J CLIN NUTR, V97, P995, DOI 10.3945/ajcn.112.049247
de Ferrars RM, 2014, MOL NUTR FOOD RES, V58, P490, DOI 10.1002/mnfr.201300322
Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001
Duenas M, 2013, PHARMACOL RES, V76, P41, DOI 10.1016/j.phrs.2013.07.001
Escribano-Bailon MT, 2002, METHODS IN POLYPHENOL ANALYSIS, P1
Espin S, 2016, FOOD CHEM, V194, P1073, DOI 10.1016/j.foodchem.2015.07.131
Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687
Gonzalez-Manzano S, 2012, J AGR FOOD CHEM, V60, P8911, DOI 10.1021/jf3004256
Griffiths HR, 2005, REDOX REP, V10, P273, DOI 10.1179/135100005X83680
Habanova M, 2016, NUTR RES, V36, P1415, DOI 10.1016/j.nutres.2016.11.010
Halliwell B, 2008, ARCH BIOCHEM BIOPHYS, V476, P107, DOI 10.1016/j.abb.2008.01.028
Hope I. A., 1999, PRACTICAL APPROACH S
Hopps E, 2010, NUTR METAB CARDIOVAS, V20, P72, DOI 10.1016/j.numecd.2009.06.002
Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701
Kalt W, 2017, FOOD FUNCT, V8, P4563, DOI [10.1039/C7FO01074E, 10.1039/c7fo01074e]
Kampkotter A, 2008, COMP BIOCHEM PHYS B, V149, P314, DOI 10.1016/j.cbpb.2007.10.004
Kampkotter A, 2007, TOXICOLOGY, V234, P113, DOI 10.1016/j.tox.2007.02.006
Kim GH, 2015, EXP NEUROBIOL, V24, P325, DOI 10.5607/en.2015.24.4.325
Lila MA, 2016, ANNU REV FOOD SCI T, V7, P375, DOI 10.1146/annurev-food-041715-033346
Magalhaes LM, 2008, ANAL CHIM ACTA, V613, P1, DOI 10.1016/j.aca.2008.02.047
McGhie TK, 2003, J AGR FOOD CHEM, V51, P4539, DOI 10.1021/jf026206w
Meng J, 2017, REDOX BIOL, V11, P365, DOI 10.1016/j.redox.2016.12.026
Milbury PE, 2010, J AGR FOOD CHEM, V58, P3950, DOI 10.1021/jf903529m
Murphy C.T., 2013, INSULIN INSULIN GROW
Oliveira SR, 2012, J NEUROL SCI, V321, P49, DOI 10.1016/j.jns.2012.07.045
Peixoto H, 2016, J AGR FOOD CHEM, V64, P1283, DOI 10.1021/acs.jafc.5b05812
Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7
Pires TCSP, 2020, CURR PHARM DESIGN, V26, P1917, DOI 10.2174/1381612826666200317132507
Pojer E, 2013, COMPR REV FOOD SCI F, V12, P483, DOI 10.1111/1541-4337.12024
Poole CF, 2003, TRAC-TREND ANAL CHEM, V22, P362, DOI 10.1016/S0165-9936(03)00605-8
Prencipe FP, 2014, J PHARMACEUT BIOMED, V89, P257, DOI 10.1016/j.jpba.2013.11.016
Prior RL, 2005, J AGR FOOD CHEM, V53, P4290, DOI 10.1021/jf0502698
Reis JF, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-1076-5
Santos-Buelga C., 2015, RECENT ADV MED CHEM, P10
Santos-Buelga Celestino, 2012, Methods Mol Biol, V864, P427, DOI 10.1007/978-1-61779-624-1_17
Saul N, 2011, J NAT PROD, V74, P1713, DOI 10.1021/np200011a
Saul N, 2009, MECH AGEING DEV, V130, P477, DOI 10.1016/j.mad.2009.05.005
Smeriglio A, 2016, PHYTOTHER RES, V30, P1265, DOI 10.1002/ptr.5642
Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y
Subash S, 2014, NEURAL REGEN RES, V9, P1557, DOI 10.4103/1673-5374.139483
Surco-Laos F, 2012, FOOD RES INT, V46, P514, DOI 10.1016/j.foodres.2011.10.014
Surco-Laos F, 2011, FOOD FUNCT, V2, P445, DOI 10.1039/c1fo10049a
Talavera S, 2003, J NUTR, V133, P4178, DOI 10.1093/jn/133.12.4178
Talavera S, 2004, J NUTR, V134, P2275, DOI 10.1093/jn/134.9.2275
Tambara AL, 2018, FOOD CHEM TOXICOL, V120, P639, DOI 10.1016/j.fct.2018.07.057
Tang SY, 2010, BIOCHEM BIOPH RES CO, V394, P1, DOI 10.1016/j.bbrc.2010.02.137
Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001
Walker GA, 2001, J GERONTOL A-BIOL, V56, pB281, DOI 10.1093/gerona/56.7.B281
Wang H, 1999, FREE RADICAL BIO MED, V27, P612, DOI 10.1016/S0891-5849(99)00107-0
Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x
Yan FJ, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/7956158
NR 65
TC 6
Z9 6
U1 1
U2 11
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3921
J9 ANTIOXIDANTS-BASEL
JI Antioxidants
PD JUN
PY 2020
VL 9
IS 6
AR 509
DI 10.3390/antiox9060509
PG 16
WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science &
Technology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science
& Technology
GA MO0IV
UT WOS:000551221900001
PM 32531930
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Ye, F
Zhang, YB
Liu, Y
Yamada, K
Tso, JL
Menjivar, JC
Tian, JY
Yong, WH
Schaue, D
Mischel, PS
Cloughesy, TF
Nelson, SF
Liau, LM
McBride, W
Tso, CL
AF Ye, Fei
Zhang, Yibei
Liu, Yue
Yamada, Kazunari
Tso, Jonathan L.
Menjivar, Jimmy C.
Tian, Jane Y.
Yong, William H.
Schaue, Doerthe
Mischel, Paul S.
Cloughesy, Timothy F.
Nelson, Stanley F.
Liau, Linda M.
McBride, William
Tso, Cho-Lea
TI Protective Properties of Radio-Chemoresistant Glioblastoma Stem Cell
Clones Are Associated with Metabolic Adaptation to Reduced Glucose
Dependence
SO PLOS ONE
LA English
DT Article
ID DNA-DAMAGE RESPONSE; TUMOR-INITIATING CELLS; BREAST-CANCER CELLS;
CALORIC RESTRICTION; LIFE-SPAN; ADAPTIVE RESPONSE; SIRT1; EXPRESSION;
HORMESIS; SURVIVAL
AB Glioblastoma stem cells (GSC) are a significant cell model for explaining brain tumor recurrence. However, mechanisms underlying their radiochemoresistance remain obscure. Here we show that most clonogenic cells in GSC cultures are sensitive to radiation treatment (RT) with or without temozolomide (TMZ). Only a few single cells survive treatment and regain their self-repopulating capacity. Cells re-populated from treatment-resistant GSC clones contain more clonogenic cells compared to those grown from treatment-sensitive GSC clones, and repeated treatment cycles rapidly enriched clonogenic survival. When compared to sensitive clones, resistant clones exhibited slower tumor development in animals. Upregulated genes identified in resistant clones via comparative expression microarray analysis characterized cells under metabolic stress, including blocked glucose uptake, impaired insulin/Akt signaling, enhanced lipid catabolism and oxidative stress, and suppressed growth and inflammation. Moreover, many upregulated genes highlighted maintenance and repair activities, including detoxifying lipid peroxidation products, activating lysosomal autophagy/ubiquitin-proteasome pathways, and enhancing telomere maintenance and DNA repair, closely resembling the anti-aging effects of caloric/glucose restriction (CR/GR), a nutritional intervention that is known to increase lifespan and stress resistance in model organisms. Although treatment-introduced genetic mutations were detected in resistant clones, all resistant and sensitive clones were subclassified to either proneural (PN) or mesenchymal (MES) glioblastoma subtype based on their expression profiles. Functional assays demonstrated the association of treatment resistance with energy stress, including reduced glucose uptake, fatty acid oxidation (FAO)-dependent ATP maintenance, elevated reactive oxygen species (ROS) production and autophagic activity, and increased AMPK activity and NAD(+) levels accompanied by upregulated mRNA levels of SIRT1/PGC-1 alpha axis and DNA repair genes. These data support the view that treatment resistance may arise from quiescent GSC exhibiting a GR-like phenotype, and suggest that targeting stress response pathways of resistant GSC may provide a novel strategy in combination with standard treatment for glioblastoma.
C1 [Ye, Fei; Zhang, Yibei; Liu, Yue; Yamada, Kazunari; Tso, Jonathan L.; Menjivar, Jimmy C.; Tian, Jane Y.; Tso, Cho-Lea] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg Surg Oncol, Los Angeles, CA 90095 USA.
[Ye, Fei] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Neurosurg, Wuhan 430074, Hubei, Peoples R China.
[Zhang, Yibei] Xiamen Univ, Dept Orthoped, Zhongshan Hosp, Xiamen, Fujian, Peoples R China.
[Yamada, Kazunari] Kyushu Univ Hosp, Dept Adv Mol & Cell Therapy, Higashi Ku, Fukuoka 812, Japan.
[Yong, William H.; Mischel, Paul S.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA.
[Schaue, Doerthe; McBride, William] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiat Oncol, Los Angeles, CA 90095 USA.
[Cloughesy, Timothy F.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA.
[Nelson, Stanley F.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA.
[Liau, Linda M.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurosurg, Los Angeles, CA 90095 USA.
[Yong, William H.; Schaue, Doerthe; Mischel, Paul S.; Cloughesy, Timothy F.; Nelson, Stanley F.; Liau, Linda M.; McBride, William; Tso, Cho-Lea] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA.
C3 University of California System; University of California Los Angeles;
University of California Los Angeles Medical Center; David Geffen School
of Medicine at UCLA; Huazhong University of Science & Technology; Xiamen
University; University of California System; University of California
Los Angeles; University of California Los Angeles Medical Center; David
Geffen School of Medicine at UCLA; University of California System;
University of California Los Angeles; University of California Los
Angeles Medical Center; David Geffen School of Medicine at UCLA;
University of California System; University of California Los Angeles;
University of California Los Angeles Medical Center; David Geffen School
of Medicine at UCLA; University of California System; University of
California Los Angeles; University of California Los Angeles Medical
Center; David Geffen School of Medicine at UCLA; University of
California System; University of California Los Angeles; University of
California Los Angeles Medical Center; David Geffen School of Medicine
at UCLA; UCLA Jonsson Comprehensive Cancer Center; University of
California System; University of California Los Angeles
RP Tso, CL (corresponding author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg Surg Oncol, Los Angeles, CA 90095 USA.
EM ctso@mednet.ucla.edu
RI Cloughesy, Timothy Francis/AGV-1013-2022; Nelson, Stanley F/D-4771-2009
OI Nelson, Stanley F/0000-0002-2082-3114; Yamada,
Kazunari/0000-0002-3610-1802; Liau, Linda/0000-0002-4053-0052
FU American Cancer Society [RSG-07-109-01-CCE]; National Cancer Institute
[1 R21 CA140912-01]; National Institute of Health [1DP2OD006444-01];
Bradley Zankel Foundation
FX This work was supported by grants from the American Cancer Society
(RSG-07-109-01-CCE), National Cancer Institute (1 R21 CA140912-01),
National Institute of Health (1DP2OD006444-01), and the Bradley Zankel
Foundation. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
CR Annabi B, 2009, MOL CARCINOGEN, V48, P910, DOI 10.1002/mc.20541
Bao SD, 2006, NATURE, V444, P756, DOI 10.1038/nature05236
Bergamini E, 2007, ANN NY ACAD SCI, V1114, P69, DOI 10.1196/annals.1396.020
Bleau AM, 2009, CELL STEM CELL, V4, P226, DOI 10.1016/j.stem.2009.01.007
Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223
Cabelof DC, 2003, DNA REPAIR, V2, P295, DOI 10.1016/S1568-7864(02)00219-7
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Canto C, 2009, NATURE, V458, P1056, DOI 10.1038/nature07813
Chen D, 2005, SCIENCE, V310, P1641, DOI 10.1126/science.1118357
Chen RH, 2010, CANCER CELL, V17, P362, DOI 10.1016/j.ccr.2009.12.049
Chen ZH, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003316
Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196
Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635
CRAWFORD DR, 1994, ENVIRON HEALTH PERSP, V102, P25, DOI 10.2307/3432208
Dimova EG, 2008, GENET MOL BIOL, V31, P396, DOI 10.1590/S1415-47572008000300002
Eramo A, 2006, CELL DEATH DIFFER, V13, P1238, DOI 10.1038/sj.cdd.4401872
Facchino S, 2010, J NEUROSCI, V30, P10096, DOI 10.1523/JNEUROSCI.1634-10.2010
Feinendegen LE, 1999, CR ACAD SCI III-VIE, V322, P245, DOI 10.1016/S0764-4469(99)80051-1
Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075
Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539
Freije WA, 2004, CANCER RES, V64, P6503, DOI 10.1158/0008-5472.CAN-04-0452
Galli R, 2004, CANCER RES, V64, P7011, DOI 10.1158/0008-5472.CAN-04-1364
Gilbert CA, 2010, CANCER RES, V70, P6870, DOI 10.1158/0008-5472.CAN-10-1378
Hemmati HD, 2003, P NATL ACAD SCI USA, V100, P15178, DOI 10.1073/pnas.2036535100
Hsieh D, 2010, BIOCHEM BIOPH RES CO, V397, P367, DOI 10.1016/j.bbrc.2010.05.145
Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535
Komurov K, 2012, MOL SYST BIOL, V8, DOI 10.1038/msb.2012.25
Lagadec C, 2012, STEM CELLS, V30, P833, DOI 10.1002/stem.1058
Lee CK, 2000, NAT GENET, V25, P294, DOI 10.1038/77046
Lee JE, 2011, EXP GERONTOL, V46, P891, DOI 10.1016/j.exger.2011.07.009
Lewis KN, 2012, GERONTOLOGY, V58, P453, DOI 10.1159/000335966
Li Z, 2009, CANCER CELL, V15, P501, DOI 10.1016/j.ccr.2009.03.018
Liu QH, 2009, J NEURO-ONCOL, V94, P1, DOI 10.1007/s11060-009-9919-z
Liu Y, 2011, MOL CANCER RES, V9, P1668, DOI 10.1158/1541-7786.MCR-10-0563
Lomonaco SL, 2009, INT J CANCER, V125, P717, DOI 10.1002/ijc.24402
Mao P, 2013, P NATL ACAD SCI USA, V110, P8644, DOI 10.1073/pnas.1221478110
Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5
McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63
McCord AM, 2009, CLIN CANCER RES, V15, P5145, DOI 10.1158/1078-0432.CCR-09-0263
Murat A, 2008, J CLIN ONCOL, V26, P3015, DOI 10.1200/JCO.2007.15.7164
Nakai E, 2009, CANCER INVEST, V27, P901, DOI 10.3109/07357900801946679
Palacios JA, 2010, J CELL BIOL, V191, P1299, DOI 10.1083/jcb.201005160
Pardo PS, 2011, J BIOL CHEM, V286, P2559, DOI 10.1074/jbc.M110.149153
Piccirillo SGM, 2006, NATURE, V444, P761, DOI 10.1038/nature05349
Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705
Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014
Rodgers JT, 2005, NATURE, V434, P113, DOI 10.1038/nature03354
Ropolo M, 2009, MOL CANCER RES, V7, P383, DOI 10.1158/1541-7786.MCR-08-0409
Safdie F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044603
Singh SK, 2004, NATURE, V432, P396, DOI 10.1038/nature03128
Stupp R, 2009, LANCET ONCOL, V10, P459, DOI 10.1016/S1470-2045(09)70025-7
Swindell WR, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-585
Vellanki S, 2009, NEOPLASIA, V11, P743, DOI 10.1593/neo.09436
Verhaak RGW, 2010, CANCER CELL, V17, P98, DOI 10.1016/j.ccr.2009.12.020
Wang JL, 2010, STEM CELLS, V28, P17, DOI 10.1002/stem.261
Wang RH, 2008, CANCER CELL, V14, P312, DOI 10.1016/j.ccr.2008.09.001
Yuan XP, 2004, ONCOGENE, V23, P9392, DOI 10.1038/sj.onc.1208311
NR 57
TC 45
Z9 47
U1 3
U2 20
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 18
PY 2013
VL 8
IS 11
AR e80397
DI 10.1371/journal.pone.0080397
PG 16
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA 256KH
UT WOS:000327308500132
PM 24260384
OA Green Published, gold, Green Submitted
DA 2023-03-13
ER
PT J
AU Merrill, RM
Frutos, AM
AF Merrill, Ray M.
Frutos, Aaron M.
TI Ecological Evidence for Lower Risk of Lymphoma with Greater Exposure to
Sunlight and Higher Altitude
SO HIGH ALTITUDE MEDICINE & BIOLOGY
LA English
DT Article
DE altitude; blue light; lymphoma; sunlight exposure; vitamin D
ID NON-HODGKIN-LYMPHOMA; AMBIENT ULTRAVIOLET-RADIATION; VITAMIN-D;
CANCER-MORTALITY; CIGARETTE-SMOKING; SUBTYPES; COUNTIES; ASSOCIATION;
ELEVATION
AB Merrill, Ray M., and Aaron M. Frutos. Ecological evidence for lower risk of lymphoma with greater exposure to sunlight and higher altitude. High Alt Med Biol. 20:000-000, 2019. Introduction: Sunlight exposure increases vitamin D-related immune modulation and motility of T lymphocytes. Blue light exposure from the sun can stimulate immune function and help promote healthy circadian rhythm. Hence, greater sunlight exposure may lower the risk of Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Altitude may also lower the risk of these cancers through an oxygen-related mechanism, and because cosmic radiation has less shield from the atmosphere at higher levels, it allows for radiation hormesis. Methods: An ecological study design was used, with county-level lymphoma, sunlight, altitude, urban residency, poverty, smoking, obesity, and leisure-time physical inactivity data for 16 cancer registries (607 counties) in the contiguous United States, 2012-2016. Relative rate estimates were derived from two-level mixed effects Poisson regression models. Results: Higher rates of NHL are associated with being older, male, and white. Higher rates of Hodgkin lymphoma are associated with ages 20 years and older, male, and white or black. The risk of NHL or Hodgkin lymphoma is lower among those living in poverty. Urban residency, smoking, obesity, and physical inactivity are not associated with these cancers. Both increased sunlight exposure and higher altitude are simultaneously associated with lower rates of Hodgkin lymphoma and NHL in adjusted models. The inverse association between sunlight and NHL is more pronounced with higher altitude. The inverse association between sunlight and Hodgkin lymphoma is only in altitudes below 500 m. Conclusions: Greater sunlight exposure and higher altitude are simultaneously associated with lower rates of Hodgkin lymphoma and NHL. The inverse associations are dependent on altitude, with the relationship only in lower altitudes for Hodgkin lymphoma and more pronounced in higher altitude for NHL.
C1 [Merrill, Ray M.; Frutos, Aaron M.] Brigham Young Univ, Dept Publ Hlth, Coll Life Sci, 2063 Life Sci Bldg, Provo, UT 84604 USA.
C3 Brigham Young University
RP Merrill, RM (corresponding author), Brigham Young Univ, Dept Publ Hlth, Coll Life Sci, 2063 Life Sci Bldg, Provo, UT 84604 USA.
EM ray_merrill@byu.edu
RI Frutos, Aaron/GWC-2043-2022
OI Frutos, Aaron Michael/0000-0001-6948-3918
CR American Cancer Society, 2018, HODGK LYMPH RISK FAC
American Cancer Society, 2017, CANC FACTS FIG 2017
[Anonymous], 2016, GEOGR NAM INF SYST
[Anonymous], 2012, US SUMMARY 2010 POPU
[Anonymous], 2018, NONH LYMPH RISK FACT
Baan R, 2009, LANCET ONCOL, V10, P1143, DOI 10.1016/S1470-2045(09)70358-4
Bertrand KA, 2011, CANCER CAUSE CONTROL, V22, P1731, DOI 10.1007/s10552-011-9849-x
BOICE JD, 1992, CANCER RES, V52, pS5489
Borchmann S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14805-y
Bowen EM, 2016, BRIT J CANCER, V114, P826, DOI 10.1038/bjc.2015.383
Burtscher M, 2014, AGING DIS, V5, P274, DOI 10.14336/AD.2014.0500274
Cahoon EK, 2015, INT J CANCER, V136, pE432, DOI 10.1002/ijc.29237
Centers for Disease Control and Prevention, 2016, COUNT DAT IND
Centers for Disease Control and Prevention, 2017, WONDER
Chang ET, 2011, BLOOD, V118, P1591, DOI 10.1182/blood-2011-02-336065
Clarke CA, 2005, CANCER EPIDEM BIOMAR, V14, P1441, DOI 10.1158/1055-9965.EPI-04-0567
Dal Maso L, 2006, CANCER EPIDEM BIOMAR, V15, P2078, DOI 10.1158/1055-9965.EPI-06-0308
de Sanjose S, 2004, CANCER EPIDEM BIOMAR, V13, P944
Deeb KK, 2007, NAT REV CANCER, V7, P684, DOI 10.1038/nrc2196
Drake MT, 2010, J CLIN ONCOL, V28, P4191, DOI 10.1200/JCO.2010.28.6674
Dwyer-Lindgren L, 2014, POPUL HEALTH METR, V12, DOI 10.1186/1478-7954-12-5
EB, 2018, ENCY BRITANNICA
Etter JL, 2018, LEUKEMIA RES, V69, P7, DOI 10.1016/j.leukres.2018.03.014
Ferreri AJM, 2004, J NATL CANCER I, V96, P586, DOI 10.1093/jnci/djh102
GAIL MH, 1991, JNCI-J NATL CANCER I, V83, P695, DOI 10.1093/jnci/83.10.695
Gallagher JC, 2013, J CLIN ENDOCR METAB, V98, P1137, DOI 10.1210/jc.2012-3106
Grant WB, 2003, RECENT RESULTS CANC, V164, P371
Harris SS, 2006, J NUTR, V136, P1126, DOI 10.1093/jn/136.4.1126
Hart J, 2013, DOSE-RESPONSE, V11, P41, DOI 10.2203/dose-response.11-006.Hart
Hart J, 2012, DOSE-RESPONSE, V10, P58, DOI 10.2203/dose-response.10-010.Hart
Hart J, 2011, DOSE-RESPONSE, V9, P50, DOI 10.2203/dose-response.09-051.Hart
Holick MF, 2007, J BONE MINER RES, V22, pV28, DOI 10.1359/JBMR.07S211
Holt PR, 2002, CANCER EPIDEM BIOMAR, V11, P113
Ingham R.R., 2011, BLOOD, V118, P5198, DOI [10.1182/blood.V118.21.5198.5198, DOI 10.1182/BLOOD.V118.21.5198.5198]
International Society for Mountain Medicine, 2006, ALT TUT
Kamper-Jorgensen M, 2013, ANN ONCOL, V24, P2245, DOI 10.1093/annonc/mdt218
Kelly JL, 2009, CANCER INVEST, V27, P942, DOI 10.3109/07357900902849632
Larsson SC, 2007, INT J CANCER, V121, P1564, DOI 10.1002/ijc.22762
Lecuit M, 2004, NEW ENGL J MED, V350, P239, DOI 10.1056/NEJMoa031887
Merrill RM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818769484
Moreno J, 2005, J STEROID BIOCHEM, V97, P31, DOI 10.1016/j.jsbmb.2005.06.012
MUELLER NE, 1992, CANCER RES S, V52, pS547
National Cancer Institute, 2018, QUALITY IMPROVEMENT
National Cancer Institute, 2018, SEER REG
National Cancer Institute DCCPS Surveillance Research Program, SURV EP END RES SEER
Nelson RA, 1997, BRIT J CANCER, V76, P1532, DOI 10.1038/bjc.1997.590
PEARCE N, 1992, CANCER RES, V52, pS5496
Phan TX, 2016, SCI REP-UK, V6, DOI 10.1038/srep39479
Purdue MP, 2010, AM J EPIDEMIOL, V172, P58, DOI 10.1093/aje/kwq117
Savvidis C, 2012, MOL MED, V18, P1249, DOI 10.2119/molmed.2012.00077
Schollkopf C, 2008, BLOOD, V111, P5524, DOI 10.1182/blood-2007-08-109611
Thiersch M, 2018, HIGH ALT MED BIOL, V19, P116, DOI 10.1089/ham.2017.0061
Thorne J, 2008, P NUTR SOC, V67, P115, DOI 10.1017/S0029665108006964
United States Census Bureau, 2016, POV CENS BUR MEAS PO
US Bureau of the Census, 2013, SMALL AR INC POV EST
van der Rhee H, 2013, EUR J CANCER, V49, P1422, DOI 10.1016/j.ejca.2012.11.001
van Leeuwen MT, 2013, INT J CANCER, V133, P944, DOI 10.1002/ijc.28081
Wacker M, 2013, DERM-ENDOCRINOL, V5, DOI [10.4161/derm.24476, 10.4161/derm.24494]
WEINBERG CR, 1987, RADIAT RES, V112, P381, DOI 10.2307/3577265
Youk AO, 2012, HIGH ALT MED BIOL, V13, P98, DOI 10.1089/ham.2011.1051
ZAHM SH, 1992, CANCER RES, V52, pS5485
ZIPPIN C, 1995, CANCER, V76, P2343, DOI 10.1002/1097-0142(19951201)76:11<2343::AID-CNCR2820761124>3.0.CO;2-#
NR 62
TC 4
Z9 7
U1 1
U2 8
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1527-0297
EI 1557-8682
J9 HIGH ALT MED BIOL
JI High Alt. Med. Biol.
PD MAR 1
PY 2020
VL 21
IS 1
BP 37
EP 44
DI 10.1089/ham.2019.0054
EA NOV 2019
PG 8
WC Biophysics; Public, Environmental & Occupational Health; Sport Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biophysics; Public, Environmental & Occupational Health; Sport Sciences
GA LB8RF
UT WOS:000498725600001
PM 31765244
DA 2023-03-13
ER
PT J
AU Nunn, AVW
Bell, JD
Guy, GW
AF Nunn, Alistair V. W.
Bell, Jimmy D.
Guy, Geoffrey W.
TI Lifestyle-induced metabolic inflexibility and accelerated ageing
syndrome: insulin resistance, friend or foe?
SO NUTRITION & METABOLISM
LA English
DT Review
ID ACTIVATED PROTEIN-KINASE; NF-KAPPA-B; TRANSCRIPTION FACTOR FOXO1;
ENDOPLASMIC-RETICULUM STRESS; PROMOTES MITOCHONDRIAL BIOGENESIS;
POLYUNSATURATED FATTY-ACIDS; HIGH-DENSITY-LIPOPROTEIN; VISCERAL
ADIPOSE-TISSUE; NITRIC-OXIDE SYNTHASE; ACUTE-PHASE REACTANTS
AB The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment.
C1 [Nunn, Alistair V. W.; Bell, Jimmy D.] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, London W12 OHS, England.
[Guy, Geoffrey W.] GW Pharmaceut, Porton Down, Dorset, England.
C3 Imperial College London
RP Nunn, AVW (corresponding author), Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, Du Cane Rd, London W12 OHS, England.
EM alistair.nunn@btconnect.com; jimmy.bell@csc.mrc.ac.uk; gwg@gwpharm.com
RI Nunn, Alistair/ABE-2462-2020
OI Bell, Jimmy/0000-0003-3804-1281
FU Medical Research Council [MC_U120061305] Funding Source: Medline; MRC
[MC_U120061305] Funding Source: UKRI; Medical Research Council
[MC_U120061305] Funding Source: researchfish
CR Accurso A, 2008, NUTR METAB, V5, DOI 10.1186/1743-7075-5-9
Adler AS, 2007, GENE DEV, V21, P3244, DOI 10.1101/gad.1588507
Al-Mahroos F, 1998, DIABETES CARE, V21, P936, DOI 10.2337/diacare.21.6.936
Al-Mahroos F, 1999, J R SOC PROMO HEALTH, V119, P251, DOI 10.1177/146642409911900410
Alikhani M, 2005, J BIOL CHEM, V280, P12096, DOI 10.1074/jbc.M412171200
Allard JS, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003211
Andersson U, 2004, J BIOL CHEM, V279, P12005, DOI 10.1074/jbc.C300557200
Andrews ZB, 2008, NATURE, V454, P846, DOI 10.1038/nature07181
Anton S, 2007, CELL SIGNAL, V19, P378, DOI 10.1016/j.cellsig.2006.07.008
Arany Z, 2008, P NATL ACAD SCI USA, V105, P4721, DOI 10.1073/pnas.0800979105
Armstrong MB, 2001, AM J PHYSIOL-ENDOC M, V281, pE1197, DOI 10.1152/ajpendo.2001.281.6.E1197
Athanasiou A, 2007, BIOCHEM BIOPH RES CO, V364, P131, DOI 10.1016/j.bbrc.2007.09.107
Austenaa LMI, 2004, FASEB J, V18, P1255, DOI 10.1096/fj.03-1098fje
Bandyopadhyay GK, 2005, DIABETES, V54, P2351, DOI 10.2337/diabetes.54.8.2351
Bao N, 2007, CIRC J, V71, P1622, DOI 10.1253/circj.71.1622
Bastie CC, 2004, DIABETES, V53, P2209, DOI 10.2337/diabetes.53.9.2209
Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354
Bell RA, 2000, DIABETES CARE, V23, P1630, DOI 10.2337/diacare.23.11.1630
Bhatt DL, 2008, AM J CARDIOL, V101, p4D, DOI 10.1016/j.amjcard.2008.02.002
Bjorntorp P, 1999, DRUGS, V58, P13
Blundell JE, 2004, PHYSIOL BEHAV, V82, P21, DOI 10.1016/j.physbeh.2004.04.021
Bowles JT, 1998, MED HYPOTHESES, V51, P179, DOI 10.1016/S0306-9877(98)90079-2
Brady NR, 2004, BIOPHYS J, V87, P2022, DOI 10.1529/biophysj.103.035097
Brett PJ, 2008, CELL MICROBIOL, V10, P487, DOI 10.1111/j.1462-5822.2007.01063.x
Briviba K, 2002, J NUTR, V132, P2814, DOI 10.1093/jn/132.9.2814
Brookes PS, 2004, AM J PHYSIOL-CELL PH, V287, pC817, DOI 10.1152/ajpcell.00139.2004
Brownlee M, 2001, NATURE, V414, P813, DOI 10.1038/414813a
Bubici C, 2006, ONCOGENE, V25, P6731, DOI 10.1038/sj.onc.1209936
Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x
Buttner S, 2006, J CELL BIOL, V175, P521, DOI 10.1083/jcb.200608098
Byberg L, 2009, BRIT J SPORT MED, V43, P482, DOI 10.1136/bmj.b688
Carroll AM, 2004, BBA-PROTEINS PROTEOM, V1700, P145, DOI 10.1016/j.bbapap.2004.05.008
Carvalheira JBC, 2005, OBES RES, V13, P48, DOI 10.1038/oby.2005.7
Choi SL, 2001, BIOCHEM BIOPH RES CO, V287, P92, DOI 10.1006/bbrc.2001.5544
Cinti S, 2005, J LIPID RES, V46, P2347, DOI 10.1194/jlr.M500294-JLR200
Civitarese AE, 2007, PLOS MED, V4, P485, DOI 10.1371/journal.pmed.0040076
Coleman CI, 2008, CURR MED RES OPIN, V24, P1359, DOI 10.1185/030079908X292029
Cook SP, 2006, SWISS MED WKLY, V136, P103
Copeland RJ, 2008, AM J PHYSIOL-ENDOC M, V295, pE17, DOI 10.1152/ajpendo.90281.2008
Corton JC, 2005, J GERONTOL A-BIOL, V60, P1494, DOI 10.1093/gerona/60.12.1494
Corton JC, 2004, J BIOL CHEM, V279, P46204, DOI 10.1074/jbc.M406739200
COSGROVE JP, 1987, LIPIDS, V22, P299, DOI 10.1007/BF02533996
Cunningham JT, 2007, NATURE, V450, P736, DOI 10.1038/nature06322
Curioni C, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006162.pub2
Dandona P, 2005, CIRCULATION, V111, P1448, DOI 10.1161/01.CIR.0000158483.13093.9D
Dandona Paresh, 2003, Clin Cornerstone, VSuppl 4, pS13
Dann SG, 2007, TRENDS MOL MED, V13, P252, DOI 10.1016/j.molmed.2007.04.002
Das SK, 2007, LIFE SCI, V81, P177, DOI 10.1016/j.lfs.2007.05.005
Daval M, 2006, J PHYSIOL-LONDON, V574, P55, DOI 10.1113/jphysiol.2006.111484
de la Monte SM, 2008, J GASTROEN HEPATOL, V23, pE477, DOI 10.1111/j.1440-1746.2008.05339.x
De Souza CT, 2005, ENDOCRINOLOGY, V146, P4192, DOI 10.1210/en.2004-1520
Delerive P, 1999, J BIOL CHEM, V274, P32048, DOI 10.1074/jbc.274.45.32048
Demas GE, 2005, P ROY SOC B-BIOL SCI, V272, P1845, DOI 10.1098/rspb.2005.3126
DI MV, 2008, BRIT J PHARMACOL, V154, P915
DI MV, 2008, NAT NEUROSCI, V8, P585
Dowell P, 2003, J BIOL CHEM, V278, P45485, DOI 10.1074/jbc.M309069200
Doyon C, 2006, DIABETES, V55, P3403, DOI 10.2337/db06-0504
Du XL, 2003, J CLIN INVEST, V112, P1049, DOI 10.1172/JCI200318127
Dulloo AG, 2006, HORM RES, V65, P90, DOI 10.1159/000091512
Dunbar JA, 2008, DIABETES CARE, V31, P2368, DOI 10.2337/dc08-0175
Duncan B B, 2001, Sao Paulo Med J, V119, P122
Eaton SB, 1998, WORLD REV NUTR DIET, V83, P12
EATON SB, 1992, LIPIDS, V27, P814, DOI 10.1007/BF02535856
Echtay KS, 2007, FREE RADICAL BIO MED, V43, P1351, DOI 10.1016/j.freeradbiomed.2007.08.011
Eckardt K, 2009, DIABETOLOGIA, V52, P664, DOI 10.1007/s00125-008-1240-4
Eikelis N, 2005, EXP PHYSIOL, V90, P673, DOI 10.1113/expphysiol.2005.031385
Eizirik DL, 2008, ENDOCR REV, V29, P42, DOI 10.1210/er.2007-0015
Erol A, 2007, BIOESSAYS, V29, P811, DOI 10.1002/bies.20618
Erusalimsky JD, 2007, ARTERIOSCL THROM VAS, V27, P2524, DOI 10.1161/ATVBAHA.107.151167
Esposito K, 2008, INT J IMPOT RES, V20, P358, DOI 10.1038/ijir.2008.9
Essers MAG, 2004, EMBO J, V23, P4802, DOI 10.1038/sj.emboj.7600476
ESTERBAUER H, 1991, FREE RADICAL BIO MED, V11, P81, DOI 10.1016/0891-5849(91)90192-6
Esteve E, 2005, CLIN NUTR, V24, P16, DOI 10.1016/j.clnu.2004.08.004
Evans JL, 2002, ENDOCR REV, V23, P599, DOI 10.1210/er.2001-0039
Fehm HL, 2006, PROG BRAIN RES, V153, P129, DOI 10.1016/S0079-6123(06)53007-9
Fernandez-Real JM, 1999, DIABETOLOGIA, V42, P1367, DOI 10.1007/s001250051451
Flanagan DEH, 2000, EUR J CLIN INVEST, V30, P297
Franks PW, 2005, OBES RES, V13, P1476, DOI 10.1038/oby.2005.178
FREEDLAND ES, 2004, NUTR METAB, V4, P12
Frescas D, 2005, J BIOL CHEM, V280, P20589, DOI 10.1074/jbc.M412357200
Fridlyand LE, 2006, DIABETES OBES METAB, V8, P136, DOI 10.1111/j.1463-1326.2005.00496.x
Fridlyand LE, 2006, MED HYPOTHESES, V67, P1034, DOI 10.1016/j.mehy.2006.04.057
Fujita K, 2006, CIRC J, V70, P1437, DOI 10.1253/circj.70.1437
Fulco M, 2008, CELL CYCLE, V7, P3669, DOI 10.4161/cc.7.23.7164
Furukawa S, 2004, J CLIN INVEST, V114, P1752, DOI [10.1172/JCI21625, 10.1172/JCI20042162S]
Galli S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002379
Ghosh S, 2006, FREE RADICAL BIO MED, V41, P1413, DOI 10.1016/j.freeradbiomed.2006.07.021
Golay A, 2008, INT J OBESITY, V32, P61, DOI 10.1038/sj.ijo.0803695
Gomes AR, 2008, CELL CYCLE, V7, P3133, DOI 10.4161/cc.7.20.6920
Goude D, 2002, CLIN SCI, V102, P345, DOI 10.1042/cs1020345
Greer EL, 2007, J BIOL CHEM, V282, P30107, DOI 10.1074/jbc.M705325200
Gremlich S, 2005, ENDOCRINOLOGY, V146, P375, DOI 10.1210/en.2004-0667
Gross DN, 2008, ONCOGENE, V27, P2320, DOI 10.1038/onc.2008.25
Gu WD, 2008, ANESTHESIOLOGY, V108, P634, DOI 10.1097/ALN.0b013e3181672590
Guarente L, 2008, CELL, V132, P171, DOI 10.1016/j.cell.2008.01.007
Guarente L, 2006, NATURE, V444, P868, DOI 10.1038/nature05486
Guclu F, 2004, BIOMED PHARMACOTHER, V58, P614, DOI 10.1016/j.biopha.2004.09.005
Haag M, 2005, MED SCI MONITOR, V11, pRA359
Hadi HAR, 2005, VASC HEALTH RISK MAN, V1, P183
HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248
Haluzik MM, 2006, ENDOCRINOLOGY, V147, P4517, DOI 10.1210/en.2005-1624
Han DH, 2004, AM J PHYSIOL-ENDOC M, V286, pE347, DOI 10.1152/ajpendo.00434.2003
Handschin C, 2008, NATURE, V454, P463, DOI 10.1038/nature07206
Hanover JA, 2005, P NATL ACAD SCI USA, V102, P11266, DOI 10.1073/pnas.0408771102
Hansen M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040024
Haussmann MF, 2007, ADV PHYSIOL EDUC, V31, P110, DOI 10.1152/advan.00058.2006
HEYWOOD PF, 1977, AM J CLIN NUTR, V30, P1726, DOI 10.1093/ajcn/30.10.1726
Hilakivi-Clarke L, 2005, J NUTR, V135, p2946S, DOI 10.1093/jn/135.12.2946S
Hirasawa A, 2005, NAT MED, V11, P90, DOI 10.1038/nm1168
Hirosumi J, 2002, NATURE, V420, P333, DOI 10.1038/nature01137
Hotamisligil GS, 2006, NATURE, V444, P860, DOI 10.1038/nature05485
Hotamisligil GS, 2005, DIABETES, V54, pS73, DOI 10.2337/diabetes.54.suppl_2.S73
Hou WK, 2007, CHINESE MED J-PEKING, V120, P1704, DOI 10.1097/00029330-200710010-00013
Housley MP, 2008, J BIOL CHEM, V283, P16283, DOI 10.1074/jbc.M802240200
Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960
Hu FB, 2003, AM J CLIN NUTR, V78, p544S, DOI 10.1093/ajcn/78.3.544S
Hu MCT, 2004, CELL, V117, P225, DOI 10.1016/S0092-8674(04)00302-2
Huang HJ, 2007, J CELL SCI, V120, P2479, DOI 10.1242/jcs.001222
Hudson NJ, 2008, MED HYPOTHESES, V70, P693, DOI 10.1016/j.mehy.2007.05.042
Incerpi S, 2007, J PHARM PHARMACOL, V59, P1711, DOI 10.1211/jpp.59.12.0014
Ito E, 2004, BIOCHEM BIOPH RES CO, V324, P810, DOI 10.1016/j.bbrc.2004.08.238
Jager S, 2007, P NATL ACAD SCI USA, V104, P12017, DOI 10.1073/pnas.0705070104
Jbilo O, 2005, FASEB J, V19, P1567, DOI 10.1096/fj.04-3177fje
Jebb SA, 2006, INT J OBESITY, V30, P1160, DOI 10.1038/sj.ijo.0803194
Jeong SK, 2008, J KOREAN MED SCI, V23, P789, DOI 10.3346/jkms.2008.23.5.789
Jimenez C, 2007, J EXP BOT, V58, P1001, DOI 10.1093/jxb/erl260
Kettawan A, 2007, J CLIN BIOCHEM NUTR, V40, P194, DOI 10.3164/jcbn.40.194
Khovidhunkit W, 2004, J LIPID RES, V45, P1169, DOI 10.1194/jlr.R300019-JLR200
Kim JY, 2007, J CLIN INVEST, V117, P2621, DOI 10.1172/JCI31021
Kim JE, 2004, DIABETES, V53, P2748, DOI 10.2337/diabetes.53.11.2748
Kitamura T, 2002, J CLIN INVEST, V110, P1839, DOI 10.1172/JCI200216857
Kitamura T, 2006, NAT MED, V12, P534, DOI 10.1038/nm1392
Klinge CM, 2005, J BIOL CHEM, V280, P7460, DOI 10.1074/jbc.M411565200
Kobayashi Tsuneo, 2005, Journal of Smooth Muscle Research, V41, P283, DOI 10.1540/jsmr.41.283
Kola B, 2005, J BIOL CHEM, V280, P25196, DOI 10.1074/jbc.C500175200
Kola B, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001797
Kraegen EW, 2006, AM J PHYSIOL-ENDOC M, V290, pE471, DOI 10.1152/ajpendo.00316.2005
Kutuk O, 2006, TOXICOL SCI, V90, P120, DOI 10.1093/toxsci/kfj055
Laferrere B, 2006, J CLIN ENDOCR METAB, V91, P2232, DOI 10.1210/jc.2005-0693
Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013
Lai IR, 2008, TRANSPLANTATION, V85, P732, DOI 10.1097/TP.0b013e3181664e70
Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x
Lane N, 2008, NATURE, V453, P583, DOI 10.1038/453583a
Lankin VZ, 2007, BIOCHEMISTRY-MOSCOW+, V72, P1081, DOI 10.1134/S0006297907100069
Lavrovsky Y, 2000, EXP GERONTOL, V35, P521, DOI 10.1016/S0531-5565(00)00118-2
Lee CH, 2006, P NATL ACAD SCI USA, V103, P3444, DOI 10.1073/pnas.0511253103
Lee JY, 2006, MOL CELLS, V21, P174
Lin JD, 2005, CELL, V120, P261, DOI 10.1016/j.cell.2004.11.043
Lin XY, 2004, J CLIN INVEST, V114, P908, DOI 10.1172/JCI22217
Lin Y, 2001, J BIOL CHEM, V276, P42077, DOI 10.1074/jbc.M107101200
Lin YL, 1997, MOL PHARMACOL, V52, P465, DOI 10.1124/mol.52.3.465
Linnane AW, 2007, BIOGERONTOLOGY, V8, P445, DOI 10.1007/s10522-007-9096-4
Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103
Luchsinger JA, 2007, ARCH NEUROL-CHICAGO, V64, P570, DOI 10.1001/archneur.64.4.570
Ma DWL, 2007, APPL PHYSIOL NUTR ME, V32, P341, DOI 10.1139/H07-036
Maassen JA, 2007, DIABETOLOGIA, V50, P2036, DOI 10.1007/s00125-007-0776-z
Malcher-Lopes R, 2008, EUR J PHARMACOL, V583, P322, DOI 10.1016/j.ejphar.2007.12.033
Marcheselli VL, 2003, J BIOL CHEM, V278, P43807, DOI 10.1074/jbc.M305841200
Mastrocola R, 2005, J ENDOCRINOL, V187, P37, DOI 10.1677/joe.1.06269
Mathias S, 1998, BIOCHEM J, V335, P465, DOI 10.1042/bj3350465
Matsuzawa A, 2008, BBA-GEN SUBJECTS, V1780, P1325, DOI 10.1016/j.bbagen.2007.12.011
Mechoulam R, 2002, Sci STKE, V2002, pre5, DOI 10.1126/stke.2002.129.re5
Menon SG, 2007, ONCOGENE, V26, P1101, DOI 10.1038/sj.onc.1209895
Mercader J, 2006, ENDOCRINOLOGY, V147, P5325, DOI 10.1210/en.2006-0760
MODI N, 2009, PEDIAT RES IN PRESS
Mootha VK, 2003, NAT GENET, V34, P267, DOI 10.1038/ng1180
Morris BJ, 2005, J HYPERTENS, V23, P1285, DOI 10.1097/01.hjh.0000173509.45363.dd
Motaghedi R, 2008, OBESITY, V16, P1727, DOI 10.1038/oby.2008.309
Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789
Musaiger AO, 2001, ANN HUM BIOL, V28, P346, DOI 10.1080/030144601300119151
Muzumdar R, 2008, AGING CELL, V7, P438, DOI 10.1111/j.1474-9726.2008.00391.x
Nadanaciva S, 2007, TOXICOL APPL PHARM, V223, P277, DOI 10.1016/j.taap.2007.06.003
Nakae J, 2008, DIABETES, V57, P563, DOI 10.2337/db07-0698
Nakai J, 2002, NAT GENET, V32, P245, DOI 10.1038/ng890
Nakamura T, 2008, MOL CELL ENDOCRINOL, V281, P47, DOI 10.1016/j.mce.2007.10.007
Nakano H, 2006, CELL DEATH DIFFER, V13, P730, DOI 10.1038/sj.cdd.4401830
Nalam Roopa L, 2008, J Biol, V7, P23, DOI 10.1186/jbiol84
Narayan KMV, 2007, DIABETES CARE, V30, P1562, DOI 10.2337/dc06-2544
Narkar VA, 2008, CELL, V134, P405, DOI 10.1016/j.cell.2008.06.051
Navab M, 2004, J LIPID RES, V45, P993, DOI 10.1194/jlr.R400001-JLR200
Navarro A, 2007, AM J PHYSIOL-CELL PH, V292, pC670, DOI 10.1152/ajpcell.00213.2006
NEEL JV, 1962, AM J HUM GENET, V14, P353
Nemoto S, 2005, J BIOL CHEM, V280, P16456, DOI 10.1074/jbc.M501485200
Ni YG, 2007, P NATL ACAD SCI USA, V104, P20517, DOI 10.1073/pnas.0610290104
Niedemhofer LJ, 2008, INT J BIOCHEM CELL B, V40, P176, DOI 10.1016/j.biocel.2007.10.008
Nisoli E, 2005, SCIENCE, V310, P314, DOI 10.1126/science.1117728
Nunn Alistair V W, 2007, Nucl Recept, V5, P1
O'Sullivan SE, 2007, BRIT J PHARMACOL, V152, P576, DOI 10.1038/sj.bjp.0707423
Oak MH, 2006, BRIT J PHARMACOL, V149, P283, DOI 10.1038/sj.bjp.0706843
Ochoa JJ, 2007, J GERONTOL A-BIOL, V62, P1211, DOI 10.1093/gerona/62.11.1211
Oh SW, 2005, P NATL ACAD SCI USA, V102, P4494, DOI 10.1073/pnas.0500749102
Olsen GS, 2002, AM J PHYSIOL-ENDOC M, V283, pE965, DOI 10.1152/ajpendo.00118.2002
Packard C, 2002, INT J CLIN PRACT, V56, P761
Parsons PA, 2007, BIOGERONTOLOGY, V8, P613, DOI 10.1007/s10522-007-9101-y
Parvinen K, 2005, ACTA BIOTHEOR, V53, P241, DOI 10.1007/s10441-005-2531-5
Pasquali R, 2008, INT J OBESITY, V32, P1764, DOI 10.1038/ijo.2008.129
Pickup JC, 1997, DIABETOLOGIA, V40, P1286, DOI 10.1007/s001250050822
PIETINEN P, 1988, ACTA MED SCAND, P169
Planavila A, 2005, CARDIOVASC RES, V65, P832, DOI 10.1016/j.cardiores.2004.11.011
Porte D, 2005, DIABETES, V54, P1264, DOI 10.2337/diabetes.54.5.1264
Prentice AM, 2003, BMJ-BRIT MED J, V327, P880, DOI 10.1136/bmj.327.7420.880
PSARRA AM, 2008, BIOCH BIOP IN PRESS
Ramsey MR, 2006, NAT CELL BIOL, V8, P1213, DOI 10.1038/ncb1106-1213
Rasbach KA, 2008, J PHARMACOL EXP THER, V325, P536, DOI 10.1124/jpet.107.134882
Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006
RAZMARA A, 2008, J PHARM EXP THER
Reagan LP, 2007, CURR OPIN PHARMACOL, V7, P633, DOI 10.1016/j.coph.2007.10.012
REAVEN GM, 1988, DIABETES, V37, P1595, DOI 10.2337/diabetes.37.12.1595
Reilly JM, 2000, BIOCHEM BIOPH RES CO, V277, P541, DOI 10.1006/bbrc.2000.3705
Reznick RM, 2006, J PHYSIOL-LONDON, V574, P33, DOI 10.1113/jphysiol.2006.109512
Rival Y, 2002, EUR J PHARMACOL, V435, P143, DOI 10.1016/S0014-2999(01)01589-8
Rivellese AA, 2003, BIOMED PHARMACOTHER, V57, P84, DOI 10.1016/S0753-3322(03)00003-9
Robert L, 2008, BIOGERONTOLOGY, V9, P119, DOI 10.1007/s10522-007-9122-6
Robinson Irina, 2006, Endocr Pract, V12, P576
Rohas LM, 2007, P NATL ACAD SCI USA, V104, P7933, DOI 10.1073/pnas.0702683104
RORIZ S, 2008, BIOCH BIOP IN PRESS
Salih DAM, 2008, CURR OPIN CELL BIOL, V20, P126, DOI 10.1016/j.ceb.2008.02.005
Samuel VT, 2006, DIABETES, V55, P2042, DOI 10.2337/db05-0705
Sandstrom ME, 2006, J PHYSIOL-LONDON, V575, P251, DOI 10.1113/jphysiol.2006.110601
Sasaki J, 2008, CLIN THER, V30, P1089, DOI 10.1016/j.clinthera.2008.05.017
Schafer C, 2007, J LIPID RES, V48, P1550, DOI 10.1194/jlr.M600513-JLR200
Schieke SM, 2006, J BIOL CHEM, V281, P27643, DOI 10.1074/jbc.M603536200
Schmitz-Peiffer C, 1999, J BIOL CHEM, V274, P24202, DOI 10.1074/jbc.274.34.24202
Schrauwen P, 2004, DIABETES, V53, P1412, DOI 10.2337/diabetes.53.6.1412
Schrauwen P, 2002, J EXP BIOL, V205, P2275
Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011
Schwartz MW, 2003, DIABETES, V52, P232, DOI 10.2337/diabetes.52.2.232
Shao HB, 2008, CR BIOL, V331, P433, DOI 10.1016/j.crvi.2008.03.011
Shay NF, 2005, ANNU REV NUTR, V25, P297, DOI 10.1146/annurev.nutr.25.050304.092639
Shi H, 2006, J CLIN INVEST, V116, P3015, DOI 10.1172/JCI28898
SIMON JA, 1995, AM J EPIDEMIOL, V142, P469, DOI 10.1093/oxfordjournals.aje.a117662
Singh U, 2008, AM J CARDIOL, V102, P321, DOI 10.1016/j.amjcard.2008.03.057
Sirikul B, 2006, AM J PHYSIOL-ENDOC M, V291, pE724, DOI 10.1152/ajpendo.00364.2005
Skerrett P J, 2003, Prev Cardiol, V6, P38, DOI 10.1111/j.1520-037X.2003.00959.x
Skulachev VP, 1999, BIOCHEMISTRY-MOSCOW+, V64, P1418
Solinas G, 2007, CELL METAB, V6, P386, DOI 10.1016/j.cmet.2007.09.011
Spalding KL, 2008, NATURE, V453, P783, DOI 10.1038/nature06902
Spencer NFL, 1997, INT IMMUNOL, V9, P1581, DOI 10.1093/intimm/9.10.1581
Sreekumar R, 2007, INDIAN J MED RES, V125, P399
St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024
Stein DT, 1997, J CLIN INVEST, V100, P398, DOI 10.1172/JCI119546
Steinberg GR, 2007, CELL CYCLE, V6, P888, DOI 10.4161/cc.6.8.4135
Steiner MA, 2008, PSYCHONEUROENDOCRINO, V33, P54, DOI 10.1016/j.psyneuen.2007.09.008
Stoger R, 2008, BIOESSAYS, V30, P156, DOI 10.1002/bies.20700
Storlien L, 2004, P NUTR SOC, V63, P363, DOI 10.1079/PNS2004349
Storozhevykh TP, 2007, BMC NEUROSCI, V8, DOI 10.1186/1471-2202-8-84
Strazzullo P, 2007, HYPERTENSION, V49, P792, DOI 10.1161/01.HYP.0000259737.43916.42
Suliman HB, 2007, J CELL SCI, V120, P299, DOI 10.1242/jcs.03318
Suliman HB, 2004, CARDIOVASC RES, V64, P279, DOI 10.1016/j.cardiores.2004.07.005
Sullivan PG, 2004, ANN NEUROL, V55, P576, DOI 10.1002/ana.20062
Sun W, 2006, CIRCULATION, V114, P2655, DOI 10.1161/CIRCULATIONAHA.106.630194
Suwa M, 2006, J APPL PHYSIOL, V101, P1685, DOI 10.1152/japplphysiol.00255.2006
Szanto A, 2004, CELL DEATH DIFFER, V11, pS126, DOI 10.1038/sj.cdd.4401533
Taguchi A, 2008, ANNU REV PHYSIOL, V70, P191, DOI 10.1146/annurev.physiol.70.113006.100533
Takamura T, 2007, BIOCHEM BIOPH RES CO, V361, P379, DOI 10.1016/j.bbrc.2007.07.006
Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009
Tedesco L, 2008, DIABETES, V57, P2028, DOI 10.2337/db07-1623
Tham DM, 2002, PHYSIOL GENOMICS, V11, P21, DOI 10.1152/physiolgenomics.00062.2002
Tsalouhidou S, 2006, J ANIM SCI, V84, P2818, DOI 10.2527/jas.2006-031
Tuncman G, 2006, P NATL ACAD SCI USA, V103, P10741, DOI 10.1073/pnas.0603509103
Urayama A, 2008, ENDOCRINOLOGY, V149, P3592, DOI 10.1210/en.2008-0008
Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038
Valerio A, 2006, J CLIN INVEST, V116, P2791, DOI [10.1172/JCI28570, 10.1172/JCI28570.]
van der Poorten D, 2008, HEPATOLOGY, V48, P449, DOI 10.1002/hep.22350
VAN LF, 2003, J IMMUNOL, V170, P2932
Varady KA, 2007, J LIPID RES, V48, P2212, DOI 10.1194/jlr.M700223-JLR200
Varady KA, 2007, AM J CLIN NUTR, V86, P7, DOI 10.1093/ajcn/86.1.7
Vellai T, 2009, CELL DEATH DIFFER, V16, P94, DOI 10.1038/cdd.2008.126
Villegas R, 2004, NUTR METAB CARDIOVAS, V14, P233, DOI 10.1016/S0939-4753(04)80049-8
Viveros M. P., 2008, Endocrine Metabolic & Immune Disorders-Drug Targets, V8, P220, DOI 10.2174/187153008785700082
Volek Jeff S, 2005, Nutr Metab (Lond), V2, P31, DOI 10.1186/1743-7075-2-31
Wahba IM, 2007, CLIN J AM SOC NEPHRO, V2, P550, DOI 10.2215/CJN.04071206
Wajchenberg BL, 2000, ENDOCR REV, V21, P697, DOI 10.1210/er.21.6.697
Wallerath T, 2002, CIRCULATION, V106, P1652, DOI 10.1161/01.CIR.0000029925.18593.5C
Wang CS, 2007, AM J EPIDEMIOL, V166, P196, DOI 10.1093/aje/kwm061
Wang HQ, 2002, AM J PHYSIOL-ENDOC M, V282, pE1352, DOI 10.1152/ajpendo.00230.2001
Wang MC, 2005, CELL, V121, P115, DOI 10.1016/j.cell.2005.02.030
Webb C, 2003, AM NAT, V161, P181, DOI 10.1086/345858
Weber K, 2002, ENDOCRINOLOGY, V143, P177, DOI 10.1210/en.143.1.177
Weigert C, 2004, J BIOL CHEM, V279, P23942, DOI 10.1074/jbc.M312692200
Weinkove D, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-1
Wijndaele K, 2009, EUR J CLIN NUTR, V63, P421, DOI 10.1038/sj.ejcn.1602944
Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789
Woods SC, 2006, DIABETES, V55, pS114, DOI 10.2337/db06-S015
Wu CH, 2007, INT J OBESITY, V31, P1384, DOI 10.1038/sj.ijo.0803624
Xiao H, 2004, EXP BIOL MED, V229, P479, DOI 10.1177/153537020422900605
Xu HE, 1999, MOL CELL, V3, P397, DOI 10.1016/S1097-2765(00)80467-0
Ye JM, 2001, DIABETES, V50, P411, DOI 10.2337/diabetes.50.2.411
Yeh CH, 2001, DIABETES, V50, P1495, DOI 10.2337/diabetes.50.6.1495
Yin W, 2008, STROKE, V39, P3057, DOI 10.1161/STROKEAHA.108.520114
Yoon JH, 2005, YONSEI MED J, V46, P585, DOI 10.3349/ymj.2005.46.5.585
Young SE, 2006, DIABETES CARE, V29, P2688, DOI 10.2337/dc06-0915
Zang MW, 2006, DIABETES, V55, P2180, DOI 10.2337/db05-1188
Zhang BX, 2006, AM J PHYSIOL-CELL PH, V290, pC1321, DOI 10.1152/ajpcell.00335.2005
Zhang JD, 2006, BIOCHEM J, V397, P519, DOI 10.1042/BJ20050977
Zhang KZ, 2008, NATURE, V454, P455, DOI 10.1038/nature07203
Zhang Y, 2006, PHYSIOL BEHAV, V88, P249, DOI 10.1016/j.physbeh.2006.05.038
Zheng JB, 2000, BRIT J PHARMACOL, V130, P1115, DOI 10.1038/sj.bjp.0703397
Zhou JR, 2007, AM J CLIN NUTR, V86, p817S, DOI 10.1093/ajcn/86.3.817S
Zimmer A, 1999, P NATL ACAD SCI USA, V96, P5780, DOI 10.1073/pnas.96.10.5780
Zimmet P, 2005, J ATHEROSCLER THROMB, V12, P295, DOI 10.5551/jat.12.295
Zomer AWM, 2000, J LIPID RES, V41, P1801
Zou MH, 2004, J BIOL CHEM, V279, P43940, DOI 10.1074/jbc.M404421200
2003, WORLD HLTH ORGAN TEC, V916, P149
NR 304
TC 49
Z9 51
U1 0
U2 11
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1743-7075
J9 NUTR METAB
JI Nutr. Metab.
PD APR 16
PY 2009
VL 6
AR 16
DI 10.1186/1743-7075-6-16
PG 26
WC Nutrition & Dietetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Nutrition & Dietetics
GA 449IS
UT WOS:000266324700001
PM 19371409
OA gold, Green Published, Green Accepted
DA 2023-03-13
ER
PT J
AU Shamseddin, A
Crauste, C
Durand, E
Villeneuve, P
Dubois, G
Durand, T
Vercauteren, J
Veas, F
AF Shamseddin, Aly
Crauste, Celine
Durand, Erwann
Villeneuve, Pierre
Dubois, Gregor
Durand, Thierry
Vercauteren, Joseph
Veas, Francisco
TI Resveratrol formulated with a natural deep eutectic solvent inhibits
active matrix metalloprotease-9 in hormetic conditions
SO EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Hormesis; MMP-9; Metalloproteases; nADES (natural deep eutectic
solvents); Resveratrol
ID DOSE-RESPONSE BIOLOGY; CLINICAL-TRIAL; METABOLISM; DELIVERY;
SUPPLEMENTATION; TOXICITY; MEDIA; MMP-9; DNA
AB Despite the promising anti-oxidant and anti-inflammatory effects of resveratrol (RES) on human health, pre-clinical and clinical studies are frequently disappointing, probably due to its low water-solubility and poor bioavailability. Even though a hormetic mode of action was clearly established for RES, the high doses commonly used to mitigate these issues, lead to adverse effects. Common hallmarks of multiple pathologies results from pathological-enhanced endothelial permeability due to both enhanced inflammation and matrix metalloprotease-9 (aMMP-9) activities. The main aim of this work was to optimize the RES capacity to inhibit aMMP-9 by using a new class of solvents, natural deep eutectic solvents (NADES) for a new RES formulation as compared with dimethyl-sulfoxide (DMSO). To obtain the appropriate NADES, 18 compounds combinations were prepared to select those exhibiting the optimized capacity to dissolve RES. The RES-NADES 1,2-propanediol:choline-chloride:water (PCW, 1:1:1 molar ratio) and compared with RES-DMSO for their aMMP-9-inhibitory capacities. Low concentrations of RES-NADES/PCW formulation exhibited both a biocompatible solubility and a strong increased aMMP-9-inhibitory activity, at least 10-fold, higher than RES-DMSO, reaching its hormetic mode of action. Following in vivo validations, some particular NADES could potentially be considered as the new generation of formulation for druggable compounds.
Practical applications: Formulation of resveratrol in Natural Deep Eutectic solvents (NADES) optimizes its capacity to inhibit active matrix metalloprotease-9. The Resveratrol-NADES 1,2-propanediol:choline-was the most efficient and low concentrations exhibited both a biocompatible solubility and an increased aMMP-9-inhibitory activity, at least 10-fold, higher than RES-DMSO. Consequently, the NADES/PCW formulation allowed resveratrol to reach its hormetic mode of action. Following in vivo validations, some particular NADES could potentially be considered as the new generation of formulation for druggable compounds.
C1 [Shamseddin, Aly; Dubois, Gregor; Veas, Francisco] Montpellier Univ, Mol Comparat Immunophysiopathol Lab LIPMC, UMR Minist Def, French Res Inst Dev IRD,Fac Pharm, Montpellier, France.
[Crauste, Celine; Durand, Thierry; Vercauteren, Joseph] Montpellier Univ, CNRS, UMR 5247, Lab Pharmacognosy,Fac Pharm,IBMM,UM,ENSCM, F-34093 Montpellier, France.
[Durand, Erwann; Villeneuve, Pierre] Int French Ctr Agron Res CIRAD, IATE, UMR, Montpellier, France.
C3 Institut de Recherche pour le Developpement (IRD); Universite de
Montpellier; Centre National de la Recherche Scientifique (CNRS); CNRS -
Institute of Chemistry (INC); Ecole nationale superieure de chimie de
Montpellier; Universite de Montpellier; Universite de Montpellier
RP Vercauteren, J (corresponding author), Montpellier Univ, CNRS, UMR 5247, Lab Pharmacognosy,Fac Pharm,IBMM,UM,ENSCM, F-34093 Montpellier, France.; Veas, F (corresponding author), UMR Minist Def, Mol Comparat Immunophysiopathol Lab LIPMC, French Res Inst Dev IRD, Montpellier, France.
EM jvercauteren@univ-montp1.fr; francisco.veas@ird.fr
RI Durand, Erwann/ABE-9862-2020; Vercauteren, Joseph/AAF-7151-2019;
Villeneuve, Pierre/C-1264-2008
OI Vercauteren, Joseph/0000-0002-0201-1235; DURAND,
Erwann/0000-0002-0306-8081; Crauste, Celine/0000-0002-5714-8749;
Villeneuve, Pierre/0000-0003-1685-1494
FU Misr University for Science and Technology (MUST), Egypt; IRD; CNRS;
CIRAD, France
FX This work has been funded by participation of the IRD, the CNRS, the
CIRAD, France. AS has been a PhD fellow at IRD supported by Misr
University for Science and Technology (MUST), Egypt and IRD.
CR Abbott AP, 2004, J AM CHEM SOC, V126, P9142, DOI 10.1021/ja048266j
Atanackovic M, 2009, COLLOID SURFACE B, V72, P148, DOI 10.1016/j.colsurfb.2009.03.029
Bansal SS, 2011, CANCER PREV RES, V4, P1158, DOI 10.1158/1940-6207.CAPR-10-0006
Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060
Brasnyo P, 2011, BRIT J NUTR, V106, P383, DOI 10.1017/S0007114511000316
Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P1034, DOI 10.1177/0960327110383641
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P977, DOI 10.1177/0960327110383623
Cho SJ, 2012, BRIT J NUTR, V108, P2166, DOI 10.1017/S0007114512000347
Choi YH, 2011, PLANT PHYSIOL, V156, P1701, DOI 10.1104/pp.111.178426
Dai YT, 2013, ANAL CHIM ACTA, V766, P61, DOI 10.1016/j.aca.2012.12.019
Delaunay JC, 2002, J CHROMATOGR A, V964, P123, DOI 10.1016/S0021-9673(02)00355-2
Durand E, 2013, GREEN CHEM, V15, P2275, DOI 10.1039/c3gc40899j
Galvao J, 2014, FASEB J, V28, P1317, DOI 10.1096/fj.13-235440
Heeboll S, 2015, PHARMACOL RES, V95-96, P34, DOI 10.1016/j.phrs.2015.03.005
Leighton F, 1999, DRUG EXP CLIN RES, V25, P133
Luplerdlop N, 2006, EMBO REP, V7, P1176, DOI 10.1038/sj.embor.7400814
Magyar K, 2012, CLIN HEMORHEOL MICRO, V50, P179, DOI 10.3233/CH-2011-1424
Mamajanov I, 2010, ANGEW CHEM INT EDIT, V49, P6310, DOI 10.1002/anie.201001561
Marsac D, 2011, VIROL J, V8, DOI 10.1186/1743-422X-8-223
Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004
Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001
Misse D, 2001, BLOOD, V98, P541, DOI 10.1182/blood.V98.3.541
MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4
Pan D, 2011, ANAL BIOCHEM, V411, P277, DOI 10.1016/j.ab.2011.01.015
Park SY, 2016, ONCOL REP, V35, P3248, DOI 10.3892/or.2016.4716
Ponzo V, 2014, J TRANSL MED, V12, DOI 10.1186/1479-5876-12-158
Poulsen MM, 2013, DIABETES, V62, P1186, DOI 10.2337/db12-0975
Pujara N, 2017, J COLLOID INTERF SCI, V488, P303, DOI 10.1016/j.jcis.2016.11.015
Ramalingam P, 2016, COLLOID SURFACE B, V139, P52, DOI 10.1016/j.colsurfb.2015.11.050
Richer S, 2014, NUTRIENTS, V6, P4404, DOI 10.3390/nu6104404
Scapagnini G, 2014, J CELL COMMUN SIGNAL, V8, P385, DOI 10.1007/s12079-014-0257-3
Scherer RL, 2008, CANCER METAST REV, V27, P679, DOI 10.1007/s10555-008-9152-9
Soo E, 2016, J COLLOID INTERF SCI, V462, P368, DOI 10.1016/j.jcis.2015.10.022
Summerlin N, 2015, INT J PHARMACEUT, V479, P282, DOI 10.1016/j.ijpharm.2015.01.003
Timmers S, 2011, CELL METAB, V14, P612, DOI 10.1016/j.cmet.2011.10.002
Visioli F, 2014, PHARMACOL RES, V90, P87, DOI 10.1016/j.phrs.2014.08.003
Weiz G, 2016, J MOL CATAL B-ENZYM, V130, P70, DOI 10.1016/j.molcatb.2016.04.010
Weksler BB, 2005, FASEB J, V19, P1872, DOI 10.1096/fj.04-3458fje
Zhang YH, 1998, J IMMUNOL, V161, P3071
Zu YG, 2016, DRUG DELIV, V23, P981, DOI 10.3109/10717544.2014.924167
NR 41
TC 21
Z9 21
U1 3
U2 33
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1438-7697
EI 1438-9312
J9 EUR J LIPID SCI TECH
JI Eur. J. Lipid Sci. Technol.
PD NOV
PY 2017
VL 119
IS 11
AR 1700171
DI 10.1002/ejlt.201700171
PG 9
WC Food Science & Technology; Nutrition & Dietetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Food Science & Technology; Nutrition & Dietetics
GA FL9MY
UT WOS:000414581100012
OA Green Submitted
DA 2023-03-13
ER
PT J
AU Agathokleous, E
Saitanis, CJ
Burkey, KO
Ntatsi, G
Vougeleka, V
Mashaheet, AM
Pallides, A
AF Agathokleous, Evgenios
Saitanis, Costas J.
Burkey, Kent O.
Ntatsi, Georgia
Vougeleka, Vasiliki
Mashaheet, Alsayed M.
Pallides, Andreas
TI Application and further characterization of the snap bean S156/R123
ozone biomonitoring system in relation to ambient air temperature
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Conductance; Density; Diurnal pattem; Hormesis; Stoma
ID PHASEOLUS-VULGARIS L.; ETHYLENE DIUREA EDU; CHLOROPHYLL FLUORESCENCE;
TROPOSPHERIC O-3; EUROPEAN FORESTS; ABAXIAL STOMATA; MONITORING DATA;
RISK-ASSESSMENT; CARBON-DIOXIDE; RESEARCH TOOL
AB Increased mixing ratios of ground-level ozone (O-3) threaten individual plants, plant communities and ecosystems. In this sense, O-3 biomonitoring is of great interest The O-3 -sensitive 5156 and the O-3 -tolerant R123 genotypes of snap bean (Phaseolus vulgaris L) have been proposed as a potential tool for active biomonitoring of ambient O-3. In the present study, an O-3 biomonitoring was conducted, with the S156/R123 tool, along with a monitoring of O-3 and other environmental conditions in an urban area in Athens, Greece, during the growing seasons of 2012 and 2013. Plant yield was evaluated to assess the effectiveness of AOT40 in interpreting O-3 -induced phytotoxicity. Across the two genotypes, an approximately two times lower total number of pods - and consequently lower bulk mass of seeds - was found in 2012 than in 2013, although there was no significant difference in the final AOT40 between the two years. No significant differences were observed in the stomatal density or conductance between the two genotypes, whereas it was estimated that, in both genotypes, the abaxial leaf surface contributes 2.7 fold to O-3 intake in comparison to the adaxial one. By testing the role of ambient air temperature in outdoor plant environment chambers (OPECs), it was found that increased temperature limits mature pod formation and complicates interpretation of O-3 impacts in terms of S156/R123 yields ratios. This is the first study providing evidence for a hormetic response of plants to ambient air temperature. This study also points out the complexity of using yield as a measure of O-3 impact across different environments with the snap bean system, whereas visible foliar injury is more consistently related to O-3 effects. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Agathokleous, Evgenios] Hokkaido Univ, Sch Agr, Silviculture & Forest Ecol Studies, Sapporo, Hokkaido 0608689, Japan.
[Saitanis, Costas J.; Vougeleka, Vasiliki] Agr Univ Athens, Lab Ecol & Environm Sci, Iera Odos 75, Athens, Greece.
[Burkey, Kent O.; Mashaheet, Alsayed M.] USDA ARS, Plant Sci Res Unit, Raleigh, NC 27695 USA.
[Ntatsi, Georgia] Agr Univ Athens, Lab Vegetable Prod, Iera Odos 75, Athens, Greece.
[Mashaheet, Alsayed M.] Damanhour Univ, Fac Agr, Dept Plant Pathol, Damanhour, Egypt.
[Pallides, Andreas] Minist Agr, Agr Res Inst, Plant Improvement Sect, CY-1678 Nicosia, Cyprus.
C3 Hokkaido University; Agricultural University of Athens; United States
Department of Agriculture (USDA); Agricultural University of Athens;
Egyptian Knowledge Bank (EKB); Damanhour University
RP Saitanis, CJ (corresponding author), Agr Univ Athens, Lab Ecol & Environm Sci, Iera Odos 75, Athens, Greece.
EM evgenios_ag@hotmail.com; saitanis@aua.gr; kent.burkey@ars.usda.gov;
gntatsi@aua.gr; a.mashaheet@damanhour.edu.eg; pallides@arinetari.gov.cy
RI Saitanis, Costas J/N-7549-2017; Mashaheet, Alsayed/T-1376-2019;
SAITANIS, Costas/AAK-6423-2021; Ntatsi, Georgia/I-3941-2019;
Agathokleous, Evgenios/D-2838-2016
OI Saitanis, Costas J/0000-0001-6077-0806; Mashaheet,
Alsayed/0000-0002-6952-3075; SAITANIS, Costas/0000-0001-6077-0806;
Ntatsi, Georgia/0000-0002-9045-668X; Agathokleous,
Evgenios/0000-0002-0058-4857; Vougeleka, Vasiliki/0000-0003-2944-9373;
Pallides, Andreas/0000-0002-0732-9250
CR Agathokleous E, 2016, ENVIRON POLLUT, V213, P996, DOI 10.1016/j.envpol.2015.12.051
Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-015-2715-9
Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9
Agathokleous E, 2016, SCI TOTAL ENVIRON, V566, P841, DOI 10.1016/j.scitotenv.2016.05.122
Agathokleous E, 2015, J AGRIC METEOROL, V71, P185, DOI 10.2480/agrmet.D-14-00017
Agathokleous E, 2015, J AGRIC METEOROL, V71, P142, DOI 10.2480/agrmet.D-14-00008
Agathokleous E, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-2139-y
Akimoto H, 2015, ATMOS ENVIRON, V102, P302, DOI 10.1016/j.atmosenv.2014.12.001
Anav A, 2016, GLOBAL CHANGE BIOL, V22, P1608, DOI 10.1111/gcb.13138
Anderson B., 1990, METHODOLOGICAL ERROR, P147
Besse JP, 2012, TRAC-TREND ANAL CHEM, V36, P113, DOI 10.1016/j.trac.2012.04.004
BOX GEP, 1964, J ROY STAT SOC B, V26, P211, DOI 10.1111/j.2517-6161.1964.tb00553.x
Burkey KO, 2012, ENVIRON POLLUT, V166, P167, DOI 10.1016/j.envpol.2012.03.020
Burkey KO, 2005, J ENVIRON QUAL, V34, P1081, DOI 10.2134/jeq2004.0008
Bytnerowicz A, 2007, ENVIRON POLLUT, V147, P438, DOI 10.1016/j.envpol.2006.08.028
Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145
Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3
Chameides W., 1992, SURFACE LEVEL OZONE
Cohen J., 1988, STAT POWER ANAL BEHA, P590
De Marco A, 2015, ATMOS ENVIRON, V120, P182, DOI 10.1016/j.atmosenv.2015.08.071
Doche C, 2014, ATMOS CHEM PHYS, V14, P10589, DOI 10.5194/acp-14-10589-2014
Driscoll SP, 2006, J EXP BOT, V57, P381, DOI 10.1093/jxb/erj030
Eguchi N, 2006, J PLANT PHYSIOL, V163, P680, DOI 10.1016/j.jplph.2005.09.004
Elagoz V, 2006, ENVIRON POLLUT, V140, P395, DOI 10.1016/j.envpol.2005.08.024
Elagoz V, 2002, ENVIRON POLLUT, V120, P521, DOI 10.1016/S0269-7491(02)00205-1
Evans LS, 1996, ENVIRON EXP BOT, V36, P413, DOI 10.1016/S0098-8472(96)01027-1
Falla J, 2000, ENVIRON MONIT ASSESS, V64, P627, DOI 10.1023/A:1006385924945
Feng ZZ, 2015, ENVIRON POLLUT, V199, P42, DOI 10.1016/j.envpol.2015.01.016
Ferdinand JA, 2000, ENVIRON POLLUT, V108, P297, DOI 10.1016/S0269-7491(99)00078-0
Fiscus EL, 2012, J EXP BOT, V63, P2557, DOI 10.1093/jxb/err443
Flowers MD, 2007, ENVIRON EXP BOT, V61, P190, DOI 10.1016/j.envexpbot.2007.05.009
Fuhrer J, 1997, ENVIRON POLLUT, V97, P91, DOI 10.1016/S0269-7491(97)00067-5
GENTY B, 1989, BIOCHIM BIOPHYS ACTA, V990, P87, DOI 10.1016/S0304-4165(89)80016-9
Grulke NE, 2007, ENVIRON POLLUT, V146, P640, DOI 10.1016/j.envpol.2006.04.014
Grunhage L, 1999, ENVIRON POLLUT, V105, P163, DOI 10.1016/S0269-7491(99)00029-9
Heagle AS, 2002, J ENVIRON QUAL, V31, P2008, DOI 10.2134/jeq2002.2008
Hedges LV., 2014, STAT METHODS META AN
Jud W, 2016, ATMOS CHEM PHYS, V16, P277, DOI 10.5194/acp-16-277-2016
KARENLAMPI L, 1996, CRITICAL LEVELS OZON
Kiehl JT, 1997, B AM METEOROL SOC, V78, P197, DOI 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
KIGEL J, 1991, CAN J PLANT SCI, V71, P1233, DOI 10.4141/cjps91-171
Klumpp A, 2006, ATMOS ENVIRON, V40, P7437, DOI 10.1016/j.atmosenv.2006.07.001
Koike T, 2013, DEV ENVIRONM SCI, V13, P371, DOI 10.1016/B978-0-08-098349-3.00017-7
Legge AH, 1995, J APPL BOT-ANGEW BOT, V69, P192
Malley CS, 2015, ATMOS CHEM PHYS, V15, P4025, DOI 10.5194/acp-15-4025-2015
Manning WJ, 2003, ENVIRON POLLUT, V126, P375, DOI 10.1016/S0269-7491(03)00240-9
Matyssek R, 2007, ENVIRON POLLUT, V146, P587, DOI 10.1016/j.envpol.2006.11.011
Matyssek R, 2004, ATMOS ENVIRON, V38, P2271, DOI 10.1016/j.atmosenv.2003.09.078
Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016
Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051
Paoletti E, 2007, ENVIRON POLLUT, V150, P85, DOI 10.1016/j.envpol.2007.06.037
Paoletti E, 2010, ENVIRON POLLUT, V158, P2664, DOI 10.1016/j.envpol.2010.04.024
Reinert RA, 2000, J AM SOC HORTIC SCI, V125, P222, DOI 10.21273/JASHS.125.2.222
Saitanis CJ, 2003, CHEMOSPHERE, V51, P913, DOI 10.1016/S0045-6535(03)00041-9
Saitanis CJ, 2015, J AGRIC METEOROL, V71, P55, DOI 10.2480/agrmet.D-14-00030
Salvatori E, 2013, ENVIRON EXP BOT, V87, P79, DOI 10.1016/j.envexpbot.2012.09.008
TURNER NC, 1970, NEW PHYTOL, V69, P647, DOI 10.1111/j.1469-8137.1970.tb02452.x
Vaultier MN, 2015, ENVIRON EXP BOT, V114, P144, DOI [10.1016/j.envexpbot.2014.11.012, 10.]
Villanyi V, 2013, CENT EUR J BIOL, V8, P386, DOI 10.2478/s11535-013-0140-2
Wang XN, 2016, J AGRIC METEOROL, V72, P95, DOI 10.2480/agrmet.D-14-00045
Wolf, 1986, METAANALYSIS QUANTIT
Yamaguchi Masahiro, 2011, Asian Journal of Atmospheric Environment, V5, P65
NR 62
TC 10
Z9 11
U1 0
U2 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD FEB 15
PY 2017
VL 580
BP 1046
EP 1055
DI 10.1016/j.scitotenv.2016.12.059
PG 10
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA EM5LS
UT WOS:000395353600103
PM 27993470
DA 2023-03-13
ER
PT J
AU Scott, BR
AF Scott, Bobby R.
TI Low-dose radiation risk extrapolation fallacy associated with the
linear-no-threshold model
SO HUMAN & EXPERIMENTAL TOXICOLOGY
LA English
DT Article
DE radiation; risk assessment; LNT; hormesis
ID TRANSFORMATION IN-VITRO; ENERGY X-RAYS; NEOPLASTIC TRANSFORMATION;
IONIZING-RADIATION; ADAPTIVE RESPONSE; CELLS
AB Managing radiation risks typically involves establishing regulations that limit radiation exposure. The linear-no-threshold (LNT) dose-response model has been the traditional regulatory default assumption. According to the LNT model, for low a linear-energy-transfer (LET) radiation-induced stochastic effects (e.g., neoplastic transformation and cancer), the risk increases linearly without a threshold. Any radiation exposure is predicted to increase the number of cancer cases among a large population of people. Cancer risk extrapolation from high to low doses based on this model is widespread. Here, indirect evidence is provided that the excess cancer risk calculated at very low doses of low-LET radiation (e.g., around 1 mGy), based on extrapolating from high dose data for an irradiated human population using the LNT model, is likely a phantom excess risk. Indirect evidence is provided, suggesting that for brief exposures to low-LET radiation doses on the order of 1 mGy, that a decrease below the spontaneous level is many orders of magnitude more probable than for any increase in risk as would be predicted by extrapolating from high to low doses using the LNT model. Such a decrease is, however, not expected after exposure to high-LET alpha radiation. The risk reduction has been largely attributed to the induction of a protective apoptosis-mediated (PAM) process that selectively eliminates cells that contain genomic instability (e.g., mutant and neoplastically transformed cells). The PAM process appears to require a dose-rate-dependent stochastic threshold for activation whose minimum is estimated to possibly be as low as 0.01 mGy for X-rays and gamma rays. However, if the dose is too high (e.g., above 250mGy for brief exposure at a high rate to X-rays or gamma rays), the PAM process is not expected to be activated. For protracted exposure to X-rays or gamma rays, doses as high as 400 mGy (and possibly higher) may activate the PAM process.
C1 [Scott, Bobby R.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA.
C3 Lovelace Respiratory Research Institute
RP Scott, BR (corresponding author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA.
EM bscott@LRRI.org
OI Scott, Bobby/0000-0002-6806-3847
CR Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298
Azzam EI, 2004, CURR CANCER DRUG TAR, V4, P53, DOI 10.2174/1568009043481641
Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246
Chengappa KNR, 2004, CNS SPECTRUMS, V9, P6, DOI 10.1017/S109285290000434X
Feinendegen LE., 2005, WORLD J NUCL MED, V4, P21
HIGSON DJ, 2004, OPER RAD SAFETY, V87, pS47
Hooker AM, 2004, RADIAT RES, V162, P447, DOI 10.1667/RR3228
Ko SJ, 2004, RADIAT RES, V162, P646, DOI 10.1667/RR3277
Redpath JL, 2003, INT J RADIAT BIOL, V79, P235, DOI 10.1080/0955300031000096306
Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2
Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott
Scott BR, 2004, MUTAT RES-FUND MOL M, V568, P129, DOI 10.1016/j.mrfmmm.2004.06.051
SCOTT BR, 2005, DEP EN LOW DOS RAD R
NR 13
TC 45
Z9 49
U1 0
U2 2
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0960-3271
J9 HUM EXP TOXICOL
JI Hum. Exp. Toxicol.
PD FEB
PY 2008
VL 27
IS 2
BP 163
EP 168
DI 10.1177/0960327107083410
PG 6
WC Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Toxicology
GA 310KG
UT WOS:000256527200016
PM 18480143
DA 2023-03-13
ER
PT J
AU Mattson, MP
Chan, SL
Duan, WZ
AF Mattson, MP
Chan, SL
Duan, WZ
TI Modification of brain aging and neurodegenerative disorders by genes,
diet, and behavior
SO PHYSIOLOGICAL REVIEWS
LA English
DT Review
ID AMYLOID-BETA-PEPTIDE; AMYOTROPHIC-LATERAL-SCLEROSIS; PROTECTS
HIPPOCAMPAL-NEURONS; PROSTATE APOPTOSIS RESPONSE-4; TRANSGENIC MOUSE
MODEL; MANGANESE SUPEROXIDE-DISMUTASE; CORTICAL SYNAPTIC TERMINALS;
CAUSES ALZHEIMERS-DISEASE; LONG-TERM POTENTIATION; EXTRACT EGB 761
AB Multiple molecular, cellular, structural, and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively, or they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. Multiple mechanisms are employed to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands and promote recovery of function after injury. The mechanisms include production of neurotrophic factors and cytokines, expression of various cell survival-promoting proteins (e. g., protein chaperones, antioxidant enzymes, Bcl-2 and inhibitor of apoptosis proteins), preservation of genomic integrity by telomerase and DNA repair proteins, and mobilization of neural stem cells to replace damaged neurons and glia. The aging process challenges such neuroprotective and neurorestorative mechanisms. Genetic and environmental factors superimposed upon the aging process can determine whether brain aging is successful or unsuccessful. Mutations in genes that cause inherited forms of Alzheimer's disease (amyloid precursor protein and presenilins), Parkinson's disease (alpha-synuclein and Parkin), and trinucleotide repeat disorders (huntingtin, androgen receptor, ataxin, and others) overwhelm endogenous neuroprotective mechanisms; other genes, such as those encoding apolipoprotein E-4, have more subtle effects on brain aging. On the other hand, neuroprotective mechanisms can be bolstered by dietary (caloric restriction and folate and antioxidant supplementation) and behavioral (intellectual and physical activities) modifications. At the cellular and molecular levels, successful brain aging can be facilitated by activating a hormesis response in which neurons increase production of neurotrophic factors and stress proteins. Neural stem cells that reside in the adult brain are also responsive to environmental demands and appear capable of replacing lost or dysfunctional neurons and glial cells, perhaps even in the aging brain. The recent application of modern methods of molecular and cellular biology to the problem of brain aging is revealing a remarkable capacity within brain cells for adaptation to aging and resistance to disease.
C1 NIA, Neurosci Lab, Gerontol Res Ctr 4F01, Baltimore, MD 21224 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Institute on
Aging (NIA)
RP Mattson, MP (corresponding author), NIA, Neurosci Lab, Gerontol Res Ctr 4F01, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA.
EM mattsonm@grc.nia.nih.gov
RI Duan, Wenzhe/HJY-9687-2023; Mattson, Mark P/F-6038-2012
CR Abeliovich A, 2000, NEURON, V25, P239, DOI 10.1016/S0896-6273(00)80886-7
Adair JC, 2001, NEUROLOGY, V57, P1515, DOI 10.1212/WNL.57.8.1515
ALBIN RL, 1989, TRENDS NEUROSCI, V12, P366, DOI 10.1016/0166-2236(89)90074-X
ALLSOPP TE, 1995, EUR J NEUROSCI, V7, P1266, DOI 10.1111/j.1460-9568.1995.tb01116.x
Altar CA, 1999, TRENDS PHARMACOL SCI, V20, P59, DOI 10.1016/S0165-6147(99)01309-7
Ancolio K, 1997, J NEUROCHEM, V69, P2494, DOI 10.1046/j.1471-4159.1997.69062494.x
Andreassen OA, 2001, NEUROBIOL DIS, V8, P479, DOI 10.1006/nbdi.2001.0406
Andreassen OA, 2001, EXP NEUROL, V168, P419, DOI 10.1006/exnr.2001.7633
Ashrafi K, 2000, GENE DEV, V14, P1872
Bartke A, 2001, J GERONTOL A-BIOL, V56, pB340, DOI 10.1093/gerona/56.8.B340
Bastianetto S, 2000, EUR J NEUROSCI, V12, P1882, DOI 10.1046/j.1460-9568.2000.00069.x
BEAL MF, 1994, ANN NEUROL, V36, P882, DOI 10.1002/ana.410360613
Beal MF, 1998, BRAIN RES, V783, P109, DOI 10.1016/S0006-8993(97)01192-X
Beere HM, 2000, NAT CELL BIOL, V2, P469, DOI 10.1038/35019501
Begley JG, 1999, J NEUROCHEM, V72, P1030, DOI 10.1046/j.1471-4159.1999.0721030.x
Bell C, 2001, BRIT J PSYCHIAT, V178, P399, DOI 10.1192/bjp.178.5.399
BELL IR, 1990, BIOL PSYCHIAT, V27, P125, DOI 10.1016/0006-3223(90)90642-F
BenAri Y, 1997, TRENDS NEUROSCI, V20, P523, DOI 10.1016/S0166-2236(97)01147-8
BertoniFreddari C, 1996, GERONTOLOGY, V42, P170
Betarbet R, 2000, NAT NEUROSCI, V3, P1301, DOI 10.1038/81834
Bjorklund A, 2000, NOVART FDN SYMP, V231, P7
BLACK JE, 1989, DEV PSYCHOBIOL, V22, P727, DOI 10.1002/dev.420220707
Blanc EM, 1997, J NEUROCHEM, V69, P570
Blass JP, 2000, ANN NY ACAD SCI, V924, P170
Bodnar AG, 1998, SCIENCE, V279, P349, DOI 10.1126/science.279.5349.349
Bottiglieri T, 1996, NUTR REV, V54, P382, DOI 10.1111/j.1753-4887.1996.tb03851.x
Boutell JM, 1998, HUM MOL GENET, V7, P371, DOI 10.1093/hmg/7.3.371
BRATTSTROM L, 1992, EUR J CLIN INVEST, V22, P214, DOI 10.1111/j.1365-2362.1992.tb01829.x
BRATTSTROM L, 1994, J INTERN MED, V236, P633, DOI 10.1111/j.1365-2796.1994.tb00856.x
Brochu M, 2000, J Cardiopulm Rehabil, V20, P96, DOI 10.1097/00008483-200003000-00003
BRONNER LL, 1995, NEW ENGL J MED, V333, P1392, DOI 10.1056/NEJM199511233332106
Bruce-Keller AJ, 1999, ANN NEUROL, V45, P8, DOI 10.1002/1531-8249(199901)45:1<8::AID-ART4>3.0.CO;2-V
Bui NT, 2001, J CELL BIOL, V152, P753, DOI 10.1083/jcb.152.4.753
Bullock R, 1995, ANN NY ACAD SCI, V765, P272, DOI 10.1111/j.1749-6632.1995.tb16584.x
Butterfield DA, 1997, P NATL ACAD SCI USA, V94, P674, DOI 10.1073/pnas.94.2.674
Cakatay U, 2001, EXP GERONTOL, V36, P221, DOI 10.1016/S0531-5565(00)00197-2
Cameron HA, 1998, NEUROSCIENCE, V82, P349
Caruso C, 2001, MECH AGEING DEV, V122, P445, DOI 10.1016/S0047-6374(00)00255-4
Catto AJ, 2001, NEUROLOGY, V57, pS24, DOI 10.1212/WNL.57.suppl_2.S24
Chan SL, 2000, J BIOL CHEM, V275, P18195, DOI 10.1074/jbc.M000040200
Chan SL, 1999, J NEUROSCI RES, V57, P315, DOI 10.1002/(SICI)1097-4547(19990801)57:3<315::AID-JNR3>3.0.CO;2-#
CHAN SL, IN PRESS NEUROMOL ME
Chapman PF, 1999, NAT NEUROSCI, V2, P271, DOI 10.1038/6374
CHARTIERHARLIN MC, 1991, NATURE, V353, P844, DOI 10.1038/353844a0
Checkoway H, 1998, NEUROTOXICOLOGY, V19, P635
Chen M, 1997, FEBS LETT, V417, P163, DOI 10.1016/S0014-5793(97)01214-3
Chen ZT, 2001, HUM MOL GENET, V10, P433, DOI 10.1093/hmg/10.5.433
CHENG B, 1992, J NEUROSCI, V12, P1558
Cherny RA, 2001, NEURON, V30, P665, DOI 10.1016/S0896-6273(01)00317-8
Citron M, 2000, MOL MED TODAY, V6, P392, DOI 10.1016/S1357-4310(00)01759-7
Clarke R, 1998, ARCH NEUROL-CHICAGO, V55, P1449, DOI 10.1001/archneur.55.11.1449
Cohen-Salmon C, 1997, J PHYSIOL-PARIS, V91, P291, DOI 10.1016/S0928-4257(97)82409-6
Cooper B, 2001, BRIT J PSYCHIAT, V178, pS91, DOI 10.1192/bjp.178.40.s91
Cournil A, 2001, TRENDS GENET, V17, P233, DOI 10.1016/S0168-9525(01)02306-X
Cucchiara B, 2001, J NEUROL SCI, V187, P81, DOI 10.1016/S0022-510X(01)00529-9
Culmsee C, 2001, J NEUROCHEM, V77, P220, DOI 10.1046/j.1471-4159.2001.00220.x
da Costa CA, 2000, J BIOL CHEM, V275, P24065, DOI 10.1074/jbc.M002413200
Daniels J, 1998, HUM BIOL, V70, P281
Darnell RB, 1998, NEURON, V21, P947, DOI 10.1016/S0896-6273(00)80613-3
Davous P, 1998, EUR J NEUROL, V5, P219, DOI 10.1046/j.1468-1331.1998.530219.x
De Benedictis G, 2000, ANN NY ACAD SCI, V908, P208
De Strooper B, 1999, NATURE, V398, P518, DOI 10.1038/19083
Del Dotto P, 2001, MOVEMENT DISORD, V16, P515, DOI 10.1002/mds.1112
DENG HX, 1993, SCIENCE, V261, P1047, DOI 10.1126/science.8351519
Diplock AT, 1997, FREE RADICAL RES, V26, P565, DOI 10.3109/10715769709097827
Dirnagl U, 1999, TRENDS NEUROSCI, V22, P391, DOI 10.1016/S0166-2236(99)01401-0
Duan W, 2002, J NEUROCHEM, V80, P101, DOI 10.1046/j.0022-3042.2001.00676.x
DUAN W, IN PRESS ANN NEUROL
Duan WZ, 1999, J NEUROSCI RES, V57, P195, DOI 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P
Duan WZ, 1999, ANN NEUROL, V46, P587, DOI 10.1002/1531-8249(199910)46:4<587::AID-ANA6>3.3.CO;2-D
Duan WZ, 1999, J NEUROCHEM, V72, P2312, DOI 10.1046/j.1471-4159.1999.0722312.x
Duan WZ, 2001, J NEUROCHEM, V76, P619, DOI 10.1046/j.1471-4159.2001.00071.x
Duan WZ, 2000, EXP NEUROL, V165, P1, DOI 10.1006/exnr.2000.7434
Dubal DB, 1998, J CEREBR BLOOD F MET, V18, P1253, DOI 10.1097/00004647-199811000-00012
Dubey A, 1996, ARCH BIOCHEM BIOPHYS, V333, P189, DOI 10.1006/abbi.1996.0380
Duff K, 1996, NATURE, V383, P710, DOI 10.1038/383710a0
DUYAO M, 1993, NAT GENET, V4, P387, DOI 10.1038/ng0893-387
Elkind MS, 1998, SEMIN NEUROL, V18, P429, DOI 10.1055/s-2008-1040896
Elward K, 1992, Clin Geriatr Med, V8, P35
Engelhardt M, 1998, MED SCI SPORT EXER, V30, P1123, DOI 10.1097/00005768-199807000-00016
Estus S, 1997, J NEUROSCI, V17, P7736
Evans DA, 1997, ARCH NEUROL-CHICAGO, V54, P1399, DOI 10.1001/archneur.1997.00550230066019
Fain JN, 2001, HUM MOL GENET, V10, P145, DOI 10.1093/hmg/10.2.145
Fassbender K, 2001, P NATL ACAD SCI USA, V98, P5856, DOI 10.1073/pnas.081620098
Fox KR, 1999, PUBLIC HEALTH NUTR, V2, P411, DOI 10.1017/S1368980099000567
Fredholm BB, 1999, PHARMACOL REV, V51, P83
Frydman J, 2001, ANNU REV BIOCHEM, V70, P603, DOI 10.1146/annurev.biochem.70.1.603
Fu WM, 1998, NEUROBIOL DIS, V5, P229, DOI 10.1006/nbdi.1998.0192
Fu WM, 2000, J MOL NEUROSCI, V14, P3, DOI 10.1385/JMN:14:1-2:003
Furukawa K, 1996, NATURE, V379, P74, DOI 10.1038/379074a0
Gage FH, 2000, SCIENCE, V287, P1433, DOI 10.1126/science.287.5457.1433
Gagne J, 1998, BRAIN RES, V799, P16, DOI 10.1016/S0006-8993(98)00451-X
GAMES D, 1995, NATURE, V373, P523, DOI 10.1038/373523a0
Gary DS, 2001, J NEUROCHEM, V76, P1485, DOI 10.1046/j.1471-4159.2001.00173.x
Gash DM, 1998, ANN NEUROL, V44, pS121, DOI 10.1002/ana.410440718
Gasparini L, 1998, FASEB J, V12, P17, DOI 10.1096/fasebj.12.1.17
Gething MJ, 1999, SEMIN CELL DEV BIOL, V10, P465, DOI 10.1006/scdb.1999.0318
Geula C, 1998, NAT MED, V4, P827, DOI 10.1038/nm0798-827
Gibson GE, 2000, NEUROCHEM INT, V36, P97, DOI 10.1016/S0197-0186(99)00114-X
Glazner GW, 2000, EXP NEUROL, V161, P442, DOI 10.1006/exnr.1999.7242
Gokhan S, 2001, ANAT RECORD, V265, P142, DOI 10.1002/ar.1136
Gomez-Pinilla F, 1998, NEUROSCIENCE, V85, P53, DOI 10.1016/S0306-4522(97)00576-9
GOODMAN Y, 1994, EXP NEUROL, V128, P1, DOI 10.1006/exnr.1994.1107
Goodman YD, 1996, J NEUROCHEM, V66, P1836
GOODRICK CL, 1983, J GERONTOL, V38, P36, DOI 10.1093/geronj/38.1.36
Graham IM, 2000, CURR OPIN LIPIDOL, V11, P577, DOI 10.1097/00041433-200012000-00003
Grant W.B., 1997, ALZHEIMERS DIS REV, V2, P42
Grundman M, 2000, AM J CLIN NUTR, V71, p630S
Guidetti C, 2001, J PHARM PHARMACOL, V53, P387, DOI 10.1211/0022357011775442
Guo Q, 1998, NAT MED, V4, P957, DOI 10.1038/nm0898-957
Guo Q, 1999, NAT MED, V5, P101, DOI 10.1038/4789
Guo Q, 1996, NEUROREPORT, V8, P379, DOI 10.1097/00001756-199612200-00074
Guo Q, 1997, J NEUROSCI, V17, P4212
Guo Q, 1999, J NEUROCHEM, V72, P1019, DOI 10.1046/j.1471-4159.1999.0721019.x
Guo ZH, 2000, EXP NEUROL, V166, P173, DOI 10.1006/exnr.2000.7497
Guo ZH, 2000, J NEUROCHEM, V75, P314, DOI 10.1046/j.1471-4159.2000.0750314.x
Guo ZH, 2000, J CEREBR BLOOD F MET, V20, P463, DOI 10.1097/00004647-200003000-00004
Guo ZH, 2000, CEREB CORTEX, V10, P50, DOI 10.1093/cercor/10.1.50
GURNEY ME, 1994, SCIENCE, V264, P1772, DOI 10.1126/science.8209258
Gurney ME, 1996, ANN NEUROL, V39, P147, DOI 10.1002/ana.410390203
Gutzmann H, 1998, J NEURAL TRANSM-SUPP, P301
Hackam AS, 1999, PHILOS T R SOC B, V354, P1047, DOI 10.1098/rstb.1999.0457
Hamilton ML, 2001, P NATL ACAD SCI USA, V98, P10469, DOI 10.1073/pnas.171202698
Hardy J, 1997, TRENDS NEUROSCI, V20, P154, DOI 10.1016/S0166-2236(96)01030-2
Haughey NJ, 2002, NEUROMOL MED, V1, P125, DOI 10.1385/NMM:1:2:125
Hayashi M, 2001, BRAIN RES, V918, P191, DOI 10.1016/S0006-8993(01)03002-5
Heijmans BT, 2000, EXP GERONTOL, V35, P865, DOI 10.1016/S0531-5565(00)00171-6
Hendrie HC, 2001, JAMA-J AM MED ASSOC, V285, P739, DOI 10.1001/jama.285.6.739
HENSLEY K, 1994, P NATL ACAD SCI USA, V91, P3270, DOI 10.1073/pnas.91.8.3270
Hodges S, 1999, BIOFACTORS, V9, P365, DOI 10.1002/biof.5520090237
Hodgson JG, 1999, NEURON, V23, P181, DOI 10.1016/S0896-6273(00)80764-3
HOYER S, 1995, DRUG AGING, V6, P210, DOI 10.2165/00002512-199506030-00004
Hoyer S, 1999, J NEURAL TRANSM, V106, P1171, DOI 10.1007/s007020050232
Hsiao K, 1996, SCIENCE, V274, P99, DOI 10.1126/science.274.5284.99
Huang XD, 1999, BIOCHEMISTRY-US, V38, P7609, DOI 10.1021/bi990438f
Huh GS, 2000, SCIENCE, V290, P2155, DOI 10.1126/science.290.5499.2155
Hull M, 2000, EXPERT OPIN INV DRUG, V9, P671, DOI 10.1517/13543784.9.4.671
Huynh DP, 2001, DEV BRAIN RES, V130, P173, DOI 10.1016/S0165-3806(01)00234-6
Ickes BR, 2000, EXP NEUROL, V164, P45, DOI 10.1006/exnr.2000.7415
INGRAM DK, 1987, J GERONTOL, V42, P78, DOI 10.1093/geronj/42.1.78
Ingram DK, 2001, TRENDS NEUROSCI, V24, P305, DOI 10.1016/S0166-2236(00)01796-3
IP NY, 1993, J NEUROSCI, V13, P3394
Ishida A, 1997, NEUROREPORT, V8, P2133, DOI 10.1097/00001756-199707070-00009
Jacob S, 1999, FREE RADICAL BIO MED, V27, P309, DOI 10.1016/S0891-5849(99)00089-1
Jain KK, 2000, EXPERT OPIN INV DRUG, V9, P1397, DOI 10.1517/13543784.9.6.1397
Jana NR, 2001, HUM MOL GENET, V10, P1049, DOI 10.1093/hmg/10.10.1049
Jankowsky JL, 1999, MOL CELL NEUROSCI, V14, P273, DOI 10.1006/mcne.1999.0792
Jenner P, 1998, ANN NEUROL, V44, pS72, DOI 10.1002/ana.410440712
Jensen PH, 1999, EUR J NEUROSCI, V11, P3369, DOI 10.1046/j.1460-9568.1999.00754.x
Jick H, 2000, LANCET, V356, P1627, DOI 10.1016/S0140-6736(00)03155-X
Johansson BB, 1996, STROKE, V27, P324, DOI 10.1161/01.STR.27.2.324
Jones TA, 1999, J NEUROSCI, V19, P10153
Jones TA, 1997, NEUROBIOL LEARN MEM, V68, P13, DOI 10.1006/nlme.1997.3774
Joseph JA, 1999, J NEUROSCI, V19, P8114
Kaemmerer WF, 2001, NEUROSCIENCE, V103, P713, DOI 10.1016/S0306-4522(01)00017-3
Karaev A. L., 1993, Eksperimental'naya i Klinicheskaya Farmakologiya, V56, P55
Katzman Robert, 1994, Current Opinion in Neurobiology, V4, P703, DOI 10.1016/0959-4388(94)90013-2
Keller JN, 1997, J NEUROSCI RES, V50, P522, DOI 10.1002/(SICI)1097-4547(19971115)50:4<522::AID-JNR3>3.0.CO;2-G
Keller JN, 1997, J NEUROCHEM, V69, P273
Keller JN, 1998, J NEUROSCI, V18, P4439
Keller JN, 1998, J NEUROSCI, V18, P687
KELLER JN, IN PRESS AGING RES R
Kelly JF, 1996, P NATL ACAD SCI USA, V93, P6753, DOI 10.1073/pnas.93.13.6753
Kempermann G, 1997, NATURE, V386, P493, DOI 10.1038/386493a0
Kitada T, 1998, NATURE, V392, P605, DOI 10.1038/33416
Klapper W, 2001, J NEUROSCI RES, V64, P252, DOI 10.1002/jnr.1073
Kleim JA, 1997, J NEUROSCI, V17, P717
Klivenyi P, 1999, NAT MED, V5, P347, DOI 10.1038/6568
Kolb B, 1991, CEREB CORTEX, V1, P189, DOI 10.1093/cercor/1.2.189
Kruman II, 1999, EXP NEUROL, V160, P28, DOI 10.1006/exnr.1999.7190
Kruman II, 2002, J NEUROSCI, V22, P1752, DOI 10.1523/JNEUROSCI.22-05-01752.2002
Kruman II, 2000, J NEUROSCI, V20, P6920, DOI 10.1523/JNEUROSCI.20-18-06920.2000
KUBOVA H, 1995, EPILEPSIA, V36, P750, DOI 10.1111/j.1528-1157.1995.tb01611.x
Kuhn HG, 1996, J NEUROSCI, V16, P2027
Kuhn W, 1998, EUR NEUROL, V40, P225, DOI 10.1159/000007984
Lane MA, 2000, EXP GERONTOL, V35, P533, DOI 10.1016/S0531-5565(00)00102-9
Lane MA, 2001, ANN NY ACAD SCI, V928, P287
LANNFELT L, 1994, NEUROSCI LETT, V168, P254, DOI 10.1016/0304-3940(94)90463-4
LEBEL CP, 1992, PROG NEUROBIOL, V38, P601, DOI 10.1016/0301-0082(92)90043-E
Lebovitz HE, 1999, CLIN CHEM, V45, P1339
Lee CK, 2000, NAT GENET, V25, P294, DOI 10.1038/77046
Lee IM, 1999, STROKE, V30, P1, DOI 10.1161/01.STR.30.1.1
Lee J, 2000, EXP NEUROL, V166, P435, DOI 10.1006/exnr.2000.7512
Lee J, 1999, J NEUROSCI RES, V57, P48, DOI 10.1002/(SICI)1097-4547(19990701)57:1<48::AID-JNR6>3.0.CO;2-L
Lee J, 2002, J NEUROCHEM, V80, P539, DOI 10.1046/j.0022-3042.2001.00747.x
Lee J, 2000, J MOL NEUROSCI, V15, P99, DOI 10.1385/JMN:15:2:99
Lee M, 2001, J NEUROCHEM, V78, P209, DOI 10.1046/j.1471-4159.2001.00417.x
Leissring MA, 2000, J CELL BIOL, V149, P793, DOI 10.1083/jcb.149.4.793
Levi F, 1999, EUR J CANCER, V35, P1912, DOI 10.1016/S0959-8049(99)00294-4
LEVITT AJ, 1992, ACTA PSYCHIAT SCAND, V86, P301, DOI 10.1111/j.1600-0447.1992.tb03270.x
LI JC, 1985, BIOCHEM BIOPH RES CO, V129, P733, DOI 10.1016/0006-291X(85)91953-9
Li MW, 2000, SCIENCE, V288, P335, DOI 10.1126/science.288.5464.335
LI QX, 1995, J BIOL CHEM, V270, P14140, DOI 10.1074/jbc.270.23.14140
Li SH, 2000, HUM MOL GENET, V9, P2859, DOI 10.1093/hmg/9.19.2859
LIN LW, 1995, DRUG AGING, V6, P136, DOI 10.2165/00002512-199506020-00006
Lithgow CJ, 2000, BIOESSAYS, V22, P410, DOI 10.1002/(SICI)1521-1878(200005)22:5<410::AID-BIES2>3.0.CO;2-C
Liu JL, 1998, J NEUROSCI, V18, P7768
Logroscino G, 1996, ANN NEUROL, V39, P89, DOI 10.1002/ana.410390113
LOWE J, 1994, J NEUROL SCI, V124, P38, DOI 10.1016/0022-510X(94)90175-9
LOWENSTEIN DH, 1991, NEURON, V7, P1053, DOI 10.1016/0896-6273(91)90349-5
Lu CB, 2001, DEV BRAIN RES, V131, P167, DOI 10.1016/S0165-3806(01)00237-1
MACDONALD ME, 1993, CELL, V72, P971, DOI 10.1016/0092-8674(93)90585-E
MAESAKA JK, 1993, J AM GERIATR SOC, V41, P501, DOI 10.1111/j.1532-5415.1993.tb01885.x
Malberg JE, 2000, J NEUROSCI, V20, P9104, DOI 10.1523/jneurosci.20-24-09104.2000
Margolis RL, 2001, ANN NEUROL, V50, P373, DOI 10.1002/ana.1312
Marini AM, 1998, J BIOL CHEM, V273, P29394, DOI 10.1074/jbc.273.45.29394
MARK RJ, 1995, J NEUROSCI, V15, P6239
Mark RJ, 1997, J NEUROSCI, V17, P1046
Mark RJ, 1997, J NEUROCHEM, V68, P255
Markesbery WR, 2001, CONT NEUROS, P21
Marquet A, 2001, VITAM HORM, V61, P51
Martinez M, 2000, BRAIN RES, V855, P100, DOI 10.1016/S0006-8993(99)02349-5
Masliah E, 2000, SCIENCE, V287, P1265, DOI 10.1126/science.287.5456.1265
Matsuoka Y, 2001, NEUROBIOL DIS, V8, P535, DOI 10.1006/nbdi.2001.0392
Matthews RT, 1999, EXP NEUROL, V157, P142, DOI 10.1006/exnr.1999.7049
Mattson M.P, 2002, DIET BRAIN CONNECTIO
Mattson MP, 1999, J NEUROSCI RES, V58, P152, DOI 10.1002/(SICI)1097-4547(19991001)58:1<152::AID-JNR15>3.3.CO;2-M
MATTSON MP, 1989, MECH AGEING DEV, V50, P103, DOI 10.1016/0047-6374(89)90010-9
MATTSON MP, 1989, BRAIN RES, V497, P402, DOI 10.1016/0006-8993(89)90289-8
Mattson MP, 2000, TRENDS NEUROSCI, V23, P511, DOI 10.1016/S0166-2236(00)01697-0
Mattson MP, 1997, J NEUROSCI RES, V49, P681, DOI 10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3
Mattson MP, 2001, J CLIN INVEST, V107, P247, DOI 10.1172/JCI11916
MATTSON MP, 1992, J NEUROSCI, V12, P376, DOI 10.1523/jneurosci.12-02-00376.1992
MATTSON MP, 1993, TRENDS NEUROSCI, V16, P409, DOI 10.1016/0166-2236(93)90009-B
Mattson MP, 2000, NAT REV MOL CELL BIO, V1, P120, DOI 10.1038/35040009
Mattson MP, 1998, TRENDS NEUROSCI, V21, P53, DOI 10.1016/S0166-2236(97)01188-0
Mattson MP, 1997, PHYSIOL REV, V77, P1081, DOI 10.1152/physrev.1997.77.4.1081
Mattson MP, 1997, NEUROSCI BIOBEHAV R, V21, P193, DOI 10.1016/S0149-7634(96)00010-3
Mattson MP, 2002, NATURE, V415, P377, DOI 10.1038/415377a
Mattson MP, 1998, BRAIN RES, V807, P167, DOI 10.1016/S0006-8993(98)00763-X
Mattson MP, 1999, J NEUROCHEM, V73, P532, DOI 10.1046/j.1471-4159.1999.0730532.x
MATTSON MP, 1995, J NEUROCHEM, V65, P1740
Mattson MP, 2001, BIOESSAYS, V23, P733, DOI 10.1002/bies.1103
MATTSON MP, 1992, EXP GERONTOL, V27, P29, DOI 10.1016/0531-5565(92)90027-W
MATTSON MP, 1989, BRAIN RES, V478, P337, DOI 10.1016/0006-8993(89)91514-X
MATTSON MP, IN PRESS AGING RES R
MATTSON MP, 2001, TELOMERASE AGING DIS
MATTSON MP, 1997, ADV CELL AGING GERON, V2, P299
Mayeux R, 1999, NEUROLOGY, V52, pA296
Mazzini L, 2001, J NEUROL SCI, V191, P139, DOI 10.1016/S0022-510X(01)00611-6
McCarty MF, 2001, MED HYPOTHESES, V57, P313, DOI 10.1054/mehy.2001.1320
McDonald JW, 1999, NAT MED, V5, P1410, DOI 10.1038/70986
McEwen BS, 2000, BIOL PSYCHIAT, V48, P721, DOI 10.1016/S0006-3223(00)00964-1
McGuffin P, 2000, Novartis Found Symp, V233, P243, DOI 10.1002/0470870850.ch15
MCLACHLAN DRC, 1991, LANCET, V337, P1304, DOI 10.1016/0140-6736(91)92978-B
Mehler MF, 2000, DEV NEUROSCI-BASEL, V22, P74, DOI 10.1159/000017429
Mezey E, 2000, EUR J PHARMACOL, V405, P297, DOI 10.1016/S0014-2999(00)00561-6
Mohajeri MH, 1999, HUM GENE THER, V10, P1853, DOI 10.1089/10430349950017536
Morgan D, 2000, NATURE, V408, P982, DOI 10.1038/35050116
Morgan TE, 1999, NEUROSCIENCE, V89, P687, DOI 10.1016/S0306-4522(98)00334-0
Morrison BM, 1998, ANN NEUROL, V44, pS32, DOI 10.1002/ana.410440706
Moulton PL, 2001, PHYSIOL BEHAV, V73, P659, DOI 10.1016/S0031-9384(01)00510-8
MULLER U, 1995, J CEREBR BLOOD F MET, V15, P624
Munch G, 1997, BRAIN RES REV, V23, P134, DOI 10.1016/S0165-0173(96)00016-1
Murphy KPSJ, 2000, J NEUROSCI, V20, P5115
NELSON JF, 1995, NEUROBIOL AGING, V16, P837, DOI 10.1016/0197-4580(95)00072-M
Ness J, 1999, GERIATRICS, V54, P33
Neufeld EJ, 1998, HEMATOL ONCOL CLIN N, V12, P1193, DOI 10.1016/S0889-8588(05)70049-6
Nilsberth C, 2001, NAT NEUROSCI, V4, P887, DOI 10.1038/nn0901-887
Nilsson M, 1999, J NEUROBIOL, V39, P569, DOI 10.1002/(SICI)1097-4695(19990615)39:4<569::AID-NEU10>3.0.CO;2-F
Nitta A, 1999, J NEUROSCI RES, V57, P227, DOI 10.1002/(SICI)1097-4547(19990715)57:2<227::AID-JNR8>3.0.CO;2-E
O'Kusky JR, 1999, BRAIN RES, V818, P468, DOI 10.1016/S0006-8993(98)01312-2
Ohsawa I, 1999, EUR J NEUROSCI, V11, P1907, DOI 10.1046/j.1460-9568.1999.00601.x
Ona VO, 1999, NATURE, V399, P263, DOI 10.1038/20446
Orth M, 2001, AM J MED GENET, V106, P27, DOI 10.1002/ajmg.1425
OsterGranite ML, 1996, J NEUROSCI, V16, P6732
Ozawa T, 1997, PHYSIOL REV, V77, P425, DOI 10.1152/physrev.1997.77.2.425
Papaioannou N, 2001, AMYLOID, V8, P11, DOI 10.3109/13506120108993810
Paradis E, 1996, J NEUROSCI, V16, P7533
Parent A, 1999, NEUROBIOL DIS, V6, P56, DOI 10.1006/nbdi.1998.0207
Pasinelli P, 1998, P NATL ACAD SCI USA, V95, P15763, DOI 10.1073/pnas.95.26.15763
Pedersen WA, 2000, J NEUROCHEM, V74, P1426, DOI 10.1046/j.1471-4159.2000.0741426.x
Pedersen WA, 1998, ANN NEUROL, V44, P819, DOI 10.1002/ana.410440518
Pedersen WA, 1999, EXP NEUROL, V155, P1, DOI 10.1006/exnr.1998.6890
Pedersen WA, 2000, FASEB J, V14, P913, DOI 10.1096/fasebj.14.7.913
Pedersen WA, 1999, J MOL NEUROSCI, V13, P159, DOI 10.1385/JMN:13:1-2:159
Pedersen WA, 2002, J NEUROSCI, V22, P404, DOI 10.1523/JNEUROSCI.22-02-00404.2002
Pedersen WA, 2001, NEUROBIOL DIS, V8, P492, DOI 10.1006/nbdi.2001.0395
Pedersen WA, 1999, BRAIN RES, V833, P117, DOI 10.1016/S0006-8993(99)01471-7
Pereira C, 1999, NEUROBIOL DIS, V6, P209, DOI 10.1006/nbdi.1999.0241
Perls T, 2000, RES PRO CEL, V29, P1
Perrig WJ, 1997, J AM GERIATR SOC, V45, P718, DOI 10.1111/j.1532-5415.1997.tb01476.x
Petryniak MA, 1996, BIOCHEM J, V320, P957, DOI 10.1042/bj3200957
Piedrahita JA, 1999, NAT GENET, V23, P228, DOI 10.1038/13861
Pike CJ, 1999, J NEUROCHEM, V72, P1552, DOI 10.1046/j.1471-4159.1999.721552.x
POGRIBNY IP, 1995, CARCINOGENESIS, V16, P2863, DOI 10.1093/carcin/16.11.2863
Polymeropoulos MH, 1997, SCIENCE, V276, P2045, DOI 10.1126/science.276.5321.2045
Polymeropoulos MH, 2000, ANN NY ACAD SCI, V920, P28
Prasad KN, 1999, CURR OPIN NEUROL, V12, P761, DOI 10.1097/00019052-199912000-00017
PREHN JHM, 1992, J CEREBR BLOOD F MET, V12, P78, DOI 10.1038/jcbfm.1992.10
Querfurth HW, 1997, J NEUROCHEM, V69, P1580
Radak Z, 2001, NEUROCHEM INT, V38, P17, DOI 10.1016/S0197-0186(00)00063-2
RALL SC, 1992, J INTERN MED, V231, P653, DOI 10.1111/j.1365-2796.1992.tb01254.x
RAMASSAMY C, 1990, J PHARM PHARMACOL, V42, P785, DOI 10.1111/j.2042-7158.1990.tb07021.x
Rami A, 1998, BRAIN RES, V788, P323, DOI 10.1016/S0006-8993(98)00041-9
Ranchon I, 1999, INVEST OPHTH VIS SCI, V40, P1191
Rao AVR, 2000, J AM COLL NUTR, V19, P563, DOI 10.1080/07315724.2000.10718953
Rao MS, 2001, MECH AGEING DEV, V122, P713, DOI 10.1016/S0047-6374(01)00224-X
Ravaglia G, 2000, MECH AGEING DEV, V121, P251
Ravagnan L, 2001, NAT CELL BIOL, V3, P839, DOI 10.1038/ncb0901-839
Reddy PH, 1998, NAT GENET, V20, P198, DOI 10.1038/2510
Rissanen TH, 2001, BRIT J NUTR, V85, P749, DOI 10.1079/BJN2001357
Ritchie PD, 2000, J CLIN NEUROSCI, V7, P301, DOI 10.1054/jocn.1999.0198
ROBISON SH, 1987, ANN NEUROL, V21, P250, DOI 10.1002/ana.410210306
Roedter A, 2001, J COMP NEUROL, V432, P217, DOI 10.1002/cne.1098
Roghani M, 2001, BRAIN RES, V892, P211, DOI 10.1016/S0006-8993(00)03296-0
Rojas-Fernandez CH, 2001, PHARMACOTHERAPY, V21, P74, DOI 10.1592/phco.21.1.74.34437
Roman GC, 1996, J NEUROL NEUROSUR PS, V61, P131, DOI 10.1136/jnnp.61.2.131
ROSEN DR, 1993, NATURE, V362, P59, DOI 10.1038/362059a0
ROTH GS, 1994, ANN NY ACAD SCI, V719, P129, DOI 10.1111/j.1749-6632.1994.tb56824.x
Russo-Neustadt A, 1999, NEUROPSYCHOPHARMACOL, V21, P679, DOI 10.1016/S0893-133X(99)00059-7
Saha AR, 2000, EUR J NEUROSCI, V12, P3073, DOI 10.1046/j.1460-9568.2000.00210.x
SAITO S, 1994, J NEUROSCI RES, V39, P57, DOI 10.1002/jnr.490390108
Sapolsky RM, 1999, EXP GERONTOL, V34, P721, DOI 10.1016/S0531-5565(99)00047-9
Schapira AHV, 1999, BBA-BIOENERGETICS, V1410, P159, DOI 10.1016/S0005-2728(98)00164-9
Scheff SW, 2001, NEUROBIOL AGING, V22, P355, DOI 10.1016/S0197-4580(01)00222-6
Scheff SW, 1998, J NEUROPATH EXP NEUR, V57, P1146, DOI 10.1097/00005072-199812000-00006
SCHEFF SW, 1991, NEUROBIOL AGING, V12, P3, DOI 10.1016/0197-4580(91)90032-F
Schenk D, 1999, NATURE, V400, P173, DOI 10.1038/22124
Schilling G, 2001, NEUROBIOL DIS, V8, P405, DOI 10.1006/nbdi.2001.0385
Schwab ME, 1998, NEWS PHYSIOL SCI, V13, P294
Schwaninger M, 1999, EPILEPSIA, V40, P345, DOI 10.1111/j.1528-1157.1999.tb00716.x
Scott J M, 1998, J Cardiovasc Risk, V5, P223, DOI 10.1097/00043798-199808000-00003
Selhub J, 2000, AM J CLIN NUTR, V71, p614S
Sennvik K, 2001, J NEUROSCI RES, V63, P429, DOI 10.1002/1097-4547(20010301)63:5<429::AID-JNR1038>3.0.CO;2-U
SHAY KA, 1992, PSYCHOL AGING, V7, P15, DOI 10.1037/0882-7974.7.1.15
Shepherd J E, 2001, J Am Pharm Assoc (Wash), V41, P221
Shields DC, 1999, AM J HUM GENET, V64, P1045, DOI 10.1086/302310
Shimura H, 2000, NAT GENET, V25, P302, DOI 10.1038/77060
Shimura H, 2001, SCIENCE, V293, P263, DOI 10.1126/science.1060627
Shors TJ, 2001, NATURE, V410, P372, DOI 10.1038/35066584
Sinden JD, 2000, NOVART FDN SYMP, V231, P270, DOI 10.1002/0470870834.ch16
Singh RB, 1998, CARDIOVASC DRUG THER, V12, P347, DOI 10.1023/A:1007764616025
Sirotnak FM, 1999, ANNU REV NUTR, V19, P91, DOI 10.1146/annurev.nutr.19.1.91
Sloane JA, 1999, NEUROBIOL AGING, V20, P395, DOI 10.1016/S0197-4580(99)00066-4
Smith JD, 2000, ANN MED, V32, P118, DOI 10.3109/07853890009011761
SMITH MA, 1995, J NEUROSCI, V15, P1768, DOI 10.1523/JNEUROSCI.15-03-01768.1995
SMITHELLS RW, 1976, ARCH DIS CHILD, V51, P944, DOI 10.1136/adc.51.12.944
Snowdon DA, 1996, JAMA-J AM MED ASSOC, V275, P528, DOI 10.1001/jama.275.7.528
SOCCI DJ, 1995, BRAIN RES, V693, P88, DOI 10.1016/0006-8993(95)00707-W
SOHAL RS, 1994, MECH AGEING DEV, V76, P215, DOI 10.1016/0047-6374(94)91595-4
Sonntag WE, 2000, J ANAT, V197, P575, DOI 10.1046/j.1469-7580.2000.19740575.x
Sousa N, 2000, NEUROSCIENCE, V97, P253, DOI 10.1016/S0306-4522(00)00050-6
SOUTAR AK, 1992, J INTERN MED, V231, P633, DOI 10.1111/j.1365-2796.1992.tb01252.x
SPENCER PS, 1993, SCIENCE, V262, P825, DOI 10.1126/science.8235599
St George-Hyslop PH, 2000, ANN NY ACAD SCI, V924, P1
STEWART J, 1989, NEUROBIOL AGING, V10, P669, DOI 10.1016/0197-4580(89)90003-1
Sullivan PG, 2000, ANN NEUROL, V48, P723, DOI 10.1002/1531-8249(200011)48:5<723::AID-ANA5>3.0.CO;2-W
Sun Y, 2001, CELL, V104, P365, DOI 10.1016/S0092-8674(01)00224-0
Surtees R, 1997, PEDIATR RES, V42, P577, DOI 10.1203/00006450-199711000-00004
Sze JY, 2000, NATURE, V403, P560, DOI 10.1038/35000609
Tabrizi SJ, 2000, HUM MOL GENET, V9, P2683, DOI 10.1093/hmg/9.18.2683
Tanaka Y, 2001, HUM MOL GENET, V10, P919, DOI 10.1093/hmg/10.9.919
Tanigaki K, 2001, NEURON, V29, P45, DOI 10.1016/S0896-6273(01)00179-9
TOHGI H, 1993, J NEURAL TRANSM-PARK, V6, P119, DOI 10.1007/BF02261005
Turmaine M, 2000, P NATL ACAD SCI USA, V97, P8093, DOI 10.1073/pnas.110078997
Turnbull S, 2001, FREE RADICAL BIO MED, V30, P1163, DOI 10.1016/S0891-5849(01)00513-5
Uauy R, 1996, LIPIDS, V31, pS167, DOI 10.1007/BF02637071
van Dongen MCJM, 2000, J AM GERIATR SOC, V48, P1183, DOI 10.1111/j.1532-5415.2000.tb02589.x
van Praag H, 1999, NAT NEUROSCI, V2, P266, DOI 10.1038/6368
vanBoxtel MPJ, 1997, MED SCI SPORT EXER, V29, P1357, DOI 10.1097/00005768-199710000-00013
vanRijzingen IMS, 1997, NEUROBIOL LEARN MEM, V67, P21, DOI 10.1006/nlme.1996.3735
Varadarajan S, 1999, BRAIN RES BULL, V50, P133, DOI 10.1016/S0361-9230(99)00093-3
Vatassery GT, 1999, AM J CLIN NUTR, V70, P793
Vaughan JR, 2001, ANN HUM GENET, V65, P111, DOI 10.1017/S0003480001008557
Veldman BAJ, 1998, CLIN NEUROL NEUROSUR, V100, P15, DOI 10.1016/S0303-8467(98)00009-2
Volles MJ, 2001, BIOCHEMISTRY-US, V40, P7812, DOI 10.1021/bi0102398
Vukosavic S, 2000, J NEUROSCI, V20, P9119
WAINFAN E, 1992, CANCER RES, V52, P2068
Walton M, 1999, J NEUROSCI RES, V58, P96
WANG GT, 1994, MOL CHEM NEUROPATHOL, V23, P191, DOI 10.1007/BF02815411
Weindruch R, 1997, NEW ENGL J MED, V337, P986, DOI 10.1056/NEJM199710023371407
Wesnes KA, 2000, PSYCHOPHARMACOLOGY, V152, P353, DOI 10.1007/s002130000533
Wiese S, 1999, NAT NEUROSCI, V2, P978, DOI 10.1038/14777
Williamson TL, 1998, P NATL ACAD SCI USA, V95, P9631, DOI 10.1073/pnas.95.16.9631
Wolkow CA, 2000, SCIENCE, V290, P147, DOI 10.1126/science.290.5489.147
Wolozin B, 1996, SCIENCE, V274, P1710, DOI 10.1126/science.274.5293.1710
WONG PC, 1995, NEURON, V14, P1105, DOI 10.1016/0896-6273(95)90259-7
Xia WM, 2000, NEUROBIOL DIS, V7, P673, DOI 10.1006/nbdi.2000.0322
XIE Z, 1993, BRAIN RES, V604, P173, DOI 10.1016/0006-8993(93)90365-T
Yamada K, 1999, EUR J NEUROSCI, V11, P83, DOI 10.1046/j.1460-9568.1999.00408.x
Yandava BD, 1999, P NATL ACAD SCI USA, V96, P7029, DOI 10.1073/pnas.96.12.7029
Yao ZX, 2001, BRAIN RES, V889, P181, DOI 10.1016/S0006-8993(00)03131-0
Yasui K, 2000, NEUROLOGY, V55, P437, DOI 10.1212/WNL.55.3.437
YING Z, 1993, J CEREBR BLOOD F MET, V13, P378, DOI 10.1038/jcbfm.1993.51
Yoo AS, 2000, NEURON, V27, P561, DOI 10.1016/S0896-6273(00)00066-0
YOSHINO Y, 1984, NEUROCHEM RES, V9, P387, DOI 10.1007/BF00963985
Young D, 1999, NAT MED, V5, P448, DOI 10.1038/7449
Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2
Yu ZF, 1999, EXP NEUROL, V155, P302, DOI 10.1006/exnr.1998.7002
Yu ZF, 1998, J NEUROSCI RES, V53, P613, DOI 10.1002/(SICI)1097-4547(19980901)53:5<613::AID-JNR11>3.0.CO;2-1
Yurek DM, 2001, BRAIN RES, V891, P228, DOI 10.1016/S0006-8993(00)03217-0
ZHAN SS, 1993, DEMENTIA, V4, P66, DOI 10.1159/000107299
Zhang B, 1997, J CELL BIOL, V139, P1307, DOI 10.1083/jcb.139.5.1307
Zhang L, 2001, NEUROSCI LETT, V312, P125, DOI 10.1016/S0304-3940(01)02205-4
Zhu HY, 1999, BRAIN RES, V842, P224, DOI 10.1016/S0006-8993(99)01827-2
Zhu HY, 2000, J NEUROCHEM, V75, P117, DOI 10.1046/j.1471-4159.2000.0750117.x
Zoghbi HY, 2000, ANNU REV NEUROSCI, V23, P217, DOI 10.1146/annurev.neuro.23.1.217
Zuccato C, 2001, SCIENCE, V293, P493, DOI 10.1126/science.1059581
NR 399
TC 333
Z9 353
U1 2
U2 53
PU AMER PHYSIOLOGICAL SOC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
SN 0031-9333
EI 1522-1210
J9 PHYSIOL REV
JI Physiol. Rev.
PD JUL
PY 2002
VL 82
IS 3
BP 637
EP 672
DI 10.1152/physrev.00004.2002
PG 36
WC Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physiology
GA 569AC
UT WOS:000176576300003
PM 12087131
DA 2023-03-13
ER
PT J
AU Budeli, P
Ekwanzala, MD
Momba, MNB
AF Budeli, Phumudzo
Ekwanzala, Mutshiene Deogratias
Momba, Maggy Ndombo Benteke
TI Hormetic effect of 17 alpha-ethynylestradiol on activated sludge
microbial community response
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE Hormesis; EE2 (17 alpha-ethynylestradiol); activated sludge microbiome;
metagenomics
ID DISRUPTING COMPOUNDS; BACTERIAL DIVERSITY; STEROID ESTROGENS; WATER;
TRACKING; HORMONES; REMOVAL; IMPACT; PLANT; FATE
AB Synthetic estrogen analogues are among the most potent estrogenic contaminants in effluents from wastewater treatment plants. Although its effects have been well elucidated in the feminization of male fish and interference with the endocrine systems in humans, it has not been fully explored in the activated sludge (AS) microbiome, particularly EE2 (17 alpha-ethynylestradiol). Therefore, in this study, the bacterial community shift in a 6-day laboratory-scale reactor in environmental (0, 5, 10, and 100 ng/L) and predictive elevated concentrations (5, 10, and 100 mg/L) of EE2 was investigated using culture-based and metagenomics approaches. Results showed significant changes (t-test, all p < 0.05) between initial and final physicochemical parameters (pH, DO, and EC). Although environmental concentrations showed a slight decrease in microbial counts (5.6 x 10(6) to 4.6 x 10(6) CFU/ml) after a 24-h incubation for the culturable approach, the predictive elevated concentrations (5 to 100 mg/L) revealed a drastic microbial counts reduction (5.6 x 10(6) to 8 x 10(2) CFU/ml). The metagenomic data analysis uncovered that bacterial communities in the control sample were dominated by Proteobacteria, followed by Bacteroidetes and Firmicutes. The taxonomic classification after exposure of microbial communities in various concentrations revealed significant differences in community composition between environmental concentration (Shannon indices between 2.58 to 3.68) and predictive elevated concentrations (Shannon indices between 2.24 and 2.84; t-test, all p < 0.05). The EE2 enriched seven OTUs were Novosphingobium, Cloacibacterium, Stenotrophomonas, Enterobacteriaceae_unclassified, Stenotrophomonas, Enterobacteriaceae_unclassified and Rhodobacteraceae_unclassified. These results were supported by a dehydrogenase activity (DHA) test, which demonstrated less (about 40%) DHA in predictive elevated concentrations than in environmental concentrations. Notwithstanding, these findings suggest that EE2 may possess potent hormetic effect as evidenced by promotion of microbiome richness and dehydrogenase activity of AS in lower EE2 doses.
C1 [Budeli, Phumudzo; Momba, Maggy Ndombo Benteke] Tshwane Univ Technol, Dept Environm Water & Earth Sci, Pretoria, South Africa.
[Ekwanzala, Mutshiene Deogratias] Univ Gothenburg, Inst Biomed, Dept Infect Dis, Gothenburg, Sweden.
C3 Tshwane University of Technology; University of Gothenburg
RP Momba, MNB (corresponding author), Tshwane Univ Technol, Dept Environm Water & Earth Sci, Pretoria, South Africa.
EM mombamnb@tut.ac.za
RI Ekwanzala, Mutshiene Deogratias/M-5710-2015
OI Ekwanzala, Mutshiene Deogratias/0000-0001-6881-1262
FU Department of Science of Technology; National Research Foundation, South
Africa [UID87310]; SARChI Chair in Water Quality and Wastewater
Management; Tshwane University of Technology, South Africa; NRF
Freestanding, Innovation, Scarce Skill Development Fund and South Africa
[UID108484]
FX This research article received funding from the Department of Science of
Technology and National Research Foundation, South Africa, through the
SARChI Chair in Water Quality and Wastewater Management (grant number:
UID87310) and the Tshwane University of Technology, South Africa. PB was
funded by NRF Freestanding, Innovation, Scarce Skill Development Fund
and South Africa (grant number: UID108484).
CR Adeel M, 2017, ENVIRON INT, V99, P107, DOI 10.1016/j.envint.2016.12.010
Afgan E, 2018, NUCLEIC ACIDS RES, V46, pW537, DOI 10.1093/nar/gky379
Ahmed W, 2021, SCI TOTAL ENVIRON, V751, DOI 10.1016/j.scitotenv.2020.141475
Amin MM, 2018, CHINESE J CHEM ENG, V26, P1132, DOI 10.1016/j.cjche.2017.09.005
Aniyikaiye TE, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16071235
APHA-American Public Health Association, 2017, STANDARD METHODS EXA, V23
Basile T, 2011, IND ENG CHEM RES, V50, P8389, DOI 10.1021/ie101919v
Batut B, 2018, CELL SYST, V6, P752, DOI 10.1016/j.cels.2018.05.012
Beck S, 2018, INT BIODETER BIODEGR, V127, P146, DOI 10.1016/j.ibiod.2017.11.020
Bhateria R, 2016, SUST WAT RESOUR MAN, V2, P161, DOI 10.1007/s40899-015-0014-7
Bik HM, 2014, BIORXIV, DOI [10.1101/009944, DOI 10.1101/009944]
Budeli P, 2021, ENVIRON TECHNOL INNO, V21, DOI 10.1016/j.eti.2020.101248
Cai L, 2014, APPL MICROBIOL BIOT, V98, P3317, DOI 10.1007/s00253-013-5402-z
Cole JR, 2009, NUCLEIC ACIDS RES, V37, pD141, DOI 10.1093/nar/gkn879
Cook MM, 2016, WATER-SUI, V8, DOI 10.3390/w8040128
Cui CW, 2006, ENVIRON MONIT ASSESS, V121, P409, DOI 10.1007/s10661-005-9139-8
Du BH, 2020, ENVIRON POLLUT, V267, DOI 10.1016/j.envpol.2020.115405
Edgar RC, 2011, BIOINFORMATICS, V27, P2194, DOI 10.1093/bioinformatics/btr381
Edokpayi J. N., 2017, Water quality, P401
Ekwanzala MD, 2020, ECOTOX ENVIRON SAFE, V197, DOI 10.1016/j.ecoenv.2020.110612
Ekwanzala MD, 2019, SCI TOTAL ENVIRON, V691, P80, DOI 10.1016/j.scitotenv.2019.06.533
Fang TY, 2019, CHEMOSPHERE, V215, P153, DOI 10.1016/j.chemosphere.2018.10.032
Fisher JC, 2015, APPL ENVIRON MICROB, V81, P7023, DOI 10.1128/AEM.01524-15
GORCHEV HG, 1984, WHO CHRON, V38, P104
Grady C.P.L., 2011, BIOL WASTEWATER TREA, V3rd ed.
Hallgren P, 2014, ENVIRON TOXICOL CHEM, V33, P930, DOI 10.1002/etc.2528
Hellawell JM, 2012, BIOL INDICATORS FRES
Hiltemann SD, 2019, GIGASCIENCE, V8, DOI 10.1093/gigascience/giy166
Kamika I, 2017, AMB EXPRESS, V7, DOI 10.1186/s13568-017-0365-6
Kamika I, 2013, BMC MICROBIOL, V13, DOI 10.1186/1471-2180-13-28
Kanama MK, 2018, J TOXICOL-US, V2018, DOI 10.1155/2018/3751930
Kibambe MG, 2020, J ENVIRON MANAGE, V260, DOI 10.1016/j.jenvman.2020.110135
Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124
Lai KM, 2002, CRIT REV TOXICOL, V32, P113, DOI 10.1080/20024091064192
Li YM, 2011, WATER SCI TECHNOL, V63, P51, DOI 10.2166/wst.2011.008
Marti EJ, 2014, SCI TOTAL ENVIRON, V470, P1056, DOI 10.1016/j.scitotenv.2013.10.070
Mboyi AV, 2017, J ENVIRON SCI HEAL A, V52, P697, DOI 10.1080/10934529.2017.1301744
Meli K, 2016, SCI REP-UK, V6, DOI 10.1038/srep39176
Newton RJ, 2015, MBIO, V6, DOI 10.1128/mBio.02574-14
Pell M., 2006, J COMP PHYSIOL A, V192, P270, DOI [10.1016/B978-0-08-088504-9.00381-0, DOI 10.1016/B978-008045405-4.00317-7, DOI 10.1016/B978-0-08-088504-9.00381-0]
Pessoa GP, 2014, SCI TOTAL ENVIRON, V490, P288, DOI 10.1016/j.scitotenv.2014.05.008
Pinto PIS, 2014, MAR DRUGS, V12, P4474, DOI 10.3390/md12084474
Rahman MF, 2009, J WATER HEALTH, V7, P224, DOI 10.2166/wh.2009.021
Samer M., 2015, WASTEWATER TREATMENT, DOI [10.5772/61250, DOI 10.5772/61250]
Schloss PD, 2013, ISME J, V7, P457, DOI 10.1038/ismej.2012.102
Schloss PD, 2011, APPL ENVIRON MICROB, V77, P3219, DOI 10.1128/AEM.02810-10
Schloss PD, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000844
Schloss PD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008230
Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09
Shchegolkova NM, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00090
Silva CP, 2012, ENVIRON POLLUT, V165, P38, DOI 10.1016/j.envpol.2012.02.002
Skaperda Z, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23010049
Vilela CLS, 2018, ENVIRON POLLUT, V235, P546, DOI 10.1016/j.envpol.2017.12.098
Su JQ, 2015, ENVIRON SCI TECHNOL, V49, P7356, DOI 10.1021/acs.est.5b01012
Sumpter JP, 2013, ENVIRON TOXICOL CHEM, V32, P249, DOI 10.1002/etc.2084
Thiele-Bruhn S, 2005, CHEMOSPHERE, V59, P457, DOI 10.1016/j.chemosphere.2005.01.023
Ting YF, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-017-5890-x
Unuofin JO, 2019, MOLECULES, V24, DOI 10.3390/molecules24112064
Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07
Wang XH, 2012, APPL ENVIRON MICROB, V78, P7042, DOI 10.1128/AEM.01617-12
Xu Y, 2019, ENVIRON SCI POLLUT R, V26, P9293, DOI 10.1007/s11356-019-04340-w
Yang CZ, 2011, ENVIRON HEALTH PERSP, V119, P989, DOI 10.1289/ehp.1003220
Zhang C, 2016, CRIT REV ENV SCI TEC, V46, P1, DOI 10.1080/10643389.2015.1061881
Zhang XL, 2014, ECOTOX ENVIRON SAFE, V107, P313, DOI 10.1016/j.ecoenv.2014.06.010
NR 64
TC 0
Z9 0
U1 2
U2 2
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD AUG 18
PY 2022
VL 13
AR 961736
DI 10.3389/fmicb.2022.961736
PG 13
WC Microbiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Microbiology
GA 4F8FU
UT WOS:000848746700001
PM 36060745
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Bruckner, S
Straub, L
Neumann, P
Williams, GR
AF Bruckner, Selina
Straub, Lars
Neumann, Peter
Williams, Geoffrey R.
TI Synergistic and Antagonistic Interactions Between Varroa destructor
Mites and Neonicotinoid Insecticides in Male Apis mellifera Honey Bees
SO FRONTIERS IN ECOLOGY AND EVOLUTION
LA English
DT Article
DE honey bee; drone; neonicotinoid; thiamethoxam; Varroa destructor;
parasite; interaction
ID CHRONIC EXPOSURE; DRONE; EVOLUTION; HORMESIS; HEALTH; BIODIVERSITY;
INFESTATION; INFECTIONS; JACOBSONI; FIPRONIL
AB Pressures from multiple, sometimes interacting, stressors can have negative consequences to important ecosystem-service providing species like the western honey bee (Apis mellifera). The introduced parasite Varroa destructor and the neonicotinoid class of insecticides each represent important, nearly ubiquitous biotic and abiotic stressors to honey bees, respectively. Previous research demonstrated that they can synergistically interact to negatively affect non-reproductive honey bee female workers, but no data exist on how concurrent exposure may affect reproductive honey bee males (drones). This is important, given that the health of reproductive females (queens), possibly because of poor mating, is frequently cited as a major driver of honey bee colony loss. To address this, known age cohorts of drones were obtained from 12 honey bee colonies-seven were exposed to field-relevant concentrations of two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) during development via supplementary pollen patties; five colonies received patties not spiked with neonicotinoids. Artificially emerged drones were assessed for natural V. destructor infestation, weighed, and then allocated to the following treatment groups: 1. Control, 2. V. destructor only, 3. Neonicotinoid only, and 4. Combined (both mites and neonicotinoid). Adult drones were maintained in laboratory cages alongside attendant workers (1 drone: 2 worker ratio) until they have reached sexual maturity after 14 days so sperm concentration and viability could be assessed. The data suggest that V. destructor and neonicotinoids interacted synergistically to negatively affect adult drone survival, but that they interacted antagonistically on emergence mass. Although sample sizes were too low to assess the effects of V. destructor and combined exposure on sperm quality, we observed no influence of neonicotinoids on sperm concentration or viability. Our findings highlight the diverse effects of concurrent exposure to stressors on honey bees, and suggest that V. destructor and neonicotinoids can severely affect the number of sexually mature adult drones available for mating.
C1 [Bruckner, Selina; Williams, Geoffrey R.] Auburn Univ, Entomol & Plant Pathol, Auburn, AL 36849 USA.
[Straub, Lars; Neumann, Peter] Univ Bern, Vetsuisse Fac, Inst Bee Hlth, Bern, Switzerland.
[Straub, Lars; Neumann, Peter] Swiss Bee Res Ctr, Agroscope, Bern, Switzerland.
C3 Auburn University System; Auburn University; University of Bern; Swiss
Federal Research Station Agroscope
RP Bruckner, S (corresponding author), Auburn Univ, Entomol & Plant Pathol, Auburn, AL 36849 USA.
EM szb0130@auburn.edu
RI Straub, Lars/AAP-2820-2020
OI Straub, Lars/0000-0002-2091-1499
FU USDA National Institute of Food and Agriculture Multi-state Hatch
project [NC1173]; Alabama Agricultural Experiment Station; Foundation
for Food and Agriculture Research Pollinator Health Fund [549003]; Swiss
National Science Foundation [31003A_169751]; California State Beekeepers
Association; Bundesamt fuer Umwelt (BAFU) [16.0091.PJ/R102- 1664];
Agroscope; Vinetum Foundation; USDA ARS Cooperative Agreement
[6066-21000-001-02-S]
FX This work was supported by the USDA National Institute of Food and
Agriculture Multi-state Hatch project NC1173, the Alabama Agricultural
Experiment Station, the Foundation for Food and Agriculture Research
Pollinator Health Fund grant 549003, the USDA ARS Cooperative Agreement
6066-21000-001-02-S, the Swiss National Science Foundation Project
31003A_169751, and the California State Beekeepers Association.
Additional support was provided by the Bundesamt fuer Umwelt (BAFU) to
LS and PN (16.0091.PJ/R102- 1664), by Agroscope to LS and PN, and by the
Vinetum Foundation to LS and PN.
CR Alaux C, 2010, ENVIRON MICROBIOL, V12, P774, DOI 10.1111/j.1462-2920.2009.02123.x
AOAC, 2007, OFFICIAL METHODS ANA
Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678
Bird G, 2021, J APPL ECOL, V58, P997, DOI 10.1111/1365-2664.13811
Blackmon H, 2015, EVOLUTION, V69, P2971, DOI 10.1111/evo.12792
Blanken LJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1738
Bonmatin JM, 2015, ENVIRON SCI POLLUT R, V22, P35, DOI 10.1007/s11356-014-3332-7
Bonmatin J. M., 2007, Environmental fate and ecological effects of pesticides, P827
Botias C, 2015, ENVIRON SCI TECHNOL, V49, P12731, DOI 10.1021/acs.est.5b03459
Bowen-Walker PL, 2001, ENTOMOL EXP APPL, V101, P207, DOI 10.1023/A:1019254727879
Boyd PW, 2015, FRONT MAR SCI, V2, DOI 10.3389/fmars.2015.00009
Brandt A, 2016, J INSECT PHYSIOL, V86, P40, DOI 10.1016/j.jinsphys.2016.01.001
Brodschneider R, 2010, APIDOLOGIE, V41, P278, DOI 10.1051/apido/2010012
Bruckner S., 2019, 2018 2019 HONEY BEE
Bubalo D, 2005, WIEN TIERARZTL MONAT, V92, P11
Butchart SHM, 2010, SCIENCE, V328, P1164, DOI 10.1126/science.1187512
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Carreck NL, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.4.03
Ciereszko A, 2017, APIDOLOGIE, V48, P211, DOI 10.1007/s13592-016-0466-2
Claudianos C, 2006, INSECT MOL BIOL, V15, P615, DOI 10.1111/j.1365-2583.2006.00672.x
Collins AM, 2001, AM BEE J, V141, P590
Colwell MJ, 2017, ECOL EVOL, V7, P7243, DOI 10.1002/ece3.3178
Cook SC, 2019, INSECTS, V10, DOI 10.3390/insects10010018
Cote IM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2592
Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
Dainat B, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032151
Delaplane KS, 2013, J APICULT RES, V52, DOI [10.3896/IBRA.1.52.4.12, 10.3896/IBRA.1.52.1.03]
Delaplane KS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142985
Derecka K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068191
Di Prisco G, 2013, P NATL ACAD SCI USA, V110, P18466, DOI 10.1073/pnas.1314923110
Dietemann V, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.1.09
Duay P, 2003, APIDOLOGIE, V34, P61, DOI 10.1051/apido:2002052
Duay Pedro, 2002, Genetics and Molecular Research, V1, P227
Folt CL, 1999, LIMNOL OCEANOGR, V44, P864, DOI 10.4319/lo.1999.44.3_part_2.0864
Forfert N, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140337
Friedli A, 2020, CHEMOSPHERE, V242, DOI 10.1016/j.chemosphere.2019.125145
Fryday S., 2015, EFSA SUPPORT PUBL, V12, DOI [10.2903/sp.efsa.2015.EN-756, DOI 10.2903/SP.EFSA.2015.EN-756]
FUCHS S, 1992, BEHAV ECOL SOCIOBIOL, V31, P429, DOI 10.1007/BF00170610
Geldmann J, 2014, CONSERV BIOL, V28, P1604, DOI 10.1111/cobi.12332
Gray A, 2020, J APICULT RES, V59, P744, DOI 10.1080/00218839.2020.1797272
Gray A, 2019, J APICULT RES, V58, P479, DOI 10.1080/00218839.2019.1615661
HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6
Harbo JR, 2005, J APICULT RES, V44, P21, DOI 10.1080/00218839.2005.11101141
Hatjina F, 2013, APIDOLOGIE, V44, P467, DOI 10.1007/s13592-013-0199-4
Havard T, 2020, DIVERSITY-BASEL, V12, DOI 10.3390/d12010007
Hay ME, 1996, ECOLOGY, V77, P1950, DOI 10.2307/2265799
Hayashi S, 2019, APIDOLOGIE, V50, P369, DOI 10.1007/s13592-019-00652-5
Kaunisto S, 2016, CURR OPIN INSECT SCI, V17, P55, DOI 10.1016/j.cois.2016.07.001
Koeniger N, 2007, APIDOLOGIE, V38, P606, DOI 10.1051/apido:2007060
Krupke CH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029268
Kulhanek K, 2017, J APICULT RES, V56, P328, DOI 10.1080/00218839.2017.1344496
LE CONTE Y, 1989, SCIENCE, V245, P638, DOI 10.1126/science.245.4918.638
Little CM, 2016, J APICULT RES, V54, P378, DOI 10.1080/00218839.2016.1159068
Long EY, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11629
Maher RL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43274-8
Medrzycki P, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.4.14
Minnameyer A, 2021, SCI TOTAL ENVIRON, V785, DOI 10.1016/j.scitotenv.2021.146955
Mitchell EAD, 2017, SCIENCE, V358, P109, DOI 10.1126/science.aan3684
Mogren CL, 2016, SCI REP-UK, V6, DOI 10.1038/srep29608
Morfin N, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229030
O'Donnell S, 2004, P ROY SOC B-BIOL SCI, V271, P979, DOI 10.1098/rspb.2004.2685
Pang SM, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.00868
Pettis JS, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147220
Pettis JS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070182
Piggott JJ, 2015, ECOL EVOL, V5, P1538, DOI 10.1002/ece3.1465
Pilling E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077193
Poulin R., 2007, EVOL ECOL, V2nd
Ramsey SD, 2019, P NATL ACAD SCI USA, V116, P1792, DOI 10.1073/pnas.1818371116
Rangel J, 2019, APIDOLOGIE, V50, P759, DOI 10.1007/s13592-019-00684-x
Retschnig G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085261
Rhodes JW, 2011, APIDOLOGIE, V42, P29, DOI 10.1051/apido/2010026
Rinderer TE, 1999, AM BEE J, V139, P134
Rosenkranz P, 2010, J INVERTEBR PATHOL, V103, pS96, DOI 10.1016/j.jip.2009.07.016
RUTTNER F., 1966, BEE WORLD, V47, P93
Sanchez-Bayo F, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094482
Sandrock C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103592
Schaafsma A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118139
Schluns H, 2005, ANIM BEHAV, V70, P125, DOI 10.1016/j.anbehav.2004.11.005
Siede R, 2018, ECOTOXICOLOGY, V27, P772, DOI 10.1007/s10646-018-1937-1
Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y
Simone-Finstrom M, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2015.1007
Singla A, 2021, J APICULT RES, V60, P19, DOI 10.1080/00218839.2020.1825044
Siviter H, 2021, NATURE, V596, DOI 10.1038/s41586-021-03787-7
Steinhauer N, 2018, CURR OPIN INSECT SCI, V26, P142, DOI 10.1016/j.cois.2018.02.004
Stoner KA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039114
Straub L, 2021, J APPL ECOL, V58, P2515, DOI 10.1111/1365-2664.14000
Straub L, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61371-x
Straub L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44207-1
Straub L, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0506
Sur Robin, 2003, Bulletin of Insectology, V56, P35
Tarpy DR, 2006, NATURWISSENSCHAFTEN, V93, P195, DOI 10.1007/s00114-006-0091-4
Tarpy DR, 2003, P ROY SOC B-BIOL SCI, V270, P99, DOI 10.1098/rspb.2002.2199
Tong Z, 2018, SCI TOTAL ENVIRON, V640, P1578, DOI 10.1016/j.scitotenv.2018.04.424
Traynor KS, 2020, TRENDS PARASITOL, V36, P592, DOI 10.1016/j.pt.2020.04.004
Tsvetkov N, 2017, SCIENCE, V356, P1395, DOI 10.1126/science.aam7470
van der Sluijs JP, 2015, ENVIRON SCI POLLUT R, V22, P148, DOI 10.1007/s11356-014-3229-5
Wilfert L, 2016, SCIENCE, V351, P594, DOI 10.1126/science.aac9976
Williams GR, 2015, SCI REP-UK, V5, DOI 10.1038/srep14621
Williams GR, 2013, J APICULT RES, V52, DOI 10.3896/IBRA.1.52.1.04
Winston M.L., 1991, BIOL HONEY BEE
Wood TJ, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0989
Wood TJ, 2017, ENVIRON SCI POLLUT R, V24, P17285, DOI 10.1007/s11356-017-9240-x
Yaniz JL, 2020, BIOLOGY-BASEL, V9, DOI 10.3390/biology9070174
NR 104
TC 3
Z9 3
U1 2
U2 18
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 2296-701X
J9 FRONT ECOL EVOL
JI Front. Ecol. Evol.
PD NOV 19
PY 2021
VL 9
AR 756027
DI 10.3389/fevo.2021.756027
PG 11
WC Ecology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA XJ0NB
UT WOS:000726495100001
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Cao, B
Wu, J
Xu, CL
Chen, Y
Xie, Q
Ouyang, L
Wang, JY
AF Cao, Bing
Wu, Jing
Xu, Changlian
Chen, Yan
Xie, Qing
Ouyang, Li
Wang, Jingyu
TI The Accumulation and Metabolism Characteristics of Rare Earth Elements
in Sprague-Dawley Rats
SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
LA English
DT Article
DE rare earth elements; metabolism; SD rats; inductively coupled
plasma-mass spectrometry
ID ANIMAL HEALTH; LANTHANUM; HORMESIS; CERIUM; RISK
AB The current study aims to investigate the influence of five rare earth elements (REEs) (i.e., lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and gadolinium (Gd)) on the growth of Sprague-Dawley (SD) rats, and to explore the accumulation characteristics of REEs in tissues and organs with different doses as well as the detoxification and elimination of high-dose REEs. Fifty healthy male SD rats (140 similar to 160 g) were randomly divided into five groups and four of them were given gavage of sodium citrate solution with REEs in different doses, one of which was the control group. Hair, blood, and bone samples along with specific viscera tissue samples from the spleen and the liver were collected for detection of REEs by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Treated rats expressed higher concentrations of REEs in the bones, the liver, and spleen samples than the control group (P < 0.05). Few differences were found in relative abundance of La, Ce, Pr, Nd, and Gd in the hair and the liver samples, although different administration doses were given. The relative abundance of Ce in bone samples was significantly lower in the low-dose group and control group, whereas the relative abundance of La and Pr in the bone samples were highest among all groups. Although in the REEs solution, which was given to rats in high-dose group, the La element had a higher relative abundance than Ce element, it ended up with higher Ce element relative abundance than La element in the spleen samples. REEs had a hormetic effect on body weight gain of SD rats. The accumulation of the measured REEs were reversible to low concentrations in the blood and hair, but non-reversible in the bones, the spleen, and the liver. Different tissues and organs can selectively absorb and accumulate REEs. Further inter-disciplinary studies about REEs are urgently needed to identify their toxic effects on both ecosystems and organisms.
C1 [Cao, Bing] Southwest Univ, Natl Demonstrat Ctr Expt Psychol Educ, Minist Educ, Sch Psychol, Chongqing 400715, Peoples R China.
[Cao, Bing] Southwest Univ, Natl Demonstrat Ctr Expt Psychol Educ, Minist Educ, Key Lab Cognit & Personal, Chongqing 400715, Peoples R China.
[Wu, Jing; Xie, Qing; Ouyang, Li; Wang, Jingyu] Peking Univ, Med & Hlth Anal Ctr, Beijing 100191, Peoples R China.
[Xu, Changlian] Sichuan Agr Univ, Coll Environm Sci, Chengdu 611130, Peoples R China.
[Chen, Yan] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON M5T 3M7, Canada.
[Xie, Qing; Ouyang, Li; Wang, Jingyu] Peking Univ, Sch Publ Hlth, Dept Lab Sci & Technol, Beijing 100191, Peoples R China.
[Xie, Qing; Ouyang, Li; Wang, Jingyu] Peking Univ, Sch Publ Hlth, Vaccine Res Ctr, Beijing 100191, Peoples R China.
C3 Southwest University - China; Southwest University - China; Peking
University; Sichuan Agricultural University; University of Toronto;
Peking University; Peking University
RP Wang, JY (corresponding author), Peking Univ, Med & Hlth Anal Ctr, Beijing 100191, Peoples R China.; Wang, JY (corresponding author), Peking Univ, Sch Publ Hlth, Dept Lab Sci & Technol, Beijing 100191, Peoples R China.; Wang, JY (corresponding author), Peking Univ, Sch Publ Hlth, Vaccine Res Ctr, Beijing 100191, Peoples R China.
EM bingcao@swu.edu.cn; wujingj@126.com; chinaxuchanglian@126.com;
yann.chen@mail.utoronto.ca; Xieqing94@bjmu.edu.cn; ouyangli@bjmu.edu.cn;
wjy@bjmu.edu.cn
RI wang, jing/HJA-5384-2022
OI Xu, Chang-Lian/0000-0002-7275-8166
CR Abdelnour SA, 2019, SCI TOTAL ENVIRON, V672, P1021, DOI 10.1016/j.scitotenv.2019.02.270
Adeel M, 2019, ENVIRON INT, V127, P785, DOI 10.1016/j.envint.2019.03.022
Badri N, 2017, J TRACE ELEM MED BIO, V44, P349, DOI 10.1016/j.jtemb.2017.09.011
Bai Y, 2019, ENVIRON TOXICOL PHAR, V72, DOI 10.1016/j.etap.2019.103237
Benes B, 2000, Cent Eur J Public Health, V8, P117
Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973
Carpenter D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129936
Cheng J, 2014, ENVIRON TOXICOL, V29, P837, DOI 10.1002/tox.21826
Damme NM, 2020, MAGN RESON MED, V83, P1930, DOI 10.1002/mrm.28060
Dressler VL, 2020, BIOL TRACE ELEM RES, V196, P153, DOI 10.1007/s12011-019-01907-z
Du XY, 2011, SCI REP-UK, V1, DOI 10.1038/srep00145
Fan Guangqin, 2004, Wei Sheng Yan Jiu, V33, P23
Fang HQ, 2018, BIOMED ENVIRON SCI, V31, P363, DOI 10.3967/bes2018.047
Grawunder A, 2018, CHEMOSPHERE, V208, P614, DOI 10.1016/j.chemosphere.2018.05.137
Kim YS, 2017, TOX RESEARCH, V33, P239, DOI 10.5487/TR.2017.33.3.239
MacMillan GA, 2017, ENVIRON SCI-PROC IMP, V19, P1336, DOI [10.1039/c7em00082k, 10.1039/C7EM00082K]
Massadeh A, 2010, BIOL TRACE ELEM RES, V133, P1, DOI 10.1007/s12011-009-8405-y
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Nakamura Y, 1997, FUND APPL TOXICOL, V37, P106, DOI 10.1006/faat.1997.2322
Nohmi T, 2017, GENES ENVIRON, V39, DOI 10.1186/s41021-016-0072-6
Pagano G, 2015, ENVIRON RES, V142, P215, DOI 10.1016/j.envres.2015.06.039
Pagano G, 2015, ECOTOX ENVIRON SAFE, V115, P40, DOI 10.1016/j.ecoenv.2015.01.030
Thomas PJ, 2014, CHEMOSPHERE, V96, P57, DOI 10.1016/j.chemosphere.2013.07.020
Tong SL, 2004, J ENVIRON SCI HEAL A, V39, P2517, DOI [10.1081/ESE-200026332, 10.1081/lesa-200026332]
Wang B, 2017, ENVIRON POLLUT, V220, P837, DOI 10.1016/j.envpol.2016.10.066
Xiao HQ, 2005, TOXICOL LETT, V155, P247, DOI 10.1016/j.toxlet.2004.09.021
Zhang J.C., 2010, PROG NAT SCI, V4, P404
NR 28
TC 9
Z9 10
U1 2
U2 14
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1660-4601
J9 INT J ENV RES PUB HE
JI Int. J. Environ. Res. Public Health
PD FEB
PY 2020
VL 17
IS 4
AR 1399
DI 10.3390/ijerph17041399
PG 11
WC Environmental Sciences; Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA KY2GF
UT WOS:000522388500275
PM 32098119
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Harmelin, JG
Bishop, JDD
Madurell, T
Souto, J
Jones, MES
Zabala, M
AF Harmelin, Jean-Georges
Bishop, John D. D.
Madurell, Teresa
Souto, Javier
Jones, Mary E. Spencer
Zabala, Mikel
TI Unexpected diversity of the genus Collarina Jullien, 1886 (Bryozoa,
Cheilostomatida) in the NE Atlantic-Mediterranean region: new species
and reappraisal of C. balzaci (Audouin, 1826) and C. fayalensis
Harmelin, 1978
SO ZOOSYSTEMA
LA English
DT Article
DE Biogeography; habitat distribution; bryozoans; cheilostomes;
Cribrilinidae; disturbance bioindicators; new species
ID SEA; PLIOCENE; HYPERPLASIA; COMMUNITY; HORMESIS; COMPLEX; GABES; GULF
AB The genus Collarina Jullien, 1886 (Cribrilinidae Hincks, 1879) has until now been known from the Atlantic-Mediterranean region as just two species, C. balzaci (Audouin, 1826), synonym of Collarina cribrosa Jullien, 1886, type species of the genus, considered to be widely distributed from the northern British Isles to the SE Mediterranean, and C. fayalensis Harmelin, 1978 from the Macaronesian Isles. Abundant material collected in the Mediterranean and the NE Atlantic, coupled with examination of museum specimens, allowed better definition of the species-specific morphological features in this genus and some generic traits (ooecium formation, avicularia with nested cystids). Besides the redescription of C balzaci and C fayalensis, this study led to the description of four new species: C denticulata Harmelin, n. sp., recorded only in the Mediterranean, C. gautieri Harmelin, n. sp., present in both the NE Atlantic and the Mediterranean, C. macaronensis Harmelin, n. sp., from Madeira, Azores and Galicia, and C. speluncola Harmelin, n. sp., from the Mediterranean and the Gulf of Cadiz. A seventh morphotype (Collarina sp., from the Mediterranean, seemingly close to C speluncola Harmelin, n. sp., has been left unnamed pending the availability of more abundant material. It was proven that C. balzaci: 1) has often been confused with C. gautieri Harmelin, n. sp.; 2) is exclusively epiphytic (mainly on Posidonia oceanica (L.) Delile, 1813 and brown seaweeds), with life-cycle adapted to ephemeral hosts; 3) is widely distributed in the Mediterranean, but also present in the Canaries on seaweeds, and has probably been overlooked in similar habitats in other warm-temperate NE Atlantic localities; and 4) is able to proliferate dramatically on Posidonia leaves in association with diatoms under unusual environmental conditions (Gulf of Gabes, chemical disturbance). All Collarina species live in coastal areas, mostly at shallow depth, in shaded microhabitats: plants (C. balzaci), dark cave walls (C. speluncola Harmelin, n. sp.) and small hard substrates, e.g. shells, pebbles, and anthropogenic debris (all other species).
C1 [Harmelin, Jean-Georges] Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France.
[Bishop, John D. D.] Marine Biol Assoc UK, Citadel Hill Lab, Plymouth PL1 2PB, Devon, England.
[Madurell, Teresa] CSIC, Inst Marine Sci ICM, Passeig Maritim de la Barceloneta 37-49, E-08003 Barcelona, Catalonia, Spain.
[Souto, Javier] Univ Vienna, Geozentrum, Inst Palaontol, Althanstr 14, A-1090 Vienna, Austria.
[Jones, Mary E. Spencer] Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England.
[Zabala, Mikel] Univ Barcelona, Dept Ecol, Diagonal 645, E-08028 Barcelona, Catalonia, Spain.
C3 UDICE-French Research Universities; Aix-Marseille Universite; Marine
Biological Association United Kingdom; Consejo Superior de
Investigaciones Cientificas (CSIC); CSIC - Centro Mediterraneo de
Investigaciones Marinas y Ambientales (CMIMA); CSIC - Instituto de
Ciencias del Mar (ICM); University of Vienna; Natural History Museum
London; University of Barcelona
RP Harmelin, JG (corresponding author), Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France.
EM jean-georges.harmelin@univ-amu.fr
RI Souto, Javier/HLW-7120-2023; Madurell, Teresa/E-6721-2013
OI Madurell, Teresa/0000-0002-3971-6773
FU Austrian Science Fund (FWF) [AP28954-B29]; Austrian Science Fund (FWF)
[P28954] Funding Source: Austrian Science Fund (FWF)
FX We are grateful to J. Aristegui (ULPGC, Canaries) for selecting and
sending specimens of C. balzaci from his thesis material, H. De Blauwe
and O. Reverter-Gil (Univ. Santiago) for supplying SEM pictures, A.
Ostrovsky (Univ. Vienna) for advice on ovicell structure, L. Beckniker
(AMNH) and C. Gusso (Univ. Roma La Sapienza) for data on specimens, P.
Lozouet and J. Mainguy (MNHN) for assistance during consultation of
museum specimens, Sandrine Chenesseaux (IMBE, Marseille) for her help
during SEM work of JGH, P. Lejeune (Marine Station of Stareso) and J. M.
Dominici (Marine Reserve of Scandola) for diving facilities, M. Verlaque
(MIO, Marseille) for algae identification.We thank A. Rosso and D. P.
Gordon for their thorough review of the manuscript and useful comments.
The work of Javier Souto was supported by the Austrian Science Fund
(FWF, project number AP28954-B29). Sampling at Kerkennah Islands by JGH
was made during a field survey managed by PIM Initiative (Conservatoire
du Littoral, France) and APAL (Agence de Protection et d'Amenagement du
Littoral, Tunisia).
CR Abboud-Abi Saab M., 2004, GEOSCI J, V336, P1379
Allouc J, 2001, B SOC GEOL FR, V172, P765, DOI 10.2113/172.6.765
ALVAREZ J A, 1988, Miscellania Zoologica (Barcelona), V12, P347
Alvarez J. A., 1987, CUADERNOS INVESTIGAT, V11, P1
Aristegui Ruiz J., 1984, THESIS, Vi-iii, P1
Audouin J., 1826, DESCR GYPTE HIST NAT, V1, P225
Balduzzi A., 1983, Rapports et Proces-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee Monaco, V28, P137
Barroso M.G., 1919, B SOC ESPANOLA HIST, V19, P340
Ben ismail Dorsaf, 2007, Rapport du Congress de la CIESM, V38, P433
Bensoussan N, 2010, ESTUAR COAST SHELF S, V87, P431, DOI 10.1016/j.ecss.2010.01.008
Berning B., 2008, VA MUS NAT HIST SPEC, V15, P1
Berning B, 2017, EUR J TAXON, V347, P1, DOI 10.5852/ejt.2017.347
Bishop J.D.D., 1987, Bulletin of the British Museum (Natural History) Zoology, V53, P1
BISHOP J D D, 1986, Bulletin of Zoological Nomenclature, V43, P288
BISHOP JDD, 1994, ZOOL SCR, V23, P225, DOI 10.1111/j.1463-6409.1994.tb00387.x
BISHOP JDD, 1988, J NAT HIST, V22, P747, DOI 10.1080/00222938800770481
BOCK P., 2018, WORLD LIST BRYOZOA
Boury-Esnault N., 2001, Boletim do Museu Municipal do Funchal Suplemento, V6, P15
BUSK G, 1854, CATALOGUE MARINE POL, VI-VIII, P55
Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1
CALVET L., 1906, EXPEDITIONS SCI TRAV
Calvet L., 1902, TRAV I ZOOL U MONTPE, V12, P1
Chimenz Gusso C., 2014, BIOL MAR MEDITERR, V21, P1
De Blauwe H., 2019, AUSTRALASIAN PALAEON, V5
De Blauwe H., 2009, MOSDIERTJES ZUIDELIJ
De Blauwe Hans, 2006, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Biologie, V76, P125
Desrosiers C, 2013, ECOL INDIC, V32, P25, DOI 10.1016/j.ecolind.2013.02.021
Di Martino E., 2014, STUDI TRENTINI SC NA, V94, P79
Dick MH, 2005, INVERTEBR BIOL, V124, P344, DOI 10.1111/j.1744-7410.2005.00032.x
Echalier G., 1951, TRAV STAT BIOL ROS S, V4, P1
El Kateb A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197731
El Zrelli R, 2017, ENVIRON SCI POLLUT R, V24, P22214, DOI 10.1007/s11356-017-9856-x
El Zrelli R, 2015, MAR POLLUT BULL, V101, P922, DOI 10.1016/j.marpolbul.2015.10.047
Eugene C., 1978, THESIS
Fehlauer-Ale KH, 2011, ZOOTAXA, P49, DOI 10.11646/zootaxa.2962.1.4
FERNANDEZPULPEI.E, 1996, NOVA ACTA CIENTIFICA, V6, P107
GAUTIER Y., 1953, RECUEIL DES TRAV STA MARINE ENDOUME, V9, P39
GAUTIER Y., 1952, BULL INST OCEANOGR [MONACO], V1008, P1
Gautier Y. V., 1958, Annali del Museo Civico di Storia Naturale di Genova, V70, P193
GAUTIER Y. V., 1958, ATTI SOC PELORITANA, V4, P45
Gautier YV, 1962, REC TRAV STAT MAR EN, V38, P1
Harmelin J.-G., 1978, Travaux Scientifiques du Parc National de Port-Cros, V4, P127
Harmelin JG, 2016, MEDITERR MAR SCI, V17, P417, DOI 10.12681/mms.1429
Harmelin J.-G., 1977, Travaux Scientifiques du Parc National de Port-Cros, V3, P143
Harmelin J.-G., 1976, MEMOIRES LINSTITUTE, V10, P1
Harmelin J-G, 1978, TETHYS, V8, P173
Harmelin Jean-Georges, 2006, V257, P73
Harmelin Jean-Georges, 2017, Travaux Scientifiques du Parc National de Port-Cros, V31, P105
HARMELIN JG, 1970, CAH BIOL MAR, V11, P77
HARMELIN JG, 1973, RAPPORTS COMMISSION, V21, P675
Hattour MJ, 2010, REV PARALIA, V3, P31
Hayward P, 1998, SYNOPSES BRIT FAUNA, P1
Hayward P.J., 1979, Synopses of the British Fauna New Series, P1
Hayward P.J., 1975, Documents Lab Geol Fac Sci Lyon Hors Ser, V3, P347
Hayward PJ, 2002, B AM MUS NAT HIST, P1
HAYWARD PJ, 1974, J NAT HIST, V8, P369, DOI 10.1080/00222937400770321
Heller C., 1867, VERHANDLUNGEN ZOOLOG, V17, P77
Hincks T., 1886, Annals of Natural History, V(5), P254
Hincks T, 1880, HIST BRIT MARINE POL, V2
Hincks T., 1880, HIST BRIT MARINE POL, V1
Hondt J.L. d', 2006, NOUVELLE DESCRIPTION, P1
Jullien J., 1886, B SOC ZOOLOGIQUE FRA, V11, P601
Kocak F, 2002, INDIAN J MAR SCI, V31, P235
Larwood G.P., 1962, B BRIT MUSEUM NATURA, V6
Lepoint G, 2014, CAH BIOL MAR, V55, P57
Lidgard S, 2012, EVOL ECOL, V26, P233, DOI 10.1007/s10682-011-9513-7
Marchio G., 1982, NATURALISTA SICILIAN, V3, P499
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Moissette P., 2013, LECT NOTES EARTH SYS, V143, P187, DOI [DOI 10.1007/978-3-642-16411-8_13, 10.1007/978-3-642-16411-8_13]
Moissette P, 2007, PALAIOS, V22, P200, DOI 10.2110/palo.2005.p05-141r
Moissette P, 2016, GEOL MAG, V153, P61, DOI 10.1017/S0016756815000230
Norman A. M., 1909, Journal of the Linnean Society London Zoology, V30
Norman A. M., 1903, Annals of Natural History Ser 7, Vxii, P87
Ostrovsky A, 2013, EVOLUTION OF SEXUAL REPRODUCTION IN MARINE INVERTEBRATES: EXAMPLE OF GYMNOLAEMATE BRYOZOANS, P229, DOI 10.1007/978-94-007-7146-8_3
Pages-Escola M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-36094-9
Peres J.-M., 1964, NOUVEAU MANUEL BIONO
Pergent G., 2012, MEDITERRANEAN SEAGRA
PISANO E, 1985, MAR ECOL PROG SER, V27, P195, DOI 10.3354/meps027195
POWELL NA, 1970, J FISH RES BOARD CAN, V27, P2095, DOI 10.1139/f70-234
Prenant M., 1966, Faune de France, V68, P1
Prenant M., 1927, Trav Sta zool Roscoff, V6, P1
PULPEIRO E F, 1980, Investigacion Pesquera (Barcelona), V44, P119
Reverter O, 1996, J NAT HIST, V30, P1247, DOI 10.1080/00222939600770681
REVERTER O, 1995, CAH BIOL MAR, V36, P123
Reverter-Gil O, 2016, J NAT HIST, V50, P281, DOI 10.1080/00222933.2015.1062153
Rosso A, 2018, ZOOTAXA, V4524, P401, DOI 10.11646/zootaxa.4524.4.1
Rosso A, 2016, MEDITERR MAR SCI, V17, P567, DOI 10.12681/mms.1706
Rosso A., 1996, BIOL MARINA MEDITERR, V3, P58
Rosso A, 2015, B SOC PALEONTOL ITAL, V54, P91, DOI 10.4435/BSPI.2015.05
RYLAND J S, 1971, Irish Naturalists' Journal, V17, P65
Sammari C, 2006, CONT SHELF RES, V26, P338, DOI 10.1016/j.csr.2005.11.006
Savigny JC, 1817, HIST NATURELLE, P1
Souto J, 2010, J MAR BIOL ASSOC UK, V90, P1417, DOI 10.1017/S0025315409991640
STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3
STRAUGHAN D, 1975, WATER AIR SOIL POLL, V5, P39, DOI 10.1007/BF00431577
Waters A. W., 1899, Journal of the Royal Microscopical Society, P6
Waters A. W., 1923, Annals & Magazine of Natural History Series 9, V12, P545
Waters AW., 1879, ANN MAG NAT HIST, V3, P192, DOI [10.1080/00222937908694085, DOI 10.1080/00222937908682488]
Winston JE, 2013, ZOOTAXA, V3710, P101
Zabala M., 1988, Treballs del Museu de Zoologia, P1
Zabala M., 1986, FAUNA BRIOZOUS DELS
NR 101
TC 0
Z9 0
U1 0
U2 3
PU PUBLICATIONS SCIENTIFIQUES DU MUSEUM, PARIS
PI PARIS CEDEX 05
PA CP 39-57, RUE CUVIER, F-75231 PARIS CEDEX 05, FRANCE
SN 1280-9551
EI 1638-9387
J9 ZOOSYSTEMA
JI Zoosystema
PD DEC
PY 2018
VL 40
SI 1
BP 385
EP 418
DI 10.5252/zoosystema2019v41a21
PG 34
WC Zoology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Zoology
GA JC8US
UT WOS:000489552200008
OA Green Submitted
DA 2023-03-13
ER
PT J
AU Gurbay, A
Gonthier, B
Barret, L
Favier, A
Hincal, F
AF Gurbay, Aylin
Gonthier, Brigitte
Barret, Luc
Favier, Alain
Hincal, Filiz
TI Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes
and protection by Vitamin E
SO TOXICOLOGY
LA English
DT Article
DE ciprofloxacin; central nervous system; Astrocytes; cytotoxicity;
oxidative stress; hormesis
ID CENTRAL-NERVOUS-SYSTEM; OXIDATIVE STRESS; IN-VITRO; QUINOLONE
ANTIBIOTICS; GABA(A) RECEPTOR; TOXICITY; FLUOROQUINOLONES; APOPTOSIS;
DAMAGE; BRAIN
AB The aim of this study was to investigate the possible cytotoxic and oxidative stress inducing effects of ciprofloxacin (CPFX) on primary cultures of rat astrocytes. The cultured cells were incubated with various concentrations of CPFX (0.5-300 mg/l), and cytotoxicity was determined by neutral red (NR) and MTT assays. Survival profile of cells was biphasic in NR assay: CPFX did not cause any alteration at any concentration for 7 h, whereas <= 50 mg/l concentrations induced significant cell proliferation in incubation periods of 24, 48, 72, and 96 h. However, cell proliferation gradually decreased at higher concentrations, and 200 and 300 mg/l of CPFX exposure was found to be significantly (p < 0.05) cytotoxic at all time periods. With MTT assay, no alteration was noted for incubation period of 7 h, as observed with NR assay. But, cell viability decreased with similar to >= 50 mg/l CPFX exposure in all other time periods. Cell proliferation was only seen in 24 h of incubation with 0.5 and 5 mg/l CPFX. Vitamin E pretreatment of cell cultures were found to be providing complete protection against cytotoxicity of 300 mg/1 CPFX in 96 h incubation when measured with both NR and MTT assays. The SOD pretreatment was partially protective with NR assay, but no protection was noted when measured with MTT. A significant enhancement of lipid peroxidation was observed with the cytotoxic concentration of the drug, but total glutathione content and catalase activity of cells did not change. The data obtained in this study suggest that, in accordance with our previous results with fibroblast cells, CPFX-induced cytotoxicity is related to oxidative stress. And the biphasic effect of CPFX possibly resulted from the complex dose-dependent relationships between reactive oxygen species, cell proliferation, and cell viability. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
C1 Hacettepe Univ, Fac Pharm, Dept Toxicol, TR-06100 Ankara, Turkey.
Hacettepe Univ, Fac Pharm, Dept Pharmaceut Technol, TR-06100 Ankara, Turkey.
CEA, Fac Med Grenoble, UMR E UJF, ORSOX,Lab Oligoelements & Resistance Stress Oxyda, La Tronche, France.
CEA, Dept Rech Fondamentale Matiere Condensee, Serv Chim Inorgan & Biol, Lab Lesions Acides Nucle, Grenoble, France.
C3 Hacettepe University; Hacettepe University; CEA; Communaute Universite
Grenoble Alpes; UDICE-French Research Universities; Universite Grenoble
Alpes (UGA); CEA
RP Gurbay, A (corresponding author), Hacettepe Univ, Fac Pharm, Dept Toxicol, TR-06100 Ankara, Turkey.
EM Aylingurbay@hotmail.com; fhincal@tr.net
RI gurbay, Aylin/AAF-7665-2020
OI gurbay, Aylin/0000-0002-8571-1092
CR AEBI H, 1984, METHOD ENZYMOL, V105, P121
AKAHANE K, 1993, ANTIMICROB AGENTS CH, V37, P1764, DOI 10.1128/AAC.37.9.1764
Akerboom T P, 1981, Methods Enzymol, V77, P373
BALL P, 1989, CLIN INVEST MED, V12, P28
BALL P, 1995, DRUG SAFETY, V13, P343, DOI 10.2165/00002018-199513060-00004
BASSARIS HP, 1986, P 1 INT CIPR WORKSH, P204
Blondeau JM, 1999, CLIN THER, V21, P3
BOLANOS JP, 1995, J NEUROCHEM, V64, P1965
BONDY SC, 1993, FREE RADICAL BIO MED, V14, P633, DOI 10.1016/0891-5849(93)90144-J
BOOHER J, 1972, Neurobiology (Copenhagen), V2, P97
BORENFREUND E, 1985, TOXICOL LETT, V24, P119, DOI 10.1016/0378-4274(85)90046-3
Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
CHRIST W, 1990, J ANTIMICROB CHEMOTH, V26, P219, DOI 10.1093/jac/26.suppl_B.219
CHRIST W, 1988, REV INFECTIOUS DI S1, V10, P141
COOKSON MR, 1994, TOXICOL IN VITRO, V8, P351, DOI 10.1016/0887-2333(94)90156-2
COYLE JT, 1993, SCIENCE, V262, P689, DOI 10.1126/science.7901908
DAVEY PG, 1988, J ANTIMICROB CHEMOTH, V22, P97, DOI 10.1093/jac/22.Supplement_C.97
DAVEY PG, 1994, ANTIMICROB AGENTS CH, V38, P1356, DOI 10.1128/AAC.38.6.1356
DEXTER DT, 1994, MOVEMENT DISORD, V9, P92, DOI 10.1002/mds.870090115
DODD PR, 1989, PHARMACOL TOXICOL, V64, P404, DOI 10.1111/j.1600-0773.1989.tb00676.x
Drukarch B, 1998, FREE RADICAL BIO MED, V25, P217, DOI 10.1016/S0891-5849(98)00050-1
Emonet N, 1997, J PHOTOCH PHOTOBIO B, V40, P84, DOI 10.1016/S1011-1344(97)00041-9
Eysseric H, 1997, ALCOHOL CLIN EXP RES, V21, P1018, DOI 10.1111/j.1530-0277.1997.tb04247.x
GERDING DN, 1989, REV INFECT DIS, V11, pS1046
Gootz T.D., 1990, 4 QUINOLONES ANTIBAC, P159, DOI [10.1007/978-1-4471-3449-7_11, DOI 10.1007/978-1-4471-3449-7_11]
Gurbay A, 2006, NEUROTOXICOLOGY, V27, P6, DOI 10.1016/j.neuro.2005.05.007
Gurbay A, 2005, TOXICOL MECH METHOD, V15, P339, DOI 10.1080/153765291009877
Gurbay A, 2004, DRUG CHEM TOXICOL, V27, P233, DOI 10.1081/DCT-120037504
Gurbay A, 2002, HUM EXP TOXICOL, V21, P635, DOI 10.1191/0960327102ht305oa
Gurbay A, 2001, FREE RADICAL BIO MED, V30, P1118, DOI 10.1016/S0891-5849(01)00508-1
HAYEM G, 1994, ANTIMICROB AGENTS CH, V38, P243, DOI 10.1128/AAC.38.2.243
Herold C, 2002, BRIT J CANCER, V86, P443, DOI 10.1038/sj.bjc.6600079
HINCAL F, 1995, INT C TOX SEATTL WAS, V7, P27
Hincal Filiz, 2003, Nonlinearity Biol Toxicol Med, V1, P481, DOI 10.1080/15401420390271083
Kawakami J, 1997, TOXICOL APPL PHARM, V145, P246, DOI 10.1006/taap.1997.8137
KUCERS A, 1997, USE ANTIBIOTICS
Lawrence JW, 1996, MOL PHARMACOL, V50, P1178
LOWRY OH, 1951, J BIOL CHEM, V193, P265
MAKAR TK, 1994, J NEUROCHEM, V62, P45
MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4
Naora K, 1999, J PHARM PHARMACOL, V51, P609, DOI 10.1211/0022357991772718
OCALLAGHAN JP, 1995, NEUROCHEM INT, V26, P115, DOI 10.1016/0197-0186(94)00106-5
OCALLAGHAN JP, 1993, ANN NY ACAD SCI, V679, P195, DOI 10.1111/j.1749-6632.1993.tb18299.x
Pentreath VW, 2000, HUM EXP TOXICOL, V19, P641, DOI 10.1191/096032700676221595
Peuchen S, 1997, PROG NEUROBIOL, V52, P261, DOI 10.1016/S0301-0082(97)00010-5
RICHARD MJ, 1992, CLIN CHEM, V38, P704
Robb SJ, 1998, BRAIN RES, V788, P125, DOI 10.1016/S0006-8993(97)01543-6
Schmuck G, 1998, ANTIMICROB AGENTS CH, V42, P1831, DOI 10.1128/AAC.42.7.1831
SHOPSIS C, 1984, ANAL BIOCHEM, V140, P104, DOI 10.1016/0003-2697(84)90139-8
Stahlmann R, 1999, DRUGS, V58, P37, DOI 10.2165/00003495-199958002-00007
SUBBARAO KV, 1990, J NEUROCHEM, V55, P342, DOI 10.1111/j.1471-4159.1990.tb08858.x
Takuma K, 2004, PROG NEUROBIOL, V72, P111, DOI 10.1016/j.pneurobio.2004.02.001
WAGAI N, 1992, FREE RADICAL RES COM, V17, P387, DOI 10.3109/10715769209083143
WILLIAMS PD, 1991, TOXICOL LETT, V58, P23, DOI 10.1016/0378-4274(91)90186-A
Wilson JX, 1997, CAN J PHYSIOL PHARM, V75, P1149, DOI 10.1139/cjpp-75-10-11-1149
WOLFF M, 1987, ANTIMICROB AGENTS CH, V31, P899, DOI 10.1128/AAC.31.6.899
WOLFSON JS, 1985, ANTIMICROB AGENTS CH, V28, P581, DOI 10.1128/AAC.28.4.581
NR 58
TC 38
Z9 40
U1 1
U2 17
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0300-483X
EI 1879-3185
J9 TOXICOLOGY
JI Toxicology
PD JAN 5
PY 2007
VL 229
IS 1-2
BP 54
EP 61
DI 10.1016/j.tox.2006.09.016
PG 8
WC Pharmacology & Pharmacy; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy; Toxicology
GA 125TZ
UT WOS:000243467000006
PM 17098346
DA 2023-03-13
ER
PT J
AU Sidhu, H
O'Connor, G
Kruse, J
AF Sidhu, Harmanpreet
O'Connor, George
Kruse, Jason
TI Plant toxicity and accumulation of biosolids-borne ciprofloxacin and
azithromycin
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Phytotoxicity; Plant uptake; Antibiotics; Ciprofloxacin; Azithromycin;
Biosolids
ID PERSONAL CARE PRODUCTS; CROP PLANTS; PHYSICOCHEMICAL PROPERTIES;
MUNICIPAL BIOSOLIDS; SOIL; PHARMACEUTICALS; WATER; HORMESIS;
BIODEGRADATION; ENROFLOXACIN
AB Trace organic chemicals (TOrCs) in land applied biosolids can cause phytotoxicities and contaminate human and animal food chains. Information on phytotoxicity and phytoaccumulation of environmentally relevant concentrations of two antibiotic TOrCs, ciprofloxacin (CIP) and azithromycin (AZ), from biosolids-amended soils is limited. Greenhouse studies were conducted to assess the plant toxicity and accumulation of a range of environmentally relevant concentrations of biosolids-borne CIP and AZ in biosolids-amended soils. Separate studies assessed phytotoxicity potential of soil-borne CIP and AZ (soils directly spiked with the target antibiotics without biosolids) at concentrations much greater than those of environmental relevance in biosolids-amended soils. Both the biosolids-borne and the soil-borne antibiotic studies involved three plants (radish (Raphanus sativus), lettuce (Lactuca sativa), and tall fescue grass (Festuca arundinacea)) of different morphologies, physiologies, and chemical exposure scenarios. Phytotoxicity and phytoaccumulation from the biosolids-borne antibiotics were minimal at environmentally relevant concentrations, even in sand. The separate phytotoxicity experiments involving the soil-borne antibiotics revealed no observed adverse effect concentration (NOAEC) of 3.2 mg kg(-1) (AZ) and 36.1 mg kg(-1) (CIP) for the three plants grown in soils mimicking typical agricultural soils. These NOAEC values are about 100-fold greater than the antibiotic concentrations expected in biosolids-amended soils. NOAEC values under an unrealistic worst-case where the antibiotics were directly spiked to sand (NOAEC = 3.2 mg kg(-1) for AZ; and >= 0.36 mg kg(-1) for CIP) were also greater than the environmentally relevant concentrations of the biosolids-borne antibiotics. The results suggest that land application of biosolids-borne CIP and AZ pose De minimis risks to plants. Point estimates of plant bioaccumulation factors (dry weight basis) were 0.01 (CIP) and 0.1 (AZ), suggesting minimal impacts of the target TOrCs on human and/or animal food chains. (C) 2018 Elsevier B.V. All rights reserved.
C1 [Sidhu, Harmanpreet; O'Connor, George] Univ Florida, Soil & Water Sci Dept, Gainesville, FL 32611 USA.
[Kruse, Jason] Univ Florida, Dept Environm Hort, Gainesville, FL 32611 USA.
C3 State University System of Florida; University of Florida; State
University System of Florida; University of Florida
RP Sidhu, H (corresponding author), Univ Florida, 2181 McCarty Hall A, Gainesville, FL 32611 USA.
EM hsidhu@ufl.edu
OI Kruse, Jason/0000-0002-7383-9224; Sidhu, Harmanpreet/0000-0001-9359-3180
FU Water Research Foundation [TOBI2R15]
FX This research was supported by the Water Research Foundation (Project
#TOBI2R15). We thank Dr. Kuldip Kumar for procuring the biosolids and
Dr. George Hochmuth for advice on planting, plant growth, and
maintenance protocols.
CR [Anonymous], 3501 USEPA OFF RES D
[Anonymous], 3532 USEPA OFF RES D
Aristilde L, 2013, ENVIRON TOXICOL CHEM, V32, P1467, DOI 10.1002/etc.2214
Aristilde L, 2010, ENVIRON SCI TECHNOL, V44, P1444, DOI 10.1021/es902665n
Bartha B, 2010, ENVIRON SCI POLLUT R, V17, P1553, DOI 10.1007/s11356-010-0342-y
Brown S. P., 2015, FLORIDA VEGETABLE GA
Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028
Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874
Cardoza LA, 2005, WATER AIR SOIL POLL, V161, P383, DOI 10.1007/s11270-005-5550-6
Carmosini N, 2009, CHEMOSPHERE, V77, P813, DOI 10.1016/j.chemosphere.2009.08.003
Castela-Papin N, 1999, INT J PHARM, V182, P111, DOI 10.1016/S0378-5173(99)00073-3
Coleman JOD, 1997, TRENDS PLANT SCI, V2, P144, DOI 10.1016/S1360-1385(97)01019-4
Dodgen LK, 2013, ENVIRON POLLUT, V182, P150, DOI 10.1016/j.envpol.2013.06.038
DuarteDavidson R, 1996, SCI TOTAL ENVIRON, V185, P59, DOI 10.1016/0048-9697(96)05042-5
ECETOC, 2013, 117 ECETOC
Eggen T, 2011, CHEMOSPHERE, V85, P26, DOI 10.1016/j.chemosphere.2011.06.041
Ericson JF, 2007, ENVIRON SCI TECHNOL, V41, P5803, DOI 10.1021/es063043+
GILLMAN GP, 1986, AUST J SOIL RES, V24, P61, DOI 10.1071/SR9860061
Girardi C, 2011, J HAZARD MATER, V198, P22, DOI 10.1016/j.jhazmat.2011.10.004
Gong WW, 2012, CHEMOSPHERE, V89, P825, DOI 10.1016/j.chemosphere.2012.04.064
Gottschall N, 2012, CHEMOSPHERE, V87, P194, DOI 10.1016/j.chemosphere.2011.12.018
Grote M, 2007, LANDBAUFORSCH VOLK, V57, P25
Huber C, 2012, J HAZARD MATER, V243, P250, DOI 10.1016/j.jhazmat.2012.10.023
Huber C, 2009, ENVIRON SCI POLLUT R, V16, P206, DOI 10.1007/s11356-008-0095-z
Jones DL, 2006, SOIL BIOL BIOCHEM, V38, P991, DOI 10.1016/j.soilbio.2005.08.012
Kipper K., 2010, 2 INT C CHEM BIOL EN
Lam MW, 2003, ENVIRON SCI TECHNOL, V37, P899, DOI 10.1021/es025902+
Lillenberg M., 2010, Agronomy Research, V8, P807
Maier MLV, 2018, CHEMOSPHERE, V190, P471, DOI 10.1016/j.chemosphere.2017.10.008
McClellan K, 2010, WATER RES, V44, P658, DOI 10.1016/j.watres.2009.12.032
McFarland JW, 1997, J MED CHEM, V40, P1340, DOI 10.1021/jm960436i
Migliore L, 2003, CHEMOSPHERE, V52, P1233, DOI 10.1016/S0045-6535(03)00272-8
Miller EL, 2016, ENVIRON SCI TECHNOL, V50, P525, DOI 10.1021/acs.est.5b01546
Nowara A, 1997, J AGR FOOD CHEM, V45, P1459, DOI 10.1021/jf960215l
OConnor GA, 1996, SCI TOTAL ENVIRON, V185, P71, DOI 10.1016/0048-9697(95)05043-4
Pannu MW, 2012, ENVIRON TOXICOL CHEM, V31, P2130, DOI 10.1002/etc.1930
Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012
Prosser RS, 2015, ENVIRON INT, V75, P223, DOI 10.1016/j.envint.2014.11.020
ROSS DL, 1992, INT J PHARMACEUT, V88, P379, DOI 10.1016/0378-5173(92)90336-Z
Sabourin L, 2012, SCI TOTAL ENVIRON, V431, P233, DOI 10.1016/j.scitotenv.2012.05.017
SCHROLL R, 1992, CHEMOSPHERE, V24, P97, DOI 10.1016/0045-6535(92)90571-8
Sidhu H. S., 2018, FATE RISK ASSESSMENT
TAKACSNOVAK K, 1992, INT J PHARM, V79, P89, DOI 10.1016/0378-5173(92)90099-N
*USEPA, 2005, EPA600R05055
USEPA, 1994, EPA600R94111
USEPA, 2007, 1694 USEPA
USEPA, 1983, EPA600479020, V150, P1
USEPA, 2009, 822R08014 USEPA
USEPA, 1993, 3512 USEPA OFF RES D
Vasudevan D, 2009, GEODERMA, V151, P68, DOI 10.1016/j.geoderma.2009.03.007
Walters E, 2010, WATER RES, V44, P6011, DOI 10.1016/j.watres.2010.07.051
Wu CX, 2008, CHEMOSPHERE, V73, P511, DOI 10.1016/j.chemosphere.2008.06.026
Wu XQ, 2015, SCI TOTAL ENVIRON, V536, P655, DOI 10.1016/j.scitotenv.2015.07.129
NR 53
TC 25
Z9 25
U1 5
U2 94
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD JAN 15
PY 2019
VL 648
BP 1219
EP 1226
DI 10.1016/j.scitotenv.2018.08.218
PG 8
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA GX5QQ
UT WOS:000447805500113
PM 30340267
DA 2023-03-13
ER
PT J
AU Gust, KA
Chaitankar, V
Ghosh, P
Wilbanks, MS
Chen, XF
Barker, ND
Pham, D
Scanlan, LD
Rawat, A
Talent, LG
Quinn, MJ
Vulpe, CD
Elasri, MO
Johnson, MS
Perkins, EJ
McFarland, CA
AF Gust, Kurt A.
Chaitankar, Vijender
Ghosh, Preetam
Wilbanks, Mitchell S.
Chen, Xianfeng
Barker, Natalie D.
Pham, Don
Scanlan, Leona D.
Rawat, Arun
Talent, Larry G.
Quinn, Michael J., Jr.
Vulpe, Christopher D.
Elasri, Mohamed O.
Johnson, Mark S.
Perkins, Edward J.
McFarland, Craig A.
TI Multiple environmental stressors induce complex transcriptomic responses
indicative of phenotypic outcomes in Western fence lizard
SO BMC GENOMICS
LA English
DT Article
DE Multiple stressors; Reptiles; Genomics; Munitions; Malaria; Food
limitation; Climate change; TNT; Immune response
ID PLASMODIUM-MEXICANUM; CROSS-PRESENTATION; MALARIAL PARASITE; FATHEAD
MINNOW; TOXICITY; 2,4,6-TRINITROTOLUENE; MECHANISMS; EXPOSURE; PROTEIN;
SYSTEM
AB Background: The health and resilience of species in natural environments is increasingly challenged by complex anthropogenic stressor combinations including climate change, habitat encroachment, and chemical contamination. To better understand impacts of these stressors we examined the individual- and combined-stressor impacts of malaria infection, food limitation, and 2,4,6-trinitrotoluene (TNT) exposures on gene expression in livers of Western fence lizards (WFL, Sceloporus occidentalis) using custom WFL transcriptome-based microarrays.
Results: Computational analysis including annotation enrichment and correlation analysis identified putative functional mechanisms linking transcript expression and toxicological phenotypes. TNT exposure increased transcript expression for genes involved in erythropoiesis, potentially in response to TNT-induced anemia and/or methemoglobinemia and caused dose-specific effects on genes involved in lipid and overall energy metabolism consistent with a hormesis response of growth stimulation at low doses and adverse decreases in lizard growth at high doses. Functional enrichment results were indicative of inhibited potential for lipid mobilization and catabolism in TNT exposures which corresponded with increased inguinal fat weights and was suggestive of a decreased overall energy budget. Malaria infection elicited enriched expression of multiple immune-related functions likely corresponding to increased white blood cell (WBC) counts. Food limitation alone enriched functions related to cellular energy production and decreased expression of immune responses consistent with a decrease in WBC levels.
Conclusions: Despite these findings, the lizards demonstrated immune resilience to malaria infection under food limitation with transcriptional results indicating a fully competent immune response to malaria, even under bio-energetic constraints. Interestingly, both TNT and malaria individually increased transcriptional expression of immune-related genes and increased overall WBC concentrations in blood; responses that were retained in the TNT x malaria combined exposure. The results demonstrate complex and sometimes unexpected responses to multiple stressors where the lizards displayed remarkable resiliency to the stressor combinations investigated.
C1 [Gust, Kurt A.; Wilbanks, Mitchell S.; Perkins, Edward J.] US Army, Engineer Res & Dev Ctr, Environm Lab, Vicksburg, MS 39180 USA.
[Chaitankar, Vijender] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA.
[Ghosh, Preetam] Virginia Commonwealth Univ, Sch Engn, Richmond, VA 23284 USA.
[Chen, Xianfeng] IFXworks LLC, 2915 Columbia Pike, Arlington, VA 22204 USA.
[Barker, Natalie D.] Bennett Aerosp, Cary, NC 27511 USA.
[Pham, Don; Scanlan, Leona D.] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94720 USA.
[Pham, Don] Carlsbad Unified Sch Dist, Carlsbad, CA 92009 USA.
[Scanlan, Leona D.] Calif Environm Protect Agcy, Dept Pesticide Regulat, Sacramento, CA 95812 USA.
[Rawat, Arun] Sidra Med, North Campus, Doha 26999, Qatar.
[Talent, Larry G.] Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA.
[Quinn, Michael J., Jr.; Johnson, Mark S.; McFarland, Craig A.] US Army, Publ Hlth Ctr, Aberdeen Proving Ground, MD 21010 USA.
[Vulpe, Christopher D.] Univ Florida, Coll Vet Med, Gainesville, FL 32610 USA.
[Elasri, Mohamed O.] Univ Southern Mississippi, Dept Biol Sci, Hattiesburg, MS 39406 USA.
C3 United States Department of Defense; United States Army; U.S. Army Corps
of Engineers; U.S. Army Engineer Research & Development Center (ERDC);
National Institutes of Health (NIH) - USA; NIH National Heart Lung &
Blood Institute (NHLBI); Virginia Commonwealth University; University of
California System; University of California Berkeley; California
Environmental Protection Agency; Sidra Medical & Research Center;
Oklahoma State University System; Oklahoma State University -
Stillwater; State University System of Florida; University of Florida;
University of Southern Mississippi
RP Gust, KA (corresponding author), US Army, Engineer Res & Dev Ctr, Environm Lab, Vicksburg, MS 39180 USA.
EM kurt.a.gust@usace.army.mil
RI Rawat, Arun/Q-2520-2019; Rawat, Arun/AAD-1534-2019; Johnson, Mark
S./AAX-1357-2020; Vulpe, Chris/AAF-9170-2020; Rawat, Arun/ABD-6248-2021
OI Vulpe, Chris/0000-0001-5134-8929; Rawat, Arun/0000-0003-0540-2044;
Ghosh, Preetam/0000-0003-3880-5886; Gust, Kurt/0000-0002-7244-3762
FU US Army Environmental Quality / Installations (EQ/I) research program;
Genomic Signatures basic research project (Army 6.1) [09-27]; Impacts of
MCs on Biological Networks applied research focus area [Army 6.2-6.3]
FX This work was funded by the US Army Environmental Quality /
Installations (EQ/I) research program. The core study was funded by the
Genomic Signatures basic research project (Army 6.1, 09-27) with
supplemental funding from the Impacts of MCs on Biological Networks
applied research focus area (Army 6.2-6.3). The funding body had no role
in the design of the study, data collection, analysis, or interpretation
of data.
CR ALARCON B, 1988, J BIOL CHEM, V263, P2953
Allen SJ, 1997, P NATL ACAD SCI USA, V94, P14736, DOI 10.1073/pnas.94.26.14736
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2
Ankley GT, 2006, ENVIRON SCI TECHNOL, V40, P4055, DOI 10.1021/es0630184
Ayi K, 2008, NEW ENGL J MED, V358, P1805, DOI 10.1056/NEJMoa072464
Bandorowicz-Pikula J, 2012, DO ANNEXINS PARTICIP, V29
Barone R, 2007, CLIN LAB, V53, P321
Basha G, 2012, NAT IMMUNOL, V13, P237, DOI 10.1038/ni.2225
Bejon P, 2006, INFECT IMMUN, V74, P6331, DOI 10.1128/IAI.00774-06
BENNETT NT, 1993, AM J SURG, V165, P728, DOI 10.1016/S0002-9610(05)80797-4
Boyum A, 1996, SCAND J IMMUNOL, V43, P228, DOI 10.1046/j.1365-3083.1996.d01-32.x
Cappadoro M, 1998, BLOOD, V92, P2527, DOI 10.1182/blood.V92.7.2527.2527_2527_2534
Collier ZA, 2016, REGUL TOXICOL PHARM, V75, P46, DOI 10.1016/j.yrtph.2015.12.014
CONBOY J, 1986, P NATL ACAD SCI USA, V83, P9512, DOI 10.1073/pnas.83.24.9512
Deng Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018605
DILLEY JV, 1982, J TOXICOL ENV HEALTH, V9, P565, DOI 10.1080/15287398209530188
DUNLAP KD, 1995, PHYSIOL ZOOL, V68, P608, DOI 10.1086/physzool.68.4.30166347
Eisen RJ, 2000, P ROY SOC B-BIOL SCI, V267, P793, DOI 10.1098/rspb.2000.1073
FARESE RV, 1995, P NATL ACAD SCI USA, V92, P1774, DOI 10.1073/pnas.92.5.1774
FRANCESCHINI G, 1981, METABOLISM, V30, P502, DOI 10.1016/0026-0495(81)90188-8
Fu C, 1998, IMMUNITY, V9, P93, DOI 10.1016/S1074-7613(00)80591-9
GILMANSHIN R, 1994, BIOCHEMISTRY-US, V33, P8225, DOI 10.1021/bi00193a008
Glickman MH, 2002, PHYSIOL REV, V82, P373, DOI 10.1152/physrev.00027.2001
Gong P, 2007, ENVIRON SCI TECHNOL, V41, P8195, DOI 10.1021/es0716352
GUGGENHEIM K, 1949, BLOOD, V4, P958, DOI 10.1182/blood.V4.8.958.958
Gust KA, 2018, AQUAT TOXICOL, V199, P138, DOI 10.1016/j.aquatox.2018.03.019
Gust KA, 2017, AQUAT TOXICOL, V190, P228, DOI 10.1016/j.aquatox.2017.07.004
Gust KA, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1798-4
Gust KA, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-591
Gust KA, 2011, ENVIRON TOXICOL CHEM, V30, P1852, DOI 10.1002/etc.558
Gust KA, 2009, TOXICOL SCI, V110, P168, DOI 10.1093/toxsci/kfp091
Hatefi Y, 1985, ENZYMES BIOL MEMBR, V4, P1
Hedges SB, 1999, SCIENCE, V283, P998, DOI 10.1126/science.283.5404.998
Hillier LW, 2004, NATURE, V432, P695, DOI 10.1038/nature03154
Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211
Huang XQ, 1999, GENOME RES, V9, P868, DOI 10.1101/gr.9.9.868
Joffre OP, 2012, NAT REV IMMUNOL, V12, P557, DOI 10.1038/nri3254
Jonckheere AI, 2012, J INHERIT METAB DIS, V35, P211, DOI 10.1007/s10545-011-9382-9
Kersten S, 2014, MOL METAB, V3, P354, DOI 10.1016/j.molmet.2014.02.002
Komaki G, 1997, AM J CLIN NUTR, V66, P147, DOI 10.1093/ajcn/66.1.147
Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559
Le Bon A, 2001, IMMUNITY, V14, P461, DOI 10.1016/S1074-7613(01)00126-1
Lima JD, 2016, FRONT IMMUNOL, V7, DOI 10.3389/fimmu.2016.00013
Lin HF, 1997, BLOOD, V90, P3962, DOI 10.1182/blood.V90.10.3962
Liu SK, 1999, CURR BIOL, V9, P67, DOI 10.1016/S0960-9822(99)80017-7
Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x
Maroziene A, 2001, Z NATURFORSCH C, V56, P1157
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Mcfarland CA, 2008, ENVIRON TOXICOL CHEM, V27, P1102, DOI 10.1897/07-312.1
McFarland CA, 2012, ECOTOXICOLOGY, V21, P2372, DOI 10.1007/s10646-012-0993-1
Nelson DL, 2000, CML LEHNINGER PRINCI
Pertea G, 2003, BIOINFORMATICS, V19, P651, DOI 10.1093/bioinformatics/btg034
Pescador N, 2005, BIOCHEM J, V390, P189, DOI 10.1042/BJ20042121
Quinn MJ, 2007, ENVIRON TOXICOL CHEM, V26, P2202, DOI 10.1897/07-123R.1
Rawat A, 2010, PHYSIOL GENOMICS, V42, P219, DOI 10.1152/physiolgenomics.00022.2010
ROCK KL, 1994, CELL, V78, P761, DOI 10.1016/S0092-8674(94)90462-6
Saeed AI, 2003, BIOTECHNIQUES, V34, P374, DOI 10.2144/03342mt01
Schaible UE, 2007, PLOS MED, V4, P806, DOI 10.1371/journal.pmed.0040115
SCHALL JJ, 1995, J ANIM ECOL, V64, P177, DOI 10.2307/5753
SCHALL JJ, 1990, PARASITOL TODAY, V6, P264, DOI 10.1016/0169-4758(90)90188-A
Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5
SMYTH MJ, 1991, J IMMUNOL, V146, P1921
Solomon S, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P1
Stevenson MM, 2004, NAT REV IMMUNOL, V4, P169, DOI 10.1038/nri1311
Warren WC, 2010, NATURE, V464, P757, DOI 10.1038/nature08819
Wilbanks MS, 2014, TOXICOL SCI, V141, P44, DOI 10.1093/toxsci/kfu104
Wintz H, 2006, TOXICOL SCI, V94, P71, DOI 10.1093/toxsci/kfl080
Xu DK, 2009, IMMUNITY, V30, P802, DOI 10.1016/j.immuni.2009.04.013
YU DTY, 1974, J CLIN INVEST, V53, P565, DOI 10.1172/JCI107591
Zhang WG, 1998, IMMUNITY, V9, P239, DOI 10.1016/S1074-7613(00)80606-8
NR 70
TC 6
Z9 6
U1 0
U2 17
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD DEC 5
PY 2018
VL 19
AR 877
DI 10.1186/s12864-018-5270-0
PG 20
WC Biotechnology & Applied Microbiology; Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA HD1LZ
UT WOS:000452273000001
PM 30518325
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Kuciel-Lewandowska, JM
Pawlik-Sobecka, L
Placzkowska, S
Kokot, I
Paprocka-Borowiz, M
AF Kuciel-Lewandowska, Jadwiga M.
Pawlik-Sobecka, Lilla
Placzkowska, Sylwia
Kokot, Izabela
Paprocka-Borowiz, Malgorzata
TI The assessment of the integrated antioxidant system of the body and the
phenomenon of spa reaction in the course of radon therapy: A pilot study
SO ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE
LA English
DT Article
DE balneotherapy; radiation hormesis; total antioxidant status; radon
water; spa reaction
ID OXIDATIVE STRESS; HEALTH-CARE; RADIATION
AB Background. Spa reaction is an adaptive response of an organism, emerging as a result of external factors. It is a positive element of spa therapy leading to metabolic changes, which are important for the body. The effect of these changes is an increase in immune activity and regenerative reactions of the body. The mechanism of the response is not fully known.
Objectives. The aim of the study was to evaluate the changes observed in the field of the integrated antioxidant system of the body in the course of radon therapy, especially in reference to spa reaction.
Material and methods. The study was conducted in the health resort in Swieradow-Zdroj. The observation regarded patients undergoing treatment with radon water. Before the treatment, after 5 and 18 days of treatment, the total antioxidant status (TAS) was evaluated with the use of a standard colorimetric assay. The study group consisted of 35 patients with degenerative joints and disc disease. The control group consisted of 15 people selected from the employees of the spa, also suffering from osteoarthritis, who did not undergo radon therapy (without contact with radon).
Results. On the 5th day of the treatment, in both groups, the TAS increase was observed with significantly worse results in the control group. After the treatment, in the study group, an increase in TAS was observed, whereas in the control group, a significant decrease in the TAS concentration was noted.
Conclusions. A beneficial effect of radon treatments on the growth of TAS in the body of the patients treated in the spa was demonstrated. The increase in the TAS concentration on the 5th day of treatment may indicate the relationship between these changes and the phenomenon of spa response. The changes are a result of low doses of ionizing radiation originating from radon dissolved in medicinal water, used in the course of the therapy.
C1 [Kuciel-Lewandowska, Jadwiga M.; Paprocka-Borowiz, Malgorzata] Wroclaw Med Univ, Dept Physiotherapy, Wroclaw, Poland.
[Pawlik-Sobecka, Lilla; Placzkowska, Sylwia; Kokot, Izabela] Wroclaw Med Univ, Dept Lab Diagnost, Wroclaw, Poland.
C3 Wroclaw Medical University; Wroclaw Medical University
RP Paprocka-Borowiz, M (corresponding author), Wroclaw Med Univ, Dept Physiotherapy, Wroclaw, Poland.
EM malgorzata.paprocka-borowicz@umed.wroc.pl
RI Paprocka-Borowicz, Małgorzata/T-9848-2018; Płaczkowska,
Sylwia/AAY-9881-2021; Pawlik-Sobecka, Lilla/ABD-3349-2021; Kokot,
Izabela/F-7843-2013; Paprocka-Borowicz, Małgorzata/ABC-5719-2021
OI Paprocka-Borowicz, Małgorzata/0000-0003-4296-7052; Pawlik-Sobecka,
Lilla/0000-0002-9960-8205; Kokot, Izabela/0000-0002-3711-8614;
Paprocka-Borowicz, Małgorzata/0000-0003-4296-7052; Placzkowska,
Sylwia/0000-0002-1466-3820; Kuciel-Lewandowska,
Jadwiga/0000-0002-7477-360X
FU Polish Radon Cluster
FX The study was financed within the framework of the Polish Radon Cluster.
CR Belowska-Bien K., 2005, ADV CLIN EXP MED, V14, P132
Cuttler JM, 2009, DOSE-RESPONSE, V7, P52, DOI 10.2203/dose-response.08-024.Cuttler
Czajka A., 2006, J MED SCI, V75, P582
Demczyszak I., 2009, POL BALN, V51, P57
Drobnik J, 2011, FAM MED PRIM CARE RE, V13, P103
Duarte TL, 2005, FREE RADICAL RES, V39, P671, DOI 10.1080/10715760500104025
Gorzenkowicz J., 2002, POLISH J COSMETOLOGY, V5, P90
Ishimori Y, 2011, RADIAT PROT DOSIM, V146, P31, DOI 10.1093/rpd/ncr100
Kalmus P, 2015, ACTA BALNEOL, V57, P97
Kochanski W., 2004, POLISH BALNEOLOGY J, V46, P49
Kraska A, 2012, MED PR, V63, P371
Makowski M, 2003, CLIN CANCER RES, V9, P5417
Mothersill Carmel, 2006, Dose-Response, V4, P283, DOI 10.2203/dose-response.06-111.Mothersill
Opara EC, 2006, DM-DIS MON, V52, P183, DOI 10.1016/j.disamonth.2006.05.003
Pedzik A, 2008, DIAGN LAB, V44, P1
Puzanowska-Tarasiewicz H., 2009, POL MERK LEK, V27, P496
Rahman K., 2007, CLIN INTERV AGING, V2, P563
Reinisch N., 1999, RADON GESUNDHEIT, P75
Roessner A, 2008, PATHOL RES PRACT, V204, P511, DOI 10.1016/j.prp.2008.04.011
Ryszawa N, 2006, J PHYSIOL PHARMACOL, V57, P611
Sakoda A, 2013, RADIAT ENVIRON BIOPH, V52, P389, DOI 10.1007/s00411-013-0478-5
Samborski W, 2005, BALNEOL POL, V1-2, P14
SOTO J, 1999, RADON GESUNDHEIT, P63
Strzelczyk J, 2007, Dose Response, V5, P275, DOI 10.2203/dose-response.07-021.Strzelczyk
Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman
Wiktorowska-Owczarek A, 2010, POSTEP HIG MED DOSW, V64, P333
YAMAOKA K, 1991, FREE RADICAL BIO MED, V11, P299, DOI 10.1016/0891-5849(91)90127-O
Zablocka A, 2008, POSTEP HIG MED DOSW, V62, P118
Zdrojewicz Z., 2004, ADV CLIN EXP MED, V13, P267
Zdrojewicz Zygmunt, 2004, Postepy Hig Med Dosw (Online), V58, P150
NR 30
TC 9
Z9 9
U1 0
U2 8
PU WROCLAW MEDICAL UNIV
PI WROCLAW
PA UL K MARCINKOWSKIEGO 2-6, WROCLAW, 50-368, POLAND
SN 1899-5276
EI 2451-2680
J9 ADV CLIN EXP MED
JI Adv. Clin. Exp. Med.
PD OCT
PY 2018
VL 27
IS 10
BP 1341
EP 1346
DI 10.17219/acem/69450
PG 6
WC Medicine, Research & Experimental
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Research & Experimental Medicine
GA GX3YQ
UT WOS:000447663800002
PM 30085431
OA Green Submitted, gold
DA 2023-03-13
ER
PT J
AU Glady, G
AF Glady, Gilbert
TI Clinical efficacy of implementing Bio Immune(G)ene MEDicine in the
treatment of chronic asthma with the objective of reducing or removing
effectively corticosteroid therapy: A novel approach and promising
results
SO EXPERIMENTAL AND THERAPEUTIC MEDICINE
LA English
DT Article
DE asthma; respiratory hypersensitivity; eosinophils; immune system;
Th1-Th2 balance; microRNAs; immunomodulation; sublingual immunotherapy;
lung microbioma
ID ALLERGIC AIRWAYS DISEASE; CELLS; INFLAMMATION; IMMUNOTHERAPY;
ANTAGONISM; HORMESIS
AB Asthma is one of the diseases that demonstrates a wide range of variation in its clinical expression, in addition to an important heterogeneity in the pathophysiological mechanisms present in each case. The ever-increasing knowledge of the molecular signalling routes and the development of the Bio Immune(G)ene Medicine [BI(G)MED] therapy in line with this knowledge has revealed a whole novel potential set of self-regulation biological molecules, that may be used to promote the physiological immunogenic self-regulation mechanisms and re-establish the homeostatic balance at a genomic, proteomic and cellular level. The aim of the present study is to demonstrate that the sublingual use of a therapeutic protocol based on BI(G) MED regulatory BIMUREGs in the treatment of chronic asthma may reduce or suppress corticosteroid therapy and avoid its harmful side effects which some patients suffer when using this treatment on a long-term basis. The clinical efficacy of BI(G)MED for chronic asthma was evaluated through a multi-centre study carried out in 2016 implementing a 6-month BI(G)MED treatment protocol for Bronchial Asthma. A total of 61 patients from private medical centres and of European countries including Germany, Austria, France, Belgium and Spain participated. The manuscript describes in detail the clinical efficacy of Bio Immune(G)ene regulatory BI(G)MED treatment protocol that allows the reduction or total removal of the corticosteroid dose in patients with chronic asthma. No adverse reactions were observed. The BI(G)MED regulatory therapy brings novel therapeutic possibilities as an effective and safe treatment of chronic asthma. BI(G)MED was demonstrated to significantly reduce asthma severity when parameter compositions were all analysed by categorical outcomes. Therefore, it is considered a good therapeutic alternative for patients who respond poorly to steroids.
C1 [Glady, Gilbert] European Bio ImmuneGene Med Assoc, Internal Med, 1 Rue JF Kennedy, F-68000 Colmar, France.
RP Glady, G (corresponding author), European Bio ImmuneGene Med Assoc, Internal Med, 1 Rue JF Kennedy, F-68000 Colmar, France.
EM info@ebma-europe.com
CR Assa'ad AH, 2013, J ALLERGY CLIN IMMUN, V132, P1097, DOI 10.1016/j.jaci.2013.08.036
Barrett NA, 2009, IMMUNITY, V31, P425, DOI 10.1016/j.immuni.2009.08.014
Brook PO, 2015, EPIGENOMICS-UK, V7, P1017, DOI 10.2217/epi.15.53
Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973
Calamita Z, 2006, ALLERGY, V61, P1162, DOI 10.1111/j.1398-9995.2006.01205.x
Chen LS, 2012, CHIN J CANCER, V31, P564, DOI 10.5732/cjc.011.10444
Collison A, 2011, J ALLERGY CLIN IMMUN, V128, P160, DOI 10.1016/j.jaci.2011.04.005
Collison A, 2011, BMC PULM MED, V11, DOI 10.1186/1471-2466-11-29
Compalati E, 2014, CURR OPIN PULM MED, V20, P109, DOI 10.1097/MCP.0000000000000016
Deshpande DA, 2015, DRUG DEVELOP RES, V76, P286, DOI 10.1002/ddr.21267
Foster PS, 2013, IMMUNOL REV, V253, P198, DOI 10.1111/imr.12058
Kirchner B, 2012, TOP CURR CHEM, V307, P109, DOI 10.1007/128_2011_195
Kudo M, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00263
Li JJ, 2015, J ALLERGY CLIN IMMUN, V136, P462, DOI 10.1016/j.jaci.2014.11.044
Mattes J, 2009, P NATL ACAD SCI USA, V106, P18704, DOI 10.1073/pnas.0905063106
Melo C.A., 2013, NONCODING RNAS CANC, P5, DOI [10.1007/978-1-4614-8444-8_2, DOI 10.1007/978-1-4614-8444-8_2]
Metz G, 2010, IMMUNOL ALLERGY CLIN, V30, P575, DOI 10.1016/j.iac.2010.08.003
Moreira AP, 2011, J CLIN INVEST, V121, P4420, DOI 10.1172/JCI44999
Moser Serena, 2014, Front Biosci (Elite Ed), V6, P46
Nakajima H, 2007, INT ARCH ALLERGY IMM, V142, P265, DOI 10.1159/000097357
Paliwal R, 2014, AAPS PHARMSCITECH, V15, P1527, DOI 10.1208/s12249-014-0177-9
Schrauwers A, 2013, SYNTHETISCHE BIOL ME
Simpson LJ, 2014, NAT IMMUNOL, V15, P1162, DOI 10.1038/ni.3026
Stott B, 2013, J ALLERGY CLIN IMMUN, V132, P446, DOI 10.1016/j.jaci.2013.03.050
Taft RJ, 2010, J PATHOL, V220, P126, DOI 10.1002/path.2638
Winter JM, 2012, CURR OPIN BIOTECH, V23, P736, DOI 10.1016/j.copbio.2011.12.016
NR 27
TC 2
Z9 2
U1 1
U2 5
PU SPANDIDOS PUBL LTD
PI ATHENS
PA POB 18179, ATHENS, 116 10, GREECE
SN 1792-0981
EI 1792-1015
J9 EXP THER MED
JI Exp. Ther. Med.
PD JUN
PY 2018
VL 15
IS 6
BP 5133
EP 5140
DI 10.3892/etm.2018.6019
PG 8
WC Medicine, Research & Experimental
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Research & Experimental Medicine
GA GJ3FB
UT WOS:000435174400077
PM 29805540
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Hashmi, MZ
Zhang, JY
Li, BL
Su, XM
Tariq, M
Ahmad, N
Malik, RN
Ullah, K
Chen, C
Shen, CF
AF Hashmi, Muhammad Zaffar
Zhang, Jingyu
Li, Binglu
Su, Xiaomei
Tariq, Muhammad
Ahmad, Najid
Malik, Riffat Naseem
Ullah, Kalim
Chen, Chen
Shen, Chaofeng
TI Effects of structurally different noncoplanar and coplanar PCBs on HELF
cell proliferation, cell cycle, and potential molecular mechanisms
SO ENVIRONMENTAL TOXICOLOGY
LA English
DT Article
DE PCBs; human lung cell proliferation; cytotoxic; cancer; CDK2; hormesis
ID HEPATIC LIPID-PEROXIDATION; POLYCHLORINATED-BIPHENYLS; DEPENDENT
KINASES; MEMBRANE-FLUIDITY; RESTRICTION POINT; BREAST-CANCER;
DNA-DAMAGE; IN-VITRO; APOPTOSIS; CONGENERS
AB Polychlorinated biphenyls (PCBs) are a group of chemicals that persist in the environment, indoors, and humans. Lung exposure to airborne and food contaminants, such as PCBs, may cause possible lung disorders, such as cancer. In the present study, we investigated the effects of structurally different lower chlorinated (4Cl), noncoplanar PCB40, and coplanar PCB77 on human lung fibroblast cell line (HELF) cell proliferation, cell cycle progression, and possible molecular mechanisms. Noncoplanar PCB40 and coplanar PCB77 exhibited concentration- and time-dependent biphasic dose-response effects on HELF cell proliferation. Noncoplanar PCB40 and coplanar PCB77 induced 23 and 45% cytotoxicity at higher concentrations than the control. The flow cytometry analysis showed that exposure to PCB40 caused a significant increase in time spent in the G1 phase but decreased length of the S phase in a concentration- and time-dependent manner, whereas PCB77 exposure decreased time spent in the G1 and S phases but increased time spent in the G2 phase. Western blot analysis indicated that PCB77 increased the expression of cyclin E, CDK2, p21, and caspase-9, while PCB40 decreased the expression of these proteins (except CDK2 and p21). An increase in CDK expression after exposure to PCB77 suggests that it may cause carcinogenic effects on HELF cells at higher doses. Our results also demonstrate that the different cytotoxic effects induced by coplanar and nonplanar PCBs were correlated with their structural characteristics; the coplanar congener was more cytotoxic than the nonplanar congener. The study elaborates threshold levels for these chemicals and suggests that the cytotoxicity mechanisms by which PCB congeners act on HELF cells depend on their planarity and chemical structures. Furthermore, the study will be important for developing antidotes to the adverse effects and risk assessment practices for PCBs. (c) 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1183-1190, 2017.
C1 [Hashmi, Muhammad Zaffar; Zhang, Jingyu; Li, Binglu; Chen, Chen; Shen, Chaofeng] Zhejiang Univ, Dept Environm Engn, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China.
[Hashmi, Muhammad Zaffar; Ullah, Kalim] COMSATS Inst Informat Technol, Dept Meteorol, Islamabad, Pakistan.
[Su, Xiaomei] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China.
[Tariq, Muhammad] Zhejiang Univ, Inst Pharmacol & Toxicol, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China.
[Ahmad, Najid] Dongbei Univ Finance & Econ, Sch Econ, Dalian, Peoples R China.
[Malik, Riffat Naseem] Quaid I Azam Univ, Fac Biol Sci, Dept Environm Sci, Environm Biol & Ecotoxicol Lab, Islamabad, Pakistan.
C3 Zhejiang University; COMSATS University Islamabad (CUI); Zhejiang Normal
University; Zhejiang University; Dongbei University of Finance &
Economics; Quaid I Azam University
RP Hashmi, MZ; Shen, CF (corresponding author), Zhejiang Univ, Dept Environm Engn, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China.; Hashmi, MZ (corresponding author), COMSATS Inst Informat Technol, Dept Meteorol, Islamabad, Pakistan.
EM ysxzt@zju.edu.cn; hashmi_qau@yahoo.com
RI Zhang, Jing/GWZ-7332-2022; Hashmi, Muhammad Zaffar/F-3427-2015; ullah,
kalim/I-5228-2015; Malik, Riffat Naseem/ABF-4886-2020
OI ullah, kalim/0000-0002-8449-6319; Malik, Riffat
Naseem/0000-0003-4345-6000
FU TWAS-COMSTECH Research [15-384 RG/ENG/AS-C]; HEC Start Up Research,
Pakistan [21-700/SRGP/RD/HEC/2015]; Chinese Government Scholarship,
China
FX Contract grant sponsor: TWAS-COMSTECH Research.; Contract grant number:
15-384 RG/ENG/AS-C.; Contract grant sponsor: HEC Start Up Research,
Pakistan.; Contract grant number: 21-700/SRGP/R&D/HEC/2015.; Contract
grant sponsor: Chinese Government Scholarship, China 2011-2015.
CR Adams CIMC, 2016, CHEMOSPHERE, V154, P148, DOI 10.1016/j.chemosphere.2016.03.102
Ahmed MT, 2002, J HAZARD MATER, V89, P41, DOI 10.1016/S0304-3894(01)00283-7
Bergkvist C, 2008, FOOD CHEM TOXICOL, V46, P3360, DOI 10.1016/j.fct.2008.07.029
Blagosklonny MV, 2002, CELL CYCLE, V1, P103, DOI 10.4161/cc.1.2.108
Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541]
Chen YQ, 2006, INT J TOXICOL, V25, P341, DOI 10.1080/10915810600840859
Chen YX, 2010, J HAZARD MATER, V180, P773, DOI 10.1016/j.jhazmat.2010.04.041
Clare PM, 2001, J BIOL CHEM, V276, P48292, DOI 10.1074/jbc.M102034200
De S, 2010, ENVIRON INT, V36, P907, DOI 10.1016/j.envint.2010.05.011
Den Hond E, 2002, ENVIRON HEALTH PERSP, V110, P771, DOI 10.1289/ehp.02110771
Dutta SK, 2008, ENVIRON TOXICOL PHAR, V25, P218, DOI 10.1016/j.etap.2007.10.018
Eray M, 2001, CYTOMETRY, V43, P134, DOI 10.1002/1097-0320(20010201)43:2<134::AID-CYTO1028>3.0.CO;2-L
Fadhel Z, 2002, TOXICOLOGY, V175, P15, DOI 10.1016/S0300-483X(02)00086-0
Faroon O., 2015, TOXICOL IND HLTH
Ghosh S, 2010, ENVIRON INT, V36, P893, DOI 10.1016/j.envint.2010.06.010
Glauert HP, 2008, ENVIRON TOXICOL PHAR, V25, P247, DOI 10.1016/j.etap.2007.10.025
Golden R, 2009, CRIT REV TOXICOL, V39, P299, DOI 10.1080/10408440802291521
Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018
Hashmi MZ, 2015, DOSE-RESPONSE, V1, P1
Hu DF, 2008, ENVIRON SCI TECHNOL, V42, P7873, DOI 10.1021/es801823r
Katynski AL, 2004, COMP BIOCHEM PHYS C, V137, P81, DOI 10.1016/j.cca.2003.11.004
Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q
Lapenna S, 2009, NAT REV DRUG DISCOV, V8, P547, DOI 10.1038/nrd2907
Lehmann GM, 2015, ENVIRON HEALTH PERSP, V123, P109, DOI 10.1289/ehp.1408564
LEONI V, 1989, ECOTOX ENVIRON SAFE, V17, P1, DOI 10.1016/0147-6513(89)90002-X
Li A, 2001, NAT CELL BIOL, V3, pE182, DOI 10.1038/35087119
Lin CH, 2009, TOXICOL LETT, V188, P11, DOI 10.1016/j.toxlet.2009.02.009
Maddika S, 2007, DRUG RESIST UPDATE, V10, P13, DOI 10.1016/j.drup.2007.01.003
Malumbres M, 2005, TRENDS BIOCHEM SCI, V30, P630, DOI 10.1016/j.tibs.2005.09.005
Malumbres M, 2001, NAT REV CANCER, V1, P222, DOI 10.1038/35106065
Malumbres M, 2009, NAT REV CANCER, V9, P153, DOI 10.1038/nrc2602
Millikan R, 2000, CANCER EPIDEM BIOMAR, V9, P1233
Morgan DO, 1997, ANNU REV CELL DEV BI, V13, P261, DOI 10.1146/annurev.cellbio.13.1.261
NORBURY C, 1992, ANNU REV BIOCHEM, V61, P441, DOI 10.1146/annurev.bi.61.070192.002301
Ptak A, 2011, TOXICOL IND HEALTH, V27, P315, DOI 10.1177/0748233710387003
Recio-Vega R, 2013, J APPL TOXICOL, V33, P906, DOI 10.1002/jat.2763
ROUCH DA, 1995, J IND MICROBIOL, V14, P132, DOI 10.1007/BF01569895
Ruiz P, 2008, TOXICOL LETT, V181, P51, DOI 10.1016/j.toxlet.2008.06.870
SAFE SH, 1994, CRIT REV TOXICOL, V24, P87, DOI 10.3109/10408449409049308
Sanchez-Alonso JA, 2003, TOXICOL LETT, V144, P337, DOI 10.1016/S0378-4274(03)00238-8
Segre M, 2002, TOXICOLOGY, V174, P163, DOI 10.1016/S0300-483X(02)00039-2
Tan YS, 2003, TOXICOL SCI, V76, P328, DOI 10.1093/toxsci/kfg233
Tilson HA, 1998, NEUROTOXICOLOGY, V19, P517
Tofighi R, 2011, TOXICOL SCI, V124, P192, DOI 10.1093/toxsci/kfr221
Wei W, 2012, ENVIRON TOXICOL, V27, P316, DOI 10.1002/tox.20649
Wethington DM, 2005, ENVIRON SCI TECHNOL, V39, P57, DOI 10.1021/es048902d
Wu LN, 2014, J PHARM PHARMACOL, V66, P713, DOI 10.1111/jphp.12188
Yilmaz B, 2006, TOXICOLOGY, V217, P184, DOI 10.1016/j.tox.2005.09.008
ZETTERBERG A, 1995, CURR OPIN CELL BIOL, V7, P835, DOI 10.1016/0955-0674(95)80067-0
Zhang L, 2012, PLANTA MED, V78, P890, DOI 10.1055/s-0031-1298481
Zhou BBS, 2000, NATURE, V408, P433, DOI 10.1038/35044005
NR 51
TC 7
Z9 8
U1 7
U2 55
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1520-4081
EI 1522-7278
J9 ENVIRON TOXICOL
JI Environ. Toxicol.
PD APR
PY 2017
VL 32
IS 4
BP 1183
EP 1190
DI 10.1002/tox.22315
PG 8
WC Environmental Sciences; Toxicology; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Toxicology; Water Resources
GA EP7CE
UT WOS:000397534500008
PM 27463516
DA 2023-03-13
ER
PT J
AU Lopez-Martinez, G
Carpenter, JE
Hight, SD
Hahn, DA
AF Lopez-Martinez, Giancarlo
Carpenter, James E.
Hight, Stephen D.
Hahn, Daniel A.
TI Anoxia-conditioning hormesis alters the relationship between irradiation
doses for survival and sterility in the cactus moth, Cactoblastis
cactorum (Lepidoptera: Pyralidae)
SO FLORIDA ENTOMOLOGIST
LA English
DT Article
DE sterile insect technique; dose response; invasive species; inherited
(F-1) sterility
ID FRUIT-FLY DIPTERA; GAMMA-IRRADIATION; SEXUAL COMPETITIVENESS; F-1
STERILITY; CODLING MOTH; TEPHRITIDAE; NITROGEN; MALES; PUPAE;
PERFORMANCE
AB One of the most important components of a program that has a sterile insect technique (SIT) component is an appropriate irradiation dose. Knowing the organismal dose-response enables the selection of a dose that induces the highest level of sterility while preserving the sexual competitiveness and other desired qualities of the sterile insect. Finding this balance in Lepidoptera is crucial because of the use of inherited (F-1) sterility, where the irradiated parent must be competitive enough to mate while its offspring must be sterile. Manipulations of atmospheric oxygen content have been shown to be an effective way of lowering post-irradiation somatic damage while preserving sterility and improving sterile insect performance, particularly in fruit flies. In this study we tested the irradiation dose response of adults of the cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), and the effects of those doses on sterility, longevity, and F-1 performance, and whether a nitrogen conditioning-treatment (anoxia) prior to and during irradiation affected these metrics. We found that male and female fecundities were not impacted by dose or atmospheric treatment, but females were sterilized at lower doses than males. Eggs of irradiated parents took longer to hatch than those of unirradiated controls, and offspring of moths irradiated in anoxia lived longer in the absence of food and water. Anoxia conditioning rescued female fertility at intermediate doses but had no similar rescue effect on male fertility, which was always greater than female fertility at a given dose. Males generally lived longer than females and anoxia had a strong effect in lowering the male mortality rate and extending lifespan at a given dose. We show evidence that anoxia-conditioning prior to and during irradiation as part of a lepidopteran program with an SIT component could improve parental and larval performance and longevity.
C1 [Lopez-Martinez, Giancarlo; Hahn, Daniel A.] Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA.
[Lopez-Martinez, Giancarlo] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA.
[Carpenter, James E.] USDA ARS, Crop Protect & Management Res Unit, Tifton, GA 31793 USA.
[Hight, Stephen D.] Florida A&M Univ, USDA ARS CMAVE, Tallahassee, FL 32308 USA.
C3 State University System of Florida; University of Florida; New Mexico
State University; United States Department of Agriculture (USDA); State
University System of Florida; Florida A&M University; United States
Department of Agriculture (USDA)
RP Lopez-Martinez, G (corresponding author), Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA.
EM gclopez@nmsu.edu
RI Hight, Stephen/AAT-2763-2020; Lopez-Martinez, Giancarlo/AAE-8134-2020
OI Lopez-Martinez, Giancarlo/0000-0002-7937-5002
FU USDA-NIFA [2011-67012-30671]; USDA-APHIS [CA-12-8130-0159]; NIFA
[2011-67012-30671, 688117] Funding Source: Federal RePORTER
FX This work was part of the FAO/IAEA Coordinated Research Project on
Increasing the Efficiency of Lepidoptera SIT by Enhanced Quality
Control. This research was funded by USDA-NIFA 2011-67012-30671 to GLM
and USDA-APHIS CA-12-8130-0159 to DAH. The authors wish to thank George
Schneider, Suzanne Fraser, and Carl Gillis from the Florida Department
of Agriculture and Consumer Services (FDACS-DPI) for providing
irradiation assistance and expertize, and Robert Caldwell and Susan
Drawdy from the USDA-ARS Crop Protection and Management Research Unit in
Tifton, Georgia for providing us with cactus moths and transporting them
from Tifton to Gainesville. Additionally we thank Sabrina A. White and
Theodore R. Cogley for all their help setting up experiments, and
monitoring longevity and egg hatch. This work also received substantial
intellectual support from the FAO/IAEA Coordinated Research Project.
CR ASHRAF M, 1975, J ECON ENTOMOL, V68, P838, DOI 10.1093/jee/68.6.838
Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532
Bakri A, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P233, DOI 10.1007/1-4020-4051-2_9
BAUER H, 1967, CHROMOSOMA, V22, P101, DOI 10.1007/BF00326724
Bloem KA, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P677, DOI 10.1007/1-4020-4051-2_26
Bloem S, 2001, ENVIRON ENTOMOL, V30, P763, DOI 10.1603/0046-225X-30.4.763
Boardman L, 2011, FRONT PHYSIOL, V2, DOI 10.3389/fphys.2011.00092
Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015
Calkins CO, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P269, DOI 10.1007/1-4020-4051-2_10
Carpenter JE, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P115, DOI 10.1007/1-4020-4051-2_5
Carpenter JE, 2001, FLA ENTOMOL, V84, P531, DOI 10.2307/3496384
Chidawanyika F, 2011, EVOL APPL, V4, P534, DOI 10.1111/j.1752-4571.2010.00168.x
Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
DICKEL T S, 1991, Tropical Lepidoptera, V2, P117
*FAO IAEA USDA, 2003, MAN PROD QUAL CONTR
Fisher K, 1997, J ECON ENTOMOL, V90, P1609, DOI 10.1093/jee/90.6.1609
Hight SD, 2005, ENVIRON ENTOMOL, V34, P850, DOI 10.1603/0046-225X-34.4.850
Ho DH, 2010, J EXP BIOL, V213, P3, DOI 10.1242/jeb.019752
HOOPER GHS, 1971, J ECON ENTOMOL, V64, P1364, DOI 10.1093/jee/64.6.1364
Klassen W, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P3, DOI 10.1007/1-4020-4051-2_1
Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370
Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128
Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631
Gonalons CM, 2014, FLA ENTOMOL, V97, P1458, DOI 10.1653/024.097.0421
Minor RK, 2010, J GERONTOL A-BIOL, V65, P695, DOI 10.1093/gerona/glq042
Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738
Nestel D, 2007, FLA ENTOMOL, V90, P80, DOI 10.1653/0015-4040(2007)90[80:EOPCOM]2.0.CO;2
NORTH DT, 1975, ANNU REV ENTOMOL, V20, P167, DOI 10.1146/annurev.en.20.010175.001123
OHINATA K, 1977, J ECON ENTOMOL, V70, P165, DOI 10.1093/jee/70.2.165
Parker A, 2007, FLA ENTOMOL, V90, P88, DOI 10.1653/0015-4040(2007)90[88:SITAMF]2.0.CO;2
Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026
Robinson AS, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P95, DOI 10.1007/1-4020-4051-2_4
Robinson AS, 2002, MUTAT RES-REV MUTAT, V511, P113, DOI 10.1016/S1383-5742(02)00006-6
ROBINSON AS, 1975, RADIAT RES, V61, P526, DOI 10.2307/3574127
Rull J., 2011, ENTOMOL EXP APPL, V142, P78, DOI DOI 10.1111/J.1570-7458.2011.01196.X
SHARP J L, 1975, Journal of the Georgia Entomological Society, V10, P241
Tate CD, 2007, FLA ENTOMOL, V90, P537, DOI 10.1653/0015-4040(2007)90[537:IORDOT]2.0.CO;2
Terblanche JS, 2014, CURR OPIN INSECT SCI, V4, P60, DOI 10.1016/j.cois.2014.06.003
Vargas-Teran M, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P629, DOI 10.1007/1-4020-4051-2_24
Von Sonntag C., 1987, CHEM BASIS RAD BIOL
Wakid A. F. M., 1973, Environmental Entomology, V2, P37, DOI 10.1093/ee/2.1.37
ZUMREOGLU A, 1979, J ECON ENTOMOL, V72, P173, DOI 10.1093/jee/72.2.173
NR 43
TC 16
Z9 16
U1 1
U2 21
PU FLORIDA ENTOMOLOGICAL SOC
PI LUTZ
PA 16125 E LAKE BURRELL DR, LUTZ, FL 33548 USA
SN 0015-4040
EI 1938-5102
J9 FLA ENTOMOL
JI Fla. Entomol.
PD JUN
PY 2016
VL 99
SI 1
BP 95
EP 104
DI 10.1653/024.099.sp113
PG 10
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA DU5JZ
UT WOS:000382249300012
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Klimova, EM
Bozhkov, AI
Lavinska, OV
Drozdova, LA
Kurhuzova, NI
AF Klimova, Elena M.
Bozhkov, Anatoly I.
Lavinska, Olena, V
Drozdova, Larisa A.
Kurhuzova, Nataliia I.
TI Low molecular weight cytotoxic components (DAMPs) form the post-COVID-19
syndrome
SO IMMUNOBIOLOGY
LA English
DT Article
DE post-COVID-19 syndrome; Immune-metabolic state; Cytotoxic components;
Phagocytosis; The complement system; Autoantibodies
ID NEUTROPHIL EXTRACELLULAR TRAPS; HUMAN MONOCYTES; INVOLVEMENT;
ACTIVATION; COVID-19; HORMESIS; PROTEIN; HEALTH
AB We studied the role of cytotoxic components (DAMPs) formed in the body of patients with COVID-19 in ensuring the long-term preservation of post-COVID-19 manifestations and the possibility of creating an experimental model by transferring DAMPs to rats. In patients with post-COVID-19 syndrome (PCS) 2 months after SARS-CoV-2 infection we determined the presence of cytotoxic components in the blood serum (Terasaki test, Dunaliella viridis test and content of DAMPs). In post-COVID-19 syndrome patients with a high content of serum cytotoxic oligopeptide fraction (selective group, n = 16) we determined the number of leukocytes, lymphocytes, neutrophil granulocytes and monocytes in the blood, the content of C-reactive protein (CRP), the concentration of C3 and C4 complement components and circulating immune complexes, the serum content of IL-6, IL-10, IL-18, TNF-alpha, phagocytic activity of neutrophils, presence of neutrophil traps and autoantibodies ANA.It has been shown that in patients with PCS, there are components with cytotoxicity in the blood serum, form specific immunopathological patterns, which are characterized by: an increased content of CRP, complement system components C3 and C4 and cytokines (TNF-alpha, IL-6, IL-10, IL-18) activation, the formation of a wide range of autoantibodies ANA, the low efficiency of endocytosis in oxygen-independent phagocytosis; their phagocytic activity reaches its functional limit, and against this background, activation of neutrophil traps occurs, which can contribute to further induction of DAMPs. This self-sustaining cell-killing activation provided long-term pres-ervation of PCS symptoms.The transfer of blood serum components from selective group patients with PCS to rats was accompanied by the appearance of cytotoxic components in them which induced sensitization and immunopathological reactions. Preventive administration of a biologically active substance with polyfunctional properties MF to experimental animals "corrected" the initial functional state of the body's immune-metabolic system and eliminated or facilitated immuno-inflammatory reactions.
C1 [Klimova, Elena M.; Bozhkov, Anatoly I.; Lavinska, Olena, V; Kurhuzova, Nataliia I.] Kharkov Natl Univ, Dept Mol Biol & Biotechnol, 4 Pl Svobody, UA-61022 Kharkiv, Ukraine.
[Klimova, Elena M.; Lavinska, Olena, V; Drozdova, Larisa A.] Natl Acad Med Sci Ukraine, Diagnost Lab Enzyme Immunoassay & Immunofluorescen, State Inst Zaycev VT Inst Gen & Urgent Surg, Balakireva Vyizd 1, UA-61103 Kharkiv, Ukraine.
C3 Ministry of Education & Science of Ukraine; VN Karazin Kharkiv National
University; National Academy of Medical Sciences of Ukraine
RP Bozhkov, AI (corresponding author), Kharkov Natl Univ, Dept Mol Biol & Biotechnol, 4 Pl Svobody, UA-61022 Kharkiv, Ukraine.
EM niibio@karazin.ua; elena.lavinskaya@ukr.net; n_i_kurguzova@ukr.net
RI Klimova, Elena/HMP-6117-2023
FU National academy of medical sciences of Ukraine; [0121U113289]
FX Funding This work is supported by the National academy of medical
sciences of Ukraine (state registration No. 0121U113289) .
CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034
Alhabbab R.Y., 2018, BASIC SEROLOGICAL TE, DOI [10.1007/978-3-319-77694-1_9, DOI 10.1007/978-3-319-77694-1_9]
Antonio RC, 2021, MED CLIN-BARCELONA, V156, P35, DOI 10.1016/j.medcli.2020.08.001
BALLOU SP, 1992, CYTOKINE, V4, P361, DOI 10.1016/1043-4666(92)90079-7
Barciszewska AM, 2021, CHEM-BIOL INTERACT, V344, DOI 10.1016/j.cbi.2021.109501
Bartolini D, 2021, REDOX BIOL, V45, DOI 10.1016/j.redox.2021.102041
Boix V, 2022, MED CLIN-BARCELONA, V158, P178, DOI 10.1016/j.medcli.2021.10.002
Bozhkov AI, 2021, REGUL MECH BIOSYST, V12, P655, DOI 10.15421/022190
Bozhkov AI, 2017, ADV GERONTOL, V7, P41, DOI 10.1134/S2079057017010040
Bozhkov A.I., 2017, TRANSL BIOMED, V8, DOI [10.2167/2172-0479.1000107, DOI 10.2167/2172-0479.1000107]
Carvalho-Schneider C, 2021, CLIN MICROBIOL INFEC, V27, P258, DOI 10.1016/j.cmi.2020.09.052
Chen D, 2021, DEV CELL, V56, P3250, DOI 10.1016/j.devcel.2021.10.006
Coperchini F, 2020, CYTOKINE GROWTH F R, V53, P25, DOI 10.1016/j.cytogfr.2020.05.003
Mesquita RD, 2021, WIEN KLIN WOCHENSCHR, V133, P377, DOI 10.1007/s00508-020-01760-4
de la Rica R, 2012, NAT NANOTECHNOL, V7, P821, DOI [10.1038/NNANO.2012.186, 10.1038/nnano.2012.186]
Dhingra R, 2007, AM J MED, V120, P1054, DOI 10.1016/j.amjmed.2007.08.037
Di Martino M., 2020, CIR ESPAN, DOI [10.1016/j.ciresp.2020.04.029, DOI 10.1016/J.CIRESP.2020.04.029]
Dicker AJ, 2018, J ALLERGY CLIN IMMUN, V141, P117, DOI 10.1016/j.jaci.2017.04.022
Djaharuddin I, 2021, GAC SANIT, V35, pS530, DOI 10.1016/j.gaceta.2021.10.085
Forneris F, 2012, CURR OPIN STRUC BIOL, V22, P333, DOI 10.1016/j.sbi.2012.04.001
Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001
Gioia M, 2020, BIOCHEM PHARMACOL, V182, DOI 10.1016/j.bcp.2020.114225
Gorchakov A.M., 2003, METOD KOMPLEKSNOJ OC, P15
Grasselli G, 2021, LANCET RESP MED, V9, pE5, DOI 10.1016/S2213-2600(20)30525-7
Gupta A, 2020, NAT MED, V26, P1017, DOI 10.1038/s41591-020-0968-3
Huang C, 2020, LANCET, V395, P496, DOI 10.1016/S0140-6736(20)30252-X
Huang CL, 2021, LANCET, V397, P220, DOI 10.1016/S0140-6736(20)32656-8
Klimova E.M., 2016, TRANSL BIOMED, V7, P1, DOI [10.21767/2172-0479.100084, DOI 10.21767/2172-0479.100084]
Kurguzova N.I., 2015, FUNGIDOL AM J BIOMED, V2, P25, DOI [10.11648/j.ajbls.s.2014020601.15, DOI 10.11648/J.AJBLS.S.2014020601.15]
Lai CC, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105924
Land WG, 2021, GENES IMMUN, V22, P141, DOI 10.1038/s41435-021-00140-w
Makni-Maalej K, 2013, BIOCHEM PHARMACOL, V85, P92, DOI 10.1016/j.bcp.2012.10.010
Maloney BE, 2020, CLIN IMMUNOL, V212, P5, DOI 10.1016/j.clim.2020.108351
Masjuk N.P., 1973, TEOD KIEV SCI, V372
Mulder K, 2021, IMMUNITY, V54, P1883, DOI 10.1016/j.immuni.2021.07.007
Muniz-Junqueira MI, 2003, CLIN DIAGN LAB IMMUN, V10, P1096, DOI 10.1128/CDLI.10.6.1096-1102.2003
Nalbandian A, 2021, NAT MED, V27, P601, DOI 10.1038/s41591-021-01283-z
Naqvi I, 2022, BIOMATERIALS, V283, DOI 10.1016/j.biomaterials.2022.121393
Nilsson B, 2012, CLIN DEV IMMUNOL, DOI 10.1155/2012/962702
Papayannopoulos V, 2018, NAT REV IMMUNOL, V18, P134, DOI 10.1038/nri.2017.105
Parthasarathy U, 2022, BIOCHEM PHARMACOL, V195, DOI 10.1016/j.bcp.2021.114847
RIHA I, 1979, MOL IMMUNOL, V16, P489, DOI 10.1016/0161-5890(79)90075-0
Risitano AM, 2020, NAT REV IMMUNOL, V20, P343, DOI 10.1038/s41577-020-0320-7
Rodriguez-Morales AJ, 2020, TRAVEL MED INFECT DI, V34, DOI 10.1016/j.tmaid.2020.101623
Ferrando ES, 2022, CYTOKINE, V149, DOI 10.1016/j.cyto.2021.155727
Segal A W, 1973, Clin Sci, V44, p26P
[Шитов А.Ю. Shitov A.Yu.], 2013, [Альманах клинической медицины, Almanac of Clinical Medicine, Al'manakh klinicheskoi meditsiny], P48
Sungnak W, 2020, NAT MED, V26, P681, DOI 10.1038/s41591-020-0868-6
TERASAKI PI, 1964, NATURE, V204, P998, DOI 10.1038/204998b0
Gibbs DV, 2022, CRIT CARE CLIN, V38, P491, DOI 10.1016/j.ccc.2022.03.003
Vaz AR, 2011, EXP NEUROL, V229, P381, DOI 10.1016/j.expneurol.2011.03.004
Wang C, 2020, LANCET, V395, P470, DOI 10.1016/S0140-6736(20)30185-9
Wang K, 2020, ECLINICALMEDICINE, V29-30, DOI 10.1016/j.eclinm.2020.100612
Wu J, 2020, NITRIC OXIDE-BIOL CH, V102, P39, DOI 10.1016/j.niox.2020.06.002
Zhang QG, 2022, BIOMED PHARMACOTHER, V148, DOI 10.1016/j.biopha.2022.112718
NR 55
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER GMBH
PI MUNICH
PA HACKERBRUCKE 6, 80335 MUNICH, GERMANY
SN 0171-2985
EI 1878-3279
J9 IMMUNOBIOLOGY
JI Immunobiology
PD JAN
PY 2023
VL 228
IS 1
AR 152316
DI 10.1016/j.imbio.2022.152316
EA DEC 2022
PG 14
WC Immunology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Immunology
GA 7P9NS
UT WOS:000909024800001
PM 36565610
OA Green Published, hybrid
DA 2023-03-13
ER
PT J
AU Lampiri, E
Agrafioti, P
Athanassiou, CG
AF Lampiri, Evagelia
Agrafioti, Paraskevi
Athanassiou, Christos G.
TI Delayed mortality, resistance and the sweet spot, as the good, the bad
and the ugly in phosphine use
SO SCIENTIFIC REPORTS
LA English
DT Article
ID RHYZOPERTHA-DOMINICA COLEOPTERA; TRIBOLIUM-CASTANEUM HERBST; RED FLOUR
BEETLE; INSECTICIDE-INDUCED HORMESIS; STORED-PRODUCT INSECTS; LESSER
GRAIN BORER; SITOPHILUS-ORYZAE; BRAZILIAN POPULATIONS; DIAGNOSTIC
INDICATOR; NATIONAL ANALYSIS
AB Phosphine is the most commonly used gas for fumigation for durable commodities globally, but there is still inadequate information regarding its efficacy in conjunction with proper concentration monitoring. In a series of bioassays, insect mortality after specific exposure intervals to phosphine in selected species was examined, as well as the appearance of the so called "sweet spot". The species that were tested were: Oryzaephilus surinamensis (L.), Tribolium castaneum (Herbst), Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) with populations that had different levels of phosphine resistance. Evaluation was conducted by using the Phosphine Tolerance Test (PTT), with exposure of the adult stage for 15, 30, 60, 90, 150 and 300 min at 3000 ppm. At the end of these intervals (separate bioassays for each time interval), the insects were transferred to Petri dishes, in which recovery was recorded at different time intervals (2 h, 1, 2 and 7 days). The majority of susceptible populations of all species were instantly immobilized even in the shortest exposure period (15 min), in contrast with resistant populations that were active even after 300 min. After exposure to phosphine, populations and exposure time affected mortality of susceptible populations, whereas resistant populations recovered regardless of species and exposure time. Additional bioassays at the concentrations of 500, 1000, 2000 and 3000 ppm for 1, 3, 5, 20, 30 and 40 h showed the presence of the "sweet spot", i.e., decrease of mortality with the increase of concentration. In fact, for most of the tested species, the "sweet spot" appeared in 1000 and 2000 ppm at a 5-h exposure time, regardless of the level of resistance to phosphine. This observation is particularly important both in terms of the assessment of resistance and in the context of non-linear recovery at elevated concentrations, indicating the occurrence of strong hormetic reversals in phosphine efficacy.
C1 [Lampiri, Evagelia; Athanassiou, Christos G.] Ctr Res & Technol, Inst Bioecon & Agritechnol IBO, Volos 38333, Magnesia, Greece.
[Lampiri, Evagelia; Agrafioti, Paraskevi; Athanassiou, Christos G.] Univ Thessaly, Lab Entomol & Agr Zool, Dept Agr Crop Prod & Rural Environm, Phytokou Str, Nea Ionia 38446, Magnesia, Greece.
C3 University of Thessaly
RP Agrafioti, P (corresponding author), Univ Thessaly, Lab Entomol & Agr Zool, Dept Agr Crop Prod & Rural Environm, Phytokou Str, Nea Ionia 38446, Magnesia, Greece.
EM agrafiot@agr.uth.gr
OI Agrafioti, Paraskevi/0000-0001-5359-164X
FU project NANOFUM - (European Union) [T2DGE-0917]; project NANOFUM -
(Greek National Funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation - EPAnEK 2014-2020, NSRF 2014-2020,
Ministry of Development Investments / Special Secretary for Management
of ERDF and CF Sectoral Op
FX This work was supported by the project NANOFUM T2DGE-0917 (co-funded by
the European Union and Greek National Funds through the Operational
Program Competitiveness, Entrepreneurship and Innovation - EPAnEK
2014-2020, NSRF 2014-2020, Ministry of Development & Investments /
Special Secretary for Management of ERDF and CF Sectoral Operational
Programmes). Action: Bilateral R & T cooperation between Greece and
Germany. This paper reports the results of research only. Mention of
trade names or commercial products in this publication is solely for the
purpose of providing specific information and does not imply
recommendation or endorsement by CERTH/IBO.
CR Afful E, 2018, J ECON ENTOMOL, V111, P463, DOI 10.1093/jee/tox284
Agrafioti P, 2019, J STORED PROD RES, V82, P40, DOI 10.1016/j.jspr.2019.02.004
Agrafioti P., 2018, 12 INT C WORK C STOR, P351
Agrafioti P, 2020, J STORED PROD RES, V89, DOI 10.1016/j.jspr.2020.101726
Agrafioti P, 2020, COMPUT ELECTRON AGR, V173, DOI 10.1016/j.compag.2020.105383
Agrafioti P, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142044
[Anonymous], 1975, FAO PLANT PROTECT B, V23, P12
Athanassiou CG, 2019, J STORED PROD RES, V82, P17, DOI 10.1016/j.jspr.2019.01.004
Athanassiou CG, 2019, J STORED PROD RES, V80, P28, DOI 10.1016/j.jspr.2018.10.004
Athanassiou CG, 2016, CROP PROT, V90, P177, DOI 10.1016/j.cropro.2016.08.017
Athanassiou CG, 2010, J ECON ENTOMOL, V103, P197, DOI 10.1603/EC09115
Bell CH, 2000, CROP PROT, V19, P563, DOI 10.1016/S0261-2194(00)00073-9
Bengston M, 1999, J ECON ENTOMOL, V92, P17, DOI 10.1093/jee/92.1.17
Benhalima H, 2004, J STORED PROD RES, V40, P241, DOI 10.1016/S0022-474X(03)00012-2
Brabec D, 2019, INSECTS, V10, DOI 10.3390/insects10050121
Casada M., 2018, P 12 INT WORK C STOR, P718
Cato AJ, 2017, J ECON ENTOMOL, V110, P1359, DOI 10.1093/jee/tox091
Chaudhry M. Q., 2000, Pesticide Outlook, V11, P88, DOI 10.1039/b006348g
Chen Z, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121343
Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002
Collins PJ, 2017, J STORED PROD RES, V70, P25, DOI 10.1016/j.jspr.2016.10.006
COLLINS PJ, 1990, PESTIC SCI, V28, P101, DOI 10.1002/ps.2780280112
Collins PJ, 2002, J ECON ENTOMOL, V95, P862, DOI 10.1603/0022-0493-95.4.862
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
Daglish GJ, 2004, PEST MANAG SCI, V60, P822, DOI 10.1002/ps.866
Daglish GJ, 2002, PEST MANAG SCI, V58, P1015, DOI 10.1002/ps.532
Daglish GJ, 2018, J STORED PROD RES, V78, P45, DOI 10.1016/j.jspr.2018.06.003
Doganay I, 2018, J STORED PROD RES, V76, P1, DOI 10.1016/j.jspr.2017.10.003
Franco-Pereira AM, 2020, BIOMETRICAL J, V62, P1574, DOI 10.1002/bimj.201900272
Gautam SG, 2016, J ECON ENTOMOL, V109, P2525, DOI 10.1093/jee/tow221
Georgia B, 2018, J PEST SCI, V91, P1371, DOI 10.1007/s10340-018-0983-z
Gourgouta M, 2021, J STORED PROD RES, V90, DOI 10.1016/j.jspr.2020.101737
Gourgouta M, 2019, J STORED PROD RES, V83, P103, DOI 10.1016/j.jspr.2019.05.001
Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071
Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x
Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Hagstrum David W., 1999, Integrated Pest Management Reviews, V4, P127, DOI 10.1023/A:1009682410810
Holloway JC, 2016, J STORED PROD RES, V69, P129, DOI 10.1016/j.jspr.2016.07.004
Horn P, 2010, ACTA HORTIC, V880, P407, DOI 10.17660/ActaHortic.2010.880.48
Jagadeesan R, 2015, PEST MANAG SCI, V71, P1379, DOI 10.1002/ps.3940
Kaur R, 2015, HEREDITY, V115, P188, DOI 10.1038/hdy.2015.24
Kaur R, 2015, PEST MANAG SCI, V71, P1297, DOI 10.1002/ps.3926
Li L, 2014, J ECON ENTOMOL, V107, P601, DOI 10.1603/EC13354
LUCKEY TD, 1963, NATURE, V198, P263, DOI 10.1038/198263a0
Nayak M. K., 2015, Stewart Postharvest Review, V11, P3, DOI 10.2212/spr.2015.1.3
Nayak MK, 2008, PEST MANAG SCI, V64, P971, DOI 10.1002/ps.1586
Nayak MK, 2020, ANNU REV ENTOMOL, V65, P333, DOI 10.1146/annurev-ento-011019-025047
Nayak MK, 2017, J STORED PROD RES, V72, P35, DOI 10.1016/j.jspr.2017.03.004
Nayak MK, 2013, PEST MANAG SCI, V69, P48, DOI 10.1002/ps.3360
Opit GP, 2012, J ECON ENTOMOL, V105, P1107, DOI 10.1603/EC12064
Phillips TW, 2012, FUMIGATION STORED PR, P157
Pimentel MAG, 2009, J STORED PROD RES, V45, P71, DOI 10.1016/j.jspr.2008.09.001
PiMentel MAG, 2010, NEOTROP ENTOMOL, V39, P101, DOI 10.1590/S1519-566X2010000100014
Sakka M.K., 2018, P 12 INT WORKING C S, P1003
Sousa AH, 2009, J STORED PROD RES, V45, P241, DOI 10.1016/j.jspr.2009.04.003
Steuerwald R., 2006, Proceedings of the 9th International Working Conference on Stored-Product Protection, ABRAPOS, Passo Fundo, RS, Brazil, 15-18 October 2006, P306
Wang DX, 2006, J STORED PROD RES, V42, P207, DOI 10.1016/j.jspr.2005.02.001
Wilkin D. R., 1999, P 7 INT WORK C STOR, P444
WINKS RG, 1984, J STORED PROD RES, V20, P45, DOI 10.1016/0022-474X(84)90035-3
WINKS RG, 1985, J STORED PROD RES, V21, P25, DOI 10.1016/0022-474X(85)90056-6
WINKS RG, 1986, J STORED PROD RES, V22, P85, DOI 10.1016/0022-474X(86)90024-X
Yao JX, 2019, J STORED PROD RES, V84, DOI 10.1016/j.jspr.2019.101524
NR 63
TC 4
Z9 4
U1 0
U2 6
PU NATURE PORTFOLIO
PI BERLIN
PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD FEB 16
PY 2021
VL 11
IS 1
AR 3933
DI 10.1038/s41598-021-83463-y
PG 16
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA QT6VP
UT WOS:000626728100027
PM 33594183
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Xu, YQ
Liu, SS
Li, K
Wang, ZJ
Xiao, QF
AF Xu, Ya-Qian
Liu, Shu-Shen
Li, Kai
Wang, Ze-Jun
Xiao, Qian-Fen
TI Polyethylene glycol 400 significantly enhances the stimulation of
2-phenoxyethanol on Vibrio qinghaiensis sp.-Q67 bioluminescence
SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
LA English
DT Article
DE 2-Phenoxyethanol; Polyethylene glycol 400 (PEG400); Hormesis;
Toxicological interaction; Independent action
ID PERSONAL CARE PRODUCTS; CONCENTRATION ADDITION; IONIC LIQUIDS;
TOXICOLOGICAL INTERACTION; MIXTURE TOXICITY; RISK-ASSESSMENT;
PHARMACEUTICALS; PREDICTION; PESTICIDES; FISCHERI
AB Previous studies demonstrated long-term stimulation of some commercial personal care products (PCPs) on freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67 (Q67). However, whether a certain component can affect mixture's hormetic effect is still unknown. In this paper, two of ingredients in PCPs, 2-phenoxyethanol (PhE) and polyethylene glycol 400 (PEG400), were selected as object compounds to explore the relationship between concentration-response (CR) of mixtures and that of a single component. It was found that PEG400 has monotonic CR (MCR) on Q67 both at the short-term (0.25 h) and long-term (12 h) exposures while PhE has MCR at 0.25 h and hormetic CR (HCR) at 12 h. Here, the concentration-response curves (CRCs) of PEG400 at 0.25 and 12 h are overlapped each other and the CRCs of PEG400 are on the right of PhE. If the pEC(50) is taken as a toxic index, the toxicities of PEG400 at two times are basically the same, and those of PhE are the same, too, but PhE is twice as toxic as PEG400. For the mixtures of PEG400 and PhE, all rays except R1 have MCRs at 0.25 h while all rays have HCRs at 12 h where the higher the mixture ratio of PhE is, the more negative the maximum stimulation effect is. More importantly, the E-min values of all rays are more negative (1.79-3.17-fold) than that of PhE worked alone, which implies that the introduction of PEG400 significantly enhances stimulative effect of PhE. At 0.25 h, all binary mixture rays but R1 produce a low-concentration additive action and high-concentration synergism. At 12 h, all rays display additive action, antagonism, additive action, and synergism in turn when the concentration changes from low to high. The overall findings suggested toxicological interactions should be considered in the risk assessment of PCPs and their potential impacts on ecological balances.
C1 [Xu, Ya-Qian; Liu, Shu-Shen; Li, Kai; Xiao, Qian-Fen] Tongji Univ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Minist Educ, Shanghai 200092, Peoples R China.
[Liu, Shu-Shen; Wang, Ze-Jun; Xiao, Qian-Fen] Tone Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China.
[Liu, Shu-Shen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China.
C3 Tongji University
RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China.
EM ssliuhl@263.net
RI liu, Shu-Shen/G-1617-2015; Wang, ZeJun/ABF-6412-2021
FU National Natural Science Foundation of China [21677113, 21437004];
Fundamental Research Funds for the Central Universities [22120180246]
FX The authors are thankful to the National Natural Science Foundation of
China (21677113, 21437004) and the Fundamental Research Funds for the
Central Universities (22120180246) for their financial support.
CR Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068
Arnold C, 2016, ENVIRON HEALTH PERSP, V124, pA188, DOI 10.1289/ehp.124-A188
Backhaus T, 2011, ENVIRON TOXICOL CHEM, V30, P2030, DOI 10.1002/etc.586
BRESLIN WJ, 1991, FUND APPL TOXICOL, V17, P466, DOI 10.1016/0272-0590(91)90198-D
Can E, 2018, KAFKAS UNIV VET FAK, V24, P233, DOI 10.9775/kvfd.2017.18680
Cedergreen N, 2008, ENVIRON TOXICOL CHEM, V27, P1621, DOI [10.1897/07-474.1, 10.1897/07-474]
CotreauBibbo MM, 1996, J PHARM SCI, V85, P1180, DOI 10.1021/js9601849
Daughton CG, 1999, ENVIRON HEALTH PERSP, V107, P907, DOI 10.2307/3434573
Dou RN, 2011, ENVIRON SCI POLLUT R, V18, P734, DOI 10.1007/s11356-010-0419-7
Engel A, 2012, MOL PHARMACEUT, V9, P2577, DOI 10.1021/mp3001815
Fan Y, 2017, RSC ADV, V7, P6080, DOI 10.1039/c6ra25843c
Feng L, 2017, J HAZARD MATER, V327, P11, DOI 10.1016/j.jhazmat.2016.12.031
Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948
Jonker MJ, 2005, ENVIRON TOXICOL CHEM, V24, P2701, DOI 10.1897/04-431R.1
Karthikraj R, 2017, SCI TOTAL ENVIRON, V593, P592, DOI 10.1016/j.scitotenv.2017.03.173
Larsson DGJ, 2007, J HAZARD MATER, V148, P751, DOI 10.1016/j.jhazmat.2007.07.008
Li K, 2018, ENVIRON POLLUT, V242, P872, DOI 10.1016/j.envpol.2018.06.107
Li T, 2017, ECOTOX ENVIRON SAFE, V144, P475, DOI 10.1016/j.ecoenv.2017.06.044
Liu L, 2015, ANAL METHODS-UK, V7, P9912, DOI 10.1039/c5ay01784j
Liu SS, 2016, ENVIRON INT, V94, P396, DOI 10.1016/j.envint.2016.04.038
Liu SS, 2016, SCI BULL, V61, P52, DOI 10.1007/s11434-015-0925-6
Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175
Lu J, 2017, SCI TOTAL ENVIRON, V605, P1064, DOI 10.1016/j.scitotenv.2017.06.135
Ma BL, 2017, RSC ADV, V7, P2435, DOI 10.1039/c6ra26284h
Mudra DR, 2010, J PHARM SCI-US, V99, P1016, DOI 10.1002/jps.21836
Musshoff U, 2000, ARCH TOXICOL, V74, P284, DOI 10.1007/s002040000111
Neale PA, 2017, CHEMOSPHERE, V173, P387, DOI 10.1016/j.chemosphere.2017.01.018
de Garcia SO, 2016, ECOTOXICOLOGY, V25, P141, DOI 10.1007/s10646-015-1576-8
Qu R, 2017, SCI REP-UK, V7, DOI 10.1038/srep43473
Qu R, 2016, RSC ADV, V6, P21012, DOI 10.1039/c5ra27096k
Richardson BJ, 2005, MAR POLLUT BULL, V50, P913, DOI 10.1016/j.marpolbul.2005.06.034
Scognamiglio J, 2012, FOOD CHEM TOXICOL, V50, pS244, DOI 10.1016/j.fct.2011.10.030
Sharma BM, 2019, SCI TOTAL ENVIRON, V646, P1459, DOI 10.1016/j.scitotenv.2018.07.235
Starek-Swiechowicz B, 2012, PHARMACOL REP, V64, P166, DOI 10.1016/S1734-1140(12)70743-0
Temesi D, 2003, J PHARM SCI-US, V92, P2512, DOI 10.1002/jps.10514
Troutman JA, 2015, REGUL TOXICOL PHARM, V73, P530, DOI 10.1016/j.yrtph.2015.07.012
Wang MC, 2014, ACTA CHIM SINICA, V72, P56, DOI 10.6023/A13101034
Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d
Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007
Xu YQ, 2018, SCI TOTAL ENVIRON, V635, P432, DOI 10.1016/j.scitotenv.2018.04.023
Yu ZY, 2018, J HAZARD MATER, V342, P429, DOI 10.1016/j.jhazmat.2017.08.017
Zhang J, 2014, CHEMOSPHERE, V112, P420, DOI 10.1016/j.chemosphere.2014.05.007
Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057
Zhu W. J., 1994, OCEANOL LIMNOL SIN, V25
Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022
Zhu Xiang-wei, 2009, China Environmental Science, V29, P113
Zhu XW, 2009, WATER RES, V43, P1731, DOI 10.1016/j.watres.2009.01.004
Zou XM, 2017, J HAZARD MATER, V322, P454, DOI 10.1016/j.jhazmat.2016.09.045
NR 48
TC 8
Z9 8
U1 5
U2 72
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0147-6513
EI 1090-2414
J9 ECOTOX ENVIRON SAFE
JI Ecotox. Environ. Safe.
PD APR 30
PY 2019
VL 171
BP 240
EP 246
DI 10.1016/j.ecoenv.2018.12.087
PG 7
WC Environmental Sciences; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Toxicology
GA HM1NF
UT WOS:000459217600027
PM 30612011
DA 2023-03-13
ER
PT J
AU Verhaag, EM
Buist-Homan, M
Koehorst, M
Groen, AK
Moshage, H
Faber, KN
AF Verhaag, Esther M.
Buist-Homan, Manon
Koehorst, Martijn
Groen, Albert K.
Moshage, Han
Faber, Klaas Nico
TI Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile
Acid Concentrations Protects against Bile Acid-Induced Toxicity
SO PLOS ONE
LA English
DT Article
ID ISOLATED RAT HEPATOCYTES; FARNESOID-X-RECEPTOR; SALT EXPORT PUMP;
REPERFUSION INJURY; INDUCED APOPTOSIS; OBSTRUCTIVE CHOLESTASIS;
MOLECULAR-MECHANISMS; OXIDATIVE STRESS; ACTIVATION; FXR
AB Introduction
Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.
Aim
To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.
Methods
HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1-50 mu M) of various bile acids, the superoxide donor menadione, TNF-alpha or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 mu M for 4 h), menadione (50 mu M, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed.
Results
Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro) ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-alpha potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM-or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration-and time-dependent. GCDCA-, CDCA-and GW4064-preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning.
Conclusions
Sub-toxic concentrations of bile acids in the range that occur under normal physiological conditions protect HepG2.rNtcp cells against GCDCA-induced apoptosis, which is independent of FXR-controlled changes in bile acid transport.
C1 [Verhaag, Esther M.; Buist-Homan, Manon; Moshage, Han; Faber, Klaas Nico] Univ Groningen, Univ Med Ctr Groningen, Dept Gastroenterol & Hepatol, Ctr Liver Digest & Metab Dis, Groningen, Netherlands.
[Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico] Univ Groningen, Univ Med Ctr Groningen, Ctr Liver Digest & Metab Dis, Dept Lab Med, Groningen, Netherlands.
[Groen, Albert K.] Univ Groningen, Univ Med Ctr Groningen, Ctr Liver Digest & Metab Dis, Dept Pediat, NL-9700 AB Groningen, Netherlands.
C3 University of Groningen; University of Groningen; University of
Groningen
RP Faber, KN (corresponding author), Univ Groningen, Univ Med Ctr Groningen, Dept Gastroenterol & Hepatol, Ctr Liver Digest & Metab Dis, Groningen, Netherlands.; Faber, KN (corresponding author), Univ Groningen, Univ Med Ctr Groningen, Ctr Liver Digest & Metab Dis, Dept Lab Med, Groningen, Netherlands.
EM K.N.Faber@umcg.nl
OI Koehorst, Martijn/0000-0001-6219-0901; Moshage, Han/0000-0002-4764-0246
CR Alchera E, 2010, WORLD J GASTROENTERO, V16, P6058, DOI 10.3748/wjg.v16.i48.6058
Ananthanarayanan M, 2001, J BIOL CHEM, V276, P28857, DOI 10.1074/jbc.M011610200
Beuers U, 2015, J HEPATOL, V62, pS25, DOI 10.1016/j.jhep.2015.02.023
BILLINGTON D, 1980, BIOCHEM J, V188, P321, DOI 10.1042/bj1880321
BOTLA R, 1995, J PHARMACOL EXP THER, V272, P930
Carini R, 2003, GASTROENTEROLOGY, V125, P1480, DOI 10.1016/j.gastro.2003.05.005
Conde de la Rosa L, 2006, J HEPATOL, V44, P918, DOI 10.1016/j.jhep.2005.07.034
Conde de la Rosa L, 2015, PHARM RES PERSPECT, V3, P2052
Copple BL, 2010, SEMIN LIVER DIS, V30, P195, DOI 10.1055/s-0030-1253228
Dawson PA, 2009, J LIPID RES, V50, P2340, DOI 10.1194/jlr.R900012-JLR200
Dijkstra G, 2004, J PATHOL, V204, P296, DOI 10.1002/path.1656
Dunning S, 2013, BBA-MOL BASIS DIS, V1832, P2027, DOI 10.1016/j.bbadis.2013.07.008
Fiorucci S, 2014, EXPERT OPIN THER TAR, V18, P1449, DOI 10.1517/14728222.2014.956087
Fischer S, 1996, CLIN CHIM ACTA, V251, P173, DOI 10.1016/0009-8981(96)06305-X
Fotakis G, 2006, TOXICOL LETT, V160, P171, DOI 10.1016/j.toxlet.2005.07.001
Goodwin B, 2000, MOL CELL, V6, P517, DOI 10.1016/S1097-2765(00)00051-4
Gujral JS, 2003, HEPATOLOGY, V38, P355, DOI 10.1053/jhep.2003.50341
Gumpricht E, 2000, TOXICOL APPL PHARM, V164, P102, DOI 10.1006/taap.2000.8894
Hofmann AF, 1999, NEWS PHYSIOL SCI, V14, P24, DOI 10.1152/physiologyonline.1999.14.1.24
Karimian G, 2013, BBA-MOL BASIS DIS, V1832, P1922, DOI 10.1016/j.bbadis.2013.06.011
KOUNTOURAS J, 1984, BRIT J EXP PATHOL, V65, P305
Kullak-Ublick GA, 2000, CYTOTECHNOLOGY, V34, pB1, DOI 10.1023/A:1008152729133
Losada DM, 2014, ACTA CIR BRAS, V29, P61, DOI 10.1590/S0102-8650201400140012
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Meier PJ, 1995, AM J PHYSIOL-GASTR L, V269, pG801, DOI 10.1152/ajpgi.1995.269.6.G801
Palmeira CM, 2004, TOXICOLOGY, V203, P1, DOI 10.1016/j.tox.2004.06.001
Pellicoro A, 2007, ALIMENT PHARM THERAP, V26, P149, DOI 10.1111/j.1365-2036.2007.03522.x
Plass JRM, 2002, HEPATOLOGY, V35, P589, DOI 10.1053/jhep.2002.31724
POPPER H, 1968, ANNU REV MED, V19, P39, DOI 10.1146/annurev.me.19.020168.000351
Qureshi WA, 1999, DIGEST DIS, V17, P49, DOI 10.1159/000016903
Rembacz KP, 2010, HEPATOLOGY, V52, P2167, DOI 10.1002/hep.23954
Rudic JS, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD000551.pub3
Schoemaker MH, 2004, HEPATOLOGY, V39, P1563, DOI 10.1002/hep.20246
Schoemaker MH, 2003, J HEPATOL, V39, P153, DOI 10.1016/S0168-8278(03)00214-9
SKREDE S, 1978, CLIN CHEM, V24, P1095
Sokol RJ, 2006, J PEDIATR GASTR NUTR, V43, pS4, DOI 10.1097/01.mpg.0000226384.71859.16
Sokol TJ, 2005, J PEDIATR GASTR NUTR, V41, P235, DOI 10.1097/01.MPG.0000170600.80640.88
Suyavaran A, 2015, INFLAMM RES, V64, P71, DOI 10.1007/s00011-014-0785-6
Vaquero J, 2013, BIOCHEM PHARMACOL, V86, P926, DOI 10.1016/j.bcp.2013.07.022
Vaquero J, 2013, BBA-MOL CELL RES, V1833, P2212, DOI 10.1016/j.bbamcr.2013.05.006
Wenniger LMD, 2010, DIGEST LIVER DIS, V42, P409, DOI 10.1016/j.dld.2010.03.015
Woolbright BL, 2015, TOXICOL APPL PHARM, V283, P168, DOI 10.1016/j.taap.2015.01.015
Woudenberg-Vrenken TE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071773
Yin DP, 1998, TRANSPLANTATION, V66, P152, DOI 10.1097/00007890-199807270-00002
Zhang RJ, 2014, J HEPATOL, V61, P1048, DOI 10.1016/j.jhep.2014.06.020
NR 45
TC 9
Z9 10
U1 0
U2 18
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD MAR 7
PY 2016
VL 11
IS 3
AR e0149782
DI 10.1371/journal.pone.0149782
PG 16
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA DG3SL
UT WOS:000371990100017
PM 26950211
OA gold, Green Submitted, Green Published
DA 2023-03-13
ER
PT J
AU Pingitore, A
Lima, GPP
Mastorci, F
Quinones, A
Iervasi, G
Vassalle, C
AF Pingitore, Alessandro
Pereira Lima, Giuseppina Pace
Mastorci, Francesca
Quinones, Alfredo
Iervasi, Giorgio
Vassalle, Cristina
TI Exercise and oxidative stress: Potential effects of antioxidant dietary
strategies in sports
SO NUTRITION
LA English
DT Review
DE Diet; Nutrition; Exercise; Oxidative stress; Antioxidants
ID ALPHA-LIPOIC ACID; POLYUNSATURATED FATTY-ACIDS; MEDITERRANEAN DIET;
COENZYME Q(10); VITAMIN-E; ENDURANCE EXERCISE; FREE-RADICALS;
DNA-DAMAGE; SUPPLEMENTATION; QUERCETIN
AB Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Pingitore, Alessandro; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina] Fdn G Monasterio CNR Reg Toscana, Pisa, Italy.
[Pingitore, Alessandro; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina] Italian Natl Res Council, Inst Clin Physiol, Pisa, Italy.
[Pereira Lima, Giuseppina Pace] Univ Estadual Paulista, Botucatu UNESP, Dept Chem & Biochem, Sao Paulo, Brazil.
C3 Consiglio Nazionale delle Ricerche (CNR); Universidade Estadual Paulista
RP Vassalle, C (corresponding author), Fdn G Monasterio CNR Reg Toscana, Pisa, Italy.
EM cristina.vassalle@ftgm.it
RI Pingitore, Alessandro/K-1843-2018; lima, giuseppina GPPL/C-5995-2012
OI Pingitore, Alessandro/0000-0002-4049-184X; lima, giuseppina
GPPL/0000-0002-1792-2605
CR Bloomer RJ, 2008, GENDER MED, V5, P218, DOI 10.1016/j.genm.2008.07.002
Boutant M, 2014, MOL METAB, V3, P5, DOI 10.1016/j.molmet.2013.10.006
Braakhuis AJ, 2014, EUR J SPORT SCI, V14, P160, DOI 10.1080/17461391.2013.785597
Brisswalter J, 2014, SPORTS MED, V44, P311, DOI 10.1007/s40279-013-0126-x
Corbi G, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/728547
Dato S, 2013, INT J MOL SCI, V14, P16443, DOI 10.3390/ijms140816443
Davis JM, 2010, INT J SPORT NUTR EXE, V20, P56, DOI 10.1123/ijsnem.20.1.56
Davis JM, 2009, AM J PHYSIOL-REG I, V296, pR1071, DOI 10.1152/ajpregu.90925.2008
Dekany M, 2006, INT J SPORTS MED, V27, P112, DOI 10.1055/s-2005-865634
Diaz-Castro J, 2012, EUR J NUTR, V51, P791, DOI 10.1007/s00394-011-0257-5
Diel F., 2013, Voprosy Pitaniya, V82, P14
Falone S, 2010, PHYSIOL RES, V59, P953, DOI 10.33549/physiolres.931884
Fito M, 2007, ARCH INTERN MED, V167, P1195, DOI 10.1001/archinte.167.11.1195
Frei B, 2012, CRIT REV FOOD SCI, V52, P815, DOI 10.1080/10408398.2011.649149
Ghibu S, 2009, J CARDIOVASC PHARM, V54, P391, DOI 10.1097/FJC.0b013e3181be7554
Gomez-Cabrera MC, 2008, AM J CLIN NUTR, V87, P142, DOI 10.1093/ajcn/87.1.142
Goncalves MC, 2011, CLINICS, V66, P1537, DOI 10.1590/S1807-59322011000900005
Gonzalez-Gallego J, 2010, BRIT J NUTR, V104, pS15, DOI 10.1017/S0007114510003910
Henriksen EJ, 2006, FREE RADICAL BIO MED, V40, P3, DOI 10.1016/j.freeradbiomed.2005.04.002
Higashida K, 2011, AM J PHYSIOL-ENDOC M, V301, pE779, DOI 10.1152/ajpendo.00655.2010
Institute of Medicine, 2002, DIET REF INT EN CARB
Jeukendrup A, 2014, SPORTS MED, V44, P25, DOI 10.1007/s40279-014-0148-z
Kressler J, 2011, MED SCI SPORT EXER, V43, P2396, DOI 10.1249/MSS.0b013e31822495a7
Landaeta-Diaz L, 2013, EUR J PREV CARDIOL, V20, P555, DOI 10.1177/2047487312445000
Lass A, 2000, FASEB J, V14, P87, DOI 10.1096/fasebj.14.1.87
Lee IM, 2001, MED SCI SPORT EXER, V33, pS459, DOI 10.1097/00005768-200106001-00016
Leighton F, 1999, DRUG EXP CLIN RES, V25, P133
Lima GPP, 2011, INT J FOOD SCI TECH, V46, P1, DOI 10.1111/j.1365-2621.2010.02436.x
Fernandez JM, 2012, CLIN SCI, V123, P361, DOI 10.1042/CS20110477
Marzocchella L, 2011, RECENT PATENTS INFLA, V5, P200, DOI 10.2174/187221311797264937
McGinley C, 2009, SPORTS MED, V39, P1011, DOI 10.2165/11317890-000000000-00000
Mickleborough TD, 2013, INT J SPORT NUTR EXE, V23, P83, DOI 10.1123/ijsnem.23.1.83
Milan SJ, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010391.pub2
Morales-Alamo D, 2014, FREE RADICAL RES, V48, P30, DOI 10.3109/10715762.2013.825043
Murase T, 2008, AM J PHYSIOL-REG I, V295, pR281, DOI 10.1152/ajpregu.00880.2007
Myburgh KH, 2014, SPORTS MED, V44, P57, DOI 10.1007/s40279-014-0151-4
Nieman DC, 2007, J INTERF CYTOK RES, V27, P1003, DOI 10.1089/jir.2007.0050
Nieman DC, 2007, MED SCI SPORT EXER, V39, P1561, DOI 10.1249/mss.0b013e318076b566
Nieman DC, 2009, INT J SPORT NUTR EXE, V19, P536, DOI 10.1123/ijsnem.19.5.536
Olholm J, 2010, INT J OBESITY, V34, P1546, DOI 10.1038/ijo.2010.98
Ortenblad N, 1997, AM J PHYSIOL-REG I, V272, pR1258, DOI 10.1152/ajpregu.1997.272.4.R1258
Ostman B, 2012, NUTRITION, V28, P403, DOI 10.1016/j.nut.2011.07.010
Oztasan N, 2004, EUR J APPL PHYSIOL, V91, P622, DOI 10.1007/s00421-003-1029-6
Perez-Lopez FR, 2009, MATURITAS, V64, P67, DOI 10.1016/j.maturitas.2009.07.013
Peternelj TT, 2011, SPORTS MED, V41, P1043, DOI 10.2165/11594400-000000000-00000
Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029
Stepanyan V, 2014, APPL PHYSIOL NUTR ME, V39, P1029, DOI 10.1139/apnm-2013-0566
Tomasello B, 2012, J MED FOOD, V15, P441, DOI 10.1089/jmf.2011.0173
Toro R, 2014, NUTR HOSP, V30, P1110, DOI 10.3305/nh.2014.30.5.7697
Urquiaga I, 2010, ATHEROSCLEROSIS, V211, P694, DOI 10.1016/j.atherosclerosis.2010.04.020
Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001
Vassalle C, 2002, CLIN CHEM LAB MED, V40, P802, DOI 10.1515/CCLM.2002.139
Vassalle C, 2015, ANTIOXIDANTS IN SPORT NUTRITION, P261
Vassalle C, 2014, BIOMARK MED, V8, P881, DOI [10.2217/bmm.13.152, 10.2217/BMM.13.152]
Vassalle Cristina, 2008, V477, P31, DOI 10.1007/978-1-60327-517-0_3
Venditti P, 2014, FREE RADICAL RES, V48, P322, DOI 10.3109/10715762.2013.867959
Walsh NP, 2011, EXERC IMMUNOL REV, V17, P64
Wang XY, 1999, PROG LIPID RES, V38, P309, DOI 10.1016/S0163-7827(99)00008-9
WEBER C, 1994, INT J VITAM NUTR RES, V64, P311
Wilkinson M, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010749.pub2
Zembron-Lacny A, 2013, J PHYSIOL BIOCHEM, V69, P397, DOI 10.1007/s13105-012-0221-8
NR 61
TC 231
Z9 239
U1 17
U2 162
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0899-9007
EI 1873-1244
J9 NUTRITION
JI Nutrition
PD JUL-AUG
PY 2015
VL 31
IS 7-8
BP 916
EP 922
DI 10.1016/j.nut.2015.02.005
PG 7
WC Nutrition & Dietetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Nutrition & Dietetics
GA CL5KE
UT WOS:000356998000003
PM 26059364
HC Y
HP N
DA 2023-03-13
ER
PT J
AU Sequeira, RV
Khan, M
Reid, DJ
AF Sequeira, Richard V.
Khan, Moazzem
Reid, David J.
TI Chemical control of the mealybug Phenacoccus solenopsis (Hemiptera:
Pseudococcidae) in Australian cotton-Glasshouse assessments of
insecticide efficacy
SO AUSTRAL ENTOMOLOGY
LA English
DT Article
DE cotton; efficacy; insecticides; management; mealybug; Phenacoccus
solenopsis
ID TINSLEY; MANAGEMENT; HORMESIS; THREAT; PESTS
AB The efficacy of commercially available chemical insecticides and biopesticides on the cotton mealybug (CMB), Phenacoccus solenopsis, was evaluated in the glasshouse. Spirotetramat, sulfoxaflor and buprofezin were identified as key insecticides for use in integrated pest management (IPM) strategies aimed at controlling CMB without flaring other co-occurring pests. When used as a single application, spirotetramat and sulfoxaflor at the rate of 96 g (active ingredient, ha(-1)) provided variable control of CMB. Spirotetramat used in a double spray tactic (two sequential sprays, 14-15 days apart) without crop oil provided >= 80% control of adult CMB while the addition of oil (5% v/v) increased control to >= 90%. Clothianidin synergised the spirotetramat + oil combination and was identified as a potentially useful tank mix option for use in situations where a quick knockdown of high density and/or large infestation of CMB is required, or to treat high risk infestations in squaring or younger cotton when the abundance of beneficial insects is typically low. Sulfoxaflor used in a double spray tactic provided >= 90% control of adult CMB. The addition of Pulse (R) penetrant (0.5% v/v) to both options improved overall efficacy. Addition of crop oil to sulfoxaflor did not yield any tangible benefits. Spirotetramat and buprofezin were identified as important tools in managing situations where whitefly (Bemisia tabaci) is the primary pest management target, but CMB is also present in the crop. Buprofezin was effective on early instar mealybugs; this makes it an option for arresting CMB population growth while allowing the beneficial insect populations to increase. Sulfoxaflor was shown to be a useful option in situations where CMB is present along with key pests such as mirids (Creontiades spp.). Mealybugs are typically well controlled by naturally occurring beneficial insects without the need for insecticide use. Chemical insecticides for CMB control should be considered only as a last resort and deployed within the bounds of an IPM strategy.
C1 [Sequeira, Richard V.] Dept Agr & Fisheries Crop & Food Sci, Emerald, Qld 4720, Australia.
[Reid, David J.] Dept Agr & Fisheries Anim Sci, Rockhampton, Qld 4700, Australia.
[Khan, Moazzem] Australian Plague Locust Commiss, Dept Agr & Water Resources, GPO Box 858, Canberra, ACT 2601, Australia.
RP Sequeira, RV (corresponding author), Dept Agr & Fisheries Crop & Food Sci, Emerald, Qld 4720, Australia.
EM richard.sequeira@daf.qld.gov.au
FU Cotton Research and Development Corporation
FX Funding to support this research was provided by the Cotton Research and
Development Corporation.
CR Abdullah NMM, 2006, PESTIC BIOCHEM PHYS, V84, P10, DOI 10.1016/j.pestbp.2005.03.011
Afzal M, 2009, P BELTW COTT C 2009, P1023
Aheer G. M., 2009, Journal of Agricultural Research (Lahore), V47, P47
Ben-Dov Y., 1994, A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance.
Charleston K., 2010, AUSTR COTTON GROWER, V31, P18
Cranshaw Whitney, 2000, Journal of Arboriculture, V26, P225
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
Deepika Kalkal, 2014, Journal of Cotton Research and Development, V28, P101
Dhawan, 2007, INDIAN J ECOL, V34, P166
Dhawan A., 2009, J COTTON RES DEV, V23, P289
El-Zahi El-Zahi Saber, 2016, Journal of Plant Protection Research, V56, P111, DOI 10.1515/jppr-2016-0017
Fand BB, 2015, CROP PROT, V69, P34, DOI 10.1016/j.cropro.2014.12.001
Fand BB, 2014, ECOL MODEL, V288, P62, DOI 10.1016/j.ecolmodel.2014.05.018
Franco JC, 2009, BIORATIONAL CONTROL OF ARTHROPOD PESTS: APPLICATION AND RESISTANCE MANAGEMENT, P233, DOI 10.1007/978-90-481-2316-2_10
FUCHS TW, 1991, SOUTHWEST ENTOMOL, V16, P215
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Herron GA, 2002, AUSTR J ENTOMOLOGY, V41, P99
Hoj B., 2018, J ANIMAL SCI RES, V2, P1
Khan, 2014, DAQ1204 CRDC
Khan M., 2012, Australian Cottongrower, V33, P22
Khan M, 2013, INT J STROKE, V8, P14, DOI 10.1111/j.1747-4949.2012.00878.x
Miles M, 2011, DAQ1002 CRDC
Miles M, 2010, RECENT EXPERIENCES M
Morishita M., 2005, Annual Report of the Kansai Plant Protection Society, P123
Muthukirishnan N., 2005, Journal of Entomological Research, V29, P339
Nagrare VS, 2009, B ENTOMOL RES, V99, P537, DOI 10.1017/S0007485308006573
Nikam N.D., 2010, Karnataka Journal of Agricultural Sciences, V23, P649
Patel M. G., 2010, Karnataka Journal of Agricultural Sciences, V23, P14
Saeed Shafqat, 2007, Entomological Research, V37, P76, DOI 10.1111/j.1748-5967.2007.00047.x
Saner D. V., 2013, International Journal of Plant Protection, V6, P405
Sequeira, 2017, AUSTR COTTONGROWER, V38, P20
Suroshe Sachin S., 2013, Journal of Biological Control, V27, P204
Tabashnik B.E., 1990, PESTICIDE RESISTANCE, P153
Vennila S, 2010, J INSECT SCI, V10, DOI 10.1673/031.010.11501
VSN International, 2013, GENSTAT WINDOWS
Wang YP, 2010, AGR FOREST ENTOMOL, V12, P403, DOI 10.1111/j.1461-9563.2010.00490.x
Williams D. J., 1992, Mealybugs of Central and South America.
Wilson L, 2013, CROP PASTURE SCI, V64, P737, DOI 10.1071/CP13070
Wilson LJ, 2018, ANNU REV ENTOMOL, V63, P215, DOI 10.1146/annurev-ento-020117-043432
Zhao JZ, 2010, PEST MANAG SCI, V66, P1101, DOI 10.1002/ps.1985
NR 40
TC 5
Z9 6
U1 2
U2 11
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2052-1758
EI 2052-174X
J9 AUSTRAL ENTOMOL
JI Austral Entomol.
PD MAY
PY 2020
VL 59
IS 2
BP 375
EP 385
DI 10.1111/aen.12446
EA FEB 2020
PG 11
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA LS6RG
UT WOS:000510968300001
OA Green Accepted
DA 2023-03-13
ER
PT J
AU Esselun, C
Theyssen, E
Eckert, GP
AF Esselun, Carsten
Theyssen, Ellen
Eckert, Gunter P.
TI Effects of Urolithin A on Mitochondrial Parameters in a Cellular Model
of Early Alzheimer Disease
SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
LA English
DT Article
DE metabolite; polyphenol; mitochondria; neurodegeneration; Alzheimer's;
ellagitannin; urolithin; hormesis
ID NUCLEAR RESPIRATORY FACTOR-2; OXIDATIVE STRESS; AUTOPHAGY; DYSFUNCTION;
EXPRESSION; MITOPHAGY; TRANSCRIPTION; METABOLITES; CASCADES; DYNAMICS
AB (1) Background: Ellagitannins are natural products occurring in pomegranate and walnuts. They are hydrolyzed in the gut to release ellagic acid, which is further metabolized by the microflora into urolithins, such as urolithin A (UA). Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegenerative diseases. In this study, we investigated the neuroprotective activity of the metabolite UA against mitochondrial dysfunction in a cellular model of early Alzheimer disease (AD). (2) Methods: In the present study we used SH-SY5Y-APP695 cells and its corresponding controls (SH-SY5Ymock) to assess UA's effect on mitochondrial function. Using these cells we investigated mitochondrial respiration (OXPHOS), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) production, autophagy and levels of reactive oxygen species (ROS) in cells treated with UA. Furthermore, we assessed UA's effect on the expression of genes related to mitochondrial bioenergetics, mitochondrial biogenesis, and autophagy via quantitative real-time PCR (qRT-PCR). (3) Results: Treatment of SH-SY5Y-APP695 cells suggests changes to autophagy corresponding with qRT-PCR results. However, LC3B-I, LC3B-II, and p62 levels were unchanged. UA (10 mu M) reduced MMP, and ATP-levels. Treatment of cells with UA (1 mu M) for 24 h did not affect ROS production or levels of A beta, but significantly increased expression of genes for mitochondrial biogenesis and OXPHOS. Mitochondrial Transcription Factor A (TFAM) expression was specifically increased in SH-SY5Y-APP695. Both cell lines showed unaltered levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1 alpha), which is commonly associated with mitochondrial biogenesis. Results imply that biogenesis might be facilitated by estrogen-related receptor (ESRR) genes. (4) Conclusion: Urolithin A shows no effect on autophagy in SH-SY5Y-APP695 cells and its effect on mitochondrial function is limited. Instead, data suggests that UA treatment induces hormetic effects as it induces transcription of several genes related to mitochondrial biogenesis.
C1 [Esselun, Carsten; Theyssen, Ellen; Eckert, Gunter P.] Justus Liebig Univ Giessen, Biomed Res Ctr, Inst Nutr Sci, D-35392 Giessen, Germany.
C3 Justus Liebig University Giessen
RP Eckert, GP (corresponding author), Justus Liebig Univ Giessen, Biomed Res Ctr, Inst Nutr Sci, D-35392 Giessen, Germany.
EM carsten.esselun@ernaehrung.uni-giessen.de;
ellen.theyssen@ernaehrung.uni-giessen.de; eckert@uni-giessen.de
OI Esselun, Carsten/0000-0003-1193-8347
CR Ahsan A, 2019, CNS NEUROSCI THER, V25, P976, DOI 10.1111/cns.13136
Albensi BC, 2019, INT REV NEUROBIOL, V145, P13, DOI 10.1016/bs.irn.2019.03.001
Andreux PA, 2019, NAT METAB, V1, P595, DOI 10.1038/s42255-019-0073-4
Barth S, 2010, J PATHOL, V221, P117, DOI 10.1002/path.2694
Bruni F, 2010, J BIOL CHEM, V285, P3939, DOI 10.1074/jbc.M109.044305
Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797
Casedas G, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9020177
DaSilva NA, 2019, NUTR NEUROSCI, V22, P185, DOI 10.1080/1028415X.2017.1360558
Deng YN, 2013, NEUROCHEM INT, V63, P1, DOI 10.1016/j.neuint.2013.04.005
Detmer SA, 2007, NAT REV MOL CELL BIO, V8, P870, DOI 10.1038/nrm2275
Esselun C, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/1652609
Farmer T, 2018, TRAFFIC, V19, P569, DOI 10.1111/tra.12573
Friedland-Leuner K, 2014, PROG MOL BIOL TRANSL, V127, P183, DOI 10.1016/B978-0-12-394625-6.00007-6
Gasperotti M, 2015, ACS CHEM NEUROSCI, V6, P1341, DOI 10.1021/acschemneuro.5b00051
Ghosh N, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-76564-7
Gnaiger E., 2020, BIOENERG COMMUN, V2020, P2
Gonzalez-Rodriguez A, 2014, CELL DEATH DIS, V5, DOI 10.1038/cddis.2014.162
Gonzalez-Sarrias A, 2017, J AGR FOOD CHEM, V65, P752, DOI 10.1021/acs.jafc.6b04538
Grewal R, 2020, EXP NEUROL, V328, DOI 10.1016/j.expneurol.2020.113248
Grimm A, 2016, BIOGERONTOLOGY, V17, P281, DOI 10.1007/s10522-015-9618-4
Hughes SD, 2014, J NEUROCHEM, V129, P426, DOI 10.1111/jnc.12646
Kim DI, 2017, CELL MOL NEUROBIOL, V37, P955, DOI 10.1007/s10571-016-0434-4
Kim KB, 2020, NUTR RES PRACT, V14, P3, DOI 10.4162/nrp.2020.14.1.3
Kukreja L, 2014, MOL NEURODEGENER, V9, DOI 10.1186/1750-1326-9-16
Larsen S, 2012, J PHYSIOL-LONDON, V590, P3349, DOI 10.1113/jphysiol.2012.230185
Lee HJ, 2021, CELL DEATH DIFFER, V28, P184, DOI 10.1038/s41418-020-0593-1
Li Q, 2017, CELL MOL NEUROBIOL, V37, P377, DOI 10.1007/s10571-016-0386-8
Liu CF, 2019, REJUV RES, V22, P191, DOI 10.1089/rej.2018.2066
Liu YJ, 2020, MECH AGEING DEV, V186, DOI 10.1016/j.mad.2020.111212
Manczak M, 2004, NEUROMOL MED, V5, P147, DOI 10.1385/NMM:5:2:147
Mizushima N, 2010, CELL, V140, P313, DOI 10.1016/j.cell.2010.01.028
Moreira PI, 2010, BBA-MOL BASIS DIS, V1802, P2, DOI 10.1016/j.bbadis.2009.10.006
Murugan S, 2016, ADV EXP MED BIOL, V899, P145, DOI 10.1007/978-3-319-26666-4_9
Naseri NN, 2019, NEUROSCI LETT, V705, P183, DOI 10.1016/j.neulet.2019.04.022
Navarro A, 2007, AM J PHYSIOL-CELL PH, V292, pC670, DOI 10.1152/ajpcell.00213.2006
Pakrashi S, 2020, NEUROCHEM RES, V45, P1962, DOI 10.1007/s11064-020-03061-8
Pinheiro L, 2019, CURR ALZHEIMER RES, V16, P418, DOI 10.2174/1567205016666190321163438
Poirier Y, 2019, CELL MOL LIFE SCI, V76, P1419, DOI 10.1007/s00018-019-03009-4
Quntanilla RA, 2020, CURR NEUROPHARMACOL, V18, P1076, DOI 10.2174/1570159X18666200525020259
Reddy PH, 2009, EXP NEUROL, V218, P286, DOI 10.1016/j.expneurol.2009.03.042
Rhein V, 2009, CELL MOL NEUROBIOL, V29, P1063, DOI 10.1007/s10571-009-9398-y
Rouschop KMA, 2010, J CLIN INVEST, V120, P127, DOI 10.1172/JCI40027
Ryu D, 2016, NAT MED, V22, P879, DOI 10.1038/nm.4132
Sano M, 2007, J BIOL CHEM, V282, P25970, DOI 10.1074/jbc.M703634200
Scarpulla RC, 2002, BBA-GENE STRUCT EXPR, V1576, P1, DOI 10.1016/S0167-4781(02)00343-3
Scarpulla RC, 2012, BBA-GENE REGUL MECH, V1819, P1088, DOI 10.1016/j.bbagrm.2011.10.011
Scarpulla RC, 2011, BBA-MOL CELL RES, V1813, P1269, DOI 10.1016/j.bbamcr.2010.09.019
Shao D, 2010, MITOCHONDRION, V10, P516, DOI 10.1016/j.mito.2010.05.012
Singh BK, 2018, SCI SIGNAL, V11, DOI 10.1126/scisignal.aam5855
Son SM, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.09.039
Stefanatos R, 2018, FEBS LETT, V592, P743, DOI 10.1002/1873-3468.12902
Stefanova NA, 2019, J GERONTOL A-BIOL, V74, P33, DOI 10.1093/gerona/gly198
Stockburger C, 2018, J ALZHEIMERS DIS, V64, pS455, DOI 10.3233/JAD-179915
Stockburger C, 2014, J ALZHEIMERS DIS, V42, P395, DOI 10.3233/JAD-140381
Sun N, 2016, MOL CELL, V61, P654, DOI 10.1016/j.molcel.2016.01.028
Swaminathan B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115176
Swerdlow RH, 2018, J ALZHEIMERS DIS, V62, P1403, DOI 10.3233/JAD-170585
Swerdlow RH, 2014, BBA-MOL BASIS DIS, V1842, P1219, DOI 10.1016/j.bbadis.2013.09.010
Swerdlow RH, 2012, NEUROTOX RES, V22, P182, DOI 10.1007/s12640-011-9272-9
Tanida Isei, 2008, V445, P77, DOI 10.1007/978-1-59745-157-4_4
Tilokani L, 2018, ESSAYS BIOCHEM, V62, P341, DOI 10.1042/EBC20170104
Toney AM, 2019, OBESITY, V27, P612, DOI 10.1002/oby.22404
Twig G, 2008, BBA-BIOENERGETICS, V1777, P1092, DOI 10.1016/j.bbabio.2008.05.001
Wang T, 2015, MOL CELL BIOL, V35, P1281, DOI 10.1128/MCB.01156-14
Wang XL, 2014, BBA-MOL BASIS DIS, V1842, P1240, DOI 10.1016/j.bbadis.2013.10.015
Xiong YY, 2013, DOSE-RESPONSE, V11, P270, DOI 10.2203/dose-response.12-005.Gao
Yang ZF, 2014, MOL CELL BIOL, V34, P3194, DOI 10.1128/MCB.00492-12
Yoo SM, 2018, MOL CELLS, V41, P18, DOI 10.14348/molcells.2018.2277
Yuan T, 2016, ACS CHEM NEUROSCI, V7, P26, DOI 10.1021/acschemneuro.5b00260
Zhang YZ, 2021, J ETHNOPHARMACOL, V272, DOI 10.1016/j.jep.2020.113628
Zhao WH, 2018, MOL CARCINOGEN, V57, P193, DOI 10.1002/mc.22746
Zhou FF, 2011, PROTEIN CELL, V2, P377, DOI 10.1007/s13238-011-1047-9
NR 72
TC 17
Z9 17
U1 1
U2 30
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1422-0067
J9 INT J MOL SCI
JI Int. J. Mol. Sci.
PD AUG
PY 2021
VL 22
IS 15
AR 8333
DI 10.3390/ijms22158333
PG 19
WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Chemistry
GA TV8WR
UT WOS:000681997000001
PM 34361099
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Sharma, PK
Raghubanshi, AS
Shah, KV
AF Sharma, Prashant K.
Raghubanshi, Akhilesh S.
Shah, Kavita
TI Examining the uptake and bioaccumulation of molybdenum nanoparticles and
their effect on antioxidant activities in growing rice seedlings
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE Antioxidant; Bioaccumulation; Molybdenum; Nanoparticles; Rice;
Translocation
ID CERIUM OXIDE NANOPARTICLES; SILVER NANOPARTICLES; ENGINEERED
NANOMATERIALS; TROPHIC TRANSFER; ZEA-MAYS; PLANTS; SOIL; PHYTOTOXICITY;
ACCUMULATION; TRANSPORT
AB The synthesized alpha-MoO3 and MoS2 NPs had nanosheet and nanoflower-like structures with crystallite size of 21.34 nm and 4.32 nm, respectively. The uptake, bioaccumulation, and impact of these two Mo-NPs were studied in rice (Oryza sativa L) cv. HUR 3022 seedlings exposed to 100, 500, and 1000 ppm concentrations in hydroponics for 10 days in the growth medium. The uptake of alpha-MoO3 and MoS2 NPs by rice exposed to 100 ppm concentrations of NPs led to the accumulation of 7.32 ppm/4.55 ppm and 1.84 ppm/1.19 ppm in roots/shoots, respectively, as compared to controls. Unlike MoO3, more accumulation of MoS2 in roots reflect less translocation of this NP from roots to shoots. Results suggest tissue-specific distribution of NPs in rice seedlings. The increased growth and elevated protein levels in rice seedlings at 100 ppm concentrations of nanoparticles imply a stimulation in the repair mechanism at low doses indicating hormesis. MoS2 NPs treatments led to increased chlorophyll a levels suggesting it to be non-compromising with photosynthetic process in rice. The high malondialdehyde levels and altered activities of antioxidant enzymes GPX, APX, and CAT in rice seedlings exposed to alpha-MoO3 or MoS2 NPs indicate oxidative imbalance. Between alpha-MoO3 and MoS2 NPs, the former shows toxic effects as reflected from the decreased levels of photosynthetic pigments at all concentrations; however, an activation of chloroplast ROS detoxification is evident in the presence of MoS2 NPs. The BCF > 1 for both alpha-MoO3 and MoS2 NPs and TF of 0.6-2.0 and 0.42-0.65 suggest the latter to be more environmentally safe. In conclusion, a100 ppm MoS2 NPs concentration has low translocation and less accumulation with no significant impact on growth of rice cv. HUR 3022 seedlings and appears to be environmentally safe for future applications.
C1 [Sharma, Prashant K.; Raghubanshi, Akhilesh S.; Shah, Kavita] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India.
C3 Banaras Hindu University (BHU)
RP Shah, KV (corresponding author), Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India.
EM prashant.evs@gmail.com; asr@bhu.ac.in; kavitashah@bhu.ac.in
RI Raghubanshi, Akhilesh/GQA-4805-2022
OI SHAH, KAVITA/0000-0003-0464-6100; Sharma, Prashant
Kumar/0000-0002-1789-3576
FU University Grants Commission, New Delhi; Design Innovation Centre, IIT
BHU
FX The authors are grateful to the University Grants Commission, New Delhi,
for the fellowship to PKS and the Design Innovation Centre, IIT BHU, for
the financial support.
CR Aebi H, 1974, METHODS ENZYMATIC AN, V2nd, P673, DOI DOI 10.1016/B978-0-12-091302-2.50032-3
AGARWALA SC, 1978, CAN J BOT, V56, P1905, DOI 10.1139/b78-227
Ali K, 2019, EAI SPRINGER INNOVAT, P111, DOI 10.1007/978-3-319-93557-7_7
ARNON DI, 1949, PLANT PHYSIOL, V24, P1, DOI 10.1104/pp.24.1.1
Arnot JA, 2006, ENVIRON REV, V14, P257, DOI 10.1139/a06-005
Aslani F, 2014, SCI WORLD J, DOI 10.1155/2014/641759
Aziz N, 2015, LANGMUIR, V31, P11605, DOI 10.1021/acs.langmuir.5b03081
Balk J, 2005, TRENDS PLANT SCI, V10, P324, DOI 10.1016/j.tplants.2005.05.002
Barker A. V., 2015, Handbook of plant nutrition
BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8
Burklew CE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034783
CAIRNS ALP, 1992, PLANT SOIL, V145, P295, DOI 10.1007/BF00010358
CARPITA NC, 1993, PLANT J, V3, P1, DOI 10.1111/j.1365-313X.1993.tb00007.x
Chen GC, 2016, NANOTOXICOLOGY, V10, P1243, DOI 10.1080/17435390.2016.1202349
Chen SL, 2018, NANO ENERGY, V48, P560, DOI 10.1016/j.nanoen.2018.03.076
Cornelis G, 2014, CRIT REV ENV SCI TEC, V44, P2720, DOI 10.1080/10643389.2013.829767
Da Costa MVJ, 2016, PHOTOSYNTHETICA, V54, P110, DOI 10.1007/s11099-015-0167-5
Darlington TK, 2009, ENVIRON TOXICOL CHEM, V28, P1191, DOI 10.1897/08-341.1
Etxeberria E, 2009, PLANT SCI, V177, P341, DOI 10.1016/j.plantsci.2009.06.014
Faisal M, 2013, J HAZARD MATER, V250, P318, DOI 10.1016/j.jhazmat.2013.01.063
Gardea-Torresdey JL, 2014, ENVIRON SCI TECHNOL, V48, P2526, DOI 10.1021/es4050665
Ghosh M, 2005, ENVIRON POLLUT, V133, P365, DOI 10.1016/j.envpol.2004.05.015
Hajra A, 2017, ECOL ENV, V2, P77
Hawthorne J, 2014, ENVIRON SCI TECHNOL, V48, P13102, DOI 10.1021/es503792f
HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1
HEMEDA HM, 1990, J FOOD SCI, V55, P184, DOI 10.1111/j.1365-2621.1990.tb06048.x
HOAGLAND D. R., 1938, Annual Report of the Smithsonian Institution, P461
Iversen TG, 2011, NANO TODAY, V6, P176, DOI 10.1016/j.nantod.2011.02.003
Jacquot JP, 1997, NEW PHYTOL, V136, P543, DOI 10.1046/j.1469-8137.1997.00784.x
Judy JD, 2013, THESIS
Khodakovskaya M, 2009, ACS NANO, V3, P3221, DOI 10.1021/nn900887m
Khodakovskaya MV, 2011, P NATL ACAD SCI USA, V108, P1028, DOI 10.1073/pnas.1008856108
Kumar N, 2017, APPL SURF SCI, V396, P8, DOI 10.1016/j.apsusc.2016.11.027
Kumar R, 2014, CRIT REV ENV SCI TEC, V44, P1000, DOI 10.1080/10643389.2012.741314
Lee CW, 2010, ENVIRON TOXICOL CHEM, V29, P669, DOI 10.1002/etc.58
Levard C, 2012, ENVIRON SCI TECHNOL, V46, P6900, DOI 10.1021/es2037405
Li YD, 2018, J AGR FOOD CHEM, V66, P4013, DOI 10.1021/acs.jafc.7b05940
LOWRY OH, 1951, J BIOL CHEM, V193, P265
Lv JT, 2019, ENVIRON SCI-NANO, V6, P41, DOI 10.1039/c8en00645h
Ma CX, 2015, ENVIRON SCI TECHNOL, V49, P10117, DOI 10.1021/acs.est.5b02007
Ma CX, 2015, ENVIRON SCI TECHNOL, V49, P7109, DOI 10.1021/acs.est.5b00685
Ma XM, 2010, SCI TOTAL ENVIRON, V408, P3053, DOI 10.1016/j.scitotenv.2010.03.031
Majumdar S, 2015, ENVIRON SCI TECHNOL, V49, P13283, DOI 10.1021/acs.est.5b03452
Marschner H., 1986, Mineral nutrition of higher plants.
McGrath SP, 2010, ENVIRON POLLUT, V158, P3085, DOI 10.1016/j.envpol.2010.06.030
Miralles P, 2012, ENVIRON SCI TECHNOL, V46, P9224, DOI 10.1021/es202995d
Mirzajani F, 2013, ECOTOX ENVIRON SAFE, V88, P48, DOI 10.1016/j.ecoenv.2012.10.018
Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002
Moore K, 1998, FREE RADICAL RES, V28, P659, DOI 10.3109/10715769809065821
Mukherjee A, 2014, METALLOMICS, V6, P132, DOI 10.1039/c3mt00064h
Nahakpam S, 2011, PLANT GROWTH REGUL, V63, P23, DOI 10.1007/s10725-010-9508-3
NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867
Noori A, 2017, J NANOPART RES, V19, DOI 10.1007/s11051-016-3650-4
OADES JM, 1993, GEODERMA, V56, P377, DOI 10.1016/0016-7061(93)90123-3
Onelli E, 2008, J EXP BOT, V59, P3051, DOI 10.1093/jxb/ern154
Pagano L, 2016, ENVIRON SCI TECHNOL, V50, P7198, DOI 10.1021/acs.est.6b01816
Perez-de-Luque A, 2017, FRONT ENV SCI-SWITZ, V5, DOI 10.3389/fenvs.2017.00012
Pradhan S, 2017, J AGR FOOD CHEM, V65, P8279, DOI 10.1021/acs.jafc.7b02528
Prasad R, 2016, WIRES NANOMED NANOBI, V8, P316, DOI 10.1002/wnan.1363
Rana K, 2019, NANOSCIENCE FOR SUSTAINABLE AGRICULTURE, P25, DOI 10.1007/978-3-319-97852-9_2
Rico C.M., 2015, NANOTECHNOLOGY PLANT, P1
Rico CM, 2013, ENVIRON SCI TECHNOL, V47, P14110, DOI 10.1021/es4033887
Rico CM, 2013, ENVIRON SCI TECHNOL, V47, P5635, DOI 10.1021/es401032m
Rico CM, 2011, J AGR FOOD CHEM, V59, P3485, DOI 10.1021/jf104517j
Roco MC, 2005, J NANOPART RES, V7, P707, DOI 10.1007/s11051-005-3141-5
Rui MM, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00815
Sahle-Demessie E, 2016, NANOTECHNOLOGY, V27, DOI 10.1088/0957-4484/27/28/284003
Santos Ana R., 2010, Journal of Nanobiotechnology, V8, P24, DOI 10.1186/1477-3155-8-24
Scheffer F, 2002, TXB SOIL SCI, P593
Serag MF, 2011, ACS NANO, V5, P493, DOI 10.1021/nn102344t
Servin AD, 2017, NANOTOXICOLOGY, V11, P98, DOI 10.1080/17435390.2016.1277274
Servin AD, 2013, ENVIRON SCI TECHNOL, V47, P11592, DOI 10.1021/es403368j
Shah K, 2013, J PLANT BIOCHEM BIOT, V22, P103, DOI 10.1007/s13562-012-0116-3
Sharma PK, 2020, ENV NANOTECHNOL MONI, V14, P1
Singh P, 2014, ADV PLANT PHYSL, V15, P283
Tripathi DK, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.7789/fenvs.2016.00046
Tripathi DK, 2017, PLANT PHYSIOL BIOCH, V110, P2, DOI 10.1016/j.plaphy.2016.07.030
Van Dongen JT, 2003, ANN BOT-LONDON, V91, P729, DOI 10.1093/aob/mcg066
Vieira RF, 1998, J PLANT NUTR, V21, P2141, DOI 10.1080/01904169809365550
Walker TS, 2003, PLANT PHYSIOL, V132, P44, DOI 10.1104/pp.102.019661
Wang FY, 2016, CHEMOSPHERE, V147, P88, DOI 10.1016/j.chemosphere.2015.12.076
Wang P, 2016, TRENDS PLANT SCI, V21, P699, DOI 10.1016/j.tplants.2016.04.005
Wang X., 2012, J ENV ANAL TOXICOLOG, V2, P154, DOI DOI 10.4172/2161-0525.1000154
Yang K, 2010, CHEM REV, V110, P5989, DOI 10.1021/cr100059s
Yue L, 2017, ENVIRON SCI-NANO, V4, P843, DOI 10.1039/c6en00487c
Zahra Z, 2015, J AGR FOOD CHEM, V63, P6876, DOI 10.1021/acs.jafc.5b01611
Zakikhani H., 2014, Asian Journal of Crop Science, V6, P236, DOI 10.3923/ajcs.2014.236.244
Zhang YC, 2014, APPL CATAL B-ENVIRON, V144, P730, DOI 10.1016/j.apcatb.2013.08.006
Zhao LJ, 2015, ENVIRON SCI TECHNOL, V49, P2921, DOI 10.1021/es5060226
Zhao LJ, 2012, ACS NANO, V6, P9615, DOI 10.1021/nn302975u
Zhao LJ, 2012, J HAZARD MATER, V225, P131, DOI 10.1016/j.jhazmat.2012.05.008
Zhao Y, 2017, J ALLOY COMPD, V726, P608, DOI 10.1016/j.jallcom.2017.07.327
NR 92
TC 8
Z9 8
U1 6
U2 35
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD MAR
PY 2021
VL 28
IS 11
BP 13439
EP 13453
DI 10.1007/s11356-020-11511-7
EA NOV 2020
PG 15
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA QU0NH
UT WOS:000589022300013
PM 33184789
DA 2023-03-13
ER
PT J
AU Sinkkonen, A
AF Sinkkonen, A.
TI Modelling the effect of autotoxicity on density-dependent phytotoxicity
SO JOURNAL OF THEORETICAL BIOLOGY
LA English
DT Article
DE allelopathy; autotoxicity; density-response experiments; hormesis; plant
density
ID SELF-THINNING RULE; CHEMICAL INTERFERENCE; ALFALFA AUTOTOXICITY;
RESOURCE COMPETITION; BIOLOGICAL RESPONSE; PHENOLIC-ACIDS;
BRASSICA-NAPUS; DOSE-RESPONSE; FIELD SOILS; ALLELOPATHY
AB An established method to separate resource competition from chemical interference is cultivation of monospecific, even-aged stands. The stands grow at several densities and they are exposed to homogenously spread toxins. Hence, the dose received by individual plants is inversely related to stand density. This results in distinguishable alterations in dose-response slopes. The method is often recommended in ecological studies of allelopathy. However, many plant species are known to release autotoxic compounds. Often, the probability of autotoxicity increases as sowing density increases. Despite this, the possibility of autotoxicity is ignored when experiments including monospecific stands are designed and when their results are evaluated. In this paper, I model mathematically how autotoxicity changes the outcome of dose-response slopes as different densities of monospecific stands are grown on homogenously phytotoxic substrata. Several ecologically reasonable relations between plant density and autotoxin exposure are considered over a range of parameter values, and similarities between different relations are searched for. The models indicate that autotoxicity affects the outcome of density-dependent dose-response experiments. Autotoxicity seems to abolish the effects of other phytochemicals in certain cases, while it may augment them in other cases. Autotoxicity may alter the outcome of tests using the method of monospecific stands even if the dose of autotoxic compounds per plant is a fraction of the dose of non-autotoxic phytochemicals with similar allelopathic potential. Data from the literature support these conclusions. A faulty null hypothesis may be accepted if the autotoxic potential of a test species is overlooked in density-response experiments. On the contrary, if test species are known to be non-autotoxic, the method of monospecific stands does not need fine-tuning. The results also suggest that the possibility of autotoxicity should be investigated in many density-response bioassays that are made with even-aged plants, and that measure plant growth or germination. (c) 2006 Elsevier Ltd. All rights reserved.
C1 Univ Turku, Satakunta Environm Res Inst, Pori 28900, Finland.
Univ Helsinki, Dept Biol & Environm Sci, Lahti 15140, Finland.
C3 University of Turku; University of Helsinki
RP Sinkkonen, A (corresponding author), Univ Turku, Satakunta Environm Res Inst, Konttorinkatu 1, Pori 28900, Finland.
EM akisin@utu.fi
OI sinkkonen, aki/0000-0002-6821-553X
CR An M., 1996, Allelopathy Journal, V3, P33
An M, 2001, J CHEM ECOL, V27, P395, DOI 10.1023/A:1005692724885
AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671
An YJ, 2006, CHEMOSPHERE, V62, P1359, DOI 10.1016/j.chemosphere.2005.07.044
Asao T, 2003, SCI HORTIC-AMSTERDAM, V97, P389, DOI 10.1016/S0304-4238(02)00197-8
Bais HP, 2003, SCIENCE, V301, P1377, DOI 10.1126/science.1083245
Barazani O, 1999, CRIT REV PLANT SCI, V18, P741
Bastolla U, 2005, J THEOR BIOL, V235, P521, DOI 10.1016/j.jtbi.2005.02.005
Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002
Belz RG, 2004, J CHEM ECOL, V30, P175, DOI 10.1023/B:JOEC.0000013190.72062.3d
Blum U, 1999, CRIT REV PLANT SCI, V18, P673, DOI 10.1016/S0735-2689(99)00396-2
Blum U, 1996, J NEMATOL, V28, P259
Bonanomi G, 2005, OIKOS, V111, P311, DOI 10.1111/j.0030-1299.2005.13975.x
BRADBURY JH, 1995, PHYTOCHEM ANALYSIS, V6, P268, DOI 10.1002/pca.2800060510
Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596
Callaway RM, 2003, ECOLOGY, V84, P1115, DOI 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2
Canals RM, 2005, J THEOR BIOL, V235, P402, DOI 10.1016/j.jtbi.2005.01.020
Catana C, 2005, J CHEM INF MODEL, V45, P170, DOI 10.1021/ci049797u
CHASE WR, 1991, J CHEM ECOL, V17, P1575, DOI 10.1007/BF00984689
Chen LC, 2005, ALLELOPATHY J, V15, P57
CHOESIN DN, 1991, AM J BOT, V78, P1083, DOI 10.2307/2444897
Chon SU, 2001, COMMUN SOIL SCI PLAN, V32, P1607, DOI 10.1081/CSS-100104216
Chon SU, 2000, AGRON J, V92, P715, DOI 10.2134/agronj2000.924715x
Cipollini DF, 2001, J CHEM ECOL, V27, P593, DOI 10.1023/A:1010384805014
COUSENS R, 1993, OIKOS, V66, P347, DOI 10.2307/3544824
De Blois S, 2004, ENVIRON MANAGE, V33, P606, DOI 10.1007/s00267-004-0039-4
Ervin GN, 2000, AM J BOT, V87, P853, DOI 10.2307/2656893
Fitter A, 2003, SCIENCE, V301, P1337, DOI 10.1126/science.1089291
GAGLIARDO RW, 1992, J CHEM ECOL, V18, P1683, DOI 10.1007/BF02751095
Gibson DJ, 1999, J ECOL, V87, P1, DOI 10.1046/j.1365-2745.1999.00321.x
Hamback PA, 2005, ECOL LETT, V8, P1057, DOI 10.1111/j.1461-0248.2005.00811.x
Haramoto ER, 2004, RENEW AGR FOOD SYST, V19, P187, DOI 10.1079/RAF200490
HEDGE RS, 1992, AGRON J, V84, P940
Hierro JL, 2003, PLANT SOIL, V256, P29, DOI 10.1023/A:1026208327014
HIRANO SATORU, 1965, J BIOL OSAKA CITY UNIV, V16, P27
Inderjit, 2006, SOIL BIOL BIOCHEM, V38, P256, DOI 10.1016/j.soilbio.2005.05.004
Jasicka-Misiak I, 2005, PHYTOCHEMISTRY, V66, P1485, DOI 10.1016/j.phytochem.2005.04.005
Jennings JA, 2002, AGRON J, V94, P1104, DOI 10.2134/agronj2002.1104
Khanh TD, 2005, CROP PROT, V24, P421, DOI 10.1016/j.cropro.2004.09.020
Kitazawa H, 2005, J HORTIC SCI BIOTECH, V80, P677, DOI 10.1080/14620316.2005.11511997
Koricheva J, 2002, CHEMICAL ECOLOGY OF PLANTS: ALLELOPATHY IN AQUATIC AND TERRESTRIAL ECOSYSTEMS, P219
Kraus E, 2002, FUNCT PLANT BIOL, V29, P1465, DOI 10.1071/FP02063
Lehman ME, 1999, J CHEM ECOL, V25, P2585, DOI 10.1023/A:1020838611441
Li YM, 2003, PLANT SOIL, V249, P107, DOI 10.1023/A:1022527330401
Lin TJ, 1998, VET HUM TOXICOL, V40, P93
Liphadzi MS, 2003, PLANT SOIL, V257, P171, DOI 10.1023/A:1026294830323
MAHALL BE, 1992, ECOLOGY, V73, P2145, DOI 10.2307/1941462
Mallik AU, 2002, ALLELOPATHY: FROM MOLECULES TO ECOSYSTEMS, P289
MARTIN LD, 1994, CROP PROT, V13, P388, DOI 10.1016/0261-2194(94)90055-8
Mishra V, 2005, J BIOL CHEM, V280, P20712, DOI 10.1074/jbc.M500735200
NIEMEYER HM, 1988, PHYTOCHEMISTRY, V27, P3349, DOI 10.1016/0031-9422(88)80731-3
NILSSON MC, 1994, OECOLOGIA, V98, P1, DOI 10.1007/BF00326083
Nilsson MC, 1998, OIKOS, V81, P6, DOI 10.2307/3546462
Norsworthy JK, 2005, WEED SCI, V53, P515, DOI 10.1614/WS-04-208R
Pellissier F, 1999, CRIT REV PLANT SCI, V18, P637, DOI 10.1016/S0735-2689(99)00394-9
Perry LG, 2005, J ECOL, V93, P1126, DOI 10.1111/j.1365-2745.2005.01044.x
Ramseier D, 2005, J ECOL, V93, P502, DOI 10.1111/j.1365-2745.2005.00999.x
Reigosa MJ, 1999, CRIT REV PLANT SCI, V18, P577, DOI [10.1016/S0735-2689(99)00392-5, 10.1080/07352689991309405]
Sampietro DA, 2006, ALLELOPATHY J, V17, P33
Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x
Schulz M, 1999, CHEMOECOLOGY, V9, P133, DOI 10.1007/s000490050044
Shann JR, 1995, ENVIRON HEALTH PERSP, V103, P13, DOI 10.2307/3432470
Singh HP, 1999, CRIT REV PLANT SCI, V18, P757, DOI 10.1016/S0735-2689(99)00399-8
Sinkkonen A, 2003, PLANT SOIL, V250, P315, DOI 10.1023/A:1022841503476
Sinkkonen A, 2001, J CHEM ECOL, V27, P1513, DOI 10.1023/A:1010329612753
Sinkkonen Aki, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P225, DOI 10.2201/nonlin.003.02.004
STOWE LG, 1979, J ECOL, V67, P1065, DOI 10.2307/2259228
Streibig JC, 1999, PESTIC SCI, V55, P137, DOI 10.1002/(SICI)1096-9063(199902)55:2<137::AID-PS885>3.0.CO;2-D
THIJS H, 1994, ECOLOGY, V75, P1959, DOI 10.2307/1941600
Tseng MH, 2003, J CHEM ECOL, V29, P1269, DOI 10.1023/A:1023846010108
Vaughn SF, 1997, J CHEM ECOL, V23, P2107, DOI 10.1023/B:JOEC.0000006432.28041.82
Wardle DA, 1998, BIOL REV, V73, P305, DOI 10.1017/S0006323198005192
WEIDENHAMER JD, 1987, J CHEM ECOL, V13, P1481, DOI 10.1007/BF01012292
WEIDENHAMER JD, 1989, J APPL ECOL, V26, P613, DOI 10.2307/2404086
Weidenhamer JD, 2006, ALLELOPATHY: A PHYSIOLOGICAL PROCESS WITH ECOLOGICAL IMPLICATIONS, P85, DOI 10.1007/1-4020-4280-9_4
Weih M, 2004, CAN J FOREST RES, V34, P1369, DOI [10.1139/x04-090, 10.1139/X04-090]
Weissinger WR, 2001, J FOOD PROTECT, V64, P442, DOI 10.4315/0362-028X-64.4.442
WELLER DE, 1991, ECOLOGY, V72, P747, DOI 10.2307/2937216
WELLER DE, 1987, ECOL MONOGR, V57, P23, DOI 10.2307/1942637
WESTOBY M, 1984, ADV ECOL RES, V14, P167, DOI 10.1016/S0065-2504(08)60171-3
Wu H, 2001, ANN APPL BIOL, V139, P1, DOI 10.1111/j.1744-7348.2001.tb00124.x
Ye SF, 2004, PLANT SOIL, V263, P143, DOI 10.1023/B:PLSO.0000047721.78555.dc
YODA KYOJI, 1963, J BIOL OSAKA CITY UNIV, V14, P107
NR 83
TC 29
Z9 32
U1 0
U2 24
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-5193
EI 1095-8541
J9 J THEOR BIOL
JI J. Theor. Biol.
PD JAN 21
PY 2007
VL 244
IS 2
BP 218
EP 227
DI 10.1016/j.jtbi.2006.08.003
PG 10
WC Biology; Mathematical & Computational Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational
Biology
GA 123AC
UT WOS:000243267700005
PM 16989866
DA 2023-03-13
ER
PT J
AU Tsui, MTK
Wang, WX
AF Tsui, MTK
Wang, WX
TI Influences of maternal exposure on the tolerance and physiological
performance of Daphnia magna under mercury stress
SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
LA English
DT Article
DE Daphnia magna; maternal transfer; mercury tolerance;
metallothionein-like proteins
ID METAL CONCENTRATIONS; CADMIUM RESISTANCE; HEAVY-METALS; TOXICITY;
METHYLMERCURY; ZN; CD; METALLOTHIONEIN; BIOACCUMULATION; PREEXPOSURE
AB We examined the tolerance development to mercury (Hg) by a population of freshwater zooplankton (Daphnia magna) with different pre-exposure histories to Hg. The growth and reproductive performance of the F, offspring as affected by the maternal (F,) and offspring (F,) exposures was quantified. The F-0 daphnids exposed to 2.5 and 25 nM of Hg for 4 d and followed by 4 d of depuration had elevated levels of Mg and metal lothionein-like proteins (MTLPs), as well as higher tolerance to Hg toxicity than the control daphnids. The higher Hg tolerance may be attributed to the higher proportion of Hg partitioned to the MTLPs. Moreover, significant enhancement of Hg tolerance also was found in the F, offspring originating from the F0 mothers exposed to 25 nM of Hg, but there was no significant induction of MTLPs in these F, offspring when compared to the offspring from the control mothers. The Hg tissue concentrations in the F-1 neonates were approximately 25% of those in the F0 adults. However, there was similar Hg tolerance in the F-2 offspring originating from both the control and Hg-exposed F-0 mothers, indicating that the Hg tolerance in the daphnids disappeared two generations after Hg contamination. Further exposure of the F, offspring to different Hg concentrations (1.5 and 15 nM for 28 d) indicated that maternal exposure history did not affect their growth and reproductive performance, which solely were influenced by the offspring exposure. Unexpectedly, the F-1 offspring exposed to Hg had significantly higher final wet weights and reproductive rates than the control groups, suggesting the possibility of Hg hormesis. Furthermore, the maternal exposure had no effect on the Hg accumulation and the MTLP concentrations in the F-1 offspring. Therefore, we concluded that the Hg tolerance might disappear quickly once the Hg contamination was removed and the maternal exposure history was not important in determining the physiological performance and Hg accumulation of the subsequent generations.
C1 Hong Kong Univ Sci & Technol, Dept Biol, Kowloon, Hong Kong, Peoples R China.
C3 Hong Kong University of Science & Technology
RP Wang, WX (corresponding author), Hong Kong Univ Sci & Technol, Dept Biol, Kowloon, Hong Kong, Peoples R China.
EM wwang@ust.hk
RI Tsui, Martin Tsz Ki/F-5029-2011; Wang, Wen-Xiong/E-7254-2011
OI Wang, Wen-Xiong/0000-0001-9033-0158
CR Blackmore G, 2002, ENVIRON SCI TECHNOL, V36, P989, DOI 10.1021/es0155534
BODAR CWM, 1990, AQUAT TOXICOL, V16, P33, DOI 10.1016/0166-445X(90)90075-Z
BODAR CWM, 1988, P 3 INT C ENV CONT C, P79
Boisson F, 1998, MAR ENVIRON RES, V45, P325, DOI 10.1016/S0141-1136(97)00131-1
Bossuyt BTA, 2003, COMP BIOCHEM PHYS C, V136, P253, DOI 10.1016/j.cca.2003.09.007
Chen CY, 2000, LIMNOL OCEANOGR, V45, P1525, DOI 10.4319/lo.2000.45.7.1525
Croteau MN, 2002, ENVIRON TOXICOL CHEM, V21, P737, DOI 10.1897/1551-5028(2002)021<0737:MLMBPI>2.0.CO;2
Geffard A, 2001, BIOMARKERS, V6, P91, DOI 10.1080/13547500010000860
Kast-Hutcheson K, 2001, ENVIRON TOXICOL CHEM, V20, P502, DOI [10.1002/etc.5620200308, 10.1897/1551-5028(2001)020<0502:TFPIWE>2.0.CO;2]
Lee E. T., 2003, STAT METHODS SURVIVA, V476
Levinton JS, 2003, P NATL ACAD SCI USA, V100, P9889, DOI 10.1073/pnas.1731446100
Lin HC, 2000, J FISH BIOL, V57, P239, DOI 10.1006/jfbi.2000.1339
Martinez DE, 1996, EVOLUTION, V50, P1339, DOI 10.1111/j.1558-5646.1996.tb02374.x
Mason RP, 1996, ENVIRON SCI TECHNOL, V30, P1835, DOI 10.1021/es950373d
Mouneyrac C, 2002, AQUAT TOXICOL, V57, P225, DOI 10.1016/S0166-445X(01)00201-6
Ng TYT, 2004, MAR ECOL PROG SER, V268, P161, DOI 10.3354/meps268161
Paterson MJ, 1998, ENVIRON SCI TECHNOL, V32, P3868, DOI 10.1021/es980343l
Peake EB, 2004, ENVIRON TOXICOL CHEM, V23, P208, DOI 10.1897/02-610
ROESIJADI G, 1992, AQUAT TOXICOL, V22, P81, DOI 10.1016/0166-445X(92)90026-J
Sarabia R, 1998, COMP BIOCHEM PHYS A, V120, P93, DOI 10.1016/S1095-6433(98)10015-6
SCHEUHAMMER AM, 1991, METHOD ENZYMOL, V205, P78
Shi DL, 2004, ENVIRON SCI TECHNOL, V38, P449, DOI 10.1021/es034801o
SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x
Stubblefield WA, 1999, ENVIRON TOXICOL CHEM, V18, P2875, DOI 10.1002/etc.5620181231
STUHLBACHER A, 1992, ARCH ENVIRON CON TOX, V22, P319
STUHLBACHER A, 1992, COMP BIOCHEM PHYS C, V101, P571, DOI 10.1016/0742-8413(92)90088-O
Tsui MTK, 2004, ENVIRON TOXICOL CHEM, V23, P1504, DOI 10.1897/03-310
Tsui MTK, 2004, ENVIRON SCI TECHNOL, V38, P808, DOI 10.1021/es034638x
Vidal DE, 2003, ENVIRON TOXICOL CHEM, V22, P2130, DOI 10.1897/02-407
Vidal DE, 2003, ARCH ENVIRON CON TOX, V45, P462, DOI 10.1007/s00244-003-2119-5
Wallace WG, 2003, MAR ECOL PROG SER, V249, P183, DOI 10.3354/meps249183
Watras Carl J., 1994, P137
WATRAS CJ, 1992, LIMNOL OCEANOGR, V37, P1313, DOI 10.4319/lo.1992.37.6.1313
Yu RQ, 2002, LIMNOL OCEANOGR, V47, P495, DOI 10.4319/lo.2002.47.2.0495
NR 34
TC 31
Z9 33
U1 1
U2 21
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0730-7268
EI 1552-8618
J9 ENVIRON TOXICOL CHEM
JI Environ. Toxicol. Chem.
PD MAY
PY 2005
VL 24
IS 5
BP 1228
EP 1234
DI 10.1897/04-190R.1
PG 7
WC Environmental Sciences; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Toxicology
GA 919OJ
UT WOS:000228627100029
PM 16111004
DA 2023-03-13
ER
PT J
AU Basavaraju, SR
Easterly, CE
AF Basavaraju, SR
Easterly, CE
TI Pathophysiological effects of radiation on atherosclerosis development
and progression, and the incidence of cardiovascular complications
SO MEDICAL PHYSICS
LA English
DT Review
DE radiation treatment; atherosclerosis; Hodgkin's disease; breast cancer;
coronary artery disease
ID CORONARY-ARTERY DISEASE; INDUCED HEART-DISEASE; EXTERNAL-BEAM
IRRADIATION; TRANSFORMING GROWTH FACTOR-BETA-1; INHIBITS NEOINTIMA
FORMATION; VASCULAR ENDOTHELIAL-CELLS; IN-STENT RESTENOSIS;
HODGKINS-DISEASE; BREAST-CANCER; BALLOON ANGIOPLASTY
AB Radiation therapy while important in the management of several diseases, is implicated in the causation of atherosclerosis and other cardiovascular complications. Cancer and atherosclerosis go through the same stages of initiation, promotion, and complication, beginning with a mutation in a single cell. Clinical observations before the 1960s lead to the belief that the heart is relatively resistant to the doses of radiation used in radiotherapy. Subsequently, it was discovered that the heart is sensitive to radiation and many cardiac structures may be damaged by radiation exposure. A significantly higher risk of death due to ischemic heart disease has been reported for patients treated with radiation for Hodgkin's disease and breast cancer. Certain cytokines and growth factors, such as TGF-beta1 and IL-1 beta, may stimulate radiation-induced endothelial proliferation, fibroblast proliferation, collagen deposition, and fibrosis leading to advanced lesions of atherosclerosis. The treatment for radiation-induced ischemic heart disease includes conventional pharmacological therapy, balloon angioplasty, and bypass surgery. Endovascular irradiation has been shown to be effective in reducing restenosis-like response to balloon-catheter injury in animal models. Caution must be exercised when radiation therapy is combined with doxorubicin because there appears to be a synergistic toxic effect on the myocardium. Damage to endothelial cells is a central event in the pathogenesis of damage to the coronary arteries. Certain growth factors that interfere with the apoptotic pathway may provide new therapeutic strategies for reducing the risk of radiation-induced damage to the heart. Exposure to low level occupational or environmental radiation appears to pose no undue risk of atherosclerosis development or cardiovascular mortality. But, other radiation-induced processes such as the bystander effects, abscopal effects, hormesis, and individual variations in radiosensitivity may be important in certain circumstances. (C) 2002 American Association of Physicists in Medicine.
C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA.
Bennett Coll, Dept Biol, Greensboro, NC 27401 USA.
C3 United States Department of Energy (DOE); Oak Ridge National Laboratory;
Bennett College
RP Easterly, CE (corresponding author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA.
EM easterlyce@ornl.gov
CR ABBAS MA, 1994, INT J CARDIOL, V44, P191, DOI 10.1016/0167-5273(94)90283-6
Albiero R, 2000, CIRCULATION, V101, P18, DOI 10.1161/01.CIR.101.1.18
American Heart Association, 2000, 2001 HEART STROK STA
Amols HI, 1996, INT J RADIAT ONCOL, V36, P913, DOI 10.1016/S0360-3016(96)00301-X
AMRONIM GD, 1965, ARCH PATHOL, V75, P219
ANNEST LS, 1983, J THORAC CARDIOV SUR, V85, P257
ANSCHER MS, 1990, RADIAT RES, V122, P77, DOI 10.2307/3577586
ANTONI G, 1986, J IMMUNOL, V137, P3201
APPLEFELD MM, 1983, AM J CARDIOL, V51, P1679, DOI 10.1016/0002-9149(83)90209-6
APPLEFELD MM, 1982, CANCER TREAT REP, V66, P1003
ARAKI S, 1990, BIOCHEM BIOPH RES CO, V168, P1194, DOI 10.1016/0006-291X(90)91155-L
ARCHAMBEAU JO, 1984, RADIAT RES, V98, P37, DOI 10.2307/3576049
ARSENIAN MA, 1991, PROG CARDIOVASC DIS, V33, P299, DOI 10.1016/0033-0620(91)90022-E
ASSCHER AW, 1961, LANCET, V1, P580
Behling UH, 1983, BENEFICIAL EFFECTS E, P127
BENDITT EP, 1973, P NATL ACAD SCI USA, V70, P1753, DOI 10.1073/pnas.70.6.1753
BERGQVIST D, 1987, SURG GYNECOL OBSTET, V165, P116
BOIVIN JF, 1992, CANCER, V69, P1241
BRADLEY EW, 1981, INT J RADIAT ONCOL, V7, P1103, DOI 10.1016/0360-3016(81)90169-3
BROSIUS FC, 1981, AM J MED, V70, P519, DOI 10.1016/0002-9343(81)90574-X
BROWN PE, 1967, NATURE, V213, P363, DOI 10.1038/213363a0
Burger A, 1998, INT J RADIAT BIOL, V73, P401, DOI 10.1080/095530098142239
BYHARDT R, 1975, CANCER-AM CANCER SOC, V35, P795, DOI 10.1002/1097-0142(197503)35:3<795::AID-CNCR2820350335>3.0.CO;2-M
Constine LS, 1997, INT J RADIAT ONCOL, V39, P897, DOI 10.1016/S0360-3016(97)00467-7
CORN BW, 1990, J CLIN ONCOL, V8, P741, DOI 10.1200/JCO.1990.8.4.741
DARTSCH PC, 1989, ATHEROSCLEROSIS, V80, P149, DOI 10.1016/0021-9150(89)90023-3
DOERING CW, 1988, CARDIOVASC RES, V22, P686, DOI 10.1093/cvr/22.10.686
DOHERTY DG, 1960, RAD PROTECTION RECOV, V7, P45
DOLLINGER MR, 1965, LANCET, V2, P246
Drab-Weiss EA, 1998, SHOCK, V10, P423, DOI 10.1097/00024382-199812000-00008
Eriksson F, 2000, RADIOTHER ONCOL, V55, P153, DOI 10.1016/S0167-8140(00)00166-3
Fajardo L F, 1999, Cardiovasc Radiat Med, V1, P108
FAJARDO LF, 1975, CANCER, V36, P904, DOI 10.1002/1097-0142(197509)36:3<904::AID-CNCR2820360311>3.0.CO;2-U
FAJARDO LF, 1973, LAB INVEST, V29, P244
FAJARDO LF, 1976, RADIAT RES, V68, P177, DOI 10.2307/3574547
FAJARDO LF, 1968, ARCH PATHOL, V86, P512
FAJARDO LF, 1988, PATHOL ANNU, V23, P297
FISCHELL TA, 1994, CIRCULATION, V90, P2956, DOI 10.1161/01.CIR.90.6.2956
FISCHERDZOGA K, 1984, RADIAT RES, V99, P536, DOI 10.2307/3576328
FONKALSRUD EW, 1977, SURG GYNECOL OBSTET, V145, P395
FRASCA D, 1991, RADIAT RES, V128, P43, DOI 10.2307/3578065
FRASCA D, 1988, J IMMUNOL, V141, P2651
FUKS Z, 1994, CANCER RES, V54, P2582
Gassmann A, 1899, ROFO FORTSCHR RONTG, V2, P199
Gofman JW, 1999, RAD MED PROCEDURES P
GOMEZ GA, 1983, CANCER TREAT REP, V67, P1099
GOTTDIENER JS, 1983, NEW ENGL J MED, V308, P569, DOI 10.1056/NEJM198303103081005
Gura T, 1998, SCIENCE, V281, P923
Gura T, 1998, SCIENCE, V281, P35, DOI 10.1126/science.281.5373.35
Gyenes G, 1998, RADIOTHER ONCOL, V48, P185, DOI 10.1016/S0167-8140(98)00062-0
Gyenes G, 1998, ACTA ONCOL, V37, P241, DOI 10.1080/028418698429522
HAIMOVITZFRIEDMAN A, 1994, CANCER RES, V54, P2591
HANCOCK SL, 1993, JAMA-J AM MED ASSOC, V270, P1949, DOI 10.1001/jama.270.16.1949
Handa N, 1999, J THORAC CARDIOV SUR, V117, P1136, DOI 10.1016/S0022-5223(99)70250-3
HANKS GE, 1969, AMER J ROENTGENOL RA, V105, P74, DOI 10.2214/ajr.105.1.74
HAYBITTLE JL, 1989, BRIT MED J, V298, P1611, DOI 10.1136/bmj.298.6688.1611
HEHRLEIN C, 1995, CIRCULATION, V92, P1570, DOI 10.1161/01.CIR.92.6.1570
HOST H, 1986, INT J RADIAT ONCOL, V12, P727, DOI 10.1016/0360-3016(86)90029-5
HUFF H, 1972, NEW ENGL J MED, V286, P780
JOHNSON, 2002, PRELIMINARY RESULTS
JONES JM, 1989, CLIN RADIOL, V40, P204, DOI 10.1016/S0009-9260(89)80099-6
Kim HS, 2001, INT J RADIAT ONCOL, V51, P1058, DOI 10.1016/S0360-3016(01)02601-3
Kodama Kazunori, 1996, World Health Statistics Quarterly, V49, P7
KONDO S, 1994, EXP CELL RES, V213, P428, DOI 10.1006/excr.1994.1219
Kotzerke J, 2000, EUR J NUCL MED, V27, P223, DOI 10.1007/s002590050032
Koukourakis MI, 2002, ANTI-CANCER DRUG, V13, P181, DOI 10.1097/00001813-200203000-00001
Kruse JJCM, 2001, RADIOTHER ONCOL, V58, P303, DOI 10.1016/S0167-8140(00)00327-3
LAMBERTS HB, 1963, INT J RADIAT BIOL RE, V6, P343, DOI 10.1080/09553006314550461
Langley RE, 1997, BRIT J CANCER, V75, P666, DOI 10.1038/bjc.1997.119
LAWSON JA, 1985, J CARDIOVASC SURG, V26, P151
Leon MB, 2001, NEW ENGL J MED, V344, P250, DOI 10.1056/NEJM200101253440402
LINDSAY S, 1962, CIRC RES, V10, P51, DOI 10.1161/01.RES.10.1.51
Makkar R, 1998, J AM COLL CARDIOL, V31, p350A, DOI 10.1016/S0735-1097(97)85232-1
Marijianowski MMH, 1999, INT J RADIAT ONCOL, V44, P633, DOI 10.1016/S0360-3016(99)00038-3
Mayberg MR, 2000, RADIAT RES, V153, P153, DOI 10.1667/0033-7587(2000)153[0153:IORSMP]2.0.CO;2
MAZUR W, 1994, CIRCULATION, V90, P652
MCCREADY RA, 1983, SURGERY, V93, P306
MCENIERY PT, 1987, AM J CARDIOL, V60, P1020, DOI 10.1016/0002-9149(87)90345-6
MCGUIRT WF, 1992, ANN OTO RHINOL LARYN, V101, P222, DOI 10.1177/000348949210100305
MCREYNOLDS RA, 1976, AM J MED, V60, P39, DOI 10.1016/0002-9343(76)90531-3
MILL WB, 1984, INT J RADIAT ONCOL, V10, P2061, DOI 10.1016/0360-3016(84)90203-7
MILLION RR, 1963, RADIOLOGY, V80, P973, DOI 10.1148/80.6.973
Minotti G, 1999, FASEB J, V13, P199, DOI 10.1096/fasebj.13.2.199
MOLITERNO DJ, 2002, TXB CARDIOVASCULAR M, P1715
Mooteri SN, 1996, RADIAT RES, V145, P217, DOI 10.2307/3579177
MORGAN GW, 1985, INT J RADIAT ONCOL, V11, P1925, DOI 10.1016/0360-3016(85)90273-1
MORITZ MW, 1990, ARCH SURG-CHICAGO, V125, P1181
NENCIONI L, 1987, J IMMUNOL, V139, P800
NETA R, 1986, J IMMUNOL, V136, P2483
NETA R, 1988, BLOOD, V72, P1093
NIEMTZOW RC, 1985, CANC HEART, P232
NIKOL S, 1992, J CLIN INVEST, V90, P1582, DOI 10.1172/JCI116027
NYLANDER G, 1978, CANCER, V41, P2158, DOI 10.1002/1097-0142(197806)41:6<2158::AID-CNCR2820410613>3.0.CO;2-L
OM A, 1992, AM HEART J, V124, P1598, DOI 10.1016/0002-8703(92)90078-A
Park JS, 2001, ONCOGENE, V20, P3266, DOI 10.1038/sj.onc.1204258
PEARSON HES, 1957, P ROY SOC MED, V50, P516
PETTERSSON F, 1990, ACTA CHIR SCAND, V156, P367
PIEDBOIS P, 1990, RADIOTHER ONCOL, V17, P133, DOI 10.1016/0167-8140(90)90101-2
PIOVACCARI G, 1995, INT J CARDIOL, V49, P39, DOI 10.1016/0167-5273(95)02276-3
POPMA J, 2002, TXB CARDIOVASCULAR M, P1715
PRENTICE RT, 1965, LANCET, V2, P388
PUCK TT, 1957, J EXP MED, V106, P485, DOI 10.1084/jem.106.4.485
PURDIE JW, 1983, INT J RADIAT BIOL, V43, P517, DOI 10.1080/09553008314550611
Raizner AE, 2000, CIRCULATION, V102, P951, DOI 10.1161/01.CIR.102.9.951
Richardson DB, 1999, ENVIRON HEALTH PERSP, V107, P649, DOI 10.2307/3434457
Ridker PM, 1998, CIRCULATION, V97, P1671, DOI 10.1161/01.CIR.97.17.1671
Rijbroek A, 2000, Ned Tijdschr Geneeskd, V144, P353
RODEMANN HP, 1995, RADIOTHER ONCOL, V35, P83, DOI 10.1016/0167-8140(95)01540-W
ROSS R, 1993, NATURE, V362, P801, DOI 10.1038/362801a0
Rubin D.B., 1998, RAD BIOL VASCULAR EN
RUBIN DB, 1984, RADIAT RES, V99, P420, DOI 10.2307/3576384
SAMS A, 1965, INT J RADIAT BIOL RE, V9, P165, DOI 10.1080/09553006514550211
SAVLOV ED, 1969, OBSTET GYNECOL, V34, P345
SCHWARTZ RS, 1992, J AM COLL CARDIOL, V19, P1106, DOI 10.1016/0735-1097(92)90303-5
Serruys PW, 2000, CIRCULATION, V101, P3, DOI 10.1161/01.CIR.101.1.3
Shimizu Y, 1999, RADIAT RES, V152, P374, DOI 10.2307/3580222
SILVERBERG GD, 1978, CANCER-AM CANCER SOC, V41, P130, DOI 10.1002/1097-0142(197801)41:1<130::AID-CNCR2820410121>3.0.CO;2-X
SINCLAIR WK, 1968, RADIAT RES, V33, P620, DOI 10.2307/3572419
SMITH REA, 1993, BRIT HEART J, V69, P483
STEWART JR, 1984, PROG CARDIOVASC DIS, V27, P173
STEWART JR, 1971, RADIOL CLIN N AM, V9, P511
STEWART JR, 1971, RADIOLOGY, V99, P403, DOI 10.1148/99.2.403
STEWART JR, 1989, FRONT RADIAT THER ON, V23, P302
Talbott EO, 2000, ENVIRON HEALTH PERSP, V108, P545, DOI 10.2307/3454617
Tazka D, 2000, BIOLOGIA, V55, P119
Teirstein PS, 2000, CIRCULATION, V101, P360, DOI 10.1161/01.CIR.101.4.360
TENET W, 1986, CATHETER CARDIO DIAG, V12, P169
TRACY GP, 1974, JAMA-J AM MED ASSOC, V228, P1660, DOI 10.1001/jama.228.13.1660
TRAVIS EL, 1985, RADIAT RES, V103, P219, DOI 10.2307/3576576
UPADHAYA BR, 1972, INDIAN J MED RES, V60, P403
VACHERON A, 1983, ANN CARDIOL ANGEIOL, V32, P465
Veeragandham RS, 1998, ANN THORAC SURG, V65, P1014, DOI 10.1016/S0003-4975(98)00082-4
Veinot JP, 1996, HUM PATHOL, V27, P766, DOI 10.1016/S0046-8177(96)90447-5
VERIN V, 1995, CIRCULATION, V92, P2284, DOI 10.1161/01.CIR.92.8.2284
Verin V, 2001, NEW ENGL J MED, V344, P243, DOI 10.1056/NEJM200101253440401
VESSELIN.D, 1968, J ATHEROSCLER RES, V8, P497, DOI 10.1016/S0368-1319(68)80105-X
Virmani R, 1999, Cardiovasc Radiat Med, V1, P98, DOI 10.1016/S1522-1865(98)00010-9
Waksman R, 2000, CIRCULATION, V101, P2165, DOI 10.1161/01.CIR.101.18.2165
WAKSMAN R, 1995, CIRCULATION, V92, P3025, DOI 10.1161/01.CIR.92.10.3025
WAKSMAN R, 1995, CIRCULATION, V91, P1533, DOI 10.1161/01.CIR.91.5.1533
WAKSMAN R, 2002, TXB CARDIOVASCULAR M, P1715
WARD WF, 1983, RADIAT RES, V96, P294, DOI 10.2307/3576212
WARFIELD ME, 1990, RADIAT RES, V121, P63, DOI 10.2307/3577564
WEBER KT, 1989, J AM COLL CARDIOL, V13, P1637, DOI 10.1016/0735-1097(89)90360-4
WEINBERGER J, 1999, VASCULAR BRACHYTHERA, P521
WERNER MH, 1988, NEUROLOGY, V38, P1158, DOI 10.1212/WNL.38.7.1158
WIEDERMANN JG, 1995, J AM COLL CARDIOL, V25, P1451, DOI 10.1016/0735-1097(95)00010-2
WIEDERMANN JG, 1994, J AM COLL CARDIOL, V23, P1491, DOI 10.1016/0735-1097(94)90397-2
WINDHOLZ F, 1937, STRAHLENTHERAPIE, V59, P662
WIZENBERG MJ, 1972, CANCER-AM CANCER SOC, V29, P1455, DOI 10.1002/1097-0142(197206)29:6<1455::AID-CNCR2820290606>3.0.CO;2-8
NR 150
TC 115
Z9 121
U1 0
U2 13
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0094-2405
EI 2473-4209
J9 MED PHYS
JI Med. Phys.
PD OCT
PY 2002
VL 29
IS 10
BP 2391
EP 2403
DI 10.1118/1.1509442
PG 13
WC Radiology, Nuclear Medicine & Medical Imaging
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Radiology, Nuclear Medicine & Medical Imaging
GA 604XR
UT WOS:000178646800023
PM 12408314
DA 2023-03-13
ER
PT J
AU Matta, L
de Faria, CC
De Oliveira, DF
Andrade, IS
Lima, NC
Gregorio, BM
Takiya, CM
Ferreira, ACF
Nascimento, JHM
de Carvalho, DP
Bartelt, A
Maciel, L
Fortunato, RS
AF Matta, Leonardo
de Faria, Caroline Coelho
De Oliveira, Dahienne F.
Andrade, Iris Soares
Lima-Junior, Niedson Correia
Gregorio, Bianca Martins
Takiya, Cristina Maeda
Freitas Ferreira, Andrea Claudia
Nascimento, Jose Hamilton M.
de Carvalho, Denise Pires
Bartelt, Alexander
Maciel, Leonardo
Fortunato, Rodrigo Soares
TI Exercise Improves Redox Homeostasis and Mitochondrial Function in White
Adipose Tissue
SO ANTIOXIDANTS
LA English
DT Article
DE exercise; redox homeostasis; hormesis; adipose tissue
ID NF-KAPPA-B; OXIDATIVE STRESS; DNA-DAMAGE; INSULIN-RESISTANCE;
PHYSICAL-ACTIVITY; GENE-EXPRESSION; INFLAMMATION; PATHWAY; NRF2;
MECHANISMS
AB Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously shown that one aerobic exercise session was associated with increased expression of antioxidant and cytoprotective genes in white adipose tissue (WAT). In the present study, we evaluate the chronic effects of physical exercise on WAT redox homeostasis and mitochondrial function. Adult male Wistar rats were separated into two groups: a control group that did not exercise and a group that performed running exercise sessions on a treadmill for 30 min, 5 days per week for 9 weeks. Reactive oxygen species (ROS) generation, antioxidant enzyme activities, mitochondrial function, markers of oxidative stress and inflammation, and proteins related to DNA damage response were analyzed. In WAT from the exercise group, we found higher mitochondrial respiration in states I, II, and III of Complex I and Complex II, followed by an increase in ATP production, and the ROS/ATP ratio when compared to tissues from control rats. Regarding redox homeostasis, NADPH oxidase activity, protein carbonylation, and lipid peroxidation levels were lower in WAT from the exercise group when compared to control tissues. Moreover, antioxidant enzymatic activity, reduced glutathione/oxidized glutathione ratio, and total nuclear factor erythroid-2, like-2 (NFE2L2/NRF2) protein levels were higher in the exercise group compared to control. Finally, we found that exercise reduced the phosphorylation levels of H2AX histone (gamma H2AX), a central protein that contributes to genome stability through the signaling of DNA damage. In conclusion, our results show that chronic exercise modulates redox homeostasis in WAT, improving antioxidant capacity, and mitochondrial function. This hormetic remodeling of adipocyte redox balance points to improved adipocyte health and seems to be directly associated with the beneficial effects of exercise.
C1 [Matta, Leonardo; de Faria, Caroline Coelho; De Oliveira, Dahienne F.; Andrade, Iris Soares; Lima-Junior, Niedson Correia; Takiya, Cristina Maeda; Freitas Ferreira, Andrea Claudia; Nascimento, Jose Hamilton M.; de Carvalho, Denise Pires; Maciel, Leonardo; Fortunato, Rodrigo Soares] Univ Fed Rio de Janeiro, Hlth Sci Ctr, Carlos Chagas Filho Inst Biophys, BR-21941590 Rio De Janeiro, Brazil.
[Matta, Leonardo; Bartelt, Alexander] Ludwig Maximilians Univ Munchen, Klinikum Univ Munchen, Inst Cardiovasc Prevent, D-80539 Munich, Germany.
[Matta, Leonardo; Bartelt, Alexander] Helmholtz Ctr Munich, Inst Diabet & Canc, D-85764 Munich, Germany.
[Gregorio, Bianca Martins] Univ Estado Rio De Janeiro, Roberto Alcantara Gomes Inst Biol, Urogenital Res Unit, BR-20511010 Rio De Janeiro, Brazil.
[Freitas Ferreira, Andrea Claudia; Maciel, Leonardo] Univ Fed Rio de Janeiro, Multidisciplinary Ctr Res Biol NUMPEX, Duque de Caxias Campus, BR-25250470 Rio De Janeiro, Brazil.
C3 Universidade Federal do Rio de Janeiro; University of Munich; Helmholtz
Association; Helmholtz-Center Munich - German Research Center for
Environmental Health; Universidade do Estado do Rio de Janeiro;
Universidade Federal do Rio de Janeiro
RP Bartelt, A (corresponding author), Ludwig Maximilians Univ Munchen, Klinikum Univ Munchen, Inst Cardiovasc Prevent, D-80539 Munich, Germany.; Bartelt, A (corresponding author), Helmholtz Ctr Munich, Inst Diabet & Canc, D-85764 Munich, Germany.
EM alexander.bartelt@med.uni-muenchen.de
RI Carvalho, Denise P/H-6306-2012; de Faria, Caroline/T-8905-2018;
Nascimento, Jose Hamilton/L-3722-2018; Fortunato, Rodrigo/F-2020-2014;
/E-3415-2012
OI Carvalho, Denise P/0000-0001-6933-6424; de Faria,
Caroline/0000-0003-4194-4510; Matta, Leonardo/0000-0002-3892-6330;
Nascimento, Jose Hamilton/0000-0001-7052-254X; Fortunato,
Rodrigo/0000-0003-3497-8173; Bartelt, Alexander/0000-0001-7840-3991;
/0000-0001-7300-2718; Takiya, Christina/0000-0002-8019-628X
FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq);
Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ);
Coordenacao de Aperfeicoamento de Pessoal de Nivel superior (CAPES);
European Research Council (ERC) Starting Grant PROTEOFIT
FX This work was supported by Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado
do Rio de Janeiro (FAPERJ), and Coordenacao de Aperfeicoamento de
Pessoal de Nivel superior (CAPES). A.B. was supported by the European
Research Council (ERC) Starting Grant PROTEOFIT.
CR Abreu CC, 2017, LIFE SCI, V188, P192, DOI 10.1016/j.lfs.2017.09.007
AEBI H, 1984, METHOD ENZYMOL, V105, P121
Arab HH, 2021, CHEM-BIOL INTERACT, V335, DOI 10.1016/j.cbi.2021.109368
Aronson D, 1997, J CLIN INVEST, V99, P1251, DOI 10.1172/JCI119282
Baird L, 2020, MOL CELL BIOL, V40, DOI 10.1128/MCB.00099-20
Bartelt A, 2014, NAT REV ENDOCRINOL, V10, P24, DOI 10.1038/nrendo.2013.204
Barzilai A, 2004, DNA REPAIR, V3, P1109, DOI 10.1016/j.dnarep.2004.03.002
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Braune J, 2017, J IMMUNOL, V198, P2927, DOI 10.4049/jimmunol.1600476
Breitzig M, 2016, AM J PHYSIOL-CELL PH, V311, pC537, DOI 10.1152/ajpcell.00101.2016
Cabrera ME, 1999, AM J PHYSIOL-REG I, V277, pR1522, DOI 10.1152/ajpregu.1999.277.5.R1522
Cai M, 2016, BRAIN BEHAV IMMUN, V57, P347, DOI 10.1016/j.bbi.2016.05.010
Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526
Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa
Caldeira DDF, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.748261
Chen K, 2008, J CELL BIOL, V181, P1129, DOI 10.1083/jcb.200709049
Cinti S, 2000, METH MOL B, V155, P21
Crapo J D, 1978, Methods Enzymol, V53, P382
Daiber A, 2010, BBA-BIOENERGETICS, V1797, P897, DOI 10.1016/j.bbabio.2010.01.032
Dalleau S, 2013, CELL DEATH DIFFER, V20, P1615, DOI 10.1038/cdd.2013.138
de Meis L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009439
de Melo DG, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-10688-w
Cordeiro LMD, 2019, J CELL BIOCHEM, V120, P18883, DOI 10.1002/jcb.29208
Den Hartigh LJ, 2017, ARTERIOSCL THROM VAS, V37, P466, DOI 10.1161/ATVBAHA.116.308749
DeVallance E, 2019, ANTIOXID REDOX SIGN, V31, P687, DOI 10.1089/ars.2018.7674
Dinkova-Kostova AT, 2015, FREE RADICAL BIO MED, V88, P179, DOI 10.1016/j.freeradbiomed.2015.04.036
Done AJ, 2016, REDOX BIOL, V10, P191, DOI 10.1016/j.redox.2016.10.003
Egan B, 2013, CELL METAB, V17, P162, DOI 10.1016/j.cmet.2012.12.012
Farhat F, 2015, REDOX REP, V20, P60, DOI 10.1179/1351000214Y.0000000105
Fathi R, 2020, LIFE SCI, V256, DOI 10.1016/j.lfs.2020.117958
Faude O, 2009, SPORTS MED, V39, P469, DOI 10.2165/00007256-200939060-00003
FLOHE L, 1984, METHOD ENZYMOL, V105, P114
Fortunato RS, 2008, J ENDOCRINOL, V198, P347, DOI 10.1677/JOE-08-0174
Fortunato RS, 2013, THYROID, V23, P111, DOI 10.1089/thy.2012.0142
FRIDOVICH I, 1995, ANNU REV BIOCHEM, V64, P97, DOI 10.1146/annurev.bi.64.070195.000525
Gedik N, 2017, ARCH MED SCI, V13, P448, DOI 10.5114/aoms.2016.61789
Giles ED, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00032
Goyal MM, 2010, PROTEIN CELL, V1, P888, DOI 10.1007/s13238-010-0113-z
Graham KA, 2010, CANCER BIOL THER, V10, DOI 10.4161/cbt.10.3.12207
Gureev AP, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00435
Holmstrom KM, 2013, BIOL OPEN, V2, P761, DOI 10.1242/bio.20134853
Hotamisligil GS, 2017, NATURE, V542, P177, DOI 10.1038/nature21363
Jang Y, 2018, NEUROSCIENCE, V379, P292, DOI 10.1016/j.neuroscience.2018.03.015
Ji LL, 2016, FREE RADICAL BIO MED, V98, P113, DOI 10.1016/j.freeradbiomed.2016.02.025
Ji LL, 2004, FASEB J, V18, P1499, DOI 10.1096/fj.04-1846com
Kasai S, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10020320
Kumari R, 2021, FRONT CELL DEV BIOL, V09, DOI 10.3389/fcell.2021.645593
Lassegue B, 2010, ARTERIOSCL THROM VAS, V30, P653, DOI 10.1161/ATVBAHA.108.181610
LEMONNIER D, 1972, J CLIN INVEST, V51, P2907, DOI 10.1172/JCI107115
Leopoldo AS, 2016, BRAZ J MED BIOL RES, V49, DOI 10.1590/1414-431X20155028
Liguori I, 2018, CLIN INTERV AGING, V13, P757, DOI 10.2147/CIA.S158513
Louzada RA, 2020, ANTIOXID REDOX SIGN, V33, P745, DOI 10.1089/ars.2019.7949
Luo S, 2009, REDOX REP, V14, P159, DOI 10.1179/135100009X392601
Maciel L, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00545
Magbanua MJM, 2014, CANCER CAUSE CONTROL, V25, P515, DOI 10.1007/s10552-014-0354-x
Matta L, 2021, OXID MED CELL LONGEV, V2021, DOI 10.1155/2021/4593496
McKie GL, 2020, BIOCHEM J, V477, P1061, DOI 10.1042/BCJ20190466
Memme JM, 2021, J PHYSIOL-LONDON, V599, P803, DOI 10.1113/JP278853
Mendham AE, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60286-x
Morgan MJ, 2011, CELL RES, V21, P103, DOI 10.1038/cr.2010.178
Muthusamy VR, 2012, FREE RADICAL BIO MED, V52, P366, DOI 10.1016/j.freeradbiomed.2011.10.440
No MH, 2020, PFLUG ARCH EUR J PHY, V472, P179, DOI 10.1007/s00424-020-02357-6
Norton K, 2010, J SCI MED SPORT, V13, P496, DOI 10.1016/j.jsams.2009.09.008
Palou M, 2009, CELL PHYSIOL BIOCHEM, V24, P547, DOI 10.1159/000257511
Palou M, 2010, J NUTR BIOCHEM, V21, P23, DOI 10.1016/j.jnutbio.2008.10.001
Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004
Powers SK, 2014, FREE RADICAL RES, V48, P43, DOI 10.3109/10715762.2013.825371
Radak Z, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P63, DOI 10.1016/B978-0-12-814253-0.00005-X
Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015
Rahmanian N, 2021, DNA REPAIR, V108, DOI 10.1016/j.dnarep.2021.103243
Rai SR, 2021, CHEMISTRYSELECT, V6, P4566, DOI 10.1002/slct.202100773
Rezaei Sajjad, 2017, J Exerc Nutrition Biochem, V21, P26, DOI 10.20463/jenb.2017.0040
Richter EA, 2009, BIOCHEM J, V418, P261, DOI 10.1042/BJ20082055
Roberts FL, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10102639
Ruegsegger GN, 2018, CSH PERSPECT MED, V8, DOI 10.1101/cshperspect.a029694
Sahin K, 2016, J INFLAMM RES, V9, DOI 10.2147/JIR.S110873
Sakurai T, 2009, BIOCHEM BIOPH RES CO, V379, P605, DOI 10.1016/j.bbrc.2008.12.127
Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
SCHRECK R, 1991, EMBO J, V10, P2247, DOI 10.1002/j.1460-2075.1991.tb07761.x
Shanmugam G, 2019, FRONT CARDIOVASC MED, V6, DOI 10.3389/fcvm.2019.00068
Shimizu I, 2014, CELL METAB, V20, P967, DOI 10.1016/j.cmet.2014.10.008
Sies H, 2020, NAT REV MOL CELL BIO, V21, P363, DOI 10.1038/s41580-020-0230-3
Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037
Solmaz SRN, 2008, J BIOL CHEM, V283, P17542, DOI 10.1074/jbc.M710126200
Thyfault JP, 2020, DIABETOLOGIA, V63, P1464, DOI 10.1007/s00125-020-05177-6
Toppo S, 2008, ANTIOXID REDOX SIGN, V10, P1501, DOI 10.1089/ars.2008.2057
Townsend LK, 2020, AM J PHYSIOL-CELL PH, V318, pC137, DOI 10.1152/ajpcell.00313.2019
Trevellin E, 2014, DIABETES, V63, P2800, DOI 10.2337/db13-1234
Tsiloulis T, 2015, PROG MOL BIOL TRANSL, V135, P175, DOI 10.1016/bs.pmbts.2015.06.016
Vergoni B, 2016, DIABETES, V65, P3062, DOI 10.2337/db16-0014
Wang PY, 2012, CURR OPIN ONCOL, V24, P76, DOI 10.1097/CCO.0b013e32834de1d8
Webb R, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6030063
Wedell-Neergaard AS, 2019, CELL METAB, V29, P844, DOI 10.1016/j.cmet.2018.12.007
Wende AR, 2016, FREE RADICAL BIO MED, V100, P94, DOI 10.1016/j.freeradbiomed.2016.05.022
Zhang SXL, 2014, INT J OBESITY, V38, P619, DOI 10.1038/ijo.2013.139
Zhao XJ, 2013, EXP GERONTOL, V48, P869, DOI 10.1016/j.exger.2013.05.063
Zoladz JA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189456
Zorov DB, 2014, PHYSIOL REV, V94, P909, DOI 10.1152/physrev.00026.2013
NR 98
TC 0
Z9 0
U1 4
U2 4
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3921
J9 ANTIOXIDANTS-BASEL
JI Antioxidants
PD SEP
PY 2022
VL 11
IS 9
AR 1689
DI 10.3390/antiox11091689
PG 20
WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science &
Technology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science
& Technology
GA 4Q6CP
UT WOS:000856169100001
PM 36139762
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Agathokleous, E
Kitao, M
Koike, T
AF Agathokleous, Evgenios
Kitao, Mitsutoshi
Koike, Takayoshi
TI Ethylenediurea (EDU) effects on hybrid larch saplings exposed to ambient
or elevated ozone over three growing seasons
SO JOURNAL OF FORESTRY RESEARCH
LA English
DT Article
DE Air pollution; Ethylenediurea (EDU); Hormesis; Plant protection;
Tropospheric ozone (o(3)); Larix gmelinii var. japonica x L. kaempferi
ID LITTER DECOMPOSITION; JAPANESE LARCH; AIR-POLLUTION; PHOTOSYNTHETIC
RESPONSES; CO2 ASSIMILATION; LEAF-LITTER; O-3; NITROGEN; GROWTH;
CULTIVARS
AB Ground-level ozone (O-3) pollution is a persistent environmental issue that can lead to adverse effects on trees and wood production, thus indicating a need for forestry interventions to mediate O-3 effects. We treated hybrid larch (Larix gmelinii var. japonica x L. kaempferi) saplings grown in nutrient-poor soils with 0 or 400 mg L-1 water solutions of the antiozonant ethylenediurea (EDU0, EDU400) and exposed them to ambient O-3 (AOZ; 08:00 - 18:00 approximate to 30 nmol mol(-1)) or elevated O-3 (EOZ; 08:00 - 18:00 approximate to 60 nmol mol(-1)) over three growing seasons. We found that EDU400 protected saplings against most effects of EOZ, which included extensive visible foliar injury, premature senescence, decreased photosynthetic pigment contents and altered balance between pigments, suppressed gas exchange and biomass production, and impaired leaf litter decay. While EOZ had limited effects on plant growth (suppressed stem diameter), it decreased the total number of buds per plant, an effect that was not observed in the first growing season. These results indicate that responses to EOZ might have implications to plant competitiveness, in the long term, as a result of decreased potential for vegetative growth. However, when buds were standardized per unit of branches biomass, EOZ significantly increased the number of buds per unit of biomass, suggesting a potentially increased investment to bud development, in an effort to enhance growth potential and competitiveness in the next growing season. EDU400 minimized most of these effects of EOZ, significantly enhancing plant health under O-3-induced stress. The effect of EDU was attributed mainly to a biochemical mode of action. Therefore, hybrid larch, which is superior to its parents, can be significantly improved by EDU under long-term elevated O-3 exposure, providing a perspective for enhancing afforestation practices.
C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China.
[Agathokleous, Evgenios; Koike, Takayoshi] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan.
[Agathokleous, Evgenios; Kitao, Mitsutoshi] Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan.
[Koike, Takayoshi] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China.
C3 Nanjing University of Information Science & Technology; Hokkaido
University; Forestry & Forest Products Research Institute - Japan;
Chinese Academy of Sciences; Research Center for Eco-Environmental
Sciences (RCEES)
RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China.; Agathokleous, E (corresponding author), Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan.; Agathokleous, E (corresponding author), Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan.
EM evgenios@nuist.edu.cn
RI Agathokleous, Evgenios/D-2838-2016
OI Agathokleous, Evgenios/0000-0002-0058-4857
FU Japan's Forestry and Forest Products Research Institute (FFPRI)
[201802]; KAKENHI grant of the Japan Society for the Promotion of
Science (JSPS) [JP17F17102]; Startup Foundation for Introducing Talent
of Nanjing University of Information Science AMP; Technology (NUIST),
Nanjing, China [003080]
FX Project funding: This research was partly supported by grant #201802 of
the Japan's Forestry and Forest Products Research Institute (FFPRI) and
KAKENHI grant #JP17F17102 of the Japan Society for the Promotion of
Science (JSPS). E.A. acknowledges support from The Startup Foundation
for Introducing Talent of Nanjing University of Information Science &
Technology (NUIST), Nanjing, China (Grant No. 003080).
CR Agathokleous E, 2017, ENVIRON SCI POLLUT R, V24, P6634, DOI 10.1007/s11356-017-8401-2
Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1
Agathokleous E, 2021, J FORESTRY RES, V32, P2047, DOI 10.1007/s11676-020-01223-6
Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057
Agathokleous E, 2016, SCI TOTAL ENVIRON, V573, P1053, DOI 10.1016/j.scitotenv.2016.08.183
Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9
Ashrafuzzaman M, 2018, PLANT CELL ENVIRON, V41, P2882, DOI 10.1111/pce.13423
Baldantoni D, 2013, ANN FOREST SCI, V70, P571, DOI 10.1007/s13595-013-0297-5
BARNES JD, 1992, ENVIRON EXP BOT, V32, P85, DOI 10.1016/0098-8472(92)90034-Y
Bellini E, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8050122
BERG EE, 1994, CAN J FOREST RES, V24, P1144, DOI 10.1139/x94-151
Blande James D., 2021, Current Opinion in Environmental Science & Health, V19, P100228, DOI 10.1016/j.coesh.2020.100228
BOERNER REJ, 1995, PLANT SOIL, V170, P149, DOI 10.1007/BF02183063
Cieslik S, 2009, PLANT BIOLOGY, V11, P24, DOI 10.1111/j.1438-8677.2009.00262.x
Diaz FMR, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11050534
Dong-Gyu K, 2015, J AGRIC METEOROL, V71, P239, DOI 10.2480/agrmet.D-14-00029
Eggink L L, 2001, BMC Plant Biol, V1, P2, DOI 10.1186/1471-2229-1-2
FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231
Fatima A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8040080
Feng ZZ, 2020, SCI TOTAL ENVIRON, V722, DOI 10.1016/j.scitotenv.2020.137958
Feng ZZ, 2019, ATMOS ENVIRON, V217, DOI 10.1016/j.atmosenv.2019.116945
Feng ZZ, 2019, SCI TOTAL ENVIRON, V654, P832, DOI 10.1016/j.scitotenv.2018.11.179
Feng ZZ, 2018, ENVIRON SCI POLLUT R, V25, P29208, DOI 10.1007/s11356-018-2782-8
Feng ZZ, 2010, ENVIRON POLLUT, V158, P3236, DOI 10.1016/j.envpol.2010.07.009
FENN ME, 1989, SOIL SCI SOC AM J, V53, P1560, DOI 10.2136/sssaj1989.03615995005300050044x
Fiscus EL, 2005, PLANT CELL ENVIRON, V28, P997, DOI 10.1111/j.1365-3040.2005.01349.x
Fu W, 2018, PEERJ, V6, DOI 10.7717/peerj.4453
Fu W, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9040474
Fuhrer J, 2016, ECOL EVOL, V6, P8785, DOI 10.1002/ece3.2568
Gao M, 2020, ATMOS CHEM PHYS, V20, P4399, DOI 10.5194/acp-20-4399-2020
Giovannelli A, 2019, FORESTS, V10, DOI 10.3390/f10050396
Givnish TJ, 2002, SILVA FENN, V36, P703, DOI 10.14214/sf.535
GOWER ST, 1990, BIOSCIENCE, V40, P818, DOI 10.2307/1311484
Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x
Grulke NE, 2020, PLANT BIOLOGY, V22, P12, DOI 10.1111/plb.12971
Gupta, 2020, ENV ADV, V2, DOI DOI 10.1016/J.ENVADV.2020.100025
HEITMULLER H. -H., 1960, Silvae Genetica, V9, P65
HOWELL DC, 1982, EDUC PSYCHOL MEAS, V42, P9, DOI 10.1177/0013164482421002
Hu TJ, 2020, ENVIRON POLLUT, V258, DOI 10.1016/j.envpol.2019.113828
Izuta T., 2017, AIR POLLUTION IMPACT
Ji DH, 2015, J AGRIC METEOROL, V71, P232, DOI 10.2480/agrmet.D-14-00027
Jiang LJ, 2018, J ENVIRON SCI, V64, P10, DOI 10.1016/j.jes.2017.07.002
Kaffer MI, 2019, ENVIRON POLLUT, V248, P471, DOI 10.1016/j.envpol.2019.01.130
Karnosky DF, 2007, ENVIRON POLLUT, V147, P489, DOI 10.1016/j.envpol.2006.08.043
Kinose Y, 2020, TREES-STRUCT FUNCT, V34, P445, DOI 10.1007/s00468-019-01927-1
Kitao M, 2015, ENVIRON POLLUT, V206, P133, DOI 10.1016/j.envpol.2015.06.034
Kitaoka S, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9101278
KNUDSON LL, 1977, PLANT PHYSIOL, V60, P606, DOI 10.1104/pp.60.4.606
Korner C, 2006, NEW PHYTOL, V172, P393, DOI 10.1111/j.1469-8137.2006.01886.x
Koike T, 2013, DEV ENVIRONM SCI, V13, P371, DOI 10.1016/B978-0-08-098349-3.00017-7
Koike Takayoshi, 2012, Asian Journal of Atmospheric Environment, V6, P104
KORNER C, 1995, PLANT CELL ENVIRON, V18, P1101, DOI 10.1111/j.1365-3040.1995.tb00622.x
Kurahashi A., 1988, Bulletin of the Tokyo University Forests, P1
Kurinobu S, 2015, EURASIAN J RES, V8-2, P127
Li P, 2019, SCI TOTAL ENVIRON, V665, P929, DOI 10.1016/j.scitotenv.2019.02.182
Li P, 2017, PLANT CELL ENVIRON, V40, P2369, DOI 10.1111/pce.13043
LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350
Lindroth RL, 2010, J CHEM ECOL, V36, P2, DOI 10.1007/s10886-009-9731-4
Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262
Lu CM, 2001, J EXP BOT, V52, P1805, DOI 10.1093/jexbot/52.362.1805
Manning WJ, 2011, ENVIRON POLLUT, V159, P3283, DOI 10.1016/j.envpol.2011.07.005
Mattila H, 2018, AOB PLANTS, V10, DOI 10.1093/aobpla/ply028
Matyssek R, 1986, TREE PHYSIOL, V2, P177, DOI 10.1093/treephys/2.1-2-3.177
Matyssek R, 2010, ENVIRON POLLUT, V158, P1990, DOI 10.1016/j.envpol.2009.11.033
Maximov, 2019, WATER CARBON DYNAMIC, DOI [10.1007/978-981-13-6317-7, DOI 10.1007/978-981-13-6317-7]
Mills G, 2018, GLOBAL CHANGE BIOL, V24, P4869, DOI 10.1111/gcb.14381
Moura BB, 2018, ATMOS ENVIRON, V176, P252, DOI 10.1016/j.atmosenv.2017.12.039
Mrak T, 2020, PLANT SOIL, V450, P585, DOI 10.1007/s11104-020-04510-7
Mrak T, 2019, SCI TOTAL ENVIRON, V651, P1310, DOI 10.1016/j.scitotenv.2018.09.246
Mukherjee Arideep, 2021, Current Opinion in Environmental Science & Health, V19, P100220, DOI 10.1016/j.coesh.2020.10.008
Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010
Osawa A, 2010, ECOL STUD-ANAL SYNTH, V209, P1, DOI 10.1007/978-1-4020-9693-8
OVERALL JE, 1969, PSYCHOL BULL, V72, P311, DOI 10.1037/h0028109
OWENS JN, 1979, CAN J BOT, V57, P2673, DOI 10.1139/b79-317
OWENS JN, 1979, CAN J BOT, V57, P1557, DOI 10.1139/b79-194
Owens JN, 2008, REPROD BIOL W LARCH, V8
Pan L, 2020, B ENVIRON CONTAM TOX, V104, P682, DOI 10.1007/s00128-020-02832-x
Pan L, 2019, ENVIRON SCI POLLUT R, V26, P30684, DOI 10.1007/s11356-019-05199-7
Pandey AK, 2019, CLIMATE, V7, DOI 10.3390/cli7020023
Paoletti E, 2009, ENVIRON POLLUT, V157, P1453, DOI 10.1016/j.envpol.2008.09.021
Parsons WFJ, 2004, GLOBAL CHANGE BIOL, V10, P1666, DOI 10.1111/j.1365-2486.2004.00851.x
Parsons WFJ, 2008, ECOSYSTEMS, V11, P505, DOI 10.1007/s10021-008-9148-x
POWELL GR, 1995, USDA INTERM, V319, P387
Proietti C, 2021, J FORESTRY RES, V32, P543, DOI 10.1007/s11676-020-01226-3
Rathore D, 2019, ENVIRON POLLUT, V244, P257, DOI 10.1016/j.envpol.2018.10.036
Ryu K, 2009, LANDSC ECOL ENG, V5, P99, DOI 10.1007/s11355-009-0063-x
Sacchelli S, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80516-6
Saitanis CJ, 2001, CHEMOSPHERE, V42, P945, DOI 10.1016/S0045-6535(00)00158-2
Sakuraba Y, 2010, PLANT CELL PHYSIOL, V51, P1055, DOI 10.1093/pcp/pcq050
Salvatori E, 2017, FORESTS, V8, DOI 10.3390/f8090320
Sayyad-Amin P, 2016, J BIOL PHYS, V42, P601, DOI 10.1007/s10867-016-9428-1
Schmincke H-U., 2004, VOLCANISM, DOI [10.1007/978-3-642-18952-4, DOI 10.1007/978-3-642-18952-4]
Schulze ED, 2019, PLANT ECOLOGY, 2ND EDITION, P1, DOI [10.1007/978-3-662-56233-8, 10.1007/978-3-662-56233-8_8]
Shang B, 2018, ENVIRON POLLUT, V234, P136, DOI 10.1016/j.envpol.2017.11.056
Shinano T, 1996, PHOTOSYNTHETICA, V32, P409
Sicard P, 2020, J FORESTRY RES, V31, P1509, DOI 10.1007/s11676-020-01191-x
SIEBER M, 1995, USDA INTERM, V319, P382
Singh AA, 2015, REV ENVIRON CONTAM T, V233, P129, DOI 10.1007/978-3-319-10479-9_4
Singh S, 2018, ECOTOX ENVIRON SAFE, V147, P1046, DOI 10.1016/j.ecoenv.2017.09.068
Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7
Tisdale RH, 2021, SCI TOTAL ENVIRON, V766, DOI 10.1016/j.scitotenv.2020.144292
Tiwari S., 2018, MITIGATION OZONE STR, P167, DOI [10.1007/978-3-319-71873-6, DOI 10.1007/978-3-319-71873-6]
Tiwari S, 2017, ENVIRON SCI POLLUT R, V24, P14019, DOI 10.1007/s11356-017-8859-y
Ueno AC, 2020, PLANT CELL ENVIRON, V43, P2540, DOI 10.1111/pce.13859
Ueno AC, 2016, FUNCT ECOL, V30, P226, DOI 10.1111/1365-2435.12519
Unger N, 2020, NAT CLIM CHANGE, V10, P134, DOI 10.1038/s41558-019-0678-3
Usoltsev V. A., 2002, Eurasian Journal of Forest Research, V5, P55
van Heerwaarden LM, 2003, J ECOL, V91, P1060, DOI 10.1046/j.1365-2745.2003.00828.x
Vitale M, 2019, WATER AIR SOIL POLL, V230, DOI 10.1007/s11270-019-4339-y
Walker AP, 2014, ECOL EVOL, V4, P3218, DOI 10.1002/ece3.1173
Wang XN, 2018, SCI TOTAL ENVIRON, V618, P905, DOI 10.1016/j.scitotenv.2017.08.283
Xin Y, 2016, SCI TOTAL ENVIRON, V569, P1536, DOI 10.1016/j.scitotenv.2016.06.247
Xu S, 2019, J ENVIRON SCI, V84, P42, DOI 10.1016/j.jes.2019.04.018
Xu XB, 2020, ELEMENTA-SCI ANTHROP, V8, DOI 10.1525/elementa.409
Xu YS, 2021, ENVIRON POLLUT, V269, DOI 10.1016/j.envpol.2020.116137
Yue X, 2017, ATMOS CHEM PHYS, V17, P6073, DOI 10.5194/acp-17-6073-2017
Zhang PC, 2000, SCIENCE, V288, P2135, DOI 10.1126/science.288.5474.2135
Zhang XX, 2019, PLANT CELL ENVIRON, V42, P947, DOI 10.1111/pce.13405
Ziauka J., 2006, Baltic Forestry, V12, P141
NR 119
TC 6
Z9 6
U1 2
U2 10
PU NORTHEAST FORESTRY UNIV
PI HARBIN
PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA
SN 1007-662X
EI 1993-0607
J9 J FORESTRY RES
JI J. For. Res.
PD FEB
PY 2022
VL 33
IS 1
BP 117
EP 135
DI 10.1007/s11676-021-01352-6
EA MAY 2021
PG 19
WC Forestry
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Forestry
GA YL7WH
UT WOS:000654082000001
OA hybrid
DA 2023-03-13
ER
PT J
AU Scott, BR
AF Scott, BR
TI A biological-based model that links genomic instability, bystander
effects, and adaptive response
SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS
LA English
DT Review
DE low-dose radiation; adaptive response; genomic instability; bystander
effect; hormesis
ID TRANSFORMATION IN-VITRO; NEOPLASTIC TRANSFORMATION; INDUCED APOPTOSIS;
REACTIVE OXYGEN; INTERCELLULAR INDUCTION; CHROMOSOMAL INSTABILITY;
UROTHELIAL EXPLANTS; EPITHELIAL-CELLS; DNA-DAMAGE; RADIATION
AB This paper links genomic instability, bystander effects, and adaptive response in mammalian cell communities via a novel biological-based, dose-response model called NEOTRANS(3). The model is an extension of the NEOTRANS(2) model that addressed stochastic effects (genomic instability, mutations, and neoplastic transformation) associated with brief exposure to low radiation doses. With both models, ionizing radiation produces DNA damage in cells that can be associated with varying degrees of genomic instability. Cells with persistent problematic instability (PPI) are mutants that arise via misrepair of DNA damage. Progeny of PPI cells also have PPI and can undergo spontaneous neoplastic transformation. Unlike NEOTRANS(2), with NEOTRANS(3) newly induced mutant PPI cells and their neoplastically transformed progeny can be suppressed via our previously introduced protective apoptosis-mediated (PAM) process, which can be activated by low linear energy transfer (LET) radiation. However, with NEOTRANS(3) (which like NEOTRANS(2) involves cross-talk between nongenomically compromised [e.g., nontransformed, nonmutants] and genomically compromised [e.g., mutants, transformants, etc.] cells), it is assumed that PAM is only activated over a relatively narrow, dose-rate-dependent interval (D-PAM,D-off); where D-PAM is a small stochastic activation threshold, and D-off is the stochastic dose above which PAM does not occur. PAM cooperates with activated normal DNA repair and with activated normal apoptosis in guarding against genomic instability. Normal repair involves both error-free repair and misrepair components. Normal apoptosis and the error-free component of normal repair protect mammals by preventing the occurrence of mutant cells. PAM selectively removes mutant cells arising via the misrepair component of normal repair, selectively removes existing neoplastically transformed cells, and probably selectively removes other genomically compromised cells when it is activated. PAM likely involves multiple pathways to apoptosis, with the selected pathway depending on the type of cell to be removed, its cellular environment, and on the nature of the genomic damage. (C) 2004 Elsevier B.V. All rights reserved.
C1 Lovelace Resp Res Inst, Albuquerque, NM 87108 USA.
C3 Lovelace Respiratory Research Institute
RP Scott, BR (corresponding author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA.
EM bscott@lrri.org
OI Scott, Bobby/0000-0002-6806-3847
CR Ahmed MM, 2004, CURR CANCER DRUG TAR, V4, P43, DOI 10.2174/1568009043481704
ALBERT JH, 1988, J AM STAT ASSOC, V83, P1037, DOI 10.2307/2290133
[Anonymous], 1995, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[Anonymous], 1997, STOCHASTIC SIMULATIO
Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298
AZZAM EI, 1994, RADIAT RES, V138, pS28, DOI 10.2307/3578755
Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865
BAUER G, 1995, INT J ONCOL, V6, P1227
Bauer G, 2000, ANTICANCER RES, V20, P4115
Bauer G, 1996, HISTOL HISTOPATHOL, V11, P237
Belyakov OV, 2003, BRIT J CANCER, V88, P767, DOI 10.1038/sj.bjc.6600804
Belyakov OV, 2002, RADIAT PROT DOSIM, V99, P249, DOI 10.1093/oxfordjournals.rpd.a006775
BOND VP, 1988, INT J RADIAT BIOL, V53, P1, DOI 10.1080/09553008814550361
Brenner DJ, 2001, RADIAT RES, V155, P402, DOI 10.1667/0033-7587(2001)155[0402:TBEIRO]2.0.CO;2
Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2
CARLIN BP, 1996, BAYES EMPIRICAL METH
Chipuk JE, 2004, SCIENCE, V303, P1010, DOI 10.1126/science.1092734
Engelmann I, 2000, ANTICANCER RES, V20, P2297
FEINENDEGEN LE, IN PRESS NONLINEARIT
GELFAND AE, 1990, J AM STAT ASSOC, V85, P398, DOI 10.2307/2289776
Goldberg Z, 2002, INT J ONCOL, V21, P337
GOODHEAD DT, 1992, ADV RADIAT BIOL, V16, P7
Hei TK, 1997, P NATL ACAD SCI USA, V94, P3765, DOI 10.1073/pnas.94.8.3765
Hipp ML, 1997, ONCOGENE, V15, P791, DOI 10.1038/sj.onc.1201247
Ikushima T, 1996, MUTAT RES-FUND MOL M, V358, P193, DOI 10.1016/S0027-5107(96)00120-0
Iyer R, 2002, MUTAT RES-FUND MOL M, V503, P1, DOI 10.1016/S0027-5107(02)00068-4
Jeggo PA, 2002, RADIAT PROT DOSIM, V99, P117, DOI 10.1093/oxfordjournals.rpd.a006740
JURGENSMEIER JM, 1994, INT J ONCOL, V5, P525
Jurgensmeier JM, 1997, INT J CANCER, V71, P698, DOI 10.1002/(SICI)1097-0215(19970516)71:4<698::AID-IJC30>3.0.CO;2-5
JURGENSMEIER JM, 1994, CANCER RES, V54, P393
Kadhim MA, 1996, INT J RADIAT BIOL, V69, P167, DOI 10.1080/095530096145995
Kennedy CH, 1996, CARCINOGENESIS, V17, P1671, DOI 10.1093/carcin/17.8.1671
Kim SG, 2004, MOL BIOL CELL, V15, P420, DOI 10.1091/mbc.E03-04-0201
KLOKOV DY, 1997, RUSS J GENET, V33, P723
Kojima S, 1998, BBA-GEN SUBJECTS, V1381, P312, DOI 10.1016/S0304-4165(98)00043-9
Langer C, 1996, EXP CELL RES, V222, P117, DOI 10.1006/excr.1996.0015
Little JB, 1999, CR ACAD SCI III-VIE, V322, P127, DOI 10.1016/S0764-4469(99)80034-1
LITTLE JB, 1990, INT J RADIAT ONCOL, V19, P1425, DOI 10.1016/0360-3016(90)90354-M
Lu J, 2004, AM J PHYSIOL-GASTR L, V286, pG340, DOI 10.1152/ajpgi.00182.2003
MARDER BA, 1993, MOL CELL BIOL, V13, P6667, DOI 10.1128/MCB.13.11.6667
MARTINS MB, 1993, MUTAT RES, V285, P229, DOI 10.1016/0027-5107(93)90111-R
MATSUMOTO H, 2001, RADIAT RES, V155, P378
Morgan WF, 1996, RADIAT RES, V146, P247, DOI 10.2307/3579454
Mori E, 2004, CELL DEATH DIFFER, V11, P203, DOI 10.1038/sj.cdd.4401331
Mothersill C, 1998, MUTAGENESIS, V13, P421, DOI 10.1093/mutage/13.5.421
Mothersill C, 1997, INT J RADIAT BIOL, V71, P421, DOI 10.1080/095530097144030
Mothersill C, 1998, RADIAT RES, V149, P256, DOI 10.2307/3579958
NIKJOO H, 1999, RADIAT ENVIRON BIOPH, V28, P311
Panduri V, 2004, AM J PHYSIOL-LUNG C, V286, pL1220, DOI 10.1152/ajplung.00371.2003
Pant MC, 2003, CARCINOGENESIS, V24, P1961, DOI 10.1093/carcin/bgg172
Redpath JL, 2003, RADIAT RES, V159, P433, DOI 10.1667/0033-7587(2003)159[0433:LDRITF]2.0.CO;2
Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2
Redpath JL, 1998, RADIAT RES, V149, P517, DOI 10.2307/3579792
Rigaud O, 1996, MUTAT RES-FUND MOL M, V358, P127, DOI 10.1016/S0027-5107(96)00113-3
RITHIDECH K, 2000, OFF BIOL ENV RES DOE
Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100
Schollnberger H, 2001, B MATH BIOL, V63, P865, DOI 10.1006/bulm.2001.0243
Schulze-Bergkamen H, 2004, SEMIN ONCOL, V31, P90, DOI 10.1053/j.seminoncol.2003.11.006
Scott Bobby R, 2003, Nonlinearity Biol Toxicol Med, V1, P93, DOI 10.1080/15401420390844492
Scott BR, 1997, RADIAT PROT DOSIM, V72, P105, DOI 10.1093/oxfordjournals.rpd.a032080
SCOTT BR, IN PRESS BIOL TOXICO
SIVA DS, 1998, DATA ANAL BAYESIAN T
Spiegelhalter D.J., 2003, WINBUGS VERSION 1 4
SYKES PJ, 2003, OFF BIOL ENV RES DOE
Townsend PA, 2004, J BIOL CHEM, V279, P5811, DOI 10.1074/jbc.M302637200
Ward JF, 1998, CONT CANC RES, P65
Watjen W, 2004, BIOMETALS, V17, P65, DOI 10.1023/A:1024405119018
Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927
Wright EG, 1998, INT J RADIAT BIOL, V74, P681, DOI 10.1080/095530098140943
ZHOU PK, 1994, RADIAT ENVIRON BIOPH, V33, P211, DOI 10.1007/BF01212677
NR 70
TC 42
Z9 49
U1 0
U2 4
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1386-1964
EI 1873-135X
J9 MUTAT RES-FUND MOL M
JI Mutat. Res.-Fundam. Mol. Mech. Mutagen.
PD DEC 2
PY 2004
VL 568
IS 1
BP 129
EP 143
DI 10.1016/j.mrfmmm.2004.06.051
PG 15
WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology
GA 873VO
UT WOS:000225309600014
PM 15530546
DA 2023-03-13
ER
PT J
AU Bozhkov, AI
Bozhkov, AA
Ponomarenko, IE
Kurguzova, NI
Akzhyhitov, RA
Goltvyanskii, AV
Klimova, EM
Shapovalov, SO
AF Bozhkov, A., I
Bozhkov, A. A.
Ponomarenko, I. E.
Kurguzova, N., I
Akzhyhitov, R. A.
Goltvyanskii, A., V
Klimova, E. M.
Shapovalov, S. O.
TI Elimination of the toxic effect of copper sulfate is accompanied by the
normalization of liver function in fibrosis
SO REGULATORY MECHANISMS IN BIOSYSTEMS
LA English
DT Article
DE toxicity of copper sulfate; transferases; lipid hydroperoxides;
aconitase; glutathione peroxidase; mitochondria; erythrocytes
ID DIFFERENT STRATEGIES; HORMESIS; PATHOGENESIS; ADAPTATION; DISEASE;
STRESS; YOUNG; RATS
AB The search for biologically active compounds that regulate liver function in fibrosis is an urgent medical and biological problem. A working hypothesis was tested, according to which low molecular weight biologically active compounds from Pleurotus ostreatus and Sacharamirses cerevisiae are capable of exerting immunomodulatory and antitoxic effects after intoxication of the body with ions of heavy metals, in particular copper sulfate. Elimination of the toxic effect caused by copper sulfate can also ensure the normalization of liver function in various pathologies, in particular with liver fibrosis. When determining toxicity, a study was carried out on Wistar rats, and when studying the effect of low molecular weight biologically active compounds on liver function, clinical trials were carried out on volunteers. The activity of alanine aminotransferase, aspartate aminotransferase, actonitase and glutathione peroxidase, as well as the content of bilirubin and lipid hydroperoxides were determined. It was shown that preliminary administration of biologically active compounds to rats at a dose of 0.05 mL/100 g of body weight provided the formation in some animals (up to 80%) of resistance to the toxic effect of copper sulfate (dose 2.5 mg/100 g of body weight). Such stability is associated with a shift in the balance of "prooxidants-antioxidants" towards antioxidants. The data obtained in the clinic on volunteers with liver fibrosis and hepatitis also testify in favour of the membranotropic action of biologically active compounds. Biologically active compounds provided a decrease or complete restoration of the activity of transferases (ALT and AST) in the blood serum of these patients, with the exception of one patient out of 20 examined. Our experiment has shown the relationship between the elimination of toxicity to the action of copper sulfate and the normalization of liver function in patients. The results obtained indicate that it will be promising to use a complex of low molecular weight components from P. ostreatus and S. cerevisiae as an antidote and hepatoprotective agent.
C1 [Bozhkov, A., I; Bozhkov, A. A.; Ponomarenko, I. E.; Kurguzova, N., I; Akzhyhitov, R. A.; Goltvyanskii, A., V; Klimova, E. M.; Shapovalov, S. O.] Kharkov Natl Univ, Pl Svobody 4, Kharkov, Ukraine.
Rivne State Univ Humanities, Stepana Bandery St 12, UA-33028 Rivne, Ukraine.
C3 Ministry of Education & Science of Ukraine; VN Karazin Kharkiv National
University; Ministry of Education & Science of Ukraine; Rivne State
University of Humanities
RP Bozhkov, AI (corresponding author), Kharkov Natl Univ, Pl Svobody 4, Kharkov, Ukraine.
EM niibio@karazin.ua; irchukmail@gmail.com
RI Klimova, Elena/HMP-6117-2023
CR ASAKAWA T, 1980, LIPIDS, V15, P137, DOI 10.1007/BF02540959
Bozhkov AI, 2017, ADV GERONTOL, V7, P41, DOI 10.1134/S2079057017010040
Bozhkov A. I., 2017, Journal of Nutritional Therapeutics, V6, P11, DOI 10.6000/1929-5634.2017.06.01.2
Bozhkov A I, 2014, Adv Gerontol, V27, P72
Bozhkov A. I., 2016, ADV AGING RES, V5, P151
Bozhkov A. I., 2014, AM J BIOMEDICAL LIFE, V2, P5
Bozhkov A, 2010, INDIAN J EXP BIOL, V48, P679
Buchanan R, 2021, ADDICTION, V116, P1270, DOI 10.1111/add.15204
Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938
Ebrahimi Hedyeh, 2016, Middle East J Dig Dis, V8, P166
Fahmy M. A., 2020, Pharmacognosy Journal, V12, P645, DOI 10.5530/pj.2020.12.96
FRANCAVILLA A, 1994, HEPATOLOGY, V20, P747, DOI 10.1016/0270-9139(94)90113-9
Gagliano N, 2007, DIGEST DIS, V25, P118, DOI 10.1159/000099475
Gao B, 2011, GASTROENTEROLOGY, V141, P1572, DOI 10.1053/j.gastro.2011.09.002
HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001
Hirsova P, 2016, HEPATOLOGY, V64, P2219, DOI 10.1002/hep.28814
Jaramillo-Juarez F, 2008, ANN HEPATOL, V7, P331, DOI 10.1016/S1665-2681(19)31833-2
KAMATH SA, 1972, ANAL BIOCHEM, V48, P53, DOI 10.1016/0003-2697(72)90169-8
Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012
Kesic S, 2016, SAUDI J BIOL SCI, V23, P584, DOI 10.1016/j.sjbs.2015.06.015
Klimova EM, 2018, ADV GERONTOL, V8, P284, DOI 10.1134/S2079057018040082
Kovaleva M. K., 2012, International Journal on Algae, V14, P44
Kurguzova N.I., 2015, FUNGIDOL AM J BIOMED, V2, P25, DOI [10.11648/j.ajbls.s.2014020601.15, DOI 10.11648/J.AJBLS.S.2014020601.15]
Lakherwal D., 2014, INT J ENV RES DEV, V4
Lynes MA, 2007, ANN NY ACAD SCI, V1113, P159, DOI 10.1196/annals.1391.010
MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491
Mason C, 2010, REGEN MED, V5, P307, DOI 10.2217/RME.10.37
Michalopoulos GK, 1997, SCIENCE, V277, P1423
Myers RP, 2002, POLYMICROBIAL DISEASES, P51
Owojuyigbe O.S., 2020, J COMPLEMENT ALTERN, V31, P1, DOI [10.9734/ejmp/2020/v31i830255, DOI 10.9734/JOCAMR/2020/V9I230136]
PAGLIA DE, 1967, J LAB CLIN MED, V70, P158
Parkinson A., 2008, CASARETT DOULLS TOXI, V7, P161
Piven OT, 2020, UKR J ECOL, V10, P415, DOI 10.15421/2020_117
Poordad FF, 2015, CURR MED RES OPIN, V31, P925, DOI 10.1185/03007995.2015.1021905
Puche JE, 2013, COMPR PHYSIOL, V3, P1473, DOI 10.1002/cphy.c120035
Rana A, 2019, TEX HEART I J, V46, P75, DOI 10.14503/THIJ-18-6749
Saito Z, 2016, BMC INFECT DIS, V16, DOI 10.1186/s12879-016-2000-6
Satapathy SK, 2015, ANN HEPATOL, V14, P789, DOI 10.5604/16652681.1171749
Sepanlou SG, 2020, LANCET GASTROENTEROL, V5, P245, DOI 10.1016/S2468-1253(19)30349-8
Shirani M., 2017, J NEPHROPHARMACOLOGY, V6, P38
Slivinska LG, 2021, UKR J ECOL, V11, P284, DOI 10.15421/2021_112
Thibault G, 2012, MOL CELL, V48, P16, DOI 10.1016/j.molcel.2012.08.016
Varghese S, 2003, J BACTERIOL, V185, P221, DOI 10.1128/JB.185.1.221-230.2003
Verma V. K., 2013, Journal of Pharmacy Research, V7, P647
Williams GM, 2002, TOXICOL PATHOL, V30, P41, DOI 10.1080/01926230252824699
Xu GB, 2018, EUR J MED CHEM, V145, P691, DOI 10.1016/j.ejmech.2018.01.011
NR 46
TC 1
Z9 1
U1 0
U2 0
PU OLES HONCHAR DNIPROPETROVSK NATL UNIV
PI DNIPROPETROVSK
PA PR-KT GAGARINA, 42, DNIPROPETROVSK, 49010, UKRAINE
SN 2519-8521
EI 2520-2588
J9 REGUL MECH BIOSYST
JI Regul. Mech. Biosyst.
PY 2021
VL 12
IS 4
BP 655
EP 663
DI 10.15421/022190
PG 9
WC Biology
WE Emerging Sources Citation Index (ESCI)
SC Life Sciences & Biomedicine - Other Topics
GA YW1GA
UT WOS:000753167400012
OA gold
DA 2023-03-13
ER
PT J
AU Svigruha, R
Fodor, I
Padisak, J
Pirger, Z
AF Svigruha, Reka
Fodor, Istvan
Padisak, Judit
Pirger, Zsolt
TI Progestogen-induced alterations and their ecological relevance in
different embryonic and adult behaviours of an invertebrate model
species, the great pond snail (Lymnaea stagnalis)
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE Progestogen exposure; Lymnaea stagnalis; Developmental changes;
Heartbeat; Locomotion; Feeding activity
ID VERTEBRATE SEX STEROIDS; RECEIVING RIVER WATERS; ENDOCRINE DISRUPTORS;
WASTE-WATER; ENVIRONMENTAL WATERS; TRACE ANALYSIS; CRITICAL-APPRAISAL;
SEWAGE EFFLUENTS; TREATMENT PLANTS; DRINKING-WATER
AB The presence of oral contraceptives (basically applying estrogens and/or progestogens) poses a challenge to animals living in aquatic ecosystems and reflects a rapidly growing concern worldwide. However, there is still a lack in knowledge about the behavioural effects induced by progestogens on the non-target species including molluscs. In the present study, environmental progestogen concentrations were summarised. Knowing this data, we exposed a well-established invertebrate model species, the great pond snail (Lymnaea stagnalis) to relevant equi-concentrations (1, 10, 100, and 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) for 21 days. Significant alterations were observed in the embryonic development time, heart rate, feeding, and gliding activities of the embryos as well as in the feeding and locomotion activity of the adult specimens. All of the mixtures accelerated the embryonic development time and the gliding activity. Furthermore, the 10, 100, and 500 ng L-1 mixtures increased the heart rate and feeding activity of the embryos. The 10, 100, and 500 ng L-1 mixtures affected the feeding activity as well as the 1, 10, and 100 ng L-1 mixtures influenced the locomotion of the adult specimens. The differences of these adult behaviours showed a biphasic response to the progestogen exposure; however, they changed approximately in the opposite way. In case of feeding activity, this dose-response phenomenon can be identified as a hormesis response. Based on the authors' best knowledge, this is the first study to investigate the non-reproductive effects of progestogens occurring also in the environment on molluscan species. Our findings contribute to the global understanding of the effects of human progestogens, as these potential disruptors can influence the behavioural activities of non-target aquatic species. Future research should aim to understand the potential mechanisms (e.g., receptors, signal pathways) of progestogens induced behavioural alterations.
C1 [Svigruha, Reka; Padisak, Judit] Univ Pannonia, Dept Limnol, H-8200 Veszprem, Hungary.
[Svigruha, Reka; Fodor, Istvan; Pirger, Zsolt] Ctr Ecol Res, Balaton Limnol Inst, Dept Expt Zool, NAP Adapt Neuroethol Res Grp, H-8237 Tihany, Hungary.
C3 University of Pannonia; Eotvos Lorand Research Network; Hungarian
Academy of Sciences; Hungarian Centre for Ecological Research; Hungarian
Balaton Limnological Research Institute
RP Pirger, Z (corresponding author), Ctr Ecol Res, Balaton Limnol Inst, Dept Expt Zool, NAP Adapt Neuroethol Res Grp, H-8237 Tihany, Hungary.
EM pirger.zsolt@okologia.mta.hu
RI Pirger, Zsolt/AAH-7907-2021
OI Fodor, Istvan/0000-0001-7817-421X; PIRGER, Zsolt/0000-0001-9039-6966
FU ELKH Centre for Ecological Research; National Brain Project
[2017-1.2.1-NKP-2017-00002]; New National Excellence Program of the
Ministry of Innovation and Technology [UNKP-19-3, OI-31-20338/2020]
FX Open Access funding provided by ELKH Centre for Ecological Research.
This work was supported by National Brain Project (No.
2017-1.2.1-NKP-2017-00002) and UNKP-19-3 New National Excellence Program
of the Ministry of Innovation and Technology (No. OI-31-20338/2020).
CR AHERNE GW, 1985, ECOTOX ENVIRON SAFE, V9, P79, DOI 10.1016/0147-6513(85)90037-5
Al-Odaini NA, 2010, J CHROMATOGR A, V1217, P6791, DOI 10.1016/j.chroma.2010.08.033
Alzieu C, 2000, SCI TOTAL ENVIRON, V258, P99, DOI 10.1016/S0048-9697(00)00510-6
Ammann AA, 2014, ANAL BIOANAL CHEM, V406, P7653, DOI 10.1007/s00216-014-8206-9
Amorim J, 2019, SCI TOTAL ENVIRON, V669, P11, DOI 10.1016/j.scitotenv.2019.03.035
Avar P, 2016, DRUG TEST ANAL, V8, P124, DOI 10.1002/dta.1829
Bengal E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21186480
Bhandari RK, 2015, GEN COMP ENDOCR, V214, P195, DOI 10.1016/j.ygcen.2014.09.014
Blackshear KK, 2017, J NEURO RES, V2017, P1
Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246
Caldwell DJ, 2008, ENVIRON SCI TECHNOL, V42, P7046, DOI 10.1021/es800633q
Can ZS, 2014, ENVIRON MONIT ASSESS, V186, P525, DOI 10.1007/s10661-013-3397-7
Chang H, 2008, J CHROMATOGR A, V1195, P44, DOI 10.1016/j.chroma.2008.04.055
Chang H, 2011, WATER RES, V45, P732, DOI 10.1016/j.watres.2010.08.046
Chang H, 2009, ENVIRON SCI TECHNOL, V43, P7691, DOI 10.1021/es803653j
CSABA G, 1979, ACTA BIOL MED GER, V38, P1145
Das S, 2011, J HAZARD MATER, V185, P295, DOI 10.1016/j.jhazmat.2010.09.033
de Alda MJL, 2002, ANALYST, V127, P1299, DOI 10.1039/b207658f
DeQuattro ZA, 2012, ENVIRON TOXICOL CHEM, V31, P851, DOI 10.1002/etc.1754
Di Cristo C., 2008, OPEN ZOOL J, V1, P29, DOI DOI 10.2174/1874336600801010029
Ducrot V, 2014, REGUL TOXICOL PHARM, V70, P605, DOI 10.1016/j.yrtph.2014.09.004
Ducrot V, 2010, ECOTOXICOLOGY, V19, P1312, DOI 10.1007/s10646-010-0518-8
Fan ZL, 2011, ENVIRON SCI TECHNOL, V45, P2725, DOI 10.1021/es103429c
Fent K, 2015, ENVIRON INT, V84, P115, DOI 10.1016/j.envint.2015.06.012
Filla A, 2009, COMP BIOCHEM PHYS C, V149, P73, DOI 10.1016/j.cbpc.2008.07.004
Fodor I, 2020, MOL CELL ENDOCRINOL, V516, DOI 10.1016/j.mce.2020.110949
Fodor I, 2020, ELIFE, V9, DOI 10.7554/eLife.56962
Frankel TE, 2016, GEN COMP ENDOCR, V234, P161, DOI 10.1016/j.ygcen.2016.01.007
Giusti A, 2014, SCI TOTAL ENVIRON, V493, P147, DOI 10.1016/j.scitotenv.2014.05.130
Gomot A, 1998, ECOTOX ENVIRON SAFE, V41, P288, DOI 10.1006/eesa.1998.1711
Guzel EY, 2019, HUM ECOL RISK ASSESS, V25, P1980, DOI 10.1080/10807039.2018.1479631
Hastie T., 1986, STAT SCI, V1, P297, DOI [10.1214/ss/1177013604, DOI 10.1214/SS/1177013604]
Huang B, 2015, ECOTOX ENVIRON SAFE, V112, P169, DOI 10.1016/j.ecoenv.2014.11.004
Hutchinson TH, 2002, TOXICOL LETT, V131, P75, DOI 10.1016/S0378-4274(02)00046-2
Islam R, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.114994
Jenkins RL, 2003, TOXICOL SCI, V73, P53, DOI 10.1093/toxsci/kfg042
Kashian DR, 2004, ENVIRON TOXICOL CHEM, V23, P1282, DOI 10.1897/03-372
KEMENES G, 1986, J EXP BIOL, V122, P113
Ketata I, 2008, COMP BIOCHEM PHYS C, V147, P261, DOI 10.1016/j.cbpc.2007.11.007
Khangarot BS, 2010, J HAZARD MATER, V179, P665, DOI 10.1016/j.jhazmat.2010.03.054
Kolodziej EP, 2007, ENVIRON SCI TECHNOL, V41, P3514, DOI 10.1021/es063050y
Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j
KOOIJMAN SAL, 2000, DYNAMIC ENERGY MASS
Kuster M, 2009, ENVIRON INT, V35, P997, DOI 10.1016/j.envint.2009.04.006
Kuster M, 2008, J HYDROL, V358, P112, DOI 10.1016/j.jhydrol.2008.05.030
Labadie P, 2005, ENVIRON SCI TECHNOL, V39, P5113, DOI 10.1021/es048443g
Lazennec G, 2001, J STEROID BIOCHEM, V77, P193, DOI 10.1016/S0960-0760(01)00060-7
Liu S, 2012, WATER RES, V46, P3754, DOI 10.1016/j.watres.2012.04.006
Liu S, 2011, J CHROMATOGR A, V1218, P1367, DOI 10.1016/j.chroma.2011.01.014
Liu SS, 2015, WATER RES, V77, P146, DOI 10.1016/j.watres.2015.03.022
Liu SS, 2014, ANAL BIOANAL CHEM, V406, P7299, DOI 10.1007/s00216-014-8146-4
Liu TT, 2013, ENVIRON MONIT ASSESS, V185, P4183, DOI 10.1007/s10661-012-2860-1
Liu ZH, 2011, SCI TOTAL ENVIRON, V409, P5149, DOI 10.1016/j.scitotenv.2011.08.047
Maasz G, 2019, SCI TOTAL ENVIRON, V677, P545, DOI 10.1016/j.scitotenv.2019.04.286
Maasz G, 2017, ECOTOX ENVIRON SAFE, V139, P9, DOI 10.1016/j.ecoenv.2017.01.020
MAROIS R, 1991, INVERTEBR REPROD DEV, V19, P139, DOI 10.1080/07924259.1991.9672167
Matthiessen P, 1998, ENVIRON TOXICOL CHEM, V17, P37, DOI 10.1002/etc.5620170106
Matthiessen Peter, 1998, EXS, V86, P319
Meshcheryakov V.N., 1990, P69
Morrill J.B., 1982, P399
Costa DDM, 2010, COMP BIOCHEM PHYS C, V151, P248, DOI 10.1016/j.cbpc.2009.11.002
Neale PA, 2015, ENVIRON SCI TECHNOL, V49, P14614, DOI 10.1021/acs.est.5b04083
OECD, 2016, TEST 243 LYMN STAGN
Orlando EF, 2014, GEN COMP ENDOCR, V203, P241, DOI 10.1016/j.ygcen.2014.03.038
Pauwels B, 2008, J ENVIRON ENG-ASCE, V134, P933, DOI 10.1061/(ASCE)0733-9372(2008)134:11(933)
Petrovic M, 2002, ENVIRON TOXICOL CHEM, V21, P2146, DOI 10.1897/1551-5028(2002)021<2146:EDISTP>2.0.CO;2
Pirger Z., 2018, BIOL RECOURCES WATER, P33
Pirger Z, 2020, BIORXIV, DOI 10.1101/2020.02.12.944553v2
Pirger Z, 2014, CURR BIOL, V24, P2018, DOI [10.1016/j.cub.2014.07.044, 10.1016/j.cub.2014.09.024]
Postigo C, 2010, ENVIRON INT, V36, P75, DOI 10.1016/j.envint.2009.10.004
Pu C, 2008, ANAL CHIM ACTA, V628, P73, DOI 10.1016/j.aca.2008.08.034
Qiao YW, 2009, TALANTA, V80, P98, DOI 10.1016/j.talanta.2009.06.029
Salanki J, 2003, TOXICOL LETT, V140, P403, DOI 10.1016/S0378-4274(03)00036-5
Scott AP, 2018, GEN COMP ENDOCR, V265, P77, DOI 10.1016/j.ygcen.2018.04.005
Scott AP, 2013, STEROIDS, V78, P268, DOI 10.1016/j.steroids.2012.11.006
Scott AP, 2012, STEROIDS, V77, P1450, DOI 10.1016/j.steroids.2012.08.009
Shen XY, 2018, WATER RES, V133, P142, DOI 10.1016/j.watres.2018.01.030
Sitruk-Ware R, 2010, CONTRACEPTION, V82, P410, DOI 10.1016/j.contraception.2010.04.004
Tran TKA, 2019, ENVIRON POLLUT, V248, P1067, DOI 10.1016/j.envpol.2019.02.056
Tillmann M, 2001, ECOTOXICOLOGY, V10, P373, DOI 10.1023/A:1012279231373
Torres NH, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4626-z
Tosti E, 2001, MOL REPROD DEV, V59, P97, DOI 10.1002/mrd.1011
VARAKSINA GS, 1992, BIOL MORYA-VLAD+, P77
Velicu M, 2009, ENVIRON MONIT ASSESS, V154, P349, DOI 10.1007/s10661-008-0402-7
Viglino L, 2008, TALANTA, V76, P1088, DOI 10.1016/j.talanta.2008.05.008
Voronezhskaya EE, 1999, J COMP NEUROL, V404, P285, DOI 10.1002/(SICI)1096-9861(19990215)404:3<285::AID-CNE1>3.0.CO;2-S
Vulliet E, 2008, J CHROMATOGR A, V1210, P84, DOI 10.1016/j.chroma.2008.09.034
Vulliet E, 2007, ANAL BIOANAL CHEM, V387, P2143, DOI 10.1007/s00216-006-1084-z
Vulliet E, 2011, ENVIRON POLLUT, V159, P2929, DOI 10.1016/j.envpol.2011.04.033
Wang CD, 2003, INVERTEBR REPROD DEV, V44, P89, DOI 10.1080/07924259.2003.9652559
Yang YY, 2012, ENVIRON SCI TECHNOL, V46, P2746, DOI 10.1021/es203896t
Yost EE, 2014, ENVIRON SCI TECHNOL, V48, P11600, DOI 10.1021/es5025806
ZONNEVELD C, 1989, FUNCT ECOL, V3, P269, DOI 10.2307/2389365
Zou EM, 1997, ECOTOX ENVIRON SAFE, V38, P281, DOI 10.1006/eesa.1997.1589
Zrinyi Z, 2017, AQUAT TOXICOL, V190, P94, DOI 10.1016/j.aquatox.2017.06.029
NR 95
TC 8
Z9 8
U1 8
U2 30
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD NOV
PY 2021
VL 28
IS 42
BP 59391
EP 59402
DI 10.1007/s11356-020-12094-z
EA DEC 2020
PG 12
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA WL2MQ
UT WOS:000600827500001
PM 33349911
OA Green Accepted, hybrid, Green Published
DA 2023-03-13
ER
PT J
AU Yu, TZ
Dohl, J
Wang, L
Chen, YF
Gasier, HG
Deuster, PA
AF Yu, Tianzheng
Dohl, Jacob
Wang, Li
Chen, Yifan
Gasier, Heath G.
Deuster, Patricia A.
TI Curcumin Ameliorates Heat-Induced Injury through NADPH Oxidase-Dependent
Redox Signaling and Mitochondrial Preservation in C2C12 Myoblasts and
Mouse Skeletal Muscle
SO JOURNAL OF NUTRITION
LA English
DT Article
DE antioxidant; apoptosis; heat stress; mitochondrial fission;
mitochondrial fusion; myoblast; myofiber; NOX; curcumin
ID OXYGEN SPECIES ROS; OXIDATIVE STRESS; S-NITROSYLATION; FISSION;
HOMEOSTASIS; FUSION; CYTOTOXICITY; APOPTOSIS; AGENT; CELLS
AB Background: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the mitochondrial electron transport chain are the primary sources of reactive oxygen species (ROS). Previous studies have shown that severe heat exposure damages mitochondria and causes excessive mitochondrial ROS production that contributes to the pathogenesis of heat-related illnesses.
Objectives: We tested whether the antioxidant curcumin could protect against heat-induced mitochondrial dysfunction and skeletal muscle injury, and characterized the possible mechanism.
Methods: Mouse C2C12 myoblasts and rat flexor digitorum brevis (FDB) myofibers were treated with 5 mu M curcumin; adultmale C57BL/6J mice received daily curcumin (15, 50, or 100mg/kg body weight) by gavage for 10 consecutive days. We compared ROS levels and mitochondrial morphology and function between treatment and nontreatment groups under unheated or heat conditions, and investigated the upstream mechanism and the downstream effect of curcumin-regulated ROS production.
Results: In C2C12 myoblasts, curcumin prevented heat-induced mitochondrial fragmentation, ROS overproduction, and apoptosis (all P < 0.05). Curcumin treatment for 2 and 4 h at 37 degrees C induced increases in ROS levels by 42% and 59% (dihydroethidium-derived fluorescence), accompanied by increases in NADPH oxidase protein expression by 24% and 32%, respectively (all P < 0.01). In curcumin-treated cells, chemical inhibition and genetic knockdown of NADPH oxidase restored ROS to levels similar to those of controls, indicating NADPH oxidase mediates curcumin-stimulated ROS production. Moreover, curcumin induced ROS-dependent shifting of the mitochondrial fission-fusion balance toward fusion, and increases in mitochondrial mass by 143% and membrane potential by 30% (both P < 0.01). In rat FDB myofibers and mouse gastrocnemius muscles, curcumin preserved mitochondrial morphology and function during heat stress, and prevented heat-induced mitochondrial ROS overproduction and tissue injury (all P < 0.05).
Conclusions: Curcumin regulates ROS hormesis favoring mitochondrial fusion/elongation, biogenesis, and improved function in rodent skeletal muscle. Curcumin may be an effective therapeutic target for heat-related illness and other mitochondrial diseases.
C1 [Yu, Tianzheng; Dohl, Jacob; Chen, Yifan; Gasier, Heath G.; Deuster, Patricia A.] Uniformed Serv Univ Hlth Sci, F Edward Hebert Sch Med, Dept Mil & Emergency Med, Consortium Hlth & Mil Performance, Bethesda, MD 20814 USA.
[Yu, Tianzheng; Dohl, Jacob] Henry M Jackson Fdn Adv Mil Med, Bethesda, MD 20817 USA.
[Wang, Li] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA.
[Gasier, Heath G.] Duke Univ, Ctr Hyperbar Med & Environm Physiol, Dept Anesthesiol, Sch Med, Durham, NC USA.
C3 Uniformed Services University of the Health Sciences - USA; Henry M.
Jackson Foundation for the Advancement of Military Medicine, Inc;
University System of Maryland; University of Maryland Baltimore; Duke
University
RP Yu, TZ (corresponding author), Uniformed Serv Univ Hlth Sci, F Edward Hebert Sch Med, Dept Mil & Emergency Med, Consortium Hlth & Mil Performance, Bethesda, MD 20814 USA.; Yu, TZ (corresponding author), Henry M Jackson Fdn Adv Mil Med, Bethesda, MD 20817 USA.
EM tianzheng.yu.ctr@usuhs.edu
RI Deuster, Patricia A/G-3838-2015
OI Deuster, Patricia A/0000-0002-7895-0888; Chen,
Yifan/0000-0003-1388-9200; Dohl, Jacob/0000-0002-9896-2552
FU US Department of Defense (DoD) Defense Health Program Nutritional and
Dietary Supplement Working Group grant [HU0001-14-1-003]; NIH Office of
Dietary Supplements grant [F1919759]
FX Supported by US Department of Defense (DoD) Defense Health Program
Nutritional and Dietary Supplement Working Group grant HU0001-14-1-003
and NIH Office of Dietary Supplements grant F1919759.
CR Agnello M, 2008, CYTOTECHNOLOGY, V56, P145, DOI 10.1007/s10616-008-9143-2
Altenhofer S, 2015, ANTIOXID REDOX SIGN, V23, P406, DOI 10.1089/ars.2013.5814
Anand R, 2014, J CELL BIOL, V204, P919, DOI 10.1083/jcb.201308006
Angelova PR, 2018, FEBS LETT, V592, P692, DOI 10.1002/1873-3468.12964
Barik A, 2005, FREE RADICAL BIO MED, V39, P811, DOI 10.1016/j.freeradbiomed.2005.05.005
Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005
Bossy B, 2010, J ALZHEIMERS DIS, V20, pS513, DOI 10.3233/JAD-2010-100552
Casa DJ, 2015, J ATHL TRAINING, V50, P986, DOI 10.4085/1062-6050-50.9.07
Chen HC, 2003, J CELL BIOL, V160, P189, DOI 10.1083/jcb.200211046
Chen Y, 2018, ACTA PHYSIOL, V222, DOI 10.1111/apha.13015
Cheng AL, 2001, ANTICANCER RES, V21, P2895
Cho DH, 2009, SCIENCE, V324, P102, DOI 10.1126/science.1171091
Del Dotto V, 2018, BBA-BIOENERGETICS, V1859, P263, DOI 10.1016/j.bbabio.2018.01.005
Dohl J, 2018, LIFE SCI, V211, P238, DOI 10.1016/j.lfs.2018.09.041
Fang JG, 2005, J BIOL CHEM, V280, P25284, DOI 10.1074/jbc.M414645200
Ferreira LF, 2016, FREE RADICAL BIO MED, V98, P18, DOI 10.1016/j.freeradbiomed.2016.05.011
Gauer R, 2019, AM FAM PHYSICIAN, V99, P482
Holmstrom KM, 2014, NAT REV MOL CELL BIO, V15, P411, DOI 10.1038/nrm3801
Irrcher I, 2009, AM J PHYSIOL-CELL PH, V296, pC116, DOI 10.1152/ajpcell.00267.2007
Ishihara N, 2006, EMBO J, V25, P2966, DOI 10.1038/sj.emboj.7601184
Kang C, 2009, FREE RADICAL BIO MED, V47, P1394, DOI 10.1016/j.freeradbiomed.2009.08.007
Kim B, 2016, MOL CARCINOGEN, V55, P918, DOI 10.1002/mc.22332
Kunnumakkara AB, 2017, BRIT J PHARMACOL, V174, P1325, DOI 10.1111/bph.13621
Kunwar A, 2008, BBA-GEN SUBJECTS, V1780, P673, DOI 10.1016/j.bbagen.2007.11.016
Kunwar A, 2009, EUR J PHARMACOL, V611, P8, DOI 10.1016/j.ejphar.2009.03.060
Larasati YA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20179-6
Motterlini R, 2000, FREE RADICAL BIO MED, V28, P1303, DOI 10.1016/S0891-5849(00)00294-X
Moustapha A, 2015, CELL DEATH DISCOV, V1, DOI 10.1038/cddiscovery.2015.17
Nelson KM, 2017, J MED CHEM, V60, P1620, DOI 10.1021/acs.jmedchem.6b00975
Nordberg J, 2001, FREE RADICAL BIO MED, V31, P1287, DOI 10.1016/S0891-5849(01)00724-9
Panchal HD, 2008, NEUROCHEM RES, V33, P1701, DOI 10.1007/s11064-008-9608-x
Panchatcharam M, 2006, MOL CELL BIOCHEM, V290, P87, DOI 10.1007/s11010-006-9170-2
Perrone D, 2015, EXP THER MED, V10, P1615, DOI 10.3892/etm.2015.2749
Piantadosi CA, 2012, FREE RADICAL BIO MED, V53, P2043, DOI 10.1016/j.freeradbiomed.2012.09.014
Prasad S, 2014, CANCER RES TREAT, V46, P2, DOI 10.4143/crt.2014.46.1.2
Ray PD, 2012, CELL SIGNAL, V24, P981, DOI 10.1016/j.cellsig.2012.01.008
Riley K, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040580
Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034
Shoba G, 1998, PLANTA MED, V64, P353, DOI 10.1055/s-2006-957450
Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037
Sies H, 2015, REDOX BIOL, V4, P180, DOI 10.1016/j.redox.2015.01.002
Szklarz LKS, 2012, BBA-BIOENERGETICS, V1817, P1886, DOI 10.1016/j.bbabio.2012.05.001
Willems PHGM, 2015, CELL METAB, V22, P207, DOI 10.1016/j.cmet.2015.06.006
Yang YH, 2016, J CELL PHYSIOL, V231, P2570, DOI 10.1002/jcp.25349
Yoboue ED, 2012, INT J CELL BIOL
Yoon Y, 2011, ANTIOXID REDOX SIGN, V14, P439, DOI 10.1089/ars.2010.3286
Youle RJ, 2012, SCIENCE, V337, P1062, DOI 10.1126/science.1219855
Yu TZ, 2019, J CELL PHYSIOL, V234, P13292, DOI 10.1002/jcp.28006
Yu TZ, 2019, J CELL PHYSIOL, V234, P6371, DOI 10.1002/jcp.27370
Yu TZ, 2018, LIFE SCI, V200, P6, DOI 10.1016/j.lfs.2018.02.031
Yu TZ, 2016, J PHYSIOL-LONDON, V594, P7419, DOI 10.1113/JP272885
Yu TZ, 2015, FRONT BIOSCI-LANDMRK, V20, P229, DOI 10.2741/4306
Yu TZ, 2014, J BIOL CHEM, V289, P34074, DOI 10.1074/jbc.M114.588616
Yu TZ, 2006, P NATL ACAD SCI USA, V103, P2653, DOI 10.1073/pnas.0511154103
Yu TZ, 2005, J CELL SCI, V118, P4141, DOI 10.1242/jcs.02537
Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011
Zorov DB, 2014, PHYSIOL REV, V94, P909, DOI 10.1152/physrev.00026.2013
Zschauer TC, 2013, ANTIOXID REDOX SIGN, V18, P1053, DOI 10.1089/ars.2012.4822
NR 58
TC 13
Z9 13
U1 4
U2 14
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0022-3166
EI 1541-6100
J9 J NUTR
JI J. Nutr.
PD SEP 1
PY 2020
VL 150
IS 9
BP 2257
EP 2267
DI 10.1093/jn/nxaa201
PG 11
WC Nutrition & Dietetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Nutrition & Dietetics
GA NM9UA
UT WOS:000568434200007
PM 32692359
OA Green Published, hybrid
DA 2023-03-13
ER
PT J
AU Yamaguchi, T
Suzuki, T
Arai, H
Tanabe, S
Atomi, Y
AF Yamaguchi, Tetsuo
Suzuki, Takayoshi
Arai, Hideaki
Tanabe, Shihori
Atomi, Yoriko
TI Continuous mild heat stress induces differentiation of mammalian
myoblasts, shifting fiber type from fast to slow
SO AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
LA English
DT Article
DE fiber-type shift; PGC-1 alpha; myosin heavy chain; hormesis
ID HUMAN SKELETAL-MUSCLE; GENE-EXPRESSION; OXIDATIVE-PHOSPHORYLATION;
MYOSIN ISOFORMS; MYOGENIN; RAT; HYPERTHERMIA; METABOLISM; PROLIFERATION;
CELLS
AB Yamaguchi T, Suzuki T, Arai H, Tanabe S, Atomi Y. Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. Am J Physiol Cell Physiol 298: C140-C148, 2010. First published July 15, 2009; doi:10.1152/ajpcell.00050.2009.- Local hyperthermia has been widely used as physical therapy for a number of diseases such as inflammatory osteoarticular disorders, tendinitis, and muscle injury. Local hyperthermia is clinically applied to improve blood and lymphatic flow to decrease swelling of tissues (e. g., skeletal muscle). As for muscle repair following injury, the mechanisms underlying the beneficial effects of hyperthermia-induced muscle repair are unknown. In this study, we investigated the direct effects of continuous heat stress on the differentiation of cultured mammalian myoblasts. Compared with control cultures grown at 37 degrees C, incubation at 39 degrees C (continuous mild heat stress; CMHS) enhanced myotube diameter, whereas myotubes were poorly formed at 41 degrees C by primary human skeletal muscle culture cells, human skeletal muscle myoblasts (HSMMs), and C2C12 mouse myoblasts. In HSMMs and C2C12 cells exposed to CMHS, mRNA and protein levels of myosin heavy chain (MyHC) type I were increased compared with the control cultures. The mRNA level of MyHC IIx was unaltered in HSMMs and decreased in C2C12 cells, compared with cells that were not exposed to heat stress. These results indicated a fast-to-slow fiber-type shift in myoblasts. We also examined upstream signals that might be responsible for the fast-to-slow shift of fiber types. CMHS enhanced the mRNA and protein levels of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1 alpha in HSMMS and C2C12 cells but not the activities of MAPKs (ERK1/2 and p38 MAPK) in HSMMs and C2C12 cells. These data suggest that CMHS induces a fast-to-slow fiber-type shift of mammalian myoblasts through PGC-1 alpha.
C1 [Yamaguchi, Tetsuo; Arai, Hideaki] Univ Tokyo, Grad Sch Arts & Sci, Dept Life Sci, Meguro Ku, Tokyo 1538902, Japan.
[Suzuki, Takayoshi] Natl Inst Hlth Sci, Div Genet & Mutagenesis, Setagaya Ku, Tokyo, Japan.
[Tanabe, Shihori] Natl Inst Hlth Sci, Div Cellular & Gene Therapy Prod, Setagaya Ku, Tokyo, Japan.
[Atomi, Yoriko] Univ Tokyo, Dept Technol, Bunkyo Ku, Tokyo 1538902, Japan.
C3 University of Tokyo; National Institute of Health Sciences - Japan;
National Institute of Health Sciences - Japan; University of Tokyo
RP Yamaguchi, T (corresponding author), Univ Tokyo, Grad Sch Arts & Sci, Dept Life Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan.
EM tetsuo-yama@abeam.ocn.ne.jp; atomi@bio.c.u-tokyo.ac.jp
RI Tanabe, Shihori/AAH-6584-2019; Atomi, Yoriko/AAF-4783-2019; SUZUKI,
TAKAYOSHI/ABA-2386-2020
OI Tanabe, Shihori/0000-0003-3706-0616; Atomi, Yoriko/0000-0003-3808-6543;
SUZUKI, TAKAYOSHI/0000-0002-2261-5263
CR Andres V, 1996, J CELL BIOL, V132, P657, DOI 10.1083/jcb.132.4.657
Aronson D, 1997, J BIOL CHEM, V272, P25636, DOI 10.1074/jbc.272.41.25636
Balagopal P, 2006, AM J PHYSIOL-ENDOC M, V290, pE530, DOI 10.1152/ajpendo.00412.2005
BORRELL RM, 1980, PHYS THER, V60, P1273, DOI 10.1093/ptj/60.10.1273
CALDERWOOD SK, 1988, RADIAT RES, V113, P414, DOI 10.2307/3577239
Casas F, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002501
Ekmark M, 2003, J PHYSIOL-LONDON, V548, P259, DOI 10.1113/jphysiol.2002.036228
Finck BN, 2006, J CLIN INVEST, V116, P615, DOI 10.1172/JCI27794
Frederiksen CM, 2008, DIABETOLOGIA, V51, P2068, DOI 10.1007/s00125-008-1122-9
Gaster M, 2001, APMIS, V109, P726, DOI 10.1034/j.1600-0463.2001.d01-139.x
Hanson DF, 1997, ANN NY ACAD SCI, V813, P453, DOI 10.1111/j.1749-6632.1997.tb51733.x
Hilber K, 1999, FEBS LETT, V455, P267, DOI 10.1016/S0014-5793(99)00903-5
Huard J, 2002, J BONE JOINT SURG AM, V84A, P822, DOI 10.2106/00004623-200205000-00022
Hughes SM, 1999, J CELL BIOL, V145, P633, DOI 10.1083/jcb.145.3.633
HUGHES SM, 1993, DEVELOPMENT, V118, P1137
Kelley DE, 2002, DIABETES, V51, P2944, DOI 10.2337/diabetes.51.10.2944
Kubis HP, 1997, P NATL ACAD SCI USA, V94, P4205, DOI 10.1073/pnas.94.8.4205
Lamba DA, 2006, P NATL ACAD SCI USA, V103, P12769, DOI 10.1073/pnas.0601990103
Lehman JF, 1990, KRUSENS HDB PHYS MED, P283
Lepock JR, 2003, INT J HYPERTHER, V19, P252, DOI 10.1080/0265673031000065042
Lin J, 2002, NATURE, V418, P797, DOI 10.1038/nature00904
Liu JX, 2003, J HISTOCHEM CYTOCHEM, V51, P175, DOI 10.1177/002215540305100206
Liu Y, 2003, J APPL PHYSIOL, V94, P2282, DOI 10.1152/japplphysiol.00830.2002
Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60
Ludolph DC, 1995, FASEB J, V9, P1595, DOI 10.1096/fasebj.9.15.8529839
Martins KJB, 2006, J PHYSIOL-LONDON, V572, P281, DOI 10.1113/jphysiol.2005.103366
Meissner JD, 2007, J BIOL CHEM, V282, P7265, DOI 10.1074/jbc.M609076200
MIKKELSEN RB, 1991, CANCER RES, V51, P359
Mootha VK, 2003, NAT GENET, V34, P267, DOI 10.1038/ng1180
Moyer HR, 2008, INT J HYPERTHER, V24, P251, DOI 10.1080/02656730701772480
Murgia M, 2000, NAT CELL BIOL, V2, P142, DOI 10.1038/35004013
Naya FJ, 2000, J BIOL CHEM, V275, P4545, DOI 10.1074/jbc.275.7.4545
Park HG, 2005, CELL MOL LIFE SCI, V62, P10, DOI 10.1007/s00018-004-4208-7
Patti ME, 2003, P NATL ACAD SCI USA, V100, P8466, DOI 10.1073/pnas.1032913100
Pette D, 2000, MICROSC RES TECHNIQ, V50, P500, DOI 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7
Pilegaard H, 2003, J PHYSIOL-LONDON, V546, P851, DOI 10.1113/jphysiol.2002.034850
Putman CT, 2000, AM J PHYSIOL-CELL PH, V279, pC682, DOI 10.1152/ajpcell.2000.279.3.C682
Rokutan Kazuhito, 1998, Journal of Medical Investigation, V44, P137
SCHIAFFINO S, 1994, J APPL PHYSIOL, V77, P493, DOI 10.1152/jappl.1994.77.2.493
SCHLUTER JM, 1994, AM J PHYSIOL, V266, pC1699, DOI 10.1152/ajpcell.1994.266.6.C1699
Shi H, 2008, FASEB J, V22, P2990, DOI 10.1096/fj.07-097600
Shui CX, 2001, J BONE MINER RES, V16, P731, DOI 10.1359/jbmr.2001.16.4.731
Smith W, 1990, THERMAL AGENTS REHAB, P245
Tapscott SJ, 2005, DEVELOPMENT, V132, P2685, DOI 10.1242/dev.01874
Thelen MHM, 1998, BIOCHEM J, V329, P131
van der Poel C, 2007, AM J PHYSIOL-CELL PH, V293, pC133, DOI 10.1152/ajpcell.00052.2007
Vissing K, 2005, J APPL PHYSIOL, V99, P164, DOI 10.1152/japplphysiol.01172.2004
Wu H, 2002, SCIENCE, V296, P349, DOI 10.1126/science.1071163
Wust P, 1996, Recent Results Cancer Res, V142, P281
Xu XY, 2004, AM J PHYSIOL-CELL PH, V287, pC903, DOI 10.1152/ajpcell.00065.2004
Yamaguchi T, 2007, J GERONTOL A-BIOL, V62, P481, DOI 10.1093/gerona/62.5.481
NR 51
TC 67
Z9 74
U1 4
U2 20
PU AMER PHYSIOLOGICAL SOC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
SN 0363-6143
EI 1522-1563
J9 AM J PHYSIOL-CELL PH
JI Am. J. Physiol.-Cell Physiol.
PD JAN
PY 2010
VL 298
IS 1
BP C140
EP C148
DI 10.1152/ajpcell.00050.2009
PG 9
WC Cell Biology; Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Cell Biology; Physiology
GA 533LO
UT WOS:000272825500016
PM 19605738
DA 2023-03-13
ER
PT J
AU Jiang, YH
Liu, Y
Zhang, J
AF Jiang, Yunhan
Liu, Ying
Zhang, Jian
TI Antibiotic contaminants reduced the treatment efficiency of UV-C on
Microcystis aeruginosa through hormesis
SO ENVIRONMENTAL POLLUTION
LA English
DT Article
DE Combined pollution; Ultraviolet irradiation; Cyanobacterial control;
Microcystins; Proteomic responses
ID PERSONAL CARE PRODUCTS; CYANOBACTERIAL BLOOMS; RISK-ASSESSMENT;
SURFACE-WATER; PHARMACEUTICALS; GROWTH; GENE; IRRADIATION; DIVERSITY;
TOXICITY
AB Antibiotic contaminants exert stimulatory hormetic effects in cyanobacteria at low (ng L-1) concentrations, which may interfere with the control of cyanobacterial bloom in aquatic environments exhibiting combined pollution. This study investigated the influence of a mixture of four popular antibiotics (sulfamethoxazole, amoxicillin, ciprofloxacin, and tetracycline) during the application of UV-C irradiation for controlling the bloom of Microcystis aeruginosa. In the absence of antibiotics, 100-500 mJ cm(-2) UV-C irradiation reduced cell density, growth rate, chlorophyll a content, F-v/F-m value and microcystin concentration in M. aeruginosa in a dose-dependent manner through the downregulation of proteins related to cell division, chlorophyll synthesis, photosynthesis and microcystin synthesis. UV-C irradiation stimulated microcystin release through the upregulation of the microcystin release regulatory protein (mcyH). The presence of 40 ng L-1 antibiotic mixture during UV-C treatment significantly reduced (p < 0.05) the treatment efficiency of 100-300 mJ cm(-2) UV-C on microcystin concentration, while 80 and 160 ng L-1 antibiotic mixture significantly reduced (p < 0.05) the treatment efficiency of 100-500 mJ cm(-2) UV-C on cell density and microcystin concentration. The antibiotic mixture alleviated the toxicity of UV-C on M. aeruginosa through a significant stimulation of photosynthetic activity (p < 0.05) and the upregulation of proteins involved in photosynthesis, biosynthesis, protein expression, and DNA repair. Microcystin release in UV-C-treated cyanobacterial cells was further stimulated by the antibiotic mixture through the upregulation of mcyH and four ATP-binding cassette transport proteins. The interference effects of antibiotic contaminants should be fully considered when UV-C is applied to control cyanobacterial bloom in antibiotic-polluted environments. In order to eliminate the interference effects of antibiotics, the concentration of each target antibiotic is suggested to be controlled below 5 ng L-1 before the application of UV-C irradiation. (C) 2020 Elsevier Ltd. All rights reserved.
C1 [Jiang, Yunhan; Liu, Ying; Zhang, Jian] Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China.
C3 Shandong University
RP Liu, Y (corresponding author), Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China.
EM liuying2010@sdu.edu.cn
FU National Natural Science Foundation of China [51679130]; Fundamental
Research Funds of Shandong University [2017WLJH35]
FX This work was supported by National Natural Science Foundation of China
(51679130) and partly by the Fundamental Research Funds of Shandong
University (2017WLJH35).
CR Aydin E, 2013, CHEMOSPHERE, V90, P2004, DOI 10.1016/j.chemosphere.2012.10.074
Azanu D, 2018, SCI TOTAL ENVIRON, V622, P293, DOI 10.1016/j.scitotenv.2017.11.287
Borderie F, 2014, INT BIODETER BIODEGR, V93, P118, DOI 10.1016/j.ibiod.2014.05.014
Bouaicha N, 2019, TOXINS, V11, DOI 10.3390/toxins11120714
Bouhaddada R, 2016, ENVIRON POLLUT, V216, P836, DOI 10.1016/j.envpol.2016.06.055
Chalifour A, 2016, CHEMOSPHERE, V164, P451, DOI 10.1016/j.chemosphere.2016.08.109
Charuaud L, 2019, J HAZARD MATER, V361, P169, DOI 10.1016/j.jhazmat.2018.08.075
Chen YQ, 2017, J HAZARD MATER, V322, P508, DOI 10.1016/j.jhazmat.2016.10.017
Fu L, 2017, CHEMOSPHERE, V168, P217, DOI 10.1016/j.chemosphere.2016.10.043
Gao QT, 2011, CHEMOSPHERE, V82, P346, DOI 10.1016/j.chemosphere.2010.10.010
Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211
Huang DW, 2009, NUCLEIC ACIDS RES, V37, P1, DOI 10.1093/nar/gkn923
Huisman J, 2018, NAT REV MICROBIOL, V16, P471, DOI 10.1038/s41579-018-0040-1
Junge W, 2019, Q REV BIOPHYS, V52, DOI 10.1017/S0033583518000112
Kasprzyk-Hordern B, 2008, WATER RES, V42, P3498, DOI 10.1016/j.watres.2008.04.026
Lin HJ, 2018, SCI TOTAL ENVIRON, V636, P975, DOI 10.1016/j.scitotenv.2018.04.267
Liu PL, 2017, NUCLEIC ACIDS RES, V45, P3944, DOI 10.1093/nar/gkx153
Liu Y, 2017, MOL ECOL, V26, P689, DOI 10.1111/mec.13934
Liu Y, 2016, WATER RES, V93, P141, DOI 10.1016/j.watres.2016.01.060
Martinez LF, 2013, MAR POLLUT BULL, V67, P152, DOI 10.1016/j.marpolbul.2012.11.019
Matafonova G, 2018, WATER RES, V132, P177, DOI 10.1016/j.watres.2017.12.079
Merel S, 2013, ENVIRON INT, V59, P303, DOI 10.1016/j.envint.2013.06.013
Mlouka A, 2004, J BACTERIOL, V186, P2355, DOI 10.1128/JB.186.8.2355-2365.2004
Tran NH, 2019, SCI TOTAL ENVIRON, V692, P157, DOI 10.1016/j.scitotenv.2019.07.092
de Garcia SO, 2013, SCI TOTAL ENVIRON, V444, P451, DOI 10.1016/j.scitotenv.2012.11.057
Ou H, 2012, WATER RES, V46, P1241, DOI 10.1016/j.watres.2011.12.025
Ou HS, 2011, DESALINATION, V272, P107, DOI 10.1016/j.desal.2011.01.014
Paerl HW, 2018, TOXINS, V10, DOI 10.3390/toxins10020076
Paerl HW, 2013, MICROB ECOL, V65, P995, DOI 10.1007/s00248-012-0159-y
Pearson LA, 2004, APPL ENVIRON MICROB, V70, P6370, DOI 10.1128/AEM.70.11.6370-6378.2004
Peng X, 2017, PHOTOCHEM PHOTOBIOL, V93, P1073, DOI 10.1111/php.12726
Phukan T, 2019, ECOTOX ENVIRON SAFE, V181, P274, DOI 10.1016/j.ecoenv.2019.05.074
Phukan T, 2018, ECOTOX ENVIRON SAFE, V155, P171, DOI 10.1016/j.ecoenv.2018.02.066
Pinto AB, 2015, MAR POLLUT BULL, V96, P410, DOI 10.1016/j.marpolbul.2015.04.014
Pospisil P, 2012, BBA-BIOENERGETICS, V1817, P218, DOI 10.1016/j.bbabio.2011.05.017
Praveena SM, 2018, SCI TOTAL ENVIRON, V642, P230, DOI 10.1016/j.scitotenv.2018.06.058
Regel RH, 2002, AQUAT TOXICOL, V59, P209, DOI 10.1016/S0166-445X(01)00254-5
Schuurmans JM, 2018, HARMFUL ALGAE, V78, P47, DOI 10.1016/j.hal.2018.07.008
Sinha RP, 2002, PHOTOCH PHOTOBIO SCI, V1, P225, DOI 10.1039/b201230h
STANIER RY, 1977, ANNU REV MICROBIOL, V31, P225, DOI 10.1146/annurev.mi.31.100177.001301
Su XM, 2018, ECOL INDIC, V89, P445, DOI 10.1016/j.ecolind.2017.11.042
Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003
Tao Y, 2018, J HAZARD MATER, V359, P281, DOI 10.1016/j.jhazmat.2018.07.052
Tao Y, 2010, CHEMOSPHERE, V78, P541, DOI 10.1016/j.chemosphere.2009.11.016
Vranakis I, 2014, J PROTEOMICS, V97, P88, DOI 10.1016/j.jprot.2013.10.027
Wan JJ, 2015, J HAZARD MATER, V283, P778, DOI 10.1016/j.jhazmat.2014.10.026
Xu MJ, 2019, ECOTOX ENVIRON SAFE, V175, P289, DOI 10.1016/j.ecoenv.2019.01.131
Yang M, 2019, SCI TOTAL ENVIRON, V658, P439, DOI 10.1016/j.scitotenv.2018.12.089
Zhang M, 2018, ECOTOX ENVIRON SAFE, V157, P134, DOI 10.1016/j.ecoenv.2018.03.052
NR 49
TC 12
Z9 12
U1 13
U2 73
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0269-7491
EI 1873-6424
J9 ENVIRON POLLUT
JI Environ. Pollut.
PD JUN
PY 2020
VL 261
AR 114193
DI 10.1016/j.envpol.2020.114193
PG 10
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA LK8JQ
UT WOS:000531106500038
PM 32088440
DA 2023-03-13
ER
PT J
AU Yuan, SQ
Li, H
Yang, CH
Xie, WY
Wang, YY
Zhang, JF
Cai, ZB
Mao, ZL
Xie, WB
Lu, T
AF Yuan, Shiqi
Li, Huan
Yang, Canhong
Xie, Wenyi
Wang, Yuanyuan
Zhang, Jiafa
Cai, Zibo
Mao, Zhenlin
Xie, Weibing
Lu, Tianming
TI DHA attenuates A beta-induced necroptosis through the RIPK1/RIPK3
signaling pathway in THP-1 monocytes
SO BIOMEDICINE & PHARMACOTHERAPY
LA English
DT Article
DE Alzheimer's disease; A beta 25-35; THP-1 cells; Docosahexaenoic acid
(DHA); Necroptosis; MAPK; NF-kB
ID ALZHEIMERS-DISEASE; CELL-DEATH; ACTIVATION; CLEARANCE; MICROGLIA;
NECROSIS; KINASES; ACID; INFLAMMATION; CONTRIBUTES
AB Monocytes play a crucial role in Alzheimer's disease (AD), and docosahexaenoic acid (DHA) has a neuroprotective effect for many neurodegenerative diseases. However, mechanisms that regulate monocyte and A beta protein interaction in AD and the effects of DHA on monocytes in the context of AD are not fully understood. The experiments were designed to further explore possible mechanisms of interaction between monocytes and A beta plaques. Another objective of this study was to investigate a potential mechanism for A beta-induced necroptosis involving the activation of MAPK and NF-kB signaling pathways in human THP-1 monocytes, as well as how these pathways might be modulated by DHA. Our findings indicate that A beta 25-35 has a "Hormesis" effect on cell viability and necroptosis in THP-1 cells, and A beta 25-35 influences THP-1 cells differentiation as analyzed by flow cytometry. Pretreatment of THP-1 monocytes with DHA effectively inhibited A beta-induced activation and markedly suppressed protein expression of necroptosis (RIPK1, RIPK3, MLKL) and pro-inflammatory cytokines (TNF-alpha, IL-1 beta, IL-6). Moreover, our findings indicate that A beta 25-35 activated the ERK1/2 and p38 signaling pathways, but not NF-kappa B/p65 signaling, while pre-treatment with DHA followed by A beta 25-35 treatment suppressed only ERK1/2 signaling. Further study revealed that the expression level of RIPK3 is reduced much more during coadministration with DHA and necrostatin-1 (NEC-1) than administration alone with either of them, indicating that DHA may have additional targets. Meanwhile, this finding indicates that DHA can prevent A beta-induced necroptosis of THP-1 cells via the RIPK1/RIPK3 signaling pathway. Our results also indicate that DHA treatment restored migration of THP-1 monocytes induced by A beta 25-35, and DHA treatment could be a promising new therapy for AD management.
C1 [Yuan, Shiqi; Li, Huan; Yang, Canhong; Xie, Wenyi; Wang, Yuanyuan; Zhang, Jiafa; Cai, Zibo; Mao, Zhenlin; Lu, Tianming] Southern Med Univ, Affiliated Hosp 3, Dept Neurol, 183 Zhongshan Rd West, Guangzhou 510630, Peoples R China.
[Xie, Weibing] Southern Med Univ, Judicial Identificat Ctr, 1023-1063,Shatai Rd South, Guangzhou 510515, Peoples R China.
C3 Southern Medical University - China; Southern Medical University - China
RP Lu, T (corresponding author), Southern Med Univ, Affiliated Hosp 3, Dept Neurol, 183 Zhongshan Rd West, Guangzhou 510630, Peoples R China.
EM lutianming@139.com
RI Yuan, Shiqi/GWZ-9264-2022
OI Yuan, Shiqi/0000-0002-2794-2546
FU Natural Science Foundation of Guangdong Province [2017A030313461];
Science and Technology Project of Guangzhou City [201803010010]; Medical
Science and Technology Research Fund of Guangdong Province [A2018061];
Scientific Research Launch Project of Southern Medical University
[PY2017N029]; Health Science and Technology Project of Guangzhou City
[20191A010010]
FX This work was supported by grants from Natural Science Foundation of
Guangdong Province (Grant No. 2017A030313461), Science and Technology
Project of Guangzhou City (201803010010), Medical Science and Technology
Research Fund of Guangdong Province (A2018061), Scientific Research
Launch Project of Southern Medical University (PY2017N029) and Health
Science and Technology Project of Guangzhou City (20191A010010).
CR Alexa A, 2015, P NATL ACAD SCI USA, V112, P2711, DOI 10.1073/pnas.1417571112
Alvarez SE, 2010, NATURE, V465, P1084, DOI 10.1038/nature09128
[Anonymous], FRONT PHARM
Arthur JSC, 2013, NAT REV IMMUNOL, V13, P679, DOI 10.1038/nri3495
Belkouch M, 2016, J NUTR BIOCHEM, V38, P1, DOI 10.1016/j.jnutbio.2016.03.002
Busca A., 2014, J LEUKOCYTE BIOL, V96, P1011, DOI DOI 10.1189/jlb.1A0414-212R
Caccamo A, 2017, NAT NEUROSCI, V20, P1236, DOI 10.1038/nn.4608
Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007
Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa
Chanput W, 2014, INT IMMUNOPHARMACOL, V23, P37, DOI 10.1016/j.intimp.2014.08.002
Cheng Y, 2016, NEUROSCI LETT, V632, P109, DOI 10.1016/j.neulet.2016.08.031
Crouse NR, 2009, BRAIN RES, V1254, P109, DOI 10.1016/j.brainres.2008.11.093
de Almagro MC, 2015, SEMIN CELL DEV BIOL, V39, P56, DOI 10.1016/j.semcdb.2015.02.002
Fao L, 2019, AGEING RES REV, V54, DOI 10.1016/j.arr.2019.100942
Festjens N, 2007, CELL DEATH DIFFER, V14, P400, DOI 10.1038/sj.cdd.4402085
Filipczak PT, 2016, CANCER RES, V76, P7130, DOI 10.1158/0008-5472.CAN-16-1052
Giri R, 2000, AM J PHYSIOL-CELL PH, V279, pC1772, DOI 10.1152/ajpcell.2000.279.6.C1772
Gordon S, 2005, NAT REV IMMUNOL, V5, P953, DOI 10.1038/nri1733
Halle M, 2015, J IMMUNOL METHODS, V424, P64, DOI 10.1016/j.jim.2015.05.002
Hanisch UK, 2007, NAT NEUROSCI, V10, P1387, DOI 10.1038/nn1997
Hawkes CA, 2009, P NATL ACAD SCI USA, V106, P1261, DOI 10.1073/pnas.0805453106
Hohsfield LA, 2015, EXP GERONTOL, V65, P8, DOI 10.1016/j.exger.2015.03.002
Jing L, 2018, CANCER LETT, V414, P136, DOI 10.1016/j.canlet.2017.10.047
Kaiser WJ, 2013, J BIOL CHEM, V288, P31268, DOI 10.1074/jbc.M113.462341
Kanou T, 2018, J HEART LUNG TRANSPL, V37, P1261, DOI 10.1016/j.healun.2018.04.005
Kim EK, 2015, ARCH TOXICOL, V89, P867, DOI 10.1007/s00204-015-1472-2
Kwon SH, 2015, NEUROSCIENCE, V304, P14, DOI 10.1016/j.neuroscience.2015.07.030
Lin QS, 2020, LAB INVEST, V100, P503, DOI 10.1038/s41374-019-0319-5
Linkermann A, 2014, NEW ENGL J MED, V370, P455, DOI 10.1056/NEJMra1310050
Liu N, 2017, NEUROSCI LETT, V651, P1, DOI 10.1016/j.neulet.2017.04.056
Majumdar A, 2008, NEUROBIOL AGING, V29, P707, DOI 10.1016/j.neurobiolaging.2006.12.001
Mawuenyega KG, 2010, SCIENCE, V330, P1774, DOI 10.1126/science.1197623
McLean FH, 2019, NUTR METAB, V16, DOI 10.1186/s12986-019-0387-y
Michaud JP, 2013, CELL REP, V5, P646, DOI 10.1016/j.celrep.2013.10.010
Michaud JP, 2013, P NATL ACAD SCI USA, V110, P1941, DOI 10.1073/pnas.1215165110
Millucci L, 2010, CURR PROTEIN PEPT SC, V11, P54, DOI 10.2174/138920310790274626
Mincheva-Tasheva S, 2013, NEUROSCIENTIST, V19, P175, DOI 10.1177/1073858412444007
Moriwaki K, 2014, CYTOKINE GROWTH F R, V25, P167, DOI 10.1016/j.cytogfr.2013.12.013
Najjar M, 2016, IMMUNITY, V45, P46, DOI 10.1016/j.immuni.2016.06.007
Newton K, 2015, TRENDS CELL BIOL, V25, P347, DOI 10.1016/j.tcb.2015.01.001
Ofengeim D, 2017, P NATL ACAD SCI USA, V114, pE8788, DOI 10.1073/pnas.1714175114
Park SY, 2014, INT IMMUNOPHARMACOL, V19, P60, DOI 10.1016/j.intimp.2013.12.002
Qin SS, 2018, PHARMACOL RES, V133, P218, DOI 10.1016/j.phrs.2018.01.014
Querfurth HW, 2010, NEW ENGL J MED, V362, P329, DOI 10.1056/NEJMra0909142
Serrano-Pozo A, 2011, CSH PERSPECT MED, V1, DOI 10.1101/cshperspect.a006189
Shan B, 2018, GENE DEV, V32, P327, DOI 10.1101/gad.312561.118
Sun XQ, 1999, J BIOL CHEM, V274, P16871, DOI 10.1074/jbc.274.24.16871
Udan MLD, 2008, J NEUROCHEM, V104, P524, DOI 10.1111/j.1471-4159.2007.05001.x
Upton JW, 2010, CELL HOST MICROBE, V7, P302, DOI 10.1016/j.chom.2010.03.006
Winblad B, 2016, LANCET NEUROL, V15, P455, DOI 10.1016/S1474-4422(16)00062-4
Wu XL, 2017, EUR J PHARM SCI, V110, P101, DOI 10.1016/j.ejps.2017.03.037
Xiong XY, 2016, PROG NEUROBIOL, V142, P23, DOI 10.1016/j.pneurobio.2016.05.001
Xu MJ, 2019, J ETHNOPHARMACOL, V237, P354, DOI 10.1016/j.jep.2019.02.046
Yang CH, 2016, J ALZHEIMERS DIS, V52, P391, DOI 10.3233/JAD-150949
Yuan JY, 2019, NAT REV NEUROSCI, V20, P19, DOI 10.1038/s41583-018-0093-1
Zhang M, 2013, NEUROTOX RES, V24, P64, DOI 10.1007/s12640-012-9361-4
Zhang YP, 2018, PROSTAG LEUKOTR ESS, V136, P85, DOI 10.1016/j.plefa.2017.07.003
Zuroff L, 2017, CELL MOL LIFE SCI, V74, P2167, DOI 10.1007/s00018-017-2463-7
NR 58
TC 11
Z9 12
U1 2
U2 13
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
PI ISSY-LES-MOULINEAUX
PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE
SN 0753-3322
EI 1950-6007
J9 BIOMED PHARMACOTHER
JI Biomed. Pharmacother.
PD JUN
PY 2020
VL 126
AR 110102
DI 10.1016/j.biopha.2020.110102
PG 12
WC Medicine, Research & Experimental; Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Research & Experimental Medicine; Pharmacology & Pharmacy
GA LE5UI
UT WOS:000526785500023
PM 32199223
OA gold
DA 2023-03-13
ER
PT J
AU Lim, S
Ko, EJ
Kang, YJ
Baek, KW
Ock, MS
Song, KS
Kang, HJ
Keum, YS
Hyun, JW
Kwon, TK
Nam, SY
Cha, HJ
Choi, YH
AF Lim, Sangwook
Ko, Eun-Ji
Kang, Yun-Jeong
Baek, Kyung-Wan
Ock, Mee Sun
Song, Kyoung Seob
Kang, Hye-Joo
Keum, Young-Sam
Hyun, Jin Won
Kwon, Taek Kyu
Nam, Seon Young
Cha, Hee-Jae
Choi, Yung Hyun
TI Effect of irradiation on cytokine secretion and nitric oxide production
by inflammatory macrophages
SO GENES & GENOMICS
LA English
DT Article
DE Irradiation; Low-dose; High-dose; Proliferation; Inflammatory cytokines;
NO
ID IONIZING-RADIATION; CELLS; EXPRESSION; INDUCTION; HORMESIS; THERAPY;
PAIN
AB This study explored the effects of low-dose and high-dose irradiation on inflammatory macrophage cells, specifically inflammatory cytokine secretion and nitric oxide (NO) production after irradiation. To elucidate the effect of irradiation on active and inactive macrophages, we exposed LPS-treated or untreated murine monocyte/macrophage RAW 264.7 cell lines to low-dose to high-dose radiation (0.01-10 Gy). We analyzed the effects of irradiation on RAW 264.7 cell proliferation by MTT assays and analyzed cytokine secretion and NO production related to inflammation by ELISA assays. Low-to-high doses of radiation did not significantly affect the proliferation of LPS-treated or untreated RAW 264.7 cells. Pro-inflammatory cytokine IL-1 was generally increased in RAW 264.7 cells at 3 days after radiation. Especially, IL-1 was significantly increased in only high dose-irradiation (2 and 10 Gy irradiation) groups in LPS-untreated RAW 264.7 cells but increased in both low and high dose-irradiation groups (0.01-10 Gy) in LPS-treated RAW 264.7 cells at 3 days after irradiation. Whereas, the expression of IL-1 was prolonged in high-dose irradiation group at 5 days after irradiation. The production of anti-inflammatory cytokine IL-10 did not change significantly at 3 days after radiation but was significantly reduced at 5 days after 10 Gy radiation. The effect of irradiation on the secretion of IL-1 and IL-10 was not significantly different between RAW 264.7 cells treated or not treated with LPS. The effect of irradiation on NO secretion by RAW 264.7 cells showed a specific pattern. NO was produced after low-dose irradiation but reduced in a high-dose irradiation group at 3 days after irradiation. However, NO production was not changed after low-dose irradiation and reduced at 5 days after high-dose irradiation. These results showed that irradiation affected the inflammatory system and regulated NO production in both activated and inactivated macrophages through different regulation mechanisms, depending on irradiation dose.
C1 [Lim, Sangwook] Kosin Univ, Dept Radiat Oncol, Coll Med, Busan, South Korea.
[Ko, Eun-Ji; Kang, Yun-Jeong; Baek, Kyung-Wan; Ock, Mee Sun; Cha, Hee-Jae] Kosin Univ, Dept Parasitol & Genet, Coll Med, Busan, South Korea.
[Ko, Eun-Ji] Pusan Natl Univ, Dept Biol Sci, Coll Nat Sci, Busan, South Korea.
[Song, Kyoung Seob] Kosin Univ, Dept Physiol, Coll Med, Busan, South Korea.
[Kang, Hye-Joo; Choi, Yung Hyun] Dong Eui Univ, Dept Biochem, Coll Oriental Med, Busan, South Korea.
[Keum, Young-Sam] Dongguk Univ, Dept Pharm, Coll Pharm, Goyang, South Korea.
[Hyun, Jin Won] Jeju Natl Univ, Sch Med, Dept Biochem, Jeju, South Korea.
[Kwon, Taek Kyu] Keimyung Univ, Sch Med, Dept Immunol, Daegu, South Korea.
[Nam, Seon Young] Korea Hydro & Nucl Power Co Ltd, Radiat Hlth Inst, Low Dose Radiat Res Team, Seoul, South Korea.
C3 Pusan National University; Dong-Eui University; Dongguk University; Jeju
National University; Keimyung University; Korea Hydro & Nuclear Power
RP Cha, HJ (corresponding author), Kosin Univ, Dept Parasitol & Genet, Coll Med, Busan, South Korea.; Choi, YH (corresponding author), Dong Eui Univ, Dept Biochem, Coll Oriental Med, Busan, South Korea.
EM hcha@kosin.ac.kr; choiyh@deu.ac.kr
RI Cha, Hee-Jae/AFO-8772-2022; Baek, Kyung-Wan/N-2071-2018
OI Baek, Kyung-Wan/0000-0002-8445-3773; Ko, Eun-Ji/0000-0002-3758-1019
FU National Research Foundation; Korean Government
[NRF-2013R1A1A4A01004996]
FX This work was supported by a grant from the National Research
Foundation, which is funded by the Korean Government
(NRF-2013R1A1A4A01004996).
CR Bjordal JM, 2006, PHOTOMED LASER SURG, V24, P158, DOI 10.1089/pho.2006.24.158
Bjordal JM, 2003, AUST J PHYSIOTHER, V49, P107, DOI 10.1016/S0004-9514(14)60127-6
Bortfeld T, 2011, BRIT J RADIOL, V84, P485, DOI 10.1259/bjr/86221320
Brenner DJ, 2003, P NATL ACAD SCI USA, V100, P13761, DOI 10.1073/pnas.2235592100
Cheda A, 2004, RADIAT RES, V161, P335, DOI 10.1667/RR3123
Guha M, 2001, CELL SIGNAL, V13, P85, DOI 10.1016/S0898-6568(00)00149-2
Hou DL, 2014, CANCER GENE THER, V21, P542, DOI 10.1038/cgt.2014.62
Ina Y, 2005, INT J RADIAT BIOL, V81, P721, DOI 10.1080/09553000500519808
Kopydlowski KM, 1999, J IMMUNOL, V163, P1537
Lowenstein CJ, 2004, J CELL SCI, V117, P2865, DOI 10.1242/jcs.01166
Matsuu-Matsuyama M, 2006, J RADIAT RES, V47, P1, DOI 10.1269/jrr.47.1
Pandey R, 2005, INT J RADIAT BIOL, V81, P801, DOI 10.1080/09553000500531886
Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O
Ren HW, 2006, CELL IMMUNOL, V244, P50, DOI 10.1016/j.cellimm.2007.02.009
Schindl M, 1999, PHOTODERMATOL PHOTO, V15, P18, DOI 10.1111/j.1600-0781.1999.tb00047.x
SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008
NR 16
TC 1
Z9 1
U1 0
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1976-9571
EI 2092-9293
J9 GENES GENOM
JI Genes Genom.
PD AUG
PY 2016
VL 38
IS 8
BP 717
EP 722
DI 10.1007/s13258-016-0416-4
PG 6
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
GA DR2WT
UT WOS:000379765300005
DA 2023-03-13
ER
PT J
AU Hackenberger, BK
Velki, M
Stepic, S
Hackenberger, DK
AF Hackenberger, Branimir K.
Velki, Mirna
Stepic, Sandra
Hackenberger, Davorka K.
TI The effect of formalin on acetylcholinesterase and catalase activities,
and on the concentration of oximes, in the earthworm species Eisenia
andrei
SO EUROPEAN JOURNAL OF SOIL BIOLOGY
LA English
DT Article
DE Earthworms; Formalin; Acetylcholinesterase; Oximes; Catalase;
Biomonitoring
ID FLAVIN-CONTAINING MONOOXYGENASE; CHOLINESTERASE ACTIVITY; OXIDATIVE
STRESS; CEREBRAL-CORTEX; N-OXYGENATION; TRANS-OXIME; IN-VITRO;
FORMALDEHYDE; TOXICOLOGY; EXPOSURE
AB Formalin, the aqueous solution of formaldehyde, is used as a standard earthworm expellant. Since the possible biochemical effects of formalin to earthworms were not investigated, in the present study adult individuals of the earthworm species Eisenia andrei were exposed to sub-lethal concentrations of formalin in order to determine whether its usage as an expellant will influence the physiological status of the earthworms. In all experiments filter paper contact test was used and experiments were conducted under controlled laboratory conditions. Earthworms were exposed to 0.005, 0.01, 0.05, 0.1 and 0.2 mg ml(-1) of formalin for 5 min, 15 min, 30 min and 2 h, and the acetylcholinesterase (AChE) activity, catalase (CAT) activity and concentration of oximes were measured. As expected, the lowest AChE activity was measured at the highest concentration of formalin applied (0.2 mg ml(-1)). However, following a 2 h exposure to concentration of 0.01 mg ml(-1), the AChE activity increased up to 1.12 times the activity in the control. Similar results were obtained when concentration of oximes was measured: the lowest concentration of oximes occurred following 2 h exposure to the highest concentration (0.2 mg ml(-1)): and the highest concentration of oximes equating to 1.18 times increase relative to the control-occurred after a 2 h exposure at 0.01 mg ml(-1). Dose-response curves for AChE activity showed an inverted U-shape characteristic for hormesis and concentration of oximes indicate; a role in maintaining the normal AChE activity in the organism. Measurement of CAT activity measurement showed dose and time dependent induction, indicating the occurrence of oxidative stress. The obtained results showed formalin causes measurable effects on the metabolism of E. andrei, therefore the usage of formalin as an earthworm expellant is unsuitable for ecotoxicological research or biomonitoring. (C) 2012 Elsevier Masson SAS. All rights reserved.
C1 [Hackenberger, Branimir K.; Velki, Mirna; Stepic, Sandra; Hackenberger, Davorka K.] Josip Juraj Strossmayer Univ Osijek, Dept Biol, Osijek 31000, Croatia.
C3 University of JJ Strossmayer Osijek
RP Hackenberger, BK (corresponding author), Josip Juraj Strossmayer Univ Osijek, Dept Biol, Trg Ljudevita Gaja 6, Osijek 31000, Croatia.
EM hack@biologija.unios.hr; mirna.velki@gmail.com;
sandra@biologija.unios.hr; davorka@biologija.unios.hr
RI Hackenberger, Branimir K./H-9738-2018; Hackenberger,
Branimir/AAT-6871-2021
OI Hackenberger, Branimir K./0000-0003-4317-2067; Hackenberger,
Branimir/0000-0003-4317-2067; Hackenberger, Davorka/0000-0002-3315-7608;
Velki, Mirna/0000-0003-1342-0138
FU Ministry for Science and Technology of the Republic of Croatia
[285-0000000-3484]; firm Bioquant, Osijek, Croatia
FX This work was supported by the Ministry for Science and Technology of
the Republic of Croatia, Project No. 285-0000000-3484 and by the firm
Bioquant, Osijek, Croatia.
CR [Anonymous], 1985, EARTHWORMS THEIR ECO
Bell-Parikh LC, 1999, J BIOL CHEM, V274, P23833, DOI 10.1074/jbc.274.34.23833
BOLT HM, 1987, J CANCER RES CLIN, V113, P305, DOI 10.1007/BF00397713
Bouche M, 1972, INRA PUBL ANN ZOOL E, P671
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Buncel E, 2002, J AM CHEM SOC, V124, P8766, DOI 10.1021/ja020379k
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5
Cashman JR, 1999, J PHARMACOL EXP THER, V288, P1251
Claiborne A., 1985, CRC HDB METHODS OXYG, P283
Coja T, 2008, ECOTOX ENVIRON SAFE, V71, P552, DOI 10.1016/j.ecoenv.2007.08.002
Collange B, 2010, ENVIRON POLLUT, V158, P2266, DOI 10.1016/j.envpol.2010.02.009
DALLAS CE, 1989, ENVIRON RES, V49, P50, DOI 10.1016/S0013-9351(89)80021-0
Day K.E., 1990, AQUAT TOXICOL, V18, P1001
Delwing D, 2003, METAB BRAIN DIS, V18, P79, DOI 10.1023/A:1021934803724
Eichinger E, 2007, ECOTOX ENVIRON SAFE, V67, P260, DOI 10.1016/j.ecoenv.2006.03.015
ELLMAN GL, 1961, BIOCHEM PHARMACOL, V7, P88, DOI 10.1016/0006-2952(61)90145-9
Fulton MH, 2001, ENVIRON TOXICOL CHEM, V20, P37, DOI [10.1897/1551-5028(2001)020<0037:AIIEFA>2.0.CO;2, 10.1002/etc.5620200104]
FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001
Gambi N, 2007, COMP BIOCHEM PHYS C, V145, P678, DOI 10.1016/j.cbpc.2007.03.002
Gulec M, 2006, MOL CELL BIOCHEM, V290, P61, DOI 10.1007/s11010-006-9165-z
GUNN A, 1992, PEDOBIOLOGIA, V36, P65
Hackenberger BK, 2008, ECOTOX ENVIRON SAFE, V71, P583, DOI 10.1016/j.ecoenv.2007.11.008
International Agency for Research on Cancer Monographs, 2006, INT AGENCY RES CANC, V88, P478
ISO, 2006, 2361112006 ISO
JOHNSON DP, 1968, ANAL CHEM, V40, P646, DOI 10.1021/ac60259a048
Kum C, 2007, EXP ANIM TOKYO, V56, P35, DOI 10.1538/expanim.56.35
Labrot F, 1996, BIOMARKERS, V1, P21, DOI 10.3109/13547509609079343
Lin J, 1997, J PHARMACOL EXP THER, V282, P1269
Lin J, 1997, CHEM RES TOXICOL, V10, P842, DOI 10.1021/tx970030o
MCGEER EG, 1989, J NEUROSCI METH, V28, P235, DOI 10.1016/0165-0270(89)90042-3
Moraes BS, 2007, CHEMOSPHERE, V68, P1597, DOI 10.1016/j.chemosphere.2007.03.006
NAIK NT, 1963, Q J MICROSC SCI, V104, P89
Njoya HK, 2009, INT J INTEGR BIOL, V7, P160
Organization for Economic Cooperation and Development, 1984, GUID TEST CHEM EARTH, V207
PATOCKA J, 2005, J APPL BIOMED, V3, P91
Payne JF, 1996, MAR POLLUT BULL, V32, P225, DOI 10.1016/0025-326X(95)00112-Z
Printes LB, 2004, ENVIRON TOXICOL CHEM, V23, P1241, DOI 10.1897/03-202
Reinecke SA, 2007, ECOTOX ENVIRON SAFE, V66, P244, DOI 10.1016/j.ecoenv.2005.10.006
Rodriguez-Castellanos L, 2007, ENVIRON TOXICOL CHEM, V26, P1992, DOI 10.1897/06-625R1.1
ROMBKE J, 2006, EUR J SOIL BIOL, V42, P62
Saito Y, 2005, TOXICOLOGY, V210, P235, DOI 10.1016/j.tox.2005.02.006
Schulpis KH, 1998, Z NATURFORSCH C, V53, P291
TAXI J, 1952, J PHYSIOL-PARIS, V44, P595
Teng S, 2001, CHEM-BIOL INTERACT, V130, P285, DOI 10.1016/S0009-2797(00)00272-6
Tsakiris S, 2006, PHARMACOL RES, V53, P1, DOI 10.1016/j.phrs.2005.07.006
Wyse ATS, 2004, NEUROCHEM RES, V29, P385, DOI 10.1023/B:NERE.0000013741.81436.e8
Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039
NR 48
TC 16
Z9 16
U1 0
U2 26
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
PI PARIS
PA 23 RUE LINOIS, 75724 PARIS, FRANCE
SN 1164-5563
J9 EUR J SOIL BIOL
JI Eur. J. Soil Biol.
PD MAY-JUN
PY 2012
VL 50
BP 137
EP 143
DI 10.1016/j.ejsobi.2012.02.002
PG 7
WC Ecology; Soil Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Agriculture
GA 948NJ
UT WOS:000304509600022
DA 2023-03-13
ER
PT J
AU Iftikhar, A
Hafeez, F
Aziz, MA
Hashim, M
Naeem, A
Yousaf, HK
Saleem, MJ
Hussain, S
Hafeez, M
Ali, Q
Rehman, M
Akhtar, S
Marc, RA
Syaad, KMA
Mostafa, YS
Saeed, FAA
AF Iftikhar, Ayesha
Hafeez, Faisal
Aziz, Muhammad Asif
Hashim, Muhammad
Naeem, Afifa
Yousaf, Hafiz Kamran
Saleem, Muhammad Jawad
Hussain, Sabir
Hafeez, Muhammad
Ali, Qurban
Rehman, Muzammal
Akhtar, Sumreen
Marc, Romina Alina
Syaad, Khalid M. Al
Mostafa, Yassor Sabry
Saeed, Fatimah A. Al
TI Assessment of sublethal and transgenerational effects of spirotetramat,
on population growth of cabbage aphid, Brevicoryne brassicae L.
(Hemiptera: Aphididae)
SO FRONTIERS IN PHYSIOLOGY
LA English
DT Article
DE cabbage aphid; population growth; spirotetramat; sublethal
concentrations; transgenerational effects
ID GREEN PEACH APHID; LIFE TABLE PARAMETERS; BIOLOGICAL TRAITS; INDUCED
HORMESIS; COTTON APHID; AGE-STAGE; RED MITE; INSECTICIDE; REPRODUCTION;
RESISTANCE
AB The cabbage aphid (Brevicoryne brassicae L.) is a devastating pest of cruciferous crops causing economic damage worldwide and notably owing to its increasing resistance to commonly used pesticides. Such resistance prompts the development of integrated pest management (IPM) programs that include novel pesticides being effective against the aphids. Spirotetramat is a novel insecticide used against sap-sucking insect pests, particularly aphids. This study evaluated the toxicity of spirotetramat to adult apterous B. brassicae after 72 h using the leaf dipping method. According to the toxicity bioassay results, the LC50 value of spirotetramat to B. brassicae was 1.304 mgL(-1). However, the sublethal concentrations (LC5 and LC15) and transgenerational effects of this novel insecticide on population growth parameters were estimated using the age-stage, two-sex life table theory method. The sublethal concentrations (LC5; 0.125 mgL(-1) and LC15; 0.298 mgL(-1)) of spirotetramat reduced the adult longevity and fecundity of the parent generation (F-0). These concentrations prolonged the preadult developmental duration while decreasing preadult survival, adult longevity and reproduction of the F-1 generation. The adult pre-reproductive period was also extended by spirotetramat treatment groups. Subsequently, the population growth parameters such as the intrinsic rate of increase r, finite rate of increase lambda and net reproductive rate R (0) of the F-1 generation were decreased in spirotetramat treatment groups whereas, the mean generation time T of the F-1 generation was not affected when compared to the control. These results indicated the negative effect of sublethal concentrations of spirotetramat on the performance of B. brassicae by reducing its nymphal survival, extending the duration of some immature stages and suppressing the population growth of B. brassicae. Overall, we demonstrated that spirotetramat is a pesticide showing both sublethal activities, and transgenerational effects on cabbage aphid; it may be useful for implementation in IPM programs against this aphid pest.
C1 [Iftikhar, Ayesha; Hafeez, Faisal; Naeem, Afifa; Saleem, Muhammad Jawad; Ali, Qurban] Entomol Res Inst, Ayub Agr Res Inst, Faisalabad, Pakistan.
[Aziz, Muhammad Asif] Arid Agr Univ, Fac Crop & Food Sci, Dept Entomol, Rawalpindi, Pakistan.
[Hashim, Muhammad] Univ Punjab, Fac Agr Sci, Dept Entomol, Lahore, Pakistan.
[Yousaf, Hafiz Kamran] Univ Okara, Dept Zool, Okara, Pakistan.
[Hussain, Sabir] Mir Chakar Khan Rind Univ, Dept Agr, Sibi, Pakistan.
[Hafeez, Muhammad] Zhejiang Univ, Inst Insect Sci, State Key Lab Rice Biol, Hangzhou, Peoples R China.
[Hafeez, Muhammad] Zhejiang Univ, Inst Insect Sci, Minist Agr Key Lab Mol Biol Crop Pathogensand Inse, Hangzhou, Peoples R China.
[Rehman, Muzammal] Guangxi Univ, Coll Agr, Key Lab Plant Genet & Breeding, Nanning, Peoples R China.
[Akhtar, Sumreen] Univ Punjab, Fac Basic Sci, Dept Zool, Lahore, Pakistan.
[Marc, Romina Alina] King Khalid Univ, Coll Sci, Saudi Arabia Res Ctr Adv Mat Sci RCAMS, Dept Biol, Abha, Saudi Arabia.
[Syaad, Khalid M. Al] King Khalid Univ, Fac Sci, Biol Dept, Abha, Saudi Arabia.
[Mostafa, Yassor Sabry] King Khalid Univ, Coll Sci, Dept Biol, Abha, Saudi Arabia.
C3 Arid Agriculture University; University of Punjab; Zhejiang University;
Zhejiang University; Guangxi University; University of Punjab; King
Khalid University; King Khalid University; King Khalid University
RP Iftikhar, A (corresponding author), Entomol Res Inst, Ayub Agr Res Inst, Faisalabad, Pakistan.; Hafeez, M (corresponding author), Zhejiang Univ, Inst Insect Sci, State Key Lab Rice Biol, Hangzhou, Peoples R China.; Hafeez, M (corresponding author), Zhejiang Univ, Inst Insect Sci, Minist Agr Key Lab Mol Biol Crop Pathogensand Inse, Hangzhou, Peoples R China.
EM aaishaiftkhr@yahoo.com; 0621598@zju.edu.cn
OI naeem, afifa/0000-0003-3755-128X; Hussain, Sabir/0000-0002-3532-0907;
Aziz, Muhammad Asif/0000-0001-9736-2902
FU King Khalid University, Abha, KSA [G.R.P/23/43]
FX The authors extend their appreciation to the Deanship of Scientific
Research at King Khalid University, Abha, KSA for funding this work
through General Research Project under grant number (G.R.P/23/43).
CR Abbas Qaisar, 2017, Journal of Entomology and Zoology Studies, V5, P1302
Ahmad M, 2013, J ECON ENTOMOL, V106, P954, DOI 10.1603/EC12233
Ahmed M, 2020, MOLECULES, V25, DOI 10.3390/molecules25092184
Akkopru EP, 2015, J ECON ENTOMOL, V108, P378, DOI 10.1093/jee/tov011
Anzabi SHM, 2014, ROM AGRIC RES, V31, P75
Arrese EL, 2001, INSECT BIOCHEM MOLEC, V31, P7, DOI 10.1016/S0965-1748(00)00102-8
Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532
Babcock JM, 2011, PEST MANAG SCI, V67, P328, DOI 10.1002/ps.2069
Bashir Fozia, 2013, Journal of Entomological Research, V37, P83
Bruck E, 2009, CROP PROT, V28, P838, DOI 10.1016/j.cropro.2009.06.015
Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9
Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10
CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26
CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225
Chi H., 2018, TWOSEX MSCHART COMPU
Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030
Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7
Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669
Dader B, 2017, INSECT SCI, V24, P929, DOI 10.1111/1744-7917.12470
Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9
Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440
Doker I, 2021, CROP PROT, V141, DOI 10.1016/j.cropro.2020.105488
Drobnjakovic T, 2021, BIOCONTROL SCI TECHN, V31, P604, DOI 10.1080/09583157.2021.1873248
Efron B., 1993, INTRO BOOTSTRAP, DOI [10.1007/978-1-4899-4541-9, DOI 10.1007/978-1-4899-4541-9, 10.1111/1467-9639.00050]
Finney D.J., 1971, PROBIT ANAL
Gong YH, 2016, ECOTOXICOLOGY, V25, P655, DOI 10.1007/s10646-016-1624-z
Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009
Haddi K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156616
Hafeez M, 2022, FRONT PHYSIOL, V13, DOI 10.3389/fphys.2022.884447
Hafeez M, 2022, ENVIRON SCI POLLUT R, V29, P1746, DOI 10.1007/s11356-021-16974-w
Hafeez M, 2021, PESTIC BIOCHEM PHYS, V174, DOI 10.1016/j.pestbp.2021.104802
Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282
He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762
Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256
Iftikhar A, 2020, ECOTOXICOLOGY, V29, P1017, DOI 10.1007/s10646-020-02159-7
Iga M, 2012, BIOL PHARM BULL, V35, P838, DOI 10.1248/bpb.35.838
Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0
Jie ML, 2021, ENVIRON GEOCHEM HLTH, V43, P1941, DOI 10.1007/s10653-020-00776-z
Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012
Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x
Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3
Liang PZ, 2019, J ECON ENTOMOL, V112, P852, DOI 10.1093/jee/toy381
Liao X, 2019, CROP PROT, V118, P6, DOI 10.1016/j.cropro.2018.12.005
Lu YH, 2012, NATURE, V487, P362, DOI 10.1038/nature11153
Lv NN, 2021, ECOTOX ENVIRON SAFE, V212, DOI 10.1016/j.ecoenv.2021.111969
Mahmoodi L, 2020, J ECON ENTOMOL, V113, P2713, DOI 10.1093/jee/toaa193
Marcic D, 2012, EXP APPL ACAROL, V56, P113, DOI 10.1007/s10493-011-9500-2
Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064
Mostafiz MM, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10091313
Ouyang YL, 2012, PEST MANAG SCI, V68, P781, DOI 10.1002/ps.2326
Pan HS, 2014, J PEST SCI, V87, P731, DOI 10.1007/s10340-014-0610-6
Planes L, 2013, J PEST SCI, V86, P321, DOI 10.1007/s10340-012-0440-3
Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2
Rahmani S, 2013, CROP PROT, V54, P168, DOI 10.1016/j.cropro.2013.08.002
Roh HS, 2015, J PEST SCI, V88, P621, DOI 10.1007/s10340-014-0631-1
Salazar-Lopez NJ, 2016, INSECTICIDES RESISTANCE, P41, DOI 10.5772/61322
Sarhozaki Mehdi Taheri, 2014, Archives of Phytopathology and Plant Protection, V47, P508, DOI 10.1080/03235408.2013.813145
Saska P, 2016, SCI REP-UK, V6, DOI 10.1038/srep27801
Shang QL, 2012, CROP PROT, V31, P15, DOI 10.1016/j.cropro.2011.09.014
Shi DD, 2022, CROP PROT, V152, DOI 10.1016/j.cropro.2021.105863
Shi XB, 2011, PEST MANAG SCI, V67, P1528, DOI 10.1002/ps.2207
Shikano I, 2017, J CHEM ECOL, V43, P586, DOI 10.1007/s10886-017-0850-z
Shonga E., 2021, SINET ETHIOP J SCI, V44, P27, DOI [10.4314/sinet.v44i1.3, DOI 10.4314/SINET.V44I1.3]
Shonga E, 2021, INT J TROP INSECT SC, V41, P455, DOI 10.1007/s42690-020-00226-4
Software L., 2005, LEORA SOFTWARE
Sohrabi F, 2011, CROP PROT, V30, P1190, DOI 10.1016/j.cropro.2011.05.004
Sohrabi F, 2013, CROP PROT, V45, P98, DOI 10.1016/j.cropro.2012.11.024
Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621
Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0
Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058
Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221
Tuan SJ, 2014, PEST MANAG SCI, V70, P805, DOI 10.1002/ps.3618
Ullah F, 2020, PESTIC BIOCHEM PHYS, V170, DOI 10.1016/j.pestbp.2020.104687
Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892
Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7
Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x
Wang ZH, 2016, AUSTRAL ENTOMOL, V55, P235, DOI 10.1111/aen.12174
Xiang X, 2019, CROP PROT, V120, P97, DOI 10.1016/j.cropro.2019.02.016
Xiao D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128936
Yousaf HK, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34821-w
Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357
Zhang P, 2014, PESTIC BIOCHEM PHYS, V111, P31, DOI 10.1016/j.pestbp.2014.04.003
Zhang Q, 2021, ENTOMOL GEN, V41, P111, DOI 10.1127/entomologia/2020/1104
Zhang Z, 2012, J INTEGR AGR, V11, P1145, DOI 10.1016/S2095-3119(12)60108-7
NR 86
TC 0
Z9 0
U1 4
U2 4
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1664-042X
J9 FRONT PHYSIOL
JI Front. Physiol.
PD DEC 8
PY 2022
VL 13
AR 1014190
DI 10.3389/fphys.2022.1014190
PG 12
WC Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physiology
GA 7I5FW
UT WOS:000903914600001
PM 36579021
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Chahardoli, A
Sharifan, H
Karimi, N
Kakavand, SN
AF Chahardoli, Azam
Sharifan, Hamidreza
Karimi, Naser
Kakavand, Shiva Najafi
TI Uptake, translocation, phytotoxicity, and hormetic effects of titanium
dioxide nanoparticles (TiO(2)NPs) in Nigella arvensis L
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Antioxidative enzymes; Honnesis; Nigella arvensis; TiO(2)NPs;
Translocation; Treatment
ID ZINC-OXIDE NANOPARTICLES; TIO2 NANOPARTICLES; CEO2 NANOPARTICLES;
PHYSICOCHEMICAL PROPERTIES; ENGINEERED NANOPARTICLES; SILVER
NANOPARTICLES; ENZYME-ACTIVITIES; TOXICITY; PLANTS; IMPACT
AB The extensive application of titanium dioxide nanopartides (TiO(2)NPs) in agro-industrial practices leads to their high accumulation in the environment or agricultural soils. However, their threshold and ecotoxicological impacts on plants are still poorly understood. In this study, the hormetic effects of TiO(2)NPs at a concentration range of 0-2500 mg/L on the growth, and biochemical and physiological behaviors of Nigella arvensis in a hydroponic system were examined for three weeks. The translocation of TiO(2)NPs in plant tissues was characterized through scanning and transmission electron microscopy (SEM and TEM). The bioaccumulation of total titanium (Ti) was quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Briefly, the elongation of roots and shoots and the total biomass growth were significantly promoted at 100 mg/L TiO(2)NPs . As the results indicated, TiO(2)NPs had a hormesis effect on the proline content, i.e., a stimulating effect at the low concentrations of 50 and 100 mg/L and an inhibiting effect in the highest concentration of 2500 mg/L. A biphasic dose-response was observed against TiO(2)NPs in shoot soluble sugar and protein contents. The inhibitory effects were detected at >= 1000 mg/L TiO(2)NPs, where the synthesis of chlorophylls and carotenoid was reduced. At 1000 mg/ L, TiO(2)NPs significantly promoted the cellular H2O2 generation, and increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Furthermore, it enhanced the total antioxidant content (TAC), total iridoid content (TIC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, the study revealed the physiological and biochemical alterations in a medicinal plant affected by TiO(2)NPs, which can help to use these NPs beneficially by eliminating their harmful effects. (C) 2021 Elsevier B.V. All rights reserved.
C1 [Chahardoli, Azam; Karimi, Naser] Razi Univ, Fac Sci, Dept Biol, Kermanshah, Iran.
[Sharifan, Hamidreza] Albany State Univ, Dept Nat Sci, Albany, GA 31705 USA.
[Kakavand, Shiva Najafi] Kermanshah Univ Med Sci, Pharmaceut Sci Res Ctr, Hlth Inst, Kermanshah, Iran.
C3 Razi University; University System of Georgia; Albany State University;
Kermanshah University of Medical Sciences
RP Chahardoli, A (corresponding author), Razi Univ, Fac Sci, Dept Biol, Kermanshah, Iran.
EM a.chahardoli@razi.ac.ir
RI Najafi, Shiva/ABA-9543-2020
OI Najafi, Shiva/0000-0002-4994-0533
CR Abdul Jalill R.DH., 2015, SCH ACAD J BIOSCI, V3, P254
Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006
Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044
Ali S, 2021, J NANOMATER, V2021, DOI 10.1155/2021/6677616
Antisari LV, 2015, ENVIRON SCI POLLUT R, V22, P1841, DOI 10.1007/s11356-014-3509-0
ARNON DI, 1949, PLANT PHYSIOL, V24, P1, DOI 10.1104/pp.24.1.1
Auffan M, 2010, NANOMEDICINE-UK, V5, P999, DOI 10.2217/NNM.10.61
Baalousha M, 2016, ENVIRON SCI-NANO, V3, P323, DOI 10.1039/c5en00207a
BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060
Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Castiglione MR, 2014, PROTOPLASMA, V251, P1471, DOI 10.1007/s00709-014-0649-5
Chahardoli A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60841-6
Clement L, 2013, CHEMOSPHERE, V90, P1083, DOI 10.1016/j.chemosphere.2012.09.013
Coman V, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9091248
DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017
Foltete AS, 2011, ENVIRON POLLUT, V159, P2515, DOI 10.1016/j.envpol.2011.06.020
Grande F, 2016, MINI-REV MED CHEM, V16, P762, DOI 10.2174/1389557516666160321114341
Haghighi M., 2014, Journal of Crop Science and Biotechnology, V17, P221, DOI 10.1007/s12892-014-0056-7
Hajra A, 2017, ENERGY ECOL ENVIRON, V2, P277, DOI 10.1007/s40974-017-0059-6
Hatami M, 2014, TURK J BIOL, V38, P130, DOI 10.3906/biy-1304-64
Hong FH, 2005, BIOL TRACE ELEM RES, V104, P249, DOI 10.1385/BTER:104:3:249
Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805
Jakubiak M, 2014, MYCOL PROG, V13, P525, DOI 10.1007/s11557-013-0933-3
Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225
Jia G, 2005, ENVIRON SCI TECHNOL, V39, P1378, DOI 10.1021/es048729l
Kassambara A., 2017, MULTIVARIATE ANAL, V170
Keller AA, 2014, ENVIRON SCI TECH LET, V1, P65, DOI 10.1021/ez400106t
Krishnaraj C, 2012, PROCESS BIOCHEM, V47, P651, DOI 10.1016/j.procbio.2012.01.006
Larue C., 2011, P J PHYS C SER, V304, DOI DOI 10.1088/1742-6596/304/1/012057
Larue C, 2012, SCI TOTAL ENVIRON, V431, P197, DOI 10.1016/j.scitotenv.2012.04.073
Lee WM, 2012, CHEMOSPHERE, V86, P491, DOI 10.1016/j.chemosphere.2011.10.013
Lin DH, 2007, ENVIRON POLLUT, V150, P243, DOI 10.1016/j.envpol.2007.01.016
Liu H, 2017, ACS SUSTAIN CHEM ENG, V5, P3204, DOI 10.1021/acssuschemeng.6b02976
Liu RQ, 2015, SCI TOTAL ENVIRON, V514, P131, DOI 10.1016/j.scitotenv.2015.01.104
Lopez-Moreno ML, 2010, ENVIRON SCI TECHNOL, V44, P7315, DOI 10.1021/es903891g
Lopez-Moreno ML, 2010, J AGR FOOD CHEM, V58, P3689, DOI 10.1021/jf904472e
Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4
Ma YH, 2010, CHEMOSPHERE, V78, P273, DOI 10.1016/j.chemosphere.2009.10.050
Mishra S, 2006, CHEMOSPHERE, V65, P1027, DOI 10.1016/j.chemosphere.2006.03.033
Modarresi M, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04265
Moore MN, 2006, ENVIRON INT, V32, P967, DOI 10.1016/j.envint.2006.06.014
Morteza E, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-247
Navarro E, 2008, ECOTOXICOLOGY, V17, P372, DOI 10.1007/s10646-008-0214-0
Nogues S, 2000, J EXP BOT, V51, P1309, DOI 10.1093/jexbot/51.348.1309
Perez-de-Luque A, 2017, FRONT ENV SCI-SWITZ, V5, DOI 10.3389/fenvs.2017.00012
Pokhrel LR, 2013, SCI TOTAL ENVIRON, V452, P321, DOI 10.1016/j.scitotenv.2013.02.059
Raliya R, 2015, METALLOMICS, V7, P1584, DOI [10.1039/c5mt00168d, 10.1039/C5MT00168D]
Raliya R, 2013, AGR RES, V2, P48, DOI 10.1007/s40003-012-0049-z
Rao S, 2016, 3 BIOTECH, V6, DOI 10.1007/s13205-016-0550-3
Rico CM, 2013, ENVIRON SCI TECHNOL, V47, P14110, DOI 10.1021/es4033887
Rico CM, 2011, J AGR FOOD CHEM, V59, P3485, DOI 10.1021/jf104517j
Samadi N., 2015, EUR J MED PLANTS, P1
Samadi N., 2014, INT J PLANT SOIL SCI, V3, P408, DOI [10.9734/ijpss/2014/7641, DOI 10.9734/IJPSS/2014/7641]
Sami F, 2016, PLANT PHYSIOL BIOCH, V109, P54, DOI 10.1016/j.plaphy.2016.09.005
Sebesta M, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111833
Sergiev I., 1997, CR ACAD BULG SCI, V51, P121, DOI [10.1046/j.1365-3040.2001.00778.x, DOI 10.1046/J.1365-3040.2001.00778.X]
Servin AD, 2013, ENVIRON SCI TECHNOL, V47, P11592, DOI 10.1021/es403368j
Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061
Sharifan H, 2020, ECOTOX ENVIRON SAFE, V191, DOI 10.1016/j.ecoenv.2020.110177
Sharifan H, 2019, ACS SUSTAIN CHEM ENG, V7, P16401, DOI 10.1021/acssuschemeng.9b03531
Sharifan H, 2018, ACS SUSTAIN CHEM ENG, V6, P13454, DOI 10.1021/acssuschemeng.8b03355
Sharma P, 2012, APPL BIOCHEM BIOTECH, V167, P2225, DOI 10.1007/s12010-012-9759-8
Song U, 2013, BIOL TRACE ELEM RES, V155, P93, DOI 10.1007/s12011-013-9765-x
Song U, 2013, ECOTOX ENVIRON SAFE, V93, P60, DOI 10.1016/j.ecoenv.2013.03.033
Tan WJ, 2018, SCI TOTAL ENVIRON, V636, P240, DOI 10.1016/j.scitotenv.2018.04.263
Tan WJ, 2018, ENVIRON SCI-NANO, V5, P257, DOI 10.1039/c7en00985b
Tarafdar JC, 2014, AGR RES, V3, P257, DOI 10.1007/s40003-014-0113-y
Tassi E, 2017, PLANT PHYSIOL BIOCH, V110, P50, DOI 10.1016/j.plaphy.2016.09.013
Tripathi DK, 2017, PLANT PHYSIOL BIOCH, V110, P2, DOI 10.1016/j.plaphy.2016.07.030
Venkatachalam P, 2017, PLANT PHYSIOL BIOCH, V110, P118, DOI 10.1016/j.plaphy.2016.09.004
Weckx JEJ, 1996, PHYSIOL PLANTARUM, V96, P506, DOI 10.1111/j.1399-3054.1996.tb00465.x
Yanik F, 2015, WATER AIR SOIL POLL, V226, DOI 10.1007/s11270-015-2566-4
Zhang DQ, 2015, CHEMOSPHERE, V120, P211, DOI 10.1016/j.chemosphere.2014.06.041
Zhao LJ, 2012, ACS NANO, V6, P9615, DOI 10.1021/nn302975u
NR 75
TC 9
Z9 9
U1 10
U2 33
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD FEB 1
PY 2022
VL 806
AR 151222
DI 10.1016/j.scitotenv.2021.151222
EA NOV 2021
PN 3
PG 14
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA YD2SS
UT WOS:000740227100002
PM 34715233
DA 2023-03-13
ER
PT J
AU Harmelin, JG
Bishop, JDD
Madurell, T
Souto, J
Spencer Jones, ME
Zabala, M
AF Harmelin, Jean-Georges
Bishop, John D. D.
Madurell, Teresa
Souto, Javier
Spencer Jones, Mary E.
Zabala, Mikel
TI Unexpected diversity of the genus Collarina Jullien, 1886 (Bryozoa,
Cheilostomatida) in the NE Atlantic-Mediterranean region: new species
and reappraisal of C. balzaci (Audouin, 1826) and C. fayalensis
Harmelin, 1978
SO ZOOSYSTEMA
LA English
DT Article
DE Biogeography; habitat distribution; bryozoans; cheilostomes;
Cribrilinidae; disturbance; bioindicators; new species
ID SEA; PLIOCENE; HYPERPLASIA; COMMUNITY; HORMESIS; COMPLEX; GABES; GULF
AB The genus Collarina Jullien, 1886 (Cribrilinidae Hincks, 1879) has until now been known from the Atlantic-Mediterranean region as just two species, C. balzaci (Audouin, 1826), synonym of Collarina cribrosa Jullien, 1886, type species of the genus, considered to be widely distributed from the northern British Isles to the SE Mediterranean, and C. fayalensis Harmelin, 1978 from the Macaronesian Isles. Abundant material collected in the Mediterranean and the NE Atlantic, coupled with examination of museum specimens, allowed better definition of the species-specific morphological features in this genus and some generic traits (ooecium formation, avicularia with nested cystids). Besides the redescription of C. balzaci and C. fayalensis, this study led to the description of four new species: C. denticulata Harmelin, n. sp., recorded only in the Mediterranean, C. gautieri Harmelin, n. sp., present in both the NE Atlantic and the Mediterranean, C. macaronensis Harmelin, n. sp., from Madeira, Azores and Galicia, and C. speluncola Harmelin, n. sp., from the Mediterranean and the Gulf of Cadiz. A seventh morphotype (Collarina sp., from the Mediterranean, seemingly close to C. speluncola Harmelin, n. sp., has been left unnamed pending the availability of more abundant material. It was proven that C. balzaci: 1) has often been confused with C. gautieri Harmelin, n. sp.; 2) is exclusively epiphytic (mainly on Posidonia oceanica (L.) Delile, 1813 and brown seaweeds), with life-cycle adapted to ephemeral hosts; 3) is widely distributed in the Mediterranean, but also present in the Canaries on seaweeds, and has probably been overlooked in similar habitats in other warm-temperate NE Atlantic localities; and 4) is able to proliferate dramatically on Posidonia leaves in association with diatoms under unusual environmental conditions (Gulf of Gabes, chemical disturbance). All Collarina species live in coastal areas, mostly at shallow depth, in shaded microhabitats: plants (C. balzaci), dark cave walls (C. speluncola Harmelin, n. sp.) and small hard substrates, e.g. shells, pebbles, and anthropogenic debris (all other species).
C1 [Harmelin, Jean-Georges] Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France.
[Bishop, John D. D.] Citadel Hill Lab, Marine Biol Assoc UK, Plymouth PL1 2PB, Devon, England.
[Madurell, Teresa] Inst Marine Sci ICM CSIC, Passeig Maritim Barceloneta 37-49, E-08003 Barcelona, Catalonia, Spain.
[Souto, Javier] Univ Vienna, Inst Palaontol, Geozentrum, Althanstr 14, A-1090 Vienna, Austria.
[Spencer Jones, Mary E.] Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England.
[Zabala, Mikel] Univ Barcelona UB, Dept Ecol, Diagonal 645, E-08028 Barcelona, Catalonia, Spain.
C3 UDICE-French Research Universities; Aix-Marseille Universite; Marine
Biological Association United Kingdom; Consejo Superior de
Investigaciones Cientificas (CSIC); CSIC - Centro Mediterraneo de
Investigaciones Marinas y Ambientales (CMIMA); CSIC - Instituto de
Ciencias del Mar (ICM); University of Vienna; Natural History Museum
London; University of Barcelona
RP Harmelin, JG (corresponding author), Univ Aix Marseille, Stn Marine Endoume, OSU Pytheas, MIO,GIS Posidonie, F-13007 Marseille, France.
EM jean-georges.harmelin@univ-amu.fr
FU Austrian Science Fund (FWF) [AP28954-B29]
FX We are grateful to J. Aristegui (ULPGC, Canaries) for selecting and
sending specimens of C. balzaci from his thesis material, H. De Blauwe
and O. Reverter-Gil (Univ. Santiago) for supplying SEM pictures, A.
Ostrovsky (Univ. Vienna) for advice on ovicell structure, L. Beckniker
(AMNH) and C. Gusso (Univ. Roma La Sapienza) for data on specimens, P.
Lozouet and J. Mainguy (MNHN) for assistance during consultation of
museum specimens, Sandrine Chenesseaux (IMBE, Marseille) for her help
during SEM work of JGH, P. Lejeune (Marine Station of Stareso) and J. M.
Dominici (Marine Reserve of Scandola) for diving facilities, M. Verlaque
(MIO, Marseille) for algae identification.We thank A. Rosso and D. P.
Gordon for their thorough review of the manuscript and useful comments.
The work of Javier Souto was supported by the Austrian Science Fund
(FWF, project number AP28954-B29). Sampling at Kerkennah Islands by JGH
was made during a field survey managed by PIM Initiative (Conservatoire
du Littoral, France) and APAL (Agence de Protection et d'Amenagement du
Littoral, Tunisia).
CR Abboud-Abi Saab M., 2004, GEOSCI J, V336, P1379
Allouc J, 2001, B SOC GEOL FR, V172, P765, DOI 10.2113/172.6.765
ALVAREZ J A, 1988, Miscellania Zoologica (Barcelona), V12, P347
Alvarez J. A., 1987, CUADERNOS INVESTIGAT, V11, P1
Aristegui Ruiz J., 1984, THESIS, Vi-iii, P1
Audouin J., 1826, DESCR GYPTE HIST NAT, V1, P225
Balduzzi A., 1983, Rapports et Proces-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee Monaco, V28, P137
Barroso M.G., 1919, B SOC ESPANOLA HIST, V19, P340
Ben ismail Dorsaf, 2007, Rapport du Congress de la CIESM, V38, P433
Bensoussan N, 2010, ESTUAR COAST SHELF S, V87, P431, DOI 10.1016/j.ecss.2010.01.008
Berning B., 2008, VA MUS NAT HIST SPEC, V15, P1
Berning B, 2017, EUR J TAXON, V347, P1, DOI 10.5852/ejt.2017.347
Bishop J.D.D., 1987, Bulletin of the British Museum (Natural History) Zoology, V53, P1
BISHOP J D D, 1986, Bulletin of Zoological Nomenclature, V43, P288
BISHOP JDD, 1994, ZOOL SCR, V23, P225, DOI 10.1111/j.1463-6409.1994.tb00387.x
BISHOP JDD, 1988, J NAT HIST, V22, P747, DOI 10.1080/00222938800770481
Bock P., 1886, COLLARINA JULLIEN
Boury-Esnault N., 2001, Boletim do Museu Municipal do Funchal Suplemento, V6, P15
Busk G., 1854, CATALOGUE MARINE POL, VI-VIII, P55
Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1
Calvet L., 1902, TRAV I ZOOL U MONTPE, V12, P1
Calvet L., 1906, EXPEDITIONS SCI DOUB, P355
Chimenz Gusso C., 2014, BIOL MAR MEDITERR, V21, P1
De Blauwe H., 2019, AUSTRALASIAN PALAEON, V5
De Blauwe H, 2009, MOSDIERTJES ZUIDELIJ, P445
De Blauwe Hans, 2006, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Biologie, V76, P125
Desrosiers C, 2013, ECOL INDIC, V32, P25, DOI 10.1016/j.ecolind.2013.02.021
Di Martino E., 2014, STUDI TRENTINI SC NA, V94, P79
Dick MH, 2005, INVERTEBR BIOL, V124, P344, DOI 10.1111/j.1744-7410.2005.00032.x
Echalier G., 1951, TRAV STAT BIOL ROS S, V4, P1
El Kateb A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197731
El Zrelli R, 2017, ENVIRON SCI POLLUT R, V24, P22214, DOI 10.1007/s11356-017-9856-x
El Zrelli R, 2015, MAR POLLUT BULL, V101, P922, DOI 10.1016/j.marpolbul.2015.10.047
Eugene C., 1978, THESIS
Fehlauer-Ale KH, 2011, ZOOTAXA, P49, DOI 10.11646/zootaxa.2962.1.4
FERNANDEZPULPEI.E, 1996, NOVA ACTA CIENTIFICA, V6, P107
GAUTIER Y., 1953, RECUEIL DES TRAV STA MARINE ENDOUME, V9, P39
GAUTIER Y., 1952, BULL INST OCEANOGR [MONACO], V1008, P1
Gautier Y. V., 1958, Annali del Museo Civico di Storia Naturale di Genova, V70, P193
GAUTIER Y. V., 1958, ATTI SOC PELORITANA, V4, P45
Gautier YV, 1962, REC TRAV STAT MAR EN, V38, P1
Harmelin J.-G., 1978, Travaux Scientifiques du Parc National de Port-Cros, V4, P127
Harmelin JG, 2016, MEDITERR MAR SCI, V17, P417, DOI 10.12681/mms.1429
Harmelin J.-G., 1977, Travaux Scientifiques du Parc National de Port-Cros, V3, P143
Harmelin J.-G., 1976, MEMOIRES LINSTITUTE, V10, P1
Harmelin J-G, 1978, TETHYS, V8, P173
Harmelin Jean-Georges, 2006, V257, P73
Harmelin Jean-Georges, 2017, Travaux Scientifiques du Parc National de Port-Cros, V31, P105
HARMELIN JG, 1970, CAH BIOL MAR, V11, P77
HARMELIN JG, 1973, RAPPORTS COMMISSION, V21, P675
Hattour MJ, 2010, REV PARALIA, V3, P31
Hayward P, 1998, SYNOPSES BRIT FAUNA, P1
Hayward P.J., 1979, Synopses of the British Fauna New Series, P1
Hayward P.J., 1975, Documents Lab Geol Fac Sci Lyon Hors Ser, V3, P347
Hayward PJ, 2002, B AM MUS NAT HIST, P1
HAYWARD PJ, 1974, J NAT HIST, V8, P369, DOI 10.1080/00222937400770321
Heller C., 1867, VERHANDLUNGEN ZOOLOG, V17, P77
Hincks T., 1886, Annals of Natural History, V(5), P254
Hincks T, 1880, HIST BRIT MARINE POL, V2
Hondt J.L. d', 2006, NOUVELLE DESCRIPTION, P1
Jullien J., 1886, B SOC ZOOLOGIQUE FRA, V11, P601
Kocak F, 2002, INDIAN J MAR SCI, V31, P235
Larwood G. P., 1962, Bulletin of the British Museum (Natural History) Geology, V6, P1
Lepoint G, 2014, CAH BIOL MAR, V55, P57
Lidgard S, 2012, EVOL ECOL, V26, P233, DOI 10.1007/s10682-011-9513-7
Marchio G., 1982, NATURALISTA SICILIAN, V3, P499
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Moissette P., 2013, LECT NOTES EARTH SYS, V143, P187, DOI [DOI 10.1007/978-3-642-16411-8_13, 10.1007/978-3-642-16411-8_13]
Moissette P, 2007, PALAIOS, V22, P200, DOI 10.2110/palo.2005.p05-141r
Moissette P, 2016, GEOL MAG, V153, P61, DOI 10.1017/S0016756815000230
Norman A. M., 1909, Journal of the Linnean Society London Zoology, V30
Norman A. M., 1903, Annals of Natural History Ser 7, Vxii, P87
Ostrovsky A, 2013, EVOLUTION OF SEXUAL REPRODUCTION IN MARINE INVERTEBRATES: EXAMPLE OF GYMNOLAEMATE BRYOZOANS, P229, DOI 10.1007/978-94-007-7146-8_3
Pages-Escola M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-36094-9
Peres J.-M., 1964, NOUVEAU MANUEL BIONO
Pergent G., 2012, MEDI TERRANEAN SEAGR
PISANO E, 1985, MAR ECOL PROG SER, V27, P195, DOI 10.3354/meps027195
POWELL NA, 1970, J FISH RES BOARD CAN, V27, P2095, DOI 10.1139/f70-234
Prenant M., 1966, Faune de France, V68, P1
Prenant M., 1927, Trav Sta zool Roscoff, V6, P1
PULPEIRO E F, 1980, Investigacion Pesquera (Barcelona), V44, P119
Reverter O, 1996, J NAT HIST, V30, P1247, DOI 10.1080/00222939600770681
REVERTER O, 1995, CAH BIOL MAR, V36, P123
Reverter-Gil O, 2016, J NAT HIST, V50, P281, DOI 10.1080/00222933.2015.1062153
Rosso A, 2018, ZOOTAXA, V4524, P401, DOI 10.11646/zootaxa.4524.4.1
Rosso A, 2016, MEDITERR MAR SCI, V17, P567, DOI 10.12681/mms.1706
Rosso A., 1996, BIOL MARINA MEDITERR, V3, P58
Rosso A, 2015, B SOC PALEONTOL ITAL, V54, P91, DOI 10.4435/BSPI.2015.05
RYLAND J S, 1971, Irish Naturalists' Journal, V17, P65
Sammari C, 2006, CONT SHELF RES, V26, P338, DOI 10.1016/j.csr.2005.11.006
Savigny J. C., 1817, DESCRIPTION EGYPTE R
Souto J, 2010, J MAR BIOL ASSOC UK, V90, P1417, DOI 10.1017/S0025315409991640
STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3
STRAUGHAN D, 1975, WATER AIR SOIL POLL, V5, P39, DOI 10.1007/BF00431577
Waters A. W., 1899, Journal of the Royal Microscopical Society, P6
Waters A. W., 1923, Annals & Magazine of Natural History Series 9, V12, P545
Waters AW., 1879, ANN MAG NAT HIST, V3, P192, DOI [10.1080/00222937908694085, DOI 10.1080/00222937908682488]
Winston JE, 2013, ZOOTAXA, V3710, P101
Zabala M., 1988, Treballs del Museu de Zoologia, P1
Zabala M., 1986, FAUNA BRIOZOUS DELS
NR 100
TC 5
Z9 5
U1 0
U2 2
PU PUBLICATIONS SCIENTIFIQUES DU MUSEUM, PARIS
PI PARIS CEDEX 05
PA CP 39-57, RUE CUVIER, F-75231 PARIS CEDEX 05, FRANCE
SN 1280-9551
EI 1638-9387
J9 ZOOSYSTEMA
JI Zoosystema
PD SEP 26
PY 2019
VL 41
IS 21
BP 385
EP 418
PG 34
WC Zoology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Zoology
GA NJ3CA
UT WOS:000565924300001
DA 2023-03-13
ER
PT J
AU Wong, MJ
Liao, LH
Berenbaum, MR
AF Wong, Michael J.
Liao, Ling-Hsiu
Berenbaum, May R.
TI Biphasic concentration-dependent interaction between imidacloprid and
dietary phytochemicals in honey bees (Apis mellifera)
SO PLOS ONE
LA English
DT Article
ID OXIDATIVE STRESS; NEONICOTINOID INSECTICIDES; SYSTEMIC INSECTICIDES;
PESTICIDE; EXPOSURE; DETOXIFICATION; HORMESIS; RISKS; METABOLISM;
MECHANISMS
AB Background
The presence of the neonicotinoid imidacloprid in nectar, honey, pollen, beebread and beeswax has been implicated in declines worldwide in the health of the western honey bee Apis mellifera. Certain phytochemicals, including quercetin and p-coumaric acid, are ubiquitous in the honey bee diet and are known to upregulate cytochrome P450 genes encoding enzymes that detoxify insecticides. Thus, the possibility exists that these dietary phytochemicals interact with ingested imidacloprid to ameliorate toxicity by enhancing its detoxification.
Approach
Quercetin and p-coumaric acid were incorporated in a phytochemical-free artificial diet individually and together along with imidacloprid at a range of field-realistic concentrations. In acute toxicity bioassays, honey bee 24- and 48- hour imidacloprid LC50 values were determined in the presence of the phytochemicals. Additionally, chronic toxicity bioassays were conducted using varying concentrations of imidacloprid in diets with the phytochemicals to test impacts of phytochemicals on longevity.
Results
In acute toxicity bioassays, the phytochemicals had no effect on imidacloprid LC50 values. In chronic toxicity longevity bioassays, phytochemicals enhanced honey bee survival at low imidacloprid concentrations (15 and 45 ppb) but had a negative effect at higher concentrations (105 ppb and 135 ppb). p-Coumaric acid alone increased honey bee longevity at concentrations of 15 and 45 ppb imidacloprid (hazard ratio (HR): 0.83 and 0.70, respectively). Quercetin alone and in combination with p-coumaric acid similarly enhanced longevity at 45 ppb imidacloprid (HR: 0.81 and HR: 0.77, respectively). However, p-coumaric acid in combination with 105 ppb imidacloprid and quercetin in combination with 135 ppb imidacloprid increased honey bee HR by approximately 30% (HR: 1.33 and HR: 1.30, respectively).
Conclusions
The biphasic concentration-dependent response of honey bees to imidacloprid in the presence of two ubiquitous dietary phytochemicals indicates that there are limits to the protective effects of the natural diet of honey bees against neonicotinoids based on their own inherent toxicity.
C1 [Wong, Michael J.; Liao, Ling-Hsiu; Berenbaum, May R.] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA.
C3 University of Illinois System; University of Illinois Urbana-Champaign
RP Liao, LH (corresponding author), Univ Illinois, Dept Entomol, Urbana, IL 61801 USA.
EM liao19@illinois.edu
RI Liao, LH/AAB-1547-2019
OI Liao, LH/0000-0003-1776-9564
FU National Honey Board; National Institute of Food and Agriculture
[2017-67013]
FX This work was funded by National Honey Board and National Institute of
Food and Agriculture 2017-67013 to MB. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
CR Akdemir FNE, 2017, BIOMEDICINES, V5, DOI 10.3390/biomedicines5020018
Alkassab AT, 2017, J PLANT DIS PROTECT, V124, P1, DOI 10.1007/s41348-016-0041-0
Altaye SZ, 2010, J EXP BIOL, V213, P3311, DOI 10.1242/jeb.046953
Anand David Alexander Victor, 2016, Pharmacogn Rev, V10, P84, DOI 10.4103/0973-7847.194044
BAI DL, 1991, PESTIC SCI, V33, P197, DOI 10.1002/ps.2780330208
Berenbaum MR, 2016, J AGR FOOD CHEM, V64, P13, DOI 10.1021/acs.jafc.5b01067
Berenbaum MR, 2015, CURR OPIN INSECT SCI, V10, P51, DOI 10.1016/j.cois.2015.03.005
Blacquiere T, 2012, ECOTOXICOLOGY, V21, P973, DOI 10.1007/s10646-012-0863-x
Bonvehi JS, 2001, J AGR FOOD CHEM, V49, P1848, DOI 10.1021/jf0012300
Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046
Carreck NL, 2014, J APICULT RES, V53, P607, DOI 10.3896/IBRA.1.53.5.08
Ceksteryte V., 2006, Biologija, P28
Chagnon M, 2015, ENVIRON SCI POLLUT R, V22, P119, DOI 10.1007/s11356-014-3277-x
Chaimanee V, 2016, J INSECT PHYSIOL, V89, P1, DOI 10.1016/j.jinsphys.2016.03.004
Costa LG, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2986796
COX DR, 1972, J R STAT SOC B, V34, P187
Cressey D, 2017, NATURE, V551, P156, DOI 10.1038/551156a
Cresswell JE, 2011, ECOTOXICOLOGY, V20, P149, DOI 10.1007/s10646-010-0566-0
Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
De Smet L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171529
Decourtye A, 2004, PESTIC BIOCHEM PHYS, V78, P83, DOI 10.1016/j.pestbp.2003.10.001
Decourtye A, 2003, PEST MANAG SCI, V59, P269, DOI 10.1002/ps.631
Delaplane K. S., 2000, CROP POLLINATION BEE
Derecka K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068191
Dubecke A, 2011, FOOD ADDIT CONTAM A, V28, P348, DOI 10.1080/19440049.2010.541594
Duzguner V, 2012, PESTIC BIOCHEM PHYS, V104, P58, DOI 10.1016/j.pestbp.2012.06.011
Ekinci-Akdemir FN, 2017, J ANIM PLANT SCI-PAK, V27, P1560
Fairbrother A, 2014, ENVIRON TOXICOL CHEM, V33, P719, DOI 10.1002/etc.2527
Fischer DL, 2007, NEONICOTINOID INSECT, P1
Ge WL, 2015, J AGR FOOD CHEM, V63, P1856, DOI 10.1021/jf504895h
Gheldof N, 2002, J AGR FOOD CHEM, V50, P3050, DOI 10.1021/jf0114637
GODFRAY HCJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI DOI 10.1098/RSPB.2015.1821
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Guseman AJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148242
Haith DA, 2010, ENVIRON SCI TECHNOL, V44, P6496, DOI 10.1021/es101636y
Hawthorne DJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026796
HOEKSTRA JA, 1991, ENVIRONMETRICS, V2, P139, DOI 10.1002/env.3770020203
Hoffmann EJ, 2012, J ECON ENTOMOL, V105, P67, DOI 10.1603/EC11251
Ince S, 2013, TOXICOL ENVIRON CHEM, V95, P318, DOI 10.1080/02772248.2013.764672
Iwasa T, 2004, CROP PROT, V23, P371, DOI 10.1016/j.cropro.2003.08.018
Jerkovic I, 2017, MOLECULES, V22, DOI 10.3390/molecules22111909
Johnson RM, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0031051, 10.1371/journal.pone.0033479]
Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376
Kaskoniene V, 2015, FOOD ANAL METHOD, V8, P1150, DOI 10.1007/s12161-014-9996-2
Klein AM, 2007, P ROY SOC B-BIOL SCI, V274, P303, DOI 10.1098/rspb.2006.3721
Kulhanek K, 2017, J APICULT RES, V56, P328, DOI 10.1080/00218839.2017.1344496
Lambin M, 2001, ARCH INSECT BIOCHEM, V48, P129, DOI 10.1002/arch.1065
Lee KP, 2007, J EXP BIOL, V210, P3236, DOI 10.1242/jeb.008060
Li XC, 2007, ANNU REV ENTOMOL, V52, P231, DOI 10.1146/annurev.ento.51.110104.151104
Liao LH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15066-5
Liao LH, 2017, INSECTS, V8, DOI 10.3390/insects8010022
Manjon C, 2018, CURR BIOL, V28, P1137, DOI 10.1016/j.cub.2018.02.045
Mao WF, 2017, P NATL ACAD SCI USA, V114, P2538, DOI 10.1073/pnas.1614864114
Mao WF, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500795
Mao W, 2013, P NATL ACAD SCI USA, V110, P8842, DOI 10.1073/pnas.1303884110
Mao WF, 2011, P NATL ACAD SCI USA, V108, P12657, DOI 10.1073/pnas.1109535108
Mao WF, 2009, COMP BIOCHEM PHYS B, V154, P427, DOI 10.1016/j.cbpb.2009.08.008
Morse RA, 2000, BEE CULT, V128, P1, DOI DOI 10.3896/IBRA.1.49.1.01
Mullin CA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009754
Pettis JS, 2012, NATURWISSENSCHAFTEN, V99, P153, DOI 10.1007/s00114-011-0881-1
Pisa LW, 2015, ENVIRON SCI POLLUT R, V22, P68, DOI 10.1007/s11356-014-3471-x
Poquet Y, 2016, APIDOLOGIE, V47, P412, DOI 10.1007/s13592-016-0429-7
Schmuck R, 2001, PEST MANAG SCI, V57, P225, DOI 10.1002/ps.270
Schneider CW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030023
Seitz N, 2016, J APICULT RES, V54, P292, DOI 10.1080/00218839.2016.1153294
Shimanuki H., 2000, AGR HDB
Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y
Stoner KA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039114
Suchail S, 2004, PEST MANAG SCI, V60, P1056, DOI 10.1002/ps.895
Suchail S, 2001, ENVIRON TOXICOL CHEM, V20, P2482, DOI [10.1002/etc.5620201113, 10.1897/1551-5028(2001)020<2482:DBAACT>2.0.CO;2]
Tapparo A, 2011, J ENVIRON MONITOR, V13, P1564, DOI 10.1039/c1em10085h
Tomizawa M, 2005, ANNU REV PHARMACOL, V45, P247, DOI 10.1146/annurev.pharmtox.45.120403.095930
Tosi S, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1711
Tosi S, 2016, J INSECT PHYSIOL, V93-94, P56, DOI 10.1016/j.jinsphys.2016.08.010
Van Dijk TC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062374
vanEngelsdorp D, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006481
Vannette RL, 2015, SCI REP-UK, V5, DOI 10.1038/srep16224
Wheeler MW, 2006, ENVIRON TOXICOL CHEM, V25, P1441, DOI 10.1897/05-320R.1
Wu JY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014720
Yang EC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049472
Zwiener I, 2011, DTSCH ARZTEBL INT, V108, P163, DOI [10.3238/arztebl.2010.0163, 10.3238/arztebl.2011.0163]
NR 82
TC 19
Z9 20
U1 1
U2 26
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 1
PY 2018
VL 13
IS 11
AR e0206625
DI 10.1371/journal.pone.0206625
PG 15
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA GZ0DG
UT WOS:000449027600074
PM 30383869
OA Green Published, Green Submitted, gold
DA 2023-03-13
ER
PT J
AU Mothersill, C
Seymour, C
AF Mothersill, Carmel
Seymour, Colin
TI Eco-systems biology-From the gene to the stream
SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS
LA English
DT Review
DE Multiple stressors; Radiation; Low dose exposure; Biomarkers; Modeling
complex effects
ID INDUCED GENOMIC INSTABILITY; RADIATION-INDUCED STRESS; MITOCHONDRIAL
DYSFUNCTION; DOSE RESPONSES; BYSTANDER; CELL; EXPOSURE; INDUCTION;
HORMESIS; COMMUNICATION
AB This review considers the implications for environmental health and ecosystem sustainability, of new developments in radiobiology and ecotoxicology. Specifically it considers how the non-targeted effects of low doses of radiation, which are currently being scrutinized experimentally, not only mirror similar effects from low doses of chemical stressors but may actually lead to unpredictable emergent effects at higher hierarchical levels. The position is argued that non-targeted effects are mechanistically important in coordinating phased hierarchical transitions (i.e. transitions which occur in a regulated sequence). The field of multiple stressors (both radiation and chemical) is highly complex and agents can interact in an additive, antagonist or synergistic manner. The outcome following low dose multiple stressor exposure also is impacted by the context in which the stressors are received, perceived or communicated by the organism or tissue. Modern biology has given us very sensitive methods to examine changes following stressor interaction with biological systems at several levels of organization but the translation of these observations to ultimate risk remains difficult to resolve. Since multiple stressor exposure is the norm in the environment, it is essential to move away from single stressor-based protection and to develop tools, including legal instruments, which will enable us to use response-based risk assessment. Radiation protection in the context of multiple stressors includes consideration of humans and non-humans as separate groups requiring separate assessment frameworks. This is because for humans, individual survival and prevention of cancer are paramount but for animals, it is considered sufficient to protect populations and cancer is not of concern. The need to revisit this position is discussed not only from the environmental perspective but also from the human health perspective because the importance of "pollution" (a generic term for multiple environmental stressors) as a cause of non-cancer disease is increasingly being recognized. Finally a way forward involving experimental assessment of biomarker performance to lead to a theoretical framework allowing modeling is suggested. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Mothersill, Carmel; Seymour, Colin] McMaster Univ, Med Phys & Appl Radiat Sci Dept, Hamilton, ON L8S 4K1, Canada.
C3 McMaster University
RP Mothersill, C (corresponding author), McMaster Univ, Med Phys & Appl Radiat Sci Dept, Hamilton, ON L8S 4K1, Canada.
EM mothers@mcmaster.ca
FU Canada Research Chairs Programme; CANDU Owners Group; Bruce Power; EU
FX We acknowledge financial support from the Canada Research Chairs
Programme, CANDU Owners Group, Bruce Power and the EU NOTE Integrated
Project. We also thank colleagues in the EU ERICA and PROTECT projects
who have discussed many of the ideas in this paper with us.
CR BARBER RC, 2006, RAD INDUCED TRANSGEN
Barber RC, 2006, MUTAT RES-FUND MOL M, V598, P50, DOI 10.1016/j.mrfmmm.2006.01.009
Bilbo SD, 2002, P NATL ACAD SCI USA, V99, P4067, DOI 10.1073/pnas.062001899
Boonstra R, 2005, ENVIRON TOXICOL CHEM, V24, P334, DOI 10.1897/03-163R.1
Broome EJ, 1999, INT J RADIAT BIOL, V75, P681, DOI 10.1080/095530099140014
BROWN J, 2008, ASSESSING IMPACTS RA
Burger J, 2007, J ENVIRON MANAGE, V85, P232, DOI 10.1016/j.jenvman.2006.10.005
Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735
Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3
Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675
Chen S, 2008, BRIT J CANCER, V98, P1839, DOI 10.1038/sj.bjc.6604358
Coates PJ, 2005, J PATHOL, V205, P221, DOI 10.1002/path.1701
Coates PJ, 2004, MUTAT RES-FUND MOL M, V568, P5, DOI 10.1016/j.mrfmmm.2004.06.042
Daev E V, 2005, Zh Evol Biokhim Fiziol, V41, P319
Daev E V, 2007, Tsitologiia, V49, P696
Dahle Jostein, 2005, J Carcinog, V4, P11, DOI 10.1186/1477-3163-4-11
Dowling K, 2005, INT J RADIAT BIOL, V81, P89, DOI 10.1080/09553000400017606
Dudley SA, 2007, BIOLOGY LETT, V3, P435, DOI 10.1098/rsbl.2007.0232
Glaviano A, 2006, ONCOGENE, V25, P3424, DOI 10.1038/sj.onc.1209399
Gonzalez AJ, 2005, HEALTH PHYS, V89, P418, DOI 10.1097/01.HP.0000179340.57348.26
Hall DM, 2000, J APPL PHYSIOL, V89, P749, DOI 10.1152/jappl.2000.89.2.749
Harada T, 2008, INT J RADIAT BIOL, V84, P809, DOI 10.1080/09553000802360844
Hei TK, 2008, J PHARM PHARMACOL, V60, P943, DOI 10.1211/jpp.60.8.0001
HEROUT V, 1974, RUSS CHEM REV, V43, P196
Hoyes KP, 2000, INT J RADIAT BIOL, V76, P77, DOI 10.1080/095530000139032
Hoyes KP, 2001, RADIAT RES, V156, P488, DOI 10.1667/0033-7587(2001)156[0488:TEOPPC]2.0.CO;2
International Commission on Radiological Protection, 2003, ANN ICRP, V33, P201
Kashino G, 2007, J RADIAT RES, V48, P327, DOI 10.1269/jrr.07008
Kim GJ, 2006, MUTAGENESIS, V21, P361, DOI 10.1093/mutage/gel048
Kim GJ, 2006, CANCER RES, V66, P10377, DOI 10.1158/0008-5472.CAN-05-3036
Konopacka M, 2006, MUTAT RES-FUND MOL M, V593, P32, DOI 10.1016/j.mrfmmm.2005.06.017
Larsson CM, 2008, J ENVIRON RADIOACTIV, V99, P1364, DOI 10.1016/j.jenvrad.2007.11.019
Little JB, 2003, ONCOGENE, V22, P6978, DOI 10.1038/sj.onc.1206988
Liu ZF, 2006, RADIAT RES, V166, P19, DOI 10.1667/RR3580.1
Lord BI, 2002, MUTAT RES-FUND MOL M, V501, P13, DOI 10.1016/S0027-5107(02)00011-8
Lord BI, 1999, INT J RADIAT BIOL, V75, P801, DOI 10.1080/095530099139854
Lyng FM, 2006, INT J RADIAT BIOL, V82, P393, DOI 10.1080/09553000600803904
Maguire P, 2007, RADIAT RES, V167, P485, DOI 10.1667/RR0159.1
Miller C., 2006, LEGAL STUDIES, V26, P544
Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327
Morgan WF, 2003, RADIAT RES, V159, P567, DOI 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2
Morris RC, 2006, J ENVIRON RADIOACTIV, V87, P77, DOI 10.1016/j.jenvrad.2005.11.003
Mossman KL, 2001, HEALTH PHYS, V80, P263, DOI 10.1097/00004032-200103000-00009
Mothersill C, 1998, INT J RADIAT BIOL, V74, P673, DOI 10.1080/095530098140934
Mothersill C, 2007, J ENVIRON RADIOACTIV, V96, P20, DOI 10.1016/j.jenvrad.2007.01.025
Mothersill C, 2006, ENVIRON SCI TECHNOL, V40, P6859, DOI 10.1021/es061099y
Mothersill C, 2006, EXP SUPPL, V96, P159
Mothersill C, 2007, ENVIRON SCI TECHNOL, V41, P3382, DOI 10.1021/es062978n
Prasad KN, 2005, BRIT J RADIOL, V78, P485, DOI 10.1259/bjr/87552880
Prise KM, 2006, MUTAT RES-FUND MOL M, V597, P1, DOI 10.1016/j.mrfmmm.2005.06.034
Roberts JE, 2000, ANN NY ACAD SCI, V917, P435
Sakai K, 2006, YAKUGAKU ZASSHI, V126, P827, DOI 10.1248/yakushi.126.827
Salbu B, 2008, ENVIRON SCI TECHNOL, V42, P3441, DOI 10.1021/es7027394
SATO K, 1984, RADIAT RES, V98, P381, DOI 10.2307/3576245
Sawada Shoji, 2007, Med Confl Surviv, V23, P58, DOI 10.1080/13623690601084617
Sbarbati A, 2006, CELLS TISSUES ORGANS, V183, P206, DOI 10.1159/000096511
Schettino G, 2005, RADIAT RES, V163, P332, DOI 10.1667/RR3319
Seymour CB, 2000, RADIAT RES, V153, P508, DOI 10.1667/0033-7587(2000)153[0508:RCOBAT]2.0.CO;2
Surinov B P, 2001, Radiats Biol Radioecol, V41, P645
Tartier L, 2007, CANCER RES, V67, P5872, DOI 10.1158/0008-5472.CAN-07-0188
TILL JE, 1988, HEALTH PHYS, V55, P331, DOI 10.1097/00004032-198808000-00027
Yang EV, 2002, J NEUROIMMUNOL, V133, P144, DOI 10.1016/S0165-5728(02)00270-9
Yang G, 2008, RADIAT RES, V170, P372, DOI 10.1667/RR1324.1
Zhao WL, 2009, CURR MED CHEM, V16, P130, DOI 10.2174/092986709787002790
2009, ANN ICRP, V37
NR 65
TC 13
Z9 15
U1 0
U2 21
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1386-1964
EI 1873-135X
J9 MUTAT RES-FUND MOL M
JI Mutat. Res.-Fundam. Mol. Mech. Mutagen.
PD MAY 1
PY 2010
VL 687
IS 1-2
SI SI
BP 63
EP 66
DI 10.1016/j.mrfmmm.2010.01.010
PG 4
WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology
GA 597JK
UT WOS:000277752900011
PM 20083127
DA 2023-03-13
ER
PT J
AU Ritchie, GD
Rossi, J
Nordholm, AF
Still, KR
Carpenter, RL
Wenger, GR
Wright, DW
AF Ritchie, GD
Rossi, J
Nordholm, AF
Still, KR
Carpenter, RL
Wenger, GR
Wright, DW
TI Effects of repeated exposure to JP-8 jet fuel vapor on learning of
simple and difficult operant tasks by rats
SO JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES
LA English
DT Article
ID INHALATION EXPOSURE; TEMPORAL DISCRIMINATION; POSTNATAL EXPOSURE;
ORGANIC-SOLVENTS; TERM EXPOSURE; PARA-XYLENE; N-HEXANE; WORKERS;
TOLUENE; BRAIN
AB Groups of 16 Sprague-Dawley rats each were exposed by whole-body inhalation methods to JP-8 jet fuel at the highest vapor concentration without formation of aerosol (1000 +/- 10% mg/m(3)); to 50% of this concentration (500 +/- 10% mg/m(3)); or to treated room air (70 +/- 3 L/min) for 6 h/d, 5 d/wk, for 6 wk (180 h). Although two subjects died of apparent kidney complications during the study, no other change in the health status of exposed rats was observed, including rate of weight gain. Following a 65-d period of rest, rats were evaluated for their capacity to learn and perform a series of operant tasks. These tasks ranged in difficulty from learning of a simple food-reinforced lever pressing response, to learning a task in which subjects were required to emit up to four-response chains of pressing three different levers (e.g., press levers C, R, L, then C). It was shown that repeated exposure to 1000 mg/m(3) JP-8 vapor induced significant deficits in acquisition or performance of moderately difficult or difficult tasks, but not simple learning tasks, as compared to those animals exposed to 500 mg/m(3). Learning/performance of complex tasks by the 500-mg/m(3) exposure group generally exceeded the performance of control animals, while learning by the 1000-mg/m(3) group was nearly always inferior to controls, indicating possible "neurobehavioral" hormesis. These findings appear consistent with some previously reported data for operant performance following acute exposure to certain hydrocarbon constituents of JP-8 (i.e., toluene, xylenes). There has, however, been little previously published research demonstrating long-term learning effects for repeated hydrocarbon fuel exposures. Examination of regional brain tissues from vapor-exposed rats indicated significant changes in levels of dopamine in the cerebral cortex and DOPAC in the brainstem, measured as long as 180 d postexposure, as compared to controls.
C1 Geocenters Inc, Wright Patterson AFB, OH USA.
Naval Hlth Res Ctr, Detachment Toxicol, Neurobehav Effects Lab, Wright Patterson AFB, OH USA.
Univ Arkansas Med Sci, Dept Pharmacol & Toxicol, Little Rock, AR 72205 USA.
C3 United States Department of Defense; United States Navy; Naval Medical
Research Center (NMRC); Naval Health Research Center (NHRC); University
of Arkansas System; University of Arkansas Medical Sciences
RP Ritchie, GD (corresponding author), NRHCTD, 2612 5th St,Bldg 433, Wright Patterson AFB, OH 45433 USA.
EM glenn.ritchie@wpafb.af.mil
CR ANDERSSON K, 1981, TOXICOL APPL PHARM, V60, P535, DOI 10.1016/0041-008X(81)90340-9
*ARMBR AV GROUP, 1998, WORLD JET FUEL ALM
BUFFALO EA, 1993, PHARMACOL BIOCHEM BE, V46, P733, DOI 10.1016/0091-3057(93)90570-J
BUSHNELL PJ, 1988, NEUROTOXICOL TERATOL, V10, P569, DOI 10.1016/0892-0362(88)90094-3
Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x
Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585
Colotla V A, 1979, Neurobehav Toxicol, V1 Suppl 1, P113
EVANS EB, 1991, NEUROSCI BIOBEHAV R, V15, P233, DOI 10.1016/S0149-7634(05)80003-X
FERGUSON SA, 1993, PHARMACOL BIOCHEM BE, V45, P107, DOI 10.1016/0091-3057(93)90093-9
GEIST CR, 1983, PERCEPT MOTOR SKILL, V57, P1083, DOI 10.2466/pms.1983.57.3f.1083
GLEASON CC, 1979, JAPCA J AIR WASTE MA, V29, P1243, DOI 10.1080/00022470.1979.10470922
Gralewicz S, 2001, NEUROTOXICOLOGY, V22, P79, DOI 10.1016/S0161-813X(00)00003-6
GREGERSEN P, 1984, AM J IND MED, V5, P201, DOI 10.1002/ajim.4700050305
Grosch JW, 1996, AM J IND MED, V30, P623, DOI 10.1002/(SICI)1097-0274(199611)30:5<623::AID-AJIM11>3.0.CO;2-5
GUPTA BN, 1990, J SOC OCCUP MED, V40, P94
HANNINEN H, 1976, Scandinavian Journal of Work Environment and Health, V2, P240
Harris DT, 2000, TOXICOL IND HEALTH, V16, P78, DOI 10.1191/074823300678827681
Harris DT, 1997, TOXICOL IND HEALTH, V13, P559, DOI 10.1177/074823379701300501
Henz K., 1998, SURVEY JET FUELS PRO
HILLEFORSBERGLUND M, 1995, TOXICOLOGY, V100, P185, DOI 10.1016/0300-483X(95)03084-S
HINNERS RG, 1968, ARCH ENVIRON HEALTH, V16, P194, DOI 10.1080/00039896.1968.10665043
HOLM S, 1987, SCAND J WORK ENV HEA, V13, P438, DOI 10.5271/sjweh.2016
HONMA T, 1983, Industrial Health, V21, P143
IKEDA T, 1993, ENVIRON RES, V63, P70, DOI 10.1006/enrs.1993.1128
KIM C, 1987, J CHROMATOGR, V386, P25
KIM MS, 2000, TOXICOLOGIST, V54, P359
Kishi R, 1986, Sangyo Igaku, V28, P101
KNAVE B, 1976, Scandinavian Journal of Work Environment and Health, V2, P152
KNAVE B, 1978, SCAND J WORK ENV HEA, V4, P19, DOI 10.5271/sjweh.2725
KNAVE B, 1979, ACTA PSYCHIAT SCAND, V60, P39, DOI 10.1111/j.1600-0447.1979.tb00263.x
KNAVE B, 1976, ADVERSE EFFECTS ENV, V2, P149
Maruff P, 1998, BRAIN, V121, P1903, DOI 10.1093/brain/121.10.1903
Mattie DR, 1995, TOXICOL IND HEALTH, V11, P423, DOI 10.1177/074823379501100405
MATTIE DR, 1991, TOXICOL PATHOL, V19, P77, DOI 10.1177/019262339101900201
Mayorga AJ, 2000, BEHAV BRAIN RES, V109, P59, DOI 10.1016/S0166-4328(99)00165-5
MINDUS P, 1978, ACTA PSYCHIAT SCAND, P53
MIYAGAWA M, 1995, NEUROTOXICOL TERATOL, V17, P657, DOI 10.1016/0892-0362(95)02008-X
MIYAKE H, 1983, NEUROBEH TOXICOL TER, V5, P541
MORROW LA, 1992, NEUROPSYCHOLOGIA, V30, P911, DOI 10.1016/0028-3932(92)90035-K
MORROW LA, 1999, SOLVENTS NEUROPHYSIO
NG TP, 1990, NEUROTOXICOL TERATOL, V12, P661, DOI 10.1016/0892-0362(90)90082-N
NILSEN OG, 1988, PHARMACOL TOXICOL, V62, P259, DOI 10.1111/j.1600-0773.1988.tb01884.x
Nordholm AF, 1999, J TOXICOL ENV HEAL A, V56, P471, DOI 10.1080/009841099157935
ODKVIST LM, 1987, SCAND AUDIOL, V16, P75, DOI 10.3109/01050398709042159
ODKVIST LM, 1983, OTOLARYNGOL HEAD NEC, V159, P326
PAULE MG, 1990, NEUROTOXICOL TERATOL, V12, P413, DOI 10.1016/0892-0362(90)90002-T
PEZZOLI G, 1990, BRAIN RES, V531, P355, DOI 10.1016/0006-8993(90)90801-H
*PHILL CHEM CO, 1995, JP 8 AV TURB FUEL MA
Pise VM, 1998, J TOXICOL ENV HEAL A, V54, P193
Pleil JD, 2000, ENVIRON HEALTH PERSP, V108, P183, DOI 10.2307/3454432
Popke EJ, 2000, ALCOHOL, V20, P187, DOI 10.1016/S0741-8329(99)00081-6
Popke EJ, 2000, PHARMACOL BIOCHEM BE, V65, P247, DOI 10.1016/S0091-3057(99)00205-1
PRYOR GT, 1982, NEUROBEH TOXICOL TER, V4, P71
PRYOR GT, 1983, NEUROBEH TOXICOL TER, V5, P91
Ritchie GD, 2001, J TOXICOL ENV HEAL B, V4, P223, DOI 10.1080/109374001301419728
RITCHIE GD, 1995, FIRE POLYM, V2, P344
Robbins TW, 2000, EXP BRAIN RES, V133, P130, DOI 10.1007/s002210000407
Robledo RF, 2000, TOXICOL PATHOL, V28, P656, DOI 10.1177/019262330002800504
Rossi J, 2001, J TOXICOL ENV HEAL A, V63, P397, DOI 10.1080/152873901300343452
SCHULZE GE, 1988, J PHARMACOL EXP THER, V245, P178
SCHULZE GE, 1991, PHARMACOL BIOCHEM BE, V38, P77, DOI 10.1016/0091-3057(91)90592-P
Shigeta S, 1979, Sangyo Igaku, V21, P68
Smith LB, 1997, J OCCUP ENVIRON MED, V39, P623, DOI 10.1097/00043764-199707000-00007
STRUWE G, 1983, ACTA PSYCHIAT SCAND, V67, P55, DOI 10.1111/j.1600-0447.1983.tb00942.x
TILSON HA, 1980, NEUROTOXICOL TERATOL, V2, P101
Tsai SY, 1997, ENVIRON RES, V73, P146, DOI 10.1006/enrs.1997.3704
Ullrich SE, 1999, TOXICOL SCI, V52, P61, DOI 10.1093/toxsci/52.1.61
VONEULER G, 1994, NEUROTOXICOLOGY, V15, P621
Wada H, 1999, NEUROTOXICOL TERATOL, V21, P709, DOI 10.1016/S0892-0362(99)00033-1
Wada H, 1997, NEUROTOXICOL TERATOL, V19, P399, DOI 10.1016/S0892-0362(97)00028-7
WADA H, 1989, NEUROTOXICOL TERATOL, V11, P265, DOI 10.1016/0892-0362(89)90069-X
Warren DA, 1998, NEUROTOXICOL TERATOL, V20, P143, DOI 10.1016/S0892-0362(97)00096-2
You L, 2000, J TOXICOL ENV HEAL A, V60, P331, DOI 10.1080/00984100050030118
You L, 1998, J TOXICOL ENV HEAL A, V54, P285
NR 74
TC 28
Z9 28
U1 0
U2 3
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1528-7394
EI 1087-2620
J9 J TOXICOL ENV HEAL A
JI J. Toxicol. Env. Health Part A
PD NOV 9
PY 2001
VL 64
IS 5
BP 385
EP 415
DI 10.1080/152873901753170731
PG 31
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA 490BE
UT WOS:000172029700002
PM 11700005
DA 2023-03-13
ER
PT J
AU Muzik, O
Diwadkar, VA
AF Muzik, Otto
Diwadkar, Vaibhav A.
TI Hierarchical control systems for the regulation of physiological
homeostasis and affect: Can their interactions modulate mood and
anhedonia?
SO NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS
LA English
DT Review
DE Cognitive control of autonomic NS; Stress-induced analgesia; Outcome
expectancy affect modulation; Endocannabinoids and endorphins; Cold
exposure; Periaqueductal gray
ID MAJOR DEPRESSIVE DISORDER; DOPAMINE TRANSPORTER BINDING; MIDBRAIN
PERIAQUEDUCTAL GRAY; INNATE IMMUNE-RESPONSE; PREFRONTAL CORTEX;
NERVOUS-SYSTEM; BASAL GANGLIA; RESTING-STATE; BRAIN; REWARD
AB Predominant concepts assert that conscious willful processes do not assert a significant influence on autonomic functions associated with physiological homeostasis (e.g., thermal regulation). The singular purpose of this review is to promote a reappraisal of concepts regarding the circumscribed role of hierarchical control systems. To effect this reappraisal, we assess the interaction between top-down and bottom-up regulatory mechanisms, specifically by highlighting the intersection between the "physiological" (specifically thermoregulatory pathways) and the "psychological" (specifically mood/anhedonia related processes). This reappraisal suggests that the physiological and psychological processes can interact in unanticipated ways, and is grounded in multiple lines of recent experimental evidence. For example, behavioral techniques that through a combination of hormesis (forced breathing, cold exposure) and meditation appear to exert unusual effects on homeostatic function (cold tolerance) and suppression of aberrant auto-immune responses. The molecular correlates of these effects (the putative release of endogenous cannabinoids and endorphins) may exert salutary effects on mood/anhedonia, even more significant than those exerted by cognitive behavioral techniques or meditation alone. By focusing on this interaction, we present a putative mechanistic model linking physiology with psychology, with particular implications for disturbances of mood/anhedonia. We suggest that volitional changes in breathing patterns can activate primary control centers for descending pain/cold stimuli in periaqueductal gray, initiating a stress-induced analgesic response mediated by endocannabinoid/endorphin release. The analgesic effects, and the feelings of euphoria generated by endocannbinoid release are prolonged via a top-down "outcome expectancy" control mechanism regulated by cortical areas. By focusing on modification strategies that principally target homeostatic function (but may also exert ancillary effects on mood), we articulate a novel framework for how hierarchical control systems for the regulation of physiological homeostasis and affect interact. This interaction may allow practitioners of focused modification strategies to assert increased control over key components of the affective system, allowing for viable treatment approaches for patients with disturbances of mood/anhedonia.
C1 [Muzik, Otto] Wayne State Univ, Sch Med, Dept Pediat, Detroit, MI 48201 USA.
[Diwadkar, Vaibhav A.] Wayne State Univ, Sch Med, Dept Psychiat & Behav Neurosci, Detroit, MI 48201 USA.
C3 Wayne State University; Wayne State University
RP Muzik, O (corresponding author), Wayne State Univ, Sch Med, Dept Pediat, Detroit, MI 48201 USA.
EM omuzik@med.wayne.edu
CR Alcaro A, 2011, NEUROSCI BIOBEHAV R, V35, P1805, DOI 10.1016/j.neubiorev.2011.03.002
Altier N, 1999, LIFE SCI, V65, P2269, DOI 10.1016/S0024-3205(99)00298-2
Banks SJ, 2007, SOC COGN AFFECT NEUR, V2, P303, DOI 10.1093/scan/nsm029
BEHBEHANI MM, 1995, PROG NEUROBIOL, V46, P575, DOI 10.1016/0301-0082(95)00009-K
Benarroch EE, 2008, NEUROLOGY, V71, P217, DOI 10.1212/01.wnl.0000318225.51122.63
Benedetti F, 2005, J NEUROSCI, V25, P10390, DOI 10.1523/JNEUROSCI.3458-05.2005
Benedetti F, 2013, PHYSIOL REV, V93, P1207, DOI 10.1152/physrev.00043.2012
BENSON H, 1990, BEHAV MED, V16, P90, DOI 10.1080/08964289.1990.9934596
Berman RM, 2009, CNS SPECTRUMS, V14, P197, DOI 10.1017/S1092852900020216
Binder JR, 1999, J COGNITIVE NEUROSCI, V11, P80, DOI 10.1162/089892999563265
Bishop SJ, 2009, NAT NEUROSCI, V12, P92, DOI 10.1038/nn.2242
Bortolanza M, 2010, NEUROBIOL LEARN MEM, V94, P229, DOI 10.1016/j.nlm.2010.05.011
Capuron L, 2012, ARCH GEN PSYCHIAT, V69, P1044, DOI 10.1001/archgenpsychiatry.2011.2094
Casey BJ, 2000, BIOL PSYCHOL, V54, P241, DOI 10.1016/S0301-0511(00)00058-2
Chang CH, 2014, BIOL PSYCHIAT, V76, P223, DOI 10.1016/j.biopsych.2013.09.020
Chernoloz O, 2009, PSYCHOPHARMACOLOGY, V206, P335, DOI 10.1007/s00213-009-1611-7
Colloca L, 2005, NAT REV NEUROSCI, V6, P545, DOI 10.1038/nrn1705
Colloca L, 2009, PAIN, V144, P28, DOI 10.1016/j.pain.2009.01.033
Corcoran L, 2015, INT REV NEUROBIOL, V125, P203, DOI 10.1016/bs.irn.2015.10.003
Covey DP, 2017, NEUROPHARMACOLOGY, V124, P52, DOI 10.1016/j.neuropharm.2017.04.033
Craig AD, 2002, NAT REV NEUROSCI, V3, P655, DOI 10.1038/nrn894
Dantzer R, 2000, AUTON NEUROSCI-BASIC, V85, P60, DOI 10.1016/S1566-0702(00)00220-4
Dantzer R, 1998, ANN NY ACAD SCI, V840, P586, DOI 10.1111/j.1749-6632.1998.tb09597.x
Dantzer R, 2008, NAT REV NEUROSCI, V9, P46, DOI 10.1038/nrn2297
Dantzer R, 2007, BRAIN BEHAV IMMUN, V21, P153, DOI 10.1016/j.bbi.2006.09.006
De la Fuente-Fernandez R, 2006, J NEURAL TRANSM-SUPP, P415
de la Fuente-Fernandez R, 2004, BIOL PSYCHIAT, V56, P67, DOI 10.1016/j.biopsych.2003.11.019
De la Fuente-Fernandez R, 2002, EVAL HEALTH PROF, V25, P387, DOI 10.1177/0163278702238052
de la Fuente-Fernandez R, 2009, PARKINSONISM RELAT D, V15, pS72, DOI 10.1016/S1353-8020(09)70785-0
DHAENEN HA, 1994, BIOL PSYCHIAT, V35, P128, DOI 10.1016/0006-3223(94)91202-5
Dinarello CA, 2004, J ENDOTOXIN RES, V10, P201, DOI 10.1179/096805104225006129
Dowlati Y, 2010, BIOL PSYCHIAT, V67, P446, DOI 10.1016/j.biopsych.2009.09.033
Dremencov E, 2009, J PSYCHIATR NEUROSCI, V34, P223
Drevets WC, 2008, BRAIN STRUCT FUNCT, V213, P93, DOI 10.1007/s00429-008-0189-x
Drysdale AT, 2017, NAT MED, V23, P28, DOI 10.1038/nm.4246
Dunn AJ, 2006, CLIN NEUROSCI RES, V6, P52, DOI 10.1016/j.cnr.2006.04.002
Epstein HT, 2001, BRAIN COGNITION, V45, P44, DOI 10.1006/brcg.2000.1253
Felger Jennifer C, 2019, Handb Exp Pharmacol, V250, P255, DOI 10.1007/164_2018_166
Felger JC, 2012, FRONT NEUROENDOCRIN, V33, P315, DOI 10.1016/j.yfrne.2012.09.003
Fiorillo CD, 2003, SCIENCE, V299, P1898, DOI 10.1126/science.1077349
Friston KJ, 2011, BRAIN CONNECT, V1, P13, DOI 10.1089/brain.2011.0008
Frith CD, 2006, NEURON, V50, P531, DOI 10.1016/j.neuron.2006.05.001
Funk CD, 2001, SCIENCE, V294, P1871, DOI 10.1126/science.294.5548.1871
Fuster JM, 2001, NEURON, V30, P319, DOI 10.1016/S0896-6273(01)00285-9
Gertsch Jurg, 2018, Med Cannabis Cannabinoids, V1, P60, DOI 10.1159/000489291
Gomez TMD, 1996, NEUROSCI LETT, V214, P5
Gordon I, 1996, EUR J PHARMACOL, V298, P27, DOI 10.1016/0014-2999(95)00770-9
Goyal M, 2014, JAMA INTERN MED, V174, P357, DOI 10.1001/jamainternmed.2013.13018
Gradin VB, 2011, BRAIN, V134, P1751, DOI 10.1093/brain/awr059
Greenberg T, 2015, AM J PSYCHIAT, V172, P881, DOI 10.1176/appi.ajp.2015.14050594
Haroon E, 2012, NEUROPSYCHOPHARMACOL, V37, P137, DOI 10.1038/npp.2011.205
Herrero JL, 2018, J NEUROPHYSIOL, V119, P145, DOI 10.1152/jn.00551.2017
Herwig U, 2010, NEUROIMAGE, V50, P734, DOI 10.1016/j.neuroimage.2009.12.089
IKAWA K, 1994, NEUROSCI LETT, V167, P37, DOI 10.1016/0304-3940(94)91022-7
Irwin MR, 2007, BRAIN BEHAV IMMUN, V21, P374, DOI 10.1016/j.bbi.2007.01.010
Julian MD, 2003, NEUROSCIENCE, V119, P309, DOI 10.1016/S0306-4522(03)00070-8
Kato M, 2013, CNS DRUGS, V27, pS11, DOI 10.1007/s40263-012-0029-7
Kaufling J, 2009, J COMP NEUROL, V513, P597, DOI 10.1002/cne.21983
KILBOURN MR, 1992, EUR J PHARMACOL, V216, P109, DOI 10.1016/0014-2999(92)90216-Q
Killingsworth MA, 2010, SCIENCE, V330, P932, DOI 10.1126/science.1192439
Kong LT, 2013, J PSYCHIATR NEUROSCI, V38, P417, DOI 10.1503/jpn.120117
Kox M, 2014, P NATL ACAD SCI USA, V111, P7379, DOI 10.1073/pnas.1322174111
Kox M, 2012, PSYCHOSOM MED, V74, P489, DOI 10.1097/PSY.0b013e3182583c6d
Kozhevnikov M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058244
Kumar P, 2008, BRAIN, V131, P2084, DOI 10.1093/brain/awn136
Lammel S, 2011, NEURON, V70, P855, DOI 10.1016/j.neuron.2011.03.025
Lanotte M, 2005, BRAIN BEHAV IMMUN, V19, P500, DOI 10.1016/j.bbi.2005.06.004
LeDoux JE, 2017, P NATL ACAD SCI USA, V114, pE2016, DOI 10.1073/pnas.1619316114
Lee S, 2016, J ANAL SCI TECHNOL, V7, DOI 10.1186/s40543-016-0093-6
Lenz JD, 2013, BEHAV BRAIN RES, V255, P44, DOI 10.1016/j.bbr.2013.04.018
Lidstone SC, 2010, ARCH GEN PSYCHIAT, V67, P857, DOI 10.1001/archgenpsychiatry.2010.88
Llorca P., 2015, EUR PSYCHIAT, V30, DOI [10.1016/S0924-9338(15)31881-2, DOI 10.1016/S0924-9338(15)31881-2]
Lupica CR, 2005, NEUROPHARMACOLOGY, V48, P1105, DOI 10.1016/j.neuropharm.2005.03.016
Maes M, 1999, ADV EXP MED BIOL, V461, P25
Majer M, 2008, BRAIN BEHAV IMMUN, V22, P870, DOI 10.1016/j.bbi.2007.12.009
Mannino M, 2015, PHYS LIFE REV, V15, P107, DOI 10.1016/j.plrev.2015.09.002
Mashour GA, 2013, P NATL ACAD SCI USA, V110, P10357, DOI 10.1073/pnas.1301188110
MATSUDA LA, 1993, J COMP NEUROL, V327, P535, DOI 10.1002/cne.903270406
Mayberg HS, 2003, NEUROIMAG CLIN N AM, V13, P805, DOI 10.1016/S1052-5149(03)00104-7
Mayberg HS, 2002, AM J PSYCHIAT, V159, P728, DOI 10.1176/appi.ajp.159.5.728
McCabe C, 2009, PSYCHOPHARMACOLOGY, V205, P667, DOI 10.1007/s00213-009-1573-9
McDougall SJ, 2015, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00440
Melis M, 2007, CURR NEUROPHARMACOL, V5, P268, DOI 10.2174/157015907782793612
Meyer JH, 2001, NEUROREPORT, V12, P4121, DOI 10.1097/00001756-200112210-00052
Millan MJ, 2002, PROG NEUROBIOL, V66, P355, DOI 10.1016/S0301-0082(02)00009-6
Miller AH, 2016, NAT REV IMMUNOL, V16, P22, DOI 10.1038/nri.2015.5
Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167
Mooneyham BW, 2013, CAN J EXP PSYCHOL, V67, P11, DOI 10.1037/a0031569
Munte TF, 2008, FRONT NEUROSCI-SWITZ, V2, P72, DOI 10.3389/neuro.01.006.2008
Muzik O, 2018, NEUROIMAGE, V172, P632, DOI 10.1016/j.neuroimage.2018.01.067
Muzik O, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00640
Muzik O, 2016, HUM BRAIN MAPP, V37, P3188, DOI 10.1002/hbm.23233
Nagarkatti P, 2009, FUTURE MED CHEM, V1, P1333, DOI 10.4155/FMC.09.93
Nutt D, 2007, J PSYCHOPHARMACOL, V21, P461, DOI 10.1177/0269881106069938
Ochsner KN, 2005, TRENDS COGN SCI, V9, P242, DOI 10.1016/j.tics.2005.03.010
Oleson EB, 2012, NEURON, V73, P360, DOI 10.1016/j.neuron.2011.11.018
Panksepp J, 2005, CONSCIOUS COGN, V14, P30, DOI 10.1016/j.concog.2004.10.004
Panksepp Jaak, 2010, Dialogues Clin Neurosci, V12, P533
PARK AY, 2018, SOC COGN AFFECT NEUR, V6, DOI DOI 10.14814/PHY2.13904
Pessoa L, 2018, CURR OPIN BEHAV SCI, V19, P19, DOI 10.1016/j.cobeha.2017.09.005
Pessoa L, 2015, BEHAV BRAIN SCI, V38, DOI 10.1017/S0140525X14000120
Phan KL, 2005, BIOL PSYCHIAT, V57, P210, DOI 10.1016/j.biopsych.2004.10.030
Price CJ, 2005, COGN NEUROPSYCHOL, V22, P262, DOI 10.1080/02643290442000095
PRISCO S, 1995, BRIT J PHARMACOL, V116, P1923, DOI 10.1111/j.1476-5381.1995.tb16684.x
Raison CL, 2006, TRENDS IMMUNOL, V27, P24, DOI 10.1016/j.it.2005.11.006
Reppucci CJ, 2016, BRAIN STRUCT FUNCT, V221, P2937, DOI 10.1007/s00429-015-1081-0
RIZVI TA, 1991, J COMP NEUROL, V303, P121, DOI 10.1002/cne.903030111
Robinson OJ, 2012, AM J PSYCHIAT, V169, P152, DOI 10.1176/appi.ajp.2011.11010137
Rolls ET, 2008, NEUROIMAGE, V41, P1504, DOI 10.1016/j.neuroimage.2008.03.005
Roychowdhury SM, 1996, NEUROSCIENCE, V74, P863, DOI 10.1016/0306-4522(96)00180-7
Rush AJ, 2006, AM J PSYCHIAT, V163, P1905, DOI 10.1176/appi.ajp.163.11.1905
Russo SJ, 2013, NAT REV NEUROSCI, V14, P609, DOI 10.1038/nrn3381
Sarasombath Pichaya, 2002, Hawaii Med J, V61, P57
Sarchiapone M, 2006, PSYCHIAT RES-NEUROIM, V147, P243, DOI 10.1016/j.pscychresns.2006.03.001
Satpute AB, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01860
Schafer SM, 2018, PROG NEUROBIOL, V160, P101, DOI 10.1016/j.pneurobio.2017.10.008
Schneeberger M, 2014, J ENDOCRINOL, V220, pT25, DOI 10.1530/JOE-13-0398
Schooler JW, 2011, TRENDS COGN SCI, V15, P319, DOI 10.1016/j.tics.2011.05.006
Schultz W, 1998, J NEUROPHYSIOL, V80, P1, DOI 10.1152/jn.1998.80.1.1
Schultz W, 2016, DIALOGUES CLIN NEURO, V18, P23
Smallwood J, 2011, COGNITION EMOTION, V25, P1481, DOI 10.1080/02699931.2010.545263
Smallwood J, 2012, BRAIN RES, V1428, P60, DOI 10.1016/j.brainres.2011.03.072
Smallwood J, 2009, EMOTION, V9, P271, DOI 10.1037/a0014855
Strigo IA, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2016.0010
Stuss DT, 2003, BRAIN, V126, P2363, DOI 10.1093/brain/awg237
Tobler PN, 2005, SCIENCE, V307, P1642, DOI 10.1126/science.1105370
Tremblay LK, 2002, ARCH GEN PSYCHIAT, V59, P409, DOI 10.1001/archpsyc.59.5.409
Vinckier F, 2017, EUR PSYCHIAT, V44, P1, DOI 10.1016/j.eurpsy.2017.02.485
Wood Patrick B, 2008, Expert Rev Neurother, V8, P781, DOI 10.1586/14737175.8.5.781
Wu X., 2007, NEUROPHARMACOLOGY, V39, P391
Yadid G, 2008, PROG BRAIN RES, V172, P265, DOI 10.1016/S0079-6123(08)00913-8
NR 131
TC 12
Z9 12
U1 1
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0149-7634
EI 1873-7528
J9 NEUROSCI BIOBEHAV R
JI Neurosci. Biobehav. Rev.
PD OCT
PY 2019
VL 105
BP 251
EP 261
DI 10.1016/j.neubiorev.2019.08.015
PG 11
WC Behavioral Sciences; Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Behavioral Sciences; Neurosciences & Neurology
GA JA1JO
UT WOS:000487573500023
PM 31442518
DA 2023-03-13
ER
PT J
AU Van Voorhies, WA
Castillo, HA
Thawng, CN
Smith, GB
AF Van Voorhies, Wayne A.
Castillo, Hugo A.
Thawng, Cung N.
Smith, Geoffrey B.
TI The Phenotypic and Transcriptomic Response of the Caenorhabditis elegans
Nematode to Background and Below-Background Radiation Levels
SO FRONTIERS IN PUBLIC HEALTH
LA English
DT Article
DE low radiation; biological response; c; elegans; deep biosphere; major
sperm protein
ID OOCYTE MEIOTIC MATURATION; IONIZING-RADIATION; EXPOSURE; GENES;
LONGEVITY; HORMESIS; PROTEIN; STRESS; GROWTH; CELLS
AB Studies of the biological effects of low-level and below-background radiation are important in understanding the potential effects of radiation exposure in humans. To study this issue we exposed the nematode Caenorhabditis elegans to average background and below-background radiation levels. Two experiments were carried-out in the underground radiation biology laboratory at the Waste Isolation Pilot Plant (WIPP) in New Mexico USA. The first experiment used naive nematodes with data collected within 1 week of being placed underground. The second experiment used worms that were incubated for 8 months underground at below background radiation levels. Nematode eggs were placed in two incubators, one at low radiation (ca.15.6 nGy/hr) and one supplemented with 2 kg of natural KCl (ca. 67.4 nGy/hr). Phenotypic variables measured were: (1) egg hatching success (2) body size from larval development to adulthood, (3) developmental time from egg to egg laying adult, and (4) egg laying rate of young adult worms. Transcriptome analysis was performed on the first experiment on 72 h old adult worms. Within 72 h of being underground, there was a trend of increased egg-laying rate in the below-background radiation treatment. This trend became statistically significant in the group of worms exposed to below-background radiation for 8 months. Worms raised for 8 months in these shielded conditions also had significantly faster growth rates during larval development. Transcriptome analyses of 72-h old naive nematode RNA showed significant differential expression of genes coding for sperm-related proteins and collagen production. In the below-background radiation group, the genes for major sperm protein (msp, 42% of total genes) and sperm-related proteins (7.5%) represented 49.5% of the total genes significantly up-regulated, while the majority of down-regulated genes were collagen (col, 37%) or cuticle-related (28%) genes. RT-qPCR analysis of target genes confirmed transcriptomic data. These results demonstrate that exposure to below-background radiation rapidly induces phenotypic and transcriptomic changes in C. elegans within 72 h of being brought underground.
C1 [Van Voorhies, Wayne A.; Thawng, Cung N.; Smith, Geoffrey B.] New Mexico State Univ, Mol Biol Program, Las Cruces, NM 88003 USA.
[Van Voorhies, Wayne A.; Thawng, Cung N.; Smith, Geoffrey B.] New Mexico State Univ, Biol Dept, Las Cruces, NM 88003 USA.
[Castillo, Hugo A.] Embry Riddle Aeronaut Univ, Human Factors & Behav Neurobiol Dept, Daytona Beach, FL USA.
C3 New Mexico State University; New Mexico State University; Embry-Riddle
Aeronautical University
RP Van Voorhies, WA (corresponding author), New Mexico State Univ, Mol Biol Program, Las Cruces, NM 88003 USA.; Van Voorhies, WA (corresponding author), New Mexico State Univ, Biol Dept, Las Cruces, NM 88003 USA.
EM wavanvoo@nmsu.edu
RI Thawng, Cung Nawl/HHZ-5624-2022
OI Thawng, Cung Nawl/0000-0003-3785-0917
FU U.S. Department of Energy (DOE) Office of Environmental Management
[DE-EM0002423]; agency of the United States Government
FX These results are based upon work supported by the U.S. Department of
Energy (DOE) Office of Environmental Management under award number
DE-EM0002423. This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government or any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents that
its use would not infringe on privately owned rights. Reference herein
to any specific commercial product, process or service by trade names,
trademark, manufacturer or otherwise does not necessarily constitute or
imply its endorsement. The views and the opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
CR Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496
Angelo G, 2009, SCIENCE, V326, P954, DOI 10.1126/science.1178343
[Anonymous], 1991, Ann ICRP, V21, P1
BEGUET B, 1972, EXP GERONTOL, V7, P207, DOI 10.1016/0531-5565(72)90027-7
BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
BYERLY L, 1976, DEV BIOL, V51, P23, DOI 10.1016/0012-1606(76)90119-6
Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585
Carbone MC, 2009, RADIAT ENVIRON BIOPH, V48, P189, DOI 10.1007/s00411-008-0208-6
Castillo H, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196472
Castillo H, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00177
Castillo H, 2016, INT J RADIAT BIOL, V92, P169
Castillo H, 2015, INT J RADIAT BIOL, V91, P749, DOI 10.3109/09553002.2015.1062571
Choppin G, 2002, RADIOCHEMISTRY NUCL
Cnossen I, 2007, J GEOPHYS RES-PLANET, V112, DOI 10.1029/2006JE002784
Cui FM, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325818820981
Elmore E, 2008, RADIAT RES, V169, P311, DOI 10.1667/RR1199.1
Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075
Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011
HARTMAN PS, 1982, GENETICS, V102, P159
Hendry JH, 2009, J RADIOL PROT, V29, pA29, DOI 10.1088/0952-4746/29/2A/S03
HODGKIN J, 1991, P ROY SOC B-BIOL SCI, V246, P19, DOI 10.1098/rspb.1991.0119
Holdorf AD, 2020, GENETICS, V214, P279, DOI 10.1534/genetics.119.302919
JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137
Jung SK, 2015, ENVIRON SCI TECHNOL, V49, P2477, DOI 10.1021/es5056462
Kaletsky R, 2019, CROSS KINGDOM RECOGN, P97888, DOI [10.1101/697888, DOI 10.1101/697888]
Katz JI, 2016, INT J RADIAT BIOL, V92, P169, DOI 10.3109/09553002.2016.1135265
Kawanishi M, 2012, J RADIAT RES, V53, P404, DOI 10.1269/jrr.11145
Klosin A, 2017, SCIENCE, V356, P316, DOI 10.1126/science.aah6412
Kuwabara PE, 2003, GENE DEV, V17, P155, DOI 10.1101/gad.1061103
L'Hernault SW, 1997, C ELEGANS, P271
Lampe N, 2017, EVOL APPL, V10, P658, DOI 10.1111/eva.12491
Maremonti E, 2019, SCI TOTAL ENVIRON, V695, DOI 10.1016/j.scitotenv.2019.133835
McGovern M, 2007, BMC DEV BIOL, V7, DOI 10.1186/1471-213X-7-41
Miller MA, 2001, SCIENCE, V291, P2144, DOI 10.1126/science.1057586
Miller MA, 2003, GENE DEV, V17, P187, DOI 10.1101/gad.1028303
Moller AP, 2013, BIOL REV, V88, P226, DOI 10.1111/j.1469-185X.2012.00249.x
Morciano P, 2018, RADIAT RES, V190, P217, DOI 10.1667/RR15083.1
Okazaki R, 2007, RADIAT RES, V167, P51, DOI 10.1667/RR0623.1
Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046
Pender CL, 2018, ELIFE, V7, DOI 10.7554/eLife.36828
Pfaffl MW, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.9.e36
Pfaffl MW, 2004, BIOTECHNOL LETT, V26, P509, DOI 10.1023/B:BILE.0000019559.84305.47
PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007
Reimand J, 2007, NUCLEIC ACIDS RES, V35, pW193, DOI 10.1093/nar/gkm226
Riddle Donald L., 1997, V33, P1
Satta L, 2002, RADIAT ENVIRON BIOPH, V41, P217, DOI 10.1007/s00411-002-0159-2
SATTA L, 1995, MUTAT RES LETT, V347, P129, DOI 10.1016/0165-7992(95)00031-3
Schafer WR, 2005, WORMBOOK ONLINE REV
Schwarz EM, 2012, P NATL ACAD SCI USA, V109, P16246, DOI 10.1073/pnas.1203045109
Smith Geoffrey Battle, 2011, Health Phys, V100, P263, DOI 10.1097/HP.0b013e318208cd44
Stiernagle Theresa, 2006, WormBook, P1
Supek F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021800
Sykes PJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820921651
Teshiba E, 2016, BIOSCI BIOTECH BIOCH, V80, P1436, DOI 10.1080/09168451.2016.1158634
Tharmalingam S, 2017, RADIAT RES, V188, P525, DOI 10.1667/RR14587.1
Tubiana M, 2005, INT J RADIAT ONCOL, V63, P317, DOI 10.1016/j.ijrobp.2005.06.013
Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399
Van Voorhies WA, 2000, J EXP BIOL, V203, P2467
Waggoner LF, 2000, GENETICS, V154, P1181
Wood WB, 1988, NEMATODE CAENORHABDI
Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840
Zimmer C, 2009, SCIENCE, V325, P666, DOI 10.1126/science.325_666
NR 62
TC 11
Z9 11
U1 1
U2 3
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2296-2565
J9 FRONT PUBLIC HEALTH
JI Front. Public Health
PD OCT 16
PY 2020
VL 8
AR 581796
DI 10.3389/fpubh.2020.581796
PG 12
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health
GA OK7DV
UT WOS:000584807300001
PM 33178665
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Roberts, JD
Lillis, J
Pinto, JM
Willmott, AGB
Gautam, L
Davies, C
Lopez-Samanes, A
Del Coso, J
Chichger, H
AF Roberts, Justin D.
Lillis, Joseph
Pinto, Jorge Marques
Willmott, Ashley G. B.
Gautam, Lata
Davies, Christopher
Lopez-Samanes, Alvaro
Del Coso, Juan
Chichger, Havovi
TI The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia (R)) on
Exercise-Induced Oxidative Stress in Healthy Adults
SO NUTRIENTS
LA English
DT Article
DE polyphenols; OliPhenolia (R); oxidative stress; exercise; nutrition;
antioxidants
ID LIPID-PEROXIDATION; ANTIOXIDANT CAPACITY; REACTIVE OXYGEN; VITAMIN-C;
HYDROXYTYROSOL; SUPPLEMENTATION; POLYPHENOLS; BIOAVAILABILITY; HORMESIS;
OIL
AB The role of natural polyphenols in reducing oxidative stress and/or supporting antioxidant mechanisms, particularly relating to exercise, is of high interest. The aim of this study was to investigate OliPhenolia (R) (OliP), a biodynamic and organic olive fruit water phytocomplex, rich in hydroxytyrosol (HT), for the first time within an exercise domain. HT bioavailability from OliP was assessed in fifteen healthy volunteers in a randomized, double-blind, placebo controlled crossover design (age: 30 +/- 2 yrs; body mass: 76.7 +/- 3.9 kg; height: 1.77 +/- 0.02 m), followed by a separate randomized, double-blinded, cohort trial investigating the short-term impact of OliP consumption (2 x 28 mL.d(-1) of OliP or placebo (PL) for 16-days) on markers of oxidative stress in twenty-nine recreationally active participants (42 +/- 2 yrs; 71.1 +/- 2.1 kg; 1.76 +/- 0.02 m). In response to a single 28 mL OliP bolus, plasma HT peaked at 1 h (38.31 +/- 4.76 ng.mL(-1)), remaining significantly elevated (p < 0.001) until 4 h. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and HT were assessed at rest and immediately following exercise (50 min at similar to 75% (V)over dotO(2)max then 10 min intermittent efforts) and at 1 and 24 h post-exercise, before and after the 16-day supplementation protocol. Plasma HT under resting conditions was not detected pre-intervention, but increased to 6.3 +/- 1.6 ng.mL(-1) following OliP only (p < 0.001). OliP demonstrated modest antioxidant effects based on reduced SOD activity postexercise (p = 0.016) and at 24 h (p <= 0.046), and increased GSH immediately post-exercise (p = 0.009) compared with PL. No differences were reported for MDA and CAT activity in response to the exercise protocol between conditions. The phenolic compounds within OliP, including HT, may have specific antioxidant benefits supporting acute exercise recovery. Further research is warranted to explore the impact of OliP following longer-term exercise training, and clinical domains pertinent to reduced oxidative stress.
C1 [Roberts, Justin D.; Lillis, Joseph; Pinto, Jorge Marques; Willmott, Ashley G. B.] Anglia Ruskin Univ, Cambridge Ctr Sport & Exercise Sci, Sch Psychol & Sport Sci, Cambridge CB1 1PT, England.
[Gautam, Lata; Davies, Christopher; Chichger, Havovi] Anglia Ruskin Univ, Sch Life Sci, Cambridge CB1 1PT, England.
[Lopez-Samanes, Alvaro] Univ Francisco de Vitoria, Fac Hlth Sci, Exercise Physiol Grp, Madrid 28223, Spain.
[Del Coso, Juan] Rey Juan Carlos Univ, Ctr Sport Studies, Fuenlabrada 28943, Spain.
C3 Anglia Ruskin University; Anglia Ruskin University; Universidad
Francisco de Vitoria; Universidad Rey Juan Carlos
RP Roberts, JD (corresponding author), Anglia Ruskin Univ, Cambridge Ctr Sport & Exercise Sci, Sch Psychol & Sport Sci, Cambridge CB1 1PT, England.
EM Justin.roberts@aru.ac.uk
OI Roberts, Justin/0000-0002-3169-2041
FU Fattoria La Vialla, Castiglion Fibocchi, Arezzo, Italy
FX This research was funded by Fattoria La Vialla, Castiglion Fibocchi,
Arezzo, Italy for product and related consumables, and
research/analytical costs. This study was undertaken independently of
the funding company.
CR Aguilar T.A.F., 2016, MASTER REGULATOR OXI, P3, DOI DOI 10.5772/65715
Al Fazazi S, 2018, J INT SOC SPORT NUTR, V15, DOI 10.1186/s12970-018-0221-3
Aleman-Jimenez C, 2021, EUR J NUTR, V60, P905, DOI 10.1007/s00394-020-02295-0
Allgrove J, 2011, INT J SPORT NUTR EXE, V21, P113, DOI 10.1123/ijsnem.21.2.113
Ammar A, 2017, NUTRIENTS, V9, DOI 10.3390/nu9080819
[Anonymous], 2017, M24100 ITUR
Arulselvan P, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/5276130
Ashley NT, 2012, ANNU REV ECOL EVOL S, V43, P385, DOI 10.1146/annurev-ecolsys-040212-092530
Aydar A. Y., 2017, EC NUTR, V11, P147
Bailey DM, 2011, EUR J APPL PHYSIOL, V111, P925, DOI 10.1007/s00421-010-1718-x
Bertelli M, 2020, J BIOTECHNOL, V309, P29, DOI 10.1016/j.jbiotec.2019.12.016
Bloomer RJ, 2006, MED SCI SPORT EXER, V38, P1098, DOI 10.1249/01.mss.0000222839.51144.3e
Bloomer RJ, 2005, J STRENGTH COND RES, V19, P276
Bouviere J, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10040537
Bowtell J, 2019, SPORTS MED, V49, pS3, DOI 10.1007/s40279-018-0998-x
Bryant RJ, 2003, J STRENGTH COND RES, V17, P792, DOI 10.1519/00124278-200311000-00027
Cases J, 2017, NUTRIENTS, V9, DOI 10.3390/nu9040421
Chai SC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11020228
D'Archivio M, 2010, INT J MOL SCI, V11, P1321, DOI 10.3390/ijms11041321
Dominguez-Perles R, 2017, EUR J NUTR, V56, P215, DOI 10.1007/s00394-015-1071-2
Eynon N, 2010, PHYSIOL GENOMICS, V41, P78, DOI 10.1152/physiolgenomics.00199.2009
Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146
Fisher-Wellman Kelsey, 2009, Dyn Med, V8, P1, DOI 10.1186/1476-5918-8-1
Foster C, 2001, J STRENGTH COND RES, V15, P109, DOI 10.1519/00124278-200102000-00019
Ganesan K, 2017, NUTRIENTS, V9, DOI 10.3390/nu9050455
Goldfarb AH, 2007, APPL PHYSIOL NUTR ME, V32, P1124, DOI 10.1139/H07-078
Goldsmith CD, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19071937
Gomez-Cabrera MC, 2008, FREE RADICAL BIO MED, V44, P126, DOI 10.1016/j.freeradbiomed.2007.02.001
Goncalves MC, 2011, CLINICS, V66, P1537, DOI 10.1590/S1807-59322011000900005
Gonzalez-Santiago M, 2010, PHARMACOL RES, V61, P364, DOI 10.1016/j.phrs.2009.12.016
Huang Y, 2015, J NUTR BIOCHEM, V26, P1401, DOI 10.1016/j.jnutbio.2015.08.001
Hurst RD, 2019, FRONT NUTR, V6, DOI 10.3389/fnut.2019.00073
Hussain Tarique, 2016, Oxid Med Cell Longev, V2016, P7432797
Ishikawa T., 2021, OLIVES OLIVE OIL HLT, P625
James CA, 2015, SCAND J MED SCI SPOR, V25, P190, DOI 10.1111/sms.12376
Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061
Ji LL, 1999, P SOC EXP BIOL MED, V222, P283, DOI 10.1046/j.1525-1373.1999.d01-145.x
Jowko E, 2011, NUTR RES, V31, P813, DOI 10.1016/j.nutres.2011.09.020
KANTER MM, 1993, J APPL PHYSIOL, V74, P965, DOI 10.1152/jappl.1993.74.2.965
Kashi DS, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102389
Katerji M, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/1279250
Kawamura T, 2018, ANTIOXIDANTS-BASEL, V7, DOI 10.3390/antiox7090119
Kliszczewicz B, 2015, J HUM KINET, V47, P81, DOI 10.1515/hukin-2015-0064
Kupusarevic J, 2019, SPORTS, V7, DOI 10.3390/sports7040084
Lamprecht M, 2015, Antioxidants in Sport Nutrition, P1
Lamprecht M, 2009, INT J SPORT NUTR EXE, V19, P385, DOI 10.1123/ijsnem.19.4.385
Leaf DA, 1997, MED SCI SPORT EXER, V29, P1036, DOI 10.1097/00005768-199708000-00008
Malaguti M, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/825928
Manach C, 2004, AM J CLIN NUTR, V79, P727, DOI 10.1093/ajcn/79.5.727
Martinez-Huelamo M, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6040073
Minich DM, 2019, NUTRIENTS, V11, DOI 10.3390/nu11092073
Miro-Casas E, 2003, CLIN CHEM, V49, P945, DOI 10.1373/49.6.945
Moldogazieva NT, 2018, FREE RADICAL RES, V52, P507, DOI 10.1080/10715762.2018.1457217
Morillas-Ruiz J, 2005, EUR J APPL PHYSIOL, V95, P543, DOI 10.1007/s00421-005-0017-4
Morrison D, 2015, FREE RADICAL BIO MED, V89, P852, DOI 10.1016/j.freeradbiomed.2015.10.412
Nikolaidis MG, 2006, MED SCI SPORT EXER, V38, P1443, DOI 10.1249/01.mss.0000228938.24658.5f
Nimse SB, 2015, RSC ADV, V5, P27986, DOI 10.1039/c4ra13315c
O'Dowd Y, 2004, BIOCHEM PHARMACOL, V68, P2003, DOI 10.1016/j.bcp.2004.06.023
Pandey KB, 2009, OXID MED CELL LONGEV, V2, P270, DOI 10.4161/oxim.2.5.9498
Papadopoulou A, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/8273160
Pastor A, 2016, J CHROMATOGR A, V1437, P183, DOI 10.1016/j.chroma.2016.02.016
Powers SK, 2011, J PHYSIOL-LONDON, V589, P2129, DOI 10.1113/jphysiol.2010.201327
Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7
Rickards L, 2022, J INT SOC SPORT NUTR, V19, P336, DOI 10.1080/15502783.2022.2091412
Rickards L, 2021, NUTRIENTS, V13, DOI 10.3390/nu13092988
Riva A, 2018, MINERVA MED, V109, P285, DOI 10.23736/S0026-4806.18.05681-1
Roberts JD, 2021, NUTRIENTS, V13, DOI 10.3390/nu13030764
Roberts JD, 2016, NUTRIENTS, V8, DOI 10.3390/nu8110733
Robles-Almazan M, 2018, FOOD RES INT, V105, P654, DOI 10.1016/j.foodres.2017.11.053
Sadowska-Krpa E, 2008, MED SPORT, V12, P1, DOI DOI 10.2478/V10036-008-0001-2
Diaz MS, 2022, NUTRIENTS, V14, DOI 10.3390/nu14194085
Shakoor H, 2021, NUTRIENTS, V13, DOI 10.3390/nu13030728
Somerville V, 2017, SPORTS MED, V47, P1589, DOI 10.1007/s40279-017-0675-5
Sureda A, 2014, CURR PHARM BIOTECHNO, V15, P373, DOI 10.2174/1389201015666140813123843
Turck D, 2017, EFSA J, V15, DOI 10.2903/j.efsa.2017.4728
Visioli F, 2003, J NUTR, V133, P2612, DOI 10.1093/jn/133.8.2612
Visioli F, 1998, BIOCHEM BIOPH RES CO, V247, P60, DOI 10.1006/bbrc.1998.8735
Yavari Abbas, 2015, Asian J Sports Med, V6, pe24898, DOI 10.5812/asjsm.24898
Zaragoza C, 2020, MOLECULES, V25, DOI 10.3390/molecules25041017
Zrelli H, 2011, EUR J PHARMACOL, V660, P275, DOI 10.1016/j.ejphar.2011.03.045
NR 80
TC 1
Z9 1
U1 1
U2 1
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2072-6643
J9 NUTRIENTS
JI Nutrients
PD DEC
PY 2022
VL 14
IS 23
AR 5156
DI 10.3390/nu14235156
PG 21
WC Nutrition & Dietetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Nutrition & Dietetics
GA 7A5JJ
UT WOS:000898491900001
PM 36501186
OA Green Accepted, gold
DA 2023-03-13
ER
PT J
AU Liu, SQ
Wang, C
Hou, J
Wang, PF
Miao, LZ
Fan, XL
You, GX
Xu, Y
AF Liu, Songqi
Wang, Chao
Hou, Jun
Wang, Peifang
Miao, Lingzhan
Fan, Xiulei
You, Guoxiang
Xu, Yi
TI Effects of Ag and Ag2S nanoparticles on denitrification in sediments
SO WATER RESEARCH
LA English
DT Article
DE Ag nanoparticles; Denitrification; Toxicity; Isotope labeling; Sediment
ID SILVER SULFIDE NANOPARTICLES; ANAEROBIC AMMONIUM OXIDATION;
NITROUS-OXIDE REDUCTASE; MICROBIAL COMMUNITIES; ENGINEERED
NANOMATERIALS; METABOLIC-ACTIVITY; NITRATE REDUCTION; NOSZ GENES; SOIL;
IMPACTS
AB The widespread use of commercial silver nanoparticles (Ag NPs) inevitably results in their increased release into natural waters and subsequent deposition in sediments, requiring the environmental impact of such deposition to be closely investigated. Hence, the effects of Ag NPs, polyvinylpyrrolidone (PVP)-Ag NPs, and sliver sulfide nanoparticles (Ag2S NPs) on denitrification-induced gas production (N2O and N-15-N-2), and denitrifying microbes in freshwater sediments were investigated. Slurry experiments (8 h) combined with a (NO3-)-N-15 addition technique were performed to determine the gaseous production. The abundance of relative functional genes (nirK, nirS and nosZ) and the composition of functional community were determined through RT-PCR and high-throughput sequencing, respectively. The obtained results showed that the toxicity of NPs on denitrification depended on their type (Ag+ > Ag NPs > PVP-Ag NPs > Ag2S NPs) and concentration, e.g., all 1 mg/L NPs exhibited no effects on denitrification, whereas evident hormesis effect-induced acceleration was observed in the case of Ag+. Conversely, 10 mg/L Ag+ and Ag NPs significantly inhibited the release rates of N2O and N-2 by decreasing the abundance of functional genes (nirK and/or nirS) and the predominant bacteria Paracoccus. PVP-Ag and Ag2S NPs had no effects on N-2 release rates and the composition of denitrifiers, however, inhibited the emission of N2O (by reducing the abundance of nirK), suggesting that normal denitrification-induced N-2 formation in sediments could still be sustained when the N2O production decrease lied within a certain range. Further, the inhibiting ability of Ag-containing NPs was caused by their intrinsic nanotoxicity to functional microbes rather than by the general toxicity of Ag+. Besides, Ag2S NPs (as a main detoxification form of AgNPs) were revealed to be intrinsically nanotoxic to denitrifiers, albeit showing the lowest inhibitory effect among the three tested NPs. Thus, this study demonstrated that the inhibitory effect of Ag-containing NPs on denitrification in sediments depends on their morphology and type, implying that the stability and toxicity of Ag-containing NPs should be considered with caution. (C) 2018 Elsevier Ltd. All rights reserved.
C1 [Liu, Songqi; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; Fan, Xiulei; You, Guoxiang; Xu, Yi] Hohai Univ, Coll Environm, Key Lab Integrated Regulat & Resources Dev Shallo, Minist Educ, Nanjing 210098, Jiangsu, Peoples R China.
C3 Hohai University
RP Hou, J; Miao, LZ (corresponding author), Hohai Univ, Coll Environm, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China.
EM hhuhjyhj@126.com; mlz1988@126.com
RI Wang, Chao/GXF-8353-2022; Miao, Lingzhan/AAH-8282-2019; Miao,
lingzhan/AAE-4683-2020; Hou, Jun/K-1122-2012
OI Hou, Jun/0000-0002-0412-4874
FU Creative Research Groups of China [51421006]; National Natural Science
Funds for Excellent Young Scholar [51722902]; Outstanding Youth Fund of
Natural Science Foundation of Jiangsu, China [BK20160038]; National
Natural Science Foundation of China [51709081]; Fundamental Research
Funds for the Central Universities [B17020016]; Priority Academic
Program Development of Jiangsu Higher Education In-stitutions (PAPD)
FX We are grateful for the grants from the projects supported by the
Creative Research Groups of China (No. 51421006), the National Natural
Science Funds for Excellent Young Scholar (No. 51722902), the
Outstanding Youth Fund of Natural Science Foundation of Jiangsu, China
(BK20160038), the National Natural Science Foundation of China (No.
51709081), the Fundamental Research Funds for the Central Universities
(No. B17020016), and Priority Academic Program Development of Jiangsu
Higher Education In-stitutions (PAPD). Besides, we also thank the help
from Professor Lu Zhang of Nanjing Institute of Geography & Limnology
Chinese Academy of Sciences.
CR Angel BM, 2013, CHEMOSPHERE, V93, P359, DOI 10.1016/j.chemosphere.2013.04.096
Antizar-Ladislao B, 2015, MAR POLLUT BULL, V99, P104, DOI 10.1016/j.marpolbul.2015.07.051
Bao SP, 2016, ENVIRON POLLUT, V219, P696, DOI 10.1016/j.envpol.2016.06.071
Beddow J, 2017, ENVIRON MICROBIOL, V19, P500, DOI 10.1111/1462-2920.13441
Blaser SA, 2008, SCI TOTAL ENVIRON, V390, P396, DOI 10.1016/j.scitotenv.2007.10.010
Bonaglia S, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6133
Bradford A, 2009, ENVIRON SCI TECHNOL, V43, P4530, DOI 10.1021/es9001949
Chen J, 2014, CHEMOSPHERE, V104, P141, DOI 10.1016/j.chemosphere.2013.10.082
Choi OK, 2009, WATER SCI TECHNOL, V59, P1699, DOI 10.2166/wst.2009.205
Colman BP, 2012, ECOTOXICOLOGY, V21, P1867, DOI 10.1007/s10646-012-0920-5
Cornelis G, 2014, CRIT REV ENV SCI TEC, V44, P2720, DOI 10.1080/10643389.2013.829767
Doolette CL, 2015, J HAZARD MATER, V300, P788, DOI 10.1016/j.jhazmat.2015.08.012
Durenkamp M, 2016, ENVIRON POLLUT, V211, P399, DOI 10.1016/j.envpol.2015.12.063
Ellis LJA, 2016, SCI TOTAL ENVIRON, V568, P95, DOI 10.1016/j.scitotenv.2016.05.199
Fabrega J, 2011, ENVIRON INT, V37, P517, DOI 10.1016/j.envint.2010.10.012
Fabrega J, 2009, ENVIRON SCI TECHNOL, V43, P7285, DOI 10.1021/es803259g
Fan XL, 2017, CHEM ENG J, V310, P317, DOI 10.1016/j.cej.2016.10.123
Fernandes SO, 2016, ESTUAR COAST SHELF S, V179, P39, DOI 10.1016/j.ecss.2015.10.009
Garner KL, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2503-2
Giles ME, 2017, SOIL BIOL BIOCHEM, V106, P90, DOI 10.1016/j.soilbio.2016.11.028
Gottschalk F, 2013, ENVIRON POLLUT, V181, P287, DOI 10.1016/j.envpol.2013.06.003
Gottschalk F, 2009, ENVIRON SCI TECHNOL, V43, P9216, DOI 10.1021/es9015553
Gui MY, 2017, BIORESOURCE TECHNOL, V235, P325, DOI 10.1016/j.biortech.2017.03.131
Hallin S, 2009, ISME J, V3, P597, DOI 10.1038/ismej.2008.128
Harter J, 2016, SCI TOTAL ENVIRON, V562, P379, DOI 10.1016/j.scitotenv.2016.03.220
Harter J, 2014, ISME J, V8, P660, DOI 10.1038/ismej.2013.160
Hashimoto Y, 2017, J HAZARD MATER, V322, P318, DOI 10.1016/j.jhazmat.2015.09.001
He SY, 2016, CHEMOSPHERE, V147, P195, DOI 10.1016/j.chemosphere.2015.12.055
Henry S, 2006, APPL ENVIRON MICROB, V72, P5181, DOI 10.1128/AEM.00231-06
Hou LJ, 2015, ENVIRON SCI TECHNOL, V49, P326, DOI 10.1021/es504433r
Jacobson AR, 2005, ENVIRON POLLUT, V135, P1, DOI 10.1016/j.envpol.2004.10.017
Jahangir MMR, 2017, WATER RES, V111, P254, DOI 10.1016/j.watres.2017.01.015
Jiang HS, 2017, ENVIRON POLLUT, V223, P395, DOI 10.1016/j.envpol.2017.01.036
Jiao ZH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102564
Judy JD, 2015, ENVIRON POLLUT, V206, P256, DOI 10.1016/j.envpol.2015.07.002
Keller AA, 2013, J NANOPART RES, V15, DOI 10.1007/s11051-013-1692-4
Huynh KA, 2014, ENVIRON SCI TECH LET, V1, P361, DOI 10.1021/ez5002177
Kim H, 2016, WATER RES, V106, P51, DOI 10.1016/j.watres.2016.09.048
Kwok KWH, 2016, NANOTOXICOLOGY, V10, P1306, DOI 10.1080/17435390.2016.1206150
Li L, 2015, ENVIRON SCI TECHNOL, V50, P188
Li LXY, 2017, ENVIRON SCI TECHNOL, V51, P7920, DOI 10.1021/acs.est.7b01738
Li LXY, 2016, ENVIRON SCI TECHNOL, V50, P13342, DOI 10.1021/acs.est.6b04042
Liu JY, 2010, ACS NANO, V4, P6903, DOI 10.1021/nn102272n
Lok CN, 2007, J BIOL INORG CHEM, V12, P527, DOI 10.1007/s00775-007-0208-z
Ma TW, 2010, J ENVIRON SCI-CHINA, V22, P304, DOI 10.1016/S1001-0742(09)60109-1
Miao LZ, 2018, WATER RES, V129, P287, DOI 10.1016/j.watres.2017.11.014
Miao LZ, 2017, ENVIRON POLLUT, V224, P771, DOI 10.1016/j.envpol.2017.01.017
Miao Y, 2015, WATER RES, V76, P43, DOI 10.1016/j.watres.2015.02.042
Michotey V, 2000, APPL ENVIRON MICROB, V66, P1564, DOI 10.1128/AEM.66.4.1564-1571.2000
Moore JD, 2016, ENVIRON SCI TECHNOL, V50, P2641, DOI 10.1021/acs.est.5b05054
Morales SE, 2010, ISME J, V4, P799, DOI 10.1038/ismej.2010.8
Muhling M, 2009, MAR ENVIRON RES, V68, P278, DOI 10.1016/j.marenvres.2009.07.001
Ollivier J, 2010, APPL ENVIRON MICROB, V76, P7903, DOI 10.1128/AEM.01252-10
Pang CF, 2016, NANOTOXICOLOGY, V10, P129, DOI 10.3109/17435390.2015.1024295
Philippot L, 2007, ADV AGRON, V96, P249, DOI 10.1016/S0065-2113(07)96003-4
Philippot L, 2011, GLOBAL CHANGE BIOL, V17, P1497, DOI 10.1111/j.1365-2486.2010.02334.x
Praetorius A, 2012, ENVIRON SCI TECHNOL, V46, P6705, DOI 10.1021/es204530n
Reinsch BC, 2012, ENVIRON SCI TECHNOL, V46, P6992, DOI 10.1021/es203732x
Risgaard-Petersen N, 2004, AQUAT MICROB ECOL, V36, P293, DOI 10.3354/ame036293
Sadovnikov Stanislav I., 2016, Nano-Structures & Nano-Objects, V7, P81, DOI 10.1016/j.nanoso.2016.06.004
Samarajeewa AD, 2017, ENVIRON POLLUT, V220, P504, DOI 10.1016/j.envpol.2016.09.094
Seitzinger S, 2008, NATURE, V452, P162, DOI 10.1038/452162a
Sheng ZY, 2017, J ENVIRON MANAGE, V191, P290, DOI 10.1016/j.jenvman.2017.01.028
Sheng ZY, 2011, WATER RES, V45, P6039, DOI 10.1016/j.watres.2011.08.065
Sigg L, 2015, ENVIRON POLLUT, V206, P582, DOI 10.1016/j.envpol.2015.08.017
Stegemeier JP, 2015, ENVIRON SCI TECHNOL, V49, P8451, DOI 10.1021/acs.est.5b01147
Sullivan MJ, 2013, P NATL ACAD SCI USA, V110, P19926, DOI 10.1073/pnas.1314529110
Suresh AK, 2011, ACTA BIOMATER, V7, P4253, DOI 10.1016/j.actbio.2011.07.007
Thamdrup B, 2002, APPL ENVIRON MICROB, V68, P1312, DOI 10.1128/AEM.68.3.1312-1318.2002
Throback IN, 2004, FEMS MICROBIOL ECOL, V49, P401, DOI 10.1016/j.femsec.2004.04.011
USEPA, 2014, UND GLOB WARM POT
VandeVoort AR, 2012, IND BIOTECHNOL, V8, P358, DOI DOI 10.1089/IND.2012.0026
Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w
Xu HJ, 2014, ENVIRON SCI TECHNOL, V48, P9391, DOI 10.1021/es5021058
Yan C, 2013, WATER RES, V47, P3654, DOI 10.1016/j.watres.2013.04.025
Yang XY, 2012, ENVIRON SCI TECHNOL, V46, P1119, DOI 10.1021/es202417t
Yang Y, 2013, ENVIRON TOXICOL CHEM, V32, P1488, DOI 10.1002/etc.2230
Yao XL, 2016, ENVIRON POLLUT, V219, P501, DOI 10.1016/j.envpol.2016.05.073
Yin GY, 2014, ENVIRON SCI TECHNOL, V48, P9555, DOI 10.1021/es501261s
Yu T, 2012, ENVIRON MONIT ASSESS, V184, P4367, DOI 10.1007/s10661-011-2270-9
Yuan ZH, 2015, CHEM ENG J, V276, P83, DOI 10.1016/j.cej.2015.04.059
Zhang CQ, 2016, WATER RES, V88, P403, DOI 10.1016/j.watres.2015.10.025
Zhao YQ, 2013, CHEMOSPHERE, V93, P2124, DOI 10.1016/j.chemosphere.2013.07.063
Zheng X, 2014, ENVIRON SCI TECHNOL, V48, P13800, DOI 10.1021/es504251v
NR 84
TC 66
Z9 69
U1 9
U2 213
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0043-1354
J9 WATER RES
JI Water Res.
PD JUN 15
PY 2018
VL 137
BP 28
EP 36
DI 10.1016/j.watres.2018.02.067
PG 9
WC Engineering, Environmental; Environmental Sciences; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Environmental Sciences & Ecology; Water Resources
GA GD5BO
UT WOS:000430520200004
PM 29525425
DA 2023-03-13
ER
PT J
AU Leroy, M
Mosser, T
Maniere, X
Alvarez, DF
Matic, I
AF Leroy, Magali
Mosser, Thomas
Maniere, Xavier
Alvarez, Diana Fernandez
Matic, Ivan
TI Pathogen-induced Caenorhabditis elegans developmental plasticity has a
hormetic effect on the resistance to biotic and abiotic stresses
SO BMC EVOLUTIONARY BIOLOGY
LA English
DT Article
DE Caenorhabditis elegans; Development; Lifespan; Stress resistance;
Hormesis; Pathogens
ID HEAT-SHOCK-FACTOR; HOST-MICROBIAL INTERACTIONS; FREE-LIVING STAGES;
LIFE-SPAN; ESCHERICHIA-COLI; C-ELEGANS; STRONGYLOIDES-RATTI; BACTERIAL
PROLIFERATION; ISOGENIC POPULATIONS; GENETIC-ANALYSIS
AB Background: Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals' stress resistance and longevity.
Results: We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response.
Conclusions: Our study shows that development on pathogens has a hormetic effect on adult nematodes, as it results in increased resistance to different pathogens and to heat shock. Such developmental plasticity of C. elegans nematodes, which are self-fertilizing homozygous animals producing offspring with negligible genetic variation, could increase the probability of survival in changing environments.
C1 [Leroy, Magali; Mosser, Thomas; Maniere, Xavier; Alvarez, Diana Fernandez; Matic, Ivan] Univ Paris 05, Fac Med Paris Descartes, Lab Evolut Med & Mol Genet, Inserm,U1001, F-75730 Paris 15, France.
C3 Institut National de la Sante et de la Recherche Medicale (Inserm);
UDICE-French Research Universities; Universite Paris Cite
RP Matic, I (corresponding author), Univ Paris 05, Fac Med Paris Descartes, Lab Evolut Med & Mol Genet, Inserm,U1001, Sorbonne Paris Cite,156 Rue Vaugirard, F-75730 Paris 15, France.
EM ivan.matic@inserm.fr
FU Nestle Fondation; Servier PhD fellowship; AXA master fellowship; ANR
[ANR-06-BLAN-0406/AGING]
FX This work was supported in part by a 2008 fellowship from the Nestle
Fondation to M.L., Servier PhD fellowship to X.M., AXA master fellowship
to D.F.A. and ANR grant ANR-06-BLAN-0406/AGING to I.M.
CR Adlerberth I, 2006, PEDIATR RES, V59, P96, DOI 10.1203/01.pdr.0000191137.12774.b2
Anyanful A, 2009, CELL HOST MICROBE, V5, P450, DOI 10.1016/j.chom.2009.04.012
Baeriswyl S, 2010, BIOGERONTOLOGY, V11, P53, DOI 10.1007/s10522-009-9228-0
BAKULA M, 1969, J INVERTEBR PATHOL, V14, P365, DOI 10.1016/0022-2011(69)90163-3
BARGMANN CI, 1993, CELL, V74, P515, DOI 10.1016/0092-8674(93)80053-H
Ben-Zvi A, 2009, P NATL ACAD SCI USA, V106, P14914, DOI 10.1073/pnas.0902882106
Braendle C, 2009, J BIOSCIENCES, V34, P543, DOI 10.1007/s12038-009-0073-8
BRENNER S, 1974, GENETICS, V77, P71
Brummel T, 2004, P NATL ACAD SCI USA, V101, P12974, DOI 10.1073/pnas.0405207101
Bry L, 1996, SCIENCE, V273, P1380, DOI 10.1126/science.273.5280.1380
Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015
Casadevall A, 1999, INFECT IMMUN, V67, P3703, DOI 10.1128/IAI.67.8.3703-3713.1999
Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004
Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109
Diard M, 2007, MICROBES INFECT, V9, P214, DOI 10.1016/j.micinf.2006.11.009
Diard M, 2010, J BACTERIOL, V192, P4885, DOI 10.1128/JB.00804-10
DUNNY GM, 1978, P NATL ACAD SCI USA, V75, P3479, DOI 10.1073/pnas.75.7.3479
Ewbank Jonathan J, 2006, WormBook, P1
Felix MA, 2010, CURR BIOL, V20, pR965, DOI 10.1016/j.cub.2010.09.050
Fonte V, 2008, J BIOL CHEM, V283, P784, DOI 10.1074/jbc.M703339200
Gardner MP, 2006, AGING CELL, V5, P315, DOI 10.1111/j.1474-9726.2006.00226.x
Garigan D, 2002, GENETICS, V161, P1101
Garsin DA, 2003, SCIENCE, V300, P1921, DOI 10.1126/science.1080147
Gluckman P, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P1, DOI 10.2277/ 0521847435
Hajdu-Cronin YM, 2004, GENETICS, V168, P1937, DOI 10.1534/genetics.104.028423
Hall SE, 2010, CURR BIOL, V20, P149, DOI 10.1016/j.cub.2009.11.035
Hooper LV, 2002, ANNU REV NUTR, V22, P283, DOI 10.1146/annurev.nutr.22.011602.092259
Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701
Johnson JR, 2006, J INFECT DIS, V194, P1141, DOI 10.1086/507305
Kaper JB, 2004, NAT REV MICROBIOL, V2, P123, DOI 10.1038/nrmicro818
Kim Y, 2012, INFECT IMMUN, V80, P2500, DOI 10.1128/IAI.06350-11
Laforsch C, 2004, J MORPHOL, V262, P701, DOI 10.1002/jmor.10270
Lucas A, 1998, J NUTR, V128, p401S, DOI 10.1093/jn/128.2.401S
Macpherson AJ, 2007, SEMIN IMMUNOL, V19, P57, DOI 10.1016/j.smim.2007.04.001
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Medzhitov R, 2012, SCIENCE, V335, P936, DOI 10.1126/science.1214935
Melo JA, 2012, CELL, V149, P452, DOI 10.1016/j.cell.2012.02.050
Minato K, 2008, PARASITOL RES, V102, P315, DOI 10.1007/s00436-007-0773-7
Mitchell A, 2009, NATURE, V460, P220, DOI 10.1038/nature08112
Mochii M, 1999, P NATL ACAD SCI USA, V96, P15020, DOI 10.1073/pnas.96.26.15020
Moret Y, 2006, P R SOC B, V273, P1399, DOI 10.1098/rspb.2006.3465
O'Halloran DM, 2006, WAG UR FRON, V16, P71
Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194
Partridge FA, 2010, DEV DYNAM, V239, P1330, DOI 10.1002/dvdy.22232
Portal-Celhay C, 2012, BMC MICROBIOL, V12, DOI 10.1186/1471-2180-12-49
Pradel E, 2007, P NATL ACAD SCI USA, V104, P2295, DOI 10.1073/pnas.0610281104
Pujol N, 2001, CURR BIOL, V11, P809, DOI 10.1016/S0960-9822(01)00241-X
Rawls JF, 2004, P NATL ACAD SCI USA, V101, P4596, DOI 10.1073/pnas.0400706101
Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608
Read AF, 2008, PLOS BIOL, V6, P2638, DOI 10.1371/journal.pbio.1000004
Riedler J, 2001, LANCET, V358, P1129, DOI 10.1016/S0140-6736(01)06252-3
Sadd BM, 2006, CURR BIOL, V16, P1206, DOI 10.1016/j.cub.2006.04.047
Schulenburg H, 2007, MOL MICROBIOL, V66, P563, DOI 10.1111/j.1365-2958.2007.05946.x
Shtonda BB, 2006, J EXP BIOL, V209, P89, DOI 10.1242/jeb.01955
Singh V, 2006, CELL CYCLE, V5, P2443, DOI 10.4161/cc.5.21.3434
Stappenbeck TS, 2002, P NATL ACAD SCI USA, V99, P15451, DOI 10.1073/pnas.202604299
Sulston J., 1988, NEMATODE CAENORHABDI, P587
Szewczyk NJ, 2006, J EXP BIOL, V209, P4129, DOI 10.1242/jeb.02492
TAYLOR KA, 1990, J PARASITOL, V76, P545, DOI 10.2307/3282838
von Mutius E, 2000, CLIN EXP ALLERGY, V30, P1230
Walker GA, 2003, FASEB J, V17, P1960, DOI 10.1096/fj.03-0164fje
Wold AE, 1998, ALLERGY, V53, P20, DOI 10.1111/j.1398-9995.1998.tb04953.x
Wu DQ, 2006, EXP GERONTOL, V41, P261, DOI 10.1016/j.exger.2006.01.003
Zhou KI, 2011, AGING-US, V3, P733, DOI 10.18632/aging.100367
NR 64
TC 13
Z9 16
U1 0
U2 28
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2148
J9 BMC EVOL BIOL
JI BMC Evol. Biol.
PD SEP 21
PY 2012
VL 12
AR 187
DI 10.1186/1471-2148-12-187
PG 10
WC Evolutionary Biology; Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Evolutionary Biology; Genetics & Heredity
GA 027DT
UT WOS:000310332700001
PM 22998555
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Carbajal-Valenzuela, IA
Medina-Ramos, G
Caicedo-Lopez, LH
Jimenez-Hernandez, A
Ortega-Torres, AE
Contreras-Medina, LM
Torres-Pacheco, I
Guevara-Gonzalez, RG
AF Carbajal-Valenzuela, Ireri Alejandra
Medina-Ramos, Gabriela
Caicedo-Lopez, Laura Helena
Jimenez-Hernandez, Alejandra
Ortega-Torres, Adrian Esteban
Contreras-Medina, Luis Miguel
Torres-Pacheco, Irineo
Guevara-Gonzalez, Ramon Gerardo
TI Extracellular DNA: Insight of a Signal Molecule in Crop Protection
SO BIOLOGY-BASEL
LA English
DT Review
DE eDNA; elicitors; hormesis; sustainable agriculture; DAMPs
ID CAPSICUM-ANNUUM L.; CLIMATE-CHANGE; INDUCED RESISTANCE;
HYDROGEN-PEROXIDE; SALICYLIC-ACID; EXTRACTION; FUNGAL; SELF; RESPONSES;
PLANTS
AB Simple Summary:& nbsp;Agriculture systems use multiple chemical treatments to prevent pests and diseases, and to fertilize plants and eliminate weeds around the crop. These practices are less accepted by the consumers each day, mostly because of the associated environmental, health, and ecological impact; thus, new sustainable green technologies are being developed to replace the use of chemical products. Among green technologies for agriculture practices, the use of plant elicitors represents an alternative with great potential, and extracellular DNA has shown beneficial effects on important production traits such as defence mechanisms, plant growth and development, and secondary metabolites production that results in yield increment and better-quality food. In this review, we reunite experimental evidence of the natural effect that extracellular DNA has on plants. We also aim to contribute a step closer to the agricultural application of extracellular DNA. Additionally, we suggest that extracellular DNA can have a biostimulant effect on plants, and can be applied as a highly sustainable treatment contributing to the circular economy of primary production.
Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.
C1 [Carbajal-Valenzuela, Ireri Alejandra; Caicedo-Lopez, Laura Helena; Jimenez-Hernandez, Alejandra; Ortega-Torres, Adrian Esteban; Contreras-Medina, Luis Miguel; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon Gerardo] Autonomous Univ Queretaro, CA Biosyst Engn, Campus Amazcala, El Marques 76265, Queretaro, Mexico.
[Medina-Ramos, Gabriela] Polytech Univ Guanajuato, Mol Plant Pathol Lab, Cortazar 38496, Mexico.
RP Guevara-Gonzalez, RG (corresponding author), Autonomous Univ Queretaro, CA Biosyst Engn, Campus Amazcala, El Marques 76265, Queretaro, Mexico.; Medina-Ramos, G (corresponding author), Polytech Univ Guanajuato, Mol Plant Pathol Lab, Cortazar 38496, Mexico.
EM gmedina@upgto.edu.mx
OI CAICEDO LOPEZ, LAURA HELENA/0000-0001-5184-0112; Contreras-Medina, Luis
Miguel/0000-0003-1595-7545; Ortega-Torres, Adrian
Esteban/0000-0001-5501-0968
FU Universidad Politecnica de Guanajuato; Universidad Autonoma de Queretaro
FX Authors thanks to Universidad Politecnica de Guanajuato and Universidad
Autonoma de Queretaro for support this research and publication.
CR Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005
Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004
Agrimonti C, 2021, CRIT REV FOOD SCI, V61, P971, DOI 10.1080/10408398.2020.1749555
Ali S, 2017, FOODS, V6, DOI 10.3390/foods6060039
Armengot L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157168
Azad M. O. K., 2020, Journal of Crop Science and Biotechnology, V24, P51, DOI 10.1007/s12892-020-00058-1
Barbero F, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.686121
Barbero F, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101659
Barbosa C, 2016, MOLECULAR MICROBIAL DIAGNOSTIC METHODS: PATHWAYS TO IMPLEMENTATION FOR THE FOOD AND WATER INDUSTRIES, P135, DOI 10.1016/B978-0-12-416999-9.00007-1
Batyrshina ZS, 2020, BMC PLANT BIOL, V20, DOI 10.1186/s12870-019-2214-z
Beattie P.J., 2005, ENCY TOXICOLOGY, V2, P32
Brandfass C, 2008, INT J MOL SCI, V9, P2306, DOI 10.3390/ijms9112306
Brinkman EP, 2010, J ECOL, V98, P1063, DOI 10.1111/j.1365-2745.2010.01695.x
Brzozowski LJ, 2020, PLANT CELL ENVIRON, V43, P2812, DOI 10.1111/pce.13844
Carella P, 2015, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00775
CCA (Comision para la Cooperacion Ambiental), 2020, CAR GEST RES ORG AM
Chakraborty S, 2020, 3 BIOTECH, V10, DOI 10.1007/s13205-020-2051-7
Chapman J, 2018, CATALYSTS, V8, DOI 10.3390/catal8060238
Chiusano ML, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10081744
Choi HW, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0921-2
COMPTON MM, 1992, CANCER METAST REV, V11, P105, DOI 10.1007/BF00048058
Dalpke A, 2006, INFECT IMMUN, V74, P940, DOI 10.1128/IAI.74.2.940-946.2006
Das T, 2013, ENV MICROBIOL REP, V5, P778, DOI 10.1111/1758-2229.12085
Dellaporta S. L., 1983, PLANT MOL BIOL REP, V1, P19, DOI [DOI 10.1007/BF02712670, 10.1007/BF02712670]
Dhiman D, 2019, J PLANT NUTR, V42, P2507, DOI 10.1080/01904167.2019.1659317
Di XT, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00170
Diaz-Valenzuela E, 2020, MOL BIOL EVOL, V37, P1593, DOI 10.1093/molbev/msaa027
Didenko VV, 2003, AM J PATHOL, V162, P1571, DOI 10.1016/S0002-9440(10)64291-5
Duran-Flores D, 2018, BRAIN BEHAV IMMUN, V72, P78, DOI 10.1016/j.bbi.2017.10.010
Duran-Flores D, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00585
FAOSTAT, 2021, FAOSTAT DAT AGR
Ferrusquia-Jimenez NI, 2021, J PLANT GROWTH REGUL, V40, P451, DOI 10.1007/s00344-020-10129-w
Figueroa-Macias JP, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22020693
Flors V, 2008, PLANT J, V54, P81, DOI 10.1111/j.1365-313X.2007.03397.x
Food and Agricultural Organization (FAO), 2016, PRECIPITATION EARTH
Garcia-Mier L, 2013, INT J MOL SCI, V14, P4203, DOI 10.3390/ijms14024203
Gay NJ, 2014, NAT REV IMMUNOL, V14, P546, DOI 10.1038/nri3713
Gharbi Y, 2017, PHYSIOL MOL PLANT P, V97, P30, DOI 10.1016/j.pmpp.2016.12.001
Hadwiger LA, 2013, PLANT SCI, V201, P98, DOI 10.1016/j.plantsci.2012.11.011
Harju S, 2004, BMC BIOTECHNOL, V4, DOI 10.1186/1472-6750-4-8
HARRISON STL, 1991, BIOTECHNOL ADV, V9, P217, DOI 10.1016/0734-9750(91)90005-G
Heuvelink E., 2005, Tomatoes, DOI 10.1079/9780851993966.0000
Huang HJ, 2019, NEW PHYTOL, V224, P860, DOI 10.1111/nph.15792
Huang XH, 2016, MOL PLANT, V9, P956, DOI 10.1016/j.molp.2016.05.014
Huffaker A, 2006, P NATL ACAD SCI USA, V103, P10098, DOI 10.1073/pnas.0603727103
Huot B, 2014, MOL PLANT, V7, P1267, DOI 10.1093/mp/ssu049
de Aldecoa ALI, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01390
Islam MS, 2017, MICROMACHINES-BASEL, V8, DOI 10.3390/mi8030083
ISOMAA B, 1976, ARCH TOXICOL, V35, P91, DOI 10.1007/BF00372762
Jeter CR, 2004, PLANT CELL, V16, P2652, DOI 10.1105/tpc.104.023945
Ji YC, 2015, VIRULENCE, V6, P515, DOI 10.1080/21505594.2015.1049806
Jones JDG, 2006, NATURE, V444, P323, DOI 10.1038/nature05286
Kabbage M, 2015, PLANT SCI, V233, P53, DOI 10.1016/j.plantsci.2014.12.018
Kabubo-Mariara J, 2007, GLOBAL PLANET CHANGE, V57, P319, DOI 10.1016/j.gloplacha.2007.01.002
Kaczerewska O, 2020, J HAZARD MATER, V392, DOI 10.1016/j.jhazmat.2020.122299
Karakousis A, 2006, J MICROBIOL METH, V65, P38, DOI 10.1016/j.mimet.2005.06.008
Kim HJ, 2006, J AGR FOOD CHEM, V54, P2327, DOI 10.1021/jf051979g
Klosterman SJ, 2001, MOL PLANT PATHOL, V2, P147, DOI 10.1046/j.1364-3703.2001.00062.x
Koning A. N. M. de, 1993, Acta Horticulturae, P141
Kotchoni SO, 2009, MOL BIOL REP, V36, P1633, DOI 10.1007/s11033-008-9362-9
KRIEG AM, 1995, NATURE, V374, P546, DOI 10.1038/374546a0
Lamb A, 2016, NAT CLIM CHANGE, V6, P488, DOI [10.1038/NCLIMATE2910, 10.1038/nclimate2910]
Le Mire G, 2019, PHYTOPATHOLOGY, V109, P409, DOI 10.1094/PHYTO-11-17-0367-R
LORENZ MG, 1991, ARCH MICROBIOL, V156, P319, DOI 10.1007/BF00263005
Lybbert TJ, 2012, FOOD POLICY, V37, P114, DOI 10.1016/j.foodpol.2011.11.001
Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273
Mann TL, 2004, BIOSENS BIOELECTRON, V20, P945, DOI 10.1016/j.bios.2004.06.021
Mazzoleni S, 2015, NEW PHYTOL, V206, P127, DOI 10.1111/nph.13306
McKune S, 2018, CLIM RISK MANAG, V22, P22, DOI 10.1016/j.crm.2018.08.002
Mejia-Teniente L, 2019, PHYSIOL MOL PLANT P, V106, P23, DOI 10.1016/j.pmpp.2018.11.008
Mejia-Teniente L, 2013, INT J MOL SCI, V14, P10178, DOI 10.3390/ijms140510178
Melo P, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10114052
Mittal S, 2018, CLIM RISK MANAG, V22, P42, DOI 10.1016/j.crm.2018.08.003
Morrissey EM, 2015, SOIL BIOL BIOCHEM, V86, P42, DOI 10.1016/j.soilbio.2015.03.020
Nagler M, 2018, APPL MICROBIOL BIOT, V102, P6343, DOI 10.1007/s00253-018-9120-4
Nehete PN, 2020, FRONT AGING NEUROSCI, V12, DOI 10.3389/fnagi.2020.00036
Niger S, 2019, FRONT NUTR, V6, DOI 10.3389/fnut.2019.00140
Ortega-Ortiz H, 2007, J MEX CHEM SOC, V51, P141
Pajerowska-Mukhtar KM, 2012, CURR BIOL, V22, P103, DOI 10.1016/j.cub.2011.12.015
Pane C, 2015, CHEM BIOL TECHNOL AG, V2, DOI 10.1186/s40538-014-0026-9
Park HJ, 2019, MBIO, V10, DOI 10.1128/mBio.02805-18
Park SY, 2014, MYCOBIOLOGY, V42, P311, DOI 10.5941/MYCO.2014.42.4.311
PEARCE G, 1991, SCIENCE, V253, P895, DOI 10.1126/science.253.5022.895
Piccinno F, 2016, J CLEAN PROD, V135, P1085, DOI 10.1016/j.jclepro.2016.06.164
Pontiggia D, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.613259
Praveen Mamidala, 2009, Journal of Phytology, V1, P388
Puglisi I, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9010123
Quintana-Rodriguez E, 2018, SCI HORTIC-AMSTERDAM, V237, P207, DOI 10.1016/j.scienta.2018.03.026
Radkowski A, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111656
Rassizadeh L, 2021, PLANT SCI, V312, DOI 10.1016/j.plantsci.2021.111036
Raza A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8020034
Redmile-Gordon MA, 2014, SOIL BIOL BIOCHEM, V72, P163, DOI 10.1016/j.soilbio.2014.01.025
Rockstrom J, 2009, NATURE, V461, P472, DOI 10.1038/461472a
Rodrigues P, 2018, LETT APPL MICROBIOL, V66, P32, DOI 10.1111/lam.12822
Rouphael Y, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00040
Rowhani P, 2011, AGR FOREST METEOROL, V151, P449, DOI 10.1016/j.agrformet.2010.12.002
Salleh MAM, 2011, DESALINATION, V280, P1, DOI 10.1016/j.desal.2011.07.019
Samadi SH, 2020, RENEW ENERG, V149, P1077, DOI 10.1016/j.renene.2019.10.109
Sanabria N, 2008, NEW PHYTOL, V178, P503, DOI 10.1111/j.1469-8137.2008.02403.x
Scarlat N, 2010, WASTE MANAGE, V30, P1889, DOI 10.1016/j.wasman.2010.04.016
Schlee M, 2016, NAT REV IMMUNOL, V16, P566, DOI 10.1038/nri.2016.78
Serrano-Jamaica LM, 2021, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.581891
Sharma U, 2014, COMMUN SOIL SCI PLAN, V45, P2647, DOI 10.1080/00103624.2014.941854
Tabrika Ilyass, 2020, Organic Agriculture, V10, P229, DOI 10.1007/s13165-019-00268-0
Taha RS, 2020, S AFR J BOT, V128, P42, DOI 10.1016/j.sajb.2019.09.014
Thomsen PF, 2015, BIOL CONSERV, V183, P4, DOI 10.1016/j.biocon.2014.11.019
Thornton PK, 2010, AGR SYST, V103, P73, DOI 10.1016/j.agsy.2009.09.003
Torti A, 2015, MAR GENOM, V24, P185, DOI 10.1016/j.margen.2015.08.007
Tran TM, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005686
Turaki A. A., 2017, African Journal of Biotechnology, V16, P1354, DOI 10.5897/AJB2017.15942
van Butselaar T, 2020, TRENDS PLANT SCI, V25, P566, DOI 10.1016/j.tplants.2020.02.002
Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762
Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053
Vega-Munoz I, 2018, FUNCT PLANT BIOL, V45, P1065, DOI 10.1071/FP18011
Waha K, 2013, GLOBAL ENVIRON CHANG, V23, P130, DOI 10.1016/j.gloenvcha.2012.11.001
Wang D, 2007, CURR BIOL, V17, P1784, DOI 10.1016/j.cub.2007.09.025
Wei YC, 2017, FISH SHELLFISH IMMUN, V63, P270, DOI 10.1016/j.fsi.2017.02.026
Wen FS, 2009, PLANT PHYSIOL, V151, P820, DOI 10.1104/pp.109.142067
Whitehead SR, 2019, ANN BOT-LONDON, V123, P1029, DOI 10.1093/aob/mcz010
Yakushiji S, 2009, J GEN PLANT PATHOL, V75, P227, DOI 10.1007/s10327-009-0162-4
Zehra A, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0198-2
Zulfiqar F, 2020, PLANT SCI, V295, DOI 10.1016/j.plantsci.2019.110194
NR 122
TC 4
Z9 4
U1 6
U2 15
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-7737
J9 BIOLOGY-BASEL
JI Biology-Basel
PD OCT
PY 2021
VL 10
IS 10
AR 1022
DI 10.3390/biology10101022
PG 20
WC Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Life Sciences & Biomedicine - Other Topics
GA WP7IX
UT WOS:000713301600001
PM 34681122
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Ramos, PB
Colombo, GM
Schmitz, MJ
Simiao, CS
Machado, KD
Werhli, AV
Costa, LDF
Yunes, JS
Prentice, C
Wasielesky, W
Monserrat, JM
AF Ramos, Patricia B.
Colombo, Grecica M.
Schmitz, Marcos J.
Simiao, Cleber S.
Machado, Karina dos Santos
Werhli, Adriano, V
Fonseca Costa, Luiza Dy
Yunes, Joao Sarkis
Prentice, Carlos
Wasielesky, Wilson
Monserrat, Jose M.
TI Chemoprotection mediated by acai berry (Euterpe oleracea) in white
shrimp Litopenaeus vannamei exposed to the cyanotoxin saxitoxin analyzed
by in vivo assays and docking modeling
SO AQUATIC TOXICOLOGY
LA English
DT Article
DE Antioxidant supplements; Neurotoxin; Hormesis; Molecular docking; Shrimp
rearing
ID PARALYTIC SHELLFISH TOXINS; SITE-DIRECTED MUTAGENESIS; OXIDATIVE STRESS;
LIPOIC ACID; BIOACTIVE METABOLITES; GROWTH-PERFORMANCE; ANTIOXIDANT;
RESPONSES; BOONE; MART.
AB Saxitoxin (STX) is a neumtoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit a:cal Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 degrees C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized a:cal pulp (10%), in addition to the control diet. After, shrimps (7.21 +/- 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 mu g/g), A (10% of acaf) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of acai supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation.
C1 [Colombo, Grecica M.; Schmitz, Marcos J.; Simiao, Cleber S.; Prentice, Carlos; Wasielesky, Wilson; Monserrat, Jose M.] Fed Univ Rio Grande FURG, Grad Program Aquiculture, Inst Oceanog IO, Rio Grande, RS, Brazil.
[Ramos, Patricia B.; Colombo, Grecica M.; Schmitz, Marcos J.; Simiao, Cleber S.; Monserrat, Jose M.] Fundacao Univ Fed Rio Grande, Lab Funct Biochem Aquat Organisms BIFOA, Rio Grande, RS, Brazil.
[Machado, Karina dos Santos; Werhli, Adriano, V] Fundacao Univ Fed Rio Grande, Ctr Computat Sci C3, Rio Grande, RS, Brazil.
[Fonseca Costa, Luiza Dy; Yunes, Joao Sarkis] Fundacao Univ Fed Rio Grande, Cyanobacteria & Ficotoxin Lab, Rio Grande, RS, Brazil.
[Prentice, Carlos] Fundacao Univ Fed Rio Grande, Sch Food Chem EQA, Rio Grande, RS, Brazil.
[Wasielesky, Wilson] Fundacao Univ Fed Rio Grande, Lab Carcinoculture, Rio Grande, RS, Brazil.
[Monserrat, Jose M.] Fundacao Univ Fed Rio Grande, Inst Biol Sci ICB, Rio Grande, RS, Brazil.
C3 Universidade Federal do Rio Grande; Universidade Federal do Rio Grande;
Universidade Federal do Rio Grande; Universidade Federal do Rio Grande;
Universidade Federal do Rio Grande; Universidade Federal do Rio Grande;
Universidade Federal do Rio Grande
RP Monserrat, JM (corresponding author), Fed Univ Rio Grande FURG, Grad Program Aquiculture, Inst Oceanog IO, Rio Grande, RS, Brazil.; Monserrat, JM (corresponding author), Fundacao Univ Fed Rio Grande, Lab Funct Biochem Aquat Organisms BIFOA, Rio Grande, RS, Brazil.; Monserrat, JM (corresponding author), Fundacao Univ Fed Rio Grande, Inst Biol Sci ICB, Rio Grande, RS, Brazil.
EM monserrat_jm@furg.br
OI dos Santos Simiao, Cleber/0000-0003-2091-0485
FU CNPq [439582/2018-0, 150718/2017-9]
FX J.M. Monserrat, C. Prentice, J.S. Yunes, and W. Wasielesky Jr. are
productivity fellow from Brazilian agency CNPq. Part of this study was
supported with funds of CNPq given to P.B.Ramos (Process number
150718/2017-9) . K.S. Machado has support of CNPq funding (Process
number 439582/2018-0) . J.M. Monserrat dedicates this study to Dr.
Carlos Prentice for all the years of kindness and friendship.
CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034
Almandoz G.O., 2019
Amado LL, 2010, ENVIRON INT, V36, P226, DOI 10.1016/j.envint.2009.10.010
Amado LL, 2011, ARCH ENVIRON CON TOX, V60, P319, DOI 10.1007/s00244-010-9594-2
Amado LL, 2009, SCI TOTAL ENVIRON, V407, P2115, DOI 10.1016/j.scitotenv.2008.11.038
Araoz R, 2010, TOXICON, V56, P813, DOI 10.1016/j.toxicon.2009.07.036
Garzon GA, 2017, FOOD CHEM, V217, P364, DOI 10.1016/j.foodchem.2016.08.107
Baba Shahid P., 2018, Current Opinion in Toxicology, V7, P133, DOI 10.1016/j.cotox.2018.03.005
Barros L, 2015, IND CROP PROD, V76, P318, DOI 10.1016/j.indcrop.2015.05.086
Basica B, 2019, AQUAT TOXICOL, V208, P196, DOI 10.1016/j.aquatox.2019.01.005
Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002
Chen SJ, 2017, AQUAC RES, V48, P4608, DOI 10.1111/are.13284
Colombo GM, 2020, AQUAC RES, V51, P1551, DOI 10.1111/are.14503
Contreras-Vergara CA, 2008, BIOCHIMIE, V90, P968, DOI 10.1016/j.biochi.2008.02.005
Costa PR, 2012, AQUAT TOXICOL, V106, P42, DOI 10.1016/j.aquatox.2011.08.023
Martins ACD, 2018, AQUACULT NUTR, V24, P1255, DOI 10.1111/anu.12663
Martins ACD, 2015, MAR FRESHW BEHAV PHY, V48, P279, DOI 10.1080/10236244.2015.1041240
Yamaguchi KKD, 2015, FOOD CHEM, V179, P137, DOI 10.1016/j.foodchem.2015.01.055
Calado SLD, 2020, CHEMOSPHERE, V238, DOI 10.1016/j.chemosphere.2019.124616
Enamorado AD, 2015, COMP BIOCHEM PHYS A, V188, P9, DOI 10.1016/j.cbpa.2015.05.023
FAO, 2018, STAT WORLD FISH AQ 2, P227
Fracalossi D.M., 2013, NUTRIAQUA NUTRIAO AL
Goncalves-Soares D, 2012, MAR ENVIRON RES, V75, P54, DOI 10.1016/j.marenvres.2011.07.007
Guzman-Guillen R, 2017, TOXINS, V9, DOI 10.3390/toxins9060175
Huang IS, 2019, HARMFUL ALGAE, V83, P42, DOI 10.1016/j.hal.2018.11.008
Ikawa M, 1997, HYDROBIOLOGIA, V356, P143, DOI 10.1023/A:1003103726520
Juarez-Martinez AB, 2017, J BIOCHEM MOL TOXIC, V31, DOI 10.1002/jbt.21838
Kang J, 2012, FOOD CHEM, V133, P671, DOI 10.1016/j.foodchem.2012.01.048
Kim S, 2019, NUCLEIC ACIDS RES, V47, pD1102, DOI 10.1093/nar/gky1033
Kutter MT, 2014, COMP BIOCHEM PHYS C, V162, P70, DOI 10.1016/j.cbpc.2014.03.008
Laskowski RA, 2011, J CHEM INF MODEL, V51, P2778, DOI 10.1021/ci200227u
Liu G, 2017, FISH SHELLFISH IMMUN, V67, P19, DOI 10.1016/j.fsi.2017.05.038
Liu ZF, 2018, CHEMOSPHERE, V203, P139, DOI 10.1016/j.chemosphere.2018.03.179
Lobato RO, 2013, COMP BIOCHEM PHYS A, V165, P491, DOI 10.1016/j.cbpa.2013.03.015
MacKenzie AL, 2014, NEW ZEAL J MAR FRESH, V48, P430, DOI 10.1080/00288330.2014.911191
Mardones JI, 2015, HARMFUL ALGAE, V49, P40, DOI 10.1016/j.hal.2015.09.001
Leon DCM, 2018, AQUAC RES, V49, P3569, DOI 10.1111/are.13823
Morris GM, 2009, J COMPUT CHEM, V30, P2785, DOI 10.1002/jcc.21256
Negri AP, 2004, AQUACULTURE, V232, P91, DOI 10.1016/S0044-8486(03)00487-3
O'Neill K, 2017, BASIC CLIN PHARMACOL, V120, P390, DOI 10.1111/bcpt.12701
OSHIMA Y, 1995, J AOAC INT, V78, P528
Pacheco L., 2016, PHARM ANAL ACTA, V07, DOI [10.4172/2153-2435.1000479, DOI 10.4172/2153-2435.1000479]
Pala D, 2018, CLIN NUTR, V37, P618, DOI 10.1016/j.clnu.2017.02.001
Pan C, 2019, J SCI FOOD AGR, V99, P1719, DOI 10.1002/jsfa.9361
Gaona CAP, 2016, AQUACULT ENG, V72-73, P65, DOI 10.1016/j.aquaeng.2016.03.004
Quintana Lopez A., 1931, EFFECT REARING CONDI, V47, P303, DOI [10.3856/vol47-issue2-fulltext-10, DOI 10.3856/VOL47-ISSUE2-FULLTEXT-10]
Ramos P, 2018, TOXICOLOGY, V393, P171, DOI 10.1016/j.tox.2017.11.004
Ramos P, 2017, ENVIRON TOXICOL CHEM, V36, P1728, DOI 10.1002/etc.3544
Ramos PB, 2014, HARMFUL ALGAE, V37, P68, DOI 10.1016/j.hal.2014.04.002
Rodriguez Bernal E, 2017, INT J AQUACUL FISHER, P062, DOI [10.17352/2455-8400.000030, DOI 10.17352/2455-8400.000030]
Rosas VT, 2019, COMP BIOCHEM PHYS C, V218, P46, DOI 10.1016/j.cbpc.2018.12.009
Rourke WA, 2008, J AOAC INT, V91, P589
Detoni AMS, 2016, TOXICON, V110, P51, DOI 10.1016/j.toxicon.2015.12.003
Samet James M., 2018, Current Opinion in Toxicology, V7, P60, DOI 10.1016/j.cotox.2017.10.008
Schmitz MJ, 2020, FISH SHELLFISH IMMUN, V103, P464, DOI 10.1016/j.fsi.2020.05.055
Searle S., 2006, VARIANCE COMPONENTS
Seus V.R., 2016, P 31 ANN ACM S APPL, P31
Shin C, 2018, FOOD RES INT, V108, P274, DOI 10.1016/j.foodres.2018.03.061
Silva S.M., 2020, ZOOTECHNICAL PERFORM
Smith FMJ, 2011, TOXICON, V57, P566, DOI 10.1016/j.toxicon.2010.12.020
Smith JL, 2008, AQUACULTURE, V280, P5, DOI 10.1016/j.aquaculture.2008.05.007
Sterling T, 2015, J CHEM INF MODEL, V55, P2324, DOI 10.1021/acs.jcim.5b00559
Takser L, 2016, TOXICOL REP, V3, P180, DOI 10.1016/j.toxrep.2015.12.008
Turner AD, 2011, ANAL BIOANAL CHEM, V399, P1257, DOI 10.1007/s00216-010-4428-7
van de Riet J, 2011, J AOAC INT, V94, P1154
Vinagre T.M., 2002, PHYSL BIOCEM ZOOL
Wade N.M., 2015, PENAEUS MONODON AQUA, V449, P78, DOI [10.1016/j.aquaculture.2015.01.023, DOI 10.1016/J.AQUACULTURE.2015.01.023]
Wasielesky W, 2006, AQUACULTURE, V258, P396, DOI 10.1016/j.aquaculture.2006.04.030
Wu X, 2019, CHEMOSPHERE, V229, P332, DOI 10.1016/j.chemosphere.2019.04.210
Zar JH., 1984, BIOSTAT ANAL, V4, P324
Zhang B, 2015, FOOD CONTROL, V51, P114, DOI 10.1016/j.foodcont.2014.11.016
Zheng X, 2015, TOXICON, V101, P41, DOI 10.1016/j.toxicon.2015.04.017
Zhou ZY, 2018, CHEMOSPHERE, V192, P66, DOI 10.1016/j.chemosphere.2017.10.083
NR 73
TC 1
Z9 1
U1 1
U2 3
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0166-445X
EI 1879-1514
J9 AQUAT TOXICOL
JI Aquat. Toxicol.
PD MAY
PY 2022
VL 246
AR 106148
DI 10.1016/j.aquatox.2022.106148
EA MAR 2022
PG 12
WC Marine & Freshwater Biology; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Marine & Freshwater Biology; Toxicology
GA 0Y7WV
UT WOS:000790598000002
PM 35364510
DA 2023-03-13
ER
PT J
AU Strobl, V
Camenzind, D
Minnameyer, A
Walker, S
Eyer, M
Neumann, P
Straub, L
AF Strobl, Verena
Camenzind, Domenic
Minnameyer, Angela
Walker, Stephanie
Eyer, Michael
Neumann, Peter
Straub, Lars
TI Positive Correlation between Pesticide Consumption and Longevity in
Solitary Bees: Are We Overlooking Fitness Trade-Offs?
SO INSECTS
LA English
DT Article
DE glyphosate-based herbicides; neonicotinoid; lethal and sublethal
effects; combined exposure; Osmia bicornis
ID NEONICOTINOID INSECTICIDE; INDUCED HORMESIS; OSMIA-CORNUTA; EUROPEAN
BEE; HONEY-BEES; EXPOSURE; GLYPHOSATE; REPRODUCTION; HYMENOPTERA;
POLLINATOR
AB Simple Summary
The possible impacts of neonicotinoids combined with glyphosate-based herbicides on bees are unknown. Here, we show no effects of chronic exposure to field-realistic dosages of Roundup(R) and clothianidin alone or combined on food consumption and cumulative survival of adult female bees, Osmia bicornis in the laboratory. However, a positive correlation between exposure and longevity was revealed. Our data suggest a possibly neglected trade-off between survival and reproduction in insect toxicology.
The ubiquitous use of pesticides is one major driver for the current loss of biodiversity, and the common practice of simultaneously applying multiple agrochemicals may further contribute. Insect toxicology currently has a strong focus on survival to determine the potential hazards of a chemical routinely used in risk evaluations. However, studies revealing no effect on survival or even indicating enhanced survival are likely to be misleading, if potential trade-offs between survival and other physiological factors are overlooked. Here, we used standard laboratory experiments to investigate the sublethal (i.e., food consumption) and lethal (i.e., survival) effects of two common agricultural pesticides (Roundup(R) and clothianidin) on adult female solitary bees, Osmia bicornis. The data showed no significant effect of the treatment on cumulative survival; however, a significant positive correlation between herbicide and insecticide exposure and age was revealed, i.e., bees exposed to higher dosages lived longer. As no significant differences in daily food consumption were observed across treatment groups, increased food intake can be excluded as a factor leading to the prolonged survival. While this study does not provide data on fitness effects, two previous studies using solitary bees observed significant negative effects of neonicotinoid insecticides on fitness, yet not on survival. Thus, we conjecture that the observed non-significant effects on longevity may result from a trade-off between survival and reproduction. The data suggest that a focus on survival can lead to false-negative results and it appears inevitable to include fitness or at least tokens of fitness at the earliest stage in future risk assessments.
C1 [Strobl, Verena; Camenzind, Domenic; Minnameyer, Angela; Walker, Stephanie; Neumann, Peter; Straub, Lars] Univ Bern, Vetsuisse Fac, Inst Bee Hlth, CH-3012 Bern, Switzerland.
[Eyer, Michael] Univ Neuchatel, Lab Soil Biodivers, CH-2000 Neuchatel, Switzerland.
C3 University of Bern; University of Neuchatel
RP Strobl, V; Straub, L (corresponding author), Univ Bern, Vetsuisse Fac, Inst Bee Hlth, CH-3012 Bern, Switzerland.
EM verena.strobl@vetsuisse.unibe.ch; domenic.camenzind@vetsuisse.unibe.ch;
angela.minnameyer@vetsuisse.unibe.ch; stephanie.walker13@gmail.com;
michael-eyer@bluewin.ch; peter.neumann@vetsuisse.unibe.ch;
lars.straub@vetsuisse.unibe.ch
RI Straub, Lars/AAP-2820-2020; Neumann, Peter/C-9964-2015
OI Straub, Lars/0000-0002-2091-1499; Neumann, Peter/0000-0001-5163-5215;
Eyer, Michael/0000-0003-1047-1714
FU Bundesamt fur Umwelt (BAFU) [16.0091.PJ/R102-1664]; Agroscope; Vinetum
Foundation
FX This research was funded by the Bundesamt fur Umwelt (BAFU)
(16.0091.PJ/R102-1664) to L.S., by Agroscope to L.S. and P.N. and by the
Vinetum Foundation to P.N.
CR Abiru N, 2020, DIABETOL INT, V11, P1, DOI 10.1007/s13340-019-00415-8
Alaux C, 2010, BIOL LETTERS, V6, P562, DOI 10.1098/rsbl.2009.0986
Arena M, 2014, ECOTOXICOLOGY, V23, P324, DOI 10.1007/s10646-014-1190-1
Assalin MR, 2010, J ENVIRON SCI HEAL B, V45, P89, DOI 10.1080/03601230903404598
Azpiazu C, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-50255-4
Baron GL, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0123
Beadle K, 2019, PLOS GENET, V15, DOI 10.1371/journal.pgen.1007903
Belsky J, 2020, FRONT ENV SCI-SWITZ, V8, DOI 10.3389/fenvs.2020.00081
Benbrook CM, 2016, ENVIRON SCI EUR, V28, DOI 10.1186/s12302-016-0070-0
Berenbaum MR, 2015, CURR OPIN INSECT SCI, V10, P51, DOI 10.1016/j.cois.2015.03.005
Blacquiere T, 2012, ECOTOXICOLOGY, V21, P973, DOI 10.1007/s10646-012-0863-x
Bonmatin JM, 2015, ENVIRON SCI POLLUT R, V22, P35, DOI 10.1007/s11356-014-3332-7
Botias C, 2015, ENVIRON SCI TECHNOL, V49, P12731, DOI 10.1021/acs.est.5b03459
Brittain CA, 2010, BASIC APPL ECOL, V11, P106, DOI 10.1016/j.baae.2009.11.007
Bruhl CA, 2019, FRONT ENV SCI-SWITZ, V7, DOI 10.3389/fenvs.2019.00177
Cardoso P, 2020, BIOL CONSERV, V242, DOI 10.1016/j.biocon.2020.108426
Castaneda LE, 2009, J EXP BIOL, V212, P1185, DOI 10.1242/jeb.020990
Colgan TJ, 2019, MOL ECOL, V28, P1964, DOI 10.1111/mec.15047
Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042
Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440
Dickel F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191256
du Rand EE, 2015, SCI REP-UK, V5, DOI 10.1038/srep11779
Duke SO, 2008, PEST MANAG SCI, V64, P319, DOI 10.1002/ps.1518
EFSA, 2015, EFSA J, V13, DOI 10.2903/j.efsa.2015.4302
European Food Safety Authority, 2013, EFSA J, V11, DOI 10.2903/j.efsa.2013.3295
Farina WM, 2019, INSECTS, V10, DOI 10.3390/insects10100354
Fauser-Misslin A, 2014, J APPL ECOL, V51, P450, DOI 10.1111/1365-2664.12188
Goulson D, 2015, SCIENCE, V347, DOI 10.1126/science.1255957
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Hallmann CA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185809
Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008
Heard MS, 2017, SCI TOTAL ENVIRON, V578, P357, DOI 10.1016/j.scitotenv.2016.10.180
Humann-Guilleminot S, 2019, J APPL ECOL, V56, P1502, DOI 10.1111/1365-2664.13392
Kessler SC, 2015, NATURE, V521, P74, DOI 10.1038/nature14414
Ladurner E, 2005, APIDOLOGIE, V36, P379, DOI 10.1051/apido:2005025
Mallqui KSV, 2014, J ECON ENTOMOL, V107, P860, DOI 10.1603/EC13526
Matsuda K, 2020, ANNU REV PHARMACOL, V60, P241, DOI 10.1146/annurev-pharmtox-010818-021747
Gonalons CM, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.176644
Mertens M, 2018, ENVIRON SCI POLLUT R, V25, P5298, DOI 10.1007/s11356-017-1080-1
Mesnage R, 2019, FOOD CHEM TOXICOL, V128, P137, DOI 10.1016/j.fct.2019.03.053
Mogren CL, 2016, SCI REP-UK, V6, DOI 10.1038/srep29608
Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166
Motta EVS, 2018, P NATL ACAD SCI USA, V115, P10305, DOI 10.1073/pnas.1803880115
Neumann P., 2015, 26 EASAC GERM NAT AC
Nicholls E, 2017, PEERJ, V5, DOI 10.7717/peerj.3417
Powney GD, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08974-9
Rinkevich FD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139841
Rubio F., 2014, J ENV ANAL TOXICOL, V4, P249, DOI [10.4172/2161-0525.1000249, DOI 10.4172/2161-0525.1000249]
Rundlof M, 2015, NATURE, V521, P77, DOI 10.1038/nature14420
Sandrock C, 2014, AGR FOREST ENTOMOL, V16, P119, DOI 10.1111/afe.12041
Schlappi D, 2020, COMMUN BIOL, V3, DOI 10.1038/s42003-020-1066-2
Schmehl DR, 2014, J INSECT PHYSIOL, V71, P177, DOI 10.1016/j.jinsphys.2014.10.002
Schwenke RA, 2016, ANNU REV ENTOMOL, V61, P239, DOI 10.1146/annurev-ento-010715-023924
Seide VE, 2018, ENVIRON POLLUT, V243, P1854, DOI 10.1016/j.envpol.2018.10.020
Sgolastra F, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0887
Sgolastra F, 2017, PEST MANAG SCI, V73, P1236, DOI 10.1002/ps.4449
Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2
Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x
Straub L, 2020, NAT ECOL EVOL, V4, P895, DOI 10.1038/s41559-020-1194-6
Straub L, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0506
Straub L, 2015, CURR OPIN INSECT SCI, V12, P109, DOI 10.1016/j.cois.2015.10.010
Strobl V, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214597
Stuligross C, 2020, P ROY SOC B-BIOL SCI, V287, DOI 10.1098/rspb.2020.1390
Topping CJ, 2020, SCIENCE, V367, P360, DOI 10.1126/science.aay1144
TORCHIO PF, 1985, J KANSAS ENTOMOL SOC, V58, P42
TORCHIO PF, 1987, ENVIRON ENTOMOL, V16, P664, DOI 10.1093/ee/16.3.664
Turturro A, 2000, HUM EXP TOXICOL, V19, P320, DOI 10.1191/096032700678815981
Vazquez DE, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-67477-6
Westrich P, 1989, WILDBIENEN BADEN WUR
Whitehorn PR, 2012, SCIENCE, V336, P351, DOI 10.1126/science.1215025
Wood TJ, 2017, ENVIRON SCI POLLUT R, V24, P17285, DOI 10.1007/s11356-017-9240-x
Woodcock BA, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12459
NR 72
TC 5
Z9 5
U1 3
U2 17
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-4450
J9 INSECTS
JI Insects
PD NOV
PY 2020
VL 11
IS 11
AR 819
DI 10.3390/insects11110819
PG 12
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA OW9KU
UT WOS:000593197600001
PM 33233695
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Giani, F
Masto, R
Trovato, MA
Malandrino, P
Russo, M
Pellegriti, G
Vigneri, P
Vigneri, R
AF Giani, Fiorenza
Masto, Roberta
Trovato, Maria Antonietta
Malandrino, Pasqualino
Russo, Marco
Pellegriti, Gabriella
Vigneri, Paolo
Vigneri, Riccardo
TI Heavy Metals in the Environment and Thyroid Cancer
SO CANCERS
LA English
DT Review
DE thyroid cancer; metal carcinogenesis; metals; metal pollution; metal
mixture; thyroid stem cells; volcanic pollution
ID VOLCANIC AREA; UNITED-STATES; DNA-DAMAGE; OXIDATIVE STRESS;
RISK-ASSESSMENT; TRACE-ELEMENTS; SELF-RENEWAL; TOXICITY; TUNGSTEN; CELLS
AB Simple Summary: Epidemiological observations indicate that the incidence of thyroid cancer is increased in volcanic areas. Indeed, in the volcanic area of Sicily, where residents are biocontaminated by volcano-originated, low-level, multi-elemental metal pollution, the thyroid cancer incidence is double that in non-volcanic areas. The aim of this review is to summarize the evidence suggesting that chronic exposure to heavy metals, even at slightly increased environmental concentrations that cause no harm to mature thyrocytes, may alter the biology of stem/precursor thyroid cells, leading to a predisposition to malignant transformation. Both in vitro and in vivo experiments support this possibility; this phenomenon involves a variety of molecular mechanisms depending on the metal and the target cell involved. The role of the increased and generalized metal pollution in our ecosystem, paralleling the worldwide increase in thyroid cancer in recent decades, requires more attention and further studies. In recent decades, the incidence of thyroid cancer has increased more than most other cancers, paralleling the generalized worldwide increase in metal pollution. This review provides an overview of the evidence supporting a possible causative link between the increase in heavy metals in the environment and thyroid cancer. The major novelty is that human thyroid stem/progenitor cells (thyrospheres) chronically exposed to different metals at slightly increased environmentally relevant concentrations show a biphasic increase in proliferation typical of hormesis. The molecular mechanisms include, for all metals investigated, the activation of the extracellular signal-regulated kinase (ERK1/2) pathway. A metal mixture, at the same concentration of individual metals, was more effective. Under the same conditions, mature thyrocytes were unaffected. Preliminary data with tungsten indicate that, after chronic exposure, additional abnormalities may occur and persist in thyrocytes derived from exposed thyrospheres, leading to a progeny population of transformationprone thyroid cells. In a rat model predisposed to develop thyroid cancer, long-term exposure to low levels of metals accelerated and worsened histological signs of malignancy in the thyroid. These studies provide new insight on metal toxicity and carcinogenicity occurring in thyroid cells at a low stage of differentiation when chronically exposed to metal concentrations that are slightly increased, albeit still in the "normal" range.
C1 [Giani, Fiorenza; Masto, Roberta; Malandrino, Pasqualino; Russo, Marco; Pellegriti, Gabriella; Vigneri, Riccardo] Univ Catania, Dept Clin & Expt Med, Garibaldi Nesima Med Ctr, Endocrinol, I-95122 Catania, Italy.
[Trovato, Maria Antonietta] Garibaldi Nesima Med Ctr, Surg Oncol, I-95122 Catania, Italy.
[Vigneri, Paolo] Univ Catania, AOU Policlin Vittorio Emanuele, Med Oncol, I-95125 Catania, Italy.
[Vigneri, Paolo] Univ Catania, AOU Policlin Vittorio Emanuele, Ctr Expt Oncol & Hematol, Dept Clin & Expt Med, I-95125 Catania, Italy.
[Vigneri, Riccardo] CNR, Cristallog Inst, Catania Sect, Via P Gaifami 18, I-95126 Catania, Italy.
C3 Presidio Ospedaliero Garibaldi-Nesima; University of Catania; Presidio
Ospedaliero Garibaldi-Nesima; Azienda Ospedaliera Universitaria
Policlinico Vittorio Emanuele Presidio Ferraotto; University of Catania;
Azienda Ospedaliera Universitaria Policlinico Vittorio Emanuele Presidio
Ferraotto; University of Catania; Consiglio Nazionale delle Ricerche
(CNR)
RP Vigneri, R (corresponding author), Univ Catania, Dept Clin & Expt Med, Garibaldi Nesima Med Ctr, Endocrinol, I-95122 Catania, Italy.; Vigneri, R (corresponding author), CNR, Cristallog Inst, Catania Sect, Via P Gaifami 18, I-95126 Catania, Italy.
EM fiorenza.giani@gmail.com; robertamasto88@gmail.com; maritrov@icloud.com;
p.malandrino@unict.it; mruss@hotmail.it; g.pellegriti@unict.it;
vigneri.p@unict.it; vigneri@unict.it
RI Gianì, Fiorenza/K-8833-2016; Pellegriti, Gabriella/CAH-1780-2022;
VIGNERI, Paolo/K-8504-2016
OI Gianì, Fiorenza/0000-0002-1901-8230; Pellegriti,
Gabriella/0000-0001-6102-379X; Masto, Roberta/0000-0002-4266-6658;
VIGNERI, Paolo/0000-0002-5943-6066
FU Fondazione AIRC (Italy) [19897]
FX This research was funded by Fondazione AIRC (Italy), grant number 19897
to RV.
CR Adjadj E, 2009, LANCET ONCOL, V10, P181, DOI 10.1016/S1470-2045(09)70020-8
Ali H, 2017, ENVIRON CHEM LETT, V15, P329, DOI 10.1007/s10311-016-0601-3
Altenburger R, 2013, ENVIRON TOXICOL CHEM, V32, P1685, DOI 10.1002/etc.2294
Armstrong TA, 2001, J ANIM SCI, V79, P1549
Aschebrook-Kilfoy B, 2013, INT J CANCER, V132, P897, DOI 10.1002/ijc.27659
AXELRAD AA, 1955, CANCER, V8, P339, DOI 10.1002/1097-0142(1955)8:2<339::AID-CNCR2820080214>3.0.CO;2-M
Azriel-Tamir H, 2004, J BIOL CHEM, V279, P51804, DOI 10.1074/jbc.M406581200
Balali-Mood M, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.643972
Barthel A, 2007, ARCH BIOCHEM BIOPHYS, V463, P175, DOI 10.1016/j.abb.2007.04.015
Bizon A, 2017, POSTEP HIG MED DOSW, V71, P98, DOI 10.5604/01.3001.0010.3794
Boffetta P, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77027-9
Boulyga SF, 2004, ANAL BIOANAL CHEM, V380, P198, DOI 10.1007/s00216-004-2699-6
Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172
Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222
Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040
Carpenter RL, 2013, CURR CANCER DRUG TAR, V13, P252
Christensen KLY, 2013, INT J HYG ENVIR HEAL, V216, P624, DOI 10.1016/j.ijheh.2012.08.005
Chung HK, 2016, BIOL TRACE ELEM RES, V171, P54, DOI 10.1007/s12011-015-0502-5
COCLET J, 1989, CLIN ENDOCRINOL, V31, P655, DOI 10.1111/j.1365-2265.1989.tb01290.x
Copat C, 2013, FOOD CHEM TOXICOL, V53, P33, DOI 10.1016/j.fct.2012.11.038
Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133
Davies L, 2014, JAMA OTOLARYNGOL, V140, P317, DOI 10.1001/jamaoto.2014.1
Donaldson K, 2003, FREE RADICAL BIO MED, V34, P1369, DOI 10.1016/S0891-5849(03)00150-3
Dong WW, 2013, MED SCI MONITOR, V19, P49, DOI 10.12659/MSM.883736
Elisei R, 2014, J CLIN ENDOCR METAB, V99, P412, DOI 10.1210/jc.2014-1130
Fada G, 2010, PATHOLOGICA, V102, P405
FAURE R, 1990, BIOCHEM CELL BIOL, V68, P630, DOI 10.1139/o90-089
Fuchs E, 2013, EMBO REP, V14, P39, DOI 10.1038/embor.2012.197
Giani F, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.652675
Giani F, 2019, ENDOCR-RELAT CANCER, V26, P713, DOI 10.1530/ERC-19-0176
Giani F, 2015, J CLIN ENDOCR METAB, V100, pE1168, DOI [10.1210/jc.2014-4163, 10.1210/JC.2014-4163]
GOODMAN MT, 1988, CANCER, V61, P1272, DOI 10.1002/1097-0142(19880315)61:6<1272::AID-CNCR2820610636>3.0.CO;2-8
Gore AC, 2015, ENDOCR REV, V36, P593, DOI 10.1210/er.2015-1093
Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005
Harris RM, 2015, TOXICOL APPL PHARM, V283, P223, DOI 10.1016/j.taap.2015.01.013
HRAFNKELSSON J, 1989, ACTA ONCOL, V28, P785, DOI 10.3109/02841868909092308
Fernandez-Marino AI, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118148
Ivashkevich A, 2012, CANCER LETT, V327, P123, DOI 10.1016/j.canlet.2011.12.025
Jain S, 2018, PLANT SIGNAL BEHAV, V13, DOI 10.1080/15592324.2018.1507401
Jancic SA, 2014, VITAM HORM, V94, P391, DOI 10.1016/B978-0-12-800095-3.00014-6
Jensen CB, 2020, THYROID, V30, P696, DOI 10.1089/thy.2019.0587
Jiang GF, 2009, TOXICOL IN VITRO, V23, P973, DOI 10.1016/j.tiv.2009.06.029
Jung CK, 2014, J CLIN ENDOCR METAB, V99, pE276, DOI 10.1210/jc.2013-2503
KANNO J, 1990, TOXICOL PATHOL, V18, P239, DOI 10.1177/019262339001800202
KAWADA J, 1982, J ENDOCRINOL, V95, P117, DOI 10.1677/joe.0.0950117
Kelly ADR, 2013, TOXICOL SCI, V131, P434, DOI 10.1093/toxsci/kfs324
Kim Hyun Sook, 2010, Korean Journal of Internal Medicine, V25, P399, DOI 10.3904/kjim.2010.25.4.399
Kim J, 2020, NAT REV ENDOCRINOL, V16, P17, DOI 10.1038/s41574-019-0263-x
Kitahara CM, 2020, NAT REV ENDOCRINOL, V16, P617, DOI 10.1038/s41574-020-00414-9
Koutsospyros A, 2006, J HAZARD MATER, V136, P1, DOI 10.1016/j.jhazmat.2005.11.007
La Vecchia C, 2017, NAT REV ENDOCRINOL, V13, P318, DOI 10.1038/nrendo.2017.53
Laulicht F, 2015, TOXICOL APPL PHARM, V288, P33, DOI 10.1016/j.taap.2015.07.003
Li DJ, 2018, MOL MED REP, V17, P4422, DOI 10.3892/mmr.2018.8383
Lim H, 2017, JAMA-J AM MED ASSOC, V317, P1338, DOI 10.1001/jama.2017.2719
Liotta M, 2016, CHEM GEOL, V433, P68, DOI 10.1016/j.chemgeo.2016.03.032
Lu QH, 2019, APPL GEOCHEM, V106, P142, DOI 10.1016/j.apgeochem.2019.05.010
Luca E, 2017, J EXP CLIN CANC RES, V36, DOI 10.1186/s13046-017-0543-z
Maier J, 2006, ENDOCRINOLOGY, V147, P3391, DOI 10.1210/en.2005-1669
Malandrino P, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21103425
Malandrino P, 2020, THYROID, V30, P290, DOI 10.1089/thy.2019.0244
Malandrino P, 2016, ENDOCRINE, V53, P471, DOI 10.1007/s12020-015-0761-0
Malandrino Pasqualino, 2013, Front Endocrinol (Lausanne), V4, P65, DOI 10.3389/fendo.2013.00065
Marcello MA, 2014, ENDOCR-RELAT CANCER, V21, pT235, DOI 10.1530/ERC-14-0131
MAZZAFERRI EL, 1993, NEW ENGL J MED, V328, P553
Meeker JD, 2009, ENVIRON RES, V109, P869, DOI 10.1016/j.envres.2009.06.004
Morales ME, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151367
Nriagu JO, 1996, SCIENCE, V272, P223, DOI 10.1126/science.272.5259.223
Nuttall JR, 2012, NEUROTOX RES, V21, P128, DOI 10.1007/s12640-011-9291-6
Paksoy N, 1989, Asia Pac J Public Health, V3, P231, DOI 10.1177/101053958900300310
Pamphlett R, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0246748
Panier S, 2014, NAT REV MOL CELL BIO, V15, P7, DOI 10.1038/nrm3719
Pellegriti G, 2009, JNCI-J NATL CANCER I, V101, P1575, DOI 10.1093/jnci/djp354
Pelser C, 2009, ANN EPIDEMIOL, V19, P597, DOI 10.1016/j.annepidem.2009.04.002
Pereira M, 2020, THYROID, V30, P1132, DOI 10.1089/thy.2019.0415
Perera FP, 1997, SCIENCE, V278, P1068, DOI 10.1126/science.278.5340.1068
Petrosino V, 2018, BIOMETALS, V31, P285, DOI 10.1007/s10534-018-0091-9
Popoveniuc G, 2012, MED CLIN N AM, V96, P329, DOI 10.1016/j.mcna.2012.02.002
Prins GS, 2014, ENDOCRINOLOGY, V155, P805, DOI 10.1210/en.2013-1955
Pula B, 2012, THYROID RES, V5, DOI 10.1186/1756-6614-5-26
Qian Y, 2003, J INORG BIOCHEM, V96, P271, DOI 10.1016/S0162-0134(03)00235-6
Rana SVS, 2014, BIOL TRACE ELEM RES, V160, P1, DOI 10.1007/s12011-014-0023-7
Rodrigues AS, 2012, ENVIRON INT, V49, P51, DOI 10.1016/j.envint.2012.08.008
Martin JAR, 2018, ENVIRON POLLUT, V239, P438, DOI 10.1016/j.envpol.2018.04.036
Russo M, 2015, ANTICANCER RES, V35, P3995
Sakr HI, 2017, DIAGN PATHOL, V12, DOI 10.1186/s13000-017-0661-0
Samet JM, 1998, AM J PHYSIOL-LUNG C, V275, pL551, DOI 10.1152/ajplung.1998.275.3.L551
Scharf P, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21196996
Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa
Simard EP, 2012, CA-CANCER J CLIN, V62, P118, DOI 10.3322/caac.20141
Singh KB, 2017, BIOMETALS, V30, P517, DOI 10.1007/s10534-017-0019-9
Sodango TH, 2018, J HEALTH POLLUT, V8, P53, DOI 10.5696/2156-9614-8.17.53
Son HY, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15966
Su H, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14101164
Tabrez S, 2014, MUTAT RES-GEN TOX EN, V760, P1, DOI 10.1016/j.mrgentox.2013.11.002
Tchounwou PB., 2012, EXS, V101, P133, DOI [10.1007/978-3-7643-8340-4_6, DOI 10.1007/978-3-7643-8340-4_6]
Thevenod F, 2013, ARCH TOXICOL, V87, P1743, DOI 10.1007/s00204-013-1110-9
Truong T, 2007, EUR J CANCER PREV, V16, P62, DOI 10.1097/01.cej.0000236244.32995.e1
Valko M, 2005, CURR MED CHEM, V12, P1161, DOI 10.2174/0929867053764635
Varrica D, 2014, SCI TOTAL ENVIRON, V470, P117, DOI 10.1016/j.scitotenv.2013.09.058
Vigneri R, 2017, MOL CELL ENDOCRINOL, V457, P73, DOI 10.1016/j.mce.2016.10.027
Vigneri R, 2020, J CLIN ENDOCR METAB, V105, pE2639, DOI 10.1210/clinem/dgaa223
Vigneri R, 2015, CURR OPIN ONCOL, V27, P1, DOI 10.1097/CCO.0000000000000148
Wang YF, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17041451
Wise JTF, 2017, TOXICOL APPL PHARM, V331, P1, DOI 10.1016/j.taap.2017.04.007
Wu XY, 2016, ENVIRON SCI POLLUT R, V23, P8244, DOI 10.1007/s11356-016-6333-x
Xie LS, 2020, ENVIRON HEALTH PERSP, V128, DOI 10.1289/EHP6471
Xing MZ, 2012, ENDOCR-RELAT CANCER, V19, pC7, DOI 10.1530/ERC-11-0360
Xu SH, 2013, J ENDOCRINOL, V218, P125, DOI 10.1530/JOE-13-0029
Yaman M, 2006, CURR MED CHEM, V13, P2513, DOI 10.2174/092986706778201620
Yan KL, 2020, J CLIN ENDOCR METAB, V105, P1770, DOI 10.1210/clinem/dgaa121
Zafra D, 2013, FEBS LETT, V587, P291, DOI 10.1016/j.febslet.2012.11.034
Zaichick V., 2018, J CANC METASTASIS TR, V4, P60, DOI DOI 10.20517/2394-4722.2018.52
ZAICHICK VY, 1995, ANALYST, V120, P817, DOI 10.1039/an9952000817
Zhao HQ, 2014, BIOL TRACE ELEM RES, V162, P87, DOI 10.1007/s12011-014-0102-9
NR 114
TC 11
Z9 11
U1 6
U2 28
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2072-6694
J9 CANCERS
JI Cancers
PD AUG
PY 2021
VL 13
IS 16
AR 4052
DI 10.3390/cancers13164052
PG 18
WC Oncology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Oncology
GA UG2AY
UT WOS:000689063000001
PM 34439207
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Rossnerova, A
Pokorna, M
Svecova, V
Sram, RJ
Topinka, J
Zolzer, F
Rossner, P
AF Rossnerova, Andrea
Pokorna, Michaela
Svecova, Viasta
Sram, Radim J.
Topinka, Jan
Zolzer, Friedo
Rossner, Pavel, Jr.
TI Adaptation of the human population to the environment: Current
knowledge, clues from Czech cytogenetic and "omics" biomonitoring
studies and possible mechanisms
SO MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH
LA English
DT Review
DE Adaptive response; DNA methylation; Environmental exposure; Micronuclei
ID ADAPTIVE-RESPONSE; DNA METHYLATION; ESCHERICHIA-COLI; RADIATION
HORMESIS; GENETIC-DAMAGE; CHROMOSOMAL-ABERRATIONS; GAMMA-IRRADIATION;
ALKYLATING-AGENTS; CORD BLOOD; MICRONUCLEI
AB The human population is continually exposed to numerous harmful environmental stressors, causing negative health effects and/or deregulation of biomarker levels. However, studies reporting no or even positive impacts of some stressors on humans are also sometimes published. The main aim of this review is to provide a comprehensive overview of the last decade of Czech biomonitoring research, concerning the effect of various levels of air pollution (benzo[a]pyrene) and radiation (uranium, X-ray examination and natural radon background), on the differently exposed population groups. Because some results obtained from cytogenetic studies were opposite than hypothesized, we have searched for a meaningful interpretation in genomic/epigenetic studies.
A detailed analysis of our data supported by the studies of others and current epigenetic knowledge, leads to a hypothesis of the versatile mechanism of adaptation to environmental stressors via DNA methylation settings which may even originate in prenatal development, and help to reduce the resulting DNA damage levels. This hypothesis is fully in agreement with unexpected data from our studies (e.g. lower levels of DNA damage in subjects from highly polluted regions than in controls or in subjects exposed repeatedly to a pollutant than in those without previous exposure), and is also supported by differences in DNA methylation patterns in groups from regions with various levels of pollution.
In light of the adaptation hypothesis, the following points may be suggested for future research: (i) the chronic and acute exposure of study subjects should be distinguished; (ii) the exposure history should be mapped including place of residence during the life and prenatal development; (iii) changes of epigenetic markers should be monitored over time.
In summary, investigation of human adaptation to the environment, one of the most important processes of survival, is a new challenge for future research in the field of human biomonitoring that may change our view on the results of biomarker analyses and potential negative health impacts of the environment (C) 2017 The Authors. Published by Elsevier B.V.
C1 [Rossnerova, Andrea; Pokorna, Michaela; Svecova, Viasta; Sram, Radim J.; Topinka, Jan; Rossner, Pavel, Jr.] Czech Acad Sci, Inst Expt Med, Dept Genet Toxicol & Nanotoxicol, Prague 14220 4, Czech Republic.
[Zolzer, Friedo] Univ South Bohemia, Inst Radiol Toxicol & Civil Protect, Ceske Budejovice 37005, Czech Republic.
C3 Czech Academy of Sciences; Institute of Experimental Medicine of the
Czech Academy of Sciences; University of South Bohemia Ceske Budejovice
RP Rossner, P (corresponding author), Inst Expt Med CAS, Dept Genet Toxicol & Nanotoxicol, Videnska 1083, Prague 14220 4, Czech Republic.
EM prossner@biomed.cas.cz
RI Rossnerova, Andrea/AAQ-8369-2021; Rossner, Pavel/H-2569-2014; Topinka,
Jan/H-2551-2014; Rossnerova, Andrea/AAI-4471-2021; Sram,
Radim/S-9574-2019; Rossner, Pavel/AAI-5789-2020; Zölzer,
Friedo/D-7213-2016
OI Rossnerova, Andrea/0000-0001-8576-6950; Rossner,
Pavel/0000-0001-6921-5446; Topinka, Jan/0000-0001-6860-7253; Sram,
Radim/0000-0002-2500-4572; Rossner, Pavel/0000-0001-6921-5446; Zölzer,
Friedo/0000-0002-2428-0313
FU Ministry of Education, Youth and Sports CR [LO1508]; EU
[FP7/ENV-2012-308524-2/CITI-SENSE]
FX The authors thank all current and former staff members of the Laboratory
of Genetic Ecotoxicology and the Department of Genetic Toxicology and
Nanotoxicology, Institute of Experimental Medicine; the staff of the
Institute of Radiology, Toxicology and Civil Protection, University of
South Bohemia, as well as medical staff involved in the research.
Preparation of the manuscript and part of the experiments were supported
by the grant of the Ministry of Education, Youth and Sports CR (#LO1508)
and by the EU program FP7/ENV-2012-308524-2/CITI-SENSE. We would like to
thank Ms. Frances Zatrepalkova for language editing.
CR Andersen ZJ, 2016, ENVIRON INT, V88, P112, DOI 10.1016/j.envint.2015.12.009
ANGELIS K, 1992, MUTAT RES, V273, P271, DOI 10.1016/0921-8777(92)90089-L
Bae S, 2015, INT J MOL MED, V35, P227, DOI 10.3892/ijmm.2014.1994
Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074
Barnthouse Lawrence W., 2009, Integrated Environmental Assessment and Management, V5, P435, DOI 10.1897/IEAM_2008-080.1
Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460
Bernal AJ, 2013, FASEB J, V27, P665, DOI 10.1096/fj.12-220350
Beskid O, 2006, MUTAT RES-FUND MOL M, V594, P20, DOI 10.1016/j.mrfmmm.2005.07.009
Bird A, 2002, GENE DEV, V16, P6, DOI 10.1101/gad.947102
Brody JG, 2003, ENVIRON HEALTH PERSP, V111, P1007, DOI 10.1289/ehp.6310
BROZMANOVA J, 1990, NUCLEIC ACIDS RES, V18, P331, DOI 10.1093/nar/18.2.331
Cao-Lei L, 2014, PLOS ONE, V9
Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024
Chen W. L., 2007, Dose-Response, V5, P63, DOI 10.2203/dose-response.06-105.Chen
Committee on the Epidemiology of Air Pollutants, 1985, EP AIR POLL, P127
Davis FG, 2015, RADIAT RES, V184, P56, DOI 10.1667/RR14023.1
Dejmek J, 1999, ENVIRON HEALTH PERSP, V107, P475, DOI 10.2307/3434630
Dimova EG, 2008, GENET MOL BIOL, V31, P396, DOI 10.1590/S1415-47572008000300002
Dobzhansky T., 1968, Evolutionary Biology, V2, P1
Doudoroff M, 1940, J GEN PHYSIOL, V23, P585, DOI 10.1085/jgp.23.5.585
Dulout FN, 1996, MUTAT RES-GENET TOX, V370, P151, DOI 10.1016/S0165-1218(96)00060-2
Esteller M, 2002, J PATHOL, V196, P1, DOI 10.1002/path.1024
EVANS HJ, 1959, INT J RADIAT BIOL RE, V1, P216, DOI 10.1080/09553005914550311
FENECH M, 1985, MUTAT RES, V147, P29, DOI 10.1016/0165-1161(85)90015-9
Fenech M, 2013, INT J HYG ENVIR HEAL, V216, P541, DOI 10.1016/j.ijheh.2013.01.008
GAUTIER F, 1977, EUR J BIOCHEM, V80, P175, DOI 10.1111/j.1432-1033.1977.tb11869.x
Gourabi H, 1998, MUTAGENESIS, V13, P475, DOI 10.1093/mutage/13.5.475
Guida F, 2015, HUM MOL GENET, V24, P2349, DOI 10.1093/hmg/ddu751
Guo HS, 2014, NATURE, V511, P606, DOI 10.1038/nature13544
Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105
Hemminki K, 2014, EUR J PUBLIC HEALTH, V24, P64, DOI 10.1093/eurpub/cku102
HENNIG UGG, 1988, MUTAT RES, V203, P405, DOI 10.1016/0165-1161(88)90013-1
Henschel S, 2012, INT J PUBLIC HEALTH, V57, P757, DOI 10.1007/s00038-012-0369-6
HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001
Hillman SL, 2015, EPIGENETICS-US, V10, P50, DOI 10.4161/15592294.2014.989741
Hui WWI, 2016, CURR OPIN OBSTET GYN, V28, P105, DOI 10.1097/GCO.0000000000000252
IARC, 2012, IARC MON EV CYT RISK
Izzotti A, 2014, INT J HYG ENVIR HEAL, V217, P601, DOI 10.1016/j.ijheh.2014.01.001
Izzotti A, 2011, MUTAT RES-FUND MOL M, V717, P9, DOI 10.1016/j.mrfmmm.2010.12.008
Jeck WR, 2014, NAT BIOTECHNOL, V32, P453, DOI 10.1038/nbt.2890
JELINEK J, 1988, CARCINOGENESIS, V9, P81, DOI 10.1093/carcin/9.1.81
Kanherkar R.R., 2014, CELL DEV BIOL, V49, P1
Kim M., 2017, EXP MOL MED, V49
Kleibl K, 2002, MUTAT RES-REV MUTAT, V512, P67, DOI 10.1016/S1383-5742(02)00025-X
Ko Y, 2014, WORLD J GASTROENTERO, V20, P1238, DOI 10.3748/wjg.v20.i5.1238
Koestler DC, 2013, ENVIRON HEALTH PERSP, V121, P971, DOI 10.1289/ehp.1205925
Kubota T., 2013, INTECH, P333
Laird PW, 2010, NAT REV GENET, V11, P191, DOI 10.1038/nrg2732
Laufer BI, 2015, EPIGENOMICS-UK, V7, P1259, DOI 10.2217/epi.15.60
Leuraud K, 2015, LANCET HAEMATOL, V2, pE276, DOI 10.1016/S2352-3026(15)00094-0
LINDAHL T, 1988, ANNU REV BIOCHEM, V57, P133, DOI 10.1146/annurev.bi.57.070188.001025
Markunas CA, 2014, ENVIRON HEALTH PERSP, V122, P1147, DOI 10.1289/ehp.1307892
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
MCMICHAEL AJ, 1988, CANCER RES, V48, P751
Mollert AP, 2016, TRENDS ECOL EVOL, V31, P281, DOI 10.1016/j.tree.2016.01.005
MOORE LE, 1993, J TOXICOL ENV HEALTH, V40, P349, DOI 10.1080/15287399309531800
Moran S, 2016, EPIGENOMICS-UK, V8, P389, DOI 10.2217/epi.15.114
MOROHOSHI F, 1993, J BACTERIOL, V175, P6010, DOI 10.1128/JB.175.18.6010-6017.1993
Natarajan AT, 1996, ENVIRON HEALTH PERSP, V104, P445, DOI 10.2307/3432801
Nersesyan A, 2016, MUTAT RES-REV MUTAT, V770, P1, DOI 10.1016/j.mrrev.2016.05.003
Pacchierotti F, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/123484
REID D. D., 1966, NAT CANCER INST MONOGR, V19, P321
Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech
Rojas D, 2015, TOXICOL SCI, V143, P97, DOI 10.1093/toxsci/kfu210
Rossner P, 2015, MUTAT RES-FUND MOL M, V780, P60, DOI 10.1016/j.mrfmmm.2015.08.001
Rossner P, 2013, MUTAGENESIS, V28, P89, DOI 10.1093/mutage/ges057
Rossner P, 2013, MUTAGENESIS, V28, P97, DOI 10.1093/mutage/ges058
Rossner P, 2011, MUTAT RES-FUND MOL M, V713, P76, DOI 10.1016/j.mrfmmm.2011.06.001
Rossnerova A, 2009, MUTAT RES-FUND MOL M, V669, P42, DOI 10.1016/j.mrfmmm.2009.04.008
Rossnerova A., 2009, OCHRANA OVZDUSI, V5-6, P37
Rossnerova A., 2016, EEMGS ANN M, P115
Rossnerova A, 2016, MUTAT RES-FUND MOL M, V793, P32, DOI 10.1016/j.mrfmmm.2016.10.004
Rossnerova A, 2013, MUTAT RES-FUND MOL M, V741, P18, DOI 10.1016/j.mrfmmm.2013.02.003
Rossnerova A, 2011, MUTAT RES-FUND MOL M, V708, P44, DOI 10.1016/j.mrfmmm.2011.01.004
Rossnerova A, 2011, MUTAGENESIS, V26, P169, DOI 10.1093/mutage/geq057
Sanz LA, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-3-110
Schlebusch CM, 2015, MOL BIOL EVOL, V32, P1544, DOI 10.1093/molbev/msv046
Scott BR, 2009, DOSE-RESPONSE, V7, P104, DOI 10.2203/dose-response.08-016.Scott
Seisenberger S, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2011.0330
Shi XP, 2016, ENVIRON RES, V151, P537, DOI 10.1016/j.envres.2016.08.026
Siroux V, 2016, EUR RESPIR REV, V25, P124, DOI 10.1183/16000617.0034-2016
Sokolov M, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17010055
Speit G, 2013, MUTAGENESIS, V28, P375, DOI 10.1093/mutage/get026
Sram R., 2013, ISRN PUBLIC HLTH, P1, DOI DOI 10.1155/2013/416701
Sram RJ, 2016, MUTAT RES-REV MUTAT, V770, P162, DOI 10.1016/j.mrrev.2016.07.009
Sram RJ., 2010, OCHRANA OVZDUSI, V5-6, P3
Stevens M, 2013, GENOME RES, V23, P1541, DOI 10.1101/gr.152231.112
Tobi EW, 2015, INT J EPIDEMIOL, V44, P1211, DOI 10.1093/ije/dyv043
Toprani SM, 2015, MUTAGENESIS, V30, P663, DOI 10.1093/mutage/gev032
VAHTER M, 1995, EUR J PHARM-ENVIRON, V293, P455, DOI 10.1016/0926-6917(95)90066-7
VAUGHAN P, 1991, J BACTERIOL, V173, P3656, DOI 10.1128/JB.173.12.3656-3662.1991
Vineis P, 2017, FASEB J, V31, P2241, DOI 10.1096/fj.201601059RR
VOLKERT MR, 1988, ENVIRON MOL MUTAGEN, V11, P241, DOI 10.1002/em.2850110210
Vrijens K, 2015, ENVIRON HEALTH PERSP, V123, P399, DOI 10.1289/ehp.1408459
*WHO, 2009, WHOHTMTB2009411, pCH1
Wild CP, 2005, CANCER EPIDEM BIOMAR, V14, P1847, DOI 10.1158/1055-9965.EPI-05-0456
Wirgin I, 2011, SCIENCE, V331, P1322, DOI 10.1126/science.1197296
Wojcik A, 2000, HUM ECOL RISK ASSESS, V6, P281, DOI 10.1080/10807030009380063
World Health Organization, 2010, WHO GUID IND AIR QUA
Yang MY, 2011, DNA REPAIR, V10, P595, DOI 10.1016/j.dnarep.2011.03.007
Zaichkina SI, 2016, B EXP BIOL MED+, V161, P24, DOI 10.1007/s10517-016-3336-z
Ziller MJ, 2015, NAT METHODS, V12, P230, DOI [10.1038/NMETH.3152, 10.1038/nmeth.3152]
Zolzer F, 2012, CYTOGENET GENOME RES, V136, P288, DOI 10.1159/000338084
Zolzer F, 2015, CYTOGENET GENOME RES, V147, P17, DOI 10.1159/000441889
Zolzer F, 2013, INT ARCH OCC ENV HEA, V86, P629, DOI 10.1007/s00420-012-0795-z
Zolzer F, 2012, RADIAT ENVIRON BIOPH, V51, P277, DOI 10.1007/s00411-012-0422-0
Zolzer F., 2017, BIOMARKERS, V3, P1
NR 107
TC 20
Z9 20
U1 0
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1383-5742
EI 1388-2139
J9 MUTAT RES-REV MUTAT
JI Mutat. Res.-Rev. Mutat. Res.
PD JUL-SEP
PY 2017
VL 773
BP 188
EP 203
DI 10.1016/j.mrrev.2017.07.002
PG 16
WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology
GA FJ0DI
UT WOS:000412378300012
PM 28927528
OA hybrid
DA 2023-03-13
ER
PT J
AU Zhang, B
Weston, LA
Li, MJ
Zhu, XC
Weston, PA
Feng, FJ
Zhang, BY
Zhang, LJ
Gu, L
Zhang, ZY
AF Zhang, Bao
Weston, Leslie A.
Li, Mingjie
Zhu, Xiaocheng
Weston, Paul A.
Feng, Fajie
Zhang, Bingyong
Zhang, Liuji
Gu, Li
Zhang, Zhongyi
TI Rehmannia glutinosa Replant Issues: Root Exudate-Rhizobiome Interactions
Clearly Influence Replant Success
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE allelopathy; pathogens; phytotoxicity; plant-soil feedbacks; replanting
problems
ID COMPLETE GENOME SEQUENCE; MICROBIAL COMMUNITY; RHIZOSPHERE SOIL;
PHENOLIC-ACIDS; ALLELOCHEMICALS; TOXICITY; ROT; AUTOTOXICITY; PATHOGENS;
DATASETS
AB Production of medicinal tubers of Rehmannia glutinosa is severely hindered by replanting issues. However, a mechanistic understanding of the plant-soil factors associated with replant problems is currently limited. Thus, we aimed to identify the R. glutinosa root exudates, evaluate their potential phytotoxicity and profile the interactions between the plant and its associated rhizobiome. Stereomicroscopy and liquid chromatography coupled to a quadrupole/time of flight mass spectrometer were used to monitor and identify secreted metabolites, respectively. Seedling bioassays were used to evaluate the phytotoxicity of R. glutinosa root exudates. Two complimentary experiments were performed to investigate allelochemical fate in rhizosphere soil and profile the associated microbiota. Root specific microbes were further isolated from R. glutinosa rhizosphere. Impacts of isolated strains were evaluated by co-cultivation on plate and on seedlings in tissue culture, with a focus on their pathogenicity. Interactions between key R. glutinosa root exudates and isolated rhizobiomes were investigated to understand the potential for plant-soil feedbacks. Quantification and phytotoxic analysis of metabolites released from R. glutinosa indicated catalpol was the most abundant and bioactive metabolite in root exudates. Subsequent microbial profiling in soil containing accumulated and ecologically significant levels of catalpol identified several taxa (e.g., Agromyces, Lysobacter, Pseudomonas, Fusarium) that were specifically shifted. Isolation of R. glutinosa rhizobiomes obtained several root specific strains. A significant antagonistic effect between strain Rh7 (Pseudomonas aeruginosa) and two pathogenic strains Rf1 (Fusarium oxysporum) and Rf2 (Fusarium solani) was observed. Notably, the growth of strain Rh7 and catalpol concentration showed a hormesis-like effect. Field investigation further indicated catalpol was increasingly accumulated in the rhizosphere of replanted R. glutinosa, suggesting that interactions of biocontrol agents and pathogens are likely regulated by the presence of bioactive root exudates and in turn impact the rhizo-ecological process. In summary, this research successfully monitored the release of R. glutinosa root exudates, identified several abundant bioactive R. glutinosa secreted metabolites, profiled associated root specific microbes, and investigated the plant-soil feedbacks potentially regulated by catalpol and associated rhizobiomes. Our findings provide new perspectives toward an enhanced understanding R. glutinosa replant problems.
C1 [Zhang, Bao; Li, Mingjie; Feng, Fajie; Gu, Li; Zhang, Zhongyi] Fujian Agr & Forestry Univ, Coll Agr, Minist Educ Genet Breeding & Multiple Utilizat Cr, Key Lab, Fuzhou, Peoples R China.
[Weston, Leslie A.; Zhu, Xiaocheng; Weston, Paul A.] Charles Sturt Univ, Graham Ctr Agr Innovat, Wagga Wagga, NSW, Australia.
[Zhang, Bingyong] Henan Prov Peoples Hosp, Zhengzhou, Peoples R China.
[Zhang, Liuji] Henan Prov Chinese Med Res Inst, Zhengzhou, Peoples R China.
C3 Fujian Agriculture & Forestry University; Charles Sturt University;
Zhengzhou University
RP Gu, L; Zhang, ZY (corresponding author), Fujian Agr & Forestry Univ, Coll Agr, Minist Educ Genet Breeding & Multiple Utilizat Cr, Key Lab, Fuzhou, Peoples R China.
EM Guli5101@163.com; zyzhang@fafu.edu.cn
RI zhang, ZY/HJH-6535-2023; Weston, Leslie/M-4557-2015; Zhu,
Xiaocheng/B-6963-2015
OI Weston, Leslie/0000-0002-1029-7982; Zhu, Xiaocheng/0000-0003-4468-1090
CR Asao T, 2003, SCI HORTIC-AMSTERDAM, V97, P389, DOI 10.1016/S0304-4238(02)00197-8
Bais HP, 2006, ANNU REV PLANT BIOL, V57, P233, DOI 10.1146/annurev.arplant.57.032905.105159
Bais Harsh P., 2008, V14, P241, DOI 10.1007/978-3-540-74543-3_11
Bever JD, 2012, ANNU REV MICROBIOL, V66, P265, DOI 10.1146/annurev-micro-092611-150107
Bouhot D., 1983, P 3 COLL SFP VERS FR, P9
Buell CR, 2003, P NATL ACAD SCI USA, V100, P10181, DOI 10.1073/pnas.1731982100
Caporaso JG, 2012, ISME J, V6, P1621, DOI 10.1038/ismej.2012.8
Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303
CHAO A, 1984, SCAND J STAT, V11, P265
Chen A., 2018, ACTA PHYSIOL PLANT, V40, P1
Chen Hui, 2007, Yingyong Shengtai Xuebao, V18, P2755
Chen Y, 2016, FRONT MAR SCI, V3, DOI 10.3389/fmars.2016.00257
Cipollini D, 2012, J CHEM ECOL, V38, P714, DOI 10.1007/s10886-012-0133-7
Commission N. P., 2017, PHARM PEOPL REP CHIN
Dong LL, 2018, SOIL BIOL BIOCHEM, V125, P64, DOI 10.1016/j.soilbio.2018.06.028
Dong LL, 2018, ACTA PHARM SIN B, V8, P272, DOI 10.1016/j.apsb.2017.12.011
Du Jia-fang, 2009, Shengtaixue Zazhi, V28, P445
Du Jiafang, 2009, Zhongguo Zhong Yao Za Zhi, V34, P948
Edwards J, 2015, P NATL ACAD SCI USA, V112, pE911, DOI 10.1073/pnas.1414592112
Exposito RG, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.01243
Fujii Y., 2005, 4 WORLD C ALL, P21
Gao Wei-Wei, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1665
Garibaldi A, 2013, PLANT DIS, V97, P848, DOI 10.1094/PDIS-12-12-1168-PDN
Guo LL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124002
He WJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08799-w
Hofmann A, 2009, J APPL BOT FOOD QUAL, V82, P193
Huang PM, 1999, PRINCIPLES AND PRACTICES IN PLANT ECOLOGY, P287
Huo Y, 2018, ARCH MICROBIOL, V200, P1457, DOI 10.1007/s00203-018-1560-9
Inderjit, 2005, PLANT SOIL, V274, P227, DOI 10.1007/s11104-004-0159-x
Inderjit, 2001, AGRON J, V93, P79
Jiao XL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44530-7
Jilani G, 2008, ANN MICROBIOL, V58, P351, DOI 10.1007/BF03175528
Kidd PS, 2001, J EXP BOT, V52, P1339, DOI 10.1093/jexbot/52.359.1339
Kobayashi Katsuichiro, 2004, Weed Biology and Management, V4, P1, DOI 10.1111/j.1445-6664.2003.00112.x
Kong CH, 2008, J AGR FOOD CHEM, V56, P11734, DOI 10.1021/jf802666p
Kong CH, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06429-1
Langenhoven SD, 2018, PHYTOPATHOL MEDITERR, V57, P519, DOI 10.14601/Phytopathol_Mediterr-23921
Langille MGI, 2013, NAT BIOTECHNOL, V31, P814, DOI 10.1038/nbt.2676
Latif S, 2020, PLANT SOIL, V447, P199, DOI 10.1007/s11104-019-04225-4
Lee YS, 2013, BIOCONTROL SCI TECHN, V23, P1427, DOI 10.1080/09583157.2013.840359
Leys NMEJ, 2004, APPL ENVIRON MICROB, V70, P1944, DOI 10.1128/AEM.70.4.1944-1955.2004
Li MJ, 2015, J EXP BOT, V66, P5837, DOI 10.1093/jxb/erv288
Li ZF, 2016, SCI REP-UK, V6, DOI 10.1038/srep33962
Li ZhenFang, 2013, Zhongguo Shengtai Nongye Xuebao / Chinese Journal of Eco-Agriculture, V21, P1426, DOI 10.3724/SP.J.1011.2013.01426
Llado S, 2009, BIODEGRADATION, V20, P593, DOI 10.1007/s10532-009-9247-1
Lu HN, 2019, SCI TOTAL ENVIRON, V653, P658, DOI 10.1016/j.scitotenv.2018.10.385
Lu HS, 2011, INT J SYST EVOL MICR, V61, P404, DOI 10.1099/ijs.0.020206-0
Ludwig J.A., 1988, STAT ECOLOGY
Madigan MT, 2006, BROCK BIOL MICROORGA
Magoc T, 2011, BIOINFORMATICS, V27, P2957, DOI 10.1093/bioinformatics/btr507
Manici LM, 2013, APPL SOIL ECOL, V72, P207, DOI 10.1016/j.apsoil.2013.07.011
McCully ME, 2008, NEW PHYTOL, V180, P193, DOI 10.1111/j.1469-8137.2008.02520.x
Mishra S, 2013, APPL MICROBIOL BIOT, V97, P5659, DOI 10.1007/s00253-013-4885-y
Nguyen NH, 2016, FUNGAL ECOL, V20, P241, DOI 10.1016/j.funeco.2015.06.006
PARKER C., 1966, WEEDS, V14, P117, DOI 10.2307/4040941
Paulsen IT, 2005, NAT BIOTECHNOL, V23, P873, DOI 10.1038/nbt1110
Qiu JG, 2010, CHIN J EXP TRADIT ME, V16, P110
Ren X, 2017, IND CROP PROD, V97, P302, DOI 10.1016/j.indcrop.2016.12.035
Scotto la Massese N, 1970, C R J ETUDES, V26, P19
Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60
Shieh JP, 2011, J AGR FOOD CHEM, V59, P3747, DOI 10.1021/jf200069t
Singh N, 2016, ECOTOX ENVIRON SAFE, V125, P25, DOI 10.1016/j.ecoenv.2015.11.020
Solecka D, 1999, PLANT PHYSIOL BIOCH, V37, P491, DOI 10.1016/S0981-9428(99)80054-0
Spring S, 2001, INT J SYST EVOL MICR, V51, P1463, DOI 10.1099/00207713-51-4-1463
Stringlis IA, 2018, P NATL ACAD SCI USA, V115, pE5213, DOI 10.1073/pnas.1722335115
[苏文华 Su Wenhua], 2005, [中草药, Chinese Traditional and Herbal Drugs], V36, P1415
Sun Yuechun, 2011, Zhongguo Zhong Yao Za Zhi, V36, P387
Tao XQ, 2007, PROCESS BIOCHEM, V42, P401, DOI 10.1016/j.procbio.2006.09.018
Uren N.C., 2000, RHIZOSPHERE, P35
[王娟娟 Wang Juanjuan], 2015, [中成药, Chinese Traditional Patent Medicine], V37, P1981
Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07
Wang RF, 2018, APPL SOIL ECOL, V130, P271, DOI 10.1016/j.apsoil.2018.07.001
Wang TX, 2005, J HENAN AGR SCI J HENAN AGR SCI, V10, P69
Wang XR, 2019, ACTA PHYSIOL PLANT, V41, DOI 10.1007/s11738-019-2847-4
Wang YJ, 2016, J ANAL METHODS CHEM, V2016, DOI 10.1155/2016/4956589
WESTON LA, 1989, J CHEM ECOL, V15, P1855, DOI 10.1007/BF01012272
Westphal A, 2002, PLANT SOIL, V242, P197, DOI 10.1023/A:1016297603427
White JR, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000352
White T.J., 1990, PCR PROTOCOLS GUIDE, V18, P315
Wu HW, 2000, J AGR FOOD CHEM, V48, P5321, DOI 10.1021/jf0006473
Wu LK, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082394
Wu LK, 2018, PHYTOPATHOLOGY, V108, P1493, DOI [10.1094/PHYTO-02-18-0038-R, 10.1094/phyto-02-18-0038-r]
Wu LK, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030850
Wu LK, 2016, EUR J SOIL BIOL, V72, P1, DOI 10.1016/j.ejsobi.2015.12.002
Wu LK, 2015, SCI REP-UK, V5, DOI 10.1038/srep15871
Wu LK, 2013, APPL SOIL ECOL, V67, P1, DOI 10.1016/j.apsoil.2013.02.008
Wu WT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033200
Wu Zong-wei, 2009, Shengtaixue Zazhi, V28, P660
Xie YX, 2012, NAT PROD REP, V29, P1277, DOI 10.1039/c2np20064c
Yang M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118555
Yang WZ, 2017, ACTA PHARM SIN B, V7, P439, DOI 10.1016/j.apsb.2017.04.012
Yang YH, 2011, BMC PLANT BIOL, V11, DOI 10.1186/1471-2229-11-53
Yeasmin R., 2014, Australian Journal of Crop Science, V8, P251
Yim B, 2013, PLANT SOIL, V366, P617, DOI 10.1007/s11104-012-1454-6
YOUNG CC, 1984, PLANT SOIL, V82, P247, DOI 10.1007/BF02220251
Yu RQ, 2019, APPL ENVIRON MICROB, V85, DOI 10.1128/AEM.02154-18
Zhang B, 2019, PLANT SOIL, V441, P439, DOI 10.1007/s11104-019-04136-4
Zhang B, 2016, PLANT SOIL, V407, P307, DOI 10.1007/s11104-016-2885-2
Zhang BG, 2010, PLANTA MED, V76, P1948, DOI 10.1055/s-0030-1250527
[张留记 Zhang Liuji], 2017, [天然产物研究与开发, Natural Product Research and Development], V29, P87
Zhang Shuxiang, 2000, Yingyong Shengtai Xuebao, V11, P152
Zhang Zhong-Yi, 2010, Chinese Journal of Plant Ecology, V34, P547, DOI 10.3773/j.issn.1005-264x.2010.05.008
Zhang ZhongYi, 2009, Zhongguo Shengtai Nongye Xuebao / Chinese Journal of Eco-Agriculture, V17, P189, DOI 10.3724/SP.J.1011.2009.00189
Zhang ZY, 2013, MODERN CHIN MED, V15, P38, DOI DOI 10.13313/J.I
Zhao HM, 2016, SCI TOTAL ENVIRON, V562, P170, DOI 10.1016/j.scitotenv.2016.03.171
Zheng F, 2018, PLANT DIS, V102, P2653, DOI [10.1094/PDIS-09-17-1469-PDN, 10.1094/pdis-09-17-1469-pdn]
Zhi JY, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19123751
Zhou F, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10411-0
Zhu XC, 2016, J EXP BOT, V67, P3777, DOI 10.1093/jxb/erw182
NR 109
TC 6
Z9 8
U1 4
U2 38
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD JUN 30
PY 2020
VL 11
AR 1413
DI 10.3389/fmicb.2020.01413
PG 21
WC Microbiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Microbiology
GA NX2LW
UT WOS:000575547200001
PM 32714307
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Zitta, K
Peeters-Scholte, C
Sommer, L
Gruenewald, M
Hummitzsch, L
Parczany, K
Steinfath, M
Albrecht, M
AF Zitta, Karina
Peeters-Scholte, Cacha
Sommer, Lena
Gruenewald, Matthias
Hummitzsch, Lars
Parczany, Kerstin
Steinfath, Markus
Albrecht, Martin
TI 2-Iminobiotin Superimposed on Hypothermia Protects Human Neuronal Cells
from Hypoxia-Induced Cell Damage: An in Vitro Study
SO FRONTIERS IN PHARMACOLOGY
LA English
DT Article
DE hypoxia-ischemia; hypothermia; neuroprotection; asphyxia; 2-iminobiotin;
cell damage; apoptosis; in vitro
ID NITRIC-OXIDE SYNTHASE; THERAPEUTIC HYPOTHERMIA; NEONATAL ENCEPHALOPATHY;
NEWBORN PIGLET; ISCHEMIA; NEUROPROTECTION; INHIBITOR; HORMESIS; BRAIN;
MANAGEMENT
AB Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE), but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB) superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7 h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25 h of hypothermia (33.5 degrees C), and incubated with vehicle or 2-IB (10, 30, 50, 100, and 300 ng/ml). Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assays. Production of reactive oxygen species (ROS) was measured using fluorometric assays. Western blotting for PARP, Caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4 h post-hypoxia and human apoptosis proteome profiler arrays were performed. Twenty-five hour after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10 and 30 ng/ml) reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erkl/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of Caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4 h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a >= 25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27, and phospho Rad17. In summary, addition of 2-IB during hypothermia is able to attenuate hypoxia-induced neuronal cell damage in vitro. Combination treatment of hypothermia with 2-IB could be a promising strategy to reduce hypoxia-induced neuronal cell damage and should be considered in further animal and clinical studies.
C1 [Zitta, Karina; Sommer, Lena; Gruenewald, Matthias; Hummitzsch, Lars; Parczany, Kerstin; Steinfath, Markus; Albrecht, Martin] Univ Hosp Schleswig Hoistein, Dept Anesthesiol & Intens Care Med, Kiel, Germany.
[Peeters-Scholte, Cacha] Neurophyxia BV, Shertogenbosch, Netherlands.
RP Albrecht, M (corresponding author), Univ Hosp Schleswig Hoistein, Dept Anesthesiol & Intens Care Med, Kiel, Germany.
EM martin.albrecht@uksh.de
RI Albrecht, Martin/AAW-9303-2021; Peeters-Scholte, Cacha/AAA-9042-2021
OI Albrecht, Martin/0000-0003-2580-768X; Peeters-Scholte,
Cacha/0000-0002-3982-6868
CR Aksamitiene E, 2012, BIOCHEM SOC T, V40, P139, DOI 10.1042/BST20110609
Aldinucci C, 2010, NEUROCHEM RES, V35, P1691, DOI 10.1007/s11064-010-0231-2
Anderson KB, 2016, THER HYPOTHERMIA TEM, V6, P169, DOI 10.1089/ther.2016.0003
Bjorkman ST, 2013, STROKE, V44, P809, DOI 10.1161/STROKEAHA.112.677922
Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z
Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145
Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223
Dawson VL, 2004, J BIOENERG BIOMEMBR, V36, P287, DOI 10.1023/B:JOBB.0000041755.22613.8d
Diaz J, 2017, DEV NEUROSCI-BASEL, V39, P257, DOI 10.1159/000454949
Erecinska M, 2003, J CEREBR BLOOD F MET, V23, P513, DOI 10.1097/01.WCB.0000066287.21705.21
Fan XY, 2010, J MATERN-FETAL NEO M, V23, P17, DOI 10.3109/14767058.2010.505052
Filatova E, 2017, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00089
Galvao TF, 2013, J TROP PEDIATRICS, V59, P453, DOI 10.1093/tropej/fmt047
Gunn AJ, 1997, AUST NZ J OBSTET GYN, V37, P36, DOI 10.1111/j.1479-828X.1997.tb02214.x
Hassell KJ, 2015, ARCH DIS CHILD-FETAL, V100, pF541, DOI 10.1136/archdischild-2014-306284
Higgins RD, 2011, J PEDIATR-US, V159, P851, DOI 10.1016/j.jpeds.2011.08.004
Huang Y, 2013, ANAESTHESIA, V68, P31, DOI 10.1111/j.1365-2044.2012.07336.x
Huang Y, 2013, DIS MODEL MECH, V6, P1507, DOI 10.1242/dmm.013078
Hummitzsch L, 2014, EXP CELL RES, V322, P62, DOI 10.1016/j.yexcr.2013.12.022
Kimura A, 2002, CRIT CARE MED, V30, P1499, DOI 10.1097/00003246-200207000-00017
Martinello K, 2017, ARCH DIS CHILD-FETAL, V102, pF346, DOI 10.1136/archdischild-2015-309639
O'Brien FE, 2006, PEDIATRICS, V117, P1549, DOI 10.1542/peds.2005-1649
Peeters-Scholte C, 2002, DEV NEUROSCI-BASEL, V24, P396, DOI 10.1159/000069045
Peeters-Scholte C, 2002, STROKE, V33, P2304, DOI 10.1161/01.STR.0000028343.25901.09
Peeters-Scholte C, 2002, EXP BRAIN RES, V147, P200, DOI 10.1007/s00221-002-1182-x
Perrone S, 2013, EXPERT OPIN ORPHAN D, V1, P935, DOI 10.1517/21678707.2013.853614
Robertson NJ, 2012, J PEDIATR-US, V160, P544, DOI 10.1016/j.jpeds.2011.12.052
Sahuquillo J, 2007, CURR PHARM DESIGN, V13, P2310
Sunjic KM, 2015, CRIT CARE MED, V43, P2228, DOI 10.1097/CCM.0000000000001223
SUP SJ, 1994, BIOCHEM BIOPH RES CO, V204, P962, DOI 10.1006/bbrc.1994.2554
Takenouchi T, 2015, J CEREBR BLOOD F MET, V35, P794, DOI 10.1038/jcbfm.2014.253
Tataranno ML, 2015, OXID MED CELL LONGEV, V2015, DOI 10.1155/2015/108251
TUMILOWICZ JJ, 1970, CANCER RES, V30, P2110
van Bel F, 2016, SEMIN PERINATOL, V40, P152, DOI 10.1053/j.semperi.2015.12.003
van den Tweel ERW, 2005, J CEREBR BLOOD F MET, V25, P67, DOI 10.1038/sj.jcbfm.9600007
Wagner BP, 2002, PEDIATR RES, V51, P354, DOI 10.1203/00006450-200203000-00015
Zhu JC, 2015, DEV NEUROSCI-BASEL, V37, P376, DOI 10.1159/000369007
Zimmermann A, 2014, MICROB CELL, V1, P150, DOI 10.15698/mic2014.05.148
Zitta K, 2016, EUR J PHARMACOL, V792, P63, DOI 10.1016/j.ejphar.2016.10.026
Zitta K, 2010, EUR J PHARMACOL, V645, P39, DOI 10.1016/j.ejphar.2010.07.017
Zitta K, 2010, EUR J PHARMACOL, V628, P11, DOI 10.1016/j.ejphar.2009.11.023
NR 41
TC 8
Z9 8
U1 0
U2 5
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1663-9812
J9 FRONT PHARMACOL
JI Front. Pharmacol.
PD JAN 11
PY 2018
VL 8
AR 971
DI 10.3389/fphar.2017.00971
PG 11
WC Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy
GA FS4VI
UT WOS:000419791400002
PM 29358921
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Edwards, C
Canfield, J
Copes, N
Brito, A
Rehan, M
Lipps, D
Brunquell, J
Westerheide, SD
Bradshaw, PC
AF Edwards, Clare
Canfield, John
Copes, Neil
Brito, Andres
Rehan, Muhammad
Lipps, David
Brunquell, Jessica
Westerheide, Sandy D.
Bradshaw, Patrick C.
TI Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis
elegans
SO BMC GENETICS
LA English
DT Article
DE Amino acids; Lifespan; Aging; C. elegans; Serine; Proline; Histidine;
Tryptophan; Mitochondrial
ID P70 S6 KINASE; DIETARY RESTRICTION; CALORIC RESTRICTION; OXIDATIVE
STRESS; LONGEVITY; PROTEIN; METHIONINE; GROWTH; IMBALANCE; AUTOPHAGY
AB Background: Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans. In addition, leucine strongly activates the TOR signaling pathway, which when inhibited increases lifespan.
Results: Therefore each of the 20 proteogenic amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one or more of the 3 concentrations tested with serine and proline showing the largest effects. 11 of the amino acids were less potent at higher doses, while 5 even decreased lifespan. Serine, proline, or histidine-mediated lifespan extension was greatly inhibited in eat-2 worms, a model of dietary restriction, in daf-16/ FOXO, sir-2.1, rsks-1 (ribosomal S6 kinase), gcn-2, and aak-2 (AMPK) longevity pathway mutants, and in bec-1 autophagy-defective knockdown worms. 8 of 10 longevity-promoting amino acids tested activated a SKN-1/Nrf2 reporter strain, while serine and histidine were the only amino acids from those to activate a hypoxia-inducible factor (HIF-1) reporter strain. Thermotolerance was increased by proline or tryptophan supplementation, while tryptophan-mediated lifespan extension was independent of DAF-16/FOXO and SKN-1/Nrf2 signaling, but tryptophan and several related pyridine-containing compounds induced the mitochondrial unfolded protein response and an ER stress response. High glucose levels or mutations affecting electron transport chain (ETC) function inhibited amino acid-mediated lifespan extension suggesting that metabolism plays an important role. Providing many other cellular metabolites to C. elegans also increased longevity suggesting that anaplerosis of tricarboxylic acid (TCA) cycle substrates likely plays a role in lifespan extension.
Conclusions: Supplementation of C. elegans with 18 of the 20 individual amino acids extended lifespan, but lifespan often decreased with increasing concentration suggesting hormesis. Lifespan extension appears to be caused by altered mitochondrial TCA cycle metabolism and respiratory substrate utilization resulting in the activation of the DAF-16/FOXO and SKN-1/Nrf2 stress response pathways.
C1 [Edwards, Clare; Canfield, John; Copes, Neil; Brito, Andres; Rehan, Muhammad; Lipps, David; Brunquell, Jessica; Westerheide, Sandy D.; Bradshaw, Patrick C.] Univ S Florida, Dept Cell Biol Microbiol & Mol Biol, Tampa, FL 33620 USA.
C3 State University System of Florida; University of South Florida
RP Bradshaw, PC (corresponding author), Univ S Florida, Dept Cell Biol Microbiol & Mol Biol, Tampa, FL 33620 USA.
EM pbradsha@usf.edu
RI Bradshaw, Patrick C./AAR-9189-2020
OI Bradshaw, Patrick C./0000-0002-4591-6798
FU NIH Office of Research Infrastructure Programs [P40 OD010440]; NIH
[AG046769]
FX We would like to thank Robert Buzzeo for sharing equipment and reagents.
C. elegans strains were obtained from the Caenorhabditis Genetics Center
(University of Minnesota, Minneapolis, MN, USA), which is funded by NIH
Office of Research Infrastructure Programs (P40 OD010440). The research
was funded by NIH grant # AG046769 awarded to PB.
CR Alvers AL, 2009, AGING CELL, V8, P353, DOI 10.1111/j.1474-9726.2009.00469.x
Ari C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103526
Baker BM, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002760
Ban H, 2004, INT J MOL MED, V13, P537
Batch BC, 2014, CURR OPIN CLIN NUTR, V17, P86, DOI 10.1097/MCO.0000000000000010
Bennett CF, 2014, EXP GERONTOL, V56, P142, DOI 10.1016/j.exger.2014.02.002
Chin RM, 2014, NATURE
Chuang MH, 2009, BIOORGAN MED CHEM, V17, P7831, DOI 10.1016/j.bmc.2009.09.002
D'Antona G, 2010, CELL METAB, V12, P362, DOI 10.1016/j.cmet.2010.08.016
De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111
Depuydt G, 2013, MOL CELL PROTEOMICS, V12, P3624, DOI 10.1074/mcp.M113.027383
Dostal V, 2010, JOVE-J VIS EXP, V44, pe2252
Edwards CB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058345
Ferguson AA, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1004020
Fitzgerald VK, 2009, BIOTECHNIQUES, V47, pIX, DOI 10.2144/000113277
Fuchs S, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-14
Golubnitschaja O, 2012, EPMA J, V3, DOI 10.1186/1878-5085-3-11
Gomes AP, 2013, CELL, V155, P1624, DOI 10.1016/j.cell.2013.11.037
Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619
Grant RS, 2009, INT J TRYPTOPHAN RES, V2, P71
Hajdu-Cronin YM, 2004, GENETICS, V168, P1937, DOI 10.1534/genetics.104.028423
Hamase K, 2005, BIOL PHARM BULL, V28, P1578, DOI 10.1248/bpb.28.1578
Hamilton B, 2005, GENE DEV, V19, P1544, DOI 10.1101/gad.1308205
Han S, 2012, TRENDS CELL BIOL, V22, P42, DOI 10.1016/j.tcb.2011.11.001
Hansen M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040024
Hansen M, 2007, WESTERN HUM REV, V61, P6
Hara K, 1998, J BIOL CHEM, V273, P14484, DOI 10.1074/jbc.273.23.14484
Hashimoto T, 2010, BIOGERONTOLOGY, V11, P31, DOI 10.1007/s10522-009-9225-3
Hayat S, 2012, PLANT SIGNAL BEHAV, V7, P1456, DOI 10.4161/psb.21949
He C, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004860
Houtkooper RH, 2013, NATURE, V497, P451, DOI 10.1038/nature12188
Jia KL, 2007, AUTOPHAGY, V3, P597, DOI 10.4161/auto.4989
Kabil H, 2011, P NATL ACAD SCI USA, V108, P16831, DOI 10.1073/pnas.1102008108
Kamei Y, 2011, BIOCHEM BIOPH RES CO, V407, P185, DOI 10.1016/j.bbrc.2011.02.136
Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059
Kapulkin V, 2005, FEBS LETT, V579, P3063, DOI 10.1016/j.febslet.2005.04.062
Kim SG, 2013, MOL CELLS, V35, P463, DOI 10.1007/s10059-013-0138-2
Lee SJ, 2009, CELL METAB, V10, P379, DOI 10.1016/j.cmet.2009.10.003
Lugo-Huitron R, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/104024
Marino G, 2014, MOL CELL, V53, P710, DOI 10.1016/j.molcel.2014.01.016
MASSIE HR, 1984, EXP GERONTOL, V19, P393, DOI 10.1016/0531-5565(84)90049-4
MASSIE HR, 1985, AGE, V8, P128, DOI 10.1007/BF02431953
Miller RA, 2005, AGING CELL, V4, P119, DOI 10.1111/j.1474-9726.2005.00152.x
Min KJ, 2006, MECH AGEING DEV, V127, P643, DOI 10.1016/j.mad.2006.02.005
Mirisola MG, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004113
Morley JF, 2002, P NATL ACAD SCI USA, V99, P10417, DOI 10.1073/pnas.152161099
Moskalev AA, 2010, REJUV RES, V13, P246, DOI 10.1089/rej.2009.0903
Mouchiroud L, 2013, CELL, V154, P430, DOI 10.1016/j.cell.2013.06.016
Mouchiroud L, 2011, AGING CELL, V10, P39, DOI 10.1111/j.1474-9726.2010.00640.x
Mullen AR, 2012, NATURE, V481, P385, DOI 10.1038/nature10642
Murphy Coleen T, 2013, WormBook, P1, DOI 10.1895/wormbook.1.164.1
Newgard CB, 2012, CELL METAB, V15, P606, DOI 10.1016/j.cmet.2012.01.024
OOKA H, 1988, MECH AGEING DEV, V43, P79, DOI 10.1016/0047-6374(88)90099-1
ORENTREICH N, 1993, J NUTR, V123, P269
Pamplona R, 2006, BBA-BIOENERGETICS, V1757, P496, DOI 10.1016/j.bbabio.2006.01.009
Panowski SH, 2007, NATURE, V447, P550, DOI 10.1038/nature05837
Plaisance EP, 2011, J CLIN ENDOCR METAB, V96, pE836, DOI 10.1210/jc.2010-2493
Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406
Robida-Stubbs S, 2012, CELL METAB, V15, P713, DOI 10.1016/j.cmet.2012.04.007
Roth E, 2011, CURR OPIN CLIN NUTR, V14, P67, DOI 10.1097/MCO.0b013e328341368c
Rousakis A, 2013, AGING CELL, V12, P742, DOI 10.1111/acel.12101
Saitoh Y, 2012, MOL CELL BIOL, V32, P1967, DOI 10.1128/MCB.06513-11
Salminen A, 2012, AGEING RES REV, V11, P230, DOI 10.1016/j.arr.2011.12.005
Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011
SEGALL PE, 1976, MECH AGEING DEV, V5, P109, DOI 10.1016/0047-6374(76)90012-9
Shibamura A, 2009, MECH AGEING DEV, V130, P652, DOI 10.1016/j.mad.2009.06.008
Shukla V, 2012, CNS NEUROL DISORD-DR, V11, P984
Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59
Stiernagle Theresa, 2006, WormBook, P1
Swire J, 2009, P ROY SOC B-BIOL SCI, V276, P2747, DOI 10.1098/rspb.2009.0354
Syntichaki P, 2007, NATURE, V445, P922, DOI 10.1038/nature05603
Tullet JMA, 2008, CELL, V132, P1025, DOI 10.1016/j.cell.2008.01.030
van der Goot AT, 2012, P NATL ACAD SCI USA, V109, P14912, DOI 10.1073/pnas.1203083109
Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a
Wijeyesekera A, 2012, J PROTEOME RES, V11, P2224, DOI 10.1021/pr2010154
Williams DS, 2009, AGING CELL, V8, P765, DOI 10.1111/j.1474-9726.2009.00527.x
Wu ZY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079319
Yamaguchi T, 2008, AATEX, V13, P1
Yoshida R, 2010, AGING CELL, V9, P616, DOI 10.1111/j.1474-9726.2010.00590.x
Zajitschek F, 2013, AGE, V35, P1193, DOI 10.1007/s11357-012-9445-3
Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013
Zhang Y, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006348
Zhong M, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000848
NR 83
TC 104
Z9 111
U1 13
U2 59
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1471-2156
J9 BMC GENET
JI BMC Genet.
PD FEB 3
PY 2015
VL 16
AR 8
DI 10.1186/s12863-015-0167-2
PG 24
WC Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Genetics & Heredity
GA CC0ZY
UT WOS:000350069800002
PM 25643626
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Leow, SS
Luu, A
Shrestha, S
Hayes, KC
Sambanthamurthi, R
AF Leow, Soon-Sen
Luu, Alice
Shrestha, Swechhya
Hayes, K. C.
Sambanthamurthi, Ravigadevi
TI Drosophila larvae fed palm fruit juice (PFJ) delay pupation via
expression regulation of hormetic stress response genes linked to ageing
and longevity
SO EXPERIMENTAL GERONTOLOGY
LA English
DT Article
DE Palm fruit juice; Oil palm phenolics; Fruit fly; Hormesis; Ageing;
Longevity
ID LIFE-SPAN EXTENSION; HEAT-SHOCK PROTEINS; CALORIC RESTRICTION MIMETICS;
NF-KAPPA-B; OXIDATIVE STRESS; DIETARY RESTRICTION; TOR PATHWAY;
FAT-BODY; CAENORHABDITIS-ELEGANS; GENETICS
AB Palm fruit juice (PFJ) containing oil palm phenolics is obtained as a by-product from oil palm (Elaeis guineensis) fruit milling. It contains shikimic acid, soluble fibre and various phenolic acids including p-hydroxybenzoic acid and three caffeoylshikimic acid isomers. PFJ has also demonstrated beneficial health properties in various biological models. Increasing concentrations of PFJ and different PFJ fractions were used to assess growth dynamics and possible anti-ageing properties in fruit flies (Drosophila melanogaster) genotype w(1118). Microarray gene expression analysis was performed on whole fruit fly larvae and their fat bodies, after the larvae were fed a control Standard Brandeis Diet (SBD) with or without PFJ. Transcripts from Affymetrix GeneChips were utilised to identify the possible mechanisms involved, with genes having fold changes > vertical bar 1.30 vertical bar and p < 0.05 considered differentially expressed. PFJ dose-dependently delayed larval growth and pupation, but not percent eclosion from pupae. Eclosed male fruit flies fed PFJ or its fractions during the larval stage tended to have 20-40% improved survival ratings over controls when allowed to age on the control diet (SBD). Microarray analysis of whole fruit fly larvae revealed that 127 genes were up-regulated, while 67 were down-regulated by PFJ. Functional analysis revealed transport and metabolic processes were up-regulated, while development and morphogenesis processes, including the nutrient-sensing Tor gene, were down-regulated by PFJ, whereas microarray analysis of larval fat bodies found 161 genes were up-regulated, while 84 genes were down-regulated. Genes involved in defence response and determination of adult lifespan, including those encoding various heat shock proteins and the antioxidant enzyme Sod2, were up-regulated, while cell cycle and growth genes were down-regulated. Thus, PFJ supplementation lengthened the growth stages in fruit fly larvae that was reflected in extended ageing of adult flies, suggesting that larval expression of hormetic stress response genes was linked to subsequent ageing and longevity.
C1 [Leow, Soon-Sen; Sambanthamurthi, Ravigadevi] Malaysian Palm Oil Board, 6 Persiaran Inst, Kajang 43000, Selangor, Malaysia.
[Luu, Alice; Shrestha, Swechhya; Hayes, K. C.] Brandeis Univ, 415 South St, Waltham, MA 02454 USA.
C3 Malaysian Palm Oil Board; Brandeis University
RP Leow, SS (corresponding author), Malaysian Palm Oil Board, 6 Persiaran Inst, Kajang 43000, Selangor, Malaysia.
EM ssleow@mpob.gov.my
RI Leow, Soon-Sen/L-4423-2016; Leow, Soon-Sen/P-2443-2019
OI Leow, Soon-Sen/0000-0002-8002-5376; Leow, Soon-Sen/0000-0002-8002-5376
FU Malaysian Palm Oil Board; Brandeis University Foster Biomedical Research
Laboratory
FX This research was funded by the Malaysian Palm Oil Board and the
Brandeis University Foster Biomedical Research Laboratory funds for
research and teaching.
CR Abeywardena M., 2013, J OIL PALM ENV HLTH, V5, P38
Aguila JR, 2007, J EXP BIOL, V210, P956, DOI 10.1242/jeb.001586
Anastasiou D, 2006, PHYSIOLOGY, V21, P404, DOI 10.1152/physiol.00031.2006
Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496
Arking R, 2002, ANN NY ACAD SCI, V959, P251, DOI 10.1111/j.1749-6632.2002.tb02097.x
Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356
Bai H, 2012, AGING CELL, V11, P978, DOI 10.1111/acel.12000
Balasubramani SP, 2014, FRONT PUBLIC HEALTH, V2, DOI 10.3389/fpubh.2014.00245
Barja G, 2002, AGEING RES REV, V1, P397, DOI 10.1016/S1568-1637(02)00008-9
BARKER DJP, 1989, LANCET, V2, P577
Barker DJP, 2004, J AM COLL NUTR, V23, p588S, DOI 10.1080/07315724.2004.10719428
Bass TM, 2007, MECH AGEING DEV, V128, P546, DOI 10.1016/j.mad.2007.07.007
Granado-Serrano AB, 2010, BRIT J NUTR, V103, P168, DOI 10.1017/S0007114509991747
Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010
Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965
Blagosklonny MV, 2006, J CELL PHYSIOL, V209, P592, DOI 10.1002/jcp.20750
Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411
Blagosklonny MV, 2009, AGING-US, V1, P1
Bolsinger J, 2014, J NUTR SCI, V3, DOI 10.1017/jns.2014.3
Borra MT, 2005, J BIOL CHEM, V280, P17187, DOI 10.1074/jbc.M501250200
Burnett C, 2011, NATURE, V477, P482, DOI 10.1038/nature10296
Cantley LC, 2002, SCIENCE, V296, P1655, DOI 10.1126/science.296.5573.1655
Carter CS, 2007, APPL PHYSIOL NUTR ME, V32, P954, DOI 10.1139/H07-085
Chandrashekara KT, 2014, AGE, V36, DOI 10.1007/s11357-014-9702-8
Chandrashekara KT, 2011, J GERONTOL A-BIOL, V66, P965, DOI 10.1093/gerona/glr103
Chavous DA, 2001, P NATL ACAD SCI USA, V98, P14814, DOI 10.1073/pnas.251446498
Chell JM, 2010, CELL, V143, P1161, DOI 10.1016/j.cell.2010.12.007
Chung HY, 2009, AGEING RES REV, V8, P18, DOI 10.1016/j.arr.2008.07.002
Clancy DJ, 2002, SCIENCE, V296, P319, DOI 10.1126/science.1069366
Colombani J, 2003, CELL, V114, P739, DOI 10.1016/S0092-8674(03)00713-X
Correa RCG, 2018, CRIT REV FOOD SCI, V58, P942, DOI 10.1080/10408398.2016.1233860
Curtis C, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-12-r262
de Magalhaes JP, 2009, BIOINFORMATICS, V25, P875, DOI 10.1093/bioinformatics/btp073
Demidenko ZN, 2008, CELL CYCLE, V7, P3355, DOI 10.4161/cc.7.21.6919
Dhahbi JM, 2005, PHYSIOL GENOMICS, V23, P343, DOI 10.1152/physiolgenomics.00069.2005
Edgar R, 2002, NUCLEIC ACIDS RES, V30, P207, DOI 10.1093/nar/30.1.207
Evans DS, 2011, AGEING RES REV, V10, P225, DOI 10.1016/j.arr.2010.04.001
Ferguson M, 2008, EXP GERONTOL, V43, P757, DOI 10.1016/j.exger.2008.04.016
Fontana L, 2007, JAMA-J AM MED ASSOC, V297, P986, DOI 10.1001/jama.297.9.986
Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539
Gao XQ, 2000, J AGR FOOD CHEM, V48, P1485, DOI 10.1021/jf991072g
Garber K, 2008, NAT BIOTECHNOL, V26, P371, DOI 10.1038/nbt0408-371
Geminard C, 2009, CELL METAB, V10, P199, DOI 10.1016/j.cmet.2009.08.002
Gems D, 2013, ANNU REV PHYSIOL, V75, P621, DOI 10.1146/annurev-physiol-030212-183712
Gredilla R, 2005, ENDOCRINOLOGY, V146, P3713, DOI 10.1210/en.2005-0378
Grewal Savraj S, 2012, F1000 Biol Rep, V4, P12, DOI 10.3410/B4-12
[顾蔚 GU Wei], 2009, [食品科学, Food Science], V30, P252
Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700
Haigis MC, 2006, GENE DEV, V20, P2913, DOI 10.1101/gad.1467506
Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221
Hayes K.C., 2014, J AIDS CLIN RES, V5, P400, DOI [10.4172/2155-6113.1000400, DOI 10.4172/2155-6113.1000400]
Hekimi S, 2003, SCIENCE, V299, P1351, DOI 10.1126/science.1082358
Helfand SL, 2003, ANNU REV GENET, V37, P329, DOI 10.1146/annurev.genet.37.040103.095211
Hoffmann J, 2013, AGING-US, V5, P315, DOI 10.18632/aging.100553
Hwangbo DS, 2004, NATURE, V429, P562, DOI 10.1038/nature02549
Idris CAC, 2014, J FUNCT FOODS, V7, P541, DOI 10.1016/j.jff.2014.01.002
Inoki K, 2005, NAT GENET, V37, P19, DOI 10.1038/ng1494
Ja WW, 2007, P NATL ACAD SCI USA, V104, P8253, DOI 10.1073/pnas.0702726104
Ji XM, 2015, ANTICANCER RES, V35, P97
Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861
Johnson TE, 2002, J INHERIT METAB DIS, V25, P197, DOI 10.1023/A:1015677828407
Johnson TE, 2006, EXP GERONTOL, V41, P1243, DOI 10.1016/j.exger.2006.09.006
Kaeberlein M, 2005, J BIOL CHEM, V280, P17038, DOI 10.1074/jbc.M500655200
Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535
Kang HL, 2002, P NATL ACAD SCI USA, V99, P838, DOI 10.1073/pnas.022631999
Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059
Kapahi P, 2010, CELL METAB, V11, P453, DOI 10.1016/j.cmet.2010.05.001
Katewa SD, 2011, EXP GERONTOL, V46, P382, DOI 10.1016/j.exger.2010.11.036
Katewa SD, 2010, AGING CELL, V9, P105, DOI 10.1111/j.1474-9726.2010.00552.x
Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980
Khan F, 2016, NUTRIENTS, V8, DOI 10.3390/nu8090529
Kregel KC, 2007, AM J PHYSIOL-REG I, V292, pR18, DOI 10.1152/ajpregu.00327.2006
Laplante M, 2012, CELL, V149, P274, DOI 10.1016/j.cell.2012.03.017
Layalle S, 2008, DEV CELL, V15, P568, DOI 10.1016/j.devcel.2008.08.003
Ledford H, 2010, NATURE, V464, P480, DOI 10.1038/464480a
Lee BC, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4592
Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370
Leonov A, 2015, MOLECULES, V20, P6544, DOI 10.3390/molecules20046544
Leow SS, 2016, GENES NUTR, V11, DOI 10.1186/s12263-016-0545-z
Leow SS, 2013, J NUTRIGENET NUTRIGE, V6, P305, DOI 10.1159/000357948
Leow SS, 2013, NUTR NEUROSCI, V16, P207, DOI 10.1179/1476830512Y.0000000047
Leow SS, 2013, EUR J NUTR, V52, P443, DOI 10.1007/s00394-012-0346-0
Leow SS, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-432
Lynch BS, 2017, REGUL TOXICOL PHARM, V88, P96, DOI 10.1016/j.yrtph.2017.05.021
Mair W, 2005, PLOS BIOL, V3, P1305, DOI 10.1371/journal.pbio.0030223
Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016
McDonald J.H., 2014, HDB BIOLOGICAL STAT
Meng FD, 2015, INT J CLIN EXP PATHO, V8, P6157
Meydani M, 2011, J NUTR HEALTH AGING, V15, P456, DOI 10.1007/s12603-011-0002-z
Michan S, 2007, BIOCHEM J, V404, P1, DOI 10.1042/BJ20070140
Milne JC, 2007, NATURE, V450, P712, DOI 10.1038/nature06261
Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108
Morrow G, 2006, CELL STRESS CHAPERON, V11, P51, DOI 10.1379/CSC-166.1
Morrow G, 2003, SEMIN CELL DEV BIOL, V14, P291, DOI 10.1016/j.semcdb.2003.09.023
Moskalev AA, 2014, CELL CYCLE, V13, P1063, DOI 10.4161/cc.28433
Neufeld TP, 2003, MECH DEVELOP, V120, P1283, DOI 10.1016/j.mod.2003.07.003
Paaby AB, 2009, FLY, V3, P29, DOI 10.4161/fly.3.1.7771
Pacholec M, 2010, J BIOL CHEM, V285, P8340, DOI 10.1074/jbc.M109.088682
Partridge L, 2011, EXP GERONTOL, V46, P376, DOI 10.1016/j.exger.2010.09.003
Partridge L, 2010, PHILOS T R SOC B, V365, P147, DOI 10.1098/rstb.2009.0222
Patten GS, 2015, J FUNCT FOODS, V17, P928, DOI 10.1016/j.jff.2015.06.008
Peng C, 2012, EXP GERONTOL, V47, P170, DOI 10.1016/j.exger.2011.12.001
Piazza N, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005886
Piegholdt S, 2016, FASEB J, V30, P948, DOI 10.1096/fj.15-282061
Polak P, 2009, CURR OPIN CELL BIOL, V21, P209, DOI 10.1016/j.ceb.2009.01.024
Porcu M, 2005, TRENDS PHARMACOL SCI, V26, P94, DOI 10.1016/j.tips.2004.12.009
Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406
Proshkina E, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00505
Rajan A, 2012, CELL, V151, P123, DOI 10.1016/j.cell.2012.08.019
Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002
Ricklefs RE, 2006, P ROY SOC B-BIOL SCI, V273, P2077, DOI 10.1098/rspb.2006.3544
Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010
Rogina B, 2004, P NATL ACAD SCI USA, V101, P15998, DOI 10.1073/pnas.0404184101
Rogina B, 2002, SCIENCE, V298, P1745, DOI 10.1126/science.1078986
Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137
Sadowska-Bartosz I, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/404680
Sambanthamurthi R., 2008, United States Patent US, Patent No. [7387802 B2, 7387802B2]
Sambanthamurthi R, 2011, BRIT J NUTR, V106, P1655, DOI 10.1017/S0007114511002121
Sambanthamurthi R, 2011, BRIT J NUTR, V106, P1664, DOI 10.1017/S0007114511002133
Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011
Sekaran S. D., 2010, African Journal of Food Science, V4, P495
Seo K, 2013, AGING CELL, V12, P1073, DOI 10.1111/acel.12140
Sharma PK, 2011, AGE, V33, P143, DOI 10.1007/s11357-010-9169-1
Soh JW, 2007, MECH AGEING DEV, V128, P581, DOI 10.1016/j.mad.2007.08.004
Soh JW, 2013, EXP GERONTOL, V48, P229, DOI 10.1016/j.exger.2012.09.007
Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y
Soni MG, 2002, FOOD CHEM TOXICOL, V40, P1335, DOI 10.1016/S0278-6915(02)00107-2
Sousa-Nunes R, 2011, NATURE, V471, P508, DOI 10.1038/nature09867
Spencer CC, 2003, AGING CELL, V2, P123, DOI 10.1046/j.1474-9728.2003.00044.x
Spindler SR, 2010, AGEING RES REV, V9, P324, DOI 10.1016/j.arr.2009.10.003
Staats S, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010223
Stankovic M, 2013, GEN PHYSIOL BIOPHYS, V32, P277, DOI 10.4149/gpb_2013027
Stefana MI, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01740-9
Strimpakos AS, 2009, CANCER TREAT REV, V35, P148, DOI 10.1016/j.ctrv.2008.09.006
Strong R, 2013, J GERONTOL A-BIOL, V68, P6, DOI 10.1093/gerona/gls070
Sun JT, 2002, GENETICS, V161, P661
Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155
Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447
Tee AR, 2005, SEMIN CELL DEV BIOL, V16, P29, DOI 10.1016/j.semcdb.2004.11.005
Tower J, 2006, MECH AGEING DEV, V127, P705, DOI 10.1016/j.mad.2006.05.001
Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002
Tower J, 2009, TRENDS ENDOCRIN MET, V20, P216, DOI 10.1016/j.tem.2008.12.005
Tower John, 2009, Journal of Biology (London), V8, P38, DOI 10.1186/jbiol141
Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034
Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a
Wang LJ, 2015, EXP GERONTOL, V69, P189, DOI 10.1016/j.exger.2015.06.021
Waskar M, 2009, AGING-US, V1, P903, DOI 10.18632/aging.100099
Weindruch R, 2001, J GERONTOL A-BIOL, V56, P20, DOI 10.1093/gerona/56.suppl_1.20
Zambon AC, 2012, BIOINFORMATICS, V28, P2209, DOI 10.1093/bioinformatics/bts366
Zhao YM, 2005, J EXP BIOL, V208, P697, DOI 10.1242/jeb.01439
Zhou HY, 2010, ANTI-CANCER AGENT ME, V10, P571, DOI 10.2174/187152010793498663
Zuin A, 2010, EMBO J, V29, P981, DOI 10.1038/emboj.2009.407
Zuo YY, 2013, BIOGERONTOLOGY, V14, P107, DOI 10.1007/s10522-012-9413-4
Zuo YY, 2012, FOOD FUNCT, V3, P1271, DOI 10.1039/c2fo30135k
NR 154
TC 9
Z9 10
U1 2
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0531-5565
EI 1873-6815
J9 EXP GERONTOL
JI Exp. Gerontol.
PD JUN
PY 2018
VL 106
BP 198
EP 221
DI 10.1016/j.exger.2018.03.013
PG 24
WC Geriatrics & Gerontology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Geriatrics & Gerontology
GA GD4JI
UT WOS:000430469000028
PM 29550564
OA hybrid
DA 2023-03-13
ER
PT J
AU Olivares-Castro, G
Caceres-Jensen, L
Guerrero-Bosagna, C
Villagra, C
AF Olivares-Castro, Gabriela
Caceres-Jensen, Lizethly
Guerrero-Bosagna, Carlos
Villagra, Cristian
TI Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination,
an Overview
SO INSECTS
LA English
DT Review
DE imidacloprid; insectageddon; hormetic responses; sublethal exposure
ID CROP POLLINATION SERVICES; MUSCA-DOMESTICA DIPTERA; DNA METHYLATION;
AQUATIC INSECTS; GENE-EXPRESSION; APIS-MELLIFERA; DEVELOPMENTAL
PLASTICITY; NEONICOTINOID PESTICIDES; IMIDACLOPRID RESISTANCE;
ALPHITOBIUS-DIAPERINUS
AB Simple Summary Epigenetic molecular mechanisms (EMMs) are capable of regulating and stabilizing a wide range of living cell processes without altering its DNA sequence. EMMs can be triggered by environmental inputs. In insects, EMMs contribute to explaining both negative effects as well as adaptive responses towards environmental cues. Among these stimuli are chemical stressors, such as pesticides. We review the link between EMMs and pesticides in insects. We suggest that pesticide chemical behavior promotes both lethal and sublethal exposure of both target and non-target insects. As a consequence, for several native and beneficial insect (e.g., pollinators), EMMs are involved in diseases and disruptive responses due to pesticides, while in the case of pest species, EMMs are linked in the development of pesticide resistance and hormesis. We discuss the consequences of these in the context of insect global decline and biotic homogenization. Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
C1 [Olivares-Castro, Gabriela; Villagra, Cristian] Univ Metropolitana Ciencias Educ, Inst Entomol, Ave Jose Pedro Alessandri 774, Santiago 7760197, Chile.
[Caceres-Jensen, Lizethly] Univ Metropolitana Ciencias Educ, Fac Ciencias Basicas, Dept Quim, Lab Fisicoquim Analit, Santiago 7760197, Chile.
[Guerrero-Bosagna, Carlos] Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden.
[Guerrero-Bosagna, Carlos] Uppsala Univ, Dept Integrat Biol, Environm Toxicol Program, S-75236 Uppsala, Sweden.
C3 Universidad Metropolitana de Ciencias de la Educacion (UMCE);
Universidad Metropolitana de Ciencias de la Educacion (UMCE); Linkoping
University; Uppsala University
RP Olivares-Castro, G (corresponding author), Univ Metropolitana Ciencias Educ, Inst Entomol, Ave Jose Pedro Alessandri 774, Santiago 7760197, Chile.
EM gp.olivares.castro@gmail.com; lyzethly.caceres@umce.cl;
carlos.guerrero.bosagna@liu.se; cristian.villagra@umce.cl
OI Caceres-Jensen, Lizethly/0000-0002-5903-7356
FU Swedish Research Council for Environment, Agricultural Sciences and
Spacial Planning (FORMAS) [2018-01074]; [DIP-UMCE 2021]
FX Publishing costs were partially provided by DIP-UMCE 2021. C. G-B.
greatly appreciate funding from the Swedish Research Council for
Environment, Agricultural Sciences and Spacial Planning (FORMAS) grant
#2018-01074.
CR Abdel-Haleem Doaa R., 2018, Egyptian Academic Journal of Biological Sciences A Entomology, V11, P33
Abraham JP, 2013, REV GEOPHYS, V51, P450, DOI 10.1002/rog.20022
Akindele EO, 2020, ENVIRON SCI POLLUT R, V27, P33373, DOI 10.1007/s11356-020-08763-8
Al-Jaibachi R, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2018.0479
Alavian-Ghavanini A, 2018, BASIC CLIN PHARMACOL, V122, P38, DOI 10.1111/bcpt.12878
Alston DG, 2007, ENVIRON ENTOMOL, V36, P811, DOI 10.1603/0046-225X(2007)36[811:EOTIPO]2.0.CO;2
Annabi E, 2019, TOXICOL MECH METHOD, V29, P580, DOI 10.1080/15376516.2019.1624907
[Anonymous], 2019, KINETIC MODELING ENV
Aparicio VC, 2013, CHEMOSPHERE, V93, P1866, DOI 10.1016/j.chemosphere.2013.06.041
Ardura A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-29181-4
Arican YE, 2019, ISTANB J PHARM, V49, P167, DOI 10.26650/IstanbulJPharm.2019.19058
Arsenault SV, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05903-0
Atwood D., 2017, PESTICIDES IND SALES
Augustyniak M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167371
BALL HJ, 1979, J ECON ENTOMOL, V72, P873, DOI 10.1093/jee/72.6.873
Bansal OP, 2011, INDIAN J AGR SCI, V81, P578
Bantz A, 2018, CURR OPIN INSECT SCI, V30, P73, DOI 10.1016/j.cois.2018.09.008
Barbieri RF, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2157
Barbosa WF, 2015, PEST MANAG SCI, V71, P1049, DOI 10.1002/ps.4025
Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678
Basley K, 2018, PEERJ, V6, DOI 10.7717/peerj.4258
Baur B, 2006, BIOL CONSERV, V132, P261, DOI 10.1016/j.biocon.2006.04.018
Parra-Morales LB, 2021, INT J PEST MANAGE, V67, P121, DOI 10.1080/09670874.2019.1698787
Bebane PSA, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0718
Beketov MA, 2008, ENVIRON TOXICOL CHEM, V27, P461, DOI 10.1897/07-322R.1
Berens AJ, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1410-y
Bernstein BE, 2007, CELL, V128, P669, DOI 10.1016/j.cell.2007.01.033
Biergans SD, 2017, SCI REP-UK, V7, DOI 10.1038/srep43635
Biesmeijer JC, 2006, SCIENCE, V313, P351, DOI 10.1126/science.1127863
Bird A, 2007, NATURE, V447, P396, DOI 10.1038/nature05913
Bordoni L, 2020, PRINCIPLES OF NUTRIGENETICS AND NUTRIGENOMICS: FUNDAMENTALS OF INDIVIDUALIZED NUTRITION, P513, DOI 10.1016/B978-0-12-804572-5.00067-7
Botias C, 2016, SCI TOTAL ENVIRON, V566, P269, DOI 10.1016/j.scitotenv.2016.05.065
Bovier TF, 2018, ECOTOX ENVIRON SAFE, V162, P625, DOI 10.1016/j.ecoenv.2018.07.020
Bradford BR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0238637
Brevik K, 2021, EVOL APPL, V14, P746, DOI 10.1111/eva.13153
Brevik K, 2018, CURR OPIN INSECT SCI, V26, P34, DOI 10.1016/j.cois.2017.12.007
Britch SC, 2020, J AM MOSQUITO CONTR, V36, P37, DOI 10.2987/19-6894.1
Burdge GC, 2010, ANNU REV NUTR, V30, P315, DOI 10.1146/annurev.nutr.012809.104751
Burggren Warren, 2016, Biology-Basel, V5, P24, DOI 10.3390/biology5020024
Burggren WW, 2017, ADV INSECT PHYSIOL, V53, P1, DOI 10.1016/bs.aiip.2017.04.001
Bushati N, 2007, ANNU REV CELL DEV BI, V23, P175, DOI 10.1146/annurev.cellbio.23.090506.123406
Butt N, 2013, SCIENCE, V342, P425, DOI 10.1126/science.1237261
Byholm P, 2018, SCI TOTAL ENVIRON, V639, P929, DOI 10.1016/j.scitotenv.2018.05.185
Caceres L, 2010, J AGR FOOD CHEM, V58, P6864, DOI 10.1021/jf904191z
Caceres-Jensen L, 2009, J ENVIRON QUAL, V38, P1449, DOI 10.2134/jeq2008.0146
Caceres-Jensen L., 2018, ADV SORPTION PROCESS, DOI [10.5772/intechopen.81155, DOI 10.5772/INTECHOPEN.81155]
Caceres-Jensen L, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121576
Caceres-Jensen L, 2019, J HAZARD MATER, V379, DOI 10.1016/j.jhazmat.2019.120746
Cardoso P, 2020, BIOL CONSERV, V242, DOI 10.1016/j.biocon.2020.108426
Carlisle DM, 2003, J N AM BENTHOL SOC, V22, P582, DOI 10.2307/1468355
Ceballos G, 2020, P NATL ACAD SCI USA, V117, P13596, DOI 10.1073/pnas.1922686117
Ceballos G, 2017, P NATL ACAD SCI USA, V114, pE6089, DOI 10.1073/pnas.1704949114
Chatterjee Nivedita, 2018, Environ Health Toxicol, V33, pe2018015, DOI 10.5620/eht.e2018015
Chaudhary O. P., 2018, Indian Journal of Ecology, V45, P592
Chen Xin, 2013, Zhongguo Shengtai Nongye Xuebao / Chinese Journal of Eco-Agriculture, V21, P54
Chernaki-Leffer AM, 2011, REV BRAS ENTOMOL, V55, P125, DOI 10.1590/S0085-56262011000100020
Chiron F, 2014, AGR ECOSYST ENVIRON, V185, P153, DOI 10.1016/j.agee.2013.12.013
Colin T, 2019, ENVIRON SCI TECHNOL, V53, P8252, DOI 10.1021/acs.est.9b02452
Collotta M, 2013, TOXICOLOGY, V307, P35, DOI 10.1016/j.tox.2013.01.017
Colosio C., 2016, INT ENCY PUBLIC HLTH, V2nd ed., P454
Cook N, 2016, ECOL ENTOMOL, V41, P693, DOI 10.1111/een.12344
Craddock HA, 2019, ENVIRON HEALTH-GLOB, V18, DOI 10.1186/s12940-018-0441-7
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
Dai PL, 2010, ENVIRON TOXICOL CHEM, V29, P644, DOI 10.1002/etc.67
Dai TM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03373-w
Darvas B, 1998, APPL AGR, P188
DAVIS JW, 1972, J ECON ENTOMOL, V65, P231, DOI 10.1093/jee/65.1.231
de Barros EC, 2015, J INSECT SCI, V15, DOI 10.1093/jisesa/ieu172
Desneux N, 2004, CHEMOSPHERE, V54, P619, DOI 10.1016/j.chemosphere.2003.09.007
Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440
Di Felice F, 2019, INT J BIOCHEM CELL B, V110, P143, DOI 10.1016/j.biocel.2019.03.006
Di Prisco G, 2013, P NATL ACAD SCI USA, V110, P18466, DOI 10.1073/pnas.1314923110
Dupont C, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00337
Edie SM, 2018, INTEGR COMP BIOL, V58, P1179, DOI 10.1093/icb/icy111
Eggleton P, 2020, ANNU REV ENV RESOUR, V45, P61, DOI 10.1146/annurev-environ-012420-050035
Eisenhauer N, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-07916-1
Ekroos J, 2020, BIOL CONSERV, V241, DOI 10.1016/j.biocon.2019.108255
El Hassani AK, 2008, ARCH ENVIRON CON TOX, V54, P653, DOI 10.1007/s00244-007-9071-8
Elbert A, 2008, PEST MANAG SCI, V64, P1099, DOI 10.1002/ps.1616
ELDEFRAWI M, 1961, J ECON ENTOMOL, V54, P401, DOI 10.1093/jee/54.3.401
Elmqvist T, 2016, ROUT INT HANDB, P139
Farahat Nermeen M., 2018, International Journal of Mosquito Research, V5, P111
Faulk C, 2011, EPIGENETICS-US, V6, P791, DOI 10.4161/epi.6.7.16209
Feil R, 2012, NAT REV GENET, V13, P97, DOI 10.1038/nrg3142
Feldhaar H, 2020, INSECTS, V11, DOI 10.3390/insects11030153
Fernandez-Bayo JD, 2008, J AGR FOOD CHEM, V56, P5266, DOI 10.1021/jf8004349
FOLMAR LC, 1979, ARCH ENVIRON CON TOX, V8, P269, DOI 10.1007/BF01056243
Forister ML, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0475
Frandi A, 2019, BIOCHEM SOC T, V47, P187, DOI 10.1042/BST20180460
Gallai N, 2009, ECOL ECON, V68, P810, DOI 10.1016/j.ecolecon.2008.06.014
GAMMON DW, 1978, PESTIC SCI, V9, P79, DOI 10.1002/ps.2780090115
Geneletti D., 2003, ENVIRON IMPACT ASSES, V23, P343, DOI [10.1016/S0195-9255(02)00099-9, DOI 10.1016/S0195-9255(02)00099-9]
Georgieva M, 2021, ENVIRON SCI POLLUT R, V28, P53193, DOI 10.1007/s11356-021-14497-y
Giersch JJ, 2017, GLOBAL CHANGE BIOL, V23, P2577, DOI 10.1111/gcb.13565
Gill JPK, 2018, ENVIRON CHEM LETT, V16, P401, DOI 10.1007/s10311-017-0689-0
Gill RJ, 2014, FUNCT ECOL, V28, P1459, DOI 10.1111/1365-2435.12292
GINTENREITER S, 1993, ARCH ENVIRON CON TOX, V25, P62
Glastad KM, 2019, ANNU REV ENTOMOL, V64, P185, DOI 10.1146/annurev-ento-011118-111914
Goosem M, 2007, CURR SCI INDIA, V93, P1587
Gressel J, 2009, PEST MANAG SCI, V65, P1164, DOI 10.1002/ps.1842
Guenat S, 2019, J APPL ECOL, V56, P214, DOI 10.1111/1365-2664.13270
Gulati P., 2019, 598946 BIORXIV, DOI [10.1101/598946, DOI 10.1101/598946]
GUPTA AP, 1968, ANN ENTOMOL SOC AM, V61, P910, DOI 10.1093/aesa/61.4.910
Gutzat R, 2012, CURR OPIN PLANT BIOL, V15, P568, DOI 10.1016/j.pbi.2012.08.007
Habel JC, 2019, BIODIVERS CONSERV, V28, P1343, DOI 10.1007/s10531-019-01741-8
Hallmann CA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185809
Hallmann CA, 2014, NATURE, V511, P341, DOI 10.1038/nature13531
Hamilton C, 2015, ANTHROPOCENE REV, V2, P102, DOI 10.1177/2053019615584974
Hamm RL, 2006, PEST MANAG SCI, V62, P673, DOI 10.1002/ps.1230
Hardstone MC, 2010, PEST MANAG SCI, V66, P1171, DOI 10.1002/ps.2001
HAYNES KF, 1988, ANNU REV ENTOMOL, V33, P149, DOI 10.1146/annurev.en.33.010188.001053
Henriquez-Piskulich PA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126728
Hitchcock S.W, 1965, FIELD LAB STUDIES DD
Hobbie SE, 2020, PHILOS T R SOC B, V375, DOI 10.1098/rstb.2019.0124
Hoshi N., 2021, RISKS REGULATION NEW, P235
Hoshi N, 2014, BIOL PHARM BULL, V37, P1439, DOI 10.1248/bpb.b14-00359
House M., 2019, EPIGENETICS PLANTS A, P115
Howe CM, 2004, ENVIRON TOXICOL CHEM, V23, P1928, DOI 10.1897/03-71
Hu YT, 2018, INSECT MOL BIOL, V27, P512, DOI 10.1111/imb.12390
Hu YT, 2017, SCI REP-UK, V7, DOI 10.1038/srep41255
Hunt BG, 2013, INTEGR COMP BIOL, V53, P319, DOI 10.1093/icb/ict003
Hussain S, 2009, ADV AGRON, V102, P159, DOI 10.1016/S0065-2113(09)01005-0
Isenring R., 2010, Pesticides News, P4
Jablonka E, 2014, LIFE MIND-PHILOS ISS, P1
Jadiya P, 2012, CNS NEUROL DISORD-DR, V11, P976
Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089
Jales JT, 2020, ACTA TROP, V212, DOI 10.1016/j.actatropica.2020.105652
Jeanrenaud A.C., 2020, RES SQ, DOI [10.21203/rs.3.rs-49568/v1, DOI 10.21203/RS.3.RS-49568/V1]
Jia GF, 2011, NAT CHEM BIOL, V7, P885, DOI [10.1038/NCHEMBIO.687, 10.1038/nchembio.687]
Junqueira LV, 2020, ARCH AGRON SOIL SCI, V66, P1651, DOI 10.1080/03650340.2019.1686139
Kavi LAK, 2014, PESTIC BIOCHEM PHYS, V109, P64, DOI 10.1016/j.pestbp.2014.01.006
Khosla S, 2006, CYTOGENET GENOME RES, V113, P41, DOI 10.1159/000090814
Kim D, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01164
KIM KC, 1993, BIODIVERS CONSERV, V2, P191, DOI 10.1007/BF00056668
Kobashi K, 2017, ECOTOX ENVIRON SAFE, V138, P122, DOI 10.1016/j.ecoenv.2016.12.025
Koch MW, 2013, TRENDS MOL MED, V19, P23, DOI 10.1016/j.molmed.2012.10.008
Kozeretska IA, 2017, ADV INSECT PHYSIOL, V53, P87, DOI 10.1016/bs.aiip.2017.03.001
Kremen C., 2002, FREMONTIA, V30, P41, DOI [10.1046/j.1365-2435.2003.00736.x, DOI 10.1046/J.1365-2435.2003.00736.X]
Kristensen M, 2000, J ECON ENTOMOL, V93, P1788, DOI 10.1603/0022-0493-93.6.1788
KRUEGER HR, 1959, J ECON ENTOMOL, V52, P1063, DOI 10.1093/jee/52.6.1063
Laubach ZM, 2018, BIOL REV, V93, P1323, DOI 10.1111/brv.12396
Lawrence TJ, 2016, J ECON ENTOMOL, V109, P520, DOI 10.1093/jee/tov397
Lerro CC, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106187
Li J, 2012, PESTIC BIOCHEM PHYS, V102, P109, DOI 10.1016/j.pestbp.2011.10.012
Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3
Liu JT, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.127830
Liu SS, 2020, BIOTECHNOL ADV, V39, DOI 10.1016/j.biotechadv.2019.107463
Lo N, 2018, CURR OPIN INSECT SCI, V25, P25, DOI 10.1016/j.cois.2017.11.003
Lu CS, 2018, ENVIRON SCI TECHNOL, V52, P3175, DOI 10.1021/acs.est.7b05596
Lu CS, 2012, B INSECTOL, V65, P99
Luiza-Andrade A, 2017, ECOL INDIC, V82, P478, DOI 10.1016/j.ecolind.2017.07.006
LUMMIS SCR, 1990, PROC R SOC SER B-BIO, V240, P97, DOI 10.1098/rspb.1990.0029
MacDonald D, 2000, J ENVIRON MANAGE, V59, P47, DOI 10.1006/jema.1999.0335
Magbanua FS, 2016, FRESHW SCI, V35, P139, DOI 10.1086/684363
Maiti S. K., 2013, Journal of Environmental Protection, V4, P1428, DOI 10.4236/jep.2013.412163
Maloney EM, 2018, ENVIRON POLLUT, V243, P1727, DOI 10.1016/j.envpol.2018.09.008
Mantyka-Pringle CS, 2012, GLOBAL CHANGE BIOL, V18, P1239, DOI 10.1111/j.1365-2486.2011.02593.x
Mao W, 2013, P NATL ACAD SCI USA, V110, P8842, DOI 10.1073/pnas.1303884110
Marcantonio M, 2013, APPL GEOGR, V42, P63, DOI 10.1016/j.apgeog.2013.05.001
Martinez-Paz P, 2013, MUTAT RES-GEN TOX EN, V758, P41, DOI 10.1016/j.mrgentox.2013.09.005
MATSUMURA F, 1964, J AGR FOOD CHEM, V12, P447, DOI 10.1021/jf60135a018
Mattick JS, 2009, BIOESSAYS, V31, P51, DOI 10.1002/bies.080099
Mattina MI, 2002, ENVIRON TOXICOL CHEM, V21, P281, DOI [10.1897/1551-5028(2002)021<0281:COWCRI>2.0.CO;2, 10.1897/1551-5028(2002)021<0281:COWCRI>2.0.CO;2]
MAUND SJ, 1992, ECOTOX ENVIRON SAFE, V23, P76, DOI 10.1016/0147-6513(92)90023-V
MCNEELY JA, 1992, BIODIVERS CONSERV, V1, P2, DOI 10.1007/BF00700247
Melathopoulos AP, 2015, ECOL ECON, V109, P59, DOI 10.1016/j.ecolecon.2014.11.007
Millot F, 2017, ENVIRON SCI POLLUT R, V24, P5469, DOI 10.1007/s11356-016-8272-y
Mortl M, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17062006
Morais S., 2012, IMPACT PESTICIDES, P21
Morales M, 2014, AQUAT TOXICOL, V157, P1, DOI 10.1016/j.aquatox.2014.09.009
Morales-Nebreda L, 2019, TRANSL RES, V204, P1, DOI 10.1016/j.trsl.2018.08.001
Morandin C, 2019, MOL ECOL, V28, P1975, DOI 10.1111/mec.15062
Motaung TE, 2020, CROP PROT, V131, DOI 10.1016/j.cropro.2020.105097
MOYE WC, 1964, J ECON ENTOMOL, V57, P318, DOI 10.1093/jee/57.3.318
Muller T, 2019, J APPL ECOL, V56, P1528, DOI 10.1111/1365-2664.13398
Mukherjee K, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36829-8
Mukherjee K, 2015, PROG BIOPHYS MOL BIO, V118, P69, DOI 10.1016/j.pbiomolbio.2015.02.009
Murano H, 2018, SCI TOTAL ENVIRON, V615, P1478, DOI 10.1016/j.scitotenv.2017.09.120
Muzinic V, 2018, ARH HIG RADA TOKSIKO, V69, P86, DOI 10.2478/aiht-2018-69-3111
Nadda G, 2005, APPL ENTOMOL ZOOL, V40, P265, DOI 10.1303/aez.2005.265
Ney Gideon, 2019, Journal of Orthoptera Research, V28, P11, DOI 10.3897/jor.28.28888
Nolan RH, 2020, GLOBAL CHANGE BIOL, V26, P1039, DOI 10.1111/gcb.14987
Oberhauser KS, 2009, J AM MOSQUITO CONTR, V25, P83, DOI 10.2987/08-5788.1
Oppold A, 2015, ECOTOX ENVIRON SAFE, V122, P45, DOI 10.1016/j.ecoenv.2015.06.036
Oppold AM, 2017, ADV INSECT PHYSIOL, V53, P313, DOI 10.1016/bs.aiip.2017.04.002
Paleolog J, 2020, APIDOLOGIE, V51, P620, DOI 10.1007/s13592-020-00747-4
Park K, 2008, CHEMOSPHERE, V74, P89, DOI 10.1016/j.chemosphere.2008.09.041
Parkinson RH, 2020, P NATL ACAD SCI USA, V117, P5510, DOI 10.1073/pnas.1916432117
Patalano S, 2012, CURR OPIN CELL BIOL, V24, P367, DOI 10.1016/j.ceb.2012.02.005
Pearson MM, 2019, METHODS MOL BIOL, V2021, P121, DOI 10.1007/978-1-4939-9601-8_12
Peng YC, 2016, SCI REP-UK, V6, DOI 10.1038/srep19298
Pettis JS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070182
Pico Y, 2020, SCI TOTAL ENVIRON, V701, DOI 10.1016/j.scitotenv.2019.135021
Pietrzak D, 2020, CHEMOSPHERE, V255, DOI 10.1016/j.chemosphere.2020.126981
Pievani T, 2014, REND LINCEI-SCI FIS, V25, P85, DOI 10.1007/s12210-013-0258-9
Piiroinen S, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0246
Pisa LW, 2015, ENVIRON SCI POLLUT R, V22, P68, DOI 10.1007/s11356-014-3471-x
Planello R, 2008, CHEMOSPHERE, V71, P1870, DOI 10.1016/j.chemosphere.2008.01.033
Planello R, 2011, AQUAT TOXICOL, V105, P62, DOI 10.1016/j.aquatox.2011.05.011
Posner R, 2019, CELL, V177, P1814, DOI 10.1016/j.cell.2019.04.029
Rada S, 2019, DIVERS DISTRIB, V25, P217, DOI 10.1111/ddi.12854
Raes H, 2000, J EXP ZOOL, V286, P1, DOI 10.1002/(SICI)1097-010X(20000101)286:1<1::AID-JEZ1>3.0.CO;2-Z
Rayms-Keller A, 2000, INSECT MOL BIOL, V9, P419, DOI 10.1046/j.1365-2583.2000.00202.x
Reilly JR, 2020, P ROY SOC B-BIOL SCI, V287, DOI 10.1098/rspb.2020.0922
Requena-Mullor M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18052355
Reynolds JA, 2013, INSECT BIOCHEM MOLEC, V43, P982, DOI 10.1016/j.ibmb.2013.07.005
Richard G, 2019, CURR OPIN INSECT SCI, V35, P138, DOI 10.1016/j.cois.2019.06.013
Rockstrom J, 2009, NATURE, V461, P472, DOI 10.1038/461472a
Roelofs D, 2009, MOL ECOL, V18, P3227, DOI 10.1111/j.1365-294X.2009.04261.x
Rostant WG, 2012, ADV GENET, V78, P169, DOI 10.1016/B978-0-12-394394-1.00002-X
Rundlof M, 2015, NATURE, V521, P77, DOI 10.1038/nature14420
Rusiecki JA, 2017, ENVIRON MOL MUTAGEN, V58, P19, DOI 10.1002/em.22067
Saaristo M, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.1297
Saha S, 2008, B ENVIRON CONTAM TOX, V80, P49, DOI 10.1007/s00128-007-9314-4
Samson-Robert O, 2017, PEERJ, V5, DOI 10.7717/peerj.3670
Schapheer C, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.702763
Schleier JJ, 2010, ECOTOXICOLOGY, V19, P1140, DOI 10.1007/s10646-010-0497-9
Seebacher F, 2019, TRENDS ECOL EVOL, V34, P818, DOI 10.1016/j.tree.2019.04.017
Seide VE, 2018, ENVIRON POLLUT, V243, P1854, DOI 10.1016/j.envpol.2018.10.020
Shevchenko AI, 2019, INT J DEV BIOL, V63, P223, DOI 10.1387/ijdb.180376as
Simola DF, 2016, SCIENCE, V351, DOI 10.1126/science.aac6633
Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y
Singh JS, 2002, CURR SCI INDIA, V82, P638
Skinner MK, 2019, EPIGENETICS-US, V14, P721, DOI 10.1080/15592294.2019.1614417
Skinner MK, 2018, EPIGENET CHROMATIN, V11, DOI 10.1186/s13072-018-0178-0
Smith C. J., 2020, Toxicology Research and Application, V4, P0561, DOI 10.1177/2397847320940561
SPURR HW, 1974, J ENVIRON QUAL, V3, P130, DOI 10.2134/jeq1974.00472425000300020008x
Stanley DA, 2015, NATURE, V528, P548, DOI 10.1038/nature16167
Stanley J., 2016, 2016 4 INT S ENV FRI, P1
Stavert JR, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0788
Steffan-Dewenter I, 2005, TRENDS ECOL EVOL, V20, P651, DOI 10.1016/j.tree.2005.09.004
Stoughton SJ, 2008, ARCH ENVIRON CON TOX, V54, P662, DOI 10.1007/s00244-007-9073-6
Studzinska MB, 2020, ACTA VET SCAND, V62, DOI 10.1186/s13028-020-00526-2
Summerhayes Colin P., 2018, Geology Today, V34, P194
Tasei JN, 2002, HONEY BEES: ESTIMATING THE ENVIRONMENTAL IMPACT OF CHEMICALS, P101, DOI 10.1201/9780203218655.ch7
Tikhodeyev ON, 2018, BIOL REV, V93, P1987, DOI 10.1111/brv.12429
Tosi S, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0433
Tucci V, 2019, CELL, V176, P952, DOI 10.1016/j.cell.2019.01.043
Unni BG, 2009, CURR SCI INDIA, V96, P1114
Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004
van der Sluijs JP, 2020, CURR OPIN ENV SUST, V46, P39, DOI 10.1016/j.cosust.2020.08.012
Vargas AO, 2020, J EXP ZOOL PART B, DOI 10.1002/jez.b.23023
Vehovszky A, 2015, AQUAT TOXICOL, V167, P172, DOI 10.1016/j.aquatox.2015.08.009
Vidaki A, 2013, FORENSIC SCI INT-GEN, V7, P499, DOI 10.1016/j.fsigen.2013.05.004
Villagra C, 2020, NEOTROP ENTOMOL, V49, P615, DOI 10.1007/s13744-020-00777-8
Virah-Sawmy M, 2014, J ENVIRON MANAGE, V143, P61, DOI 10.1016/j.jenvman.2014.03.027
WAFFORD KA, 1989, PESTIC BIOCHEM PHYS, V33, P213, DOI 10.1016/0048-3575(89)90119-3
Wang HF, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.00770
Wang WL, 2021, TOXICOL IN VITRO, V75, DOI 10.1016/j.tiv.2021.105174
Ware G W, 1980, Residue Rev, V76, P173
Wilcox AAE, 2021, J EXP BIOL, V224, DOI 10.1242/jeb.230870
Wilting HC, 2017, ENVIRON SCI TECHNOL, V51, P3298, DOI 10.1021/acs.est.6b05296
Woodcock BA, 2017, SCIENCE, V356, P1393, DOI 10.1126/science.aaa1190
Wu ZH, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2010.06.018
Xider K. M., 2018, Kurdistan Journal of Applied Research, V3, P40, DOI 10.24017/science.2018.1.8
Youngson NA, 2008, ANNU REV GENOM HUM G, V9, P233, DOI 10.1146/annurev.genom.9.081307.164445
Yusmalinar Sri, 2017, Journal of Entomology, V14, P199, DOI 10.3923/je.2017.199.207
Zahm SH, 1998, ENVIRON HEALTH PERSP, V106, P893, DOI 10.2307/3434207
Zhao JZ, 2000, J ECON ENTOMOL, V93, P1508, DOI 10.1603/0022-0493-93.5.1508
Zhong PQ, 2019, DEVELOPMENT, V146, DOI 10.1242/dev.167841
Zylicz JJ, 2019, CELL, V176, P182, DOI 10.1016/j.cell.2018.11.041
NR 261
TC 8
Z9 8
U1 9
U2 18
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-4450
J9 INSECTS
JI Insects
PD SEP
PY 2021
VL 12
IS 9
AR 780
DI 10.3390/insects12090780
PG 29
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Entomology
GA UV5MV
UT WOS:000699523200001
PM 34564220
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Leri, M
Scuto, M
Ontario, ML
Calabrese, V
Calabrese, EJ
Bucciantini, M
Stefani, M
AF Leri, Manuela
Scuto, Maria
Ontario, Maria Laura
Calabrese, Vittorio
Calabrese, Edward J.
Bucciantini, Monica
Stefani, Massimo
TI Healthy Effects of Plant Polyphenols: Molecular Mechanisms
SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
LA English
DT Review
DE plant polyphenols; hormesis; autophagy; Mediterranean diet; olive oil;
curcumin; resveratrol; oleuropein; hydroxytyrosol; epigallocathechin;
epigenetics
ID VIRGIN OLIVE OIL; ACTIVATED PROTEIN-KINASE; IMPROVES
MITOCHONDRIAL-FUNCTION; NATURALLY-OCCURRING IRIDOIDS; CELLULAR
STRESS-RESPONSE; TUMOR-SUPPRESSOR GENES; BREAST-CANCER RISK;
MEDITERRANEAN DIET; ALZHEIMERS-DISEASE; OXIDATIVE STRESS
AB The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
C1 [Leri, Manuela; Bucciantini, Monica; Stefani, Massimo] Univ Florence, Dept Expt & Clin Biomed Sci Mario Serio, Viale Morgagni 50, I-50134 Florence, Italy.
[Leri, Manuela] Univ Firenze, Dept Neurosci Psychol Drug Res & Child Hlth, I-50139 Florence, Italy.
[Scuto, Maria; Ontario, Maria Laura; Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Torre Biol, Via Santa Sofia, I-9795125 Catania, Italy.
[Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA.
C3 University of Florence; University of Florence; University of Catania;
University of Massachusetts System; University of Massachusetts Amherst
RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA.
EM manuela.leri@unifi.it; mary-amir@hotmail.it;
Marialaura.ontario@ontariosrl.it; vittorio.calabrese@unict.it;
calabres@unict.it; monica.bucciantini@unifi.it; massimo.stefani@unifi.it
RI Calabrese, Vittorio/AAC-8157-2021; Ontario, Maria Laura/AAC-7849-2022
OI Calabrese, Vittorio/0000-0002-0478-985X; Leri,
Manuela/0000-0002-3785-0805
FU Fondo di ricerca University of Catania [20130143005]
FX This research was funded by "Fondo di ricerca University of Catania" n.
20130143005.
CR Abbasi N, 2016, IRAN J MED SCI, V41, P118
Abbasi N, 2014, PHYTOTHER RES, V28, P1301, DOI 10.1002/ptr.5128
Abuznait AH, 2013, ACS CHEM NEUROSCI, V4, P973, DOI 10.1021/cn400024q
Afshari K, 2019, J CELL PHYSIOL, V234, P21519, DOI 10.1002/jcp.28777
Alam MN, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/4154185
An YW, 2016, NEUROBIOL AGING, V38, P1, DOI 10.1016/j.neurobiolaging.2015.10.016
Annara I, 2020, ENVIRON TOXICOL, V35, P78, DOI 10.1002/tox.22844
[Anonymous], 2018, J CLIN TRANSL RES, DOI 10.18053/jctres.04.201802.004
Ayissi VBO, 2014, MOL NUTR FOOD RES, V58, P22, DOI 10.1002/mnfr.201300195
Babu PVA, 2013, J NUTR BIOCHEM, V24, P1777, DOI 10.1016/j.jnutbio.2013.06.003
Bach-Faig A, 2011, PUBLIC HEALTH NUTR, V14, P2274, DOI 10.1017/S1368980011002515
Bachinskaya N, 2011, NEUROPSYCH DIS TREAT, V7, P209, DOI 10.2147/NDT.S18741
Baixauli F, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00403
Bartolini G, 2002, CLASSIFICATIONS ORIG
Baum L, 2008, J CLIN PSYCHOPHARM, V28, P110, DOI 10.1097/jcp.0b013e318160862c
Bedse G, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00204
Berr C, 2009, DEMENT GERIATR COGN, V28, P357, DOI 10.1159/000253483
Biessels GJ, 2015, NAT REV NEUROSCI, V16, P660, DOI 10.1038/nrn4019
Bravo L, 1998, NUTR REV, V56, P317, DOI 10.1111/j.1753-4887.1998.tb01670.x
Bronner M, 2004, BIOCHEM J, V384, P295, DOI 10.1042/BJ20040955
Cai EP, 2009, J AGR FOOD CHEM, V57, P9817, DOI 10.1021/jf902618v
Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019
Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053
Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172
Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625
Calabrese V, 2014, J CELL COMMUN SIGNAL, V8, P369, DOI 10.1007/s12079-014-0253-7
Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244
Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379
Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074
Calahorra J, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102430
Calin GA, 2005, NEW ENGL J MED, V353, P1793, DOI 10.1056/NEJMoa050995
Calixto Joao B., 2004, Planta Medica, V70, P93, DOI 10.1055/s-2004-815483
Camargo A, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-253
Campbell NK, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00345
Carlos S, 2018, NUTRIENTS, V10, DOI 10.3390/nu10040439
Carnevale R, 2019, EUR J NUTR, V58, P843, DOI 10.1007/s00394-018-1718-x
Carnevale R, 2014, ATHEROSCLEROSIS, V235, P649, DOI 10.1016/j.atherosclerosis.2014.05.954
Carra S, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2011.0409
Casamenti F, 2017, EXPERT REV NEUROTHER, V17, P345, DOI 10.1080/14737175.2017.1245617
Chakrabarti M, 2012, BRAIN RES, V1454, P1, DOI 10.1016/j.brainres.2012.03.017
Chang TC, 2007, MOL CELL, V26, P745, DOI 10.1016/j.molcel.2007.05.010
Chen CY, 2011, MITOCHONDRION, V11, P739, DOI 10.1016/j.mito.2011.05.014
Cheng KK, 2013, AAPS J, V15, P324, DOI 10.1208/s12248-012-9444-4
Chimento A, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20061381
Choi KC, 2009, CANCER RES, V69, P583, DOI 10.1158/0008-5472.CAN-08-2442
Chung JH, 2012, TRENDS CELL BIOL, V22, P546, DOI 10.1016/j.tcb.2012.07.004
Chung SW, 2010, ARCH BIOCHEM BIOPHYS, V501, P79, DOI 10.1016/j.abb.2010.05.003
Codolo G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055375
Collodet C, 2019, FASEB J, V33, P12374, DOI 10.1096/fj.201900841R
Colomer R, 2017, CURR DRUG TARGETS, V18, P147, DOI 10.2174/1389450117666160112113930
Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-41
Covas MI, 2006, ANN INTERN MED, V145, P333, DOI 10.7326/0003-4819-145-5-200609050-00006
Cummings E, 2004, MOL CELL BIOCHEM, V261, P99, DOI 10.1023/B:MCBI.0000028743.75669.ab
Curti V, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20051250
D'Amore S, 2016, BBA-MOL CELL BIOL L, V1861, P1671, DOI 10.1016/j.bbalip.2016.07.003
Daccache A, 2011, NEUROCHEM INT, V58, P700, DOI 10.1016/j.neuint.2011.02.010
de Bock M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057622
de Bock M, 2013, MOL NUTR FOOD RES, V57, P2079, DOI 10.1002/mnfr.201200795
de la Torre R, 2006, EUR J NUTR, V45, P307, DOI 10.1007/s00394-006-0596-9
de Lorgeril M, 1999, CIRCULATION, V99, P779, DOI 10.1161/01.CIR.99.6.779
de Pablos RM, 2019, PHARMACOL RES, V143, P58, DOI 10.1016/j.phrs.2019.03.005
deRijk MC, 1997, ARCH NEUROL-CHICAGO, V54, P762, DOI 10.1001/archneur.1997.00550180070015
Dinda B, 2007, CHEM PHARM BULL, V55, P159, DOI 10.1248/cpb.55.159
Dinda B, 2011, CHEM PHARM BULL, V59, P803, DOI 10.1248/cpb.59.803
Diomede L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058893
DiSilvestro RA, 2012, NUTR J, V11, DOI 10.1186/1475-2891-11-79
Drira R, 2011, LIFE SCI, V89, P708, DOI 10.1016/j.lfs.2011.08.012
Egan DF, 2011, SCIENCE, V331, P456, DOI 10.1126/science.1196371
El Amin M, 2013, PAK J PHARM SCI, V26, P359
Esteller M, 2008, NEW ENGL J MED, V358, P1148, DOI 10.1056/NEJMra072067
Estruch R, 2018, NEW ENGL J MED, V378, DOI [10.1056/NEJMoa1800389, 10.1056/nejmoa1800389]
Fang MZ, 2003, CANCER RES, V63, P7563
Feart C, 2013, P NUTR SOC, V72, P140, DOI 10.1017/S0029665112002959
Fenaux P, 2009, LANCET ONCOL, V10, P223, DOI 10.1016/S1470-2045(09)70003-8
Feng LF, 2019, DNA CELL BIOL, V38, P874, DOI 10.1089/dna.2018.4308
Fito M, 2014, EUR J HEART FAIL, V16, P543, DOI 10.1002/ejhf.61
Flemmig J, 2011, PHYTOMEDICINE, V18, P561, DOI 10.1016/j.phymed.2010.10.021
Flemmig J, 2014, ARCH BIOCHEM BIOPHYS, V549, P17, DOI 10.1016/j.abb.2014.03.006
Freeman D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062143
Frey B, 2015, CANCER LETT, V368, P230, DOI 10.1016/j.canlet.2015.04.010
Frost JL, 2013, AM J PATHOL, V183, P369, DOI 10.1016/j.ajpath.2013.05.005
Fu YJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102535
Fujiwara Y, 2017, J CLIN BIOCHEM NUTR, V61, P196, DOI 10.3164/jcbn.16-120
Fulco M, 2008, CELL CYCLE, V7, P3669, DOI 10.4161/cc.7.23.7164
Funakohi-Tago M, 2018, EUR J PHARMACOL, V834, P246, DOI 10.1016/j.ejphar.2018.07.043
Furtado LM, 2002, BIOCHEM CELL BIOL, V80, P569, DOI 10.1139/O02-156
Gallardo-Fernandez M, 2019, FOOD CHEM TOXICOL, V134, DOI 10.1016/j.fct.2019.110817
Gao J, 2010, NATURE, V466, P1105, DOI 10.1038/nature09271
Garcia-Villalba R, 2014, EUR J NUTR, V53, P1015, DOI 10.1007/s00394-013-0604-9
Gardeazabal I, 2019, BRIT J NUTR, V122, P542, DOI 10.1017/S0007114518003811
Garza-Lombo Carla, 2018, Current Opinion in Toxicology, V8, P102, DOI 10.1016/j.cotox.2018.05.002
George ES, 2019, CRIT REV FOOD SCI, V59, P2772, DOI 10.1080/10408398.2018.1470491
Goldstein DS, 2016, NEUROCHEM RES, V41, P2173, DOI 10.1007/s11064-016-1959-0
Graff J, 2012, NATURE, V483, P222, DOI 10.1038/nature10849
Graikou K, 2011, CHEM CENT J, V5, DOI 10.1186/1752-153X-5-33
Granato M, 2017, J NUTR BIOCHEM, V41, P124, DOI 10.1016/j.jnutbio.2016.12.011
Grossi C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071702
Gu HF, 2020, CRIT REV FOOD SCI, V60, P810, DOI 10.1080/10408398.2018.1551778
Guasch-Ferre M, 2015, AM J CLIN NUTR, V102, P479, DOI 10.3945/ajcn.115.112029
Guasch-Ferre M, 2014, BMC MED, V12, DOI 10.1186/1741-7015-12-78
Gumireddy A, 2019, AAPS PHARMSCITECH, V20, DOI 10.1208/s12249-019-1349-4
Guo XH, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2572606
Gwinn DM, 2008, MOL CELL, V30, P214, DOI 10.1016/j.molcel.2008.03.003
Hadrich F, 2016, CHEM-BIOL INTERACT, V252, P54, DOI 10.1016/j.cbi.2016.03.026
Halliwell B, 2001, DRUG AGING, V18, P685, DOI 10.2165/00002512-200118090-00004
Hamaguchi T, 2010, CNS NEUROSCI THER, V16, P285, DOI 10.1111/j.1755-5949.2010.00147.x
Han YS, 2006, J PHARMACOL EXP THER, V318, P238, DOI 10.1124/jpet.106.102319
Hanhineva K, 2010, INT J MOL SCI, V11, P1365, DOI 10.3390/ijms11041365
Hao JJ, 2010, J NUTR BIOCHEM, V21, P634, DOI 10.1016/j.jnutbio.2009.03.012
Hardie DG, 2007, NAT REV MOL CELL BIO, V8, P774, DOI 10.1038/nrm2249
Hardy TM, 2011, EPIGENOMICS-UK, V3, P503, DOI [10.2217/EPI.11.71, 10.2217/epi.11.71]
Harte AL, 2012, DIABETES CARE, V35, P375, DOI 10.2337/dc11-1593
Heger V, 2019, BIOMED PHARMACOTHER, V111, P1326, DOI 10.1016/j.biopha.2019.01.035
Hellebrekers DMEI, 2007, BBA-REV CANCER, V1775, P76, DOI 10.1016/j.bbcan.2006.07.003
Heneka MT, 2013, NATURE, V493, P674, DOI 10.1038/nature11729
Henning SM, 2013, EPIGENOMICS-UK, V5, P729, DOI 10.2217/epi.13.57
Henquin JC, 2000, DIABETES, V49, P1751, DOI 10.2337/diabetes.49.11.1751
Heo J, 2017, CELL REP, V18, P1930, DOI 10.1016/j.celrep.2017.01.074
Herman JG, 2003, NEW ENGL J MED, V349, P2042, DOI 10.1056/NEJMra023075
Hernaez A, 2015, J NUTR, V145, P1692, DOI 10.3945/jn.115.211557
Hernaez A, 2014, ARTERIOSCL THROM VAS, V34, P2115, DOI 10.1161/ATVBAHA.114.303374
Herrschaft H, 2012, J PSYCHIATR RES, V46, P716, DOI 10.1016/j.jpsychires.2012.03.003
Herskovits AZ, 2014, NEURON, V81, P471, DOI 10.1016/j.neuron.2014.01.028
Hetz C, 2012, NAT REV MOL CELL BIO, V13, P89, DOI 10.1038/nrm3270
Hiyoshi T, 2019, J BIOMED RES, V33, P1, DOI 10.7555/JBR.31.20160164
Howes MJR, 2011, DRUG AGING, V28, P439, DOI 10.2165/11591310-000000000-00000
Huang YJ, 2019, AGING-US, V11, P2217, DOI 10.18632/aging.101910
Inoki K, 2003, CELL, V115, P577, DOI 10.1016/S0092-8674(03)00929-2
Jaisamut P, 2017, PLANTA MED, V83, P461, DOI 10.1055/s-0042-108734
Jinsmaa Y, 2020, J PHARMACOL EXP THER, V372, P157, DOI 10.1124/jpet.119.262246
Johnston K, 2005, FEBS LETT, V579, P1653, DOI 10.1016/j.febslet.2004.12.099
Joshi S, 2018, NAT REV CANCER, V18, P562, DOI 10.1038/s41568-018-0020-9
Juli G, 2019, CANCERS, V11, DOI 10.3390/cancers11070990
Kala R, 2015, BMC CANCER, V15, DOI 10.1186/s12885-015-1693-z
Keys, 1980, 7 COUNTRIES MULTIVAR
Kikuno N, 2008, INT J CANCER, V123, P552, DOI 10.1002/ijc.23590
Kim MH, 2018, NUTR NEUROSCI, V21, P520, DOI [10.1080/1028415X.2017.1317449, 10.1080/1028415x.2017.1317449]
Knight A, 2015, BMC GERIATR, V15, DOI 10.1186/s12877-015-0054-8
Korolchuk VI, 2009, MOL CELL, V33, P517, DOI 10.1016/j.molcel.2009.01.021
Korzus E, 2010, NAT NEUROSCI, V13, P405, DOI 10.1038/nn0410-405
Kostomoiri M, 2013, CELL MOL NEUROBIOL, V33, P147, DOI 10.1007/s10571-012-9880-9
Kouzarides T, 2007, CELL, V128, P693, DOI 10.1016/j.cell.2007.02.005
Kristen AV, 2012, CLIN RES CARDIOL, V101, P805, DOI 10.1007/s00392-012-0463-z
Kumar R, 2017, EUR J MED CHEM, V127, P909, DOI 10.1016/j.ejmech.2016.11.001
Kundu J, 2014, FOOD CHEM TOXICOL, V65, P18, DOI 10.1016/j.fct.2013.12.015
Kurimoto Y, 2013, J AGR FOOD CHEM, V61, P5558, DOI 10.1021/jf401190y
Kuzuhara T, 2008, CANCER LETT, V261, P12, DOI 10.1016/j.canlet.2007.10.037
Kwak MK, 2003, MOL CELL BIOL, V23, P8786, DOI 10.1128/MCB.23.23.8786-8794.2003
Labbadia J, 2015, ANNU REV BIOCHEM, V84, P435, DOI 10.1146/annurev-biochem-060614-033955
Ladiwala ARA, 2011, CHEMBIOCHEM, V12, P1749, DOI 10.1002/cbic.201100123
Lan F, 2017, NUTRIENTS, V9, DOI 10.3390/nu9070751
Large M, 2015, STRAHLENTHER ONKOL, V191, P742, DOI 10.1007/s00066-015-0848-9
Laudati G, 2019, NEUROTOXICOLOGY, V71, P6, DOI 10.1016/j.neuro.2018.11.009
Lee DH, 2007, PANCREAS, V35, P53, DOI 10.1097/01.mpa.0000278676.58491.ef
Lee JH, 2007, NATURE, V447, P1017, DOI 10.1038/nature05828
Lee S, 2018, MOL NUTR FOOD RES, V62, DOI 10.1002/mnfr.201800240
Lee WJ, 2011, ONCOL REP, V25, P583, DOI 10.3892/or.2010.1097
Lee YJ, 2015, MOL CELLS, V38, P416, DOI 10.14348/molcells.2015.2268
Leri M, 2019, FOOD CHEM TOXICOL, V129, P1, DOI 10.1016/j.fct.2019.04.015
Li XN, 2009, DIABETES, V58, P2246, DOI 10.2337/db08-1512
Li YY, 2013, MOL CANCER, V12, DOI 10.1186/1476-4598-12-9
Lindstrom J, 2006, DIABETOLOGIA, V49, P912, DOI 10.1007/s00125-006-0198-3
Ling D, 2012, EUR J CANCER, V48, P3278, DOI 10.1016/j.ejca.2012.02.067
Lithner CU, 2013, NEUROBIOL AGING, V34, P2081, DOI 10.1016/j.neurobiolaging.2012.12.028
Liu B, 2003, J PHARMACOL EXP THER, V304, P1, DOI 10.1124/jpet.102.035048
Lockyer S, 2017, EUR J NUTR, V56, P1421, DOI 10.1007/s00394-016-1188-y
Lockyer S, 2015, BRIT J NUTR, V114, P75, DOI 10.1017/S0007114515001269
Hazas MCLD, 2018, J FUNCT FOODS, V46, P110, DOI 10.1016/j.jff.2018.04.028
Lopez-Serra P, 2012, ONCOGENE, V31, P1609, DOI 10.1038/onc.2011.354
Lu J, 2005, NATURE, V435, P834, DOI 10.1038/nature03702
Luccarini I, 2015, NEUROBIOL AGING, V36, P648, DOI 10.1016/j.neurobiolaging.2014.08.029
Ma QL, 2013, J BIOL CHEM, V288, P4056, DOI 10.1074/jbc.M112.393751
Ma S, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/4602715
Maggi S, 2006, J GERONTOL A-BIOL, V61, P505, DOI 10.1093/gerona/61.5.505
Maiti P, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061637
Majid S, 2010, CANCER-AM CANCER SOC, V116, P66, DOI 10.1002/cncr.24662
Majid S, 2009, CARCINOGENESIS, V30, P662, DOI 10.1093/carcin/bgp042
Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75
Marsin AS, 2002, J BIOL CHEM, V277, P30778, DOI 10.1074/jbc.M205213200
Martinez-Gonzalez MA, 2019, CIRC RES, V124, P779, DOI 10.1161/CIRCRESAHA.118.313348
Martinez-Lapiscina EH, 2013, J NUTR HEALTH AGING, V17, P544, DOI 10.1007/s12603-013-0027-6
Martinez-Lapiscina EH, 2014, GENES NUTR, V9, DOI 10.1007/s12263-014-0393-7
Matsui T, 2007, J AGR FOOD CHEM, V55, P99, DOI 10.1021/jf0627672
Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Meigs JB, 2002, DIABETES CARE, V25, P1845, DOI 10.2337/diacare.25.10.1845
Mhillaj E, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01298
Miceli C, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/8067592
Miki H, 2012, INT J ONCOL, V40, P1020, DOI 10.3892/ijo.2012.1325
Milenkovic D, 2012, PLOS ONE, V7, P156, DOI 10.1371/journal.pone.0029837
Miyamoto K, 2005, JPN J CLIN ONCOL, V35, P293, DOI 10.1093/jjco/hyi088
Moghadam FH, 2018, EUR J PHARMACOL, V841, P104, DOI 10.1016/j.ejphar.2018.10.003
Montagut G, 2010, J NUTR BIOCHEM, V21, P476, DOI 10.1016/j.jnutbio.2009.02.003
Monti MC, 2012, J NAT PROD, V75, P1584, DOI 10.1021/np300384h
Montoya T, 2018, J NUTR BIOCHEM, V57, P110, DOI 10.1016/j.jnutbio.2018.03.014
Moussa C, 2017, J NEUROINFLAMM, V14, DOI 10.1186/s12974-016-0779-0
Murie-Fernandez M, 2011, ATHEROSCLEROSIS, V219, P158, DOI 10.1016/j.atherosclerosis.2011.06.050
Najafi MN, 2018, PHYTOTHER RES, V32, P1855, DOI 10.1002/ptr.6124
Nardiello P, 2018, J ALZHEIMERS DIS, V63, P1161, DOI 10.3233/JAD-171124
Naviaux RK, 2019, MITOCHONDRION, V46, P278, DOI 10.1016/j.mito.2018.08.001
Nocella C, 2017, THROMB HAEMOSTASIS, V117, P1558, DOI 10.1160/TH16-11-0857
O'Keefe JH, 2007, AM J CARDIOL, V100, P899, DOI 10.1016/j.amjcard.2007.03.107
Okonkwo A, 2018, MOL NUTR FOOD RES, V62, DOI 10.1002/mnfr.201800228
Oliveras-Lopez MJ, 2013, ARCH GERONTOL GERIAT, V57, P234, DOI 10.1016/j.archger.2013.04.002
Palazzi L, 2020, BIOCHEM PHARMACOL, V173, DOI 10.1016/j.bcp.2019.113722
Park CE, 2007, EXP MOL MED, V39, P222, DOI 10.1038/emm.2007.25
Patel KR, 2011, ANN NY ACAD SCI, V1215, P161, DOI 10.1111/j.1749-6632.2010.05853.x
Peedicayil J, 2006, INDIAN J MED RES, V123, P17
Peng SJ, 2015, FOOD FUNCT, V6, P2091, DOI [10.1039/c5fo00097a, 10.1039/C5FO00097A]
Peng YH, 2016, MOL NUTR FOOD RES, V60, P2331, DOI 10.1002/mnfr.201600332
Perez-Herrera A, 2012, MOL NUTR FOOD RES, V56, P510, DOI 10.1002/mnfr.201100533
Perrone MA, 2019, J CARDIOVASC MED, V20, P419, DOI 10.2459/JCM.0000000000000816
Pilipenko V, 2019, J NEUROSCI RES, V97, P708, DOI 10.1002/jnr.24396
Psaltopoulou Theodora, 2015, Evid Based Med, V20, P202, DOI 10.1136/ebmed-2015-110237
Qosa H, 2015, J NUTR BIOCHEM, V26, P1479, DOI 10.1016/j.jnutbio.2015.07.022
Rahman I, 2010, J NUTRIGENET NUTRIGE, V3, P220, DOI 10.1159/000324358
Rainer M, 2013, WIEN KLIN WOCHENSCHR, V125, P8, DOI 10.1007/s00508-012-0307-x
Ranalli A, 2009, EUR J LIPID SCI TECH, V111, P678, DOI 10.1002/ejlt.200800268
Raver-Shapira N, 2007, MOL CELL, V26, P731, DOI 10.1016/j.molcel.2007.05.017
Reutzel M, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/4070935
Rigacci S, 2015, ONCOTARGET, V6, P35344, DOI 10.18632/oncotarget.6119
Rigacci S, 2015, EXPERT REV NEUROTHER, V15, P41, DOI 10.1586/14737175.2015.986101
Rigacci S, 2010, J NUTR BIOCHEM, V21, P726, DOI 10.1016/j.jnutbio.2009.04.010
Ringman JM, 2012, ALZHEIMERS RES THER, V4, DOI 10.1186/alzrt146
Rutter GA, 2003, BIOCHEM J, V375, P1, DOI 10.1042/BJ20030048
Sabatini DM, 2006, NAT REV CANCER, V6, P729, DOI 10.1038/nrc1974
Safouris A, 2015, CURR ALZHEIMER RES, V12, P736, DOI 10.2174/1567205012666150710114430
Salinaro AT, 2018, IMMUN AGEING, V15, DOI 10.1186/s12979-017-0108-1
Salinaro AT, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00129
Scarmeas N, 2009, ARCH NEUROL-CHICAGO, V66, P216, DOI 10.1001/archneurol.2008.536
Schilling S, 2008, NAT MED, V14, P1106, DOI 10.1038/nm.1872
Schnack Lauren L, 2017, Recent Pat Biotechnol, V11, P101, DOI 10.2174/1872208311666170227112013
Schneider-Stock R, 2012, FRONT BIOSCI-LANDMRK, V17, P129, DOI 10.2741/3919
Scoditti E, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102493
Scuto M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010284
Scuto MC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102417
Selvaraj S, 2016, MOL CARCINOGEN, V55, P818, DOI 10.1002/mc.22324
Servili M, 2002, EUR J LIPID SCI TECH, V104, P602, DOI 10.1002/1438-9312(200210)104:9/10<602::AID-EJLT602>3.0.CO;2-X
Shibani F, 2019, N-S ARCH PHARMACOL, V392, P1383, DOI 10.1007/s00210-019-01678-3
Singh AP, 2019, MED RES REV, V39, P1851, DOI 10.1002/med.21565
Song J, 2002, J BIOL CHEM, V277, P15252, DOI 10.1074/jbc.M110496200
Soriguer F, 2013, EUR J CLIN NUTR, V67, P911, DOI 10.1038/ejcn.2013.130
Speer H, 2019, NUTR METAB INSIGHTS, V12, DOI 10.1177/1178638819882739
Stefani M, 2014, BIOFACTORS, V40, P482, DOI 10.1002/biof.1171
Sun M, 2008, MOL CANCER THER, V7, P464, DOI 10.1158/1535-7163.MCT-07-2272
Sun T, 2019, INT J MOL MED, V44, P1531, DOI 10.3892/ijmm.2019.4300
Sun WY, 2017, NEUROPHARMACOLOGY, V113, P556, DOI 10.1016/j.neuropharm.2016.11.010
Tadera K, 2006, J NUTR SCI VITAMINOL, V52, P149, DOI 10.3177/jnsv.52.149
Tan MS, 2013, MOL NEUROBIOL, V48, P875, DOI 10.1007/s12035-013-8475-x
Tangney CC, 2011, AM J CLIN NUTR, V93, P601, DOI 10.3945/ajcn.110.007369
Teiten MH, 2009, CANCER LETT, V279, P145, DOI 10.1016/j.canlet.2009.01.031
Thilagam E, 2013, J ACUPUNCT MERIDIAN, V6, P24, DOI 10.1016/j.jams.2012.10.005
Toledo E, 2015, JAMA INTERN MED, V175, P1752, DOI 10.1001/jamainternmed.2015.4838
Tomaselli S, 2019, ACS CHEM NEUROSCI, V10, P4462, DOI 10.1021/acschemneuro.9b00241
Toric J, 2019, ACTA PHARMACEUT, V69, P461, DOI 10.2478/acph-2019-0052
Trichopoulou A, 2003, EUR J PUBLIC HEALTH, V13, P24, DOI 10.1093/eurpub/13.suppl_1.24
Trovato A, 2016, IMMUN AGEING, V13, DOI 10.1186/s12979-016-0078-8
Trovato A, 2016, NEUROTOXICOLOGY, V53, P350, DOI 10.1016/j.neuro.2015.09.012
Tsang WP, 2010, J NUTR BIOCHEM, V21, P140, DOI 10.1016/j.jnutbio.2008.12.003
Tuomilehto Jaakko, 2001, New England Journal of Medicine, V344, P1343, DOI 10.1056/NEJM200105033441801
Utley RT, 1998, NATURE, V394, P498, DOI 10.1038/28886
Valdivielso P, 2010, CLIN CHIM ACTA, V411, P433, DOI 10.1016/j.cca.2009.12.022
Valls-Pedret C, 2015, JAMA INTERN MED, V175, P1094, DOI 10.1001/jamainternmed.2015.1668
Valls-Pedret C, 2012, J ALZHEIMERS DIS, V29, P773, DOI 10.3233/JAD-2012-111799
Villa-Cuesta E, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029513
Violi F, 2015, NUTR DIABETES, V5, DOI 10.1038/nutd.2015.23
Vissers MN, 2002, J NUTR, V132, P409, DOI 10.1093/jn/132.3.409
Vos MJ, 2011, AUTOPHAGY, V7, P101, DOI 10.4161/auto.7.1.13935
Wainstein J, 2012, J MED FOOD, V15, P605, DOI 10.1089/jmf.2011.0243
Wakabayashi N, 2003, NAT GENET, V35, P238, DOI 10.1038/ng1248
Wang LF, 2017, LIPIDS HEALTH DIS, V16, DOI 10.1186/s12944-017-0464-z
Wang SL, 2009, BIOMED ENVIRON SCI, V22, P32, DOI 10.1016/S0895-3988(09)60019-2
Wang WR, 2018, CAN J PHYSIOL PHARM, V96, P88, DOI 10.1139/cjpp-2016-0676
Watson RT, 2004, ENDOCR REV, V25, P177, DOI 10.1210/er.2003-0011
Wei YL, 2018, MOL MED REP, V17, P1493, DOI 10.3892/mmr.2017.8036
Williams RJ, 2004, FREE RADICAL BIO MED, V36, P838, DOI 10.1016/j.freeradbiomed.2004.01.001
Wilson T, 2008, J MED FOOD, V11, P46, DOI 10.1089/jmf.2007.531
Woo SM, 2018, ASIAN PAC J TROP MED, V11, P653, DOI 10.4103/1995-7645.248322
Wu L, 2017, BIOCHEMISTRY-US, V56, P5035, DOI 10.1021/acs.biochem.7b00199
Wunderlich R, 2015, CLIN EXP IMMUNOL, V179, P50, DOI 10.1111/cei.12344
Xiao XS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022934
Xie Q, 2014, GENE CHROMOSOME CANC, V53, P422, DOI 10.1002/gcc.22154
XU CL, 1995, BIOCHEM PHARMACOL, V50, P1333, DOI 10.1016/0006-2952(95)02092-6
Xu JL, 2019, CHEM-BIOL INTERACT, V305, P171, DOI 10.1016/j.cbi.2019.01.010
Yang H, 2018, NEUROCHEM RES, V43, P297, DOI 10.1007/s11064-017-2421-7
Yang X, 2017, CURR MOL MED, V17, P149, DOI 10.2174/1566524017666170421151940
Yang XJ, 2007, ONCOGENE, V26, P5310, DOI 10.1038/sj.onc.1210599
Yin HP, 2018, J IMMUNOL, V200, P2835, DOI 10.4049/jimmunol.1701495
Yu GH, 2016, NEUROCHEM INT, V96, P113, DOI 10.1016/j.neuint.2016.03.005
Zhang C, 2016, RENAL FAILURE, V38, P622, DOI 10.3109/0886022X.2016.1149774
Zhang SH, 2017, MATH PROBL ENG, V2017, DOI 10.1155/2017/1970628
Zhang Y, 2011, CHEM BIOL, V18, P1355, DOI 10.1016/j.chembiol.2011.09.008
Zhang ZF, 2010, PHYTOMEDICINE, V17, P14, DOI 10.1016/j.phymed.2009.09.007
Zhao WJ, 2016, CELL SIGNAL, V28, P1401, DOI 10.1016/j.cellsig.2016.06.018
Zhao YN, 2013, BIOCHEM BIOPH RES CO, V435, P597, DOI 10.1016/j.bbrc.2013.05.025
Zheng A, 2015, BRIT J NUTR, V113, P1667, DOI 10.1017/S0007114515000884
Zhi LQ, 2018, MOL MED REP, V17, P4035, DOI 10.3892/mmr.2017.8353
Zhou YF, 2019, TOXICON, V164, P10, DOI 10.1016/j.toxicon.2019.03.022
Zrelli H, 2015, PHYTOTHER RES, V29, P1011, DOI 10.1002/ptr.5339
NR 300
TC 188
Z9 193
U1 28
U2 131
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1422-0067
J9 INT J MOL SCI
JI Int. J. Mol. Sci.
PD FEB
PY 2020
VL 21
IS 4
AR 1250
DI 10.3390/ijms21041250
PG 40
WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Chemistry
GA KY4FE
UT WOS:000522524400077
PM 32070025
OA gold, Green Published
HC Y
HP N
DA 2023-03-13
ER
PT J
AU Sidibe, A
Charles, MT
Lucier, JF
Xu, YQ
Beaulieu, C
AF Sidibe, Amadou
Charles, Marie Therese
Lucier, Jean-Francois
Xu, Yanqun
Beaulieu, Carole
TI Preharvest UV-C Hormesis Induces Key Genes Associated With Homeostasis,
Growth and Defense in Lettuce Inoculated With Xanthomonas campestris pv.
vitians
SO FRONTIERS IN PLANT SCIENCE
LA English
DT Article
DE bacterial disease; cell homeostasis; defense mechanisms; eustress; leaf
spot disease; lettuce; physiological processes; plant growth
ID BOTRYTIS-CINEREA; TREHALOSE-6-PHOSPHATE SYNTHASE; DROUGHT TOLERANCE;
ABIOTIC STRESSES; OXIDATIVE BURST; IRON-DEFICIENCY; CROSS-TOLERANCE;
SALT-STRESS; ARABIDOPSIS; RESISTANCE
AB Preharvest application of hormetic doses of ultraviolet-C (UV-C) generates beneficial effects in plants. In this study, within 1 week, four UV-C treatments of 0.4 kJ/m2 were applied to 3-week-old lettuce seedlings. The leaves were inoculated with a virulent strain of Xanthomonas campestris pv. vitians (Xcv) 48 h after the last UV-C application. The extent of the disease was tracked over time and a transcriptomic analysis was performed on lettuce leaf samples. Samples of lettuce leaves, from both control and treated groups, were taken at two different times corresponding to T2, 48 h after the last UV-C treatment and T3, 24 h after inoculation (i.e., 72 h after the last UV-C treatment). A significant decrease in disease severity between the UV-C treated lettuce and the control was observed on days 4, 8, and 14 after pathogen inoculation. Data from the transcriptomic study revealed, that in response to the effect of UV-C alone and/or UV-C + Xcv, a total of 3828 genes were differentially regulated with fold change (|log2-FC|) > 1.5 and false discovery rate (FDR) < 0.05. Among these, of the 2270 genes of known function 1556 were upregulated and 714 were downregulated. A total of 10 candidate genes were verified by qPCR and were generally consistent with the transcriptomic results. The differentially expressed genes observed in lettuce under the conditions of the present study were associated with 14 different biological processes in the plant. These genes are involved in a series of metabolic pathways associated with the ability of lettuce treated with hormetic doses of UV-C to resume normal growth and to defend themselves against potential stressors. The results indicate that the hormetic dose of UV-C applied preharvest on lettuce in this study, can be considered as an eustress that does not interfere with the ability of the treated plants to carry on a set of key physiological processes namely: homeostasis, growth and defense.
C1 [Sidibe, Amadou; Charles, Marie Therese; Lucier, Jean-Francois; Beaulieu, Carole] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ, Canada.
[Sidibe, Amadou; Charles, Marie Therese] Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, Richelieu, PQ, Canada.
[Xu, Yanqun] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Zhejiang Key Lab Agrifood Proc, Hangzhou, Peoples R China.
C3 University of Sherbrooke; Agriculture & Agri Food Canada; Zhejiang
University
RP Charles, MT (corresponding author), Univ Sherbrooke, Dept Biol, Sherbrooke, PQ, Canada.; Charles, MT (corresponding author), Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, Richelieu, PQ, Canada.
EM marietherese.charles@agr.gc.ca
CR Aarrouf J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235918
Achuo EA, 2006, PLANT PATHOL, V55, P178, DOI 10.1111/j.1365-3059.2006.01340.x
Ashrafi-Dehkordi E, 2018, PEERJ, V6, DOI 10.7717/peerj.4631
Bagati S., 2018, ABIOTIC STRESS MEDIA, P1, DOI DOI 10.1007/978-981-10-7479-0_1
Balague C, 2017, MOL PLANT PATHOL, V18, P937, DOI 10.1111/mpp.12457
Ban QY, 2020, SCI HORTIC-AMSTERDAM, V265, DOI 10.1016/j.scienta.2020.109232
Baucher M, 1998, CRIT REV PLANT SCI, V17, P125, DOI 10.1016/S0735-2689(98)00360-8
Baxter A, 2014, J EXP BOT, V65, P1229, DOI 10.1093/jxb/ert375
Konatu FRB, 2018, J SEP SCI, V41, P1726, DOI 10.1002/jssc.201701038
BOITEAU P, 1956, Therapie, V11, P125
Borowski JM, 2014, PLANTA, V239, P1187, DOI 10.1007/s00425-014-2041-2
Buer CS, 2010, J INTEGR PLANT BIOL, V52, P98, DOI 10.1111/j.1744-7909.2010.00905.x
Bull C.T., 2007, PLANT HLTH PROG, V8, DOI [10.1094/PHP-2007-0917-02-RS, DOI 10.1094/PHP-2007-0917-02-RS]
Bundo M, 2017, J EXP BOT, V68, P2963, DOI 10.1093/jxb/erx145
Buti M, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20225662
Cassin G, 2009, J EXP BOT, V60, P1249, DOI 10.1093/jxb/erp007
Chaiwanon J, 2016, CELL, V164, P1257, DOI 10.1016/j.cell.2016.01.044
Le CTT, 2016, PLANT PHYSIOL, V170, P540, DOI 10.1104/pp.15.01589
Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019
Cheng Y, 2018, PLANT CELL PHYSIOL, V59, P978, DOI 10.1093/pcp/pcy034
Colina F, 2020, BIOTECHNOL BIOFUELS, V13, DOI 10.1186/s13068-020-01750-8
De Storme N, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00138
Deng FY, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0188458
Dey S, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00640
Doan TTP, 2009, J PLANT PHYSIOL, V166, P787, DOI 10.1016/j.jplph.2008.10.003
Drerup MM, 2013, MOL PLANT, V6, P559, DOI 10.1093/mp/sst009
Duarte-Sierra A., 2019, POSTHARVEST PATHOLOG, V1st ed., P539, DOI DOI 10.1201/9781315209180-17
Dutton C, 2019, PLANT CELL ENVIRON, V42, P2411, DOI 10.1111/pce.13570
Escudero V, 2019, MOL PLANT MICROBE IN, V32, P464, DOI 10.1094/MPMI-08-18-0217-FI
Farahbakhsh H, 2017, PLANT PROD SCI, V20, P237, DOI [10.1080/1343943X.2017.1299581, 10.1080/1343943x.2017.1299581]
Fayette J, 2018, EUR J PLANT PATHOL, V151, P341, DOI 10.1007/s10658-017-1377-4
Feussner I, 2015, CURR OPIN PLANT BIOL, V26, P26, DOI 10.1016/j.pbi.2015.05.023
Foyer CH, 2016, J EXP BOT, V67, P2025, DOI 10.1093/jxb/erw079
Gierz SL, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00271
Gollhofer J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110468
Han JY, 2013, PLANT CELL PHYSIOL, V54, P2034, DOI 10.1093/pcp/pct141
Hauser T, 2015, NAT PLANTS, V1, P1, DOI [10.1038/NPLANTS.2015.65, 10.1038/nplants.2015.65]
Health Canada, 2019, SEARCH PROD LAB PEST
Hofer R, 2013, METAB ENG, V20, P221, DOI 10.1016/j.ymben.2013.08.001
Hofberger JA, 2015, GENOME BIOL EVOL, V7, P720, DOI 10.1093/gbe/evv020
Hu W, 2018, GENES-BASEL, V9, DOI 10.3390/genes9040221
Huo DongYing, 2014, Acta Agronomica Sinica, V40, P1585
Jamieson PA, 2018, PLANT SCI, V274, P242, DOI 10.1016/j.plantsci.2018.05.030
Janisiewicz WJ, 2016, CAN J PLANT PATHOL, V38, P430, DOI 10.1080/07060661.2016.1263807
Janisiewicz WJ, 2016, PHYTOPATHOLOGY, V106, P386, DOI 10.1094/PHYTO-09-15-0240-R
Kato Y, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00855
Kawarazaki T, 2013, BBA-MOL CELL RES, V1833, P2775, DOI 10.1016/j.bbamcr.2013.06.024
Kazemi-Pour N, 2004, PROTEOMICS, V4, P3177, DOI 10.1002/pmic.200300814
Kim YH, 2007, PLANT PHYSIOL BIOCH, V45, P908, DOI 10.1016/j.plaphy.2007.07.019
Kimura Y, 2010, J BIOCHEM, V147, P793, DOI 10.1093/jb/mvq044
Kumar D, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00748
Lannoo N, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00397
Li Q, 2020, HORTIC RES-ENGLAND, V7, DOI 10.1038/s41438-020-0263-y
Li YF, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-31432-3
Lionetti V, 2017, PLANT PHYSIOL, V173, P1844, DOI 10.1104/pp.16.01185
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Lokdarshi A, 2016, PLANT PHYSIOL, V170, P1046, DOI 10.1104/pp.15.01407
Lu HJ, 2013, HORTSCIENCE, V48, P171, DOI 10.21273/HORTSCI.48.2.171
Lunn JE, 2014, PLANT J, V79, P544, DOI 10.1111/tpj.12509
Ma XY, 2005, J BIOL CHEM, V280, P13576, DOI 10.1074/jbc.M414508200
Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009
Mondal R, 2020, PLANT SIGNAL BEHAV, V15, DOI 10.1080/15592324.2020.1818031
Moraes RM, 2018, PAK J BOT, V50, P1769
Moses T, 2014, CRIT REV BIOCHEM MOL, V49, P439, DOI 10.3109/10409238.2014.953628
Murcia G, 2017, PHYTOCHEMISTRY, V135, P34, DOI 10.1016/j.phytochem.2016.12.007
Muthusamy SK, 2017, J PLANT PHYSIOL, V211, P100, DOI 10.1016/j.jplph.2017.01.004
Nayeri FD, 2014, MOL BIOL REP, V41, P5077, DOI 10.1007/s11033-014-3373-5
Nicolas O., 2020, ACTA HORTIC, V1271, P387, DOI [10.17660/ActaHortic.2020.1271.53, DOI 10.17660/ACTAHORTIC.2020.1271.53]
Nicolas O, 2018, CAN J PLANT PATHOL, V40, P399, DOI 10.1080/07060661.2018.1495269
Niu L., 2020, DEFENSIVE FORWARDS S, DOI [10.1101/2020.02.15.950535, DOI 10.1101/2020.02.15.950535]
Noda S, 2013, PLANT BIOTECHNOL-NAR, V30, P169, DOI 10.5511/plantbiotechnology.13.0304a
Lopez-Fernandez MP, 2015, J INTEGR PLANT BIOL, V57, P996, DOI 10.1111/jipb.12367
Phukan UJ, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00760
Proietti S, 2014, PLANT PHYSIOL BIOCH, V85, P51, DOI 10.1016/j.plaphy.2014.10.011
Pushpa D, 2014, PLANT MOL BIOL REP, V32, P584, DOI 10.1007/s11105-013-0665-1
Qiao K, 2019, J AGR FOOD CHEM, V67, P9877, DOI 10.1021/acs.jafc.9b04210
Quezada EH, 2019, GENES-BASEL, V10, DOI 10.3390/genes10010059
Ravet K, 2013, ANTIOXID REDOX SIGN, V19, P919, DOI 10.1089/ars.2012.5084
Sampedro J, 2012, PLANT PHYSIOL, V158, P1146, DOI 10.1104/pp.111.192195
Savidge B, 2002, PLANT PHYSIOL, V129, P321, DOI 10.1104/pp.010747
Scarpeci TE, 2013, PLANT MOL BIOL, V83, P265, DOI 10.1007/s11103-013-0090-8
SHANER G, 1977, PHYTOPATHOLOGY, V67, P1051, DOI 10.1094/Phyto-67-1051
Shen JL, 2017, BMC PLANT BIOL, V17, DOI 10.1186/s12870-017-1175-3
Sidibe A, 2021, SCI HORTIC-AMSTERDAM, V285, DOI 10.1016/j.scienta.2021.110094
Skaar JR, 2013, NAT REV MOL CELL BIO, V14, P369, DOI 10.1038/nrm3582
Suarez R, 2008, MOL PLANT MICROBE IN, V21, P958, DOI 10.1094/MPMI-21-7-0958
Sung PH, 2011, J AGR FOOD CHEM, V59, P4637, DOI 10.1021/jf200259n
Suzuki N, 2011, CURR OPIN PLANT BIOL, V14, P691, DOI 10.1016/j.pbi.2011.07.014
Tan SK, 2000, PLANT CELL REP, V19, P739, DOI 10.1007/s002999900186
Tian MM, 2015, PLANT J, V82, P81, DOI 10.1111/tpj.12797
Valencia MA, 2017, OPT PURA APL, V50, P369, DOI 10.7149/OPA.50.4.49073
VANENGELEN FA, 1993, PLANT J, V4, P855, DOI 10.1046/j.1365-313X.1993.04050855.x
Vanholme R, 2013, SCIENCE, V341, P1103, DOI 10.1126/science.1241602
Vasquez H, 2020, J PHYTOPATHOL, V168, P524, DOI 10.1111/jph.12930
Vasquez H, 2017, SCI HORTIC-AMSTERDAM, V222, P32, DOI 10.1016/j.scienta.2017.04.017
Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053
Wang XY, 2016, PLANT PHYSIOL BIOCH, V107, P273, DOI 10.1016/j.plaphy.2016.06.016
Williams B, 2010, P NATL ACAD SCI USA, V107, P6088, DOI 10.1073/pnas.0912670107
Wormit A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102878
Wu CL, 2018, MOLECULES, V23, DOI 10.3390/molecules23051196
Xie ZC, 2016, PLANT PHYSIOL BIOCH, V108, P337, DOI 10.1016/j.plaphy.2016.07.026
Xu J, 2014, PLANT J, V77, P222, DOI 10.1111/tpj.12382
Xu YQ, 2019, PLANT CELL ENVIRON, V42, P815, DOI 10.1111/pce.13491
Yan Q, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162253
Yang Zhong-Bao, 2007, Zhiwu Shengli yu Fenzi Shengwuxue Xuebao, V33, P480
Yeo ET, 2000, MOL CELLS, V10, P263
Yin YH, 2005, CELL, V120, P249, DOI 10.1016/j.cell.2004.11.044
Yu KS, 2013, CELL REP, V3, P1266, DOI 10.1016/j.celrep.2013.03.030
Zhang HN, 2017, PLANT J, V90, P839, DOI 10.1111/tpj.13557
Zhang XB, 2015, MOL PLANT, V8, P17, DOI 10.1016/j.molp.2014.11.001
Zhao CZ, 2018, P NATL ACAD SCI USA, V115, P13123, DOI 10.1073/pnas.1816991115
Zhou J, 2014, J EXP BOT, V65, P595, DOI 10.1093/jxb/ert404
Zhu XB, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006311
Ziegler J, 2008, ANNU REV PLANT BIOL, V59, P735, DOI 10.1146/annurev.arplant.59.032607.092730
NR 114
TC 2
Z9 2
U1 5
U2 9
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-462X
J9 FRONT PLANT SCI
JI Front. Plant Sci.
PD JAN 17
PY 2022
VL 12
AR 793989
DI 10.3389/fpls.2021.793989
PG 18
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA YR6YX
UT WOS:000750140400001
PM 35111177
OA gold
DA 2023-03-13
ER
PT J
AU Feinendegen, LE
Neumann, RD
AF Feinendegen, LE
Neumann, RD
TI The issue of risk in complex adaptive systems: the case of low-dose
radiation induced cancer
SO HUMAN & EXPERIMENTAL TOXICOLOGY
LA English
DT Article
DE complex adaptive systems; radiation risk; low-dose effects; adaptive
responses; radiation damage vs. hormesis
ID PROTECTIVE RESPONSES; MECHANISMS; INDUCTION; DAMAGE; DNA
AB Living systems exist in hierarchical levels of biological organization, ascending from the basic atomic-molecular level, to the cellular level, the tissue-organ level, and the whole organism. All levels and elements at each level communicate with each other though intricate intra- and intercellular signaling through many specified molecular interactions. These regulate homeostasis between the system levels and their individual elements.
The probability of a defined effect at the basic atomic-molecular level per impact increment of a toxic agent, such as ionizing radiation, at that level appears constant at low doses, even if the probability constant may change as a consequence of a previous exposure. Thus, at a given state of the system, the incidence of effect at the atomic-molecular level increases linearly with the number of impact increments in terms of energy deposition events. Primary effects may amplify to damage and there are immediate attempts at repairing the damage from an effect.
Amplification and propagation of damage at, and from, the basic to higher levels of biological organization meets resistance, the degree of which per impact increment is not constant. It changes with the number of impact increments. This resistance encompasses both physicochemical and biochemical reactions. The corresponding biochemical reactions express the physiological system's capacity to respond to perturbations of homeostasis at and between the various levels. Types and degrees of these responses depend on the system and the degree of homeostatic perturbation. At relatively mild to moderate degrees of perturbation, protective responses appear with a delay of hours and may last for months, shield also against endogenous non-radiogenic damage, and in doing so may prevail over radiogenic damage. With increasing degrees of homeostatic perturbation, damage eventually overwhelms adaptive protection. Thus, systems do not respond in a linear function of impact increments at the lowest level of biological organization.
For assessing the probability of radiation damage per absorbed dose, i.e., risk, in complex adaptive systems, both damaging and protecting responses need attention, and to exclude one for the other is scientifically unjustified and misleading.
C1 Univ Dusseldorf, D-4000 Dusseldorf, Germany.
Brookhaven Natl Lab, Upton, NY 11973 USA.
NIH, Dept Nucl Med, Ctr Clin, Bethesda, MD 20892 USA.
C3 Heinrich Heine University Dusseldorf; United States Department of Energy
(DOE); Brookhaven National Laboratory; National Institutes of Health
(NIH) - USA; NIH Clinical Center (CC)
RP Feinendegen, LE (corresponding author), Univ Dusseldorf, D-4000 Dusseldorf, Germany.
EM feinendegen@gmx.net
FU CLINICAL CENTER [Z01CL060001, ZIACL060001] Funding Source: NIH RePORTER
CR ARTHUR C, 2000, TXB MED PHYSL
Barcellos-Hoff MH, 2001, RADIAT RES, V156, P618, DOI 10.1667/0033-7587(2001)156[0618:ESTTMA]2.0.CO;2
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246
Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330
CLEAVER JE, 1968, NATURE, V218, P652, DOI 10.1038/218652a0
*ENV PROT AG EPA, 2004, EPA100B001
FEINENDEGEN LE, 1987, HEALTH PHYS, V52, P663, DOI 10.1097/00004032-198705000-00020
Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075
Feinendegen LE, 2003, RADIAT PROT DOSIM, V104, P337, DOI 10.1093/oxfordjournals.rpd.a006197
FEINENDEGEN LE, 1991, EUR J NUCL MED, V18, P740, DOI 10.1007/BF00956715
FEINENDEGEN LE, 1995, STEM CELLS, V13, P7
FEINENDEGEN LE, 2002, BR J RADIOL S, V26, P6
Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431
Gell-Mann M., 1994, QUARK JAGUAR
Hall E. J., 2000, RADIOBIOLOGY RADIOLO
ICRU, 1983, 36 ICRU
Lehninger AL, 1993, PRINCIPLES BIOCH EXT
Little JB, 2000, CARCINOGENESIS, V21, P397, DOI 10.1093/carcin/21.3.397
McBride WH, 2003, ONCOGENE, V22, P5755, DOI 10.1038/sj.onc.1206676
Mothersill C, 1997, INT J RADIAT BIOL, V71, P421, DOI 10.1080/095530097144030
NAGASAWA H, 1992, CANCER RES, V52, P6394
Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa
Ullrich RL, 1998, INT J RADIAT BIOL, V74, P747, DOI 10.1080/095530098141023
NR 24
TC 10
Z9 10
U1 0
U2 5
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0960-3271
EI 1477-0903
J9 HUM EXP TOXICOL
JI Hum. Exp. Toxicol.
PD JAN
PY 2006
VL 25
IS 1
BP 11
EP 17
DI 10.1191/0960327106ht579oa
PG 7
WC Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Toxicology
GA 007NU
UT WOS:000234977200004
PM 16459709
DA 2023-03-13
ER
PT J
AU Gu, CG
Jin, ZH
Fan, XL
Ti, QQ
Yang, XL
Sun, C
Jiang, X
AF Gu, Chenggang
Jin, Zhihua
Fan, Xiuli
Ti, Qingqing
Yang, Xinglun
Sun, Cheng
Jiang, Xin
TI Comparative evaluation and prioritization of key influences on
biodegradation of 2,2 ',4,4 '-tetrabrominated diphenyl ether by
bacterial isolate B. xenovorans LB400
SO JOURNAL OF ENVIRONMENTAL MANAGEMENT
LA English
DT Article
DE Polybrominated diphenyl ethers; Biodegradation efficiency; Influential
factors; PLS; Mechanistic relationship
ID BROMINATED FLAME RETARDANTS; AEROBIC BIOTRANSFORMATION; DEGRADATION;
SEDIMENT; BDE-209; PBDES; TETRABROMOBISPHENOL; EXPRESSION; EXPOSURE;
BINDING
AB Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants being widely distributed and harmful to human health and wildlife, and the development of sustainable rehabilitation strategies including microbial degradation is of great concern. Although the increasing number of bacteria, especially the broad-spectrum and potent aerobes have been isolated for the efficient removal of PBDEs, the external influences and the corresponding influential mechanism on biodegradation are not fully understood yet. Given the wide-spectrum biodegradability of aerobic bacterial isolate, B. xenovorans LB400 for PBDEs, the dual impacts of many pivotal factors including pH, temperature, presence of dissolved organic matter (DOM) and cadmium ion etc. were comprehensively revealed on biodegradation of 2,2 ',4,4 '-tetrabromodiphenyl ether (BDE-47). Due to the structural resemblance and stimulation of specific enzyme activity in bacteria, the biphenyl as substrates showed the greater capacity than non-aromatic compounds in improving biodegradation. The individual adaptation to neutrality and cultivation at about 30 degrees C was beneficial for biodegradation since the bacterial cellular viability and enzyme activity was mostly preserved. Although it was possibly good for the induction of hormesis and favorable to enhance the permeability or bioavailability of pollutant, the exceeding increase of Cd2+ or DOM may not give the profitable increase of biodegradation yet for the detrimental effect. For biodegradation, the mechanistic relationship that took account of the integrative correlation with the influential factors was artfully developed using partial least square (PLS) regression technique. Relative to the most sig-nificant influence of culture time and initial concentration of BDE-47, the larger relevance of other factors primarily marked as pH and DOM was consecutively shown after the quantitative prioritization. This may not only help understand the influential mechanism but provide a prioritizing regulation strategy for biodegradation of BDE-47. The PLS-derived relationship was validated with the certain predictability in biodegradation, and could be used as an alternative to accelerate a priori evaluation of suitability or improve the feasibility of such bacteria in remediation of PBDEs in the environment.
C1 [Gu, Chenggang; Jin, Zhihua; Fan, Xiuli; Ti, Qingqing; Yang, Xinglun; Jiang, Xin] Chinese Acad Sci, Inst Soil Sci, CAS Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China.
[Gu, Chenggang; Jin, Zhihua; Fan, Xiuli; Ti, Qingqing; Yang, Xinglun; Jiang, Xin] Univ Chinese Acad Sci, Beijing 100049, Peoples R China.
[Sun, Cheng] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China.
C3 Chinese Academy of Sciences; Institute of Soil Science, CAS; Chinese
Academy of Sciences; University of Chinese Academy of Sciences, CAS;
Nanjing University
RP Gu, CG; Jiang, X (corresponding author), Chinese Acad Sci, Inst Soil Sci, CAS Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China.
EM cggu@issas.ac.cn; Jiangxin@issas.ac.cn
FU Ministry of Science and Technology of the People's Republic of China
[2020YFC1808601]; National Natural Science Foundation of China
[41977356, 21377138]; Strategic Priority Research Program of the Chinese
Academy of Sciences [XDA28030501]
FX The work was financially supported by Ministry of Science and Technology
of the People's Republic of China (2020YFC1808601), National Natural
Science Foundation of China (41977356, 21377138) and Strategic Priority
Research Program of the Chinese Academy of Sciences (Grant No.
XDA28030501).
CR Abbasi G, 2019, ENVIRON SCI TECHNOL, V53, P6330, DOI 10.1021/acs.est.8b07032
Acosta-Gonzalez A, 2013, ENVIRON MICROBIOL, V15, P77, DOI 10.1111/j.1462-2920.2012.02782.x
Alaee M, 2003, ENVIRON INT, V29, P683, DOI 10.1016/S0160-4120(03)00121-1
Alberty RA, 2007, BIOPHYS CHEM, V125, P328, DOI 10.1016/j.bpc.2006.09.007
Ali N, 2017, ENVIRON SCI POLLUT R, V24, P18721, DOI 10.1007/s11356-017-9336-3
Birnbaum LS, 2004, ENVIRON HEALTH PERSP, V112, P9, DOI 10.1289/ehp.6559
Blanco J, 2013, TOXICOLOGY, V308, P122, DOI 10.1016/j.tox.2013.03.010
Blanco J, 2011, TOXICOLOGY, V290, P305, DOI 10.1016/j.tox.2011.10.010
Costa LG, 2007, NEUROTOXICOLOGY, V28, P1047, DOI 10.1016/j.neuro.2007.08.007
Darnerud PO, 2003, ENVIRON INT, V29, P841, DOI 10.1016/S0160-4120(03)00107-7
de Campos LJ, 2014, J MOL GRAPH MODEL, V54, P19, DOI 10.1016/j.jmgm.2014.08.004
de Wit CA, 2006, CHEMOSPHERE, V64, P209, DOI 10.1016/j.chemosphere.2005.12.029
Deng DY, 2011, INT BIODETER BIODEGR, V65, P465, DOI 10.1016/j.ibiod.2011.01.008
Drage D, 2015, SCI TOTAL ENVIRON, V512, P177, DOI 10.1016/j.scitotenv.2015.01.034
Drage DS, 2019, ENVIRON RES, V177, DOI 10.1016/j.envres.2019.108631
Dunnick JK, 2018, TOXICOL REP, V5, P615, DOI 10.1016/j.toxrep.2018.05.010
Eckbo N, 2019, ENVIRON POLLUT, V249, P191, DOI 10.1016/j.envpol.2019.01.025
Gerecke AC, 2005, ENVIRON SCI TECHNOL, V39, P1078, DOI 10.1021/es048634j
Golbraikh A, 2002, J MOL GRAPH MODEL, V20, P269, DOI 10.1016/S1093-3263(01)00123-1
Grasso G, 2015, BIOPHYS CHEM, V203, P33, DOI 10.1016/j.bpc.2015.05.010
Gu CG, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.126132
Guan NZ, 2020, APPL MICROBIOL BIOT, V104, P51, DOI 10.1007/s00253-019-10226-1
Harrad S, 2015, ENVIRON SCI TECHNOL, V49, P13899, DOI 10.1021/acs.est.5b00539
Hu SF, 2020, FOOD MICROBIOL, V92, DOI 10.1016/j.fm.2020.103585
Jagadevan S, 2013, APPL MICROBIOL BIOT, V97, P5089, DOI 10.1007/s00253-012-4310-y
Jiang YF, 2019, SCI TOTAL ENVIRON, V696, DOI 10.1016/j.scitotenv.2019.133902
Kim S, 2014, J HAZARD MATER, V275, P99, DOI 10.1016/j.jhazmat.2014.04.052
Kim YM, 2007, APPL MICROBIOL BIOT, V77, P187, DOI 10.1007/s00253-007-1129-z
Lefevre PLC, 2016, ENDOCRINOLOGY, V157, P2698, DOI 10.1210/en.2016-1106
Li GY, 2016, ENVIRON POLLUT, V208, P796, DOI 10.1016/j.envpol.2015.11.001
Li JD, 2020, APPL ENVIRON MICROB, V86, DOI 10.1128/AEM.01040-20
Okonski K, 2014, ENVIRON SCI TECHNOL, V48, P14426, DOI 10.1021/es5044547
Pan B, 2007, ENVIRON SCI TECHNOL, V41, P6472, DOI 10.1021/es070790d
Robrock KR, 2011, BIOTECHNOL BIOENG, V108, P313, DOI 10.1002/bit.22952
Robrock KR, 2009, ENVIRON SCI TECHNOL, V43, P5705, DOI 10.1021/es900411k
Seeger M, 1997, MAR CHEM, V58, P327, DOI 10.1016/S0304-4203(97)00059-5
Shi GY, 2013, J HAZARD MATER, V263, P711, DOI 10.1016/j.jhazmat.2013.10.035
Shi GY, 2013, CHEMOSPHERE, V93, P1487, DOI 10.1016/j.chemosphere.2013.07.044
Stojanovski BM, 2014, BBA-PROTEINS PROTEOM, V1844, P2145, DOI 10.1016/j.bbapap.2014.09.013
Talsness CE, 2008, ENVIRON RES, V108, P158, DOI 10.1016/j.envres.2008.08.008
Ti QQ, 2020, J HAZARD MATER, V393, DOI 10.1016/j.jhazmat.2020.122382
Tokarz JA, 2008, ENVIRON SCI TECHNOL, V42, P1157, DOI 10.1021/es071989t
UNEP, 2010, STOCKH CONV 6 POP RE
Wang HS, 2011, J HAZARD MATER, V192, P374, DOI 10.1016/j.jhazmat.2011.05.036
Wang JX, 2011, J HAZARD MATER, V197, P211, DOI 10.1016/j.jhazmat.2011.09.078
Wong MH, 2007, ENVIRON POLLUT, V149, P131, DOI 10.1016/j.envpol.2007.01.044
Wu CD, 2012, APPL MICROBIOL BIOT, V93, P707, DOI 10.1007/s00253-011-3757-6
Wu ZN, 2020, ENVIRON RES, V187, DOI 10.1016/j.envres.2020.109531
Xiong P, 2019, ENVIRON SCI TECHNOL, V53, P13551, DOI 10.1021/acs.est.9b03159
Xu GY, 2014, CHEMOSPHERE, V110, P70, DOI 10.1016/j.chemosphere.2014.03.052
Zhang SW, 2013, INT BIODETER BIODEGR, V76, P24, DOI 10.1016/j.ibiod.2012.06.020
Zhang YP, 2015, BIORESOURCE TECHNOL, V193, P274, DOI 10.1016/j.biortech.2015.06.110
Zheng G, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113872
Zhou HC, 2019, J HAZARD MATER, V379, DOI 10.1016/j.jhazmat.2019.120788
Zhou J, 2007, CHEMOSPHERE, V70, P172, DOI 10.1016/j.chemosphere.2007.06.036
NR 55
TC 0
Z9 0
U1 4
U2 4
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0301-4797
EI 1095-8630
J9 J ENVIRON MANAGE
JI J. Environ. Manage.
PD APR 1
PY 2023
VL 331
AR 117320
DI 10.1016/j.jenvman.2023.117320
EA JAN 2023
PG 8
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA 8O6HE
UT WOS:000925935200001
PM 36696759
DA 2023-03-13
ER
PT J
AU Wang, JX
Xie, P
Guo, N
AF Wang, Jingxian
Xie, Ping
Guo, Nichun
TI Effects of nonylphenol on the growth and microcystin production of
Microcystis strains
SO ENVIRONMENTAL RESEARCH
LA English
DT Article
DE Microcystis aeruginosa; microcystin; nonylphenol (NP); algal growth
ID TOXIN PRODUCTION; HEPATOTOXIN PRODUCTION; CHLORELLA-VULGARIS;
CHLOROPHYLL-A; CELL-DIVISION; BATCH CULTURE; AERUGINOSA; LIGHT;
4-NONYLPHENOL; CYANOBACTERIA
AB Both organic pollution and eutrophication are prominent environmental issues concerning water pollution in the world. It is important to reveal the effects of organic pollutants on algal growth and toxin production for assessing ecological risk of organic pollution. Since nonylphenol (NP) is a kind of persistent organic pollutant with endocrine disruptive effect which exists ubiquitously in environments, NP was selected as test compound in our study to study the relationship between NP stress and Microcystis growth and microcystin production. Our study showed that responses of toxic and nontoxic Microcystis aeruginosa to NP stress were obviously different. The growth inhibition test with NP on M. aeruginosa yielded effect concentrations EbC50 values within this range of 0.67-2.96 mg/L. The nontoxic M. aeruginosa strains were more resistant to NP than toxic strains at concentration above 1 mg/L. Cell growth was enhanced by 0.02-0.2 mg/L NP for both toxic and nontoxic strains, suggesting a hormesis effect of NP on M. aeruginosa. Both toxic and nontoxic strains tended to be smaller with increasing NP. But with the increased duration of the experiment, both the cell size and the growth rate began to resume, suggesting a quick adaptation of M. aeruginosa to adverse stress. NP of 0.05-0.5 mg/L significantly promoted microcystin production of toxic strain PCC7820, suggesting that NP might affect microcystin production of some toxic M. aeruginosa in the field. Our study showed that microcystin excretion was species specific that up to 75% of microcystins in PCC7820 were released into solution, whereas > 99% of microcystins in 562 remained in algal cells after 12 days' incubation. NP also significantly influenced microcystin release into cultural media. The fact that NP enhanced growth and toxin production of M. aeruginosa at low concentrations of 0.02-0.5 mg/L that might be possibly found in natural freshwaters implies that low concentration of NP may favor survival of M. aeruginosa in the field and may play a subtle role in affecting cyanobacterial blooms and microcystin production in natural waters. (c) 2006 Elsevier Inc. All rights reserved.
C1 Chinese Acad Sci, Donghu Expt Stn Lake Ecosyst, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China.
C3 Chinese Academy of Sciences; Institute of Hydrobiology, CAS
RP Xie, P (corresponding author), Chinese Acad Sci, Donghu Expt Stn Lake Ecosyst, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China.
EM xieping@ihb.ac.cn
RI Xie, Ping/AAL-7532-2020
CR AHEL M, 1987, ENVIRON SCI TECHNOL, V21, P697, DOI 10.1021/es00161a011
AHEL M, 1994, WATER RES, V28, P1131, DOI 10.1016/0043-1354(94)90200-3
Bajguz A, 2004, PHYSIOL PLANTARUM, V121, P349, DOI 10.1111/j.1399-3054.2004.00329.x
Baldwin WS, 1997, ENVIRON TOXICOL CHEM, V16, P1905, DOI 10.1002/etc.5620160920
Bennie DT, 1999, WATER QUAL RES J CAN, V34, P79, DOI 10.2166/wqrj.1999.004
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Codd GA, 1999, EUR J PHYCOL, V34, P405, DOI 10.1017/S0967026299002255
De Maagd PGJ, 1999, WATER RES, V33, P677, DOI 10.1016/S0043-1354(98)00258-9
Dittmann E, 1997, MOL MICROBIOL, V26, P779, DOI 10.1046/j.1365-2958.1997.6131982.x
DOERS MP, 1988, J PHYCOL, V24, P502, DOI 10.1111/j.1529-8817.1988.tb04254.x
ElJay A, 1996, B ENVIRON CONTAM TOX, V57, P191
GIGER W, 1984, SCIENCE, V225, P623, DOI 10.1126/science.6740328
Gross-Sorokin MY, 2003, ENVIRON SCI TECHNOL, V37, P2236, DOI 10.1021/es020092n
Hense BA, 2003, ENVIRON TOXICOL CHEM, V22, P2727, DOI 10.1897/02-188
HESS FD, 1980, WEED SCI, V28, P515, DOI 10.1017/S0043174500061130
Hoss S, 2002, ENVIRON POLLUT, V120, P169, DOI 10.1016/S0269-7491(02)00161-6
Huisman J, 1999, LIMNOL OCEANOGR, V44, P1781, DOI 10.4319/lo.1999.44.7.1781
Hyenstrand P, 1998, ERGEB LIMNOL, V51, P41
Jahnichen S, 2001, ARCH HYDROBIOL, V150, P177
Jang MH, 2004, AQUAT TOXICOL, V68, P51, DOI 10.1016/j.aquatox.2004.02.002
Jang MH, 2003, FRESHWATER BIOL, V48, P1540, DOI 10.1046/j.1365-2427.2003.01107.x
JEFFREY SW, 1975, BIOCH PHYSL PFLANZ, V4, P167
Jobling S, 1996, ENVIRON TOXICOL CHEM, V15, P194, DOI [10.1897/1551-5028(1996)015<0194:IOTGIR>2.3.CO;2, 10.1002/etc.5620150218]
Johnson AC, 1998, SCI TOTAL ENVIRON, V210, P271, DOI 10.1016/S0048-9697(98)00017-5
Kaebernick M, 2001, FEMS MICROBIOL ECOL, V35, P1, DOI 10.1111/j.1574-6941.2001.tb00782.x
Kruger G., 1981, WATER ENV, P193, DOI [10.1007/978-1-4613-3267-1_15, DOI 10.1007/978-1-4613-3267-1_15]
KUZIN AM, 1995, IDEI RADIATSIONNOGO
KVESTAK R, 1994, ECOTOX ENVIRON SAFE, V28, P25, DOI 10.1006/eesa.1994.1031
Lahti K, 1997, WATER RES, V31, P1005, DOI 10.1016/S0043-1354(96)00353-3
LEHTIMAKI J, 1994, ARCH HYDROBIOL, V130, P269
LUKAC M, 1993, TOXICON, V31, P293, DOI 10.1016/0041-0101(93)90147-B
Lyck S, 2004, J PLANKTON RES, V26, P727, DOI 10.1093/plankt/fbh071
Lyck S, 2003, PHYCOLOGIA, V42, P667, DOI 10.2216/i0031-8884-42-6-667.1
MARTIN W, 1999, HYDROBIOLOGIA, V408, P263
Nakai S, 2001, WATER RES, V35, P1855, DOI 10.1016/S0043-1354(00)00444-9
NEILAN BA, 1995, APPL ENVIRON MICROB, V61, P3785
Oberholster P. J., 2004, African Journal of Biotechnology, V3, P159
*OCD, 1984, GUID TEST CHEM 201 A
Okai Y, 2000, FEMS MICROBIOL LETT, V185, P65, DOI 10.1016/S0378-1097(00)00072-0
Orr PT, 1998, LIMNOL OCEANOGR, V43, P1604, DOI 10.4319/lo.1998.43.7.1604
Paerl Hans W., 1996, Phycologia, V35, P25, DOI 10.2216/i0031-8884-35-6S-25.1
Park HD, 1998, ENVIRON TOXIC WATER, V13, P61, DOI 10.1002/(SICI)1098-2256(1998)13:1<61::AID-TOX4>3.0.CO;2-5
PENALOZA R, 1990, FRESHWATER BIOL, V24, P233, DOI 10.1111/j.1365-2427.1990.tb00705.x
PRASAD R, 1989, ADJUVANTS AGROCHEMIS, V1, P51
Rapala J, 1997, APPL ENVIRON MICROB, V63, P2206, DOI 10.1128/AEM.63.6.2206-2212.1997
Sabater C, 1996, B ENVIRON CONTAM TOX, V56, P977, DOI 10.1007/s001289900141
Schatz D, 2005, ENVIRON MICROBIOL, V7, P798, DOI 10.1111/j.1462-2920.2005.00752.x
Schmude KL, 1999, ENVIRON TOXICOL CHEM, V18, P386, DOI [10.1897/1551-5028(1999)018<0386:EONOBM>2.3.CO;2, 10.1002/etc.5620180304]
SEMPLE KT, 1995, FEMS MICROBIOL LETT, V133, P253, DOI 10.1111/j.1574-6968.1995.tb07893.x
Servos MR, 1999, WATER QUAL RES J CAN, V34, P123, DOI 10.2166/wqrj.1999.005
SHI L, 1995, ARCH MICROBIOL, V163, P7, DOI 10.1007/BF00262197
SIVONEN K, 1990, APPL ENVIRON MICROB, V56, P2658, DOI 10.1128/AEM.56.9.2658-2666.1990
Sivonen Kaarina, 1996, Phycologia, V35, P12, DOI 10.2216/i0031-8884-35-6S-12.1
Song Lirong, 1998, Phycological Research, V46, P19, DOI 10.1046/j.1440-1835.1998.00120.x
Tian SZ, 1997, CHEMOSPHERE, V35, P2713, DOI 10.1016/S0045-6535(97)00329-9
UTKILEN H, 1995, APPL ENVIRON MICROB, V61, P797, DOI 10.1128/AEM.61.2.797-800.1995
VANDERWESTHUIZEN AJ, 1985, PLANTA, V163, P55, DOI 10.1007/BF00395897
Watanabe MF, 1989, J APPL PHYCOL, V1, P161, DOI 10.1007/BF00003879
Wei LP, 1998, CHEMOSPHERE, V37, P747, DOI 10.1016/S0045-6535(98)00076-9
WICKS RJ, 1990, ENVIRON SCI TECHNOL, V24, P1413, DOI 10.1021/es00079a017
Wiedner C, 2003, APPL ENVIRON MICROB, V69, P1475, DOI 10.1128/AEM.69.3.1475-1481.2003
Wong PK, 2000, CHEMOSPHERE, V41, P177, DOI 10.1016/S0045-6535(99)00408-7
Zheng L, 2004, B ENVIRON CONTAM TOX, V73, P698, DOI 10.1007/s00128-004-0482-1
NR 64
TC 54
Z9 70
U1 1
U2 54
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0013-9351
EI 1096-0953
J9 ENVIRON RES
JI Environ. Res.
PD JAN
PY 2007
VL 103
IS 1
BP 70
EP 78
DI 10.1016/j.envres.2006.05.013
PG 9
WC Environmental Sciences; Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA 128YX
UT WOS:000243696700009
PM 16831412
DA 2023-03-13
ER
PT J
AU Zhang, C
Tan, Y
Guo, WY
Li, C
Ji, SZ
Li, XK
Cai, L
AF Zhang, Chi
Tan, Yi
Guo, Weiying
Li, Cai
Ji, Shunzi
Li, Xiaokun
Cai, Lu
TI Attenuation of diabetes-induced renal dysfunction by multiple exposures
to low-dose radiation is associated with the suppression of systemic and
renal inflammation
SO AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM
LA English
DT Article
DE diabetic nephropathy; renal oxidative damage; inflammatory factors;
radio-adaptive response; radiation hormesis
ID PLASMINOGEN-ACTIVATOR INHIBITOR-1; RATE GAMMA-RAYS; ADAPTIVE RESPONSE;
IN-VITRO; SUPEROXIDE-DISMUTASE; NITROSATIVE DAMAGE; X-IRRADIATION;
TUMOR-CELLS; GERM-CELLS; NEPHROPATHY
AB Zhang C, Tan Y, Guo W, Li C, Ji S, Li X, Cai L. Attenuation of diabetes-induced renal dysfunction by multiple exposures to low-dose radiation is associated with the suppression of systemic and renal inflammation. Am J Physiol Endocrinol Metab 297: E1366-E1377, 2009. First published September 29, 2009; doi:10.1152/ajpendo.00478.2009.-Renal protection against diabetes-induced pathogenic injuries by multiple exposures to low-dose radiation (LDR) was investigated to develop a novel approach to the prevention of renal disease for diabetic subjects. C57BL/6J mice were given multiple low-dose streptozotocin (STZ; 60 x 6 mg/kg) to produce a type 1 diabetes. Two weeks after diabetes onset, some of diabetic mice and age-matched nondiabetic mice were exposed whole body to 25 mGy X-rays every other day for 2, 4, 8, 12, and 16 wk. Diabetes caused a significant renal dysfunction, shown by time-dependent increase in urinary microalbumin (Malb) and decrease in urinary creatinine (Cre), and pathological changes, shown by significant increases in renal structural changes and PAS-positive staining. However, diabetes-induced renal dysfunction and pathological changes were significantly, albeit partially, attenuated by multiple exposures to LDR. Furthermore, LDR protection against diabetes-induced renal dysfunction and pathological changes was associated with a significant suppression of diabetes-increased systemic and renal inflammation, shown by significant increases in serum and renal TNF alpha, ICAM-1, IL-18, MCP-1, and PAI-1 contents. To further explore the mechanism by which LDR prevents diabetes-induced renal pathological changes, renal oxidative damage was examined by Western blotting and immunohistochemical staining for 3-nitrotyrosine and 4-hydroxynonenal. Significant increase in oxidative damage was observed in diabetic mice, but not diabetic mice, with LDR. Renal fibrosis, examined by Western blotting of connective tissue growth factor and Masson's trichrome staining, was also evident in the kidneys of diabetic mice but not diabetic mice with LDR. These results suggest that multiple exposures to LDR significantly suppress diabetes-induced systemic and renal inflammatory response and renal oxidative damage, resulting in a prevention of the renal dysfunction and fibrosis.
C1 [Tan, Yi; Cai, Lu] Univ Louisville, Dept Pediat, Louisville, KY 40202 USA.
[Zhang, Chi; Ji, Shunzi; Li, Xiaokun] Jilin Univ, Sch Publ Hlth, Changchun 130023, Peoples R China.
[Tan, Yi; Li, Cai; Li, Xiaokun; Cai, Lu] Wenzhou Med Coll, Chinese Amer Res Inst Diabet Complicat, Wenzhou, Peoples R China.
[Guo, Weiying] Jilin Univ, Hosp 1, Changchun 130023, Peoples R China.
[Li, Cai] Jilin Univ, Sch Pharm, Changchun 130023, Peoples R China.
[Li, Xiaokun] Jilin Agr Univ, Minist Educ, Engn Res Ctr Bioreactor & Pharmaceut Dev, Changchun, Peoples R China.
[Li, Xiaokun] Wenzhou Med Coll, Key Lab Biotechnol Pharmaceut Engn, Wenzhou, Peoples R China.
[Cai, Lu] Univ Louisville, Dept Med, Louisville, KY 40202 USA.
[Cai, Lu] Univ Louisville, Dept Radiat Oncol, Louisville, KY 40202 USA.
C3 University of Louisville; Jilin University; Wenzhou Medical University;
Jilin University; Jilin University; Jilin Agricultural University;
Wenzhou Medical University; University of Louisville; University of
Louisville
RP Cai, L (corresponding author), Univ Louisville, Dept Pediat, 570 S Preston St,Baxter 1,Suite 304F, Louisville, KY 40202 USA.
EM xiaokunli@163.net; l0cai001@louisville.edu
RI Cai, Lu/AAG-9920-2019
FU Juvenile Diabetes Research Foundation International [5-2006-382];
Wenzhou Medical College, Wenzhou, China
FX This study was supported in part by a research grant from Juvenile
Diabetes Research Foundation International (5-2006-382, to L. Cai and X.
Li) and a Start-Up Fund for the Chinese-American Research Institute for
Diabetic Complications from Wenzhou Medical College (to L. Cai and X.
Li), Wenzhou, China.
CR Aunapuu M, 2004, ANN ANAT, V186, P277, DOI 10.1016/S0940-9602(04)80017-7
Cai L, 2005, DIABETES, V54, P1829, DOI 10.2337/diabetes.54.6.1829
Cai L, 2002, DIABETES, V51, P1938, DOI 10.2337/diabetes.51.6.1938
CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541
Cai L, 1999, HUM EXP TOXICOL, V18, P419, DOI 10.1191/096032799678840291
de Toledo SM, 2006, RADIAT RES, V166, P849, DOI 10.1667/RR0640.1
DiPetrillo K, 2003, AM J PHYSIOL-RENAL, V284, pF113, DOI 10.1152/ajprenal.00026.2002
DiPetrillo K, 2004, KIDNEY INT, V65, P1676, DOI 10.1111/j.1523-1755.2004.00606.x
Dominguez J, 2007, AM J PHYSIOL-RENAL, V293, pF670, DOI 10.1152/ajprenal.00021.2007
Durovic B, 2008, VOJNOSANIT PREGL, V65, P613
Giunti S, 2006, Minerva Med, V97, P241
Hildebrandt G, 1998, INT J RADIAT BIOL, V74, P367, DOI 10.1080/095530098141500
Ibuki W, 1999, J RADIAT RES, V40, P253, DOI 10.1269/jrr.40.253
Ichinose K, 2007, AM J NEPHROL, V27, P554, DOI 10.1159/000107758
Jeong KH, 2009, AM J NEPHROL, V29, P274, DOI 10.1159/000158635
Jiang HY, 2008, RADIAT RES, V170, P477, DOI 10.1667/RR1132.1
Jiang HY, 2008, J RADIAT RES, V49, P219, DOI 10.1269/jrr.07072
Kern PM, 2000, RADIOTHER ONCOL, V54, P273, DOI 10.1016/S0167-8140(00)00141-9
Kim CS, 2007, MOL CELLS, V24, P424
Kim J, 2009, AM J PHYSIOL-RENAL, V296, pF1202, DOI 10.1152/ajprenal.90592.2008
Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7
Lee HB, 2005, NEPHROLOGY, V10, pS11, DOI 10.1111/j.1440-1797.2005.00449.x
Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015
Lin JL, 2008, DIABETES CARE, V31, P2338, DOI 10.2337/dc08-0277
Liu GW, 2007, CRIT REV TOXICOL, V37, P587, DOI 10.1080/10408440701493061
Navarro-Gonzalez JF, 2008, J AM SOC NEPHROL, V19, P433, DOI 10.1681/ASN.2007091048
Nicholas SB, 2005, KIDNEY INT, V67, P1297, DOI 10.1111/j.1523-1755.2005.00207.x
Pathak CM, 2007, J RADIAT RES, V48, P113, DOI 10.1269/jrr.06063
Rerolle JP, 2000, KIDNEY INT, V58, P1841, DOI 10.1111/j.1523-1755.2000.00355.x
Rivero A, 2009, CLIN SCI, V116, P479, DOI 10.1042/CS20080394
Roedel F, 2002, INT J RADIAT BIOL, V78, P711, DOI 10.1080/09553000210137671
Song Y, 2004, EXP MOL PATHOL, V76, P66, DOI 10.1016/j.yexmp.2003.08.002
Taki K, 2009, J RADIAT RES, V50, P241, DOI 10.1269/jrr.09011
Utimura R, 2003, KIDNEY INT, V63, P209, DOI 10.1046/j.1523-1755.2003.00736.x
van Kleef EM, 2000, INT J RADIAT BIOL, V76, P641, DOI 10.1080/095530000138303
Vartanyan LS, 2000, BIOCHEMISTRY-MOSCOW+, V65, P442
Wang JJ, 2008, AM J PHYSIOL-RENAL, V294, pF1166, DOI 10.1152/ajprenal.00375.2007
Wang YH, 2009, DIABETES, V58, P1391, DOI 10.2337/db08-1697
Williams Michael D, 2007, Curr Diab Rep, V7, P242, DOI 10.1007/s11892-007-0038-y
Yamaoka Kiyonori, 2002, Physiological Chemistry and Physics and Medical NMR, V34, P119
Yamaoka Kiyonori, 1999, Physiological Chemistry and Physics and Medical NMR, V31, P23
Zheng M, 2009, J DIABETES COMPLICAT, V23, P124, DOI 10.1016/j.jdiacomp.2007.11.012
Zhou GH, 2004, AM J PATHOL, V165, P2033, DOI 10.1016/S0002-9440(10)63254-3
NR 43
TC 31
Z9 33
U1 1
U2 6
PU AMER PHYSIOLOGICAL SOC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
SN 0193-1849
EI 1522-1555
J9 AM J PHYSIOL-ENDOC M
JI Am. J. Physiol.-Endocrinol. Metab.
PD DEC
PY 2009
VL 297
IS 6
BP E1366
EP E1377
DI 10.1152/ajpendo.00478.2009
PG 12
WC Endocrinology & Metabolism; Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Endocrinology & Metabolism; Physiology
GA 523BX
UT WOS:000272047400017
PM 19789291
DA 2023-03-13
ER
PT J
AU Liu, SL
Ma, ZY
Zhang, Y
Chen, ZW
Du, X
Mu, YH
AF Liu, Silin
Ma, Zhiyi
Zhang, Ying
Chen, Zhongwen
Du, Xiao
Mu, Yinghui
TI Astragalus sinicus Incorporated as Green Manure for Weed Control in Corn
SO FRONTIERS IN PLANT SCIENCE
LA English
DT Article
DE milk vetch; goosegrass suppression; allelopathy; corn growth;
phytotoxicity
ID ORGANIC-CARBON; LEAF-LITTER; RICE STRAW; SOIL; GROWTH; ALLELOPATHY;
RESPONSES; ACCUMULATION; MECHANISMS; NITROGEN
AB Astragalus sinicus L. (milk vetch), one of the most widespread green manure species, is widely planted in the temperate zone. Eleusine indica L. (goosegrass), a serious annual weed in the world, has evolved resistance to some non-selective herbicides. The use of milk vetch as green manure for weed control in paddy fields was proposed. Aqueous extracts of milk vetch are known to exert a different level of phytotoxicity on weeds and crops. Phytotoxic substances contained in green manure were released into the soil by leaching at the initial stage and decomposition at the later stage after the return of green manure. Considering the need for searching new sustainable strategies for weed control, a question arises: "if milk vetch could be applied in goosegrass control, which stage is the most important to control goosegrass after milk vetch returned to the field, and at the same time, will the subsequent crop, corn (Zea mays L.), be affected by the side effects from milk vetch phytotoxicity?" In this study, the potential of milk vetch for goosegrass control was approached by repeated laboratory experiments, which include the aqueous extract experiment, decomposed experiment, and pot experiment. The effects of milk vetch returning to the field on maize were simulated by a pot experiment. The extract of milk vetch could significantly inhibit the germination of goosegrass at 2% concentration, and the inhibition enhanced with the increase of concentration. In the decomposed liquid experiment, decay time within 15 days, with the increase of decay days or concentration, goosegrass inhibition effect of decomposed liquid was enhanced. When decay time was more than 15 days, the inhibition ability of the decomposed liquid to goosegrass decreased. According to the RI accumulated value, aqueous extract and decomposed liquid have a "hormesis effect" on the germination and growth of goosegrass. Pot experiment proved that the addition of 1-10% (w/w) of milk vetch significantly reduced the germination and growth of goosegrass. On the contrary, the comprehensive analysis showed that the participation of milk vetch was conducive to the growth of corn. Our results constitute evidence that the incorporation of milk vetch into the soil could be a feasible practice to reduce weed infarctions in the corn-based cropping system.
C1 [Liu, Silin; Zhang, Ying; Chen, Zhongwen; Du, Xiao; Mu, Yinghui] South China Agr Univ, Coll Agr, Guangzhou, Peoples R China.
[Ma, Zhiyi] Zhongkai Univ Agr & Engn, Sch Elect & Mech Engn, Guangzhou, Peoples R China.
[Mu, Yinghui] Minist Agr & Rural Affairs, Coll Agron, Sci Observing & Expt Stn Crop Cultivat South China, Guangzhou, Peoples R China.
C3 South China Agricultural University; Zhongkai University of Agriculture
& Engineering; Ministry of Agriculture & Rural Affairs
RP Mu, YH (corresponding author), South China Agr Univ, Coll Agr, Guangzhou, Peoples R China.; Mu, YH (corresponding author), Minist Agr & Rural Affairs, Coll Agron, Sci Observing & Expt Stn Crop Cultivat South China, Guangzhou, Peoples R China.
EM youhymoon@hotmail.com
FU Natural Science Foundation of Guangdong Province [2018A0303130194];
Bayer Crop Science [2021 Grants4AG]
FX This project was supported by Natural Science Foundation of Guangdong
Province (2018A0303130194) and Bayer Crop Science supporting project
(2021 Grants4AG).
CR Alvarez-Iglesias L, 2018, WEED RES, V58, P437, DOI 10.1111/wre.12335
An J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099940
Bao Ying, 2020, Agricultural Biotechnology, V9, P18
Bishal B., 2018, INT J APPL SCI BIOTE, V6, P87, DOI [10.3126/ijasbt.v6i2.20427, DOI 10.3126/IJASBT.V6I2.20427]
Chen BM, 2018, BIOL INVASIONS, V20, P1881, DOI 10.1007/s10530-018-1668-5
Chen FQ, 2018, NEW FOREST, V49, P667, DOI 10.1007/s11056-018-9651-7
Chen S., 2018, Acta Horticulturae, P463
Deng QQ, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.568130
Ding HY, 2016, BIOL OPEN, V5, P631, DOI 10.1242/bio.016451
Dogru A, 2020, BRAZ J BOT, V43, P11, DOI 10.1007/s40415-020-00577-9
Dong J, 2019, AQUAT ECOL, V53, P651, DOI 10.1007/s10452-019-09715-2
Eladel H, 2019, J APPL PHYCOL, V31, P3557, DOI 10.1007/s10811-019-01766-0
Gao S, 2020, BMC PLANT BIOL, V20, DOI 10.1186/s12870-020-2282-0
Genovesi G., 2019, J AGR STUD, V7, P272, DOI [10.5296/jas.v7i4.15404, DOI 10.5296/JAS.V7I4.15404]
Goharrizi KJ, 2021, S AFR J BOT, V141, P90, DOI 10.1016/j.sajb.2021.04.029
Govea KP, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9040533
Hayat S, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9030235
He ZB, 2020, J SOIL SCI PLANT NUT, V20, P367, DOI 10.1007/s42729-019-00117-9
Huang CZ, 2020, J INTEGR AGR, V19, P518, DOI 10.1016/S2095-3119(19)62781-4
Chen JR, 2020, J INTEGR AGR, V19, P2116, DOI 10.1016/S2095-3119(19)62858-3
Kalmatskaya OA, 2019, PHOTOSYNTH RES, V142, P265, DOI 10.1007/s11120-019-00663-4
Kumari JA, 2018, RUSS J BIOL INVASION, V9, P290, DOI 10.1134/S2075111718030086
Lu P, 2015, J BASIC MICROB, V55, P22, DOI 10.1002/jobm.201300744
Mehmood A, 2018, ENVIRON SCI POLLUT R, V25, P18071, DOI 10.1007/s11356-018-2043-x
Nasrollahi P, 2018, RUSS J PLANT PHYSL+, V65, P598, DOI 10.1134/S1021443718040167
Ojija F, 2019, BIOL INVASIONS, V21, P3641, DOI 10.1007/s10530-019-02075-w
Otte BA, 2020, CHEMOECOLOGY, V30, P25, DOI 10.1007/s00049-019-00295-z
Peng XiaoBang, 2011, Medicinal Plant, V2, P1
Puig CG, 2018, J CHEM ECOL, V44, P658, DOI 10.1007/s10886-018-0983-8
Puig CG, 2013, WEED SCI, V61, P154, DOI 10.1614/WS-D-12-00056.1
Qari SH, 2020, EGYPT J BIOL PEST CO, V30, DOI 10.1186/s41938-020-00216-1
Sendetsky V.M., 2018, AGROLOGY, V1, P281, DOI [10.32819/2617-6106.2018.13007, DOI 10.32819/2617-6106.2018.13007]
Song QM, 2019, AGROFOREST SYST, V93, P1307, DOI 10.1007/s10457-018-0240-8
Tang Shan, 2016, Shengtaixue Zazhi, V35, P1730, DOI 10.13292/j.1000-4890.201607.031
Tantray AY, 2020, PHYSIOL MOL BIOL PLA, V26, P83, DOI 10.1007/s12298-019-00721-0
Tao JM, 2017, APPL MICROBIOL BIOT, V101, P1289, DOI 10.1007/s00253-016-7938-1
Tesio F, 2010, INT J SUST DEV WORLD, V17, P377, DOI 10.1080/13504509.2010.507402
Utami AI, 2020, SOIL SCI PLANT NUTR, V66, P389, DOI 10.1080/00380768.2020.1725914
Vijaya Yadav, 2019, International Journal of Vegetable Science, V25, P259
Wang XX, 2018, B ENVIRON CONTAM TOX, V100, P690, DOI 10.1007/s00128-018-2289-5
WILLIAMSON GB, 1988, J CHEM ECOL, V14, P181, DOI 10.1007/BF01022540
Xiao F, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10040769
Zhou X, 2020, J INTEGR AGR, V19, P2103, DOI 10.1016/S2095-3119(20)63206-3
Yang Bin-juan, 2013, Yingyong Shengtai Xuebao, V24, P2533
Yang ZP, 2014, J INTEGR AGR, V13, P1772, DOI 10.1016/S2095-3119(13)60565-1
Zhang C, 2021, J INTEGR AGR, V20, P2180, DOI 10.1016/S2095-3119(21)63682-1
Zhang J.Y., 2019, 9 S ALLELOPATHY PLAN
Zhang KM, 2016, ENVIRON SCI POLLUT R, V23, P3578, DOI 10.1007/s11356-015-5589-x
Zhang XQ, 2017, SUGAR TECH, V19, P394, DOI 10.1007/s12355-016-0479-1
Zhou GP, 2020, PEDOSPHERE, V30, P661, DOI 10.1016/S1002-0160(19)60845-3
Zhou X, 2019, J INTEGR AGR, V18, P2381, DOI 10.1016/S2095-3119(18)62096-9
NR 51
TC 5
Z9 5
U1 7
U2 13
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-462X
J9 FRONT PLANT SCI
JI Front. Plant Sci.
PD APR 29
PY 2022
VL 13
AR 829421
DI 10.3389/fpls.2022.829421
PG 13
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA 1H2LB
UT WOS:000796376200001
PM 35574090
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Singh, R
Kishor, R
Singh, V
Singh, V
Prasad, P
Aulakh, NS
Tiwari, UK
Kumar, B
AF Singh, Rajesh
Kishor, Ram
Singh, Vivek
Singh, Vagmi
Prasad, Priyanka
Aulakh, Navneet Singh
Tiwari, Umesh Kumar
Kumar, Birendra
TI Radio-frequency (RF) room temperature plasma treatment of sweet basil
seeds (Ocimum basilicum L.) for germination potential enhancement by
immaculation
SO JOURNAL OF APPLIED RESEARCH ON MEDICINAL AND AROMATIC PLANTS
LA English
DT Article
DE Cold plasma and radio-frequency; Enzymatic and nonenzymatic antioxidant;
Germination; Seedling vigor index; Hormesis; Sweet basil
ID ATMOSPHERIC-PRESSURE PLASMA; COLD-PLASMA; NONTHERMAL PLASMA; SEEDLING
GROWTH; WHEAT; MICROORGANISMS; IRRADIATION; STRESS
AB Ocimum basilicum L. is an antiviral and immunity boosting medicinal plant and culinary herb. Potential use of sweet basils in COVID 19 prevention and management is making its demand rise. This study is aimed at germination potential enhancement of sweet basil seeds. Reported study is evidenced with scientific data of radio-frequency cold plasma treatment using Ar + O-2 feed gas. O. basilicum seeds, placed inside the rotating glass bottle, were directly exposed to RF (13.56 MHz) plasma produced in Ar + O-2 feed gas. Seed treatment was done using RF source power (60 W, 150 W, 240 W), process pressure (0.2 mbar, 0.4 mbar, 0.6 mbar), and treatment time (5 min, 10 min, 15 min) at different combinations. Results show that, the most efficient treatment provide up to similar to 89 % of the germination percentage which is an enhancement by 32.3 % from the control. SEM images revealed slight shrinkage in the seed size with eroded appearance over the seed. Enhancement of lipid peroxidation, show that oxidation of seed coat may propagate internally. Water imbibition analysis, of the treated seeds, was carried out for 2-12 hours. Further analysis of seed weight, on every one hour, after soaking shows enhanced water absorption capability except the treatment at 240 W, 0.6 mbar and 15 min. Plasma treatment enhanced carbohydrate content and protein content which is reported to be due to increased primary metabolism. Whereas, increased activity of secondary metabolism results in the enhancement of enzymatic (catalase) and non-enzymatic antioxidants (proline). Vital growth parameters, such as SVI I and SVI II, got amplified by 37 % and 133 % respectively after treatment. Ameliorative effects of plasma treatment are found highly significant with a positive and significant correlation value (p < 0.01) between germination percentages, SVI I, SVI II, carbohydrate, protein and proline show their interrelationship. Ar + O-2 plasma treatment is found to bring forth significant changes in the O. basilicum seeds which eventually enhanced the germination potential and it could be a very promising technology for the medicinal crop.
C1 [Singh, Rajesh; Aulakh, Navneet Singh; Tiwari, Umesh Kumar] Cent Sci Instruments Org CSIO, Council Sci & Ind Res CSIR, Chandigarh 160030, India.
[Singh, Rajesh; Kishor, Ram; Singh, Vagmi; Prasad, Priyanka; Aulakh, Navneet Singh; Tiwari, Umesh Kumar; Kumar, Birendra] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India.
[Kishor, Ram; Singh, Vivek; Singh, Vagmi; Prasad, Priyanka; Kumar, Birendra] Cent Inst Med & Aromat Plants CIMAP, Council Sci & Ind Res CSIR, Genet & Plant Breeding Div, Seed Qual Lab MAPs, Lucknow 226015, Uttar Pradesh, India.
C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR -
Central Scientific Instruments Organisation (CSIO); Academy of
Scientific & Innovative Research (AcSIR); Council of Scientific &
Industrial Research (CSIR) - India; CSIR - Central Institute of
Medicinal & Aromatic Plants (CIMAP)
RP Kumar, B (corresponding author), Cent Inst Med & Aromat Plants CIMAP, Council Sci & Ind Res CSIR, Lucknow 226015, Uttar Pradesh, India.
EM birendrak67@rediffmail.com
OI , Rajesh/0000-0002-6360-3373
FU CSIR-Aroma Mission Phase II, CSIR, New Delhi [HCP007]
FX Authors are thankful to Director, CSIR-CSIO, Chandigarh, Director,
CSIR-CIMAP, Lucknow, and SIC-CRC (Scientist-in-charge - CSIR-CIMAP
Research Centre) Pantnagar, US Nagar for providing the infrastructure
and facility to carrying out experimental work on sweet basil seeds.
Authors are also thankful to the Dr. RK Lal for statistical analysis,
Dr. Pal Dinesh Kumar Balkishan for manuscript editing and AcSIR academy.
This study was financially supported CSIR-Aroma Mission Phase II
(HCP007) , CSIR, New Delhi.
CR Adhikari B, 2020, FREE RADICAL BIO MED, V156, P57, DOI 10.1016/j.freeradbiomed.2020.06.003
Adhikari B, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00077
Aguilar C.H., 2009, ACTA AGROPHYS, V14, P7
Al-Bachir M, 2007, BIORESOURCE TECHNOL, V98, P1871, DOI 10.1016/j.biortech.2005.05.025
Alves C, 2016, SCI REP-UK, V6, DOI 10.1038/srep33722
Ambrico PF, 2020, J PHYS D APPL PHYS, V53, DOI 10.1088/1361-6463/ab5b1b
Ambrico PF, 2017, J PHYS D APPL PHYS, V50, DOI 10.1088/1361-6463/aa77c8
Araujo SD, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00646
Attri P, 2020, PROCESSES, V8, DOI 10.3390/pr8081002
Bafoi M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44927-4
Berry J.A., 1982, ENV REGULATION PHOTO, P294
Blaszczak W, 2007, FOOD RES INT, V40, P415, DOI 10.1016/j.foodres.2006.10.018
Bormashenko E, 2015, J EXP BOT, V66, P4013, DOI 10.1093/jxb/erv206
Bormashenko E, 2012, SCI REP-UK, V2, DOI 10.1038/srep00741
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Calcabrini C, 2017, BIOTECHNOL APPL BIOC, V64, P415, DOI 10.1002/bab.1495
Perez-Piza MC, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61913-3
CHANDLEE JM, 1984, THEOR APPL GENET, V69, P71, DOI 10.1007/BF00262543
Charoux CMG, 2021, J APPL MICROBIOL, V130, P325, DOI 10.1111/jam.14823
Cui DJ, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01322
de Groot GJJB, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32692-9
De Souza F.H.D., 2001, BRAZ J BOT, V24, P365, DOI [10.1590/S0100-84042001000400002, DOI 10.1590/S0100-84042001000400002]
Martinez-Ballesta MD, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10040504
Denes F., 1999, J PHOTOPOLYM SCI TEC, V12, P27, DOI [10.2494/photopolymer.12.27, DOI 10.2494/PHOTOPOLYMER.12.27]
Dhayal M, 2006, VACUUM, V80, P499, DOI 10.1016/j.vacuum.2005.06.008
Dubinov AE, 2000, IEEE T PLASMA SCI, V28, P180, DOI 10.1109/27.842898
DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017
Falahat A, 2018, PRAMANA-J PHYS, V90, DOI 10.1007/s12043-018-1520-6
Filatova I, 2020, J PHYS D APPL PHYS, V53, DOI 10.1088/1361-6463/ab7960
Gaunt LF, 2006, IEEE T PLASMA SCI, V34, P1257, DOI 10.1109/TPS.2006.878381
Gomez-Ramirez A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06164-5
Goussous Saba J., 2010, Archives of Phytopathology and Plant Protection, V43, P1746, DOI 10.1080/03235401003633832
Grene Ruth, 2002, Arabidopsis Book, V1, pe0036, DOI 10.1199/tab.0036.1
Hayashi N, 2015, JPN J APPL PHYS, V54, DOI 10.7567/JJAP.54.06GD01
Hayat S, 2012, PLANT SIGNAL BEHAV, V7, P1456, DOI 10.4161/psb.21949
Holc M, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8110462
Homa K, 2021, HORTSCIENCE, V56, P42, DOI 10.21273/HORTSCI15338-20
Iqbal T, 2019, J LASER APPL, V31, DOI 10.2351/1.5109764
Kagale S, 2004, PHYSIOL MOL PLANT P, V65, P91, DOI 10.1016/j.pmpp.2004.11.008
Kitazaki S, 2012, JPN J APPL PHYS, V51, DOI 10.1143/JJAP.51.01AE01
Kumar B, 2012, J CROP IMPROV, V26, P532, DOI 10.1080/15427528.2012.659418
Liu J, 2016, SCI REP-UK, V6, DOI 10.1038/srep22403
Lynikiene S., 2006, International Agrophysics, V20, P195
Mattioli R, 2009, PLANT SIGNAL BEHAV, V4, P1016, DOI 10.4161/psb.4.11.9797
Meng YR, 2017, PLASMA CHEM PLASMA P, V37, P1105, DOI 10.1007/s11090-017-9799-5
Mildaziene V, 2018, PLASMA PROCESS POLYM, V15, DOI 10.1002/ppap.201700059
Molina R, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34801-0
Pau, 2017, PLASMA PROCESS POLYM, V15
Pawlat J, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194349
Perez Piza M.C., 2018, INNOVATION FOOD SCI, V5, P1466
Prasad P, 2018, J APPL RES MED AROMA, V9, P110, DOI 10.1016/j.jarmap.2018.03.005
Puac N, 2018, PLASMA PROCESS POLYM, V15, DOI 10.1002/ppap.201700174
Rahman MM, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-28960-3
Randeniya LK, 2015, PLASMA PROCESS POLYM, V12, P608, DOI 10.1002/ppap.201500042
Reznikov S, 2016, J GEN PLANT PATHOL, V82, P273, DOI 10.1007/s10327-016-0669-4
Roy NC, 2018, PLASMA CHEM PLASMA P, V38, P13, DOI 10.1007/s11090-017-9855-1
Sadhu S, 2017, LWT-FOOD SCI TECHNOL, V78, P97, DOI 10.1016/j.lwt.2016.12.026
Sarinont T, 2016, ARCH BIOCHEM BIOPHYS, V605, P129, DOI 10.1016/j.abb.2016.03.024
Selcuk M, 2008, BIORESOURCE TECHNOL, V99, P5104, DOI 10.1016/j.biortech.2007.09.076
Seol YB, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00480-6
Sera B, 2008, PLASMA SCI TECHNOL, V10, P506, DOI 10.1088/1009-0630/10/4/22
Sera B, 2010, IEEE T PLASMA SCI, V38, P2963, DOI 10.1109/TPS.2010.2060728
Shashikanthalu SP, 2020, J APPL RES MED AROMA, V18, DOI 10.1016/j.jarmap.2020.100259
Singh R, 2019, J APPL RES MED AROMA, V12, P78, DOI 10.1016/j.jarmap.2018.11.005
Sohan MSR, 2021, PLASMA CHEM PLASMA P, V41, P923, DOI 10.1007/s11090-021-10158-7
da Silva DLS, 2018, REV CAATINGA, V31, P632, DOI 10.1590/1983-21252018v31n311rc
Stolarik T, 2015, PLASMA CHEM PLASMA P, V35, P659, DOI 10.1007/s11090-015-9627-8
Taheri S, 2020, INNOV FOOD SCI EMERG, V66, DOI 10.1016/j.ifset.2020.102488
Tomekova J, 2020, PLASMA CHEM PLASMA P, V40, P1571, DOI 10.1007/s11090-020-10109-8
Volin JC, 2000, CROP SCI, V40, P1706, DOI 10.2135/cropsci2000.4061706x
Volkov AG, 2019, BIOELECTROCHEMISTRY, V128, P175, DOI 10.1016/j.bioelechem.2019.04.012
Wang XQ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04963-4
Weber D, 2015, REDOX BIOL, V5, P367, DOI 10.1016/j.redox.2015.06.005
Xu G, 2012, NUCL INSTRUM METH B, V287, P76, DOI 10.1016/j.nimb.2012.05.038
Yao YN, 2005, ENVIRON EXP BOT, V54, P286, DOI 10.1016/j.envexpbot.2004.09.006
Zahoranova A, 2016, PLASMA CHEM PLASMA P, V36, P397, DOI 10.1007/s11090-015-9684-z
Zahoranova A, 2018, PLASMA CHEM PLASMA P, V38, P969, DOI 10.1007/s11090-018-9913-3
Zhang ShuJie, 2011, Agricultural Science & Technology - Hunan, V12, P484
NR 78
TC 3
Z9 3
U1 3
U2 7
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
EI 2214-7861
J9 J APPL RES MED AROMA
JI J. Appl. Res. Med. Aromat. Plants
PD FEB
PY 2022
VL 26
AR 100350
DI 10.1016/j.jarmap.2021.100350
EA NOV 2021
PG 12
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA WW8CP
UT WOS:000718137700001
PM 36568438
OA Green Published
DA 2023-03-13
ER
PT J
AU Marini, E
Magi, G
Mingoia, M
Pugnaloni, A
Facinelli, B
AF Marini, Emanuela
Magi, Gloria
Mingoia, Marina
Pugnaloni, Armanda
Facinelli, Bruna
TI Antimicrobial and Anti-Virulence Activity of Capsaicin Against
Erythromycin-Resistant, Cell-Invasive Group A Streptococci
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE capsaicin; Group A streptococci; virulence; biofilm; haemolytic
activity; cell invasion; hormesis
ID BIOFILM FORMATION; SUBINHIBITORY CONCENTRATIONS; STAPHYLOCOCCUS-AUREUS;
MACROLIDE RESISTANCE; RESPIRATORY CELLS; ESSENTIAL OILS; PYOGENES;
ANTIBIOTICS; STRAINS; QUANTIFICATION
AB Capsaicin (8-methyl-N-vanillyI-6-nonenamide) is the active component of Capsicum plants (chili peppers), which are grown as food and for medicinal purposes since ancient times, and is responsible for the pungency of their fruit. Besides its multiple pharmacological and physiological properties (pain relief, cancer prevention, and beneficial cardiovascular, and gastrointestinal effects) capsaicin has recently attracted considerable attention because of its antimicrobial and anti-virulence activity. This is the first study of its in vitro antibacterial and anti-virulence activity against Streptococcus pyogenes (Group A streptococci, GAS), a major human pathogen. The test strains were previously characterized, erythromycin-susceptible (n = 5) and erythromycin-resistant (n = 27), cell-invasive pharyngeal isolates. The MICs of capsaicin were 64-128 mu g/mL (the most common MIC was 128 mu g/mL). The action of capsaicin was bactericidal, as suggested by MBC values that were equal or close to the MICs, and by early detection of dead cells in the live/dead assay. No capsaicin-resistant mutants were obtained in single-step resistance selection studies. Interestingly, growth in presence of sublethal capsaicin concentrations induced an increase in biofilm production (p <= 0.05) and in the number of bacteria adhering to A549 monolayers, and a reduction in cell-invasiveness and haemolytic activity (both p <= 0.05). Cell invasiveness fell so dramatically that a highly invasive strain became non-invasive. The dose-response relationship, characterized by opposite effects of low and high capsaicin doses, suggests a hormetic response. The present study documents that capsaicin has promising bactericidal activity against erythromycin-resistant, cell-invasive pharyngeal GAS isolates. The fact that sublethal concentrations inhibited cell invasion and reduced haemolytic activity, two important virulence traits of GAS, is also interesting, considering that cell invasive erythromycin resistant strains can evade beta-lactams by virtue of intracellular location and macrolides by virtue of resistance, thus escaping antibiotic treatment. By inhibiting intracellular invasion and haemolytic activity, capsaicin could thus prevent both formation of a difficult to eradicate intracellular reservoir, and infection spread to deep tissues.
C1 [Marini, Emanuela; Magi, Gloria; Mingoia, Marina; Facinelli, Bruna] Polytech Univ Marche, Dept Biomed Sci & Publ Hlth, Microbiol Unit, Ancona, Italy.
[Pugnaloni, Armanda] Polytech Univ Marche, Dept Clin & Mol Sci, Ancona, Italy.
C3 Marche Polytechnic University; Marche Polytechnic University
RP Facinelli, B (corresponding author), Polytech Univ Marche, Dept Biomed Sci & Publ Hlth, Microbiol Unit, Ancona, Italy.
EM b.facinelli@univpm.it
RI Mingoia, Marina/AAB-3553-2019; Pugnaloni, Armanda/AAE-9049-2020;
Mingoia, Marina/AAC-2753-2020; Mingoia, Marina/AAE-9124-2019
OI Mingoia, Marina/0000-0001-8225-7843;
CR Andersson DI, 2014, NAT REV MICROBIOL, V12, P465, DOI 10.1038/nrmicro3270
Baldassarri L, 2006, J CLIN MICROBIOL, V44, P2721, DOI 10.1128/JCM.00512-06
Bisno AL, 2003, LANCET INFECT DIS, V3, P191, DOI 10.1016/S1473-3099(03)00576-0
Chatterjee S, 2010, FEMS MICROBIOL LETT, V306, P54, DOI 10.1111/j.1574-6968.2010.01931.x
CHRISTENSEN GD, 1985, J CLIN MICROBIOL, V22, P996, DOI 10.1128/JCM.22.6.996-1006.1985
Cichewicz RH, 1996, J ETHNOPHARMACOL, V52, P61, DOI 10.1016/0378-8741(96)01384-0
Clinical and Laboratory Standards Institute, 2015, M100S25 CLSI S
Cowan MM, 1999, CLIN MICROBIOL REV, V12, P564, DOI 10.1128/CMR.12.4.564
Cunningham MW, 2008, ADV EXP MED BIOL, V609, P29, DOI 10.1007/978-0-387-73960-1_3
Darfeuille-Michaud A, 1998, GASTROENTEROLOGY, V115, P1405, DOI 10.1016/S0016-5085(98)70019-8
Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006
Facinelli B, 1998, MICROBIOL-SGM, V144, P109, DOI 10.1099/00221287-144-1-109
Facinelli B, 2001, LANCET, V358, P30, DOI 10.1016/S0140-6736(00)05253-3
Fiedler T, 2015, FRONT CELL INFECT MI, V5, DOI 10.3389/fcimb.2015.00015
Gillespie SH, 1998, LANCET, V352, P1954, DOI 10.1016/S0140-6736(05)61327-X
Giovanetti E, 2002, ANTIMICROB AGENTS CH, V46, P3750, DOI 10.1128/AAC.46.12.3750-3755.2002
Gracia M, 2009, DIAGN MICR INFEC DIS, V64, P52, DOI 10.1016/j.diagmicrobio.2008.12.018
Hemaiswarya S, 2008, PHYTOMEDICINE, V15, P639, DOI 10.1016/j.phymed.2008.06.008
Hyldgaard M, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00012
Jensen PG, 2003, PEST MANAG SCI, V59, P1007, DOI 10.1002/ps.705
Kalia NP, 2012, J ANTIMICROB CHEMOTH, V67, P2401, DOI 10.1093/jac/dks232
Kaplan EL, 2005, CLIN INFECT DIS, V41, P609, DOI 10.1086/432480
Kaplan JB, 2011, INT J ARTIF ORGANS, V34, P737, DOI 10.5301/ijao.5000027
Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012
Liang YM, 2012, J MED MICROBIOL, V61, P975, DOI 10.1099/jmm.0.042309-0
Logan LK, 2012, PEDIATRICS, V129, pE798, DOI 10.1542/peds.2011-1198
LORIAN V, 1975, B NEW YORK ACAD MED, V51, P1046
Luo XJ, 2011, EUR J PHARMACOL, V650, P1, DOI 10.1016/j.ejphar.2010.09.074
Magi G, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00165
Nascimento PLA, 2014, MOLECULES, V19, P5434, DOI 10.3390/molecules19045434
Pizarro-Cerda J, 2006, CELL, V124, P715, DOI 10.1016/j.cell.2006.02.012
Qiu JZ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033032
Reiland H.A., 2014, J INFECT DIS THERAPY, V8, P145, DOI [10.4172/2332-0877.1000145, DOI 10.4172/2332-0877.1000145]
Smith-Palmer A, 2004, J MED MICROBIOL, V53, P1023, DOI 10.1099/jmm.0.45567-0
Spinaci C, 2004, J CLIN MICROBIOL, V42, P639, DOI 10.1128/JCM.42.2.639-644.2004
Spinaci C, 2006, PEDIATR INFECT DIS J, V25, P880, DOI 10.1097/01.inf.0000238136.63851.4a
Stepanovic S, 2000, J MICROBIOL METH, V40, P175, DOI 10.1016/S0167-7012(00)00122-6
Sumitomo T, 2011, J BIOL CHEM, V286, P2750, DOI 10.1074/jbc.M110.171504
Varaldo PE, 1999, CLIN INFECT DIS, V29, P869, DOI 10.1086/520451
Vignaroli C, 2013, ENVIRON SCI TECHNOL, V47, P13772, DOI 10.1021/es4019139
Xu QW, 2005, ENVIRON TOXICOL, V20, P467, DOI 10.1002/tox.20134
Zhou Y, 2014, EUR J CLIN MICROBIOL, V33, P211, DOI 10.1007/s10096-013-1947-0
NR 42
TC 52
Z9 54
U1 1
U2 58
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD NOV 13
PY 2015
VL 6
AR 1281
DI 10.3389/fmicb.2015.01281
PG 7
WC Microbiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Microbiology
GA CW9QK
UT WOS:000365333100001
PM 26617603
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Lloyd, KL
Davis, DD
Marini, RP
Decoteau, DR
AF Lloyd, Kirsten L.
Davis, Donald D.
Marini, Richard P.
Decoteau, Dennis R.
TI Response of Sensitive and Resistant Snap Bean Genotypes to Nighttime
Ozone Concentration
SO JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE
LA English
DT Article
DE Phaseolus vulgaris; stomatal conductance; R123; S156
ID PHASEOLUS-VULGARIS L.; STOMATAL CONDUCTANCE; DIEL TREND; EXPOSURE;
VEGETATION; FLUX; PHOTOSYNTHESIS; TRANSPIRATION; MECHANISMS; POLLUTION
AB Effects of nighttime (2000 to 0700 HR) O-3 on the pod mass of sensitive (S156) and resistant (R123) snap bean (Phaseolus vulgaris) genotypes were assessed using continuous stirred tank reactors located within a greenhouse. Two concentration-response relationship trials were designed to evaluate yield response to nighttime O-3 exposure (10 to 265 ppb) in combination with daytime exposure at background levels (44 and 62 ppb). Three replicated trials tested the impact of nighttime O-3 treatment at means of 145, 144, and 145 ppb on yields. In addition, stomatal conductance (g(s)) measurements documented diurnal variations and assessed the effects of genotype and leaf age. During the concentration-response experiments, pod mass had a significant linear relationship with the nighttime O-3 concentration across genotypes. Yield losses of 15% and 50% occurred at nighttime exposure levels of approximate to 45 and 145 ppb, respectively, for S156, whereas R123 yields decreased by 15% at approximate to 150 ppb. At low nighttime O-3 levels of approximate to 100 ppb, R123 yields initially increased up to 116% of the treatment that received no added nighttime O-3, suggesting a potential hormesis effect for R123, but not for S156. Results from replicated trials revealed significant yield losses in both genotypes following combined day and night exposure, whereas night-only exposure caused significant decreases only for S156. The g(s) rates ranged from less than 100 mmol.m(-2) .s(-1) in the evening to midday levels more than 1000 mmol.m(-2).s(-1). At sunrise and sunset, S156 had significantly higher g(s) rates than R123, suggesting a greater potential O-3 flux into leaves. Across genotypes, younger rapidly growing leaves had higher g s rates than mature fully expanded leaves when evaluated at four different times during the day. Although these were long-term trials, g(s )measurements and observations of foliar injury development suggest that acute injury, occurring at approximately the time of sunrise, also may have contributed to yield losses. To our knowledge, these are the first results to confirm that the relative O-3 sensitivity of the S156/R123 genotypes is valid for nighttime exposure.
C1 [Lloyd, Kirsten L.; Marini, Richard P.; Decoteau, Dennis R.] Penn State Univ, Dept Plant Sci, 102 Tyson Bldg, University Pk, PA 16802 USA.
[Davis, Donald D.] Penn State Univ, Dept Plant Pathol & Environm Microbiol, 211 Buckhout Lab, University Pk, PA 16802 USA.
C3 Pennsylvania Commonwealth System of Higher Education (PCSHE);
Pennsylvania State University; Pennsylvania State University -
University Park; Pennsylvania Commonwealth System of Higher Education
(PCSHE); Pennsylvania State University; Pennsylvania State University -
University Park
RP Lloyd, KL (corresponding author), Penn State Univ, Dept Plant Sci, 102 Tyson Bldg, University Pk, PA 16802 USA.
EM kll24@psu.edu
FU U.S. Department of Agriculture National Institute of Food and Federal
Appropriations [PEN04564, 1002837]; Pennsylvania Department of
Environmental Protection, Bureau of Air Quality; Harrisburg, PA;
Pennsylvania Agricultural Experiment Station; Department of Plant
Science, The Pennsylvania State University; NIFA [1002837, 690369]
Funding Source: Federal RePORTER
FX Funding provided by the U.S. Department of Agriculture National
Institute of Food and Federal Appropriations under Project PEN04564,
Accession number 1002837; Pennsylvania Department of Environmental
Protection, Bureau of Air Quality; Harrisburg, PA; the Pennsylvania
Agricultural Experiment Station; and the Department of Plant Science,
The Pennsylvania State University. We thank Scott DiLoreto, Jim Savage,
and Jon Ferdinand for technical expertise; Dr. Kent Burkey for providing
seed and expertise; Dr. Rick Bates and Dr. Amy Huff for reviewing the
manuscript; and Emily Isaacs, Alexis Dolby, and Michael Potts for
greenhouse assistance.
CR Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527
Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264
Agathokleous E, 2017, SCI TOTAL ENVIRON, V580, P1046, DOI 10.1016/j.scitotenv.2016.12.059
Ainsworth EA, 2017, PLANT J, V90, P886, DOI 10.1111/tpj.13298
[Anonymous], 2014, PRINCIPLES SOIL PLAN
Balajee K. L., 2017, International Journal of Medicine and Public Health, V7, P56, DOI 10.5530/ijmedph.2017.1.10
Booker F, 2009, J INTEGR PLANT BIOL, V51, P337, DOI 10.1111/j.1744-7909.2008.00805.x
Burkey KO, 2005, J ENVIRON QUAL, V34, P1081, DOI 10.2134/jeq2004.0008
BUTLER LK, 1979, J AM SOC HORTIC SCI, V104, P213
Caird MA, 2007, PLANT PHYSIOL, V143, P4, DOI 10.1104/pp.106.092940
Dawson TE, 2007, TREE PHYSIOL, V27, P561, DOI 10.1093/treephys/27.4.561
Emberson LD, 2000, ENVIRON POLLUT, V109, P393, DOI 10.1016/S0269-7491(00)00042-7
Flowers MD, 2007, ENVIRON EXP BOT, V61, P190, DOI 10.1016/j.envexpbot.2007.05.009
Forlani A, 2005, FRESEN ENVIRON BULL, V14, P478
Goknur AB, 2001, J AM SOC HORTIC SCI, V126, P37, DOI 10.21273/JASHS.126.1.37
Grantz DA, 2013, J EXP BOT, V64, P1703, DOI 10.1093/jxb/ert032
Grantz DA, 2018, NEW PHYTOL, V219, P275, DOI 10.1111/nph.15102
Grantz DA, 2014, ATMOS ENVIRON, V98, P571, DOI 10.1016/j.atmosenv.2014.08.068
GunthardtGoerg MS, 1996, J PLANT PHYSIOL, V148, P207, DOI 10.1016/S0176-1617(96)80316-6
Heath RL, 2009, ATMOS ENVIRON, V43, P2919, DOI 10.1016/j.atmosenv.2009.03.011
Heck W.W., 1978, CONTINUOUS STIRRED T
Hoshika Y, 2019, SCI TOTAL ENVIRON, V692, P713, DOI 10.1016/j.scitotenv.2019.07.288
Hoshika Y, 2013, ENVIRON EXP BOT, V88, P19, DOI 10.1016/j.envexpbot.2011.12.004
HUCL P, 1982, CAN J BOT, V60, P2187, DOI 10.1139/b82-268
Lee EH, 1999, J AIR WASTE MANAGE, V49, P669, DOI 10.1080/10473289.1999.10463835
LEE EH, 1982, PLANT PHYSIOL, V69, P1444, DOI 10.1104/pp.69.6.1444
Lefohn A.S., 2019, BRIDGING GAP OZONE E
Li K, 2019, P NATL ACAD SCI USA, V116, P422, DOI 10.1073/pnas.1812168116
Li S, 2017, PLANT CELL ENVIRON, V40, P1984, DOI 10.1111/pce.13003
Lloyd K.L., 2019, THESIS
Lloyd KL, 2018, J AM SOC HORTIC SCI, V143, P23, DOI 10.21273/JASHS04253-17
MATYSSEK R, 1995, TREE PHYSIOL, V15, P159, DOI 10.1093/treephys/15.3.159
McGrath JM, 2015, P NATL ACAD SCI USA, V112, P14390, DOI 10.1073/pnas.1509777112
Mills G, 2018, ELEMENTA-SCI ANTHROP, V6, DOI 10.1525/elementa.302
Musselman RC, 2006, ATMOS ENVIRON, V40, P1869, DOI 10.1016/j.atmosenv.2005.10.064
Musselman RC, 2000, ATMOS ENVIRON, V34, P719, DOI 10.1016/S1352-2310(99)00355-6
Orendovici T., 2005, THESIS
Pell EJ, 1997, PHYSIOL PLANTARUM, V100, P264, DOI 10.1034/j.1399-3054.1997.1000207.x
REICH PB, 1985, SCIENCE, V230, P566, DOI 10.1126/science.230.4725.566
Reinert RA, 2000, J AM SOC HORTIC SCI, V125, P222, DOI 10.21273/JASHS.125.2.222
Richardson F, 2017, TREE PHYSIOL, V37, P869, DOI 10.1093/treephys/tpx073
Salvatori E, 2013, ENVIRON EXP BOT, V87, P79, DOI 10.1016/j.envexpbot.2012.09.008
SATTERTHWAITE FE, 1946, BIOMETRICS BULL, V2, P110, DOI 10.2307/3002019
Stripe CM, 2014, ENVIRON SCI-PROC IMP, V16, P2488, DOI [10.1039/C4EM00143E, 10.1039/c4em00143e]
Toro G, 2019, THEOR EXP PLANT PHYS, V31, P483, DOI 10.1007/s40626-019-00161-x
U.S. Environmental Protection Agency, 1993, EPA600891049AFCF
U.S. Environmental Protection Agency, 2013, EPA600R10076F
U.S. Environmental Protection Agency, 2017, 80FR65291 US EPA
Wang SG, 2015, J AGR SCI-CAMBRIDGE, V153, P837, DOI 10.1017/S0021859615000040
Wang T, 2017, SCI TOTAL ENVIRON, V575, P1582, DOI 10.1016/j.scitotenv.2016.10.081
WINNER WE, 1989, P NATL ACAD SCI USA, V86, P8828, DOI 10.1073/pnas.86.22.8828
Yan YY, 2018, ATMOS CHEM PHYS, V18, P1185, DOI 10.5194/acp-18-1185-2018
NR 52
TC 0
Z9 0
U1 0
U2 4
PU AMER SOC HORTICULTURAL SCIENCE
PI ALEXANDRIA
PA 113 S WEST ST, STE 200, ALEXANDRIA, VA 22314-2851 USA
SN 0003-1062
EI 2327-9788
J9 J AM SOC HORTIC SCI
JI J. Am. Soc. Hortic. Sci.
PD NOV
PY 2020
VL 145
IS 6
BP 331
EP 339
DI 10.21273/JASHS04808-19
PG 9
WC Horticulture
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture
GA OO4NO
UT WOS:000587357600001
OA gold
DA 2023-03-13
ER
PT J
AU Peichoto, ME
Tavares, FL
DeKrey, G
Mackessy, SP
AF Peichoto, Maria E.
Tavares, Flavio L.
DeKrey, Gregory
Mackessy, Stephen P.
TI A comparative study of the effects of venoms from five rear-fanged snake
species on the growth of Leishmania major: Identification of a protein
with inhibitory activity against the parasite
SO TOXICON
LA English
DT Article
DE Antileishmanial activity; Hypsiglena torquata texana; Philodryas baroni;
Philodiyas olfersii olfersii; Philodryas patagoniensis; Phospholipase
A(2); Trimorphodon biscutatus lambda
ID CERASTES-CERASTES VENOM; AMINO-ACID OXIDASE; PHOSPHOLIPASE A(2);
ANTILEISHMANIAL ACTIVITY; TRYPANOSOMA-CRUZI; COLUBRID SNAKES; CELLS;
PROLIFERATION; ACTIVATION; HORMESIS
AB Leishmania parasites of several species cause cutaneous and visceral disease to millions of people worldwide, and treatment for this vector-borne protozoan parasite typically involves administration of highly toxic antimonial drugs. Snake venoms are one of the most concentrated enzyme sources in nature, displaying a broad range of biological effects, and several drugs now used in humans were derived from venoms. In this study, we compared the effects of the venoms of the South American rear-fanged snakes Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV), and the North American rear-fanged snakes Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV), on the growth of Leishmania major, a causative agent of cutaneous leishmaniasis. Different concentrations of each venom were incubated with the log-phase promastigote stage of L. major. TblV showed significant anti-leishmanial activity (IC50 of 108.6 mu g/mL) at its highest concentrations; however, it induced parasite proliferation at intermediate concentrations. PpV was not very active in decreasing the parasitic growth, and a high final concentration (1.7 mg/mL) was necessary to inhibit proliferation by only 51.5%+/- 3.6%. PbV, PooV and HttV, at final concentrations of 562, 524 and 438 mu g/mL respectively, had no significant effect on L major growth. The phospholipase A(2) of TblV (trimorphin) was isolated and assayed as for crude venom, and it also exhibited dose-dependent biphasic effects on the parasite culture, with potent cytotoxicity at higher concentrations (IC50 of 0.25 mu M; 3.6 mu g/mL) and stimulation of proliferation at very low concentrations. Anti-leishmanial activity of TblV appears to be solely due to the action of trimorphin. This is the first report of anti-leishmanial activity of rear-fanged snake venoms, and these results suggest novel possibilities for discovering new protein-based drugs that might be used as possible agents against leishmaniasis as well as tools to study the biology of Leishmania parasites. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Peichoto, Maria E.] Univ Nacl Nordeste, Fac Ciencias Vet, Catedra Farmacol, RA-3400 Corrientes, Argentina.
[Peichoto, Maria E.; Tavares, Flavio L.; DeKrey, Gregory; Mackessy, Stephen P.] Univ No Colorado, Sch Biol Sci, Greeley, CO 80639 USA.
C3 University of Northern Colorado
RP Peichoto, ME (corresponding author), Univ Nacl Nordeste, Fac Ciencias Vet, Catedra Farmacol, Sargento Cabral 2139, RA-3400 Corrientes, Argentina.
EM mepeichoto@yahoo.com.ar
RI Mackessy, Stephen/GPT-0793-2022
OI Tavares, Flavio/0000-0003-1137-9012; Peichoto,
Maria/0000-0001-7269-3086; Mackessy, Stephen/0000-0003-4515-2545
FU Fulbright Commission; National Scientific and Technical Research Council
(CONICET); CONICET from Argentina [PIP 114-200801-00088]; Colorado
Office of Economic Development and International Trade; University of
Northern Colorado (FRPB) [PRR44]; Dallas Zoological Park
FX A postdoctoral fellowship for MEP by the Fulbright Commission and the
National Scientific and Technical Research Council (CONICET) is
gratefully acknowledged. Additional financial support was provided by
CONICET from Argentina (PIP 114-200801-00088, to MEP), by a Bioscience
Discovery Evaluation Grant from the Colorado Office of Economic
Development and International Trade (to SPM), and by the University of
Northern Colorado (FRPB grant #PRR44). The donation of P. baroni by the
Dallas Zoological Park (D. Hartigan) to SPM is also greatly appreciated.
CR BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730
Chen KC, 2008, TOXICOL LETT, V180, P53, DOI 10.1016/j.toxlet.2008.05.014
Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007
Costa TR, 2008, PEPTIDES, V29, P1645, DOI 10.1016/j.peptides.2008.05.021
Torres AFC, 2010, TOXICON, V55, P795, DOI 10.1016/j.toxicon.2009.11.013
Desjeux P., 1992, World Health Statistics Quarterly, V45, P267
Doley Robin, 2010, P173
Farooqui AA, 2005, REPROD NUTR DEV, V45, P613, DOI 10.1051/rnd:2005049
FERLAN I, 1983, TOXICON, V21, P570, DOI 10.1016/0041-0101(83)90137-X
FERNANDEZGOMEZ R, 1994, TOXICON, V32, P875, DOI 10.1016/0041-0101(94)90366-2
Fry BG, 2008, MOL CELL PROTEOMICS, V7, P215, DOI 10.1074/mcp.M700094-MCP200
Goncalves AR, 2002, PARASITOL RES, V88, P598, DOI 10.1007/s00436-002-0626-3
Hill RE, 1997, TOXICON, V35, P671, DOI 10.1016/S0041-0101(96)00174-2
Holzer M, 1996, TOXICON, V34, P1149, DOI 10.1016/0041-0101(96)00057-8
Huang P, 2004, TOXICON, V44, P27, DOI 10.1016/j.toxicon.2004.03.027
Kessentini-Zouari R, 2010, LAB INVEST, V90, P510, DOI 10.1038/labinvest.2009.137
Loiseau PM, 2006, CURR TOP MED CHEM, V6, P539, DOI 10.2174/156802606776743165
Ma An-de, 2006, Nan Fang Yi Ke Da Xue Xue Bao, V26, P75
Mackessy S.P., 2010, HDB VENOMS TOXINS RE, P1
Mackessy SP, 2002, J TOXICOL-TOXIN REV, V21, P43, DOI 10.1081/TXR-120004741
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Mora R, 2005, TOXICON, V45, P651, DOI 10.1016/j.toxicon.2005.01.008
Mukherjee P, 2009, INT J ANTIMICROB AG, V34, P596, DOI 10.1016/j.ijantimicag.2009.08.007
Passero LFD, 2007, PARASITOL RES, V101, P1365, DOI 10.1007/s00436-007-0653-1
Passero LFD, 2008, PARASITOL RES, V102, P1025, DOI 10.1007/s00436-007-0871-6
Peichoto M, 2010, TOXICOL LETT, V196, pS347, DOI 10.1016/j.toxlet.2010.03.1099
Rath S, 2003, QUIM NOVA, V26, P550, DOI 10.1590/S0100-40422003000400018
ROSENBERG HI, 1992, COPEIA, P244
Rosenthal E, 2009, MED MALADIES INFECT, V39, P741, DOI 10.1016/j.medmal.2009.05.001
Rufini S, 1999, AM J PHYSIOL-CELL PH, V277, pC814, DOI 10.1152/ajpcell.1999.277.4.C814
Sabina H, 2005, PAK J BOT, V37, P163
SACKS DL, 1984, SCIENCE, V223, P1417, DOI 10.1126/science.6701528
Schaeffer EL, 2009, PSYCHOPHARMACOLOGY, V202, P37, DOI 10.1007/s00213-008-1351-0
Soares AM, 2004, CURR ORG CHEM, V8, P1677, DOI 10.2174/1385272043369610
Stabeli RG, 2006, COMP BIOCHEM PHYS C, V142, P371, DOI 10.1016/j.cbpc.2005.11.020
Tempone AG, 2001, BIOCHEM BIOPH RES CO, V280, P620, DOI 10.1006/bbrc.2000.4175
Weldon CL, 2010, TOXICON, V55, P558, DOI 10.1016/j.toxicon.2009.10.010
NR 38
TC 25
Z9 26
U1 0
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0041-0101
J9 TOXICON
JI Toxicon
PD JUL
PY 2011
VL 58
IS 1
BP 28
EP 34
DI 10.1016/j.toxicon.2011.04.018
PG 7
WC Pharmacology & Pharmacy; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy; Toxicology
GA 809DC
UT WOS:000294031000004
PM 21601589
DA 2023-03-13
ER
PT J
AU Ozgeris, FB
Yeltekin, AC
Ucar, A
Caglar, O
Parlak, V
Arslan, ME
Turkez, H
Atamanalp, M
Alak, G
AF Ozgeris, Fatma Betul
Yeltekin, Asli Cilingir
Ucar, Arzu
Caglar, Ozge
Parlak, Veysel
Arslan, Mehmet Enes
Turkez, Hasan
Atamanalp, Muhammed
Alak, Gonca
TI Toxic releases and exposure assessment: A multi-endpoint approach in
fish for ferrocene toxicity
SO PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
LA English
DT Article
DE Hepatotoxicity; Hematological index; Immune system; Fisheries; Food
security; Nrf-2
ID OXIDATIVE STRESS; RAINBOW-TROUT; BORIC-ACID; BRAIN; BORON; GILL;
HEMATOLOGY; PARAMETERS; ZEBRAFISH; TISSUES
AB Fe2+ in ferrocene facilities the oxidation. Based on this phenomenon, increased iron (Fe) level in freshwater ecosystems is thought as an important environmental problem in many geographic regions. In addition to increased mobilization of Fe from sediment due to changes in land use, mining, industrial activity, and elevated acid deposition are also proposed to be possible factors contributing to the increased Fe loading in freshwater environments. Ferrocene is useful in the modern organometallic chemistry industry due to its versatile appli-cations. In this study, the toxicity potential and related toxicity mechanisms of acute ferrocene exposure as well as the protective potential of borax supplementation against ferrocene were investigated in rainbow trout during 96 h under semi-static conditions. In target tissues multiplexed endpoints of hematological indices, genotoxicity, oxidative stress response, DNA damage and apoptosis levels, as well as tumor necrosis factor alpha, and interleukin-6 activities were assessed in blood tissue. In liver tissue, in addition to the parameters studied in blood tissue (except cortisol), the nuclear factor erythroid-2, which regulates the expression of detoxification enzymes, was investigated. When the results obtained from blood analyzes were examined, ferrocen treatment caused different reactions (increase/decrease) in blood indexes, and these findings were confirmed by MN tests. In ferrocene-induced hematoxicite, the healing effect of borax application has been observed to increase inhibited values and decrease in indexes with increasing tendencies. Besides, this hematoxicity was also supported by cortisol in-creases. Our findings showed that ferrocene inhibited antioxidant enzyme activities and increased lipid perox-idation, 8-OH-dG, caspase 3, TNF-alpha, and IL-6 levels in both blood and liver tissues. Similarly, cortisol level (in blood tissue) and Nrf-2 level (in liver tissue) increased with ferrocene application. In the ferrocen+borax group, the MDA level decreased 11 % at the end of the 96th hour compared to the 48th hour, and the Nrf2 level increased 9 %. In general, enzyme inhibitions in blood and liver tissues have shown that ferrocen-mediated toxicity occurs in induced ROS, DNA damage, apoptos activity, and BX applications have a positive effect on the correction of toxicity in the direction of hormesis. In a conclusion, the present study suggested that borax migt exhibite ameliorative potential against ferrocene-induced toxicity in O. mykiss blood and liver via regulating the ROS/TNF-alpha/Nrf-2 pathway.
C1 [Ozgeris, Fatma Betul] Ataturk Univ, Fac Hlth Sci, Dept Nutr & Dietet, Erzurum, Turkey.
[Yeltekin, Asli Cilingir] Yuzuncu Yil Univ, Fac Sci, Dept Chem, Van, Turkey.
[Ucar, Arzu; Atamanalp, Muhammed] Ataturk Univ, Fac Fisheries, Dept Aquaculture, Erzurum, Turkey.
[Caglar, Ozge; Arslan, Mehmet Enes] Erzurum Tech Univ, Fac Sci, Dept Mol Biol & Genet, Erzurum, Turkey.
[Parlak, Veysel] Ataturk Univ, Fac Fisheries, Dept Basic Sci, Erzurum, Turkey.
[Turkez, Hasan] Ataturk Univ, Fac Med, Dept Basic Med Sci, Erzurum, Turkey.
[Alak, Gonca] Ataturk Univ, Fac Fisheries, Dept Seafood Proc Technol, Erzurum, Turkey.
C3 Ataturk University; Yuzuncu Yil University; Ataturk University; Erzurum
Technical University; Ataturk University; Ataturk University; Ataturk
University
RP Atamanalp, M (corresponding author), Ataturk Univ, Fac Fisheries, Dept Aquaculture, Erzurum, Turkey.; Alak, G (corresponding author), Ataturk Univ, Fac Fisheries, Dept Seafood Proc Technol, Erzurum, Turkey.
EM mataman@atauni.edu.tr; galak@atauni.edu.tr
RI ARSLAN, MEHMET ENES/I-5823-2014
OI ARSLAN, MEHMET ENES/0000-0002-1600-2305
CR Aderibigbe B.A., 2017, NANO MICROSCALE DRUG, P33
Alak G, 2020, ENVIRON TOXICOL PHAR, V80, DOI 10.1016/j.etap.2020.103496
Alak G, 2021, BIOL TRACE ELEM RES, V199, P1092, DOI 10.1007/s12011-020-02231-7
Alak G, 2020, TURK J FISH AQUAT SC, V20, P593, DOI 10.4194/1303-2712-v20_8_02
Alak G, 2019, BIOL TRACE ELEM RES, V191, P495, DOI 10.1007/s12011-018-1622-5
Alak G, 2019, COMP BIOCHEM PHYS C, V216, P82, DOI 10.1016/j.cbpc.2018.10.005
Alak G, 2018, FISH PHYSIOL BIOCHEM, V44, P1409, DOI 10.1007/s10695-018-0530-0
Alak G, 2019, BIOL TRACE ELEM RES, V187, P536, DOI 10.1007/s12011-018-1399-6
Arsova-Sarafinovska Z, 2009, INT UROL NEPHROL, V41, P63, DOI 10.1007/s11255-008-9407-y
Atamanalp M, 2021, TOXICOL MECH METHOD, V31, P224, DOI 10.1080/15376516.2021.1871794
BEUTLER E, 1963, EXPERIENTIA, V19, P96, DOI 10.1007/BF02148042
Bojarski B, 2020, ENVIRON SCI POLLUT R, V27, P19236, DOI 10.1007/s11356-020-08248-8
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Bub CB, 2019, EXPERT REV MOL DIAGN, V19, P777, DOI 10.1080/14737159.2019.1656529
Calder PC, 2013, P NUTR SOC, V72, P299, DOI 10.1017/S0029665113001286
Comba B, 2016, KAFKAS UNIV VET FAK, V22, P539, DOI 10.9775/kvfd.2016.15001
Corredor-Santamaria W, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-1753-0
ECHA, 2021, FERR REG DOSS
Eriksson ANM, 2022, AQUAT TOXICOL, V244, DOI 10.1016/j.aquatox.2022.106083
Eskin A., 2017, NEVSEHIR BILIM VE TE, V6, P457
Fazio F, 2019, AQUACULTURE, V500, P237, DOI 10.1016/j.aquaculture.2018.10.030
Federici G, 2007, AQUAT TOXICOL, V84, P415, DOI 10.1016/j.aquatox.2007.07.009
FINNEY DJ, 1948, BIOMETRIKA, V35, P191, DOI 10.2307/2332639
Fouda MFR, 2007, APPL ORGANOMET CHEM, V21, P613, DOI 10.1002/aoc.1202
Ganz T, 2005, BEST PRACT RES CL HA, V18, P171, DOI 10.1016/j.beha.2004.08.020
Gulsoy N, 2015, EXCLI J, V14, P890, DOI 10.17179/excli2015-404
Habte-Tsion HM, 2020, COMP BIOCHEM PHYS B, V241, DOI 10.1016/j.cbpb.2019.110389
Harikrishnan R, 2012, EXP PARASITOL, V131, P116, DOI 10.1016/j.exppara.2012.03.020
Hassan AT, 2020, ENVIRON POLLUT, V267, DOI 10.1016/j.envpol.2020.115625
Hassan M.S., 2021, ANN AGR SCI MOSHTOHO, V59, P81, DOI [10.21608/ASSJM.2021.183663, DOI 10.21608/ASSJM.2021.183663]
Hedayati A, 2014, FISH PHYSIOL BIOCHEM, V40, P715, DOI 10.1007/s10695-013-9878-3
Hottin A, 2012, ORG BIOMOL CHEM, V10, P5592, DOI 10.1039/c2ob25727k
Hu YQ, 2017, EUR J MED CHEM, V139, P22, DOI 10.1016/j.ejmech.2017.07.061
Kuru R, 2017, CLIN EXP HEALTH SCI, V7, P107, DOI 10.5152/clinexphealthsci.2017.314
Kuzu M, 2021, ENVIRON SCI POLLUT R, V28, P10818, DOI 10.1007/s11356-020-11327-5
Loewengart G, 2001, ENVIRON TOXICOL CHEM, V20, P796, DOI 10.1002/etc.5620200415
Pawa S, 2006, CHEM-BIOL INTERACT, V160, P89, DOI 10.1016/j.cbi.2005.12.002
Peter S, 2019, MOLECULES, V24, DOI 10.3390/molecules24193604
Sakai M, 2021, FISHERIES SCI, V87, P1, DOI 10.1007/s12562-020-01476-4
Saravanan M, 2012, ENVIRON TOXICOL PHAR, V34, P14, DOI 10.1016/j.etap.2012.02.005
Sengul E, 2021, BIOL TRACE ELEM RES, V199, P173, DOI 10.1007/s12011-020-02111-0
Topal A, 2017, CHEMOSPHERE, V175, P186, DOI 10.1016/j.chemosphere.2017.02.047
Topal A, 2016, J APPL ANIM RES, V44, P297, DOI 10.1080/09712119.2015.1031784
Turkez H, 2021, NEUROCHEM INT, V149, DOI 10.1016/j.neuint.2021.105137
Turkez H, 2011, TURK J BIOL, V35, P293, DOI 10.3906/biy-0902-11
Ucar A, 2021, IN VITRO CELL DEV-AN, V57, P17, DOI 10.1007/s11626-020-00541-7
Ucar A, 2021, TOXICOL MECH METHOD, V31, P73, DOI 10.1080/15376516.2020.1831122
Ucar A, 2020, IN VITRO CELL DEV-AN, V56, P543, DOI 10.1007/s11626-020-00480-3
Ullah Inam, 2018, Cureus, V10, pe3376, DOI 10.7759/cureus.3376
Uzun M., 2019, VAN TIP DERG, V26, P289, DOI 10.5505/vtd.2019.32815
Santos SW, 2021, ENVIRON TOXICOL CHEM, V40, P3092, DOI 10.1002/etc.5183
Yamada T, 2000, J CLIN ENDOCR METAB, V85, P2775, DOI 10.1210/jc.85.8.2775
Yang YF, 2021, GERIATR ORTHOP SURG, V12, DOI 10.1177/2151459321998614
Yuan J, 2018, J SURG RES, V228, P238, DOI 10.1016/j.jss.2018.03.024
Yurdakul G., 2013, KOCATEPE VET J, V6, P13, DOI 10.5578/kvj.6402
NR 55
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0957-5820
EI 1744-3598
J9 PROCESS SAF ENVIRON
JI Process Saf. Environ. Protect.
PD JAN
PY 2023
VL 169
BP 636
EP 645
DI 10.1016/j.psep.2022.11.052
PG 10
WC Engineering, Environmental; Engineering, Chemical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA 6W3MR
UT WOS:000895635800009
OA Bronze
DA 2023-03-13
ER
PT J
AU Beaudin, AE
Waltz, X
Hanly, PJ
Poulin, MJ
AF Beaudin, Andrew E.
Waltz, Xavier
Hanly, Patrick J.
Poulin, Marc J.
TI Impact of obstructive sleep apnoea and intermittent hypoxia on
cardiovascular and cerebrovascular regulation
SO EXPERIMENTAL PHYSIOLOGY
LA English
DT Review
DE cerebral blood flow; endothelial function; hormesis; mortality; vascular
reactivity
ID POSITIVE AIRWAY PRESSURE; SYMPATHETIC-NERVE ACTIVITY; VASCULAR
ENDOTHELIAL FUNCTION; ARTERIAL-BLOOD PRESSURE; CROSSTALK OPPOSING VIEW;
CORONARY-HEART-DISEASE; ALL-CAUSE MORTALITY; ISOCAPNIC-HYPOXIA;
RISK-FACTOR; CEREBRAL AUTOREGULATION
AB New Findings
What is the topic of this review?
This review examines the notion that obstructive sleep apnoea (OSA) and intermittent hypoxia (IH) have hormetic effects on vascular health.
What advances does it highlight?
Clinical (OSA patient) and experimental animal and human models report that IH is detrimental to vascular regulation. However, mild IH and, by extension, mild OSA also have physiological and clinical benefits. This review highlights clinical and experimental animal and human data linking OSA and IH to vascular disease and discusses how hormetic effects of OSA and IH relate to OSA severity, IH intensity and duration, and patient/subject age.
Obstructive sleep apnoea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease, a consequence attributed in part to chronic intermittent hypoxia (IH) resulting from repetitive apnoeas during sleep. Although findings from experimental animal, and human, models have shown that IH is detrimental to vascular regulation, the severity of IH used in many of these animal studies [e.g. inspired fraction of oxygen (F-I,F-O2)=2-3%; oxygen desaturation index = 120 events h(-1)] is considerably greater than that observed in the majority of patients with OSA. This may also explain disparities between animal and recently developed human models of IH, where IH severity is, by necessity, less severe (e.g. F-I,F-O2 = 10-12%; oxygen desaturation index = 15-30 events h(-1)). In this review, we highlight the current knowledge regarding the impact of OSA and IH on cardiovascular and cerebrovascular regulation. In addition, we critically discuss the recent notion that OSA and IH may have hormetic effects on vascular health depending on conditions such as OSA severity, IH intensity and duration, and age. In general, data support an independent causal link between OSA and vascular disease, particularly for patients with severe OSA. However, the data are equivocal for older OSA patients and patients with mild OSA, because advanced age and short-duration, low-intensity IH have been reported to provide a degree of protection against IH and ischaemic events such as myocardial infarction and stroke, respectively. Overall, additional studies are needed to investigate the beneficial/detrimental effects of mild OSA on the various vascular beds.
C1 [Beaudin, Andrew E.; Waltz, Xavier; Poulin, Marc J.] Univ Calgary, Cumming Sch Med, Dept Physiol & Pharmacol, Calgary, AB, Canada.
[Beaudin, Andrew E.; Waltz, Xavier; Hanly, Patrick J.; Poulin, Marc J.] Univ Calgary, Hotchkiss Brain Inst, Cumming Sch Med, Calgary, AB, Canada.
[Waltz, Xavier] Univ Grenoble Alpes, Lab HP2, INSERM, U1042, Grenoble, France.
[Hanly, Patrick J.] Univ Calgary, Cumming Sch Med, Dept Med, Calgary, AB, Canada.
[Hanly, Patrick J.] Foothills Med Ctr, Sleep Ctr, Calgary, AB, Canada.
[Poulin, Marc J.] Univ Calgary, Libin Cardiovasc Inst Alberta, Cumming Sch Med, Calgary, AB, Canada.
[Poulin, Marc J.] Univ Calgary, Cumming Sch Med, Dept Clin Neurosci, Calgary, AB, Canada.
[Poulin, Marc J.] Univ Calgary, Fac Kinesiol, Calgary, AB, Canada.
C3 University of Calgary; University of Calgary; Communaute Universite
Grenoble Alpes; UDICE-French Research Universities; Universite Grenoble
Alpes (UGA); Institut National de la Sante et de la Recherche Medicale
(Inserm); University of Calgary; University of Calgary; Libin
Cardiovascular Institute Of Alberta; University of Calgary; University
of Calgary; University of Calgary
RP Poulin, MJ (corresponding author), Univ Calgary, Hotchkiss Brain Inst, Cumming Sch Med, Dept Physiol & Pharmacol, Heritage Med Res Bldg Room 210,3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada.
EM poulin@ucalgary.ca
RI WALTZ, Xavier/M-3606-2016; Beaudin, Andrew E./G-1505-2010
OI WALTZ, Xavier/0000-0002-0838-290X; Beaudin, Andrew
E./0000-0002-3295-7232
FU Alberta Innovates-Health Solutions (AI-HS) doctoral fellowship; Canadian
Institutes of Health Research (CIHR)-Heart and Stroke Foundation of
Canada (HSFC) Focus on Stroke doctoral fellowship, a William H. Davies
Medical Research Scholarship (University of Calgary); Osten-Victor
Graduate Scholarship in Cardiology (University of Calgary); Hotchkiss
Brain Institute (HBI), an AI-HS postgraduate fellowship program, a CIHR
postdoctoral fellowship; European Respiratory Society; Societe de
Pneumologie de Langue Francaise; CIHR; HSFC; Natural Sciences and
Engineering Research Council of Canada; Sleep Research Program, Cumming
School of Medicine, University of Calgary; Alberta Innovates [201400505]
Funding Source: researchfish
FX A.E.B. was supported by an Alberta Innovates-Health Solutions (AI-HS)
doctoral fellowship, the Canadian Institutes of Health Research
(CIHR)-Heart and Stroke Foundation of Canada (HSFC) Focus on Stroke
doctoral fellowship, a William H. Davies Medical Research Scholarship
(University of Calgary), and the Osten-Victor Graduate Scholarship in
Cardiology (University of Calgary). X.W. received support from a
Hotchkiss Brain Institute (HBI) postdoctoral fellowship, an AI-HS
postgraduate fellowship program, a CIHR postdoctoral fellowship, and a
postdoctoral fellowship from the European Respiratory Society and the
'Societe de Pneumologie de Langue Francaise'. Funding for the authors'
work investigating the impact of OSA and IH on vascular regulation is
provided by a CIHR operating grant (principal investigator, M.J.P.;
co-applicant, P.J.H.), an HSFC grant-in-aid (principal investigator,
M.J.P.; co-applicant, P.J.H.), a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada (principal
investigator, M.J.P.) and Sleep Research Program, Cumming School of
Medicine, University of Calgary. M.J.P. holds The Brenda Strafford
Foundation Chair in Alzheimer Research.
CR Arzt M, 2005, AM J RESP CRIT CARE, V172, P1447, DOI 10.1164/rccm.200505-702OC
Baguet JP, 2006, J HYPERTENS, V24, P205, DOI 10.1097/01.hjh.0000198039.39504.63
Beguin PC, 2005, J APPL PHYSIOL, V99, P1064, DOI 10.1152/japplphysiol.00056.2005
Berry RB, 2015, AASM MANUAL SCORING
Burtscher M, 2004, INT J CARDIOL, V96, P247, DOI 10.1016/j.ijcard.2003.07.021
Campos-Rodriguez F, 2014, AM J RESP CRIT CARE, V189, P1544, DOI 10.1164/rccm.201311-2012OC
Cano-Pumarega I, 2011, AM J RESP CRIT CARE, V184, P1299, DOI 10.1164/rccm.201101-0130OC
Carlson JT, 1996, J HYPERTENS, V14, P577, DOI 10.1097/00004872-199605000-00006
Cho ER, 2013, J SLEEP RES, V22, P452, DOI 10.1111/jsr.12034
Chobanian AV, 2003, HYPERTENSION, V42, P1206, DOI 10.1161/01.HYP.0000107251.49515.c2
Navarro RC, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-1691-x
Craig SE, 2012, THORAX, V67, P1090, DOI 10.1136/thoraxjnl-2012-202178
Cross MD, 2008, THORAX, V63, P578, DOI 10.1136/thx.2007.081877
Cutler MJ, 2004, J APPL PHYSIOL, V96, P754, DOI 10.1152/japplphysiol.00506.2003
Dempsey JA, 2010, PHYSIOL REV, V90, P47, DOI 10.1152/physrev.00043.2008
DIMSDALE JE, 1995, SLEEP, V18, P377
Diomedi M, 1998, NEUROLOGY, V51, P1051, DOI 10.1212/WNL.51.4.1051
Duchna Hans-W, 2005, Sleep Breath, V9, P97, DOI 10.1007/s11325-005-0024-z
Fatouleh RH, 2014, NEUROIMAGE-CLIN, V6, P275, DOI 10.1016/j.nicl.2014.08.021
Fava C, 2014, CHEST, V145, P762, DOI 10.1378/chest.13-1115
Flammer AJ, 2012, CIRCULATION, V126, P753, DOI 10.1161/CIRCULATIONAHA.112.093245
FLETCHER EC, 1992, HYPERTENSION, V19, P555, DOI 10.1161/01.HYP.19.6.555
FLETCHER EC, 1992, J APPL PHYSIOL, V72, P1978, DOI 10.1152/jappl.1992.72.5.1978
FLETCHER EC, 1987, SLEEP, V10, P35, DOI 10.1093/sleep/10.1.35
FLETCHER EC, 1992, HYPERTENSION, V20, P612, DOI 10.1161/01.HYP.20.5.612
Foster GE, 2005, J PHYSIOL-LONDON, V567, P689, DOI 10.1113/jphysiol.2005.091462
Foster GE, 2008, ADV EXP MED BIOL, V605, P463
Foster GE, 2007, AM J RESP CRIT CARE, V175, P720, DOI 10.1164/rccm.200609-1271OC
Foster GE, 2007, EXP PHYSIOL, V92, P51, DOI 10.1113/expphysiol.2006.035204
Foster GE, 2010, HYPERTENSION, V56, P369, DOI 10.1161/HYPERTENSIONAHA.110.152108
Foster GE, 2009, J PHYSIOL-LONDON, V587, P3287, DOI 10.1113/jphysiol.2009.171553
Foster GE, 2009, RESP PHYSIOL NEUROBI, V165, P73, DOI 10.1016/j.resp.2008.10.011
Gami AS, 2005, NEW ENGL J MED, V352, P1206, DOI 10.1056/NEJMoa041832
Gay P, 2006, SLEEP, V29, P381, DOI 10.1093/sleep/29.3.381
Gilmartin GS, 2010, AM J PHYSIOL-HEART C, V299, pH925, DOI 10.1152/ajpheart.00253.2009
Gottlieb DJ, 2014, NEW ENGL J MED, V370, P2276, DOI 10.1056/NEJMoa1306766
Gottlieb DJ, 2010, CIRCULATION, V122, P352, DOI 10.1161/CIRCULATIONAHA.109.901801
Gozal D, 2003, EUR J NEUROSCI, V18, P2335, DOI 10.1046/j.1460-9568.2003.02947.x
Gozal D, 2013, J PHYSIOL-LONDON, V591, P379, DOI 10.1113/jphysiol.2012.241216
Greenberg HE, 1999, J APPL PHYSIOL, V86, P298, DOI 10.1152/jappl.1999.86.1.298
Grote L, 2000, J HYPERTENS, V18, P679, DOI 10.1097/00004872-200018060-00004
Hall CN, 2014, NATURE, V508, P55, DOI 10.1038/nature13165
Hausenloy DJ, 2015, NEW ENGL J MED, V373, P1408, DOI 10.1056/NEJMoa1413534
HE J, 1988, CHEST, V94, P9, DOI 10.1378/chest.94.1.9
HEDNER JA, 1992, AM REV RESPIR DIS, V146, P1240, DOI 10.1164/ajrccm/146.5_Pt_1.1240
Henderson LA, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00090
Huang JH, 2009, RESP PHYSIOL NEUROBI, V166, P102, DOI 10.1016/j.resp.2009.02.010
HUNG J, 1990, LANCET, V336, P261, DOI 10.1016/0140-6736(90)91799-G
Imadojemu VA, 2007, CHEST, V131, P1406, DOI 10.1378/chest.06-2580
Ip MSM, 2004, AM J RESP CRIT CARE, V169, P348, DOI 10.1164/rccm.200306-767OC
Jackman KA, 2014, STROKE, V45, P1460, DOI 10.1161/STROKEAHA.114.004816
Julien C, 2003, RESP PHYSIOL NEUROBI, V139, P21, DOI 10.1016/j.resp.2003.09.005
Kato M, 2000, CIRCULATION, V102, P2607
Kent BD, 2013, EUR RESPIR J, V42, P1263, DOI 10.1183/09031936.00094812
Khalyfa A, 2016, SLEEP, V39, P2077, DOI 10.5665/sleep.6302
Khot SP, 2016, J CLIN SLEEP MED, V12, P1019, DOI 10.5664/jcsm.5940
Kohler M, 2012, J PHYSIOL-LONDON, V590, P2813, DOI 10.1113/jphysiol.2012.229633
Koller A, 2012, J VASC RES, V49, P375, DOI 10.1159/000338747
Kraiczi H, 2001, CHEST, V119, P1085, DOI 10.1378/chest.119.4.1085
Kwon Y, 2014, J AM HEART ASSOC, V3, DOI 10.1161/JAHA.114.001241
Larsson BW, 2008, RESPIRATION, V76, P21, DOI 10.1159/000126492
Lattimore JL, 2006, THORAX, V61, P491, DOI 10.1136/thx.2004.039164
Lavie L, 2006, MED HYPOTHESES, V66, P1069, DOI 10.1016/j.mehy.2005.10.033
Lavie L, 2012, J PHYSIOL-LONDON, V590, P2817, DOI 10.1113/jphysiol.2012.233833
Lavie P, 2000, BRIT MED J, V320, P479, DOI 10.1136/bmj.320.7233.479
Lavie P, 2007, EUR RESPIR REV, V16, P203, DOI 10.1183/09059180.00010610
Lavie P, 2005, EUR RESPIR J, V25, P514, DOI 10.1183/09031936.05.00051504
Lefebvre B, 2006, RESP PHYSIOL NEUROBI, V150, P278, DOI 10.1016/j.resp.2005.05.020
Lesske J, 1997, J HYPERTENS, V15, P1593
LEUENBERGER U, 1995, J APPL PHYSIOL, V79, P581, DOI 10.1152/jappl.1995.79.2.581
Leuenberger UA, 1996, CIRCULATION, V94, P1
Leuenberger UA, 2007, J APPL PHYSIOL, V103, P835, DOI 10.1152/japplphysiol.00036.2007
Levy P, 2011, EUR RESPIR REV, V20, P134, DOI 10.1183/09059180.00003111
Lewington S, 2002, LANCET, V360, P1903, DOI 10.1016/S0140-6736(02)11911-8
Lundblad LC, 2015, J NEUROPHYSIOL, V114, P893, DOI 10.1152/jn.00092.2015
Lyamina NP, 2011, J HYPERTENS, V29, P2265, DOI 10.1097/HJH.0b013e32834b5846
Marcus NJ, 2010, RESP PHYSIOL NEUROBI, V171, P36, DOI 10.1016/j.resp.2010.02.003
Marin JM, 2005, LANCET, V365, P1046, DOI 10.1016/S0140-6736(05)71141-7
Marin JM, 2012, JAMA-J AM MED ASSOC, V307, P2169, DOI 10.1001/jama.2012.3418
MARRONE O, 1993, CHEST, V103, P722, DOI 10.1378/chest.103.3.722
Marshall NS, 2014, J CLIN SLEEP MED, V10, P355, DOI 10.5664/jcsm.3600
Mateika JH, 2015, J APPL PHYSIOL, V118, P520, DOI 10.1152/japplphysiol.00564.2014
McEvoy RD, 2016, NEW ENGL J MED, V375, P919, DOI 10.1056/NEJMoa1606599
Meadows GE, 2005, STROKE, V36, P2367, DOI 10.1161/01.STR.0000185923.49484.0f
Meadows GE, 2004, J APPL PHYSIOL, V97, P1343, DOI 10.1152/japplphysiol.01101.2003
Meadows GE, 2003, J APPL PHYSIOL, V94, P2197, DOI 10.1152/japplphysiol.00606.2002
Mehra R, 2006, AM J RESP CRIT CARE, V173, P910, DOI 10.1164/rccm.200509-1442OC
Moradkhan R, 2010, J APPL PHYSIOL, V108, P1234, DOI 10.1152/japplphysiol.90855.2008
Morgan BJ, 2010, AM J RESP CRIT CARE, V182, P1445, DOI 10.1164/rccm.201002-0313OC
Munoz R, 2006, STROKE, V37, P2317, DOI 10.1161/01.STR.0000236560.15735.0f
Narkiewicz K, 1999, CIRCULATION, V99, P1183, DOI 10.1161/01.CIR.99.9.1183
Narkiewicz K, 1998, CIRCULATION, V98, P772, DOI 10.1161/01.CIR.98.8.772
Narkiewicz K, 1999, CIRCULATION, V100, P2332, DOI 10.1161/01.CIR.100.23.2332
Nasr N, 2009, EUR J NEUROL, V16, P386, DOI 10.1111/j.1468-1331.2008.02505.x
Nieto FJ, 2004, AM J RESP CRIT CARE, V169, P354, DOI 10.1164/rccm.200306-756OC
Nieto FJ, 2000, JAMA-J AM MED ASSOC, V283, P1829, DOI 10.1001/jama.283.14.1829
O'Connor GT, 2009, AM J RESP CRIT CARE, V179, P1159, DOI 10.1164/rccm.200712-1809OC
Patel SK, 2015, J CLIN SLEEP MED, V11, P1417, DOI 10.5664/jcsm.5278
Peker Y, 1999, EUR RESPIR J, V14, P179, DOI 10.1034/j.1399-3003.1999.14a30.x
Peppard PE, 2000, NEW ENGL J MED, V342, P1378, DOI 10.1056/NEJM200005113421901
Phillips SA, 2004, AM J PHYSIOL-HEART C, V286, pH388, DOI 10.1152/ajpheart.00683.2003
Placidi F, 1998, J SLEEP RES, V7, P288, DOI 10.1046/j.1365-2869.1998.00120.x
Prilipko O, 2014, SLEEP MED, V15, P892, DOI 10.1016/j.sleep.2014.04.004
Przybylowski T, 2003, J PHYSIOL-LONDON, V548, P323, DOI 10.1113/jphysiol.2002.029678
Punjabi NM, 2008, AM J RESP CRIT CARE, V177, P1150, DOI 10.1164/rccm.200712-1884OC
Querido JS, 2015, AEROSP MED HUM PERF, V86, P782, DOI 10.3357/AMHP.4192.2015
Quintero M, 2016, J PHYSIOL-LONDON, V594, P1773, DOI 10.1113/JP270878
Redline S, 2010, AM J RESP CRIT CARE, V182, P269, DOI 10.1164/rccm.200911-1746OC
Reichmuth KJ, 2009, AM J RESP CRIT CARE, V180, P1143, DOI 10.1164/rccm.200903-0393OC
Remsburg S, 1999, J APPL PHYSIOL, V87, P1148, DOI 10.1152/jappl.1999.87.3.1148
Rosenzweig I, 2015, LANCET RESP MED, V3, P404, DOI 10.1016/S2213-2600(15)00090-9
Rosenzweig I, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083173
Rosenzweig I, 2013, J PHYSIOL-LONDON, V591, P383, DOI 10.1113/jphysiol.2012.241224
Ryan CM, 2014, RESP PHYSIOL NEUROBI, V190, P47, DOI 10.1016/j.resp.2013.09.003
Ryan CM, 2011, STROKE, V42, P1062, DOI 10.1161/STROKEAHA.110.597468
Senaratna CV, 2016, SLEEP MED R IN PRESS
Serebrovskaya TV, 2008, EXP BIOL MED, V233, P627, DOI 10.3181/0710-MR-267
SIEBLER M, 1993, CHEST, V103, P1118, DOI 10.1378/chest.103.4.1118
Smith ML, 2007, EXP PHYSIOL, V92, P45, DOI 10.1113/expphysiol.2006.033753
Somers VK, 2008, J AM COLL CARDIOL, V52, P686, DOI 10.1016/j.jacc.2008.05.002
SOMERS VK, 1995, J CLIN INVEST, V96, P1897, DOI 10.1172/JCI118235
Tahawi Z, 2001, J APPL PHYSIOL, V90, P2007, DOI 10.1152/jappl.2001.90.5.2007
Tamisier R, 2011, EUR RESPIR J, V37, P119, DOI 10.1183/09031936.00204209
Tamisier R, 2009, J APPL PHYSIOL, V107, P17, DOI 10.1152/japplphysiol.91165.2008
Tremblay JC, 2016, AM J PHYSIOL-HEART C, V311, pH699, DOI 10.1152/ajpheart.00388.2016
Tsai YW, 2013, J CEREBR BLOOD F MET, V33, P764, DOI 10.1038/jcbfm.2013.15
Tsai YW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024001
Urbano F, 2008, J APPL PHYSIOL, V105, P1852, DOI 10.1152/japplphysiol.90900.2008
Verges S, 2015, FRONT PEDIATR, V3, DOI 10.3389/fped.2015.00058
Vienne J, 2016, SLEEP, V39, P1613, DOI 10.5665/sleep.6032
Wahlin-Larsson B, 2009, MUSCLE NERVE, V40, P556, DOI 10.1002/mus.21357
Waltz X, 2016, J PHYSIOL-LONDON, V594, P7089, DOI 10.1113/JP272967
Xie AL, 2000, J APPL PHYSIOL, V89, P1333, DOI 10.1152/jappl.2000.89.4.1333
Yaggi HK, 2005, NEW ENGL J MED, V353, P2034, DOI 10.1056/NEJMoa043104
ZEPELIN H, 1984, J GERONTOL, V39, P294, DOI 10.1093/geronj/39.3.294
Zhang PZ, 2015, EXP BIOL MED, V240, P961, DOI 10.1177/1535370214562339
Ziegler MG, 1995, SLEEP, V18, P859
NR 137
TC 52
Z9 52
U1 1
U2 14
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0958-0670
EI 1469-445X
J9 EXP PHYSIOL
JI Exp. Physiol.
PD JUN 1
PY 2017
VL 102
IS 7
BP 743
EP 763
DI 10.1113/EP086051
PG 21
WC Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physiology
GA EZ3YS
UT WOS:000404648000001
PM 28439921
DA 2023-03-13
ER
PT J
AU Rietjens, IMCM
Alink, GM
AF Rietjens, Ivonne M. C. M.
Alink, Gerrit M.
TI Future of toxicologys - Low-dose toxicology and risk - Benefit analysis
SO CHEMICAL RESEARCH IN TOXICOLOGY
LA English
DT Article
ID OMEGA-6 FATTY-ACIDS; FISH-OIL; CELL-PROLIFERATION; TUMOR-GROWTH;
QUERCETIN; HORMESIS; CANCER; SUPPRESSION; FLAVONOIDS; ACRYLAMIDE
AB Toxicology historically has been directed at studying the mechanisms of adverse effects of isolated compounds on living organisms at high levels of exposure, forming the basis for risk and safety assessment. One way to refocus and mobilize new research funds would be to better match the priorities in regulatory issues and direct the research within the field of toxicology more to low-dose toxicology and risk-benefit analysis. Low-dose toxicology can only be developed when taking into account mechanistic insight and will require risk-benefit analysis and a definition of interactions between compounds at realistic doses of exposure, especially in the case of dietary constituents. This is because the biological effects at low levels of exposure not only may be adverse but also can be beneficial depending on the target organ, the actual end point studied, the receptors activated, and/or the gene expression, protein, and metabolite patterns affected. Toxicologists have the tools and knowledge to study mechanisms of biological effects of chemicals on living organisms, and they should redirect their focus from looking only at adverse effects at high levels of exposure to characterizing the complex biological effects, both adverse and beneficial, at low levels of exposure. This may even result in the notion that beneficial effects can be the result of reaction pathways that are generally considered adverse and vice versa. Low-dose toxicology not only will provide a significant research challenge for the years ahead but also should contribute to better methods for low-dose risk assessment for complex mixtures of chemical compounds. This refocusing from high- to low-dose effects turns the field from a science focusing on adverse effects into a science studying the biological effects of chemical compounds on living organisms, taking into account the realization that the ultimate biological effect of a chemical may vary with its dose, the end point or target organ considered, and/or the combined exposure with other chemicals. By defining the effects of chemicals on living organisms at physiologically relevant exposure levels, toxicologists may contribute not only to better risk and safety assessment but also to preventive medicine, generating knowledge on possible adverse and also beneficial effects of chemicals. In addition, it will result in an approach for food safety assessment more in line with that for drug safety assessment taking the risk-benefit balance into consideration.
C1 Univ Wageningen & Res Ctr, Div Toxicol, NL-6703 HE Wageningen, Netherlands.
C3 Wageningen University & Research
RP Rietjens, IMCM (corresponding author), Univ Wageningen & Res Ctr, Div Toxicol, Tuinlaan 5, NL-6703 HE Wageningen, Netherlands.
OI Rietjens, Ivonne/0000-0003-1894-3544
CR Andersen ME, 2005, ADV EXP MED BIOL, V561, P117
Arts ICW, 2005, AM J CLIN NUTR, V81, p317S, DOI 10.1093/ajcn/81.1.317S
Blitzer A, 1986, Laryngoscope, V96, P1300
BRIN MF, 1989, MOVEMENT DISORD, V4, P287, DOI 10.1002/mds.870040401
Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222
Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007
Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223
Cognault S, 2000, NUTR CANCER, V36, P33, DOI 10.1207/S15327914NC3601_6
*COMM CARC CHEM FO, 2004, GUID STRAT RISK ASS
Dinkova-Kostova AT, 2005, CHEM RES TOXICOL, V18, P1779, DOI 10.1021/tx050217c
Dommels YEM, 2003, FOOD CHEM TOXICOL, V41, P1739, DOI 10.1016/S0278-6915(03)00201-1
Dybing E, 2005, FOOD CHEM TOXICOL, V43, P365, DOI 10.1016/j.fct.2004.11.004
European Food Safety Authority (EFSA), 2005, EFSA J, V3, P282, DOI [10.2903/j.efsa.2005.282, DOI 10.2903/J.EFSA.2005.282]
Galati G, 2001, FREE RADICAL BIO MED, V30, P370, DOI 10.1016/S0891-5849(00)00481-0
Geleijnse JM, 2002, AM J CLIN NUTR, V75, P880, DOI 10.1093/ajcn/75.5.880
Giovannucci E, 1997, AM J CLIN NUTR, V66, P1564
Griffiths CW, 2002, RISK ANAL, V22, P679, DOI 10.1111/0272-4332.00060
HERTOG MGL, 1993, NUTR CANCER, V20, P21, DOI 10.1080/01635589309514267
HOEL DG, 1994, ENVIRON HEALTH PERSP, V102, P109, DOI 10.1289/ehp.94102s1109
Kirman CR, 2003, J TOXICOL ENV HEAL A, V66, P253, DOI 10.1080/15287390306368
Knekt P, 1997, AM J EPIDEMIOL, V146, P223, DOI 10.1093/oxfordjournals.aje.a009257
Levonen AL, 2004, BIOCHEM J, V378, P373, DOI 10.1042/BJ20031049
Narbone MC, 2004, NEUROL SCI, V25, pS113, DOI 10.1007/s10072-004-0266-8
REDDY BS, 1991, CANCER RES, V51, P487
REDDY BS, 1992, LIPIDS, V27, P807, DOI 10.1007/BF02535855
REDDY BS, 1988, CANCER RES, V48, P6642
Sanner T, 2001, PHARMACOL TOXICOL, V88, P331
Schutte ME, 2006, CANCER LETT, V231, P36, DOI 10.1016/j.canlet.2005.01.020
Takahashi M, 1997, CARCINOGENESIS, V18, P1337, DOI 10.1093/carcin/18.7.1337
Tjalkens RB, 1998, ARCH BIOCHEM BIOPHYS, V359, P42, DOI 10.1006/abbi.1998.0895
USEPA, 1996, FED REGISTER, V61, P17960
Van den Berg M, 1998, ENVIRON HEALTH PERSP, V106, P775, DOI 10.1289/ehp.98106775
van der Woude H, 2005, CHEM RES TOXICOL, V18, P1907, DOI 10.1021/tx050201m
van der Woude H, 2005, MOL NUTR FOOD RES, V49, P763, DOI 10.1002/mnfr.200500036
van der Woude H, 2003, CANCER LETT, V200, P41, DOI 10.1016/S0304-3835(03)00412-9
Walle T, 2003, BIOCHEM PHARMACOL, V65, P1603, DOI 10.1016/S0006-2952(03)00151-5
West JD, 2005, CHEM RES TOXICOL, V18, P1642, DOI 10.1021/tx050211n
Yam D, 2001, CANCER CHEMOTH PHARM, V47, P34, DOI 10.1007/s002800000205
Zoete V, 2004, FREE RADICAL BIO MED, V36, P1418, DOI 10.1016/j.freeradbiomed.2004.03.008
NR 39
TC 25
Z9 25
U1 0
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0893-228X
EI 1520-5010
J9 CHEM RES TOXICOL
JI Chem. Res. Toxicol.
PD AUG 21
PY 2006
VL 19
IS 8
BP 977
EP 981
DI 10.1021/tx0601051
PG 5
WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy; Chemistry; Toxicology
GA 075LS
UT WOS:000239887100001
PM 16918235
DA 2023-03-13
ER
PT J
AU Agathokleous, E
Kitao, M
Shi, C
Masui, N
Abu-ElEla, S
Hikino, K
Satoh, F
Koike, T
AF Agathokleous, Evgenios
Kitao, Mitsutoshi
Shi, Cong
Masui, Noboru
Abu-ElEla, Shahenda
Hikino, Kyohsuke
Satoh, Fuyuki
Koike, Takayoshi
TI Ethylenediurea (EDU) spray effects on willows (Salix sachalinensis F.
Schmid) grown in ambient or ozone-enriched air: implications for
renewable biomass production
SO JOURNAL OF FORESTRY RESEARCH
LA English
DT Article
DE Air pollution; Ethylenediurea (EDU); Hormesis; Plant protection;
Tropospheric ozone (O-3)
ID GROUND-LEVEL OZONE; TRITICUM-AESTIVUM L.; CARBON METABOLISM; ECOLOGICAL
STOICHIOMETRY; BIOENERGY PLANTATIONS; STAY-GREEN; PLANTS; O-3; EXPOSURE;
IMPACTS
AB Ground-level ozone (O-3) is a widespread air pollutant causing extensive injuries in plants. However, its effects on perennial energy crops remain poorly understood due to technical difficulties in cultivating fast-growing shrubs for biomass production under O-3 treatment on the field. Here we present the results of a two-year evaluation in the framework of which willow (Salix sachalinensis F. Schmid) shrubs were exposed to ambient (AOZ) or elevated (EOZ) O-3 in two successive growing seasons (2014, 2015) and treated with 0 (EDU0) or 400 mg L-1 (EDU400) ethylenediurea spray in the second growing season. In 2014, EOZ altered the chemical composition of both top young and fallen leaves, and a novel mechanism of decreasing Mg in fallen leaves while highly enriching it in young top leaves was revealed in shrubs exposed to EOZ. In 2015, EDU400 alleviated EOZ-induced decreases in leaf fresh mass to dry mass ratio (FM/DM) and leaf mass per area (LMA). While EDU400 protected against EOZ-induced suppression of the maximum rate at which leaves can fix carbon (A(max)) in O-3-asymptomatic leaves, it did not alleviate EOZ-induced suppression of the maximum rates of carboxylation (V-Cmax) and electron transport (J(max)) and chlorophylls a, b, and a + b in the same type of leaves. In O-3-symptomatic leaves, however, EDU400 alleviated EOZ-induced suppression of chlorophylls a and a + b, indicating different mode of action of EDU between O-3-asymptomatic and O-3-symptomatic leaves. Extensive herbivory occurred only in AOZ-exposed plants, leading to suppressed biomass production, while EOZ also led to a similar suppression of biomass production (EDU0 x EOZ vs. EDU400 x EOZ). In 2016, carry-over effects were also evaluated following cropping and transplantation into new ambient plots. Effects of EOZ in the preceding growing seasons extended to the third growing season in the form of suppressed ratoon biomass production, indicating carry-over effect of EOZ. Although EDU400 protected against EOZ-induced suppression of biomass production when applied in 2015, there was no carry-over effect of EDU in the absence of EDU treatment in 2016. The results of this study provide novel mechanistic understandings of O-3 and EDU modes of action and can enlighten cultivation of willow as energy crop.
C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Peoples R China.
[Agathokleous, Evgenios; Masui, Noboru; Hikino, Kyohsuke; Koike, Takayoshi] Hokkaido Univ, Sch Agr, Sapporo, Hokkaido 0608589, Japan.
[Agathokleous, Evgenios; Kitao, Mitsutoshi] Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan.
[Shi, Cong] Tiangong Univ, Sch Environm Sci & Engn, Tianjin 300387, Peoples R China.
[Abu-ElEla, Shahenda] Cairo Univ, Fac Sci, Dept Entomol, Giza 12613, Egypt.
[Hikino, Kyohsuke] Tech Univ Munich TUM, TUM Sch Life Sci, Hans Carl von Carlowitz Pl 2, D-85354 Freising Weihenstephan, Germany.
[Satoh, Fuyuki] Hokkaido Univ, Field Sci Ctr Northern Biosphere, Sapporo, Hokkaido 0600809, Japan.
[Koike, Takayoshi] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China.
C3 Nanjing University of Information Science & Technology; Hokkaido
University; Forestry & Forest Products Research Institute - Japan;
Tiangong University; Egyptian Knowledge Bank (EKB); Cairo University;
Technical University of Munich; Hokkaido University; Chinese Academy of
Sciences; Research Center for Eco-Environmental Sciences (RCEES)
RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Peoples R China.; Agathokleous, E (corresponding author), Hokkaido Univ, Sch Agr, Sapporo, Hokkaido 0608589, Japan.; Agathokleous, E (corresponding author), Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan.
EM evgenios@nuist.edu.cn
RI Abuelela, Shahenda/GSI-6653-2022; Agathokleous, Evgenios/D-2838-2016
OI Agathokleous, Evgenios/0000-0002-0058-4857; Hikino,
Kyohsuke/0000-0002-6981-3988
FU Japan's Forestry and Forest Products Research Institute (FFPRI)
[201802]; KAKENHI of the Japan Society for the Promotion of Science
(JSPS) [JP17F17102]; JSPS [P17102]
FX This research was partly supported by grant #201802 of the Japan's
Forestry and Forest Products Research Institute (FFPRI) and KAKENHI
grant #JP17F17102 of the Japan Society for the Promotion of Science
(JSPS). Evgenios Agathokleous was an International Research Fellow (ID
No: P17102) of the JSPS, and JSPS is a non-profit, independent
administrative institution.
CR Adegbidi HG, 2001, BIOMASS BIOENERG, V20, P399, DOI 10.1016/S0961-9534(01)00009-5
Agathokleous E, 2022, J FORESTRY RES, V33, P117, DOI 10.1007/s11676-021-01352-6
Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1
Agathokleous E, 2021, J FORESTRY RES, V32, P2047, DOI 10.1007/s11676-020-01223-6
Agathokleous E, 2020, SCI TOTAL ENVIRON, V703, DOI 10.1016/j.scitotenv.2019.134962
Agathokleous E, 2018, ENVIRON POLLUT, V238, P663, DOI 10.1016/j.envpol.2018.03.061
Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057
Agathokleous E, 2016, SCI TOTAL ENVIRON, V573, P1053, DOI 10.1016/j.scitotenv.2016.08.183
Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9
Agathokleous E, 2016, SCI TOTAL ENVIRON, V566, P841, DOI 10.1016/j.scitotenv.2016.05.122
Agathokleous E, 2015, J AGRIC METEOROL, V71, P185, DOI 10.2480/agrmet.D-14-00017
Akimoto H, 2015, ATMOS ENVIRON, V102, P302, DOI 10.1016/j.atmosenv.2014.12.001
Ashrafuzzaman M, 2018, PLANT CELL ENVIRON, V41, P2882, DOI 10.1111/pce.13423
BARNES JD, 1992, ENVIRON EXP BOT, V32, P85, DOI 10.1016/0098-8472(92)90034-Y
Bisigato AJ, 2015, ARTHROPOD-PLANT INTE, V9, P477, DOI 10.1007/s11829-015-9387-7
Blande James D., 2021, Current Opinion in Environmental Science & Health, V19, P100228, DOI 10.1016/j.coesh.2020.100228
CARNAHAN JE, 1978, PHYTOPATHOLOGY, V68, P1225, DOI 10.1094/Phyto-68-1225
Chaudhary IJ, 2021, ENVIRON TECHNOL INNO, V22, DOI 10.1016/j.eti.2021.101494
Cohen J., 1988, STAT POWER ANAL BEHA, V2nd ed.
Cotrozzi L, 2021, SCI TOTAL ENVIRON, V756, DOI 10.1016/j.scitotenv.2020.143795
Derstroff B, 2017, ATMOS CHEM PHYS, V17, P9547, DOI 10.5194/acp-17-9547-2017
Dimitriou I, 2011, QUANTIFYING ENV EFFE, P33
Dizengremel P, 2001, PLANT PHYSIOL BIOCH, V39, P729, DOI 10.1016/S0981-9428(01)01291-8
DIZENGREMEL P, 1994, J PLANT PHYSIOL, V144, P300, DOI 10.1016/S0176-1617(11)81191-0
EDWARDS NT, 1990, TREE PHYSIOL, V6, P95, DOI 10.1093/treephys/6.1.95
El Kasmioui O, 2012, BIOMASS BIOENERG, V43, P52, DOI 10.1016/j.biombioe.2012.04.006
Erickson LE, 2020, ENVIRON PROG SUSTAIN, V39, DOI 10.1002/ep.13484
Fabio ES, 2017, IND CROP PROD, V96, P57, DOI 10.1016/j.indcrop.2016.11.019
FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231
Fatima A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8040080
Fenech S, 2021, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.631280
Feng ZZ, 2008, GLOBAL CHANGE BIOL, V14, P2696, DOI 10.1111/j.1365-2486.2008.01673.x
Feng ZZ, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.104966
Feng ZZ, 2019, SCI TOTAL ENVIRON, V654, P832, DOI 10.1016/j.scitotenv.2018.11.179
Feng ZZ, 2014, ENVIRON POLLUT, V193, P296, DOI 10.1016/j.envpol.2014.06.004
Feng ZZ, 2010, ENVIRON POLLUT, V158, P3236, DOI 10.1016/j.envpol.2010.07.009
Gao M, 2020, ATMOS CHEM PHYS, V20, P4399, DOI 10.5194/acp-20-4399-2020
Giovannelli A, 2019, FORESTS, V10, DOI 10.3390/f10050396
Gottardini E, 2014, SCI TOTAL ENVIRON, V493, P954, DOI 10.1016/j.scitotenv.2014.06.041
Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x
Guidi L, 2009, ENVIRON EXP BOT, V66, P117, DOI 10.1016/j.envexpbot.2008.12.005
Guidi Nissim W, 2013, BIOMASS BIOENERG, V56, P361, DOI 10.1016/j.biombioe.2013.05.020
Guo WL, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.4161/15592324.2014.992287
Gupta SK, 2021, PROTOPLASMA, V258, P1009, DOI 10.1007/s00709-021-01617-1
Hermans C, 2005, J EXP BOT, V56, P2153, DOI 10.1093/jxb/eri215
Hoshika Y, 2013, ENVIRON POLLUT, V180, P299, DOI 10.1016/j.envpol.2013.05.041
Huber DM, 2013, PLANT SOIL, V368, P73, DOI 10.1007/s11104-012-1476-0
Jabeen F, 2021, INT J ENVIRON SCI TE, V18, P3571, DOI 10.1007/s13762-020-03077-1
Jiang LJ, 2018, J ENVIRON SCI, V64, P10, DOI 10.1016/j.jes.2017.07.002
Jolivet Y, 2016, ANN FOREST SCI, V73, P923, DOI 10.1007/s13595-016-0580-3
Kakuk B, 2021, BIORESOURCE TECHNOL, V333, DOI 10.1016/j.biortech.2021.125223
Karnosky DF, 2007, PLANT BIOLOGY, V9, P181, DOI 10.1055/s-2006-955915
Karnosky DF, 2007, ENVIRON POLLUT, V147, P489, DOI 10.1016/j.envpol.2006.08.043
Karp A, 2011, J INTEGR PLANT BIOL, V53, P151, DOI 10.1111/j.1744-7909.2010.01015.x
Kayama M, 2005, ANN BOT-LONDON, V95, P661, DOI 10.1093/aob/mci063
Kinose Y, 2020, SCI TOTAL ENVIRON, V716, DOI 10.1016/j.scitotenv.2020.137008
Kitao M, 2015, ENVIRON POLLUT, V206, P133, DOI 10.1016/j.envpol.2015.06.034
Koike T, 2013, DEV ENVIRONM SCI, V13, P371, DOI 10.1016/B978-0-08-098349-3.00017-7
Kopp RF, 2001, FOREST CHRON, V77, P287, DOI 10.5558/tfc77287-2
Kume A, 2009, ECOL RES, V24, P821, DOI 10.1007/s11284-008-0557-2
Li K, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2015797118
Li P, 2017, PLANT CELL ENVIRON, V40, P2369, DOI 10.1111/pce.13043
LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350
Liu CQ, 2021, ATMOS ENVIRON, V251, DOI 10.1016/j.atmosenv.2021.118275
Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262
Lumme I., 1988, Silva Fennica, V22, P67
Manning WJ, 2011, ENVIRON POLLUT, V159, P3283, DOI 10.1016/j.envpol.2011.07.005
Marschner P, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P1
Maruyama Y., 2002, JPN J ENV, V44, P71, DOI [10.18922/jjfe.44.2_71, DOI 10.18922/JJFE.44.2_71]
Masui N, 2021, J FORESTRY RES, V32, P1337, DOI 10.1007/s11676-020-01287-4
Mola-Yudego B, 2008, ENERG POLICY, V36, P3062, DOI 10.1016/j.enpol.2008.03.036
Mola-Yudego B, 2010, BIOMASS BIOENERG, V34, P442, DOI 10.1016/j.biombioe.2009.12.008
Nagashima T, 2017, ATMOS CHEM PHYS, V17, P8231, DOI 10.5194/acp-17-8231-2017
NIIYAMA K, 1987, Japanese Journal of Ecology (Tokyo), V37, P163
Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885
Nordborg M, 2018, RENEW SUST ENERG REV, V93, P473, DOI 10.1016/j.rser.2018.05.045
Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010
Oksanen E, 2003, TREE PHYSIOL, V23, P603, DOI 10.1093/treephys/23.9.603
Onoda Y, 2017, NEW PHYTOL, V214, P1447, DOI 10.1111/nph.14496
Pandey AK, 2019, CLIMATE, V7, DOI 10.3390/cli7020023
Pandey AK, 2015, SCI TOTAL ENVIRON, V532, P230, DOI 10.1016/j.scitotenv.2015.05.040
Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051
Paoletti E, 2014, ENVIRON POLLUT, V193, P1, DOI 10.1016/j.envpol.2014.06.001
Paoletti E, 2009, ENVIRON POLLUT, V157, P1453, DOI 10.1016/j.envpol.2008.09.021
Pellegrini E, 2014, URBAN FOR URBAN GREE, V13, P94, DOI 10.1016/j.ufug.2013.10.006
PLUCKNETT D. L., 1970, Advances in Agronomy, P285, DOI 10.1016/S0065-2113(08)60271-0
Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x
Proietti C, 2021, J FORESTRY RES, V32, P543, DOI 10.1007/s11676-020-01226-3
Querol X, 2021, SCI TOTAL ENVIRON, V779, DOI 10.1016/j.scitotenv.2021.146380
Sacchelli S, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80516-6
Sato T, 2018, J PLANT PHYSIOL, V222, P94, DOI 10.1016/j.jplph.2018.01.010
Shang B, 2018, ENVIRON POLLUT, V234, P136, DOI 10.1016/j.envpol.2017.11.056
Shi C, 2017, ENVIRON EXP BOT, V138, P148, DOI 10.1016/j.envexpbot.2017.03.012
Shimoda Y, 2016, PLANT CELL, V28, P2147, DOI 10.1105/tpc.16.00428
Shinano T, 1996, PHOTOSYNTHETICA, V32, P409
Sicard Pierre, 2021, Current Opinion in Environmental Science & Health, V19, P100226, DOI 10.1016/j.coesh.2020.100226
Sicard P, 2020, SCI TOTAL ENVIRON, V735, DOI 10.1016/j.scitotenv.2020.139542
Sicard P, 2017, ATMOS CHEM PHYS, V17, P12177, DOI 10.5194/acp-17-12177-2017
Singh AA, 2015, REV ENVIRON CONTAM T, V233, P129, DOI 10.1007/978-3-319-10479-9_4
Singh S, 2018, ECOTOX ENVIRON SAFE, V147, P1046, DOI 10.1016/j.ecoenv.2017.09.068
Sperdouli I, 2021, MOLECULES, V26, DOI 10.3390/molecules26102984
Tiwari S, 2017, ENVIRON SCI POLLUT R, V24, P14019, DOI 10.1007/s11356-017-8859-y
Tobita H, 2019, CLIMATE, V7, DOI 10.3390/cli7100117
Ueno AC, 2021, PLANT CELL ENVIRON, V44, P2716, DOI 10.1111/pce.14047
Ueno AC, 2020, PLANT CELL ENVIRON, V43, P2540, DOI 10.1111/pce.13859
Vlachojannis JE, 2009, PHYTOTHER RES, V23, P897, DOI 10.1002/ptr.2747
Volk TA, 2006, BIOMASS BIOENERG, V30, P715, DOI 10.1016/j.biombioe.2006.03.001
Wan WX, 2014, ENVIRON POLLUT, V191, P215, DOI 10.1016/j.envpol.2014.02.035
Wang L, 2013, AGR ECOSYST ENVIRON, V178, P57, DOI 10.1016/j.agee.2013.06.013
Wang WQ, 2020, ADV AGRON, V159, P135, DOI 10.1016/bs.agron.2019.07.006
Yuan XY, 2015, ENVIRON POLLUT, V205, P199, DOI 10.1016/j.envpol.2015.05.043
NR 111
TC 6
Z9 6
U1 3
U2 14
PU NORTHEAST FORESTRY UNIV
PI HARBIN
PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA
SN 1007-662X
EI 1993-0607
J9 J FORESTRY RES
JI J. For. Res.
PD APR
PY 2022
VL 33
IS 2
BP 397
EP 422
DI 10.1007/s11676-021-01400-1
EA OCT 2021
PG 26
WC Forestry
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Forestry
GA 0D3SS
UT WOS:000703369700002
OA hybrid
DA 2023-03-13
ER
PT J
AU Kolodziej, F
O'Halloran, KD
AF Kolodziej, Filip
O'Halloran, Ken D.
TI Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the
Western World?
SO ANTIOXIDANTS
LA English
DT Review
DE oxidative stress; endurance exercise; metabolic disease; oxidative
phenotype
AB Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O-2(-)). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
C1 [Kolodziej, Filip; O'Halloran, Ken D.] Univ Coll Cork, Coll Med & Hlth, Sch Med, Dept Physiol, Cork T12 XF62, Ireland.
C3 University College Cork
RP Kolodziej, F (corresponding author), Univ Coll Cork, Coll Med & Hlth, Sch Med, Dept Physiol, Cork T12 XF62, Ireland.
EM 116333553@umail.ucc.ie; K.OHalloran@ucc.ie
OI Kolodziej, Filip/0000-0002-5575-2037
CR Abe T, 2015, J APPL PHYSIOL, V119, P1297, DOI 10.1152/japplphysiol.00499.2015
Achten J, 2003, INT J SPORTS MED, V24, P603, DOI 10.1055/s-2003-43265
Adhihetty PJ, 2005, AM J PHYSIOL-CELL PH, V289, pC994, DOI 10.1152/ajpcell.00031.2005
Aguiar AS, 2016, NEUROCHEM RES, V41, P64, DOI 10.1007/s11064-015-1709-8
Ahn BH, 2008, P NATL ACAD SCI USA, V105, P14447, DOI 10.1073/pnas.0803790105
Akimoto T, 2005, J BIOL CHEM, V280, P19587, DOI 10.1074/jbc.M408862200
Allen DG, 2008, PHYSIOL REV, V88, P287, DOI 10.1152/physrev.00015.2007
Alvarez-Guardia D, 2010, CARDIOVASC RES, V87, P449, DOI 10.1093/cvr/cvq080
Anderson RM, 2008, AGING CELL, V7, P101, DOI 10.1111/j.1474-9726.2007.00357.x
Aquilano K, 2013, ANTIOXID REDOX SIGN, V18, P386, DOI 10.1089/ars.2012.4615
Archibald JM, 2015, CURR BIOL, V25, pR911, DOI 10.1016/j.cub.2015.07.055
ARENAS J, 1991, MUSCLE NERVE, V14, P598, DOI 10.1002/mus.880140703
Arias-Mayenco I, 2018, CELL METAB, V28, P145, DOI 10.1016/j.cmet.2018.05.009
Ashraf MS, 2006, CURR HYPERTENS REP, V8, P368, DOI 10.1007/s11906-006-0080-1
ASTRAND PO, 1961, J APPL PHYSIOL, V16, P977
Azevedo JL, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000927
Baldelli S, 2013, BBA-GEN SUBJECTS, V1830, P4137, DOI 10.1016/j.bbagen.2013.04.006
Balon TW, 1997, J APPL PHYSIOL, V82, P359, DOI 10.1152/jappl.1997.82.1.359
Barnes KR, 2015, SPORTS MED-OPEN, V1, DOI 10.1186/s40798-015-0007-y
Bergman BC, 1999, J APPL PHYSIOL, V87, P1684, DOI 10.1152/jappl.1999.87.5.1684
Bergman BC, 1999, AM J PHYSIOL-ENDOC M, V277, pE81, DOI 10.1152/ajpendo.1999.277.1.E81
Berridge MJ, 2003, NAT REV MOL CELL BIO, V4, P517, DOI 10.1038/nrm1155
Bezaire V, 2006, AM J PHYSIOL-ENDOC M, V290, pE509, DOI 10.1152/ajpendo.00312.2005
Billat VL, 2003, SPORTS MED, V33, P407, DOI 10.2165/00007256-200333060-00003
Bircher S, 2004, J SPORT SCI MED, V3, P174
Block K, 2007, J BIOL CHEM, V282, P8019, DOI 10.1074/jbc.M611569200
Bonuccelli G, 2010, CELL CYCLE, V9, P3506, DOI 10.4161/cc.9.17.12731
Boron W., 2017, MED PHYSL, V3rd, P228
Boss O, 1999, BIOCHEM BIOPH RES CO, V261, P870, DOI 10.1006/bbrc.1999.1145
BRENMAN JE, 1995, CELL, V82, P743, DOI 10.1016/0092-8674(95)90471-9
Broad EM, 2011, INT J SPORT NUTR EXE, V21, P385, DOI 10.1123/ijsnem.21.5.385
Broad EM, 2008, INT J SPORT NUTR EXE, V18, P567, DOI 10.1123/ijsnem.18.6.567
Brooks G.A., 1985, COMP PHYSL BIOCH CUR, P208
BROOKS GA, 1985, MED SCI SPORT EXER, V17, P22
Brooks GA, 1999, J APPL PHYSIOL, V87, P1713, DOI 10.1152/jappl.1999.87.5.1713
BROOKS GA, 1994, J APPL PHYSIOL, V76, P2253, DOI 10.1152/jappl.1994.76.6.2253
Brooks GA, 2018, CELL METAB, V27, P757, DOI 10.1016/j.cmet.2018.03.008
Brown M, 2018, EUR J APPL PHYSIOL, V118, P2111, DOI 10.1007/s00421-018-3930-z
Burns DP, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6040101
Cai TQ, 2008, BIOCHEM BIOPH RES CO, V377, P987, DOI 10.1016/j.bbrc.2008.10.088
Calvo JA, 2008, J APPL PHYSIOL, V104, P1304, DOI 10.1152/japplphysiol.01231.2007
Canto C, 2009, NATURE, V458, P1056, DOI 10.1038/nature07813
Capitanio D, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10097-4
Carling D, 2012, BIOCHEM J, V445, P11, DOI 10.1042/BJ20120546
Fernandez-Aguera MC, 2015, CELL METAB, V22, P825, DOI 10.1016/j.cmet.2015.09.004
Loureiro ACC, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/6738701
Cerda-Kohler H, 2018, PHYSIOL REP, V6, DOI 10.14814/phy2.13800
Chang AJ, 2015, NATURE, V527, P240, DOI 10.1038/nature15721
Chen KJ, 2008, ANTIOXID REDOX SIGN, V10, P1185, DOI 10.1089/ars.2007.1959
Chen ZP, 2003, DIABETES, V52, P2205, DOI 10.2337/diabetes.52.9.2205
Chi W, 2013, FEBS OPEN BIO, V3, P479, DOI 10.1016/j.fob.2013.09.004
Chicco AJ, 2018, J BIOL CHEM, V293, P6659, DOI 10.1074/jbc.RA117.000470
Choi HI, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04593-w
Cieszczyk P, 2011, BIOL SPORT, V28, P111, DOI 10.5604/945117
Cohen S, 2009, J CELL BIOL, V185, P1083, DOI 10.1083/jcb.200901052
Constantin-Teodosiu D, 2009, J PHYSIOL-LONDON, V587, P231, DOI 10.1113/jphysiol.2008.164210
Cox PJ, 2016, CELL METAB, V24, P256, DOI 10.1016/j.cmet.2016.07.010
Crunkhorn S, 2007, J BIOL CHEM, V282, P15439, DOI 10.1074/jbc.M611214200
Daemen S, 2018, MOL METAB, V17, P71, DOI 10.1016/j.molmet.2018.08.004
Dalvi PS, 2017, INT J OBESITY, V41, P149, DOI 10.1038/ijo.2016.183
Davies MN, 2016, CELL REP, V14, P243, DOI 10.1016/j.celrep.2015.12.030
de Paoli FV, 2007, J PHYSIOL-LONDON, V581, P829, DOI 10.1113/jphysiol.2007.129049
Debold EP, 2015, FRONT PHYSIOL, V6, DOI 10.3389/fphys.2015.00239
Dehvari N, 2012, BRIT J PHARMACOL, V165, P1442, DOI 10.1111/j.1476-5381.2011.01647.x
Deng Y, 2016, SCI REP-UK, V6, DOI 10.1038/srep21422
DESPLANCHES D, 1993, PFLUG ARCH EUR J PHY, V425, P263, DOI 10.1007/BF00374176
Ding HW, 2016, BIOCHEM BIOPH RES CO, V478, P798, DOI 10.1016/j.bbrc.2016.08.028
Dinkova-Kostova AT, 2015, FREE RADICAL BIO MED, V88, P179, DOI 10.1016/j.freeradbiomed.2015.04.036
Drake JC, 2016, FASEB J, V30, P13, DOI 10.1096/fj.15-276337
DUARTE JAR, 1993, INT J SPORTS MED, V14, P440, DOI 10.1055/s-2007-1021207
Eisele PS, 2013, J BIOL CHEM, V288, P2246, DOI 10.1074/jbc.M112.375253
Engineer A, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8100436
Essner RA, 2017, J NEUROSCI, V37, P8678, DOI 10.1523/JNEUROSCI.0798-17.2017
Fan LM, 2017, FREE RADICAL BIO MED, V108, P940, DOI 10.1016/j.freeradbiomed.2017.05.008
Fang EF, 2017, SCI REP-UK, V7, DOI 10.1038/srep46208
Fathizadeh H, 2019, EXCLI J, V18, P631, DOI 10.17179/excli2019-1447
Faubert B, 2014, P NATL ACAD SCI USA, V111, P2554, DOI 10.1073/pnas.1312570111
Finley LWS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023295
Fletcher G, 2017, AM J CLIN NUTR, V105, P864, DOI 10.3945/ajcn.116.133520
Fogelholm G M, 1991, Br J Sports Med, V25, P41
Frandsen J, 2017, INT J SPORTS MED, V38, P975, DOI 10.1055/s-0043-117178
Fu YJ, 2017, ONCOTARGET, V8, P57813, DOI 10.18632/oncotarget.18175
Fulghum K, 2018, FREE RADICAL BIO MED, V128, pS83, DOI 10.1016/j.freeradbiomed.2018.10.188
Fulle S, 2004, EXP GERONTOL, V39, P17, DOI 10.1016/j.exger.2003.09.012
Gill JF, 2019, AGING CELL, V18, DOI 10.1111/acel.12993
Gkotinakou IM, 2019, J CELL SCI, V132, DOI 10.1242/jcs.225698
Golpich M, 2017, CNS NEUROSCI THER, V23, P5, DOI 10.1111/cns.12655
Gomes AP, 2013, CELL, V155, P1624, DOI 10.1016/j.cell.2013.11.037
Gonzalez JT, 2016, AM J PHYSIOL-ENDOC M, V311, pE543, DOI 10.1152/ajpendo.00232.2016
Goodpaster BH, 2001, J CLIN ENDOCR METAB, V86, P5755, DOI 10.1210/jc.86.12.5755
Goodpaster BH, 2017, CELL METAB, V25, P1027, DOI 10.1016/j.cmet.2017.04.015
Gumucio JP, 2013, ENDOCRINE, V43, P12, DOI 10.1007/s12020-012-9751-7
Gurd BJ, 2011, AM J PHYSIOL-REG I, V301, pR67, DOI 10.1152/ajpregu.00417.2010
Gureev AP, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00435
Handschin C, 2003, P NATL ACAD SCI USA, V100, P7111, DOI 10.1073/pnas.1232352100
Harman D, 2009, BIOGERONTOLOGY, V10, P773, DOI 10.1007/s10522-009-9234-2
Hashimoto T, 2005, J PHYSIOL-LONDON, V567, P121, DOI 10.1113/jphysiol.2005.087411
Hashimoto T, 2006, AM J PHYSIOL-ENDOC M, V290, pE1237, DOI 10.1152/ajpendo.00594.2005
Hashimoto T, 2015, FRONT PEDIATR, V3, DOI 10.3389/fped.2015.00033
Hayes JD, 2015, BIOCHEM SOC T, V43, P611, DOI 10.1042/BST20150011
He ZH, 2000, BIOPHYS J, V79, P945, DOI 10.1016/S0006-3495(00)76349-1
HENNEMAN E, 1957, SCIENCE, V126, P1345, DOI 10.1126/science.126.3287.1345
Hidalgo C, 2006, J BIOL CHEM, V281, P26473, DOI 10.1074/jbc.M600451200
Hill AV, 1924, P R SOC LOND B-CONTA, V96, P438, DOI 10.1098/rspb.1924.0037
Hirschey MD, 2011, MOL CELL, V44, P177, DOI 10.1016/j.molcel.2011.07.019
Hochachka PW, 2002, NEWS PHYSIOL SCI, V17, P122, DOI 10.1152/nips.01382.2001
Holloway GP, 2007, J PHYSIOL-LONDON, V582, P393, DOI 10.1113/jphysiol.2007.135301
Holloway TM, 2015, AM J PHYSIOL-REG I, V308, pR927, DOI 10.1152/ajpregu.00048.2015
Holloway TM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121138
Hota KB, 2012, HIPPOCAMPUS, V22, P723, DOI 10.1002/hipo.20934
Hureau TJ, 2019, J APPL PHYSIOL, V127, P1257, DOI 10.1152/japplphysiol.00490.2019
Hureau TJ, 2018, J PHYSIOL-LONDON, V596, P1373, DOI 10.1113/JP275465
Huxley HE, 2004, EUR J BIOCHEM, V271, P1403, DOI 10.1111/j.1432-1033.2004.04044.x
Ivan M, 2001, SCIENCE, V292, P464, DOI 10.1126/science.1059817
Jager S, 2007, P NATL ACAD SCI USA, V104, P12017, DOI 10.1073/pnas.0705070104
Jamurtas AZ, 2018, J SPORT SCI MED, V17, P501
Jang JY, 2018, J CLIN INVEST, V128, P3662, DOI 10.1172/JCI120842
Jensen J, 2011, FRONT PHYSIOL, V2, DOI 10.3389/fphys.2011.00112
Jensen R, 2020, J PHYSIOL-LONDON, V598, P789, DOI 10.1113/JP278543
Jeppesen J, 2012, J PHYSIOL-LONDON, V590, P1059, DOI 10.1113/jphysiol.2011.225011
Jia YT, 2007, J IMMUNOL, V179, P7808, DOI 10.4049/jimmunol.179.11.7808
Jin W, 2011, J TRAUMA, V71, P680, DOI 10.1097/TA.0b013e3181f6b984
KAIJSER L, 1990, J APPL PHYSIOL, V69, P785, DOI 10.1152/jappl.1990.69.2.785
Kansanen E, 2013, REDOX BIOL, V1, P45, DOI 10.1016/j.redox.2012.10.001
Kellogg DL, 2017, FREE RADICAL BIO MED, V110, P261, DOI 10.1016/j.freeradbiomed.2017.06.018
Khan SA, 2004, P NATL ACAD SCI USA, V101, P15944, DOI 10.1073/pnas.0404136101
Kiens B, 2004, J APPL PHYSIOL, V97, P1209, DOI 10.1152/japplphysiol.01278.2003
Kim Jisu, 2016, J Exerc Nutrition Biochem, V20, P48, DOI 10.20463/jenb.2016.0057
Kitagishi Y, 2013, INT J MOL MED, V31, P511, DOI 10.3892/ijmm.2013.1235
Knechtle B, 2004, INT J SPORTS MED, V25, P38, DOI 10.1055/s-2003-45232
Ko K, 2018, LIPIDS HEALTH DIS, V17, DOI 10.1186/s12944-018-0730-8
Koh JH, 2019, DIABETES, V68, P1552, DOI 10.2337/db19-0088
Korzeniewski B, 2005, BIOPHYS CHEM, V116, P129, DOI 10.1016/j.bpc.2005.03.004
Koves TR, 2013, J LIPID RES, V54, P522, DOI 10.1194/jlr.P028910
Lacher SE, 2018, REDOX BIOL, V19, P401, DOI 10.1016/j.redox.2018.08.014
Lackey DE, 2013, AM J PHYSIOL-ENDOC M, V304, pE1175, DOI 10.1152/ajpendo.00630.2012
LaGory EL, 2015, CELL REP, V12, P116, DOI 10.1016/j.celrep.2015.06.006
Laker RC, 2014, DIABETES, V63, P1605, DOI [10.2337/db13-1614, 10.2337/db14-0135]
Larsen EL, 2020, J SPORT SCI, V38, P2080, DOI 10.1080/02640414.2020.1770918
LEBERER E, 1984, HISTOCHEMISTRY, V80, P295, DOI 10.1007/BF00495780
Lehman JJ, 2000, J CLIN INVEST, V106, P847, DOI 10.1172/JCI10268
Levett DZ, 2012, FASEB J, V26, P1431, DOI 10.1096/fj.11-197772
Lewis P, 2016, FRONT PHYSIOL, V7, DOI [10.3389/fphys.2016.00623, 10.3339/fphys.2016.00623]
Li HS, 2019, REDOX BIOL, V25, DOI 10.1016/j.redox.2019.101109
Lima-Silva AE, 2010, J SPORT SCI MED, V9, P31
Lin J, 2002, NATURE, V418, P797, DOI 10.1038/nature00904
Lindholm ME, 2014, AM J PHYSIOL-REG I, V307, pR248, DOI 10.1152/ajpregu.00036.2013
Little JP, 2010, AM J PHYSIOL-REG I, V298, pR912, DOI 10.1152/ajpregu.00409.2009
Liu CL, 2009, J BIOL CHEM, V284, P2811, DOI 10.1074/jbc.M806409200
Longo M, 2016, AM J HYPERTENS, V29, P1366, DOI 10.1093/ajh/hpw088
Lund J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-28249-5
Lundby C, 2006, EUR J APPL PHYSIOL, V96, P363, DOI 10.1007/s00421-005-0085-5
Magkos F, 2013, DIABETES, V62, P2757, DOI 10.2337/db13-0185
Marcinek DJ, 2010, J APPL PHYSIOL, V108, P1479, DOI 10.1152/japplphysiol.01189.2009
Martin-Rincon M, 2018, SCAND J MED SCI SPOR, V28, P772, DOI 10.1111/sms.12945
Martinez-Outschoorn UE, 2011, CELL CYCLE, V10, P2504, DOI 10.4161/cc.10.15.16585
Mason SD, 2004, PLOS BIOL, V2, P1540, DOI 10.1371/journal.pbio.0020288
Mason SD, 2007, AM J PHYSIOL-REG I, V293, pR2059, DOI 10.1152/ajpregu.00335.2007
Maunder E, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00599
McClelland GB, 2003, BIOCHEM BIOPH RES CO, V304, P130, DOI 10.1016/S0006-291X(03)00550-3
Merry TL, 2016, J PHYSIOL-LONDON, V594, P5195, DOI 10.1113/JP271957
Michael LF, 2001, P NATL ACAD SCI USA, V98, P3820, DOI 10.1073/pnas.061035098
Miura S, 2009, AM J PHYSIOL-ENDOC M, V296, pE47, DOI 10.1152/ajpendo.90690.2008
Miwa S, 2003, BIOCHEM SOC T, V31, P1300
Morales J, 2017, J CARD FAIL, V23, pS39, DOI 10.1016/j.cardfail.2017.07.107
Morland C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15557
Moro C, 2008, AM J PHYSIOL-ENDOC M, V294, pE203, DOI 10.1152/ajpendo.00624.2007
Morselli E, 2014, CELL REP, V9, P633, DOI 10.1016/j.celrep.2014.09.025
Muoio DM, 2012, CELL METAB, V15, P764, DOI 10.1016/j.cmet.2012.04.005
Nalbandian M, 2019, BIOLOGY-BASEL, V8, DOI 10.3390/biology8020044
Nalos M, 2014, CRIT CARE, V18, DOI 10.1186/cc13793
Namas RA, 2011, SHOCK, V36, P196, DOI 10.1097/SHK.0b013e3182205e07
Nanduri J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119762
Nanduri J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075838
Newgard CB, 2009, CELL METAB, V9, P565, DOI 10.1016/j.cmet.2009.05.001
Ngo KTA, 2012, ACTA PHYSIOL, V205, P133, DOI 10.1111/j.1748-1716.2011.02379.x
Nickerson JG, 2009, J BIOL CHEM, V284, P16522, DOI 10.1074/jbc.M109.004788
Nielsen J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127808
Nielsen J, 2014, J PHYSIOL-LONDON, V592, P2003, DOI 10.1113/jphysiol.2014.271528
Nielsen J, 2010, AM J PHYSIOL-ENDOC M, V299, pE1053, DOI 10.1152/ajpendo.00324.2010
Nilsson A, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12934-8
Noland RC, 2009, J BIOL CHEM, V284, P22840, DOI 10.1074/jbc.M109.032888
O'Neill HM, 2011, P NATL ACAD SCI USA, V108, P16092, DOI 10.1073/pnas.1105062108
Odland LM, 1996, AM J PHYSIOL-ENDOC M, V270, pE541, DOI 10.1152/ajpendo.1996.270.3.E541
Odland LM, 1998, AM J PHYSIOL-ENDOC M, V274, pE1080, DOI 10.1152/ajpendo.1998.274.6.E1080
Ohtsuji M, 2008, J BIOL CHEM, V283, P33554, DOI 10.1074/jbc.M804597200
Okamoto A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03980-7
OKU H, 1988, J BIOL CHEM, V263, P18386
Ortenblad N, 2015, SCAND J MED SCI SPOR, V25, P34, DOI 10.1111/sms.12599
Ortenblad N, 2013, J PHYSIOL-LONDON, V591, P4405, DOI 10.1113/jphysiol.2013.251629
Owles WH, 1930, J PHYSIOL-LONDON, V69, P214, DOI 10.1113/jphysiol.1930.sp002646
Palazzetti S, 2003, CAN J APPL PHYSIOL, V28, P588, DOI 10.1139/h03-045
PARK JH, 1988, P NATL ACAD SCI USA, V85, P8780, DOI 10.1073/pnas.85.23.8780
Passarella S, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00407
Peake JM, 2005, MED SCI SPORT EXER, V37, P737, DOI 10.1249/01.MSS.0000161804.05399.3B
Percival Justin M, 2011, Biophys Rev, V3, P209, DOI 10.1007/s12551-011-0060-9
Piantadosi CA, 2008, CIRC RES, V103, P1232, DOI 10.1161/01.RES.0000338597.71702.ad
PIEKLIK JR, 1975, J BIOL CHEM, V250, P4445
Pilegaard H, 2003, J PHYSIOL-LONDON, V546, P851, DOI 10.1113/jphysiol.2002.034850
Poole DC, 2012, COMPR PHYSIOL, V2, P933, DOI 10.1002/cphy.c100072
Powers SK, 2008, PHYSIOL REV, V88, P1243, DOI 10.1152/physrev.00031.2007
Preece SJ, 2019, EUR J SPORT SCI, V19, P784, DOI 10.1080/17461391.2018.1554707
Puigserver P, 2001, MOL CELL, V8, P971, DOI 10.1016/S1097-2765(01)00390-2
Purdom T, 2018, J INT SOC SPORT NUTR, V15, DOI 10.1186/s12970-018-0207-1
Qin YJ, 2013, WORLD J EMERG MED, V4, P215, DOI [10.5847/wjem.j.issn.1920-8642.2013.03.011, 10.5847/wjem.j.1920-8642.2013.03.011]
Qiu XL, 2010, CELL METAB, V12, P662, DOI 10.1016/j.cmet.2010.11.015
RANDLE PJ, 1964, BIOCHEM J, V93, P652, DOI 10.1042/bj0930652
Rasbach KA, 2010, P NATL ACAD SCI USA, V107, P21866, DOI 10.1073/pnas.1016089107
Rastogi R, 2017, FRONT CELL NEUROSCI, V10, DOI 10.3389/fncel.2016.00301
Reichenbach A, 2018, FASEB J, V32, P6923, DOI 10.1096/fj.201800634R
REID MB, 1993, J APPL PHYSIOL, V75, P1081, DOI 10.1152/jappl.1993.75.3.1081
Richardson RS, 2001, J APPL PHYSIOL, V91, P2679, DOI 10.1152/jappl.2001.91.6.2679
Richter EA, 2009, BIOCHEM J, V418, P261, DOI 10.1042/BJ20082055
Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106
Roepstorff C, 2005, AM J PHYSIOL-ENDOC M, V288, pE133, DOI 10.1152/ajpendo.00379.2004
Rogatzki MJ, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00022
ROMIJN JA, 1993, AM J PHYSIOL, V265, pE380, DOI 10.1152/ajpendo.1993.265.3.E380
Rowe GC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041817
Russ DW, 2012, BIOGERONTOLOGY, V13, P547, DOI 10.1007/s10522-012-9399-y
Ruttkay-Nedecky B, 2013, INT J MOL SCI, V14, P6044, DOI 10.3390/ijms14036044
Sahlin K, 2002, J PHYSIOL-LONDON, V541, P569, DOI 10.1113/jphysiol.2002.016683
SAHLIN K, 1990, ACTA PHYSIOL SCAND, V138, P259, DOI 10.1111/j.1748-1716.1990.tb08845.x
SAITO M, 1988, J APPL PHYSIOL, V65, P1548, DOI 10.1152/jappl.1988.65.4.1548
Sakellariou GK, 2014, FREE RADICAL RES, V48, P12, DOI 10.3109/10715762.2013.830718
San-Millan I, 2018, SPORTS MED, V48, P467, DOI 10.1007/s40279-017-0751-x
Sanchez AMJ, 2014, AM J PHYSIOL-REG I, V307, pR956, DOI 10.1152/ajpregu.00187.2014
Satoh JI, 2013, GENE REGUL SYST BIO, V7, P139, DOI 10.4137/GRSB.S13204
Scharhag-Rosenberger F, 2010, INT J SPORTS MED, V31, P498, DOI 10.1055/s-0030-1249621
Schenk S, 2006, AM J PHYSIOL-ENDOC M, V291, pE254, DOI 10.1152/ajpendo.00051.2006
Schreiber SN, 2004, P NATL ACAD SCI USA, V101, P6472, DOI 10.1073/pnas.0308686101
Seiler SE, 2015, CELL METAB, V22, P65, DOI 10.1016/j.cmet.2015.06.003
Seiler SE, 2014, J LIPID RES, V55, P635, DOI 10.1194/jlr.M043448
Semenza GL, 2000, J APPL PHYSIOL, V88, P1474, DOI 10.1152/jappl.2000.88.4.1474
Sharma BK, 2014, J CELL PHYSIOL, V229, P1901, DOI 10.1002/jcp.24664
Shaw CS, 2012, AM J PHYSIOL-ENDOC M, V303, pE1158, DOI 10.1152/ajpendo.00272.2012
Sidhu SK, 2018, J PHYSIOL-LONDON, V596, P4789, DOI 10.1113/JP276460
Sidhu SK, 2017, CLIN NEUROPHYSIOL, V128, P44, DOI 10.1016/j.clinph.2016.10.008
Sies H, 2021, REDOX BIOL, V41, DOI 10.1016/j.redox.2021.101867
Silva Luciano A., 2018, Motriz: rev. educ. fis., V24, pe101804, DOI 10.1590/s1980-6574201800040008
SJODIN B, 1981, INT J SPORTS MED, V2, P23, DOI 10.1055/s-2008-1034579
Song Z, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05483-x
Sowter HM, 2001, CANCER RES, V61, P6669
Spriet LL, 2014, SPORTS MED, V44, P87, DOI 10.1007/s40279-014-0154-1
St-Pierre J, 2003, J BIOL CHEM, V278, P26597, DOI 10.1074/jbc.M301850200
St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024
Stanford KI, 2018, DIABETES, V67, P2530, DOI 10.2337/db18-0667
STANLEY WC, 1986, J APPL PHYSIOL, V60, P1116, DOI 10.1152/jappl.1986.60.4.1116
Starritt EC, 2000, AM J PHYSIOL-ENDOC M, V278, pE462, DOI 10.1152/ajpendo.2000.278.3.E462
Steinbacher P, 2015, BIOMOLECULES, V5, P356, DOI 10.3390/biom5020356
Stephens FB, 2007, J PHYSIOL-LONDON, V581, P431, DOI 10.1113/jphysiol.2006.125799
Stroka DM, 2001, FASEB J, V15, P2445, DOI 10.1096/fj.01-0125com
Su X, 2015, OBESITY, V23, P329, DOI 10.1002/oby.20923
Sugden MC, 2003, AM J PHYSIOL-ENDOC M, V284, pE855, DOI 10.1152/ajpendo.00526.2002
Summermatter S, 2013, P NATL ACAD SCI USA, V110, P8738, DOI 10.1073/pnas.1212976110
Taniyama Y, 2003, HYPERTENSION, V42, P1075, DOI 10.1161/01.HYP.0000100443.09293.4F
Tanskanen M, 2010, J SPORT SCI, V28, P309, DOI 10.1080/02640410903473844
Tauffenberger A, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-1877-6
TAYLOR DJ, 1986, MAGNET RESON MED, V3, P44, DOI 10.1002/mrm.1910030107
Taylor EB, 2005, AM J PHYSIOL-ENDOC M, V289, pE960, DOI 10.1152/ajpendo.00237.2005
TAYLOR HL, 1955, J APPL PHYSIOL, V8, P73, DOI 10.1152/jappl.1955.8.1.73
Temesi J, 2011, J NUTR, V141, P890, DOI 10.3945/jn.110.137075
Terada S, 2002, BIOCHEM BIOPH RES CO, V296, P350, DOI 10.1016/S0006-291X(02)00881-1
Valle I, 2005, CARDIOVASC RES, V66, P562, DOI 10.1016/j.cardiores.2005.01.026
van Hall G, 2015, SPORTS MED, V45, pS23, DOI 10.1007/s40279-015-0394-8
van Loon LJC, 2004, J APPL PHYSIOL, V97, P1170, DOI 10.1152/japplphysiol.00368.2004
Varga T, 2011, BBA-MOL BASIS DIS, V1812, P1007, DOI 10.1016/j.bbadis.2011.02.014
Vega RB, 2000, MOL CELL BIOL, V20, P1868, DOI 10.1128/MCB.20.5.1868-1876.2000
Vest SD, 2018, INT J SPORTS MED, V39, P916, DOI 10.1055/a-0660-0031
VIRBASIUS JV, 1994, P NATL ACAD SCI USA, V91, P1309, DOI 10.1073/pnas.91.4.1309
Vyas S, 2016, CELL, V166, P555, DOI 10.1016/j.cell.2016.07.002
Wachter S, 2002, CLIN CHIM ACTA, V318, P51, DOI 10.1016/S0009-8981(01)00804-X
Wagner S, 2011, CIRC RES, V108, P555, DOI 10.1161/CIRCRESAHA.110.221911
Wall BT, 2011, J PHYSIOL-LONDON, V589, P963, DOI 10.1113/jphysiol.2010.201343
Wallace M, 2018, NAT CHEM BIOL, V14, P1021, DOI 10.1038/s41589-018-0132-2
WALLIMANN T, 1992, BIOCHEM J, V281, P21, DOI 10.1042/bj2810021
Wang L, 2013, INT J BIOCHEM CELL B, V45, P1155, DOI 10.1016/j.biocel.2013.03.007
Wang YM, 2007, FREE RADICAL RES, V41, P963, DOI 10.1080/10715760701445045
Ward SA, 2019, CURR OPIN PHYSIOL, V10, P166, DOI 10.1016/j.cophys.2019.05.010
WASSERMAN K, 1964, AM J CARDIOL, V14, P844, DOI 10.1016/0002-9149(64)90012-8
Watanabe D, 2019, J MUSCLE RES CELL M, V40, P353, DOI 10.1007/s10974-019-09524-y
Watt MJ, 2008, MOL ENDOCRINOL, V22, P1200, DOI 10.1210/me.2007-0485
Watt MJ, 2009, APPL PHYSIOL NUTR ME, V34, P340, DOI 10.1139/H09-019
Watt MJ, 2004, P NUTR SOC, V63, P315, DOI 10.1079/PNS2004360
Webb AE, 2014, TRENDS BIOCHEM SCI, V39, P159, DOI 10.1016/j.tibs.2014.02.003
Wehrlin JP, 2006, EUR J APPL PHYSIOL, V96, P404, DOI 10.1007/s00421-005-0081-9
Wende AR, 2007, J BIOL CHEM, V282, P36642, DOI 10.1074/jbc.M707006200
WHIPP BJ, 1970, J APPL PHYSIOL, V28, P452, DOI 10.1152/jappl.1970.28.4.452
Whitehead N, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00242
Whitman SA, 2013, EXP CELL RES, V319, P2673, DOI 10.1016/j.yexcr.2013.07.015
Wilkins BJ, 2002, J PHYSIOL-LONDON, V541, P1, DOI 10.1113/jphysiol.2002.017129
WINDER WW, 1989, J APPL PHYSIOL, V67, P2230, DOI 10.1152/jappl.1989.67.6.2230
Withee ED, 2017, J INT SOC SPORT NUTR, V14, DOI 10.1186/s12970-017-0181-z
Wojtaszewski JFP, 2003, AM J PHYSIOL-ENDOC M, V284, pE813, DOI 10.1152/ajpendo.00436.2002
Wojtaszewski JFP, 2000, J PHYSIOL-LONDON, V528, P221, DOI 10.1111/j.1469-7793.2000.t01-1-00221.x
Wojtaszewski JFP, 2002, BIOCHEM BIOPH RES CO, V298, P309, DOI 10.1016/S0006-291X(02)02465-8
Wright DC, 2007, J BIOL CHEM, V282, P194, DOI 10.1074/jbc.M606116200
Wu HQ, 2017, J MOL NEUROSCI, V61, P449, DOI 10.1007/s12031-017-0885-1
Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X
Young A, 2020, REDOX BIOL, V28, DOI 10.1016/j.redox.2019.101339
Yuan GX, 2011, J CELL PHYSIOL, V226, P2925, DOI 10.1002/jcp.22640
Zajac A, 2014, NUTRIENTS, V6, P2493, DOI 10.3390/nu6072493
Zhang DD, 2003, MOL CELL BIOL, V23, P8137, DOI 10.1128/MCB.23.22.8137-8151.2003
Zhang HF, 2007, CANCER CELL, V11, P407, DOI 10.1016/j.ccr.2007.04.001
Zhao GX, 2008, AM J PHYSIOL-HEART C, V294, pH936, DOI 10.1152/ajpheart.00870.2007
Zhao M, 1999, MOL CELL BIOL, V19, P21
Zheng J, 2020, BMJ OPEN DIAB RES CA, V8, DOI 10.1136/bmjdrc-2019-000890
Zoladz JA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189456
NR 308
TC 6
Z9 6
U1 2
U2 11
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3921
J9 ANTIOXIDANTS-BASEL
JI Antioxidants
PD APR
PY 2021
VL 10
IS 4
AR 609
DI 10.3390/antiox10040609
PG 35
WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science &
Technology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science
& Technology
GA RQ9IN
UT WOS:000642725400001
PM 33921022
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Pillai, MR
Keylock, KT
Cromwell, HC
Meserve, LA
AF Pillai, Mahesh R.
Keylock, K. Todd
Cromwell, Howard C.
Meserve, Lee A.
TI Exercise influences the impact of polychlorinated biphenyl exposure on
immune function
SO PLOS ONE
LA English
DT Article
ID ACETYLTRANSFERASE CHAT ACTIVITY; VOLUNTARY EXERCISE; AROCLOR 1254; PCB;
CONGENERS; HORMESIS; MEMORY; RATS; IMMUNOTOXICITY; ANTIBACTERIAL
AB Polychlorinated biphenyls (PCBs) are environmental pollutants and endocrine disruptors, harmfully affecting reproductive, endocrine, neurological and immunological systems. This broad influence has implications for processes such as wound healing, which is modulated by the immunological response of the body. Conversely, while PCBs can be linked to diminished wound healing, outside of PCB pollution systems, exercise has been shown to accelerate wound healing. However, the potential for moderate intensity exercise to modulate or offset the harmful effects of a toxin like PCB are yet unknown. A key aim of the present study was to examine how PCB exposure at different doses (0, 100, 500, 1000 ppm i.p.) altered wound healing in exercised versus non-exercised subgroups of mice. We examined PCB effects on immune function in more depth by analyzing the concentrations of cytokines, interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), Interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) in these wounds inflicted by punch biopsy. Mice were euthanized at Day 3 or Day 5 after PCB injection (n = 3-6) and skin excised from the wound area was homogenized and analyzed for cytokine content. Results revealed that wound healing was not signficantly impacted by either PCB exposure or exercise, but there were patterns of delays in healing that depended on PCB dose. Changes in cytokines were also observed and depended on PCB dose and exercise experience. For example, IL-1 beta concentrations in Day 5 mice without PCB administration were 33% less in exercised mice than mice not exercised. However, IL-1 beta concentrations in Day 3 mice administered 100 ppm were 130% greater in exercised mice than not exercisedmice. Changes in the other measured cytokines varied with mainly depressions at lesser PCB doses and elevations at higher doses. Exercise had diverse effects on cytokine levels, but increased cytokine levels in the two greater doses. Explanations for these diverse effects include the use of young animals with more rapid wound healing rates less affected by toxin exposure, as well as PCB-mediated compensatory effects at specific doses which could actually enhance immune function. Future work should examine these interactions in more detail across a developmental time span. Understanding how manipulating the effects of exposure to environemntal contaminants using behavioral modification could be very useful in certain high risk populations or exposed individuals.
C1 [Pillai, Mahesh R.; Meserve, Lee A.] Bowling Green State Univ, Dept Biol Sci, Bowling Green, OH 43403 USA.
[Keylock, K. Todd] Bowling Green State Univ, Dept Exercise Sci, Bowling Green, OH 43403 USA.
[Cromwell, Howard C.] Bowling Green State Univ, Dept Psychol, Bowling Green, OH 43403 USA.
[Cromwell, Howard C.] Bowling Green State Univ, JP Scott Ctr Neurosci Mind & Behav, Bowling Green, OH 43403 USA.
[Pillai, Mahesh R.] Univ Toledo, Human Res Protect Program, 2801 W Bancroft St, Toledo, OH 43606 USA.
C3 University System of Ohio; Bowling Green State University; University
System of Ohio; Bowling Green State University; University System of
Ohio; Bowling Green State University; University System of Ohio; Bowling
Green State University; University System of Ohio; University of Toledo
RP Meserve, LA (corresponding author), Bowling Green State Univ, Dept Biol Sci, Bowling Green, OH 43403 USA.
EM lmeserv@bgsu.edu
OI Cromwell, Howard/0000-0003-0464-7082
FU Department of Biological Sciences, Bowling Green State University,
Bowling Green, Ohio
FX Department of Biological Sciences, Bowling Green State University,
Bowling Green, Ohio. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
CR Ashcroft GS, 2002, BIOGERONTOLOGY, V3, P337, DOI 10.1023/A:1021399228395
Baldwin DR, 1997, PHYSIOL BEHAV, V61, P447, DOI 10.1016/S0031-9384(96)00459-3
Barrientos S, 2008, WOUND REPAIR REGEN, V16, P585, DOI 10.1111/j.1524-475X.2008.00410.x
Bell MR, 2018, TOXICOL APPL PHARM, V353, P55, DOI 10.1016/j.taap.2018.06.002
Bell MR, 2016, HORM BEHAV, V78, P168, DOI 10.1016/j.yhbeh.2015.11.007
Berghuis SA, 2019, CURR PROB PEDIATR AD, V49, P133, DOI 10.1016/j.cppeds.2019.04.006
Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973
Campbell JP, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00648
Cohan CH, 2019, FRONT AGING NEUROSCI, V11, DOI 10.3389/fnagi.2019.00261
Curtis SW, 2019, ENVIRON HEALTH-GLOB, V18, DOI 10.1186/s12940-019-0509-z
Donahue DA, 2004, TOXICOLOGY, V203, P99, DOI 10.1016/j.tox.2004.06.011
Edwards R, 2004, CURR OPIN INFECT DIS, V17, P91, DOI 10.1097/00001432-200404000-00004
European Chemicals Agcy ECHA, 2018, EFSA J, V16, DOI 10.2903/j.efsa.2018.5311
European Commission, 2000, OFFICIAL J EUROPEAN, V169, P10
Ferrante MC, 2011, TOXICOL LETT, V202, P61, DOI 10.1016/j.toxlet.2011.01.023
Fortunato RS, 2008, J ENDOCRINOL, V198, P347, DOI 10.1677/JOE-08-0174
Frank S, 2003, METH MOLEC MED, V78, P3
GANEY PE, 1993, ENVIRON HEALTH PERSP, V101, P430, DOI 10.2307/3431901
Giera S, 2011, ENDOCRINOLOGY, V152, P2909, DOI 10.1210/en.2010-1490
Gleeson M, 2011, NAT REV IMMUNOL, V11, P607, DOI 10.1038/nri3041
Goh J, 2014, MECH AGEING DEV, V139, P41, DOI 10.1016/j.mad.2014.06.004
Hackney AC, 2015, PROG MOL BIOL TRANSL, V135, P293, DOI 10.1016/bs.pmbts.2015.07.001
Hany J, 1999, TOXICOL APPL PHARM, V158, P231, DOI 10.1006/taap.1999.8710
HARPER N, 1995, FUND APPL TOXICOL, V27, P131, DOI 10.1006/faat.1995.1116
Heilmann C, 2006, PLOS MED, V3, P1352, DOI 10.1371/journal.pmed.0030311
Hopf NB, 2009, SCI TOTAL ENVIRON, V407, P6109, DOI 10.1016/j.scitotenv.2009.08.035
Jin JJ, 2017, J EXERC REHABIL, V13, P381, DOI 10.12965/jer.1735070.535
Jolous-Jamshidi B, 2010, TOXICOL LETT, V199, P136, DOI 10.1016/j.toxlet.2010.08.015
Kern JK, 2017, ACTA NEUROBIOL EXP, V77, P269
Keylock KT, 2008, AM J PHYSIOL-REG I, V294, pR179, DOI 10.1152/ajpregu.00177.2007
Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124
Krishnan K, 2018, ENVIRON HEALTH PERSP, V126, DOI 10.1289/EHP3550
La Merrill MA, 2020, NAT REV ENDOCRINOL, V16, P45, DOI 10.1038/s41574-019-0273-8
Lombarte M, 2013, J ENDOCRINOL, V218, P99, DOI 10.1530/JOE-13-0067
LOOSE LD, 1981, ENVIRON HEALTH PERSP, V39, P79, DOI 10.2307/3429282
Uribe RM, 2014, ENDOCRINOLOGY, V155, P2020, DOI 10.1210/en.2013-1724
Martin P, 2005, TRENDS CELL BIOL, V15, P599, DOI 10.1016/j.tcb.2005.09.002
Mathur N, 2008, MEDIAT INFLAMM, V2008, DOI 10.1155/2008/109502
MAUTZ WJ, 1988, J TOXICOL ENV HEALTH, V25, P165, DOI 10.1080/15287398809531198
Menke NB, 2007, CLIN DERMATOL, V25, P19, DOI 10.1016/j.clindermatol.2006.12.005
Merghani A, 2016, TRENDS CARDIOVAS MED, V26, P232, DOI 10.1016/j.tcm.2015.06.005
MESERVE LA, 1992, B ENVIRON CONTAM TOX, V48, P715
Nishida N, 1997, FUND APPL TOXICOL, V40, P68, DOI 10.1006/faat.1997.2352
Pence BD, 2014, ADV WOUND CARE, V3, P71, DOI 10.1089/wound.2012.0377
Provost TL, 1999, PROG NEURO-PSYCHOPH, V23, P915, DOI 10.1016/S0278-5846(99)00035-4
Pruitt DL, 1999, TOXICOLOGY, V138, P11, DOI 10.1016/S0300-483X(99)00073-6
ROCH P, 1991, ECOTOX ENVIRON SAFE, V22, P283, DOI 10.1016/0147-6513(91)90079-5
Safe S, 2004, TOXICOLOGY, V205, P3, DOI 10.1016/j.tox.2004.06.032
Schell LM, 2009, ENVIRON RES, V109, P86, DOI 10.1016/j.envres.2008.08.015
Segre M, 2002, TOXICOLOGY, V174, P163, DOI 10.1016/S0300-483X(02)00039-2
Serhan CN, 2007, FASEB J, V21, P325, DOI 10.1096/fj.06-7227rev
Sharma R, 2000, TOXICOLOGY, V156, P13, DOI 10.1016/S0300-483X(00)00328-0
Shields PG, 2006, CANCER EPIDEM BIOMAR, V15, P830, DOI 10.1158/1055-9965.EPI-06-0222
Siette J, 2013, BIOL PSYCHIAT, V73, P435, DOI 10.1016/j.biopsych.2012.05.034
Steed DL, 2003, SURG CLIN N AM, V83, P547, DOI 10.1016/S0039-6109(02)00208-6
Swift ME, 2001, J INVEST DERMATOL, V117, P1027, DOI 10.1046/j.0022-202x.2001.01539.x
Szpaderska AM, 2003, J DENT RES, V82, P621, DOI 10.1177/154405910308200810
Tanner MK, 2019, BEHAV BRAIN RES, V369, DOI 10.1016/j.bbr.2019.111923
Toth CL, 2019, TOXICOL ENV HEALTH, V11, P283, DOI 10.1007/s13530-019-0415-3
TRYPHONAS H, 1991, FUND APPL TOXICOL, V16, P773, DOI 10.1016/0272-0590(91)90163-X
VILLE P, 1995, J INVERTEBR PATHOL, V65, P217, DOI 10.1006/jipa.1995.1033
Yoo BS, 1997, TOXICOL LETT, V91, P83, DOI 10.1016/S0378-4274(96)03861-1
Zemva J, 2017, REDOX BIOL, V13, P674, DOI 10.1016/j.redox.2017.08.007
Zhang JY, 2016, ONCOTARGET, V7, P8498, DOI 10.18632/oncotarget.7381
Zhao F, 1997, CHEMOSPHERE, V34, P1605, DOI 10.1016/S0045-6535(97)00456-6
Zhao J X, 2019, Fa Yi Xue Za Zhi, V35, P143, DOI 10.12116/j.issn.1004-5619.2019.02.003
NR 67
TC 2
Z9 2
U1 0
U2 4
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD AUG 24
PY 2020
VL 15
IS 8
AR e0237705
DI 10.1371/journal.pone.0237705
PG 22
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA NI7TB
UT WOS:000565550400003
PM 32833973
OA Green Published
DA 2023-03-13
ER
PT J
AU Huang, Y
Han, D
Zhu, XM
Yang, YX
Jin, JY
Chen, YF
Xie, SQ
AF Huang, Ying
Han, Dong
Zhu, Xiaoming
Yang, Yunxia
Jin, Junyan
Chen, Yifeng
Xie, Shouqi
TI Response and recovery of gibel carp from subchronic oral administration
of aflatoxin B-1
SO AQUACULTURE
LA English
DT Article
DE Aflatoxin B-1; Carassius auratus gibelio; Growth; Residue; Recovery
ID ENZYME-ACTIVITIES; ESTERIFIED-GLUCOMANNAN; DIETARY CYANOBACTERIA;
COMPENSATORY GROWTH; CONTAMINATED FEED; RAINBOW-TROUT; PERFORMANCE;
HORMESIS; SERUM; ACCUMULATION
AB A 16-week feeding trial was conducted to evaluate the effect of dietary aflatoxin B-1 (AFB(1)) on growth, physiological responses, histological changes, and accumulation in gibel carp (Carassius auratus gibelio), and the recovery when the fish were fed basal diet without supplemental chemical AFB(1). Triplicate groups of gibel carp with initial body weight of 10.33 +/- 0.19 g were fed seven semipurified diets (Diets 1 to 7) designed to contain 0, 10, 20, 50, 100, 200, 1000 mu g AFB(1) kg(-1) diet (determined level was 3.2, 11.3, 20.2, 55.2, 95.8, 176.0, 991.5 mu g AFB(1) kg(-1) diet, respectively) for 12 weeks. Subsequently, all fish were fed Diet 1 for another 4 weeks. The results showed that, after 12 weeks of AFB(1) exposure, average body weight in fish fed Diet 4 was 1123% of that of the control group (Diet 1), but there was no significant difference between other groups and the control group. No external changes, unusual behavior or significant difference in mortality were observed in the fish fed with various levels of AFB(1). There was no significant difference in feeding rate (FR) between the control and experimental groups. Specific growth rate (SGR) and feed efficiency (FE) of the fish fed with Diet 4 was significantly higher than that fed the control diet during the first exposure period (weeks 0-4) while there were no significant difference during the second exposure period (weeks 5-12). Fish fed with various levels of AFB(1) showed no significant differences in activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), superoxide dismutase (SOD), total protein, total serum cholesterol, and hematocrit compared to the control group. No significant histological lesions were identified between the control and increasing AFB(1) treatments. Low AFB(1) residues were found in muscles, whereas high residues of AFB(1) were determined in hepatopancreas (above the safety limitation of 5 mu g kg(-1)), which was logarithmically related to the dietary AFB(1) levels. Our results indicate that gibel carp is a less susceptible species to AFB(1) exposure up to approximately 1000 mu g AFB(1) kg(-1) diet, at least for 12 weeks. The fish also showed strong clearance ability of AFB(1) during recovery period. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Huang, Ying; Han, Dong; Zhu, Xiaoming; Yang, Yunxia; Jin, Junyan; Chen, Yifeng; Xie, Shouqi] Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan 430072, Hubei, Peoples R China.
[Huang, Ying] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China.
[Xie, Shouqi] Shanghai Univ E Inst, Aquaculture Div, Shanghai, Peoples R China.
C3 Chinese Academy of Sciences; Institute of Hydrobiology, CAS; Chinese
Academy of Sciences; University of Chinese Academy of Sciences, CAS
RP Zhu, XM (corresponding author), Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan 430072, Hubei, Peoples R China.
EM xmzhu@ihb.ac.cn
RI yang, yx/GZM-0464-2022
FU earmarked fund for China Agriculture Research System [CARS-46-19];
Special Fund for Agro-scientific Research in the Public Interest
[201003020]
FX The authors would like to give great thanks to Mr. Guanghan NIE for his
technical support and Dr. Raghavan for his helpful advice to the
manuscript. The research was supported by the earmarked fund for China
Agriculture Research System (CARS-46-19) and Special Fund for
Agro-scientific Research in the Public Interest (201003020).
CR Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x
Aravind KL, 2003, POULTRY SCI, V82, P571, DOI 10.1093/ps/82.4.571
Bintvihok A, 2006, TOXICON, V47, P41, DOI 10.1016/j.toxicon.2005.09.009
Bintvihok A, 2002, J VET MED SCI, V64, P1037, DOI 10.1292/jvms.64.1037
BOLIN DW, 1952, SCIENCE, V116, P634, DOI 10.1126/science.116.3023.634
Boonyaratpalin M, 2001, AQUAC RES, V32, P388, DOI 10.1046/j.1355-557x.2001.00046.x
Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541]
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938
Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246
Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729
CHAVEZSANCHEZ MC, 1994, AQUACULTURE, V127, P49, DOI 10.1016/0044-8486(94)90191-0
Chen H.Y., 2008, CHINA POULT, V30, P33
COOK WO, 1986, AM J VET RES, V47, P1817
Deng SX, 2010, AQUACULTURE, V307, P233, DOI 10.1016/j.aquaculture.2010.07.029
DOBSON SH, 1984, J FISH BIOL, V25, P649, DOI 10.1111/j.1095-8649.1984.tb04911.x
Dong GF, 2011, ENVIRON TOXICOL, V26, P161, DOI 10.1002/tox.20540
Dong GF, 2009, TOXICON, V54, P208, DOI 10.1016/j.toxicon.2009.03.031
Eaton DL, 1994, TOXICOLOGY AFLATOXIN
El-Banna R., 1992, Veterinary Medical Journal Giza, V40, P17
El-Sayed YS, 2009, FOOD CHEM TOXICOL, V47, P1606, DOI 10.1016/j.fct.2009.04.008
FDA, 2007, ACT LEV POIS DEL SUB
Fernandez A, 1997, J SCI FOOD AGR, V74, P161, DOI 10.1002/(SICI)1097-0010(199706)74:2<161::AID-JSFA783>3.0.CO;2-D
GALLAGHER EP, 1995, TOXICOL APPL PHARM, V132, P82, DOI 10.1006/taap.1995.1089
Gowda NKS, 2007, ANIM FEED SCI TECH, V133, P167, DOI 10.1016/j.anifeedsci.2006.08.009
HALVER. J. E, 1969, Aflatoxicosis and trout hepatoma., P265
Han D, 2010, AQUACULT NUTR, V16, P335, DOI 10.1111/j.1365-2095.2009.00669.x
Han XY, 2008, LIVEST SCI, V119, P216, DOI 10.1016/j.livsci.2008.04.006
HARTLEY RD, 1963, NATURE, V198, P1056, DOI 10.1038/1981056a0
Hendricks J. D., 1994, TOXICOLOGY AFLATOXIN, P103, DOI DOI 10.1016/B978-0-12-228255-3.50011-8
Horder H., 1981, AMINOTRANSFERASE MET, V3, p[416, 444]
HUFF WE, 1986, POULTRY SCI, V65, P1891, DOI 10.3382/ps.0651891
INT AGCY RES CANC, 1993, IARC MONOG EVAL CARC, V56, P245
JANTRAROTAI W, 1990, Journal of Aquatic Animal Health, V2, P237, DOI 10.1577/1548-8667(1990)002<0237:ATOABT>2.3.CO;2
JANTRAROTAI W, 1990, Journal of Aquatic Animal Health, V2, P248, DOI 10.1577/1548-8667(1990)002<0248:STODAB>2.3.CO;2
Johnson TE, 1998, HUM EXP TOXICOL, V17, P263, DOI 10.1191/096032798678908729
Joner A, 2000, MYCOTOXINS
Jones CE, 1984, OFFICIAL METHODS ANA, P152
Kececi T, 1998, BRIT POULTRY SCI, V39, P452, DOI 10.1080/00071669889051
Kid P.R.N., 1954, J CLIN PATHOL, V6, P322
Li Y.Y., 1998, J CHINESE POULTRY, V20, P30
Lovell T., 1984, Aquaculture, V10, P34
Madhusudhanan N, 2004, ENVIRON TOXICOL PHAR, V17, P73, DOI 10.1016/j.etap.2004.03.002
Manning BB, 2005, J WORLD AQUACULT SOC, V36, P59, DOI 10.1111/j.1749-7345.2005.tb00131.x
MATTSON MP, 1995, J NEUROCHEM, V65, P1740
MCCORD JM, 1969, J BIOL CHEM, V244, P6049
NGETHE S, 1993, AQUACULTURE, V114, P355, DOI 10.1016/0044-8486(93)90309-M
NRC, 1993, NUTR REQ FISH SHRIMP, DOI 10.17226/2115
OSTROWSKIMEISSNER HT, 1995, AQUACULTURE, V131, P155, DOI 10.1016/0044-8486(95)98125-U
PLAKAS SM, 1991, FOOD CHEM TOXICOL, V29, P805, DOI 10.1016/0278-6915(91)90106-H
Raghavan PR, 2011, AQUACULT NUTR, V17, pE39, DOI 10.1111/j.1365-2095.2009.00725.x
Raju MVLN, 2000, BRIT POULTRY SCI, V41, P640, DOI 10.1080/713654986
Rastogi R, 2001, PHARMACOL TOXICOL, V88, P53, DOI 10.1034/j.1600-0773.2001.088002053.x
Rodrigues I., 2008, BIOMIN NEWSL, V7, P1
Sahoo PK, 2003, COMP IMMUNOL MICROB, V26, P65, DOI 10.1016/S0147-9571(01)00038-8
Sahoo PK, 2001, FISH SHELLFISH IMMUN, V11, P683, DOI 10.1006/fsim.2001.0345
Santacroce MP, 2008, REV FISH BIOL FISHER, V18, P99, DOI 10.1007/s11160-007-9064-8
SIEDEL J, 1983, CLIN CHEM, V29, P1075
Smith J. E., 1997, Handbook of plant and fungal toxicants., P269
Tuan NA, 2002, AQUACULTURE, V212, P311, DOI 10.1016/S0044-8486(02)00021-2
Zaki M. S., 2008, American-Eurasian Journal of Agricultural and Environmental Science, V3, P211
Zhao M, 2006, J APPL ICHTHYOL, V22, P72, DOI 10.1111/j.1439-0426.2006.00706.x
Zhao M, 2006, AQUACULTURE, V261, P960, DOI 10.1016/j.aquaculture.2006.08.019
NR 63
TC 44
Z9 49
U1 1
U2 28
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0044-8486
EI 1873-5622
J9 AQUACULTURE
JI Aquaculture
PD SEP 1
PY 2011
VL 319
IS 1-2
BP 89
EP 97
DI 10.1016/j.aquaculture.2011.06.024
PG 9
WC Fisheries; Marine & Freshwater Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Fisheries; Marine & Freshwater Biology
GA 818KV
UT WOS:000294751500014
DA 2023-03-13
ER
PT J
AU Malandrino, P
Russo, M
Ronchi, A
Moretti, F
Giani, F
Vigneri, P
Masucci, R
Pellegriti, G
Belfiore, A
Vigneri, R
AF Malandrino, Pasqualino
Russo, Marco
Ronchi, Anna
Moretti, Fabiola
Giani, Fiorenza
Vigneri, Paolo
Masucci, Romilda
Pellegriti, Gabriella
Belfiore, Antonino
Vigneri, Riccardo
TI Concentration of Metals and Trace Elements in the Normal Human and Rat
Thyroid: Comparison with Muscle and Adipose Tissue and Volcanic Versus
Control Areas
SO THYROID
LA English
DT Article
DE trace elements; metals; human thyroid; rat thyroid; muscle tissue;
adipose tissue; volcanic area
ID CANCER INCIDENCE; COPPER; SPECTROMETRY; CARCINOMA; MANGANESE; SELENIUM;
HORMESIS; CADMIUM; ORGANS; DAMAGE
AB Background: The concentration of trace elements and metals in the thyroid is the result of exposure, uptake, retention, and clearance. The specificity and selectivity of thyroid capacity to concentrate these elements relative to other tissues are not known. To obtain this information, we measured the tissue concentration of 26 elements in the thyroid, muscle, and fat of euthyroid human subjects and also in normal rats.
Methods: At programmed surgery, small (<1 g) tissue fragments were collected in 77 euthyroid subjects. Macroscopically normal thyroid tissue, sternothyroid muscle, and neck subcutaneous fat samples were excised, and thyroid tissue was confirmed to be morphologically normal through microscopy. Tissue specimens (thyroid, hindlimb muscle, and abdominal fat) were also obtained from normal rats. Measurements of trace elements were performed on tissues using inductively coupled plasma mass spectrometry (DRC-ICP-MS).
Results: Only 19 of the 26 investigated elements were measurable as 7 elements were below the limit of detection. The ranking concentration in human thyroid tissue, not considering iodide, indicated that Zn, Br, Cu, Cr, Se, and Mn represented over 95% of the measured elements. A similar ranking was observed in the rat thyroid. A comparison with other tissues indicated that in addition to I, also Br, Mn, Se, and Sn were significantly more concentrated in the thyroid, and this was also the case for the recognized carcinogens As, Cd, and Hg. As and Hg, but not Cd (which was not detectable in any of the rat tissues), were also more concentrated in the rat thyroid. Since human thyroid specimens were also obtained from residents of a volcanic area, where environmental pollution may cause human biocontamination, we compared the trace element concentration in specimens from the volcanic area with controls. Many trace elements were slightly, but not significantly, increased in the volcanic area specimens.
Conclusions: In the normal human thyroid, many trace elements, including Br, Mn, Se, and Sn, and the recognized carcinogens, As, Cd, and Hg, are significantly more concentrated than in muscle and fat of the same individual. Similar data were observed in rats. The reason for the differential element accumulation in the thyroid is unclear; a better understanding may be useful to further clarify thyroid biology.
C1 [Malandrino, Pasqualino; Russo, Marco; Giani, Fiorenza; Pellegriti, Gabriella; Belfiore, Antonino; Vigneri, Riccardo] Univ Catania, Dept Clin & Expt Med, Endocrinol, Garibaldi Nesima Med Ctr, Via Palermo 636, I-95122 Catania, Italy.
[Ronchi, Anna] IRCCS Pavia, Maugeri Clin Sci Inst Spa SC, Toxicol Unit, Lab Expt & Clin Toxicol, Pavia, Italy.
[Moretti, Fabiola] Natl Res Council Italy, Inst Cell Biol & Neurobiol, Rome, Italy.
[Vigneri, Paolo] Univ Catania, Dept Clin & Expt Med, Med Oncol, Catania, Italy.
[Masucci, Romilda] Garibaldi Nesima Med Ctr, Surg Oncol, Catania, Italy.
[Vigneri, Riccardo] Natl Res Council CNR IBB, Inst Biostruct & Bioimages, Sect Catania, Catania, Italy.
C3 Presidio Ospedaliero Garibaldi-Nesima; University of Catania; IRCCS
Fondazione Casimiro Mondino; Consiglio Nazionale delle Ricerche (CNR);
Istituto di Biologia Cellulare e Neurobiologia (IBCN-CNR); University of
Catania; Presidio Ospedaliero Garibaldi-Nesima; Consiglio Nazionale
delle Ricerche (CNR); Istituto di Biostrutture e Bioimmagini (IBB-CNR)
RP Vigneri, R (corresponding author), Univ Catania, Dept Clin & Expt Med, Endocrinol, Garibaldi Nesima Med Ctr, Via Palermo 636, I-95122 Catania, Italy.
EM vigneri@unict.it
RI Gianì, Fiorenza/K-8833-2016; Ronchi, Anna/AAC-2144-2020; Moretti,
Fabiola/I-5647-2013; Pellegriti, Gabriella/CAH-1780-2022; Belfiore,
Antonino/B-4652-2011; Pellegriti, Gabriella/J-7923-2012; VIGNERI,
Paolo/K-8504-2016
OI Gianì, Fiorenza/0000-0002-1901-8230; Ronchi, Anna/0000-0003-0907-3460;
Moretti, Fabiola/0000-0002-2691-1254; Pellegriti,
Gabriella/0000-0001-6102-379X; Belfiore, Antonino/0000-0002-6181-4193;
Pellegriti, Gabriella/0000-0001-6102-379X; VIGNERI,
Paolo/0000-0002-5943-6066; Malandrino, Pasqualino/0000-0003-2474-0954
CR Al-Sayer H, 2004, MOL CELL BIOCHEM, V260, P1, DOI 10.1023/B:MCBI.0000026027.20680.c7
[Anonymous], 2001, ZINC BIOCH PHYSL HOM, DOI [10.1007/978-94-017-3728-9_7, DOI 10.1007/978-94-017-3728-9_7]
ARNBJORNSSON E, 1986, ARCH ENVIRON HEALTH, V41, P36, DOI 10.1080/00039896.1986.9935763
Assem FL, 2011, J TOXICOL ENV HEAL B, V14, P537, DOI 10.1080/10937404.2011.615111
Baranov VI, 1999, J ANAL ATOM SPECTROM, V14, P1133, DOI 10.1039/a809889a
Beyersmann D, 2008, ARCH TOXICOL, V82, P493, DOI 10.1007/s00204-008-0313-y
Blazewicz A, 2010, J CHROMATOGR B, V878, P34, DOI 10.1016/j.jchromb.2009.11.014
Boulyga SF, 2004, ANAL BIOANAL CHEM, V380, P198, DOI 10.1007/s00216-004-2699-6
Brady DC, 2014, NATURE, V509, P492, DOI 10.1038/nature13180
Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222
Capinski M, 2012, MASTER MATH FINANC, P48
Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133
Fada G, 2010, PATHOLOGICA, V102, P405
Gore AC, 2015, ENDOCR REV, V36, pE1, DOI 10.1210/er.2015-1010
Guo HW, 2014, ENDOCRINE, V45, P230, DOI 10.1007/s12020-013-9968-0
Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005
Hornung R.W., 1990, APPL OCCUP ENV HYGIE, V5, P46, DOI [DOI 10.1080/1047322X.1990.10389587, 10.1080/1047322X.1990.10389587]
Jiang HM, 2018, ENVIRON SCI POLLUT R, V25, P28275, DOI 10.1007/s11356-018-2835-z
Jiang H, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13040442
Katoh Y, 2002, BIOL TRACE ELEM RES, V90, P57, DOI 10.1385/BTER:90:1-3:57
Kelly ADR, 2013, TOXICOL SCI, V131, P434, DOI 10.1093/toxsci/kfs324
KOLONEL LN, 1990, CANCER CAUSE CONTROL, V1, P223, DOI 10.1007/BF00117474
Kucharzewski M, 2003, BIOL TRACE ELEM RES, V93, P9, DOI 10.1385/BTER:93:1-3:9
KUNG TM, 1981, ARCH ENVIRON HEALTH, V36, P265, DOI 10.1080/00039896.1981.10667635
Maier J, 2006, ENDOCRINOLOGY, V147, P3391, DOI 10.1210/en.2005-1669
Malandrino P, 2016, ENDOCRINE, V53, P471, DOI 10.1007/s12020-015-0761-0
MINOIA C, 1992, SCI TOTAL ENVIRON, V120, P63, DOI 10.1016/0048-9697(92)90216-F
Patel Kepal N, 2006, Cancer Control, V13, P111
Pavelka S, 2004, PHYSIOL RES, V53, pS81
Pellegriti G, 2009, JNCI-J NATL CANCER I, V101, P1575, DOI 10.1093/jnci/djp354
Petr EJ, 2016, SEMIN ONCOL, V43, P582, DOI 10.1053/j.seminoncol.2016.08.007
Prins GS, 2019, BASIC CLIN PHARMACOL, V125, P14, DOI 10.1111/bcpt.13125
Reddy SB, 2002, NUCL INSTRUM METH B, V196, P333, DOI 10.1016/S0168-583X(02)01292-2
Shen F, 2015, BIOL TRACE ELEM RES, V167, P225, DOI 10.1007/s12011-015-0304-9
Valko M, 2005, CURR MED CHEM, V12, P1161, DOI 10.2174/0929867053764635
Vella V, 2009, INT J CANCER, V124, P2539, DOI 10.1002/ijc.24221
Vigneri R, 2017, MOL CELL ENDOCRINOL, V457, P73, DOI 10.1016/j.mce.2016.10.027
Vigneri R, 2015, CURR OPIN ONCOL, V27, P1, DOI 10.1097/CCO.0000000000000148
Watjen W, 2002, ENVIRON HEALTH PERSP, V110, P865, DOI 10.1289/ehp.110-1241262
Xu MM, 2018, CLIN CANCER RES, V24, P4271, DOI 10.1158/1078-0432.CCR-17-3705
Yaman M, 2004, ANAL SCI, V20, P1363, DOI 10.2116/analsci.20.1363
Yang MH, 2017, ONCOL LETT, V14, P3103, DOI 10.3892/ol.2017.6518
Zaichick V, 2018, AGING CLIN EXP RES, V30, P1059, DOI 10.1007/s40520-018-0906-0
Zhu HD, 2010, HEALTH PHYS, V98, P61, DOI 10.1097/HP.0b013e3181bad921
NR 44
TC 10
Z9 10
U1 0
U2 10
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1050-7256
EI 1557-9077
J9 THYROID
JI Thyroid
PD FEB 1
PY 2020
VL 30
IS 2
BP 290
EP 299
DI 10.1089/thy.2019.0244
PG 10
WC Endocrinology & Metabolism
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Endocrinology & Metabolism
GA KM6VT
UT WOS:000514276300014
PM 31880996
DA 2023-03-13
ER
PT J
AU Wang, YB
Song, L
Hong, X
Cui, LB
Zhang, ZD
Xiao, H
Zhou, JW
Wang, XR
AF Wang, Yubang
Song, Ling
Hong, Xia
Cui, Lunbiao
Zhang, Zhengdong
Xiao, Hang
Zhou, Jianwei
Wang, Xinru
TI Low concentrations mono-butyl phthalate stimulates steroidogenesis by
facilitating steroidogenic acute regulatory protein expression in mouse
Leydig tumor cells (MLTC-1)
SO CHEMICO-BIOLOGICAL INTERACTIONS
LA English
DT Article
DE mono-butyl phthalate; mouse Leydig tumor cells (MLTC-1);
steroidogenesis; steroidogenic acute regulatory protein
ID FETAL-RAT TESTES; DI(N-BUTYL) PHTHALATE; CHOLESTEROL TRANSPORT;
REPRODUCTIVE-TRACT; IN-UTERO; GENE; HORMESIS; EXPOSURE; RECEPTOR;
PHOSPHORYLATION
AB Di-n-butyl phthalate (DBP) is one of the most dominant phthalate esters and is widely distributed environmental contaminant. Although previous studies have demonstrated that DBP led to a variety of male reproductive abnormalities similar to those caused by androgen receptor antagonists, DBP and its active metabolite, mono-butyl phthalate (MBP), have been demonstrated no affinity for the androgen receptor, but rather exert anti-androgenic effect by altering testosterone biosynthesis. Furthermore, all these results were obtained from very high administrations of DBP or MBP. The purpose of this study was to determine the onset and the site of action of relatively low concentration of MBP on steroidogenesis in vitro. The mouse Leydig tumor cells (MLTC-1) was employed as a cellular model to investigate the effect of MBP on steroidogenesis. Various concentrations of MBP (1, 10, 100 and 1000 nmol/l) and its solvent dimethyl sulfoxide (DMSO) were added to the medium for 24 h followed by stimulation of some compounds such as human chorionic gonadotrophin (hCG), cholera toxin (CT), forskolin, cAMP analog 8-Br-cAMP, 22(R)-hydroxycholesterol (22R-HC) and pregnenolone. Progesterone in the medium and amounts of intracellular cAMP were measured by RIA. Expression of steroidogenic acute regulatory protein (StAR) was monitored by real-time PCR and Western blotting. The results revealed that the increases of progesterone production in the presence of hCG, CT, forskolin and 8-Br-cAMP were augmented by MBP. In contrast, the levels of intracellular cAMP exhibited no statistical significance when MLTC-1 cells were treated as above. These results implied that the site in the steroid biosynthesis pathway affected by MBP occurs after PKA activation in MLTC-1 cells. Moreover, supplementing the medium with 22R-HC and pregnenolone as progesterone precursors for P450 side chain cleavage enzyme (P450scc) and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), respectively, resulted in no rise in progesterone production, making clear that MBP did not influence the P450scc and 3 beta-HSD but on the rate-limiting step, cholesterol transportation into mitochondria. In fact, the above results were confirmed by the upgraded StAR expression in MBP-treated cells. These data support that MBP promotes steroid hormone production by facilitating StAR expression in MLTC-1 cells. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
C1 Nanjing Med Univ, Inst Toxicol, Key Lab Reprod Med Jiangsu Prov, Nanjing 210029, Peoples R China.
C3 Nanjing Medical University
RP Wang, XR (corresponding author), Nanjing Med Univ, Inst Toxicol, Key Lab Reprod Med Jiangsu Prov, Nanjing 210029, Peoples R China.
EM xrwang@njmu.edu.cn
RI cui, lunbiao/AAP-7931-2021; zhang, zheng/HCH-9684-2022
CR ANNA K, 2003, CARCINOGENESIS, V24, P1389
ASCOLI M, 1989, ANN NY ACAD SCI, V564, P99, DOI 10.1111/j.1749-6632.1989.tb25891.x
Ascoli M, 2002, ENDOCR REV, V23, P141, DOI 10.1210/er.23.2.141
Barlow NJ, 2003, TOXICOL SCI, V73, P431, DOI 10.1093/toxsci/kfg087
Blount BC, 2000, ENVIRON HEALTH PERSP, V108, P979, DOI 10.2307/3435058
Boujrad N, 2000, ENDOCRINOLOGY, V141, P3137, DOI 10.1210/en.141.9.3137
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730
Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585
Caron KM, 1997, P NATL ACAD SCI USA, V94, P11540, DOI 10.1073/pnas.94.21.11540
Chen CW, 2001, FOLIA HISTOCHEM CYTO, V39, P20
Chen JF, 2005, REPROD TOXICOL, V20, P195, DOI 10.1016/j.reprotox.2005.01.013
CLARK BJ, 1994, J BIOL CHEM, V269, P28314
Clem BF, 2005, ENDOCRINOLOGY, V146, P1348, DOI 10.1210/en.2004-0761
Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007
Duty SM, 2004, J ANDROL, V25, P293
Foster PMD, 2001, HUM REPROD UPDATE, V7, P231, DOI 10.1093/humupd/7.3.231
Hedger MP, 1997, REPROD FERT DEVELOP, V9, P659, DOI 10.1071/R97062
Higuchi TT, 2003, TOXICOL SCI, V72, P301, DOI 10.1093/toxsci/kfg036
Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376
Kaiser J, 2003, SCIENCE, V302, P378, DOI 10.1126/science.302.5644.378
Kavlock R, 2002, REPROD TOXICOL, V16, P489, DOI 10.1016/S0890-6238(02)00033-3
KHAN SA, 1990, ENDOCRINOLOGY, V126, P3043, DOI 10.1210/endo-126-6-3043
Koch HM, 2003, ENVIRON RES, V93, P177, DOI 10.1016/S0013-9351(03)00083-5
Kohn MC, 2000, ENVIRON HEALTH PERSP, V108, pA440, DOI 10.1289/ehp.108-a440b
KRISTINA AT, 2005, ENV HLTH PERSPECT, V113, P1271
KUMAR S, 1994, CELL CALCIUM, V15, P349, DOI 10.1016/0143-4160(94)90010-8
LIN D, 1995, SCIENCE, V267, P1828, DOI 10.1126/science.7892608
Lin T, 1998, ENDOCRINE, V8, P73, DOI 10.1385/ENDO:8:1:73
Maness SC, 1998, TOXICOL APPL PHARM, V151, P135, DOI 10.1006/taap.1998.8431
Manna P. R., 2005, Current Drug Targets - Immune Endocrine and Metabolic Disorders, V5, P93, DOI 10.2174/1568008053174714
Manna PR, 1999, ENDOCRINOLOGY, V140, P1739, DOI 10.1210/en.140.4.1739
Manna PR, 2004, MOL ENDOCRINOL, V18, P558, DOI 10.1210/me.2003-0223
Manna PR, 2003, J MOL ENDOCRINOL, V30, P381, DOI 10.1677/jme.0.0300381
Manna PR, 2002, BIOL REPROD, V67, P1393, DOI 10.1095/biolreprod.102.007179
Manna Pulak R., 2004, Biol Proced Online, V6, P83, DOI 10.1251/bpo76
Melnick Ronald, 2002, Environmental Health Perspectives, V110, P427
Mylchreest E, 1999, TOXICOL APPL PHARM, V156, P81, DOI 10.1006/taap.1999.8643
Mylchreest E, 2002, REPROD TOXICOL, V16, P19, DOI 10.1016/S0890-6238(01)00201-5
Mylchreest E, 1998, TOXICOL SCI, V43, P47, DOI 10.1093/toxsci/43.1.47
Parks LG, 2000, TOXICOL SCI, V58, P339, DOI 10.1093/toxsci/58.2.339
Qiu CP, 2003, CANCER RES, V63, P5674
Richards JS, 2001, MOL ENDOCRINOL, V15, P209, DOI 10.1210/me.15.2.209
RORY BC, 2004, TOXICOL SCI, V77, P151
Shono T, 2003, UROL RES, V31, P293, DOI 10.1007/s00240-003-0330-5
Shultz VD, 2001, TOXICOL SCI, V64, P233, DOI 10.1093/toxsci/64.2.233
STOCCO DM, 1993, J STEROID BIOCHEM, V46, P337, DOI 10.1016/0960-0760(93)90223-J
Stocco DM, 1996, ENDOCR REV, V17, P221, DOI 10.1210/er.17.3.221
STOCCO DM, 1992, MOL CELL ENDOCRINOL, V84, P185, DOI 10.1016/0303-7207(92)90029-6
Thompson CJ, 2004, ENDOCRINOLOGY, V145, P1227, DOI 10.1210/en.2003-1475
VERHOEVEN G, 1988, MOL CELL ENDOCRINOL, V57, P51, DOI 10.1016/0303-7207(88)90031-7
WANG Y, 2005, CHIN J PUBLIC HLTH, V21, P1168
WANG Y, IN PRESS J TOXICOL A
Wang Yu-bang, 2005, Zhonghua Yufang Yixue Zazhi, V39, P179
Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa
Wooton-Kee CR, 2000, ENDOCRINOLOGY, V141, P1345, DOI 10.1210/en.141.4.1345
Wu CS, 2001, J ANDROL, V22, P245
Zirkin BR, 2000, BIOL REPROD, V63, P977, DOI 10.1095/biolreprod63.4.977
NR 58
TC 21
Z9 27
U1 0
U2 14
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0009-2797
EI 1872-7786
J9 CHEM-BIOL INTERACT
JI Chem.-Biol. Interact.
PD DEC 1
PY 2006
VL 164
IS 1-2
BP 15
EP 24
DI 10.1016/j.cbi.2006.08.022
PG 10
WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology
GA 114ET
UT WOS:000242650200002
PM 16999944
DA 2023-03-13
ER
PT J
AU Richer, S
Stiles, W
Ulanski, L
Carroll, D
Podella, C
AF Richer, Stuart
Stiles, William
Ulanski, Lawrence
Carroll, Donn
Podella, Carla
TI Observation of Human Retinal Remodeling in Octogenarians with a
Resveratrol Based Nutritional Supplement
SO NUTRIENTS
LA English
DT Article
DE macular degeneration; gene expression; epigenetics; RPE (retinal pigment
epithelium) function; VEGF; pharmacogenomics
AB Purpose: Rare spontaneous remissions from age-related macular degeneration (AMD) suggest the human retina has large regenerative capacity, even in advanced age. We present examples of robust improvement of retinal structure and function using an OTC oral resveratrol (RV) based nutritional supplement called Longevinex (R) or L/RV (circa 2004, Resveratrol Partners, LLC, Las Vegas, NV, USA). RV, a polyphenolic phytoalexin caloric-restriction mimic, induces hormesis at low doses with widespread beneficial effects on systemic health. RV alone inhibits neovascularization in the murine retina. Thus far, published evidence includes L/RV mitigation of experimentally induced murine cardiovascular reperfusion injury, amelioration of human atherosclerosis serum biomarkers in a human Japanese randomized placebo controlled trial, modulation of micro RNA 20b and 539 that control hypoxia-inducing-factor (HIF-1) and vascular endothelial growth factor (VEGF) genes in the murine heart (RV inhibited micro RNA20b 189-fold, L/RV 1366-fold). Little is known about the effects of L/RV on human ocular pathology. Methods: Absent FDA IRB approval, but with permission from our Chief of Staff and medical center IRB, L/RV is reserved for AMD patients, on a case-by-case compassionate care basis. Patients include those who progress on AREDS II type supplements, refuse intra-vitreal anti-VEGF injections or fail to respond to Lucentis (R), Avastin (R) or Eylea (R). Patients are clinically followed traditionally as well as with multi-spectral retinal imaging, visual acuity, contrast sensitivity, cone glare recovery and macular visual fields. Three cases are presented. Results: Observed dramatic short-term anti-VEGF type effect including anatomic restoration of retinal structure with a suggestion of improvement in choroidal blood flow by near IR multispectral imaging. The visual function improvement mirrors the effect seen anatomically. The effect is bilateral with the added benefit of better RPE function. Effects have lasted for one year or longer when taken daily, at which point one patient required initiation of anti-VEGF agents. Unanticipated systemic benefits were observed. Conclusions: Preliminary observations support previous publications in animals and humans. Restoration of structure and visual function in octogenarians with daily oral consumption of L/RV is documented. Applications include failure on AREDS II supplements, refusing or failing conventional anti-VEGF therapy, adjunct therapy to improve RPE function, and compassionate use in medically underserved or economically depressed third-world countries.
C1 [Richer, Stuart; Stiles, William; Ulanski, Lawrence; Carroll, Donn; Podella, Carla] Captain James Lovell Fed Hlth Care Ctr, Eye Clin 112E, N Chicago, IL 60064 USA.
RP Richer, S (corresponding author), Captain James Lovell Fed Hlth Care Ctr, Eye Clin 112E, 3001 Green Bay Rd, N Chicago, IL 60064 USA.
EM stuart.richer1@VA.Gov; ilovemabel@aol.com; larry.ulanski@gmail.com;
donn.carroll@gmail.com; cjpstella63@gmail.com
FU Captain James Lovell Federal Health Care Facility, DVA-Naval Medical
Center, North Chicago, IL, USA
FX These medical case reports are based on original clinical work supported
by the Optometry/Ophthalmology sections of Captain James Lovell Federal
Health Care Facility, DVA-Naval Medical Center, North Chicago, IL, USA.
Further peer-reviewed scientific studies are available at [14].
CR [Anonymous], THE 2ND INTERNATIONA
Barger JL, 2008, EXP GERONTOL, V43, P859, DOI 10.1016/j.exger.2008.06.013
Fujitaka K, 2011, NUTR RES, V31, P842, DOI 10.1016/j.nutres.2011.09.028
Harris G., 2012, FOOD AND NUTRIENTS I
Juhasz B, 2010, EXP CLIN CARDIOL, V15, pE134
Pezzuto JM, 2011, ANN NY ACAD SCI, V1215, P123, DOI 10.1111/j.1749-6632.2010.05849.x
Richer S, 2009, OPTOMETRY, V80, P695, DOI 10.1016/j.optm.2009.03.018
Richer SP, 2011, OPTOMETRY, V82, P667, DOI 10.1016/j.optm.2011.08.008
Vang O, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019881
NR 9
TC 37
Z9 37
U1 0
U2 18
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2072-6643
J9 NUTRIENTS
JI Nutrients
PD JUN
PY 2013
VL 5
IS 6
BP 1989
EP 2005
DI 10.3390/nu5061989
PG 17
WC Nutrition & Dietetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Nutrition & Dietetics
GA 169HS
UT WOS:000320771400009
PM 23736827
OA Green Published, Green Submitted, gold
DA 2023-03-13
ER
PT J
AU dos Santos, MLS
de Almeida, AAF
da Silva, NM
Oliveira, BRM
Silva, JVS
Souza, JO
Ahnert, D
Baligar, VC
AF Souza dos Santos, Mayana Leandra
de Almeida, Alex-Alan Furtado
da Silva, Natalia Martins
Machado Oliveira, Bruna Rafaela
Silva, Jose Victor S.
Souza Junior, Jose Olimpio
Ahnert, Dario
Baligar, Virupax C.
TI Mitigation of cadmium toxicity by zinc in juvenile cacao: Physiological,
biochemical, molecular and micromorphological responses
SO ENVIRONMENTAL AND EXPERIMENTAL BOTANY
LA English
DT Article
DE Theobroma cacao; Heavy metal; Photosynthesis; Oxidative stress; Gene
expression; Micromorphology
ID ANTIOXIDATIVE ENZYME-ACTIVITIES; INDUCED OXIDATIVE STRESS; HEAVY-METAL;
CHLOROPHYLL FLUORESCENCE; ALLEVIATES CADMIUM; LIPID-PEROXIDATION; CD
TOXICITY; PLANTS; ACCUMULATION; SEEDLINGS
AB Cadmium (Cd) is a trace metal without essential biological function due to its high toxicity to plants, animals and humans, even at low concentrations. On the other hand, Zn is an essential nutrient and plays important metabolic functions in plants. The study of the interaction between essential and a nonessential element may be important for understanding, analyzing and improving the defense strategies adapted by plants. The main objective of this work was to evaluate the mitigation of Cd toxicity by Zn in young plants of the CCN 51 cocoa genotype, grown in soil with different concentrations of Zn, Cd and Zn + Cd, through physiological, biochemical, molecular and micro-morphological responses. It was verified that high concentrations of Zn, Cd and Zn + Cd in the soil promoted alterations in the enzymatic and non-enzymatic antioxidative metabolism and expression of genes. This was demonstrated by increase in the activity of antioxidative enzymes, proline content and reduction in lipid peroxidation. Leaf gas exchange was affected at the highest soil Cd concentrations (0.4, 0.6 and 0.8 mmol Cd kg(-1) soil) combined with different soil Zn concentrations (0.4, 0.8, 1.2 and 1.6 mmol kg(-1) soil), resulting in a decrease in CO2 fixation. The higher concentration of soil Cd (0.8 mmol kg(-1) soil), together with the intermediate concentrations of soil Zn + Cd (0.8 + 0.4 and 0.4 + 0.6 mmol kg-1 soil), promoted reduction of the thickness of the leaf mesophyll and, consequently, led to decrease of the leaf gas exchange. It was observed a hormesis effect due to high photosynthetic activity in low Cd concentration. The increase in Cd concentration in the soil altered the uptake of Cd and Zn by the roots of the CCN 51 cocoa genotype. The increase of Zn concentration in the soil promoted the decrease of the Cd uptake by the root system of the plants and thereby reduced the transport of Cd to the leaves. Part of Cd uptake by the plant's root system was immobilized in roots tissues, as a tolerance strategy, preventing that it was transported to the aerial part. The increase of Zn + Cd concentration in the soil did not influence the accumulation of Zn in the leaves of the young plants of the CCN 51 cocoa genotype.
C1 [Souza dos Santos, Mayana Leandra; de Almeida, Alex-Alan Furtado; da Silva, Natalia Martins; Machado Oliveira, Bruna Rafaela; Silva, Jose Victor S.; Souza Junior, Jose Olimpio; Ahnert, Dario] Univ Estadual Santa Cruz, Dept Biol Sci, Rodovia Jorge Amado,Km 16, BR-45662900 Ilheus, BA, Brazil.
[Souza dos Santos, Mayana Leandra] Inst Fed Educ Sci & Technol Bahia, Salvador, BA, Brazil.
[Baligar, Virupax C.] USDA ARS, Beltsville Agr Res Ctr, Beltsville, MD 20705 USA.
C3 Universidade Estadual de Santa Cruz; United States Department of
Agriculture (USDA)
RP de Almeida, AAF (corresponding author), Univ Estadual Santa Cruz, Dept Biol Sci, Rodovia Jorge Amado,Km 16, BR-45662900 Ilheus, BA, Brazil.
EM alexalan.uesc@gmail.com
RI Almeida, Alex-Alan/AAL-9505-2021
OI Almeida, Alex-Alan/0000-0001-5313-0608; Baligar,
Virupax/0000-0002-6441-4638
FU National Council for Scientific and Technological Development (CNPq),
Brazil; USDA-ARS; UESC
FX The second author gratefully acknowledges the National Council for
Scientific and Technological Development (CNPq), Brazil, for the grant
of a fellowship of scientific productivity. This study was funded by a
grant from USDA-ARS, in an international cooperative agreement with
UESC.
CR Aikpokpodion P. E., 2013, Journal of Chemical and Pharmaceutical Research, V5, P88
ALIA, 1991, J PLANT PHYSIOL, V138, P554, DOI 10.1016/S0176-1617(11)80240-3
Alloway B. J., 1990, HEAVY METALS SOILS, P323
Alloway BJ, 2013, HEAVY METALS SOILS, DOI [10.1007/978-94-007-4470-7_8, DOI 10.1007/978-94-007-4470-7]
Aravind P, 2003, PLANT PHYSIOL BIOCH, V41, P391, DOI 10.1016/S0981-9428(03)00035-4
Aravind Parameswaran, 2005, Braz. J. Plant Physiol., V17, P3, DOI 10.1590/S1677-04202005000100002
Arguello D, 2019, SCI TOTAL ENVIRON, V649, P120, DOI 10.1016/j.scitotenv.2018.08.292
Ayala A, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/360438
Barraza F, 2017, ENVIRON POLLUT, V229, P950, DOI 10.1016/j.envpol.2017.07.080
BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060
Benavides María P., 2005, Braz. J. Plant Physiol., V17, P21, DOI 10.1590/S1677-04202005000100003
Bhaduri AM, 2012, REV ENVIRON SCI BIO, V11, P55, DOI 10.1007/s11157-011-9251-x
Boza EJ, 2014, J AM SOC HORTIC SCI, V139, P219, DOI 10.21273/JASHS.139.2.219
Bray CM, 2005, NEW PHYTOL, V168, P511, DOI 10.1111/j.1469-8137.2005.01548.x
CAKMAK I, 1991, PHYSIOL PLANTARUM, V83, P463, DOI 10.1111/j.1399-3054.1991.tb00121.x
Cakmak I, 2000, NEW PHYTOL, V146, P185, DOI 10.1046/j.1469-8137.2000.00630.x
Castro AV, 2015, ECOTOX ENVIRON SAFE, V115, P174, DOI 10.1016/j.ecoenv.2015.02.003
Castro H.U., 1981, POSIBILIDAD CREACION, DOI [10.21273/JASHS.139.2.219, DOI 10.21273/JASHS.139.2.219]
Chavez E, 2016, CHEMOSPHERE, V150, P57, DOI 10.1016/j.chemosphere.2016.02.013
Chavez E, 2015, SCI TOTAL ENVIRON, V533, P205, DOI 10.1016/j.scitotenv.2015.06.106
Chen YT, 2017, CURR OPIN PLANT BIOL, V39, P66, DOI 10.1016/j.pbi.2017.06.004
Cherif J, 2011, J ENVIRON SCI, V23, P837, DOI 10.1016/S1001-0742(10)60415-9
Cherif J, 2010, J PHOTOCH PHOTOBIO B, V101, P332, DOI 10.1016/j.jphotobiol.2010.08.005
Choudhary K.K., 2017, REACTIVE OXYGEN SPEC, P352
Chugh LK, 1999, PLANT PHYSIOL BIOCH, V37, P297, DOI 10.1016/S0981-9428(99)80028-X
Clemens S, 2016, ANNU REV PLANT BIOL, V67, P489, DOI 10.1146/annurev-arplant-043015-112301
D'Alessandro A, 2013, J PROTEOME RES, V12, P4979, DOI 10.1021/pr400793e
Dahiya S, 2005, J FOOD COMPOS ANAL, V18, P517, DOI 10.1016/j.jfca.2004.05.002
de Araujo RP, 2017, ECOTOX ENVIRON SAFE, V144, P148, DOI 10.1016/j.ecoenv.2017.06.006
Dey Surjendu K., 2007, Braz. J. Plant Physiol., V19, P53, DOI 10.1590/S1677-04202007000100006
Di Baccio D, 2009, ENVIRON EXP BOT, V67, P153, DOI 10.1016/j.envexpbot.2009.05.014
Dixit V, 2001, J EXP BOT, V52, P1101, DOI 10.1093/jexbot/52.358.1101
FRIDOVICH I, 1995, ANNU REV BIOCHEM, V64, P97, DOI 10.1146/annurev.bi.64.070195.000525
Godzik B., 1993, POL BOT STUD, V5, P113
Gramlich A, 2017, SCI TOTAL ENVIRON, V580, P677, DOI 10.1016/j.scitotenv.2016.12.014
Guan MY, 2018, SCI TOTAL ENVIRON, V627, P663, DOI 10.1016/j.scitotenv.2018.01.245
Hafeez B., 2013, American Journal of Experimental Agriculture, V3, P374
Hart JJ, 2002, PHYSIOL PLANTARUM, V116, P73, DOI 10.1034/j.1399-3054.2002.1160109.x
Hasan MK, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01492
HAVIR EA, 1987, PLANT PHYSIOL, V84, P450, DOI 10.1104/pp.84.2.450
Hussain A, 2018, ENVIRON POLLUT, V242, P1518, DOI 10.1016/j.envpol.2018.08.036
ICCO International Cocoa Organization, Q B COC STAT, VXLIV, P2
Jamali N, 2014, ENVIRON ENG MANAG J, V13, P2937
Jesus P, 2010, SYM REL DIST SYST, P37, DOI 10.1109/SRDS.2010.13
Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1
Kabata-Pendias A., 2000, TRACE ELEMENTS SOILS, P331
Kapoor D, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00013
KAR M, 1976, PLANT PHYSIOL, V57, P315, DOI 10.1104/pp.57.2.315
Kim C, 2012, PLANT CELL, V24, P3026, DOI 10.1105/tpc.112.100479
Kirkham MB, 2006, GEODERMA, V137, P19, DOI 10.1016/j.geoderma.2006.08.024
Kupper K, 2007, CHROMOSOMA, V116, P285, DOI 10.1007/s00412-007-0098-4
Li He, 2015, Yingyong Shengtai Xuebao, V26, P1193
Liu FJ, 2010, PLANT SOIL, V327, P365, DOI 10.1007/s11104-009-0060-8
Liu LT, 2016, PLANT SOIL ENVIRON, V62, P80, DOI 10.17221/706/2015-PSE
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Llatance W.O., 2018, PERU REV FORESTAL PE, V33, P63, DOI [10.21704/rfp.v33i1.1156., DOI 10.21704/RFP.V33I1.1156]
Losch R., 2004, HEAVY METAL STRESS P, DOI [10.1007/978-3-662-07743-6_7, DOI 10.1007/978-3-662-07743-6_7]
Ma M, 2003, PLANT SCI, V164, P51, DOI 10.1016/S0168-9452(02)00334-5
Manova V, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00885
Marchiol L, 2004, ENVIRON POLLUT, V132, P21, DOI 10.1016/j.envpol.2004.04.001
Marques MC, 2014, REV BRAS CIENC SOLO, V38, P850, DOI 10.1590/S0100-06832014000300016
Mateos-Naranjo E, 2008, PLANT BIOLOGY, V10, P754, DOI 10.1111/j.1438-8677.2008.00098.x
Matysik J, 2002, CURR SCI INDIA, V82, P525
Mitra G.N., 2015, REGULATION NUTR UPTA, DOI 10.1007/978-81-322-2334-4
Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009
Moller IM, 2007, ANNU REV PLANT BIOL, V58, P459, DOI 10.1146/annurev.arplant.58.032806.103946
Mysliwa-Kurdziel B., 2004, P146
Nadgorska-Socha A, 2013, ENVIRON SCI POLLUT R, V20, P1124, DOI 10.1007/s11356-012-1191-7
NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867
Nickelsen J, 2013, ANNU REV PLANT BIOL, V64, P609, DOI 10.1146/annurev-arplant-050312-120124
Pereira MP, 2016, TREES-STRUCT FUNCT, V30, P807, DOI 10.1007/s00468-015-1322-0
Perl, 2002, OXIDATIVE STRESS INT
Pirovani CP, 2008, ELECTROPHORESIS, V29, P2391, DOI 10.1002/elps.200700743
Prasad MNV, 1999, HEAVY METAL STRESS P
RADAMSON HH, 2018, J SOIL SEDIMENT, P1, DOI DOI 10.1007/S11368-018-2082-4
Rizwan M, 2018, SCI TOTAL ENVIRON, V631-632, P1175, DOI 10.1016/j.scitotenv.2018.03.104
Saha JK, 2017, ENV CHEM SUSTAIN WOR, V10, P155, DOI 10.1007/978-981-10-4274-4_7
Schreck E, 2012, SCI TOTAL ENVIRON, V427, P253, DOI 10.1016/j.scitotenv.2012.03.051
Sekara A, 2005, POL J ENVIRON STUD, V14, P509
Sharma P., 2012, J BOT, V26
Sharma SS, 1998, PHYTOCHEMISTRY, V49, P1531, DOI 10.1016/S0031-9422(98)00282-9
Shaw BP., 2004, HEAVY METAL STRESS P, P84, DOI [10.1007/978-3-662-07743-6_4, DOI 10.1007/978-3-662-07743-6_4]
Shetty K, 2004, PROCESS BIOCHEM, V39, P789, DOI 10.1016/S0032-9592(03)00088-8
Singh S, 2015, PLANT GROWTH REGUL, V77, P87, DOI 10.1007/s10725-015-0039-9
Singh S, 2014, SCI HORTIC-AMSTERDAM, V176, P1, DOI 10.1016/j.scienta.2014.06.022
Sodre G.A., 2017, B TECNICO CEPEC CEPL, V209, P32
Souza Júnior José Olimpio de, 2011, Rev. Bras. Ciênc. Solo, V35, P151, DOI 10.1590/S0100-06832011000100014
Souza VL, 2011, BIOMETALS, V24, P59, DOI 10.1007/s10534-010-9374-5
Taiz L, 2017, FISIOLOGIA DESENVOLV
Tran TA, 2013, TURK J BOT, V37, P1, DOI 10.3906/bot-1112-16
Thomas H, 2015, BIOCH MOL BIOL PLANT, P925
Tian SK, 2012, BIOL PLANTARUM, V56, P344, DOI 10.1007/s10535-012-0096-0
Ulusu Y, 2017, RUSS J PLANT PHYSL+, V64, P883, DOI 10.1134/S1021443717060139
Vardar F, 2016, CARYOLOGIA, V69, P111, DOI 10.1080/00087114.2015.1109954
Vardar F, 2011, NOT BOT HORTI AGROBO, V39, P71
da Silva FBV, 2017, J SOIL SCI PLANT NUT, V17, P635, DOI 10.4067/S0718-95162017000300007
Vitola V, 2016, RURAL SUSTAINABILITY, V35, P330, DOI DOI 10.1515/PLUA-2016-0003
VONCAEMMERER S, 1981, PLANTA, V153, P376, DOI 10.1007/BF00384257
Wang J, 2011, PLANT GROWTH REGUL, V63, P207, DOI 10.1007/s10725-010-9517-2
Whiting SN, 2000, NEW PHYTOL, V145, P199, DOI 10.1046/j.1469-8137.2000.00570.x
Winterbourn CC, 2008, NAT CHEM BIOL, V4, P278, DOI 10.1038/nchembio.85
Xing JP, 2008, NEW PHYTOL, V178, P315, DOI 10.1111/j.1469-8137.2008.02376.x
Yang Y, 2017, J AGR FOOD CHEM, V65, P5463, DOI 10.1021/acs.jafc.7b01931
Yanus RL, 2014, TALANTA, V119, P1, DOI 10.1016/j.talanta.2013.10.048
Yilmaz DD, 2011, ECOL INDIC, V11, P417, DOI 10.1016/j.ecolind.2010.06.012
Zarcinas BA, 2004, ENVIRON GEOCHEM HLTH, V26, P359, DOI 10.1007/s10653-005-4670-7
Zhang HX, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102083
Zhu GX, 2018, ECOTOX ENVIRON SAFE, V158, P300, DOI 10.1016/j.ecoenv.2018.04.045
Zhu XF, 2011, PLANT CELL ENVIRON, V34, P1055, DOI 10.1111/j.1365-3040.2011.02304.x
NR 109
TC 9
Z9 9
U1 1
U2 25
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0098-8472
EI 1873-7307
J9 ENVIRON EXP BOT
JI Environ. Exp. Bot.
PD NOV
PY 2020
VL 179
AR 104201
DI 10.1016/j.envexpbot.2020.104201
PG 15
WC Plant Sciences; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences; Environmental Sciences & Ecology
GA NR3SJ
UT WOS:000571483200010
DA 2023-03-13
ER
PT J
AU Sukata, T
Uwagawa, S
Ozaki, K
Ogawa, M
Nishikawa, T
Iwai, S
Kinoshita, A
Wanibuchi, H
Imaoka, S
Funae, Y
Okuno, Y
Fukushima, S
AF Sukata, T
Uwagawa, S
Ozaki, K
Ogawa, M
Nishikawa, T
Iwai, S
Kinoshita, A
Wanibuchi, H
Imaoka, S
Funae, Y
Okuno, Y
Fukushima, S
TI Detailed low-dose study of 1,1-b
is(p-chlorophenyl)-2,2,2-trichloroethane carcinogenesis suggests the
possibility of a hormetic effect
SO INTERNATIONAL JOURNAL OF CANCER
LA English
DT Article
DE hormesis; nongenotoxic carcinogen; risk assessment; oxidative stress;
proinflammatory cytokine
ID JUNCTIONAL INTERCELLULAR COMMUNICATION; CELL-CELL COMMUNICATION;
NECROSIS-FACTOR-ALPHA; DYE-TRANSFER ASSAY; RAT-LIVER; NITRIC-OXIDE;
HEPATIC FOCI; OGG1 GENE; PRENEOPLASTIC LESIONS; LIPID-PEROXIDATION
AB To obtain information on the effects of nongenotoxic carcinogens at low doses for human cancer risk assessment, the carcinogenic potential of the organochlorine insecticide, 1, 1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), in the liver was assessed in F344 rats. In experiment 1, 240 male animals, 21 days old, were administered 0, 0.5, 1.0, 2.0, 5.0, 20, 100 and 500 ppm DDT in the diet for 16 weeks. Experiment 2 was conducted to elucidate the carcinogenic potential of DDT at lower levels using 180 rats given doses of 0, 0.005, 0.01, 0.1, 0.2 and 0.5 ppm. The livers of all animals were immunohistochemically examined for expression of glutathione S-transferase placental form (GST-P), putative preneoplastic lesions. Quantitative values for GST-P-positive foci in the liver were increased dose-dependently in rats given 20 ppm DDT and above with statistical significance as compared with the concurrent control value. In contrast, doses of 0.005 and 0.01 ppm were associated with a tendency for decrease below the control value, although not significantly. Western blotting analysis show that cytochrome P-450 3A2 (CYP3A2) protein expression tended to decrease at 0.005 and 0.01 ppm, a good correlation being observed with the change in the number of GST-P-positive foci. These findings suggest that a DDT hepatocarcinogenicity may show nonlinear response, that is, hormetic response at low doses. Furthermore, since CYP3A2 protein expression appears to be important for the effects of phenobarbital and the alpha-isomer of benzene hexachloride, mRNAs for IL-1 receptor type I (IL-IRI) and TNF-alpha receptor type I (TNFR1) whose ligands have roles not only in downregulating CYP3A2 expression but also in inducing antiproliferative effect or apoptosis in hepatocyte were examined. Increase was observed at low doses of DDT. Oxidative stress in liver DNA, assessed in terms of 8-hydroxydeoxyguanosine as a marker, was also decreased. These findings suggest that the possible hormetic effect that was observed in our detailed low-dose study of DDT carcinogenesis, although not statistically significant, may be linked to levels of oxidative stress and proinflammatory cytokines. (C) 2002 Wiley-Liss, Inc.
C1 Sumitomo Chem Co Ltd, Environm Hlth Sci Lab, Konohana Ku, Osaka 5548558, Japan.
Osaka City Univ, Sch Med, Dept Pathol, Osaka 545, Japan.
Osaka City Univ, Sch Med, Dept Biol Chem, Osaka 545, Japan.
C3 Sumitomo Chem Co Ltd; Osaka Metropolitan University; Osaka Metropolitan
University
RP Sukata, T (corresponding author), Sumitomo Chem Co Ltd, Environm Hlth Sci Lab, Konohana Ku, 1-98,3 Chome,Kasugade Naka, Osaka 5548558, Japan.
CR Aburatani H, 1997, CANCER RES, V57, P2151
Arai K, 1997, ONCOGENE, V14, P2857, DOI 10.1038/sj.onc.1201139
BARROS SBM, 1994, TOXICOL LETT, V70, P33, DOI 10.1016/0378-4274(94)90141-4
BERTAZZI PA, 1993, EPIDEMIOLOGY, V4, P398, DOI 10.1097/00001648-199309000-00004
Boulton R, 1997, HEPATOLOGY, V26, P49
Carlson TJ, 1996, MOL PHARMACOL, V49, P796
CHUNG MH, 1991, BIOCHEM BIOPH RES CO, V178, P1472, DOI 10.1016/0006-291X(91)91059-L
DINARELLO CA, 1988, FASEB J, V2, P108, DOI 10.1096/fasebj.2.2.3277884
Eder J, 1997, TRENDS PHARMACOL SCI, V18, P319, DOI 10.1016/S0165-6147(97)90657-X
FLODSTROM S, 1990, CARCINOGENESIS, V11, P1413, DOI 10.1093/carcin/11.8.1413
Floyd R A, 1986, Free Radic Res Commun, V1, P163, DOI 10.3109/10715768609083148
FLOYD RA, 1984, J BIOCHEM BIOPH METH, V10, P221, DOI 10.1016/0165-022X(84)90042-3
Fukushima S, 1999, CANCER LETT, V143, P157, DOI 10.1016/S0304-3835(99)00117-2
GELLER DA, 1995, J IMMUNOL, V155, P4890
GOLDSWORTHY T, 1984, CARCINOGENESIS, V5, P67, DOI 10.1093/carcin/5.1.67
HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577, DOI 10.1177/29.4.6166661
IARC, 1991, IARC MON EV CARC RIS, V52, P179, DOI DOI 10.7705/BIOMEDICA.V25I3.1358,335-345
Ito A, 1999, J IMMUNOL, V162, P4260
ITO N, 1983, ENVIRON HEALTH PERSP, V50, P131, DOI 10.2307/3429543
KASAI H, 1984, NUCLEIC ACIDS RES, V12, P2127, DOI 10.1093/nar/12.4.2127
Kasai H, 1997, MUTAT RES-REV MUTAT, V387, P147, DOI 10.1016/S1383-5742(97)00035-5
KASAI H, 1984, NUCLEIC ACIDS RES, V12, P2137, DOI 10.1093/nar/12.4.2137
KASAI H, 1986, ENVIRON HEALTH PERSP, V67, P111, DOI 10.2307/3430324
KASAI H, 1986, CARCINOGENESIS, V7, P1841
Kato T, 1996, JPN J CANCER RES, V87, P127, DOI 10.1111/j.1349-7006.1996.tb03149.x
Kim PM, 1997, FREE RADICAL BIO MED, V23, P579, DOI 10.1016/S0891-5849(97)00012-9
Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475
LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
LEIBOLD E, 1993, CARCINOGENESIS, V14, P2377, DOI 10.1093/carcin/14.11.2377
Liu ZG, 1996, CELL, V87, P565, DOI 10.1016/S0092-8674(00)81375-6
LOWRY OH, 1951, J BIOL CHEM, V193, P265
Lu RZ, 1997, CURR BIOL, V7, P397, DOI 10.1016/S0960-9822(06)00187-4
Masuda C, 2001, CANCER LETT, V163, P179, DOI 10.1016/S0304-3835(00)00687-X
MATSUDA T, 1995, CANCER LETT, V97, P137, DOI 10.1016/0304-3835(95)03965-Y
NORDBERG GF, 1981, ENVIRON HEALTH PERSP, V40, P65, DOI 10.2307/3429221
OMURA T, 1964, J BIOL CHEM, V239, P137
POLLYCOVE M, 1997, BELLE, V6, P13
Radicella JP, 1997, P NATL ACAD SCI USA, V94, P8010, DOI 10.1073/pnas.94.15.8010
Rink L, 1996, INT ARCH ALLERGY IMM, V111, P199, DOI 10.1159/000237369
RoldanArjona T, 1997, P NATL ACAD SCI USA, V94, P8016, DOI 10.1073/pnas.94.15.8016
Rosenquist TA, 1997, P NATL ACAD SCI USA, V94, P7429, DOI 10.1073/pnas.94.14.7429
Ross HJ, 1996, ONCOL RES, V8, P171
SUGIE S, 1987, CARCINOGENESIS, V8, P45, DOI 10.1093/carcin/8.1.45
TAKAGI A, 1990, JPN J CANCER RES, V81, P213, DOI 10.1111/j.1349-7006.1990.tb02551.x
Tani M, 1998, MAMM GENOME, V9, P32, DOI 10.1007/s003359900675
TARTAGLIA LA, 1991, P NATL ACAD SCI USA, V88, P9292, DOI 10.1073/pnas.88.20.9292
TATENO C, 1993, CELL BIOL TOXICOL, V9, P215, DOI 10.1007/BF00755600
TATENO C, 1994, CARCINOGENESIS, V15, P517, DOI 10.1093/carcin/15.3.517
Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9
Tsurudome Y, 1999, CARCINOGENESIS, V20, P1573, DOI 10.1093/carcin/20.8.1573
TSUSHIMOTO G, 1983, ARCH ENVIRON CON TOX, V12, P721, DOI 10.1007/BF01060757
Wallach D, 1997, TRENDS BIOCHEM SCI, V22, P107, DOI 10.1016/S0968-0004(97)01015-3
Wang ZQ, 1998, HEPATOLOGY, V28, P430, DOI 10.1002/hep.510280221
WARNGARD L, 1985, ARCH ENVIRON CON TOX, V14, P541
YAMAMOTO F, 1992, JPN J CANCER RES, V83, P351, DOI 10.1111/j.1349-7006.1992.tb00114.x
YOSHIJI H, 1992, CARCINOGENESIS, V13, P1227, DOI 10.1093/carcin/13.7.1227
ZEILMAKER MJ, 1986, CANCER RES, V46, P6180
NR 57
TC 41
Z9 41
U1 1
U2 10
PU WILEY-LISS
PI NEW YORK
PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7136
J9 INT J CANCER
JI Int. J. Cancer
PD MAY 1
PY 2002
VL 99
IS 1
BP 112
EP 118
DI 10.1002/ijc.10312
PG 7
WC Oncology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Oncology
GA 546XD
UT WOS:000175300900018
PM 11948501
OA Bronze
DA 2023-03-13
ER
PT J
AU Kolesnikov, S
Timoshenko, A
Kabakova, V
Minnikova, T
Tsepina, N
Kazeev, K
Minkina, TM
Shende, SS
Mandzhieva, SS
Tsitsuashvili, V
Sushkova, SN
AF Kolesnikov, Sergey
Timoshenko, Alena
Kabakova, Victoria
Minnikova, Tatiana
Tsepina, Natalia
Kazeev, Kamil
Minkina, Tatiana M.
Shende, Sudhir S.
Mandzhieva, Saglara S.
Tsitsuashvili, Victoria
Sushkova, Svetlana N.
TI Effect of Platinum Nanoparticles (PtNPs) Pollution on the Biological
Properties of Haplic Cambisols Eutric of the Caucasus Forests
SO FORESTS
LA English
DT Article
DE Platinum Nanoparticles (PtNPs); pollution; Cambisols; biotesting;
ecotoxicity; phytotoxicity
ID GROUP ELEMENTS PGE; OXIDE NANOPARTICLES; HEAVY-METALS; COPPER; SOILS;
TOXICITY; RHODIUM; BIOACCUMULATION; ENVIRONMENT; DISRUPTION
AB Pollution by platinum (Pt) is an emerging threat to forest soil health. The widespread use of Pt nanoparticles (NPs) in gas neutralizers for automobile exhaust has sharply increased the amount of PtNP pollution in the environment, including forest ecosystems. Recently, territories with Pt concentrations greater than 0.3 mg/kg in soil have been discovered. This concentration is 750 times greater than the background content in the earth's crust. Cambisols, the most prevalent forest soil type in boreal forests that determines the functioning of the entire forest ecosystem, occupy a significant share of the Earth's soil cover, which is about 1.5 billion hectares worldwide, or 12% of the entire continental land area. This shows the importance of studying the effect of pollution on this type of soil. In this study, laboratory simulations of PtNP contamination of the Haplic Cambisols Eutric at concentrations of 0.01, 0.1, 1, 10, and 100 mg/kg were carried out. The effect of PtNPs on soil properties was assessed using the most sensitive and informative biological indicators. The total number of bacteria was studied by the methods of luminescent microscopy, catalase activity (gasometrically), dehydrogenases activity (spectrophotometrically), germination, and length of roots by the method of seedlings. It was found that at the concentrations of 0.01, 0.1, and 1 mg/kg of PtNPs, there was either no effect or a slight, statistically insignificant decrease in the biological state of Haplic Cambisols Eutric. Concentrations of 10 and 100 mg/kg of PtNPs had a toxic effect on all the studied parameters. No statistically significant stimulating effect (hormesis) of PtNPs on the biological properties of Haplic Cambisols Eutric was observed, which indicates the high toxicity of PtNPs and the importance of studying the consequences of soil and ecosystem contamination with PtNPs. However, when the content of Pt in the soil was 1 mg/kg, there was a tendency to stimulate germination, the length of radish roots, and the total number of bacteria. The toxicity of PtNPs measured by biochemical indicators (activity of catalase and dehydrogenases) starts at a concentration of 100 mg/kg for phytotoxic effects (germination and root length of radish) and 10 mg/kg for microbiological effects (total number of bacteria).
C1 [Kolesnikov, Sergey; Timoshenko, Alena; Kabakova, Victoria; Minnikova, Tatiana; Tsepina, Natalia; Kazeev, Kamil; Minkina, Tatiana M.; Shende, Sudhir S.; Mandzhieva, Saglara S.; Tsitsuashvili, Victoria; Sushkova, Svetlana N.] Southern Fed Univ, Acad Biol & Biotechnol, Rostov Na Donu 344090, Russia.
C3 Southern Federal University
RP Minnikova, T; Shende, SS (corresponding author), Southern Fed Univ, Acad Biol & Biotechnol, Rostov Na Donu 344090, Russia.
EM loko261008@yandex.ru; sudhirsshende13884@gmail.com
RI Minnikova, Tatiana/R-4216-2016; Minkina, Tatiana/A-1683-2014; Sushkova,
Svetlana/A-4756-2014; Mandzhieva, Saglara/A-1681-2014
OI Minnikova, Tatiana/0000-0002-9453-7137; Minkina,
Tatiana/0000-0003-3022-0883; Sushkova, Svetlana/0000-0003-3470-9627;
Mandzhieva, Saglara/0000-0001-6000-2209
FU Ministry of Science and Higher Education of the Russian Federation
[075-15-2022-1122]; Strategic Academic Leadership Priority of the
Southern Federal University Priority 2030 [SP-12-22-10]
FX The study was carried out in the Soil Health laboratory of the Southern
Federal University with the financial support of the Ministry of Science
and Higher Education of the Russian Federation (agreement no.
075-15-2022-1122) and the Strategic Academic Leadership Priority of the
Southern Federal University Priority 2030 (SP-12-22-10).
CR Adams MB, 2019, DEV SOIL SCI, V36, P83, DOI 10.1016/B978-0-444-63998-1.00006-9
Ajdary M, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8090634
Ali S, 2013, ECOTOX ENVIRON SAFE, V89, P66, DOI 10.1016/j.ecoenv.2012.11.015
Alt F, 1997, FRESEN J ANAL CHEM, V357, P1013, DOI 10.1007/s002160050296
Astafurova T.P., 2013, PLANT PHYSL GENET, V45, P544
Asztemborska M, 2015, INT J ENVIRON RES, V9, P109
Avila M.I.A., 2020, CLEAN ENG TECHNOL, V1, P100016, DOI [10.1016/j.clet.2020.100016, DOI 10.1016/J.CLET.2020.100016]
Babula P, 2008, ENVIRON CHEM LETT, V6, P189, DOI 10.1007/s10311-008-0159-9
Bayraktar H, 2006, CHEM COMMUN, P1390, DOI 10.1039/b516096k
Birke M, 2018, J GEOCHEM EXPLOR, V187, P72, DOI 10.1016/j.gexplo.2017.09.005
Bloch K, 2021, FRONT CHEM, V9, DOI 10.3389/fchem.2021.624344
Buchman JT, 2019, ACCOUNTS CHEM RES, V52, P1632, DOI 10.1021/acs.accounts.9b00053
Cakovic M, 2021, FORESTS, V12, DOI 10.3390/f12111461
Cicchella D, 2008, GEOCHEM-EXPLOR ENV A, V8, P31, DOI 10.1144/1467-7873/07-149
Djingova R, 2003, SCI TOTAL ENVIRON, V308, P235, DOI 10.1016/S0048-9697(02)00677-0
Figas A, 2021, FORESTS, V12, DOI 10.3390/f12101310
Gagnon ZE, 2006, J ENVIRON SCI HEAL A, V41, P397, DOI 10.1080/10934520500423592
Galaktionova L, 2019, TOXICOL ENV HEALTH, V11, P259, DOI 10.1007/s13530-019-0413-5
Galstyan A.S, 1982, SOIL SCI, V4, P108
Gomez B, 2001, SCI TOTAL ENVIRON, V269, P131, DOI 10.1016/S0048-9697(00)00826-3
Grimaldi M, 2019, TOXICOL APPL PHARM, V364, P1, DOI 10.1016/j.taap.2018.12.005
Hooda PS, 2007, SCI TOTAL ENVIRON, V384, P384, DOI 10.1016/j.scitotenv.2007.05.040
Jackson MT, 2010, SCI TOTAL ENVIRON, V408, P1276, DOI 10.1016/j.scitotenv.2009.09.014
Jung TK, 2014, T NONFERR METAL SOC, V24, pS99, DOI 10.1016/S1003-6326(14)63294-5
Kabata-Pendias Alina, 2010, P1
Kazeev K.S., 2003, BIOL DIAGNOSIS INDIC
Kolesnikov S. I., 2006, Pochvovedenie, P616
Kolesnikov SI, 2019, EURASIAN SOIL SCI+, V52, P982, DOI 10.1134/S106422931908009X
Kolesnikov SI, 2019, ENVIRON MONIT ASSESS, V191, DOI 10.1007/s10661-019-7718-3
Kolesnikov S, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10102080
Kolesnikov S, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10051022
Kolton A., 2014, GEOL GEOPHYS ENVIRON, V40, P343, DOI [10.7494/geol.2014.40.4.343, DOI 10.7494/GEOL.2014.40.4.343]
Komendova R, 2019, SCI TOTAL ENVIRON, V694, DOI 10.1016/j.scitotenv.2019.133822
Kowalska JB, 2021, FORESTS, V12, DOI 10.3390/f12030291
Lai L, 2017, LANGMUIR, V33, P2378, DOI 10.1021/acs.langmuir.7b00173
Levay K, 2021, J IND ENG CHEM, V101, P279, DOI 10.1016/j.jiec.2021.06.002
Lushchaeva Inna V., 2015, Advanced Materials Research, V1085, P384, DOI 10.4028/www.scientific.net/AMR.1085.384
Manceau A, 2008, ENVIRON SCI TECHNOL, V42, P1766, DOI 10.1021/es072017o
Manikandan M, 2012, BIOSENS BIOELECTRON, V35, P493, DOI 10.1016/j.bios.2012.03.020
Marcheselli M, 2010, CHEMOSPHERE, V80, P1247, DOI 10.1016/j.chemosphere.2010.06.070
Maye MM, 2005, J AM CHEM SOC, V127, P1519, DOI 10.1021/ja044408y
Mitra A, 2017, GEOCHIM COSMOCHIM AC, V216, P417, DOI 10.1016/j.gca.2017.08.025
Morton O, 2001, J GEOCHEM EXPLOR, V72, P223, DOI 10.1016/S0375-6742(01)00163-7
Nel A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397
Orecchio S, 2011, MICROCHEM J, V99, P283, DOI 10.1016/j.microc.2011.05.016
Paz-Ferreiro J, 2012, CHEMOSPHERE, V86, P1117, DOI 10.1016/j.chemosphere.2011.12.009
Rahman M. S., 2020, Nano-Structures & Nano-Objects, V21, P191, DOI 10.1016/j.nanoso.2019.100408
Rajendran S., 2020, NANOTOXICITY PREVENT, P275, DOI [10.1016/B978-0-12-819943-5.00012-9, DOI 10.1016/B978-0-12-819943-5.00012-9]
Rajput V, 2021, ENVIRON GEOCHEM HLTH, V43, P2443, DOI 10.1007/s10653-020-00681-5
Rajput VD, 2019, INT J AGRIC BIOL, V21, P171, DOI 10.17957/IJAB/15.0877
Rauch S, 2013, WATER AIR SOIL POLL, V224, DOI 10.1007/s11270-012-1395-y
Ravindra K, 2004, SCI TOTAL ENVIRON, V318, P1, DOI 10.1016/S0048-9697(03)00372-3
Sanzari I, 2019, FRONT BIOENG BIOTECH, V7, DOI 10.3389/fbioe.2019.00120
Savignan L, 2021, CHEMOSPHERE, V271, DOI 10.1016/j.chemosphere.2020.129517
Schafer J, 1998, SCI TOTAL ENVIRON, V215, P59, DOI 10.1016/S0048-9697(98)00115-6
Seckin H, 2022, ENVIRON RES, V208, DOI 10.1016/j.envres.2022.112708
Shar S, 2021, APPL SOIL ECOL, V157, DOI 10.1016/j.apsoil.2020.103727
Sidor CG, 2021, FORESTS, V12, DOI 10.3390/f12050640
Silva S, 2016, CHEMOSPHERE, V151, P68, DOI 10.1016/j.chemosphere.2016.02.047
Sobrova P, 2012, CENT EUR J CHEM, V10, P1369, DOI 10.2478/s11532-012-0073-7
Soltanian S, 2021, BIONANOSCIENCE, V11, P245, DOI 10.1007/s12668-020-00816-z
Stejskal K, 2007, LISTY CUKROV REPAR, V123, P328
[Тимошенко А.Н. Timoshenko A.N.], 2021, [Экология и промышленность России, Ekologiya i promyshlennost' Rossii], V25, P61, DOI 10.18412/1816-0395-2021-4-61-65
Valkov V.F., 2004, SOIL SCI TXB U
Venzhik YV, 2021, BIOL BULL+, V48, P140, DOI 10.1134/S106235902102014X
Wang W, 2020, ENVIRON SCI POLLUT R, V27, P31505, DOI 10.1007/s11356-020-09338-3
WEDEPOHL KH, 1995, GEOCHIM COSMOCHIM AC, V59, P1217, DOI 10.1016/0016-7037(95)00038-2
World Reference Base for Soil Resources, 2022, INT SOIL CLASS SYST, V4
Xiong ZT, 2005, ENVIRON TOXICOL, V20, P188, DOI 10.1002/tox.20094
Yadav G, 2014, BIOL TRACE ELEM RES, V158, P410, DOI 10.1007/s12011-014-9950-6
You TT, 2018, J SOIL SEDIMENT, V18, P211, DOI 10.1007/s11368-017-1716-2
You YY, 2017, ADV FUNCT MATER, V27, DOI 10.1002/adfm.201703313
Zereini F, 2015, ENVIRON SCI ENG, P1, DOI 10.1007/978-3-662-44559-4
Zhang KZ, 2010, INT J CLIN EXP MED, V3, P33
Zvyagintsev DG, 2005, BIOLOGIYA POCHV SOIL, V3rd, P445
NR 75
TC 0
Z9 0
U1 2
U2 2
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1999-4907
J9 FORESTS
JI Forests
PD JAN
PY 2023
VL 14
IS 1
AR 54
DI 10.3390/f14010054
PG 14
WC Forestry
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Forestry
GA 8C4WR
UT WOS:000917610900001
OA gold
DA 2023-03-13
ER
PT J
AU Budiono, BP
Hoe, LES
Peart, JN
Sabapathy, S
Ashton, KJ
Haseler, LJ
Headrick, JP
AF Budiono, Boris P.
Hoe, Louise E. See
Peart, Jason N.
Sabapathy, Surendran
Ashton, Kevin J.
Haseler, Luke J.
Headrick, John P.
TI Voluntary running in mice beneficially modulates myocardial ischemic
tolerance, signaling kinases, and gene expression patterns
SO AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE
PHYSIOLOGY
LA English
DT Article
DE cardioprotection; exercise; gene expression; ischemia-reperfusion;
myocardial; protein kinase; voluntary activity; wheel-running
ID EXERCISE-INDUCED CARDIOPROTECTION; ACTIVATED PROTEIN-KINASE;
ISCHEMIA/REPERFUSION INJURY; REPERFUSION INJURY; HEART; INFARCTION;
TIME; CARDIOMYOPATHY; MITOCHONDRIA; INFLAMMATION
AB Budiono BP, See Hoe LE, Peart JN, Sabapathy S, Ashton KJ, Haseler LJ, Headrick JP. Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns. Am J Physiol Regul Integr Comp Physiol 302: R1091-R1100, 2012. First published February 29, 2012; doi:10.1152/ajpregu.00406.2011.-Exercise triggers hormesis, conditioning hearts against damaging consequences of subsequent ischemia- reperfusion (I/R). We test whether "low-stress" voluntary activity modifies I/R tolerance and molecular determinants of cardiac survival. Male C57BL/6 mice were provided 7-day access to locked (7SED) or rotating (7EX) running-wheels before analysis of cardiac prosurvival (Akt, ERK 1/2) and prodeath (GSK3 beta) kinases, transcriptomic adaptations, and functional tolerance of isolated hearts to 25-min ischemia/45-min reperfusion. Over 7 days, 7EX mice increased running from 2.1 +/- 0.2 to 5.3 +/- 0.3 km/day (mean speed 38 +/- 2 m/min), with activity improving myocardial I/R tolerance: 7SED hearts recovered 43 +/- 3% of ventricular force with diastolic contracture of 33 +/- 3 mmHg, whereas 7EX hearts recovered 63 +/- 5% of force with diastolic dysfunction reduced to 23 +/- 2 mmHg (P < 0.05). Cytosolic expression (total protein) of Akt and GSK3 beta was unaltered, while ERK 1/2 increased 30% in 7EX vs. 7SED hearts. Phosphorylation of Akt and ERK 1/2 was unaltered, whereas GSK3 beta phosphorylation increased similar to 90%. Microarray interrogation identified significant changes (>= 1.3-fold expression change, <= 5% FDR) in 142 known genes, the majority (92%) repressed. Significantly modified paths/networks related to inflammatory/immune function (particularly interferon-dependent), together with cell movement, growth, and death. Of only 14 induced transcripts, 3 encoded interrelated sarcomeric proteins titin, alpha-actinin, and myomesin-2, while transcripts for protective actin-stabilizing ND1-L and activator of mitochondrial biogenesis ALAS1 were also induced. There was no transcriptional evidence of oxidative heat-shock or other canonical "stress" responses. These data demonstrate that relatively brief voluntary activity substantially improves cardiac ischemic tolerance, an effect independent of shifts in Akt, but associated with increased total ERK 1/2 and phospho-inhibition of GSK3 beta. Transcriptomic data implicate inflammatory/immune and sarcomeric modulation in activity-dependent protection.
C1 [Budiono, Boris P.; Hoe, Louise E. See; Peart, Jason N.; Sabapathy, Surendran; Haseler, Luke J.; Headrick, John P.] Griffith Univ, Heart Fdn Res Ctr, Griffith Hlth Inst, Gold Coast, Qld 9726, Australia.
[Ashton, Kevin J.] Bond Univ, Fac Hlth Sci & Med, Robina, Qld, Australia.
C3 Griffith University; Menzies Health Institute Queensland; Bond
University
RP Headrick, JP (corresponding author), Griffith Univ, Heart Fdn Res Ctr, Griffith Hlth Inst, PMB 50 Gold Coast Mail Ctr, Gold Coast, Qld 9726, Australia.
EM j.headrick@griffith.edu.au
RI Ashton, Kevin/R-2147-2016; Hoe, Louise E See/C-6650-2017
OI Ashton, Kevin/0000-0001-6106-3425; Hoe, Louise E
See/0000-0003-0553-205X; Sabapathy, Surendran/0000-0003-1267-6035;
Haseler, Luke/0000-0003-1607-4402; Budiono, Boris/0000-0002-1189-739X
FU National Heart Foundation of Australia [G-08B-3971, G-05B-2029];
National Health and Medical Research Council of Australia (NHMRC);
Australian Postgraduate Award scholarship; Australian Research Council
FX The authors gratefully acknowledge grant support from the National Heart
Foundation of Australia (G-08B-3971; G-05B-2029) and National Health and
Medical Research Council of Australia (NHMRC). B. Budiono was supported
by an Australian Postgraduate Award scholarship, and J. N. Peart was the
recipient of a Future Fellowship from the Australian Research Council.
CR Akita Y, 2007, AM J PHYSIOL-HEART C, V292, pH2051, DOI 10.1152/ajpheart.01102.2006
Ali MAM, 2010, CIRCULATION, V122, P2039, DOI 10.1161/CIRCULATIONAHA.109.930222
Ascensao A, 2007, INT J CARDIOL, V117, P16, DOI 10.1016/j.ijcard.2006.04.076
Belter JG, 2004, J APPL PHYSIOL, V96, P1270, DOI 10.1152/japplphysiol.00838.2003
Bronikowski AM, 2003, PHYSIOL GENOMICS, V12, P129, DOI 10.1152/physiolgenomics.00082.2002
Chiu C, 2010, J AM COLL CARDIOL, V55, P1127, DOI 10.1016/j.jacc.2009.11.016
Coven DL, 2003, AM J PHYSIOL-ENDOC M, V285, pE629, DOI 10.1152/ajpendo.00171.2003
Daniel-Carmi V, 2009, INT J CANCER, V125, P2810, DOI 10.1002/ijc.24669
De Bono JP, 2006, AM J PHYSIOL-REG I, V290, pR926, DOI 10.1152/ajpregu.00694.2005
de Waard MC, 2010, J MOL CELL CARDIOL, V48, P1041, DOI 10.1016/j.yjmcc.2010.02.005
de Waard MC, 2009, J APPL PHYSIOL, V107, P928, DOI 10.1152/japplphysiol.91281.2008
Demirel HA, 2001, J APPL PHYSIOL, V91, P2205, DOI 10.1152/jappl.2001.91.5.2205
Edgar R, 2002, NUCLEIC ACIDS RES, V30, P207, DOI 10.1093/nar/30.1.207
Eisele JC, 2008, BASIC RES CARDIOL, V103, P12, DOI 10.1007/s00395-007-0684-x
Fluck M, 2006, J EXP BIOL, V209, P2239, DOI 10.1242/jeb.02149
Frangogiannis NG, 2007, THROMB HAEMOSTASIS, V97, P738, DOI 10.1160/TH07-01-0022
Gosselin H, 2006, MED SCI SPORT EXER, V38, P455, DOI 10.1249/01.mss.0000205138.02440.79
Hamilton KL, 2007, MED SCI SPORT EXER, V39, P1544, DOI 10.1249/mss.0b013e3180d099e8
Hamilton KL, 2001, AM J PHYSIOL-HEART C, V281, pH1346, DOI 10.1152/ajpheart.2001.281.3.H1346
Hayes K, 2008, ACTA NEUROPATHOL, V115, P289, DOI 10.1007/s00401-008-0340-z
Headrick JP, 2001, EXP PHYSIOL, V86, P703, DOI 10.1111/j.1469-445X.2001.tb00035.x
Healy GN, 2008, DIABETES CARE, V31, P661, DOI 10.2337/dc07-2046
Huey KA, 2008, J APPL PHYSIOL, V105, P1830, DOI 10.1152/japplphysiol.90955.2008
Kavazis AN, 2008, AM J PHYSIOL-HEART C, V294, pH928, DOI 10.1152/ajpheart.01231.2007
Kavazis AN, 2009, SPORTS MED, V39, P923, DOI 10.2165/11317870-000000000-00000
Ke Z, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016643
Konhilas JP, 2004, AM J PHYSIOL-HEART C, V287, pH2768, DOI 10.1152/ajpheart.00292.2004
Kostin S, 2000, Heart Fail Rev, V5, P271
Lajoie C, 2004, J APPL PHYSIOL, V96, P1606, DOI 10.1152/japplphysiol.00853.2003
Lara-Pezzi E, 2008, ENDOCRINOLOGY, V149, P5822, DOI 10.1210/en.2008-0151
Lennon SL, 2004, ACTA PHYSIOL SCAND, V182, P161, DOI 10.1111/j.1365-201X.2004.01346.x
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
LOCKE M, 1995, AM J PHYSIOL-HEART C, V269, pH320, DOI 10.1152/ajpheart.1995.269.1.H320
Matsudo Y, 2006, TRANSGENIC RES, V15, P573, DOI 10.1007/s11248-006-9010-x
McClung HM, 2007, NEUROSCI LETT, V419, P172, DOI 10.1016/j.neulet.2007.04.037
Melling CWJ, 2006, J MOL CELL CARDIOL, V41, P816, DOI 10.1016/j.yjmcc.2006.05.010
Moraska A, 2000, AM J PHYSIOL-REG I, V279, pR1321, DOI 10.1152/ajpregu.2000.279.4.R1321
Murphy E, 2008, PHYSIOL REV, V88, P581, DOI 10.1152/physrev.00024.2007
Musi N, 2005, FEBS LETT, V579, P2045, DOI 10.1016/j.febslet.2005.02.052
Noble EG, 1999, J APPL PHYSIOL, V86, P1696, DOI 10.1152/jappl.1999.86.5.1696
Oshima Y, 2008, CIRCULATION, V117, P3099, DOI 10.1161/CIRCULATIONAHA.108.767673
Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004
Powers SK, 2008, FREE RADICAL BIO MED, V44, P193, DOI 10.1016/j.freeradbiomed.2007.02.006
Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004
Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014
Schweitzer NB, 2005, LIFE SCI, V77, P2246, DOI 10.1016/j.lfs.2005.01.036
Sherwin CM, 1998, ANIM BEHAV, V56, P11, DOI 10.1006/anbe.1998.0836
Simonsen ML, 2010, EXP PHYSIOL, V95, P1071, DOI 10.1113/expphysiol.2010.054858
Stamatakis E, 2011, J AM COLL CARDIOL, V57, P292, DOI 10.1016/j.jacc.2010.05.065
Stanley William C., 2004, Journal of Cardiovascular Pharmacology and Therapeutics, V9, pS31, DOI 10.1177/107424840400900104
Starnes JW, 2003, AM J PHYSIOL-HEART C, V285, pH347, DOI 10.1152/ajpheart.00952.2002
Stuewe SR, 2000, J MOL CELL CARDIOL, V32, P903, DOI 10.1006/jmcc.2000.1131
Taylor RP, 1999, AM J PHYSIOL-HEART C, V276, pH1098, DOI 10.1152/ajpheart.1999.276.3.H1098
Wilund KR, 2007, CLIN SCI, V112, P543, DOI 10.1042/CS20060368
Woods JA, 2009, IMMUNOL ALLERGY CLIN, V29, P381, DOI 10.1016/j.iac.2009.02.011
Xu Y, 2009, ACTA BIOCH BIOPH SIN, V41, P488, DOI 10.1093/abbs/gmp034
Yang G, 2007, ONCOGENE, V26, P594, DOI 10.1038/sj.onc.1209807
Zhang KR, 2007, APOPTOSIS, V12, P1579, DOI 10.1007/s10495-007-0090-8
NR 58
TC 20
Z9 20
U1 0
U2 14
PU AMER PHYSIOLOGICAL SOC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
SN 0363-6119
EI 1522-1490
J9 AM J PHYSIOL-REG I
JI Am. J. Physiol.-Regul. Integr. Comp. Physiol.
PD MAY
PY 2012
VL 302
IS 9
BP R1091
EP R1100
DI 10.1152/ajpregu.00406.2011
PG 10
WC Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physiology
GA 935UQ
UT WOS:000303547500008
PM 22378772
DA 2023-03-13
ER
PT J
AU Jacobs, PJ
Hart, DW
Suess, T
van Vuuren, AKJ
Bennett, NC
AF Jacobs, Paul Juan
Hart, Daniel William
Suess, Tobias
Janse van Vuuren, Andries Koch
Bennett, Nigel Charles
TI The Cost of Reproduction in a Cooperatively Breeding Mammal:
Consequences of Seasonal Variation in Rainfall, Reproduction, and
Reproductive Suppression
SO FRONTIERS IN PHYSIOLOGY
LA English
DT Article
DE oxidative stress; redox balance; mole-rat; cooperative breeder;
seasonal; reproductive suppression; hormesis; oxidative shielding
ID HIGHVELD MOLE-RAT; HOTTENTOTUS-PRETORIAE RODENTIA; OXIDATIVE STRESS;
CRYPTOMYS-HOTTENTOTUS; LIPID-PEROXIDATION; EXOGENOUS GNRH; SEX-HORMONES;
OXYGEN; EVOLUTION; BIOLOGY
AB Biological investments, such as reproduction, are influenced by both biotic and abiotic factors and their interactions. The trade-off between reproduction and survival has been well established. Seasonally breeding species, therefore, may exhibit variations in these trade-offs, but there is a dearth of knowledge concerning this. This study investigated the physiological cost of reproduction (measured through oxidative stress) across seasons in the cooperatively breeding highveld mole-rat (Cryptomys hottentotus pretoriae), one of the few seasonal breeding mole-rats. Oxidative stress indicates elevated reactive oxygen species (ROS) levels, which can overwhelm antioxidant defences resulting in damaged proteins, lipids and DNA, which overall can reduce longevity and compromise reproduction. Oxidative markers such as total oxidant status (TOS-measure of total peroxides present), total antioxidant capacity (TAC), oxidative stress index (OSI), and malondialdehyde (MDA) are utilised to measure oxidative stress. In this study, breeding and non-breeding male (NBM) and female mole-rats were captured during the dry season (breeding period) and wet season (non-breeding period). There was an apparent cost of reproduction in the highveld mole-rat; however, the seasonality pattern to the cost of reproduction varied between the sexes. Breeding females (BFs) had significantly higher MDA during the breeding period/dry season in comparison to the non-breeding period/wet season; this is possibly a consequence of bearing and nursing offspring. Contrastingly, breeding males (BMs) showed increased oxidative damage in the non-breeding/wet season compared to the breeding/dry season, possibly due to increased activities of protecting their mating rights for the next breeding/dry season, but this was not significant. Interestingly, during the non-breeding period/wet season, non-breeding females (NBFs) are released from their reproductive suppression, which resulted in increases in TOS and OSI, which again indicated that just the mere ability to be able to breed results in a cost (oxidative stress). Therefore we can speculate that highveld mole-rats exhibited seasonal variation in redox balance brought about by variation in abiotic variables (e.g., rainfall), physiology and behaviour. We conclude that physiological changes associated with reproduction are sufficient to induce significant acute oxidative stress in the plasma of female highveld mole-rats, which become alleviated following transition to the non-breeding season/wet period suggesting a possible hormetic effect.
C1 [Jacobs, Paul Juan; Hart, Daniel William; Suess, Tobias; Janse van Vuuren, Andries Koch; Bennett, Nigel Charles] Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, Pretoria, South Africa.
C3 University of Pretoria
RP Jacobs, PJ (corresponding author), Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, Pretoria, South Africa.
EM pauljuanjacobs@gmail.com
OI Jacobs, PJ/0000-0002-2601-5337
FU SARChI chair of Mammalian Behavioural Ecology and Physiology from the
DST-NRF South Africa; National Research Foundation [64756]; University
of Pretoria
FX NB acknowledges funding from the SARChI chair of Mammalian Behavioural
Ecology and Physiology from the DST-NRF South Africa, the National
Research Foundation (Grant No. 64756), and the University of Pretoria.
CR Acker T, 2006, CARDIOVASC RES, V71, P195, DOI 10.1016/j.cardiores.2006.04.008
Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x
Alonso-Alvarez C, 2017, BIOSCIENCE, V67, P258, DOI 10.1093/biosci/biw176
Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395
Arguelles S, 2004, BBA-GEN SUBJECTS, V1674, P251, DOI 10.1016/j.bbagen.2004.06.023
Barker AJ, 2021, SCIENCE, V371, P503, DOI 10.1126/science.abc6588
Bates D, 2015, J STAT SOFTW, V67, P1, DOI 10.18637/jss.v067.i01
Belhocine M, 2007, HISTOL HISTOPATHOL, V22, P603, DOI 10.14670/HH-22.603
Bennett NC, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2018.0150
Bennett N.C., 2000, AFRICAN MOLE RATS EC
Bennett NC, 1996, P ROY SOC B-BIOL SCI, V263, P1599, DOI 10.1098/rspb.1996.0234
Bennett NC, 1997, P ROY SOC B-BIOL SCI, V264, P1001, DOI 10.1098/rspb.1997.0138
BENNETT NC, 1989, J ZOOL, V219, P45, DOI 10.1111/j.1469-7998.1989.tb02564.x
Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x
Bhat S, 2008, INDIAN J CLIN BIOCHE, V23, P191, DOI 10.1007/s12291-008-0042-2
Birben E, 2012, WORLD ALLERGY ORGAN, V5, P9, DOI 10.1097/WOX.0b013e3182439613
Bitiren M, 2010, BIOL TRACE ELEM RES, V136, P87, DOI 10.1007/s12011-009-8518-3
Blecher AS, 2020, GEN COMP ENDOCR, V295, DOI 10.1016/j.ygcen.2020.113520
Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179
Bonda-Ostaszewska E, 2012, ACTA THERIOL, V57, P289, DOI 10.1007/s13364-012-0083-z
Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X
Bronson FH, 2009, PHILOS T R SOC B, V364, P3331, DOI 10.1098/rstb.2009.0140
BRONSON FH, 1985, BIOL REPROD, V32, P1, DOI 10.1095/biolreprod32.1.1
Bronson FH, 1989, MAMMALIAN REPROD BIO
Brooks RC, 2017, ANN NY ACAD SCI, V1389, P92, DOI 10.1111/nyas.13302
Brzek P, 2014, J EXP BIOL, V217, P1504, DOI 10.1242/jeb.100073
BURDA H, 1990, EXPERIENTIA, V46, P528, DOI 10.1007/BF01954256
Burg MB, 2007, PHYSIOL REV, V87, P1441, DOI 10.1152/physrev.00056.2006
Burland TM, 2004, MOL ECOL, V13, P2371, DOI 10.1111/j.1365-294X.2004.02233.x
Busch C, 2000, LIFE UNDERGROUND, P183
Chainy GBN, 2016, SCIENTIFICA, V2016, DOI 10.1155/2016/6126570
Christensen LL, 2015, ECOL EVOL, V5, P5096, DOI 10.1002/ece3.1771
CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0
Costantini D., 2014, OXIDATIVE STRESS HOR, P348, DOI DOI 10.1007/978-3-642-54663-1
Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x
Costantini D, 2019, J EXP BIOL, V222, DOI 10.1242/jeb.194688
Costantini D, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00010
Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791
Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001
Erel O, 2004, CLIN BIOCHEM, V37, P112, DOI 10.1016/j.clinbiochem.2003.10.014
Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687
Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014
Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x
Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818
Giordano FJ, 2005, J CLIN INVEST, V115, P500, DOI 10.1172/JCI200524408
Giudici A, 2010, J EXP MAR BIOL ECOL, V389, P13, DOI 10.1016/j.jembe.2010.04.002
GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0
HALLIWELL B, 1993, AM J CLIN NUTR, V57, P715
Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008
Hart DW, 2021, CAN J ZOOL, V99, P801, DOI 10.1139/cjz-2020-0158
Heinsohn R, 1999, TRENDS ECOL EVOL, V14, P53, DOI 10.1016/S0169-5347(98)01545-6
Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840
HICKMAN GC, 1979, S AFR J ZOOL, V14, P9
Huh K, 1994, Arch Pharm Res, V17, P109, DOI 10.1007/BF02974233
Itagaki T, 2005, GUT, V54, P1782, DOI 10.1136/gut.2005.053278
Ivy CM, 2020, ACTA PHYSIOL, V228, DOI 10.1111/apha.13436
Jacobs PJ, 2021, J THERM BIOL, V98, DOI 10.1016/j.jtherbio.2021.102958
Jacobs PJ, 2021, BEHAV PROCESS, V185, DOI 10.1016/j.beproc.2021.104346
Jacobs PJ, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242279
Jacobs PJ, 2021, FRONT ZOOL, V18, DOI 10.1186/s12983-021-00430-z
JARVIS JUM, 1993, BEHAV ECOL SOCIOBIOL, V33, P253, DOI 10.1007/BF02027122
JARVIS JUM, 1994, TRENDS ECOL EVOL, V9, P47, DOI 10.1016/0169-5347(94)90267-4
Khokhlova IS, 2000, PHYSIOL BIOCHEM ZOOL, V73, P257, DOI 10.1086/316745
Kireev RA, 2007, BIOGERONTOLOGY, V8, P469, DOI 10.1007/s10522-007-9089-3
Lemaitre JF, 2017, BIOL REV, V92, P2182, DOI 10.1111/brv.12328
Lenth R.V., 2022, EMMEANS ESTIMATED MA
Lukas D, 2012, P ROY SOC B-BIOL SCI, V279, P2151, DOI 10.1098/rspb.2011.2468
Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4
Lutermann H, 2013, GEN COMP ENDOCR, V187, P60, DOI 10.1016/j.ygcen.2013.03.026
Malherbe GP, 2003, AFR ZOOL, V38, P161
Margaritelis NV, 2015, BIOMARKERS, V20, P97, DOI 10.3109/1354750X.2014.1002807
McGowan NE, 2020, J THERM BIOL, V88, DOI 10.1016/j.jtherbio.2019.102495
Medger K, 2019, SCI NAT-HEIDELBERG, V106, DOI 10.1007/s00114-019-1621-1
Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015
Miller AA, 2007, CLIN EXP PHARMACOL P, V34, P1037, DOI 10.1111/j.1440-1681.2007.04732.x
Molteno AJ, 2002, J ZOOL, V256, P445, DOI 10.1017/S0952836902000481
Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x
Munoz Sabater J, 2019, ERA5 LAND MONTHLY AV, DOI [10.24381/cds.68d2bb30?tab=overview, DOI 10.24381/CDS.68D2BB30?TAB=OVERVIEW]
National Research Council, 2010, GUIDE CARE USE LAB A, V8th Edn.
Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x
Oldakowski L, 2015, J EXP BIOL, V218, P3901, DOI 10.1242/jeb.126557
Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452
Oliveira MF, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00945
R Foundation for Statistical Computing, 2019, R FDN STAT COMPUTING
Romero-Haro AA, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0842
Sainz RM, 2000, J REPROD FERTIL, V119, P143, DOI 10.1530/reprod/119.1.143
Scantlebury M, 2006, P ROY SOC B-BIOL SCI, V273, P57, DOI 10.1098/rspb.2005.3280
Schmidt CM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103286
Schmidt CM, 2013, AFR ZOOL, V48, P193
Schradin C, 2006, BEHAV ECOL, V17, P452, DOI 10.1093/beheco/arj047
Sharick JT, 2015, FUNCT ECOL, V29, P367, DOI 10.1111/1365-2435.12330
Sies H, 1997, EXP PHYSIOL, V82, P291, DOI 10.1113/expphysiol.1997.sp004024
Skinner JD., 2005, MAMMALS SO AFRICAN S, DOI [10.1017/CBO9781107340992, DOI 10.1017/CBO9781107340992]
Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145
Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790
Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108
Spinks AC, 1997, J REPROD FERTIL, V109, P79
Spinks AC, 1999, J ZOOL, V248, P161, DOI 10.1017/S0952836999006032
Spinks AC, 2000, J ANIM ECOL, V69, P224, DOI 10.1046/j.1365-2656.2000.00388.x
Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37
Dantas MRT, 2021, ANIM REPROD, V18, DOI [10.1590/1984-3143-AR2020-0213, 10.1590/1984-3143-ar2020-0213]
Tomac J, 2011, PERIOD BIOL, V113, P43
Turpaev KT, 2002, BIOCHEMISTRY-MOSCOW+, V67, P281, DOI 10.1023/A:1014819832003
Vaanholt LM, 2016, PHYSIOL BEHAV, V154, P1, DOI 10.1016/j.physbeh.2015.11.009
van de Crommenacker J, 2011, J ANIM ECOL, V80, P668, DOI 10.1111/j.1365-2656.2010.01792.x
van der Walt L, 2001, J ZOOL, V254, P177, DOI 10.1017/S0952836901000681
van Rensburg LJ, 2003, J ZOOL, V260, P73, DOI 10.1017/S0952836903003443
van Rensburg LJ, 2002, CAN J ZOOL, V80, P810, DOI 10.1139/Z02-051
Varpe O, 2017, INTEGR COMP BIOL, V57, P943, DOI 10.1093/icb/icx123
Veskoukis AS, 2009, FREE RADICAL BIO MED, V47, P1371, DOI 10.1016/j.freeradbiomed.2009.07.014
Viblanc VA, 2018, FUNCT ECOL, V32, P722, DOI 10.1111/1365-2435.13032
Vitikainen EIK, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00058
Wallace KME, 2021, J THERM BIOL, V99, DOI 10.1016/j.jtherbio.2021.103025
WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461
Withers PC, 2016, ECOL ENVIRON PHYSIOL, V5, P1, DOI 10.1093/acprof:oso/9780199642717.001.0001
Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168
Yang YH, 2013, INT REV IMMUNOL, V32, P249, DOI 10.3109/08830185.2012.755176
Young AJ, 2010, HORM BEHAV, V57, P177, DOI 10.1016/j.yhbeh.2009.10.011
Yuan XH, 2016, J STEROID BIOCHEM, V155, P104, DOI 10.1016/j.jsbmb.2015.09.029
NR 119
TC 2
Z9 2
U1 1
U2 7
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1664-042X
J9 FRONT PHYSIOL
JI Front. Physiol.
PD NOV 19
PY 2021
VL 12
AR 780490
DI 10.3389/fphys.2021.780490
PG 13
WC Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physiology
GA YF4ZU
UT WOS:000741817400001
PM 34867486
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Calabrese, EJ
Bhatia, TN
Calabrese, V
Dhawan, G
Giordano, J
Hanekamp, YN
Kapoor, R
Kozumbo, WJ
Leak, RK
AF Calabrese, Edward J.
Bhatia, Tarun N.
Calabrese, Vittorio
Dhawan, Gaurav
Giordano, James
Hanekamp, Yannic N.
Kapoor, Rachna
Kozumbo, Walter J.
Leak, Rehana K.
TI Cytotoxicity models of Huntington's disease and relevance of hormetic
mechanisms: A critical assessment of experimental approaches and
strategies
SO PHARMACOLOGICAL RESEARCH
LA English
DT Review
DE Huntington's disease; Animal models; Chemoprevention; Dose response;
Hormesis; Preconditioning
ID ACID-INDUCED NEUROTOXICITY; INDUCED OXIDATIVE STRESS; INDUCED BEHAVIORAL
ALTERATIONS; INDUCED COGNITIVE DYSFUNCTION; TRANSGENIC MOUSE MODELS;
TRANSCRANIAL MAGNETIC STIMULATION; FOCAL CEREBRAL-ISCHEMIA;
3-NITROPROPIONIC ACID; RAT MODEL; QUINOLINIC ACID
AB This paper assesses in vivo cytotoxicity models of Huntington's disease (HD). Nearly 150 agents were found to be moderately to highly effective in mitigating the pathological sequelae of cytotoxic induction of HD features in multiple rodent models. Typically, rodents are treated with a prospective HD-protective agent before, during, or after the application of a chemical or transgenic process for inducing histopathological and behavioral symptoms of HD. Although transgenic and knockout rodent models (1) display relatively high construct and face validity, and (2) are ever more routinely employed to mimic genetic-to-phenotypic expression of HD features, toxicant models are also often employed, and have served as valuable test beds for the elucidation of biochemical processes and discovery of therapeutic targets in HD. Literature searches of the toxicant HD rodent models yielded nearly 150 agents that were moderately to highly effective in mitigating pathological sequelae in multiple mouse and rat HD models. Experimental models, study designs, and exposure protocols (e.g., pre- and post-conditioning) used in testing these agents were assessed, including dosing strategies, endpoints, and dose-response features. Hormetic-like biphasic dose responses, chemoprotective mechanisms, and the translational relevance of the preclinical studies and their therapeutic implications are critically analyzed in the present report. Notably, not one of the 150 agents that successfully delayed onset and progression of HD in the experimental models has been successfully translated to the treatment of humans in a clinical setting. Potential reasons for these translational failures are (1) the inadequacy of dose-response analyses and subsequent lack of useful dosing data; (2) effective rodent doses that are too high for safe human application; (3) key differences between the experimental models and humans in pharmacokinetic/pharmacodynamic features, ages and routes of agent administration; (4) lack of robust pharmacokinetic, mechanistic or systematic approaches to probe novel treatment strategies; and (5) inadequacies of the chemically induced HD model in rats to mimic accurately the complex genetic and developmental origin and progression of HD in humans. These deficiencies need to be urgently addressed if pharmaceutical agents for the treatment of HD are going to be successfully developed in experimental models and translated with fidelity to the clinic.
C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA.
[Bhatia, Tarun N.; Leak, Rehana K.] Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15219 USA.
[Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Viale Andrea Doria 6, I-95125 Catania, Italy.
[Dhawan, Gaurav] Univ Massachusetts, Mass Venture Ctr, Human Res Protect Off, Res Compliance, Hadley, MA USA.
[Giordano, James] Georgetown Univ, Med Ctr, Dept Neurol, 4000 Reservoir Rd, Washington, DC 20007 USA.
[Giordano, James] Georgetown Univ, Med Ctr, Dept Biochem, 4000 Reservoir Rd, Washington, DC 20007 USA.
[Hanekamp, Yannic N.] Univ Groningen, Mol Med, UMCG, Groningen, Netherlands.
[Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA.
[Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD USA.
C3 University of Massachusetts System; University of Massachusetts Amherst;
Duquesne University; University of Catania; University of Massachusetts
System; Georgetown University; Georgetown University; University of
Groningen; Saint Francis Hospital & Medical Center
RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA.
EM edwardc@schoolph.umass.edu; bhatiat@duq.edu; calabres@unict.it;
gdhawan@umass.edu; james.giordano@georgetown.edu;
y.n.hanekamp@gmail.com; Rachna.kapoor@stfranciscare.org;
kozumbo@gmail.com; leakr@duq.edu
RI Kapoor, Rachna/AAP-1186-2020; Bhatia, Tarun/K-5594-2019; Leak, Rehana
K./I-2607-2019; Calabrese, Vittorio/AAC-8157-2021; Dhawan,
Gaurav/I-7098-2019
OI Kapoor, Rachna/0000-0003-0538-5440; Bhatia, Tarun/0000-0002-3046-6659;
Leak, Rehana K./0000-0003-2817-7417; Calabrese,
Vittorio/0000-0002-0478-985X; Dhawan, Gaurav/0000-0003-0511-7323;
Hanekamp, Yannic/0000-0003-3576-0985
FU U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation
[S18200000000256]; National Center for Advancing Translational Sciences
(NCATS), National Institutes of Health, through the Clinical and
Translational Science Awards Program (CTSA), a trademark of the
Department of Health and Human Services, part of the Roadmap Initiative,
" [UL1TR001409]
FX EJC acknowledges longtime support from the U.S. Air Force (AFOSR
FA9550-13-1-0047) and ExxonMobil Foundation (< GN2 > S18200000000256 <
GN3 >). The U.S. Government is authorized to reproduce and distribute
for governmental purposes notwithstanding any copyright notation
thereon. JG is supported by federal funds UL1TR001409 from the National
Center for Advancing Translational Sciences (NCATS), National Institutes
of Health, through the Clinical and Translational Science Awards Program
(CTSA), a trademark of the Department of Health and Human Services, part
of the Roadmap Initiative, "Re-Engineering the Clinical Research
Enterprise". The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing
policies or endorsement, either expressed or implied. Sponsors had no
involvement in study design, collection, analysis, interpretation,
writing and decision to and where to submit for publication
consideration.
CR Ahmad M, 2005, J NEUROCHEM, V93, P94, DOI 10.1111/j.1471-4159.2005.03000.x
Ahmed LA, 2016, MOL NEUROBIOL, V53, P3927, DOI 10.1007/s12035-015-9303-2
Ahuja M, 2008, TOXICOLOGY, V244, P111, DOI 10.1016/j.tox.2007.11.003
Akula KK, 2008, EUR J PHARMACOL, V587, P129, DOI 10.1016/j.ejphar.2008.03.038
Al Mutairy A, 2010, NEUROTOXICOL TERATOL, V32, P226, DOI 10.1016/j.ntt.2009.09.003
Alexi T, 2000, PROG NEUROBIOL, V60, P409, DOI 10.1016/S0301-0082(99)00032-5
Alfaras I, 2016, CIRC RES, V118, P1626, DOI 10.1161/CIRCRESAHA.116.307475
Andreassen OA, 2001, NEUROBIOL DIS, V8, P479, DOI 10.1006/nbdi.2001.0406
Andreassen OA, 2001, NEUROREPORT, V12, P3371, DOI 10.1097/00001756-200110290-00044
Andreassen OA, 2001, ANN NEUROL, V50, P112, DOI 10.1002/ana.1085
Aragno M, 2000, BIOCHEM PHARMACOL, V60, P389, DOI 10.1016/S0006-2952(00)00327-0
Bagheri M, 2011, NEUROBIOL LEARN MEM, V95, P270, DOI 10.1016/j.nlm.2010.12.001
Barger JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002264
Basgut B, 2008, ARCH PHARM RES, V31, P1257, DOI 10.1007/s12272-001-2104-3
Beal MF, 2003, BIOFACTORS, V18, P153
Borlongan CV, 1999, CELL TRANSPLANT, V8, P153, DOI 10.1177/096368979900800107
Borlongan CV, 2002, BRAIN RES, V956, P211, DOI 10.1016/S0006-8993(02)03474-1
Borlongan CV, 2000, NEUROSCI LETT, V279, P73, DOI 10.1016/S0304-3940(99)00962-3
Borlongan CV, 1996, SURG NEUROL, V46, P384, DOI 10.1016/S0090-3019(96)00190-5
Bortolatto CF, 2013, NEUROTOX RES, V23, P214, DOI 10.1007/s12640-012-9336-5
Brandhorst S, 2015, CELL METAB, V22, P86, DOI 10.1016/j.cmet.2015.05.012
BROUILLET E, 1993, J NEUROCHEM, V60, P356, DOI 10.1111/j.1471-4159.1993.tb05859.x
Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238
Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261
Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991
Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020
Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z
Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8
Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020
Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021
Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172
Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003
Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023
Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938
Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244
Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721
Carta AR, 2011, NEUROSCIENCE, V194, P250, DOI 10.1016/j.neuroscience.2011.07.046
Cetkovic GS, 2004, FOOD RES INT, V37, P643, DOI 10.1016/j.foodres.2004.01.010
Chakraborty J, 2014, BEHAV BRAIN RES, V264, P91, DOI 10.1016/j.bbr.2014.01.048
Chandran R., 2018, J CEREB BLOOD FLOW M, V38, P1212
Chapple SJ, 2012, INT J BIOCHEM CELL B, V44, P1315, DOI 10.1016/j.biocel.2012.04.021
Chillemi R, 2015, EUR J MED CHEM, V96, P467, DOI 10.1016/j.ejmech.2015.04.038
Colle D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067658
Colle D, 2013, MITOCHONDRION, V13, P125, DOI 10.1016/j.mito.2013.01.005
Colle D, 2012, BRAIN RES BULL, V87, P397, DOI 10.1016/j.brainresbull.2012.01.003
Corona G, 2007, BIOCHEM BIOPH RES CO, V362, P606, DOI 10.1016/j.bbrc.2007.08.049
Cutler RG, 2015, APPROACH AGING CONTR, P63
Dai DF, 2009, CIRCULATION, V119, P2789, DOI 10.1161/CIRCULATIONAHA.108.822403
Danduga RCSR, 2018, BIOMED PHARMACOTHER, V105, P1254, DOI 10.1016/j.biopha.2018.06.079
Davies JE, 2006, HUM MOL GENET, V15, P23, DOI 10.1093/hmg/ddi422
de Lago E, 2005, BRAIN RES, V1050, P210, DOI 10.1016/j.brainres.2005.05.024
Deckel AW, 2000, BRAIN RES, V875, P187, DOI 10.1016/S0006-8993(00)02640-8
Dedeoglu A, 2002, J NEUROSCI, V22, P8942
DeMarch Z, 2008, NEUROBIOL DIS, V30, P375, DOI 10.1016/j.nbd.2008.02.010
DeMarch Z, 2007, NEUROBIOL DIS, V25, P266, DOI 10.1016/j.nbd.2006.09.006
Devagi G, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-25984-7
Dhadde SB, 2016, BIOMED PHARMACOTHER, V77, P52, DOI 10.1016/j.biopha.2015.11.009
Dhir A, 2005, ADDICT BIOL, V10, P329, DOI 10.1080/13556210500352964
Diaz-Alonso J, 2016, SCI REP-UK, V6, DOI 10.1038/srep29789
Diguet E, 2004, EUR J NEUROSCI, V19, P3266, DOI 10.1111/j.0953-816X.2004.03372.x
Duan WZ, 2008, NEUROBIOL DIS, V30, P312, DOI 10.1016/j.nbd.2008.01.015
Duan WZ, 2004, ANN NEUROL, V55, P590, DOI 10.1002/ana.20075
Duan WZ, 2003, P NATL ACAD SCI USA, V100, P2911, DOI 10.1073/pnas.0536856100
Dunah AW, 2002, SCIENCE, V296, P2238, DOI 10.1126/science.1072613
DUYAO M, 1993, NAT GENET, V4, P387, DOI 10.1038/ng0893-387
Ellrichmann G, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04990-1
Ellrichmann G, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016172
Endo J, 2016, J CARDIOL, V67, P22, DOI 10.1016/j.jjcc.2015.08.002
Fatehi-Hassanabad Z, 2011, NEUROTOX RES, V19, P462, DOI 10.1007/s12640-010-9201-3
Fatoba O, 2018, EXP NEUROL, V302, P112, DOI 10.1016/j.expneurol.2018.01.001
Ferrante RJ, 2000, J NEUROSCI, V20, P4389, DOI 10.1523/JNEUROSCI.20-12-04389.2000
Ferrante RJ, 2002, J NEUROSCI, V22, P1592, DOI 10.1523/JNEUROSCI.22-05-01592.2002
Ferrante RJ, 2004, J NEUROSCI, V24, P10335, DOI 10.1523/JNEUROSCI.2599-04.2004
Ferrante RJ, 2003, J NEUROSCI, V23, P9418
Gao Y, 2015, ACTA PHARMACOL SIN, V36, P311, DOI 10.1038/aps.2014.107
Garcia-Miralles M, 2016, SCI REP-UK, V6, DOI 10.1038/srep31652
Gardian G, 2005, J BIOL CHEM, V280, P556, DOI 10.1074/jbc.M410210200
Gopinath K, 2011, NEUROCHEM INT, V59, P1066, DOI 10.1016/j.neuint.2011.08.022
Grover S, 2013, PHARMACOL BIOCHEM BE, V111, P17, DOI 10.1016/j.pbb.2013.08.001
Gupta S, 2014, PHARMACOL BIOCHEM BE, V122, P122, DOI 10.1016/j.pbb.2014.03.022
Guyot MC, 1997, NEUROSCIENCE, V81, P141, DOI 10.1016/S0306-4522(97)00192-9
Hanna DMF, 2015, PROG NEURO-PSYCHOPH, V60, P36, DOI 10.1016/j.pnpbp.2015.02.005
Hanus L, 1999, P NATL ACAD SCI USA, V96, P14228, DOI 10.1073/pnas.96.25.14228
Hashimoto M, 2018, J HUNTINGTONS DIS, V7, P297, DOI 10.3233/JHD-180309
Herrera-Mundo MN, 2006, NEUROSCI RES, V56, P39, DOI 10.1016/j.neures.2006.04.018
Hillard CJ, 1999, J PHARMACOL EXP THER, V289, P1427
Ho DJ, 2010, EXP NEUROL, V225, P74, DOI 10.1016/j.expneurol.2010.05.006
Hoshi A, 2005, BRAIN RES, V1050, P33, DOI 10.1016/j.brainres.2005.05.028
Hussain T, 2005, INT J CANCER, V113, P660, DOI 10.1002/ijc.20629
Jadiswami C, 2014, TOXICOL MECH METHOD, V24, P672, DOI 10.3109/15376516.2014.961216
Jamwal S, 2016, PHYSIOL BEHAV, V155, P180, DOI 10.1016/j.physbeh.2015.12.015
Jang M, 2014, BRAIN BEHAV IMMUN, V38, P151, DOI 10.1016/j.bbi.2014.01.015
Jang M, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/237207
Jin J, 2013, J NEUROCHEM, V125, P410, DOI 10.1111/jnc.12190
Joseph KMD, 2014, APPL PHYSIOL NUTR ME, V39, P487, DOI 10.1139/apnm-2013-0262
Joseph KMD, 2013, PROG NEURO-PSYCHOPH, V40, P83, DOI 10.1016/j.pnpbp.2012.08.018
Kalonia H, 2010, EUR J PHARMACOL, V634, P46, DOI 10.1016/j.ejphar.2010.02.031
Kaur G, 2006, TOXICOLOGY, V226, P152, DOI 10.1016/j.tox.2006.06.018
Kaur N, 2015, TOXICOL REP, V2, P1222, DOI 10.1016/j.toxrep.2015.08.004
Keene CD, 2002, P NATL ACAD SCI USA, V99, P10671, DOI 10.1073/pnas.162362299
Khan A, 2015, NEUROSCIENCE, V287, P66, DOI 10.1016/j.neuroscience.2014.12.018
Kim JH, 2005, NEUROPHARMACOLOGY, V48, P743, DOI 10.1016/j.neuropharm.2004.12.013
Kim MS, 2004, PHYTOTHER RES, V18, P663, DOI 10.1002/ptr.1486
Kjaer MA, 2008, LIPIDS, V43, P813, DOI 10.1007/s11745-008-3208-z
Kuhad A, 2008, LIFE SCI, V83, P128, DOI 10.1016/j.lfs.2008.05.013
Kumar A, 2016, J HUNTINGTONS DIS, V5, P217, DOI 10.3233/JHD-160205
Kumar A, 2008, INDIAN J EXP BIOL, V46, P159
Kumar P, 2007, FUND CLIN PHARMACOL, V21, P297, DOI 10.1111/j.1472-8206.2007.00485.x
Kumar P, 2007, METHOD FIND EXP CLIN, V29, P19, DOI 10.1358/mf.2007.29.1.1063492
Kumar P, 2012, EUR J PHARMACOL, V674, P265, DOI 10.1016/j.ejphar.2011.11.030
Kumar P, 2011, J PSYCHOPHARMACOL, V25, P1399, DOI 10.1177/0269881110364269
Kumar P, 2011, BRIT J PHARMACOL, V164, P644, DOI 10.1111/j.1476-5381.2011.01418.x
Kumar P, 2010, DRUG CHEM TOXICOL, V33, P377, DOI 10.3109/01480541003642050
Kumar P, 2010, BASIC CLIN PHARMACOL, V107, P577, DOI 10.1111/j.1742-7843.2010.00537.x
Kumar P, 2010, INT J TOXICOL, V29, P318, DOI 10.1177/1091581810365568
Kumar P, 2010, BEHAV BRAIN RES, V206, P38, DOI 10.1016/j.bbr.2009.08.028
Kumar P, 2009, LIFE SCI, V85, P711, DOI 10.1016/j.lfs.2009.10.001
Kumar P, 2009, INDIAN J EXP BIOL, V47, P715
Kumar P, 2009, FOOD CHEM TOXICOL, V47, P2522, DOI 10.1016/j.fct.2009.07.011
Kumar P, 2009, EUR J PHARMACOL, V615, P91, DOI 10.1016/j.ejphar.2009.04.058
Kumar P, 2009, NEUROSCI RES, V63, P302, DOI 10.1016/j.neures.2009.01.005
Kumar P, 2009, PROG NEURO-PSYCHOPH, V33, P100, DOI 10.1016/j.pnpbp.2008.10.013
Kumar P, 2008, PHARMACOL REP, V60, P706
Kumar P, 2009, J MED FOOD, V12, P591, DOI 10.1089/jmf.2008.0028
Kumar P, 2009, J ASIAN NAT PROD RES, V11, P439, DOI 10.1080/10286020902862194
Kuroiwa T, 2000, NEUROSCI LETT, V283, P145, DOI 10.1016/S0304-3940(00)00937-X
La Fontaine MA, 2000, J NEUROCHEM, V75, P1709
Lagoa R, 2009, J NEUROCHEM, V111, P473, DOI 10.1111/j.1471-4159.2009.06331.x
Lastres-Becker I, 2003, J NEUROCHEM, V84, P1097, DOI 10.1046/j.1471-4159.2003.01595.x
Lastres-Becker I, 2004, NEUROREPORT, V15, P2375, DOI 10.1097/00001756-200410250-00015
Lastres-Becker I, 2002, SYNAPSE, V44, P23, DOI 10.1002/syn.10054
Leak Rehana K, 2018, Cond Med, V1, P143
Leventhal L, 2000, J COMP NEUROL, V425, P471, DOI 10.1002/1096-9861(20001002)425:4<471::AID-CNE1>3.0.CO;2-U
Lian XY, 2005, ANN NEUROL, V57, P642, DOI 10.1002/ana.20450
Liang YC, 1999, CARCINOGENESIS, V20, P1945, DOI 10.1093/carcin/20.10.1945
Liu AYC, 2011, J BIOL CHEM, V286, P2785, DOI 10.1074/jbc.M110.158220
Mahdy HM, 2014, CAN J PHYSIOL PHARM, V92, P252, DOI 10.1139/cjpp-2013-0398
Maher P, 2011, HUM MOL GENET, V20, P261, DOI 10.1093/hmg/ddq460
Malfa GA, 2014, J NEUROSCI RES, V92, P95, DOI 10.1002/jnr.23290
Malik J, 2015, PHARM BIOL, V53, P1448, DOI 10.3109/13880209.2014.984856
Mandy HM, 2011, NEUROCHEM INT, V59, P770, DOI 10.1016/j.neuint.2011.07.012
Mangiarini L, 1996, CELL, V87, P493, DOI 10.1016/S0092-8674(00)81369-0
Maragos WF, 1999, BRAIN RES, V834, P168, DOI 10.1016/S0006-8993(99)01487-0
Martel JC, 1998, EXP NEUROL, V154, P595, DOI 10.1006/exnr.1998.6942
Masuda N, 2008, NEUROBIOL DIS, V30, P293, DOI 10.1016/j.nbd.2008.01.014
Matthews RT, 1998, J NEUROSCI, V18, P156
Maya-Lopez M, 2017, AM J TRANSL RES, V9, P261
Mehrotra A, 2015, MOL CELL BIOCHEM, V410, P281, DOI 10.1007/s11010-015-2561-5
Menze ET, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117223
Menze ET, 2012, NEUROTOXICOLOGY, V33, P1265, DOI 10.1016/j.neuro.2012.07.007
Montilla P, 2004, EUR J PHARMACOL, V488, P19, DOI 10.1016/j.ejphar.2004.02.004
Morales-Martinez A, 2017, NUTR NEUROSCI, V20, P388, DOI 10.1080/1028415X.2016.1147683
Moreno CL, 2016, NEUROBIOL DIS, V85, P25, DOI 10.1016/j.nbd.2015.09.012
Murphy MP, 2007, ANNU REV PHARMACOL, V47, P629, DOI 10.1146/annurev.pharmtox.47.120505.105110
Nam E, 2005, BRAIN RES, V1046, P90, DOI 10.1016/j.brainres.2005.03.053
Nguyen T, 2005, P NATL ACAD SCI USA, V102, P11840, DOI 10.1073/pnas.0502177102
Noda Y, 2015, PHARMACOL RES PERSPE, V3, DOI 10.1002/prp2.140
Oomen CA, 2009, FRONT AGING NEUROSCI, V1, DOI 10.3389/neuro.24.004.2009
Padi S.S.V., 2004, PHARM BIOCH BEHAV, V79, P249
Padi SSV, 2002, NEPHRON, V92, P685, DOI 10.1159/000064095
Pan HP, 2008, YAKUGAKU ZASSHI, V128, P1689, DOI 10.1248/yakushi.128.1689
Park JE, 2008, NEUROSCI LETT, V448, P143, DOI 10.1016/j.neulet.2008.10.020
Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105
Peng Q, 2008, EXP NEUROL, V210, P154, DOI 10.1016/j.expneurol.2007.10.015
Perez-De La Cruz V, 2006, BRAIN RES BULL, V68, P379, DOI 10.1016/j.brainresbull.2005.09.013
Perez-Severiano F, 2004, NEUROCHEM INT, V45, P1175, DOI 10.1016/j.neuint.2004.06.008
Perluigi M, 2005, MOL CELL PROTEOMICS, V4, P1849, DOI 10.1074/mcp.M500090-MCP200
Pintor A, 2006, NEUROPHARMACOLOGY, V51, P1004, DOI 10.1016/j.neuropharm.2006.06.013
Popovic N, 2002, ANN NEUROL, V51, P215, DOI 10.1002/ana.10092
Pouladi MA, 2012, NEUROBIOL DIS, V48, P282, DOI 10.1016/j.nbd.2012.06.026
Pubill D, 2001, BRIT J PHARMACOL, V132, P693, DOI 10.1038/sj.bjp.0703869
Puerta E, 2010, NEUROBIOL DIS, V38, P237, DOI 10.1016/j.nbd.2010.01.013
Raefsky SM, 2017, FREE RADICAL BIO MED, V102, P203, DOI 10.1016/j.freeradbiomed.2016.11.045
Rahman MM, 2013, AGING CELL, V12, P554, DOI 10.1111/acel.12078
Ramachandran S, 2016, CHEM-BIOL INTERACT, V256, P25, DOI 10.1016/j.cbi.2016.05.020
Riepe MW, 1997, MOL CELL BIOCHEM, V174, P249, DOI 10.1023/A:1006820927262
Riepe MW, 1996, EXP NEUROL, V138, P15, DOI 10.1006/exnr.1996.0042
Ryu JK, 2006, NEUROSCIENCE, V141, P1835, DOI 10.1016/j.neuroscience.2006.05.043
Ryu JK, 2003, EXP NEUROL, V183, P700, DOI 10.1016/S0014-4886(03)00214-0
Sagredo O, 2007, EUR J NEUROSCI, V26, P843, DOI 10.1111/j.1460-9568.2007.05717.x
Sagredo O, 2011, J NEUROSCI RES, V89, P1509, DOI 10.1002/jnr.22682
Sagredo O, 2009, GLIA, V57, P1154, DOI 10.1002/glia.20838
Sandhir R, 2015, SYNAPSE, V69, P128, DOI 10.1002/syn.21793
Sandhir R, 2013, BBA-MOL BASIS DIS, V1832, P421, DOI 10.1016/j.bbadis.2012.11.018
Sandhir R, 2012, NEURODEGENER DIS, V9, P145, DOI 10.1159/000334273
Sandhir R, 2010, NEUROCHEM INT, V57, P579, DOI 10.1016/j.neuint.2010.07.005
Santamaria A, 2003, FREE RADICAL BIO MED, V35, P418, DOI 10.1016/S0891-5849(03)00317-4
Saydoff JA, 2003, BRAIN RES, V994, P44, DOI 10.1016/j.brainres.2003.09.049
Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653
Schulz JB, 1996, NEUROSCIENCE, V71, P1043, DOI 10.1016/0306-4522(95)00527-7
Schwarz C, 2018, AGING-US, V10, P19, DOI 10.18632/aging.101354
Senatorov VV, 2004, MOL PSYCHIATR, V9, P371, DOI 10.1038/sj.mp.4001463
Shear DA, 2000, NEUROREPORT, V11, P1833, DOI 10.1097/00001756-200006260-00007
Shetty S, 2015, ANN NEUROSCI, V22, P11, DOI 10.5214/ans.0972.7531.220104
Shivasharan BD, 2013, DRUG CHEM TOXICOL, V36, P466, DOI 10.3109/01480545.2013.776583
Silva-Palacios A, 2017, EXP GERONTOL, V96, P89, DOI 10.1016/j.exger.2017.06.009
Singh A, 2003, EUR J PHARMACOL, V477, P87, DOI 10.1016/S0014-2999(03)02124-1
Singh S, 2015, NEUROCHEM RES, V40, P1758, DOI 10.1007/s11064-015-1658-2
Smith AJ, 2008, NEUROSCI LETT, V440, P294, DOI 10.1016/j.neulet.2008.05.066
Smith DL, 2003, ANN NEUROL, V54, P186, DOI 10.1002/ana.10614
Soliman Y, 2009, NEUROCHEM RES, V34, P304, DOI 10.1007/s11064-008-9779-5
Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y
Stephen C., 2015, NEUROLOGY, V84, P65
Subbaramaiah K, 2001, ADV EXP MED BIOL, V492, P147
Suganya SN, 2017, METAB BRAIN DIS, V32, P471, DOI 10.1007/s11011-016-9929-4
Sykiotis GP, 2008, DEV CELL, V14, P76, DOI 10.1016/j.devcel.2007.12.002
Tadros MG, 2005, PHARMACOL BIOCHEM BE, V82, P574, DOI 10.1016/j.pbb.2005.10.018
Tanaka M, 2004, NAT MED, V10, P148, DOI 10.1038/nm985
Tariq M, 2005, BRAIN RES BULL, V67, P161, DOI 10.1016/j.brainresbull.2005.06.024
Tasset I, 2012, NEUROSCIENCE, V209, P54, DOI 10.1016/j.neuroscience.2012.02.034
Tasset I, 2011, NUTR NEUROSCI, V14, P106, DOI 10.1179/1476830511Y.0000000005
Tasset I, 2011, PROG NEURO-PSYCHOPH, V35, P1944, DOI 10.1016/j.pnpbp.2011.09.005
Thakur T, 2013, EUR J PHARMACOL, V714, P515, DOI 10.1016/j.ejphar.2013.06.035
Thangarajan S, 2014, INT J NEUROSCI, V124, P673, DOI 10.3109/00207454.2013.872642
Thippeswamy BS, 2011, NEUROTOX RES, V20, P379, DOI 10.1007/s12640-011-9258-7
Tian C, 2013, NEUROTOXICOLOGY, V34, P42, DOI 10.1016/j.neuro.2012.10.008
Toth P, 2015, AGING CELL, V14, P400, DOI 10.1111/acel.12315
Toth P, 2014, AM J PHYSIOL-HEART C, V306, pH299, DOI 10.1152/ajpheart.00744.2013
Tozzi A, 2007, EXP NEUROL, V207, P218, DOI 10.1016/j.expneurol.2007.06.008
Tunez I, 2006, NEUROCHEM INT, V48, P367, DOI 10.1016/j.neuint.2005.11.011
Tunez I, 2006, J NEUROCHEM, V97, P619, DOI 10.1111/j.1471-4159.2006.03724.x
Tunez I, 2004, EUR J PHARMACOL, V504, P169, DOI 10.1016/j.ejphar.2004.09.061
Tunez I, 2005, PHARMACOLOGY, V74, P113, DOI 10.1159/000084169
Tunez I, 2007, LIFE SCI, V80, P1221, DOI 10.1016/j.lfs.2006.12.013
Tunez I, 2006, NEUROSCI RES, V56, P91, DOI 10.1016/j.neures.2006.05.012
Turan NN, 2008, LIFE SCI, V82, P928, DOI 10.1016/j.lfs.2008.02.011
Upaganlawar A, 2010, J PHARMACOL PHARMACO, V1, P24, DOI 10.4103/0976-500X.64532
Valdeolivas S, 2015, NEUROTHERAPEUTICS, V12, P185, DOI 10.1007/s13311-014-0304-z
Velloso NA, 2008, BRAIN RES, V1198, P107, DOI 10.1016/j.brainres.2007.12.056
Vicari RM, 2005, J AM COLL CARDIOL, V46, P1803, DOI 10.1016/j.jacc.2005.07.047
Voelkl B, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2003693
Wahdan SA, 2017, N-S ARCH PHARMACOL, V390, P905, DOI 10.1007/s00210-017-1392-1
Wang X, 2008, J NEUROSCI, V28, P9473, DOI 10.1523/JNEUROSCI.1867-08.2008
Waza M, 2005, NAT MED, V11, P1088, DOI 10.1038/nm1298
Willenberg I, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139147
Wood NI, 2003, BRAIN RES BULL, V61, P375, DOI 10.1016/S0361-9230(03)00141-2
Woodruff TM, 2006, FASEB J, V20, P1407, DOI 10.1096/fj.05-5814com
Wu B, 2017, EXP NEUROL, V293, P83, DOI 10.1016/j.expneurol.2017.03.020
Wu DC, 2002, J NEUROSCI, V22, P1763, DOI 10.1523/JNEUROSCI.22-05-01763.2002
WULLNER U, 1994, J NEUROCHEM, V63, P1772
Wurbel H, 2000, NAT GENET, V26, P263, DOI 10.1038/81541
Xu CS, 2012, BRAIN RES BULL, V87, P37, DOI 10.1016/j.brainresbull.2011.10.007
Yang LC, 2009, J NEUROCHEM, V109, P1427, DOI 10.1111/j.1471-4159.2009.06074.x
Yrjanheikki J, 1999, P NATL ACAD SCI USA, V96, P13496, DOI 10.1073/pnas.96.23.13496
Zhang HQ, 2015, FREE RADICAL BIO MED, V88, P314, DOI 10.1016/j.freeradbiomed.2015.05.036
Zhu S, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2010.94
NR 246
TC 9
Z9 9
U1 0
U2 9
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 1043-6618
J9 PHARMACOL RES
JI Pharmacol. Res.
PD DEC
PY 2019
VL 150
AR 104371
DI 10.1016/j.phrs.2019.104371
PG 30
WC Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy
GA LE8UZ
UT WOS:000527002800007
PM 31415915
DA 2023-03-13
ER
PT J
AU De Nicola, E
Meric, S
Della Rocca, C
Gallo, M
Iaccarino, M
Manini, P
Petruzzelli, D
Belgiorno, V
Cheggour, M
Di Gennaro, A
Moukrim, A
Nay, OT
Pagano, G
AF De Nicola, E.
Meric, S.
Della Rocca, C.
Gallo, M.
Iaccarino, M.
Manini, P.
Petruzzelli, D.
Belgiorno, V.
Cheggour, M.
Di Gennaro, A.
Moukrim, A.
Nay, O. Tu
Pagano, G.
TI Wastewater toxicity of tannin- versus chromium-based leather tanneries
in Marrakesh, Morocco
SO ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
LA English
DT Article
ID URCHIN EARLY DEVELOPMENT; INDUSTRY EFFLUENT; SEA-URCHINS; HORMESIS;
ACID; FERTILIZATION; HEALTH; IMPACT; GROWTH; CELLS
AB The toxicity of leather tanning wastewater from a traditional tannery (TT), which is based on vegetable tannin (VT), was compared with wastewater from a tannery combining the use of chromium- based tanning (CT) with VT- based tanning operations. Wastewater samples from a TT and a CT plant as well as from five sewer sampling points were collected in Marrakesh, Morocco, and the concentrations of VT and some selected inorganics were measured. A set of bioassays were used to test wastewater toxicity in sea urchin (Paracentrotus lividus) embryos and sperm, in Daphnia magna, and in marine microalgae (Dunaliella tertiolecta). Toxicity end points included: (1) developmental defects, embryonic mortality, sperm fertilization success, and offspring damage in sea urchins; (2) D. magna immobilization; and (3) algal growth rate inhibition. Toxicity tests on TT and CT effluents (TTE and CTE) were run at dilutions ranging from 0.1% to 2% (sea urchins and algae) or up to 12% in D. magna. Parallel bioassays were run on VT extract (VTE) at nominal tannin concentrations ranging from 0.1 to 10 mg l - 1. The results showed higher toxicity of CTE compared with TTE. CTE toxicity in sea urchins and algae showed concentration- related trends, whereas TTE exerted hormetic effects at levels of 0.1% to 0.2% and toxic effects at levels 1%. The same trends were observed for VTE, suggesting a prevailing role of tannin in TTE-associated effects. The moderate wastewater toxicity of VT-based tanneries might prompt interest in the VT tanning process. An established body of evidence has associated the chromium-based leather tanning (CT) industry with environmental and occupational health concerns, which has been reviewed by several investigators (Losi et al. 1994; Battista et al. 1995; Chattopadhyay et al. 1999; Chandra et al. 2004; Meric, et al. 2005; Mwinyhija et al. 2006; Nath et al. 2005; Otero et al. 2005; Riva et al. 2005; Tagliari et al. 2004; Zhou et al. 2005). Unlike the CT industry, scanty information is available regarding the environmental impact of the traditional leather industry based on the use of vegetable tannin ( VT) and of a set of natural organic agents ( Anonymous 1974; De Nicola et al. 2004, 2006). Wastewater from VT- based tanneries is The toxicity of leather tanning wastewater from a traditional tannery (TT), which is based on vegetable tannin (VT), was compared with wastewater from a tannery combining the use of chromium-based tanning (CT) with VT-based tanning operations. Wastewater samples from a TT and a CT plant as well as from five sewer sampling points were collected in Marrakesh, Morocco, and the concentrations of VT and some selected inorganics were measured. A set of bioassays were used to test wastewater toxicity in sea urchin (Paracentrotus lividus) embryos and sperm, in Daphnia magna, and in marine microalgae (Dunaliella tertiolecta). Toxicity end points included: (1) developmental defects, embryonic mortality, sperm fertilization success, and offspring damage in sea urchins; (2) D. magna immobilization; and (3) algal growth rate inhibition. Toxicity tests on TT and CT effluents (TTE and CTE) were run at dilutions ranging from 0.1% to 2% (sea urchins and algae) or up to 12% in D. magna. Parallel bioassays were run on VT extract (VTE) at nominal tannin concentrations ranging from 0.1 to 10 mg l(-1). The results showed higher toxicity of CTE compared with TTE. CTE toxicity in sea urchins and algae showed concentration-related trends, whereas TTE exerted hormetic effects at levels of 0.1% to 0.
2% and toxic effects at levels &GE1%. The same trends were observed for VTE, suggesting a prevailing role of tannin in TTE-associated effects. The moderate wastewater toxicity of VT-based tanneries might prompt interest in the VT tanning process known to inhibit the activity of microorganisms during biologic oxidations in tertiary effluent treatment because of high levels of tannins and other chemicals, and two studies have reported processes aimed at optimizing the environmental performance of VT- based leather tanning operations (Panizza & Cerisola 2004; Saravanabhavan et al. 2004). We reported previously that water extracts of Acacia tannin, used in leather- tanning operations, induced a nonlinear concentration- related effect, with a shift from hormesis ( Calabrese & Baldwin 2002) to toxicity at VT levels ranging from 0.3 to 30 mg l(-1) (De Nicola et al. 2004). To the best of our knowledge, however, no information is available on the toxicity of wastewaters from VT- based tanneries at concentrations that may mimic the environmental dilution of wastewater in sewage systems. Hence, also unknown is any comparison between wastewaters of VT versus CT tanneries. In the attempt to gain knowledge regarding these unsolved questions, this study was aimed at comparing the toxicities of wastewater from VT versus CT leathertanning facilities employing a set of bioassays measuring sea urchin Paracentrotus lividus early development, Daphnia magna immobilization, and marine microalga Dunaliella tertiolecta growth rate. Wastewater from VT and CT tanneries was collected in Marrakesh, Morocco, and bioassay results pointed to sharp differences in wastewater toxicity for VT versus CT tanneries.
C1 Italian Natl Canc Inst, G Pascale Fdn, I-80131 Naples, Italy.
Univ Salerno, Dept Civil Engn, I-84084 Fisciano, Italy.
Campania Regl Agcy Environm Protect, I-80143 Naples, Italy.
Univ Naples Federico II, Dept Organ Chem & Biochem, I-80126 Naples, Italy.
Politech Sch, Dept Civil & Environm Engn, I-70125 Bari, Italy.
Ecole Normale Super, Dept Biol, Ecol Unit, Marrakech 2400, Morocco.
Ibn Zohr Univ, Fac Sci, Agadir, Morocco.
Tech Univ Istanbul, Dept Environm Engn, TK-34649 Istanbul, Turkey.
C3 IRCCS Fondazione Pascale; University of Salerno; University of Naples
Federico II; Politecnico di Bari; Cadi Ayyad University of Marrakech;
Sidi Mohamed Ben Abdellah University of Fez; Ibn Zohr University of
Agadir; Istanbul Technical University
RP Pagano, G (corresponding author), Italian Natl Canc Inst, G Pascale Fdn, I-80131 Naples, Italy.
EM gbpagano@tin.it
RI Meric, Sureyya/AAH-3509-2020
OI Belgiorno, Vincenzo/0000-0003-1379-0091; Meric,
Sureyya/0000-0002-2491-2755
CR *AM SOC TEST MAT, 1986, WAT ENV TOXICOL, V11, P27
American Public Health Association, 1998, STAND METH EX WAT WA
BAE HD, 1993, J AGR FOOD CHEM, V41, P1256, DOI 10.1021/jf00032a018
BATTISTA G, 1995, J CANCER RES CLIN, V121, P1, DOI 10.1007/BF01202722
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5
Chandra S, 2004, ENVIRON TOXICOL, V19, P129, DOI 10.1002/tox.20005
Chattopadhyay B, 1999, J AM LEATHER CHEM AS, V94, P337
Chen SC, 2000, FOOD CHEM TOXICOL, V38, P1, DOI 10.1016/S0278-6915(99)00114-3
Cooman K, 2003, ENVIRON TOXICOL, V18, P45, DOI 10.1002/tox.10094
Cotman M, 2004, WATER SCI TECHNOL, V49, P39, DOI 10.2166/wst.2004.0012
De Nicola E, 2004, ARCH ENVIRON CON TOX, V46, P336, DOI 10.1007/s00244-003-2293-5
De Nicola E, 2007, ENVIRON POLLUT, V146, P46, DOI 10.1016/j.envpol.2006.06.018
GODFREY K, 1992, MED USES STAT, P233
*INT ORG STAND, 1996, INT ORG STAND WAT QU
Kitchin KT, 2002, HUM EXP TOXICOL, V21, P105, DOI 10.1191/0960327102ht220oa
Kolodziej H, 2005, PHYTOCHEMISTRY, V66, P2056, DOI 10.1016/j.phytochem.2005.01.011
LOFRANO G, 2006, GLOBAL NEST INT J, V8, P63
LOSI ME, 1994, REV ENVIRON CONTAM T, V136, P91
Meric S, 2005, CHEMOSPHERE, V61, P208, DOI 10.1016/j.chemosphere.2005.02.037
Mwinyihija M, 2006, ARCH ENVIRON CON TOX, V50, P316, DOI 10.1007/s00244-005-1049-9
Nath K, 2005, J ENVIRON BIOL, V26, P197
Okuda T, 2005, PHYTOCHEMISTRY, V66, P2012, DOI 10.1016/j.phytochem.2005.04.023
ORAL R, 2007, IN PRESS EVALUATION
Otero XL, 2005, ENVIRON POLLUT, V136, P119, DOI 10.1016/j.envpol.2004.11.026
PAGANO G, 1982, ARCH ENVIRON CON TOX, V11, P47, DOI 10.1007/BF01055185
PAGANO G, 1983, ENVIRON RES, V30, P442, DOI 10.1016/0013-9351(83)90230-X
Pagano G., 1986, COMMUNITY TOXICITY T, P67
Panizza M, 2004, ENVIRON SCI TECHNOL, V38, P5470, DOI 10.1021/es049730n
Riva MC, 2005, B ENVIRON CONTAM TOX, V75, P34, DOI 10.1007/s00128-005-0715-y
Saravanabhavan S, 2004, ENVIRON SCI TECHNOL, V38, P871, DOI 10.1021/es034554o
SASAKI YF, 1990, MUTAT RES, V244, P43, DOI 10.1016/0165-7992(90)90106-T
Stebbing ARD, 2002, MAR ENVIRON RES, V54, P805, DOI 10.1016/S0141-1136(02)00119-8
TAGLIARI KC, 2004, MUTAT RES, V561, P1001
Tunay O, 2003, WATER SCI TECHNOL, V48, P43, DOI 10.2166/wst.2004.0800
*US EPA, 1988, METHODS TOXICITY TES
WHORTON EB, 1985, ENVIRON MUTAGEN, V7, P9, DOI 10.1002/em.2860070804
Zhou LX, 2005, ENVIRON TECHNOL, V26, P277, DOI 10.1080/09593332608618558
1974, IARC MONOGRAPHS EVLA, V10, P253
NR 39
TC 12
Z9 13
U1 0
U2 38
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0090-4341
EI 1432-0703
J9 ARCH ENVIRON CON TOX
JI Arch. Environ. Contam. Toxicol.
PD OCT
PY 2007
VL 53
IS 3
BP 321
EP 328
DI 10.1007/s00244-006-0181-5
PG 8
WC Environmental Sciences; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Toxicology
GA 205RL
UT WOS:000249132200003
PM 17728989
DA 2023-03-13
ER
PT J
AU Sperdouli, I
Mellidou, I
Moustakas, M
AF Sperdouli, Ilektra
Mellidou, Ifigeneia
Moustakas, Michael
TI Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and
Cultivated Tomato for High Photochemical Efficiency under Water Deficit
for Climate Change Resilience
SO CLIMATE
LA English
DT Article
DE non-photochemical quenching (NPQ); moderate drought stress; severe
drought stress; redox state; lipid peroxidation; singlet oxygen
(O-1(2)); hormesis; reactive oxygen species (ROS); Solanum lycopersicum;
Solanum pennellii
ID PHOTOSYSTEM-II PHOTOCHEMISTRY; SINGLET OXYGEN PRODUCTION;
ARABIDOPSIS-THALIANA; DROUGHT STRESS; OXIDATIVE STRESS; REDOX STATE;
PHOTOPROTECTIVE MECHANISM; ABIOTIC STRESS; LIGHT STRESS; RESPONSES
AB Fluctuations of the weather conditions, due to global climate change, greatly influence plant growth and development, eventually affecting crop yield and quality, but also plant survival. Since water shortage is one of the key risks for the future of agriculture, exploring the capability of crop species to grow with limited water is therefore fundamental. By using chlorophyll fluorescence analysis, we evaluated the responses of wild tomato accession Solanum pennellii LA0716, Solanum lycopersicum cv. M82, the introgression line IL12-4 (from cv. M82 X LA0716), and the Greek tomato cultivars cv. Santorini and cv. Zakinthos, to moderate drought stress (MoDS) and severe drought stress (SDS), in order to identify the minimum irrigation level for efficient photosynthetic performance. Agronomic traits (plant height, number of leaves and root/shoot biomass), relative water content (RWC), and lipid peroxidation, were also measured. Under almost 50% deficit irrigation, S. pennellii exhibited an enhanced photosynthetic function by displaying a hormetic response of electron transport rate (ETR), due to an increased fraction of open reaction centers, it is suggested to be activated by the low increase of reactive oxygen species (ROS). A low increase of ROS is regarded to be beneficial by stimulating defense responses and also triggering a more oxidized redox state of quinone A (Q(A)), corresponding in S. pennellii under 50% deficit irrigation, to the lowest stomatal opening, resulting in reduction of water loss. Solanum pennellii was the most tolerant to drought, as it was expected, and could manage to have an adequate photochemical function with almost 30% water regime of well-watered plants. With 50% deficit irrigation, cv. M82 and cv. Santorini did not show any difference in photochemical efficiency to control plants and are recommended to be cultivated under deficit irrigation as an effective strategy to enhance agricultural sustainability under a global climate change. We conclude that instead of the previously used Fv/Fm ratio, the redox state of Q(A), as it can be estimated by the chlorophyll fluorescence parameter 1 - q(L), is a better indicator to evaluate photosynthetic efficiency and select drought tolerant cultivars under deficit irrigation.
C1 [Sperdouli, Ilektra; Mellidou, Ifigeneia] Hellen Agr Org Demeter ELGO Dimitra, Inst Plant Breeding & Genet Resources, GR-57001 Thessaloniki, Greece.
[Moustakas, Michael] Aristotle Univ Thessaloniki, Dept Bot, GR-54124 Thessaloniki, Greece.
C3 Aristotle University of Thessaloniki
RP Moustakas, M (corresponding author), Aristotle Univ Thessaloniki, Dept Bot, GR-54124 Thessaloniki, Greece.
EM ilektras@bio.auth.gr; imellidou@ipgrb.gr; moustak@bio.auth.gr
RI Moustakas, Michael/B-4420-2010
OI Moustakas, Michael/0000-0003-0480-9387; Sperdouli,
Ilektra/0000-0002-8755-0421; Mellidou, Ifigeneia/0000-0002-5320-132X
CR Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041
Adamakis IDS, 2021, J HAZARD MATER, V404, DOI 10.1016/j.jhazmat.2020.124001
Adamakis IDS, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.01196
Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249
Agathokleous E, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819838420
Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004
Antonoglou O, 2018, ACS APPL MATER INTER, V10, P4450, DOI 10.1021/acsami.7b17017
Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701
Asada K, 2006, PLANT PHYSIOL, V141, P391, DOI 10.1104/pp.106.082040
Asfi M, 2012, ECOTOX ENVIRON SAFE, V80, P69, DOI 10.1016/j.ecoenv.2012.02.030
Bano H, 2021, PHYSIOL PLANTARUM, V172, P603, DOI 10.1111/ppl.13337
Baycu G, 2018, MATERIALS, V11, DOI 10.3390/ma11122580
Beckles DM, 2012, FRUITS, V67, P49, DOI 10.1051/fruits/2011066
Beckles DM, 2012, POSTHARVEST BIOL TEC, V63, P129, DOI 10.1016/j.postharvbio.2011.05.016
Bertin N, 2018, SCI HORTIC-AMSTERDAM, V233, P264, DOI 10.1016/j.scienta.2018.01.056
BILGER W, 1995, OECOLOGIA, V102, P425, DOI 10.1007/BF00341354
Busch FA, 2014, PHOTOSYNTH RES, V119, P131, DOI 10.1007/s11120-013-9805-6
Calabrese EJ, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111544
Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529
Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729
Cazzaniga S, 2013, PLANT J, V76, P568, DOI 10.1111/tpj.12314
Chawade A, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9050258
Choudhury FK, 2017, PLANT J, V90, P856, DOI 10.1111/tpj.13299
Cirillo V, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10020139
Considine MJ, 2021, J EXP BOT, V72, P5795, DOI 10.1093/jxb/erab265
Czarnocka W, 2018, FREE RADICAL BIO MED, V122, P4, DOI 10.1016/j.freeradbiomed.2018.01.011
Dabrowski P, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19122736
Devireddy AR, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22168843
Dobrikova A, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10020194
Dorais M., 2001, Horticultural Reviews, V26, P239
dos Santos NZ, 2021, PLANT CELL ENVIRON, V44, P2858, DOI 10.1111/pce.14136
Farooq S, 2018, NAT PLANTS, V4, P225, DOI 10.1038/s41477-018-0127-8
Feng Y, 2021, PLANT J, V107, P399, DOI 10.1111/tpj.15296
Flexas J, 2002, ANN BOT-LONDON, V89, P183, DOI 10.1093/aob/mcf027
Flexas J, 2007, PLANT CELL ENVIRON, V30, P1284, DOI 10.1111/j.1365-3040.2007.01700.x
Foyer CH, 2009, ANTIOXID REDOX SIGN, V11, P861, DOI 10.1089/ars.2008.2177
Gawronski P, 2021, PLANT J, V105, P619, DOI 10.1111/tpj.15058
Gawronski P, 2014, MOL PLANT, V7, P1151, DOI 10.1093/mp/ssu060
Giovannucci E, 2002, EXP BIOL MED, V227, P852, DOI 10.1177/153537020222701003
Glowacka K, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03231-x
Gorbe E, 2012, SCI HORTIC-AMSTERDAM, V138, P24, DOI 10.1016/j.scienta.2012.02.002
Guidi L, 2014, ENVIRON EXP BOT, V103, P42, DOI 10.1016/j.envexpbot.2013.12.007
Guo Y, 2015, PHOTOCHEM PHOTOBIOL, V91, P1, DOI 10.1111/php.12362
Hammer GL, 2021, J EXP BOT, V72, P5097, DOI 10.1093/jxb/erab273
Hanjra MA, 2010, FOOD POLICY, V35, P365, DOI 10.1016/j.foodpol.2010.05.006
Hasanuzzaman M, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9080681
Havaux M, 2020, TRENDS PLANT SCI, V25, P1252, DOI 10.1016/j.tplants.2020.06.011
HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1
Hein NT, 2021, J EXP BOT, V72, P5102, DOI 10.1093/jxb/erab021
Hou XM, 2020, J EXP BOT, V71, P1249, DOI 10.1093/jxb/erz526
HSIAO TC, 1973, ANNU REV PLANT PHYS, V24, P519, DOI 10.1146/annurev.pp.24.060173.002511
Hussain M, 2018, AGR WATER MANAGE, V201, P152, DOI 10.1016/j.agwat.2018.01.028
Imran QM, 2021, AGRONOMY-BASEL, V11, DOI 10.3390/agronomy11081579
Kalaji HM, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2113-y
Kalaji HM, 2012, J PHOTOCH PHOTOBIO B, V112, P1, DOI 10.1016/j.jphotobiol.2012.03.009
Kanazawa A, 2002, P NATL ACAD SCI USA, V99, P12789, DOI 10.1073/pnas.182427499
Kasajima I, 2011, P NATL ACAD SCI USA, V108, P13835, DOI 10.1073/pnas.1104809108
Kramer DM, 2004, PHOTOSYNTH RES, V79, P209, DOI 10.1023/B:PRES.0000015391.99477.0d
Krieger-Liszkay A, 2008, PHOTOSYNTH RES, V98, P551, DOI 10.1007/s11120-008-9349-3
Kromdijk J, 2019, PHOTOSYNTH RES, V141, P83, DOI 10.1007/s11120-019-00632-x
Kumar N, 2020, J AGRON CROP SCI, V206, P148, DOI 10.1111/jac.12371
Lambrev PH, 2012, BBA-BIOENERGETICS, V1817, P760, DOI 10.1016/j.bbabio.2012.02.002
Lawlor DW, 2009, ANN BOT-LONDON, V103, P543, DOI [10.1093/aob/mcn244, 10.1093/aob/mcn256]
Lawlor DW, 2002, PLANT CELL ENVIRON, V25, P275, DOI 10.1046/j.0016-8025.2001.00814.x
Li ZR, 2009, ANNU REV PLANT BIOL, V60, P239, DOI 10.1146/annurev.arplant.58.032806.103844
Liu DJ, 2021, NEW PHYTOL, V230, P1761, DOI 10.1111/nph.17269
Liu RN, 2022, J AGRON CROP SCI, V208, P853, DOI 10.1111/jac.12533
Lodeyro AF, 2021, J EXP BOT, V72, P5919, DOI 10.1093/jxb/erab270
Lu CM, 1999, J EXP BOT, V50, P1199, DOI 10.1093/jexbot/50.336.1199
Araus JL, 2018, TRENDS PLANT SCI, V23, P451, DOI 10.1016/j.tplants.2018.02.001
Malea P, 2019, MATERIALS, V12, DOI 10.3390/ma12132101
Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099
Martinez-Ispizua E, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.696272
Mellidou I, 2020, FUNCT PLANT BIOL, V47, P651, DOI 10.1071/FP19350
Mellidou I, 2017, J PLANT PHYSIOL, V218, P171, DOI 10.1016/j.jplph.2017.08.006
Mellidou I, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-239
Miller G, 2010, PLANT CELL ENVIRON, V33, P453, DOI 10.1111/j.1365-3040.2009.02041.x
Mittler R, 2011, TRENDS PLANT SCI, V16, P300, DOI 10.1016/j.tplants.2011.03.007
Moustaka J, 2021, INSECTS, V12, DOI 10.3390/insects12060562
Moustaka J, 2020, ENVIRON EXP BOT, V175, DOI 10.1016/j.envexpbot.2020.104065
Moustaka J, 2018, MATERIALS, V11, DOI 10.3390/ma11091772
Moustaka J, 2018, ENVIRON EXP BOT, V154, P44, DOI 10.1016/j.envexpbot.2018.01.006
Moustaka J, 2016, BIOMETALS, V29, P611, DOI 10.1007/s10534-016-9938-0
Moustaka J, 2015, INT J MOL SCI, V16, P13989, DOI 10.3390/ijms160613989
Moustaka J, 2014, PESTIC BIOCHEM PHYS, V111, P1, DOI 10.1016/j.pestbp.2014.04.006
Moustakas M, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.658500
Moustakas M, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9080962
Moustakas M, 2019, MATERIALS, V12, DOI 10.3390/ma12182953
Moustakas M, 2019, ENVIRON SCI POLLUT R, V26, P6613, DOI 10.1007/s11356-019-04126-0
Moustakas M, 2017, ENVIRON SCI POLLUT R, V24, P16007, DOI 10.1007/s11356-017-9174-3
Moustakas M, 2016, PESTIC BIOCHEM PHYS, V126, P28, DOI 10.1016/j.pestbp.2015.07.003
Moustakas M, 2011, PLANT GROWTH REGUL, V65, P315, DOI 10.1007/s10725-011-9604-z
Muktadir MA, 2021, PHYSIOL PLANTARUM, V172, P540, DOI 10.1111/ppl.13309
Muller P, 2001, PLANT PHYSIOL, V125, P1558, DOI 10.1104/pp.125.4.1558
Murata N, 2007, BBA-BIOENERGETICS, V1767, P414, DOI 10.1016/j.bbabio.2006.11.019
Murchie EH, 2013, J EXP BOT, V64, P3983, DOI 10.1093/jxb/ert208
Niyogi KK, 2005, J EXP BOT, V56, P375, DOI 10.1093/jxb/eri056
Pashayeva A, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22157978
Pfannschmidt T, 2012, PROTOPLASMA, V249, P125, DOI 10.1007/s00709-012-0398-2
Pignon CP, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.627432
Razavi F, 2008, PHOTOSYNTHETICA, V46, P631, DOI 10.1007/s11099-008-0108-7
Razifard H, 2020, MOL BIOL EVOL, V37, P1118, DOI 10.1093/molbev/msz297
Reddy TY, 2003, PLANT GROWTH REGUL, V41, P75, DOI 10.1023/A:1027353430164
Ruban AV, 2016, PLANT PHYSIOL, V170, P1903, DOI 10.1104/pp.15.01935
Shahinnia F, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22157877
Silva EN, 2010, J PLANT PHYSIOL, V167, P1157, DOI 10.1016/j.jplph.2010.03.005
Sipka G, 2021, PLANT CELL, V33, P1286, DOI 10.1093/plcell/koab008
Sperdouli I, 2015, PHOTOSYNTHETICA, V53, P471, DOI 10.1007/s11099-015-0116-3
Sperdouli I, 2012, PLANT BIOLOGY, V14, P118, DOI 10.1111/j.1438-8677.2011.00473.x
Sperdouli I, 2021, MOLECULES, V26, DOI 10.3390/molecules26144157
Sperdouli I, 2021, MOLECULES, V26, DOI 10.3390/molecules26102984
Sperdouli I, 2019, MATERIALS, V12, DOI 10.3390/ma12152498
Sperdouli I, 2014, J PLANT RES, V127, P481, DOI 10.1007/s10265-014-0635-1
Sperdouli I, 2014, J PLANT PHYSIOL, V171, P587, DOI 10.1016/j.jplph.2013.11.014
Sperdouli I, 2012, ACTA PHYSIOL PLANT, V34, P1267, DOI 10.1007/s11738-011-0920-8
Sperdouli I, 2012, J PLANT PHYSIOL, V169, P577, DOI 10.1016/j.jplph.2011.12.015
Stamelou ML, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10030521
Subramanian KS, 2006, SCI HORTIC-AMSTERDAM, V107, P245, DOI 10.1016/j.scienta.2005.07.006
Takahashi S, 2011, TRENDS PLANT SCI, V16, P53, DOI 10.1016/j.tplants.2010.10.001
Telfer A, 2014, PLANT CELL PHYSIOL, V55, P1216, DOI 10.1093/pcp/pcu040
Trenberth KE, 2014, NAT CLIM CHANGE, V4, P17, DOI 10.1038/NCLIMATE2067
Triantaphylides C, 2009, TRENDS PLANT SCI, V14, P219, DOI 10.1016/j.tplants.2009.01.008
Tsabari O, 2015, PLANT J, V81, P884, DOI 10.1111/tpj.12774
Tschiersch H, 2017, PLANT METHODS, V13, DOI 10.1186/s13007-017-0204-4
Walter J, 2011, ENVIRON EXP BOT, V71, P34, DOI 10.1016/j.envexpbot.2010.10.020
Willett W, 2019, LANCET, V393, P447, DOI 10.1016/S0140-6736(18)31788-4
Woolery P. O., 2010, Native Plants Journal, V11, P27, DOI 10.2979/NPJ.2010.11.1.27
Yao JN, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00603
Zavafer A, 2021, J PHOTOCH PHOTOBIO C, V47, DOI 10.1016/j.jphotochemrev.2021.100421
Zhao TB, 2015, J CLIMATE, V28, P4490, DOI 10.1175/JCLI-D-14-00363.1
Zhu JK, 2016, CELL, V167, P313, DOI 10.1016/j.cell.2016.08.029
NR 131
TC 13
Z9 13
U1 0
U2 7
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2225-1154
J9 CLIMATE
JI Climate
PD NOV
PY 2021
VL 9
IS 11
AR 154
DI 10.3390/cli9110154
PG 17
WC Meteorology & Atmospheric Sciences
WE Emerging Sources Citation Index (ESCI)
SC Meteorology & Atmospheric Sciences
GA XF0CC
UT WOS:000723746500001
OA gold
DA 2023-03-13
ER
PT J
AU Yang, W
Hekimi, S
AF Yang, Wen
Hekimi, Siegfried
TI A Mitochondrial Superoxide Signal Triggers Increased Longevity in
Caenorhabditis elegans
SO PLOS BIOLOGY
LA English
DT Article
ID OXIDATIVE STRESS RESISTANCE; SYSTEMATIC RNAI SCREEN; LIVED CLK-1
MUTANTS; LIFE-SPAN; HYDROGEN-PEROXIDE; COMPLEX-III; IN-VIVO;
RESTRICTION; LONG; DAMAGE
AB The nuo-6 and isp-1 genes of C. elegans encode, respectively, subunits of complex I and III of the mitochondrial respiratory chain. Partial loss-of-function mutations in these genes decrease electron transport and greatly increase the longevity of C. elegans by a mechanism that is distinct from that induced by reducing their level of expression by RNAi. Electron transport is a major source of the superoxide anion (O center dot-), which in turn generates several types of toxic reactive oxygen species (ROS), and aging is accompanied by increased oxidative stress, which is an imbalance between the generation and detoxification of ROS. These observations have suggested that the longevity of such mitochondrial mutants might result from a reduction in ROS generation, which would be consistent with the mitochondrial oxidative stress theory of aging. It is difficult to measure ROS directly in living animals, and this has held back progress in determining their function in aging. Here we have adapted a technique of flow cytometry to directly measure ROS levels in isolated mitochondria to show that the generation of superoxide is elevated in the nuo-6 and isp-1 mitochondrial mutants, although overall ROS levels are not, and oxidative stress is low. Furthermore, we show that this elevation is necessary and sufficient to increase longevity, as it is abolished by the antioxidants NAC and vitamin C, and phenocopied by mild treatment with the prooxidant paraquat. Furthermore, the absence of effect of NAC and the additivity of the effect of paraquat on a variety of long-and short-lived mutants suggest that the pathway triggered by mitochondrial superoxide is distinct from previously studied mechanisms, including insulin signaling, dietary restriction, ubiquinone deficiency, the hypoxic response, and hormesis. These findings are not consistent with the mitochondrial oxidative stress theory of aging. Instead they show that increased superoxide generation acts as a signal in young mutant animals to trigger changes of gene expression that prevent or attenuate the effects of subsequent aging. We propose that superoxide is generated as a protective signal in response to molecular damage sustained during wild-type aging as well. This model provides a new explanation for the well-documented correlation between ROS and the aged phenotype as a gradual increase of molecular damage during aging would trigger a gradually stronger ROS response.
C1 [Yang, Wen; Hekimi, Siegfried] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada.
C3 McGill University
RP Yang, W (corresponding author), McGill Univ, Dept Biol, 1205 Doctor Penfield Ave, Montreal, PQ H3A 1B1, Canada.
EM Siegfried.Hekimi@McGill.ca
OI Hekimi, Siegfried/0000-0002-3592-5711
FU Canadian Institutes of Health Research [216377]; McGill University
FX The work was supported in part by a grant from the Canadian Institutes
of Health Research to SH (grant #216377) and by McGill University. The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
CR ARUOMA OI, 1989, FREE RADICAL BIO MED, V6, P593, DOI 10.1016/0891-5849(89)90066-X
Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001
Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547
Benrahmoune M, 2000, FREE RADICAL BIO MED, V29, P775, DOI 10.1016/S0891-5849(00)00380-4
Bishop NA, 2007, NATURE, V447, P545, DOI 10.1038/nature05904
Branicky R, 2006, MOL CELL BIOL, V26, P3976, DOI 10.1128/MCB.26.10.3976-3985.2006
Brunelle JK, 2005, CELL METAB, V1, P409, DOI 10.1016/j.cmet.2005.05.002
Budzinska M, 2009, J BIOENERG BIOMEMBR, V41, P361, DOI 10.1007/s10863-009-9231-9
CADENAS E, 1977, ARCH BIOCHEM BIOPHYS, V180, P248, DOI 10.1016/0003-9861(77)90035-2
CARRANO AC, 2009, NATURE
Chen D, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000486
Copeland JM, 2009, CURR BIOL, V19, P1591, DOI 10.1016/j.cub.2009.08.016
Cristina D, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000450
Curtis R, 2006, AGING CELL, V5, P119, DOI 10.1111/j.1474-9726.2006.00205.x
Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004
Dillin A, 2002, SCIENCE, V298, P2398, DOI 10.1126/science.1077780
Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808
Drechsel DA, 2009, TOXICOL SCI, V112, P427, DOI 10.1093/toxsci/kfp223
Durieux J, 2007, CELL METAB, V6, P427, DOI 10.1016/j.cmet.2007.11.008
Ewbank JJ, 1997, SCIENCE, V275, P980, DOI 10.1126/science.275.5302.980
Felkai S, 1999, EMBO J, V18, P1783, DOI 10.1093/emboj/18.7.1783
Feng JL, 2001, DEV CELL, V1, P633, DOI 10.1016/S1534-5807(01)00071-5
Greer EL, 2009, AGING CELL, V8, P113, DOI 10.1111/j.1474-9726.2009.00459.x
Guzy RD, 2005, CELL METAB, V1, P401, DOI 10.1016/j.cmet.2005.05.001
Hailey DW, 2010, CELL, V141, P656, DOI 10.1016/j.cell.2010.04.009
Hamilton B, 2005, GENE DEV, V19, P1544, DOI 10.1101/gad.1308205
HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298
Hattori F, 2010, NAT METHODS, V7, P61, DOI [10.1038/NMETH.1403, 10.1038/nmeth.1403]
HAUGHLAND R, 2009, HDB FLUORESCENT PROB
Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x
Hekimi S, 2003, SCIENCE, V299, P1351, DOI 10.1126/science.1082358
Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385
Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694
Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701
Huang WC, 2002, EXP CELL RES, V277, P192, DOI 10.1006/excr.2002.5546
Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331
Jonassen T, 2001, P NATL ACAD SCI USA, V98, P421, DOI 10.1073/pnas.021337498
Kayser EB, 2001, J BIOL CHEM, V276, P20551, DOI 10.1074/jbc.M011066200
Keaney M, 2004, FREE RADICAL BIO MED, V37, P239, DOI 10.1016/j.freeradbiomed.2004.04.005
KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0
Kudin AP, 2004, J BIOL CHEM, V279, P4127, DOI 10.1074/jbc.M310341200
Kussmaul L, 2006, P NATL ACAD SCI USA, V103, P7607, DOI 10.1073/pnas.0510977103
Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013
Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091
Lakowski B, 1996, SCIENCE, V272, P1010, DOI 10.1126/science.272.5264.1010
Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8
LEBEL CP, 1992, CHEM RES TOXICOL, V5, P227, DOI 10.1021/tx00026a012
Lee SS, 2003, NAT GENET, V33, P40, DOI 10.1038/ng1056
Libina N, 2003, CELL, V115, P489, DOI 10.1016/S0092-8674(03)00889-4
Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829
Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103
Madesh M, 2005, J CELL BIOL, V170, P1079, DOI 10.1083/jcb.200505022
Madesh M, 2001, J CELL BIOL, V155, P1003, DOI 10.1083/jcb.200105057
Magwere T, 2006, MECH AGEING DEV, V127, P356, DOI 10.1016/j.mad.2005.12.009
Mattiasson G, 2004, CYTOM PART A, V62A, P89, DOI 10.1002/cyto.a.20089
Mehta R, 2009, SCIENCE, V324, P1196, DOI 10.1126/science.1173507
Miyadera H, 2002, FEBS LETT, V512, P33, DOI 10.1016/S0014-5793(02)02282-2
Miyadera H, 2001, J BIOL CHEM, V276, P7713, DOI 10.1074/jbc.C000889200
Myhre O, 2003, BIOCHEM PHARMACOL, V65, P1575, DOI 10.1016/S0006-2952(03)00083-2
Navarro A, 2007, AM J PHYSIOL-CELL PH, V292, pC670, DOI 10.1152/ajpcell.00213.2006
Oh SW, 2005, P NATL ACAD SCI USA, V102, P4494, DOI 10.1073/pnas.0500749102
Owusu-Ansah E, 2008, NAT GENET, V40, P356, DOI 10.1038/ng.2007.50
PEARL R, 1928, RATE LIVING
Piskemik C, 2008, BBA-MOL BASIS DIS, V1782, P280, DOI 10.1016/j.bbadis.2008.01.007
Rea SL, 2007, PLOS BIOL, V5, P2312, DOI 10.1371/journal.pbio.0050259
Reznick RM, 2007, CELL METAB, V5, P151, DOI 10.1016/j.cmet.2007.01.008
Robinson KM, 2006, P NATL ACAD SCI USA, V103, P15038, DOI 10.1073/pnas.0601945103
Rubner M., 1908, PROBLEM LEBENSDAUR S
Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011
SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771
Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556
Storz P., 2006, SCI STKE, DOI DOI 10.1126/STKE.3322006RE3
Suda H, 2005, BIOCHEM BIOPH RES CO, V330, P839, DOI 10.1016/j.bbrc.2005.03.050
Tullet JMA, 2008, CELL, V132, P1025, DOI 10.1016/j.cell.2008.01.030
TURRENS JF, 1985, ARCH BIOCHEM BIOPHYS, V237, P408, DOI 10.1016/0003-9861(85)90293-0
Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361
VANRAAMSDONK J, 2010, ANTIOXID RE IN PRESS
VANRAAMSDONK J, 2010, GENETICS IN PRESS
VANRAAMSDONK JM, 2010, GENETICS
Weinberg F, 2009, CELL MOL LIFE SCI, V66, P3663, DOI 10.1007/s00018-009-0099-y
Wolkow CA, 2000, SCIENCE, V290, P147, DOI 10.1126/science.290.5489.147
WONG A, 1995, GENETICS, V139, P1247
YANG W, 2010, AGING CELL IN PRESS
Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788
NR 84
TC 418
Z9 432
U1 3
U2 103
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1544-9173
EI 1545-7885
J9 PLOS BIOL
JI PLoS. Biol.
PD DEC
PY 2010
VL 8
IS 12
AR e1000556
DI 10.1371/journal.pbio.1000556
PG 14
WC Biochemistry & Molecular Biology; Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other
Topics
GA 697GD
UT WOS:000285500100004
PM 21151885
OA Green Published, gold, Green Submitted
DA 2023-03-13
ER
PT J
AU Sidibe, A
Charles, MT
Nicolas, O
Beaulieu, C
AF Sidibe, Amadou
Charles, Marie Therese
Nicolas, Olbert
Beaulieu, Carole
TI Preharvest UV-C affects lettuce resistance to Xanthomonas campestris pv.
vitians and quality
SO SCIENTIA HORTICULTURAE
LA English
DT Article
DE Abiotic stress; Asteraceae; Bacterial leaf spot; Biotic stress;
Eustress; Dry matter; Fruit; UV-C hormesis; Vegetable; Yield
ID BOTRYTIS-CINEREA; PHYSIOLOGICAL-BASIS; WATER-STRESS; GROWTH;
IRRADIATION; RADIATION; LIGHT; FRUIT; EXPRESSION; NITROGEN
AB A series of independent trials were conducted to evaluate the use of UV-C radiation for controlling Xanthomonas campestris pv. vitians (Xcv), the causative agent of bacterial leaf spot in lettuce, and to assess the impact of this treatment on lettuce yield. The first trial involved repeated applications of a pre-established hormetic dose of UV-C (0.4 kJ/m(2)), for a total dose of 1.6 kJ/m(2), which represented a single treatment cycle. Lettuce plants were inoculated with a virulent strain of Xcv 48 h after this treatment cycle. The second trial, which took place after Xcv inoculation, involved additional UV-C treatment cycles (0.5, 1.0 and 1.75 cycles), corresponding to total doses of 2.4, 3.2 and 4.4 kJ/m(2) respectively. In the third trial, three weekly UV-C treatments were given at 48 h intervals using the standard 0.4 kJ/m(2) dose, beginning the third week after seeding and continuing until the lettuce reached the commercial stage and was harvested. By the time the mature lettuce plants were harvested, they had undergone five treatment cycles, representing a total dose of 8 kJ/m(2). A single UV-C treatment cycle resulted in a 90 %, 30 % or 10 % reduction in the susceptibility of the growing lettuce plants to Xcv compared with the control group, depending on when symptoms were evaluated. The application of additional treatment cycles (0.5, 1.0 and 1.75 cycles) resulted in a reduction of 30 %, 45 % and 50 % in susceptibility, respectively, in the treated lettuce plants relative to the controls. The fresh yield of lettuce treated with 2.75 cycles of UV-C (4.4 kJ/m(2)) was similar to that of the control lettuce; this treatment also resulted in a significant decrease (20 %) in core length, an agronomic trait associated with increased yield when lettuce is processed as fresh-cut ready-to-eat product. UV-C-treated lettuce had a significantly greater dry matter content and higher total mineral concentrations than the control lettuce. These results indicate that repeated preharvest UV-C treatments (0.4 kJ/m(2)) improve the tolerance of lettuce to Xcv without negative effects.
C1 [Sidibe, Amadou; Charles, Marie Therese; Beaulieu, Carole] Univ Sherbrooke, Dept Biol, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada.
[Sidibe, Amadou; Charles, Marie Therese] Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, 430 Blvd Gouin, St Jean, PQ J3B 3E6, Canada.
[Nicolas, Olbert] Agr & Agri Food Canada, Harrow Res & Dev Ctr, 2585 Cty Rd 20, Harrow, ON N0R 1G0, Canada.
C3 University of Sherbrooke; Agriculture & Agri Food Canada; Agriculture &
Agri Food Canada
RP Charles, MT (corresponding author), Agr & Agri Food Canada, St Jean Sur Richelieu Res & Dev Ctr, 430 Blvd Gouin, St Jean, PQ J3B 3E6, Canada.
EM marietherese.charles@canada.ca
OI Charles, Marie Therese/0000-0001-7485-906X
FU Agriculture and Agri-Food Canada; AgroPhytoSciences program at Centre
SEVE (Plant Science Research Centre) at the University of Sherbrooke
FX The research described in this document was funded primarily by
Agriculture and Agri-Food Canada and conducted at the AAFC's
SaintJean-sur-Richelieu Research and Development Centre. Amadou Sidib '
e also received financial support from the AgroPhytoSciences program at
Centre S`EVE (Plant Science Research Centre) at the University of
Sherbrooke. The authors would like to thank Gaston Mercier for his help
in analyzing the mineral elements, Karine Frechette and Bertrand
Riendeau for taking care of the lettuce plants, Marie Ciotola, M '
elanie Cadieux, Daniel Rolland and Dominique Roussel for technical
assistance in conducting the trials. Acknowledgements are extended to
Barbara Chunn for linguistic services.
CR Agriculture and Agri-food Canada, 2015, STAT OV CAN VEG IND
Aguero MV, 2008, J FOOD SCI, V73, pS47, DOI 10.1111/j.1750-3841.2007.00604.x
Al-Yasi H, 2020, PLANT PHYSIOL BIOCH, V150, P133, DOI 10.1016/j.plaphy.2020.02.038
Bull C.T., 2007, PLANT HLTH PROG, V8, DOI [10.1094/PHP-2007-0917-02-RS, DOI 10.1094/PHP-2007-0917-02-RS]
Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019
Charles MT, 2009, POSTHARVEST BIOL TEC, V51, P414, DOI 10.1016/j.postharvbio.2008.08.016
Darras AI, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109357
Darras AI, 2012, PLANT GROWTH REGUL, V68, P343, DOI 10.1007/s10725-012-9722-2
Eitel JUH, 2006, FOREST ECOL MANAG, V229, P170, DOI 10.1016/j.foreco.2006.03.027
Food and Agriculture Organization of the United Nations (FAOSTAT), 2013, LETT CHIC
Fu G, 2017, ACTA PHYSIOL PLANT, V39, DOI 10.1007/s11738-017-2387-8
Gogo EO, 2017, POSTHARVEST BIOL TEC, V129, P107, DOI 10.1016/j.postharvbio.2017.03.019
Hayes RJ, 2014, HORTIC RES-ENGLAND, V1, DOI 10.1038/hortres.2014.66
Hebert P.O, 2019, CARACTERISATION GENO, P52
ISAAC RA, 1976, J ASSOC OFF ANA CHEM, V59, P98
Janisiewicz WJ, 2016, CAN J PLANT PATHOL, V38, P430, DOI 10.1080/07060661.2016.1263807
Janisiewicz WJ, 2016, PHYTOPATHOLOGY, V106, P386, DOI 10.1094/PHYTO-09-15-0240-R
Johkan M, 2010, HORTSCIENCE, V45, P1809, DOI 10.21273/HORTSCI.45.12.1809
Jorge TF, 2019, ENVIRON EXP BOT, V166, DOI 10.1016/j.envexpbot.2019.103808
KADER A A, 1973, Hortscience, V8, P408
Leon AP, 2007, COMMUN SOIL SCI PLAN, V38, P2877, DOI 10.1080/00103620701663115
Lu HJ, 2013, HORTSCIENCE, V48, P171, DOI 10.21273/HORTSCI.48.2.171
Lu MF, 2013, BIOCHEM BIOPH RES CO, V434, P701, DOI 10.1016/j.bbrc.2013.04.035
Luckey T.D., 1980, HORMESIS IONIZING RA, P222
Ma DY, 2014, PLANT PHYSIOL BIOCH, V80, P60, DOI 10.1016/j.plaphy.2014.03.024
Madre J.L., 2010, P 6 INT C FOR FIR RE, P1
Malini P., 2011, ASIAN J PHARM CLIN R, V4, P124
MAPAQ, 2018, PORTR DIGN SECT
MAPAQ, 2017, PRINC INS FONG HOM 2
MAPAQ, 2018, PORTR DIAGN SECT
Melotto M, 2008, ANNU REV PHYTOPATHOL, V46, P101, DOI 10.1146/annurev.phyto.121107.104959
Moraes RM, 2018, PAK J BOT, V50, P1769
Nicolas O., 2020, ACTA HORTIC, V1271, P387, DOI [10.17660/ActaHortic.2020.1271.53, DOI 10.17660/ACTAHORTIC.2020.1271.53]
Nicolas O, 2018, CAN J PLANT PATHOL, V40, P399, DOI 10.1080/07060661.2018.1495269
Ouhibi C, 2015, J PHYTOPATHOL, V163, P578, DOI 10.1111/jph.12357
Reboucas DM, 2017, PLANTS-BASEL, V6, DOI 10.3390/plants6010014
Rizet C, 2012, PROCD SOC BEHV, V48, P184, DOI 10.1016/j.sbspro.2012.06.999
Sanchez-Rodriguez E, 2010, PLANT SOIL, V335, P339, DOI 10.1007/s11104-010-0422-2
Severo J, 2017, LWT-FOOD SCI TECHNOL, V85, P390, DOI 10.1016/j.lwt.2016.10.032
Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001
SHANER G, 1977, PHYTOPATHOLOGY, V67, P1051, DOI 10.1094/Phyto-67-1051
Sharma P., 2012, J BOT, V2012, P1, DOI [10.1155/2012/217037, DOI 10.1155/2012/217037, 10.1155/2012/872875, DOI 10.1155/2012/650206]
Son KH, 2013, HORTSCIENCE, V48, P988
Statistics Canada, 2011, AR PROD FARM GAT VAL
Urban L, 2016, PLANT PHYSIOL BIOCH, V105, P1, DOI 10.1016/j.plaphy.2016.04.004
Valencia MA, 2017, OPT PURA APL, V50, P369, DOI 10.7149/OPA.50.4.49073
Vanegas D., 2018, Acta Horticulturae, P51, DOI 10.17660/ActaHortic.2018.1194.9
Vasquez H, 2017, SCI HORTIC-AMSTERDAM, V222, P32, DOI 10.1016/j.scienta.2017.04.017
Xie ZC, 2015, J SCI FOOD AGR, V95, P2996, DOI 10.1002/jsfa.7064
Xu YQ, 2019, PLANT CELL ENVIRON, V42, P815, DOI 10.1111/pce.13491
Xu YQ, 2017, PLANT PHYSIOL BIOCH, V116, P80, DOI 10.1016/j.plaphy.2017.05.010
Yamasaki Simone, 1999, Revista Brasileira de Fisiologia Vegetal, V11, P69
NR 53
TC 2
Z9 2
U1 4
U2 15
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0304-4238
EI 1879-1018
J9 SCI HORTIC-AMSTERDAM
JI Sci. Hortic.
PD JUL 27
PY 2021
VL 285
AR 110094
DI 10.1016/j.scienta.2021.110094
EA APR 2021
PG 9
WC Horticulture
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture
GA SH3JD
UT WOS:000654030900002
DA 2023-03-13
ER
PT J
AU Wang, ED
Lu, DG
Liu, XH
Li, YJ
AF Wang, Endong
Lu, Daguang
Liu, Xiaohui
Li, Yongjun
TI Evaluating the use of nuclear techniques for colonization and production
of Trichogramma chilonis in combination with releasing irradiated moths
for control of cotton bollworm, Helicoverpa armigera
SO BIOCONTROL SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Trichogramma; Helicoverpa; biological control; pest management;
parasitoids; irradiation; low dose irradiation; radiation hormesis
AB Gamma radiation was tested as a means of increasing production of the egg parasitoid Trichogramma chilonis Ishii by improving the suitability of host eggs and by stimulating reproduction of the parasitoid females. For manipulation of the host eggs' suitability, radiation was used to either (a) produce developmentally-inactivated (DI) eggs incapable of hatching, or (b) to produce F-1 sterile host eggs. For treatment of the parasitoid females with the intent of stimulating reproduction, parasitoid pupae were exposed to very low dose radiation (250 mGray). For tests on host suitability using radiation-induced DI host eggs, newly-laid (<8 h old) host eggs (Helicoverpa armigera Hubner) were exposed to 300 Gy of Co-60 gamma radiation. For tests of F-1 sterile host eggs, H. armigera moths were mated with individuals exposed to 250 Gy as pupae. Tests were performed with eggs resulting from all possibilities of normal (N) and sterile (S) female x male matings. Both types of DI host eggs (irradiated or sterile), along with untreated host eggs (controls), were exposed to T. chilonis females, using the following host egg-to-parasitoid ratios: 1:10, 1:30, 1:60 and 1:90. Developmentally-inactivated host eggs exposed to 300 Gy did not differ in suitability from normal host eggs at a 1:10 parasitoid-host ratio, but were significantly more suitable at the higher host-parasitoid ratios. 1 sterile eggs were not significantly different in suitability from normal eggs at a 1:10 host-parasitoid ratio but were marginally better at the higher host-parasitoid ratios. In tests performed using T. chilonis females exposed to low-dose radiation (250 mGy), no effects were observed when cohorts of 5 T. chilonis females were provided with only 50 host eggs, but when more hosts were provided (ratios of 1:30, 1:60 and 1:90), significantly higher rates of parasitization were noted for the parasitoids exposed to low-dose radiation. This effect prevailed using both normal host eggs and DI host eggs exposed to 300 Gy. The stimulatory effect also was noted when 1 sterile host eggs were provided to the irradiated T. chilonis females. These results suggest that release of T. chilonis irradiated with 250 mGy may complement release of irradiated H. armigera moths, which produce sterile F-1 eggs that can serve as supplemental hosts in the field and thereby enhance the pest management system.
C1 [Lu, Daguang] Chinese Acad Agr Sci, Int Cooperat Dept, Beijing 100081, Peoples R China.
[Liu, Xiaohui; Li, Yongjun] Chinese Acad Agr Sci, Inst Plant Protect, Beijing 100193, Peoples R China.
[Wang, Endong] China Agr Univ, Beijing 100193, Peoples R China.
C3 Chinese Academy of Agricultural Sciences; Chinese Academy of
Agricultural Sciences; Institute of Plant Protection, CAAS; China
Agricultural University
RP Lu, DG (corresponding author), Chinese Acad Agr Sci, Int Cooperat Dept, Beijing 100081, Peoples R China.
EM daguang_lu@caas.net.cn
FU International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear
Techniques in Food and Agriculture, Vienna, Austria [10778]
FX Thanks are due to Dr Patrick Greany and Mr Wang Huesong for their help
and support. Technical and financial assistances were provided, in part,
by contract no. 10778 of the International Atomic Energy Agency, Joint
FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna,
Austria.
CR Abdel-Salam K.A., 1995, UMWELTSCHUTZ, V68, P147
[Anonymous], 2003, J NUCL AGR SCI, V17, P319
BROWER JH, 1982, J ECON ENTOMOL, V75, P939, DOI 10.1093/jee/75.6.939
Cossentine JE, 2000, BIOL CONTROL, V18, P179, DOI 10.1006/bcon.2000.0828
HARWALKAR MR, 1987, ENTOMOPHAGA, V32, P159, DOI 10.1007/BF02373126
Liu S., 1983, J S CHINA AGR COLL, V4, P77
Luckey TD, 1991, RAD HORMESIS
PAK GA, 1986, J APPL ENTOMOL, V101, P55, DOI 10.1111/j.1439-0418.1986.tb00833.x
Saour G, 2004, J APPL ENTOMOL, V128, P681, DOI 10.1111/j.1439-0418.2004.00909.x
SPSS Inc, 2004, US MAN
Tuncbilek AS, 2003, ANZ SCHADL-J PEST SC, V76, P176, DOI 10.1007/s10340-003-0018-1
YUSIFOV NI, 1990, RADIAT ENVIRON BIOPH, V29, P323, DOI 10.1007/BF01210412
NR 12
TC 3
Z9 5
U1 0
U2 10
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0958-3157
J9 BIOCONTROL SCI TECHN
JI Biocontrol Sci. Technol.
PY 2009
VL 19
SU 1
SI SI
BP 235
EP 242
DI 10.1080/09583150902790293
PG 8
WC Biotechnology & Applied Microbiology; Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biotechnology & Applied Microbiology; Entomology
GA V21GP
UT WOS:000208196400018
DA 2023-03-13
ER
PT J
AU Naviaux, RK
AF Naviaux, Robert K.
TI Metabolic features of the cell danger response
SO MITOCHONDRION
LA English
DT Article
DE Oxidative stress; Oxidative shielding; Innate immunity; Inflammation;
Purinergic signaling; Mitochondria
ID CYSTINE/GLUTAMATE ANTIPORTER; MOLECULAR-MECHANISMS; IMPROVES RECOVERY;
STRESS-RESPONSE; ATP RELEASE; KAPPA-B; RECEPTOR; SURAMIN; MITOCHONDRIA;
DISEASE
AB The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatoty and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental, autoimmune, and degenerative disorders. These disorders include autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), asthma, atopy, gluten and many other food and chemical sensitivity syndromes, emphysema, Tourette's syndrome, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), chronic traumatic encephalopathy (CTE), traumatic brain injury (TB!), epilepsy, suicidal ideation, organ transplant biology, diabetes, kidney, liver, and heart disease, cancer, Alzheimer and Parkinson disease, and autoimmune disorders like lupus, rheumatoid arthritis, multiple sclerosis, and primary sclerosing cholangitis. (C) 2013 The Author. Published by Elsevier B.V. and Mitochondria Research Society. All rights reserved.
C1 [Naviaux, Robert K.] Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, Dept Med, San Diego, CA 92103 USA.
[Naviaux, Robert K.] Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, Dept Pediat, San Diego, CA 92103 USA.
[Naviaux, Robert K.] Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, Dept Pathol, San Diego, CA 92103 USA.
[Naviaux, Robert K.] Vet Affairs Ctr Excellence Stress & Mental Hlth C, La Jolla, CA USA.
C3 University of California System; University of California San Diego;
University of California System; University of California San Diego;
University of California System; University of California San Diego
RP Naviaux, RK (corresponding author), Univ Calif San Diego, Sch Med, Mitochondrial & Metab Dis Ctr, 214 Dickinson St,Bldg CTF,Rm C102, San Diego, CA 92103 USA.
EM Naviaux@ucsd.edu
FU UCSD Christini Fund; Jane Botsford Johnson Foundation; Wright
Foundation; Lennox Foundation; Takes Guts Foundation; UCSD Mitochondrial
Disease Research Foundation; Hailey's Wish Foundation
FX RKN thanks Jane Naviaux, Will Alaynick, Jim Adams, Steve Edelson, Kate
Crowley, and Vicki Kobliner for helpful comments on the manuscript. This
work was made possible by support from the UCSD Christini Fund, the Jane
Botsford Johnson Foundation, the Wright Foundation, the Lennox
Foundation, the It Takes Guts Foundation, the UCSD Mitochondrial Disease
Research Foundation, and the Hailey's Wish Foundation.
CR Ajioka RS, 2006, BBA-MOL CELL RES, V1763, P723, DOI 10.1016/j.bbamcr.2006.05.005
Angata T, 2012, ANN NY ACAD SCI, V1253, P159, DOI 10.1111/j.1749-6632.2012.06469.x
Arispe N, 2002, FASEB J, V16, P1526, DOI 10.1096/fj.02-0829com
Arnoult D, 2011, EMBO REP, V12, P901, DOI 10.1038/embor.2011.157
Bachrach U, 2007, AMINO ACIDS, V33, P267, DOI 10.1007/s00726-007-0535-y
Ballok DA, 2008, BRAIN BEHAV IMMUN, V22, P1208, DOI 10.1016/j.bbi.2008.06.002
Bernstein HG, 2012, NEUROPHARMACOLOGY, V62, P237, DOI 10.1016/j.neuropharm.2011.07.012
Bezvenyuk Z, 2000, NEUROSCI LETT, V292, P111, DOI 10.1016/S0304-3940(00)01453-1
Blumberg Stephen J, 2013, Natl Health Stat Report, P1
Bours Martijn Jan Leo, 2011, Front Biosci (Schol Ed), V3, P1443
Bridges RJ, 2012, BRIT J PHARMACOL, V165, P20, DOI 10.1111/j.1476-5381.2011.01480.x
BURNSTOCK G, 1972, BRIT J PHARMACOL, V44, P451, DOI 10.1111/j.1476-5381.1972.tb07283.x
Burnstock G, 2012, CURR OPIN PHARMACOL, V12, P80, DOI 10.1016/j.coph.2011.10.008
Burnstock G, 2010, ACTA PHYSIOL, V199, P93, DOI 10.1111/j.1748-1716.2010.02114.x
Burnstock G, 2009, ACTA PHYSIOL, V195, P415, DOI 10.1111/j.1748-1716.2009.01957.x
Burnstock G, 2011, PROG NEUROBIOL, V95, P229, DOI 10.1016/j.pneurobio.2011.08.006
Caccamo D, 2012, AMINO ACIDS, V42, P1037, DOI 10.1007/s00726-011-1018-8
Cantin LD, 2012, BIOORG MED CHEM LETT, V22, P2565, DOI 10.1016/j.bmcl.2012.01.124
Cervelli M, 2012, AMINO ACIDS, V42, P441, DOI 10.1007/s00726-011-1014-z
Choo AM, 2013, BRAIN, V136, P65, DOI 10.1093/brain/aws286
Cicko S, 2010, J IMMUNOL, V185, P688, DOI 10.4049/jimmunol.0904042
Corcoran JA, 2009, J VIROL, V83, P2601, DOI 10.1128/JVI.02087-08
Darwin C.R., 1839, C DARWIN AUSTR, P30
De Clercq E, 2009, MED RES REV, V29, P611, DOI 10.1002/med.20153
de Oliveira Moreira D., 2013, MUSCLE NERVE
Degtyar E, 2009, CELL MICROBIOL, V11, P1219, DOI 10.1111/j.1462-5822.2009.01328.x
DiNatale BC, 2010, TOXICOL SCI, V115, P89, DOI 10.1093/toxsci/kfq024
Dreifus Claudia, 1998, NY TIMES
Edmonds JL, 2002, ARCH OTOLARYNGOL, V128, P355, DOI 10.1001/archotol.128.4.355
Ehlert U., 2013, PSYCHONEUROENDOCRINO
Eisner V, 2010, CELL CALCIUM, V48, P358, DOI 10.1016/j.ceca.2010.11.001
Engel T, 2012, FASEB J, V26, P1616, DOI 10.1096/fj.11-196089
Forstermann U, 2012, EUR HEART J, V33, P829, DOI 10.1093/eurheartj/ehr304
Fontecave M, 2004, TRENDS BIOCHEM SCI, V29, P243, DOI 10.1016/j.tibs.2004.03.007
Fuchs E J, 1996, Semin Immunol, V8, P271, DOI 10.1006/smim.1996.0035
Fulkerson PC, 2013, NAT REV DRUG DISCOV, V12, P117, DOI 10.1038/nrd3838
Garrod AE, 1902, LANCET, V2, P1616
Gray TJ, 1999, J CARDIOVASC PHARM, V33, P960, DOI 10.1097/00005344-199906000-00018
Gunderson LH, 2000, ANNU REV ECOL SYST, V31, P425, DOI 10.1146/annurev.ecolsys.31.1.425
Halassa MM, 2011, SEMIN CELL DEV BIOL, V22, P245, DOI 10.1016/j.semcdb.2011.02.008
Haynes CM, 2013, TRENDS CELL BIOL, V23, P311, DOI 10.1016/j.tcb.2013.02.002
He SQ, 2013, J PHARMACOL EXP THER, V344, P417, DOI 10.1124/jpet.112.199919
HeberKatz E, 2013, CURR TOP MICROBIOL, V367, P1, DOI 10.1007/978-3-642-35810-4
Hecker L, 2009, NAT MED, V15, P1077, DOI 10.1038/nm.2005
HSU HC, 1994, AUTOIMMUNITY, V19, P253, DOI 10.3109/08916939409071351
Hultqvist M, 2009, TRENDS IMMUNOL, V30, P201, DOI 10.1016/j.it.2009.03.004
Ibrahim D, 2006, CLIN LAB MED, V26, P67, DOI 10.1016/j.cll.2006.02.003
Jacobs SA, 2007, MED HYPOTHESES, V68, P308, DOI 10.1016/j.mehy.2006.07.023
Jiang XM, 2012, IMMUNITY, V36, P959, DOI 10.1016/j.immuni.2012.03.022
Jin S, 2009, CURR ATHEROSCLER REP, V11, P220, DOI 10.1007/s11883-009-0034-6
Junger WG, 2011, NAT REV IMMUNOL, V11, P201, DOI 10.1038/nri2938
Kannan KB, 2007, J IMMUNOL, V178, P5253, DOI 10.4049/jimmunol.178.8.5253
KAWAMURA M, 1991, JPN J PHARMACOL, V56, P543, DOI 10.1254/jjp.56.543
Kharlamov A, 2002, EXP BRAIN RES, V147, P353, DOI 10.1007/s00221-002-1251-1
Kim HP, 2006, EXPERT OPIN THER TAR, V10, P759, DOI 10.1517/14728222.10.5.759
Kim HJ, 2012, BBA-MOL CELL RES, V1823, P1604, DOI 10.1016/j.bbamcr.2012.04.008
Kivity S, 2011, CELL MOL IMMUNOL, V8, P243, DOI 10.1038/cmi.2010.73
Knight JC, 2013, TRENDS GENET, V29, P74, DOI 10.1016/j.tig.2012.10.006
Kobayashi S, 2012, FREE RADICAL BIO MED, V53, P2197, DOI 10.1016/j.freeradbiomed.2012.09.040
Korrapati MC, 2012, J PHARMACOL EXP THER, V343, P34, DOI 10.1124/jpet.112.196964
Kruidenier L, 2012, NATURE, V488, P404, DOI 10.1038/nature11262
Kuijpers T, 2012, CELL MOL LIFE SCI, V69, P7, DOI 10.1007/s00018-011-0834-z
Landrigan PJ, 2012, ENVIRON HEALTH PERSP, V120, pA258, DOI 10.1289/ehp.1104285
Lee AH, 2009, CELL MOL LIFE SCI, V66, P2835, DOI 10.1007/s00018-009-0049-8
LESCH M, 1964, AM J MED, V36, P561, DOI 10.1016/0002-9343(64)90104-4
Lewerenz J, 2013, ANTIOXID REDOX SIGN, V18, P522, DOI 10.1089/ars.2011.4391
Liu C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052703
Liu GG, 2008, BIOCHEM BIOPH RES CO, V370, P651, DOI 10.1016/j.bbrc.2008.04.031
Liu GW, 2010, NAT IMMUNOL, V11, P1047, DOI 10.1038/ni.1939
Lluis JM, 2007, CANCER RES, V67, P7368, DOI 10.1158/0008-5472.CAN-07-0515
Lucki NC, 2012, ANNU REV PHYSIOL, V74, P131, DOI 10.1146/annurev-physiol-020911-153321
Lushchak VI, 2011, COMP BIOCHEM PHYS C, V153, P175, DOI 10.1016/j.cbpc.2010.10.004
MacLennan AJ, 2006, HEARING RES, V220, P38, DOI 10.1016/j.heares.2006.06.016
Mahankali M, 2011, P NATL ACAD SCI USA, V108, P19617, DOI 10.1073/pnas.1114692108
Mandi Y, 2012, J NEURAL TRANSM, V119, P197, DOI 10.1007/s00702-011-0681-y
Marina N, 2013, BASIC RES CARDIOL, V108, DOI 10.1007/s00395-012-0317-x
MATZINGER P, 1994, ANNU REV IMMUNOL, V12, P991, DOI 10.1146/annurev.immunol.12.1.991
Matzinger P, 2011, NAT REV IMMUNOL, V11, P221, DOI 10.1038/nri2940
McLain AL, 2013, FREE RADICAL BIO MED, V61, P161, DOI 10.1016/j.freeradbiomed.2013.03.020
Micheli V, 2011, CURR TOP MED CHEM, V11, P923, DOI 10.2174/156802611795347645
Nathanson N, 2010, AM J EPIDEMIOL, V172, P1213, DOI 10.1093/aje/kwq320
Naviaux RK, 2008, CANCER BIOL THER, V7, P1191, DOI 10.4161/cbt.7.8.6741
Naviaux RK, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057380
Naviaux RK, 2012, J PHARMACOL EXP THER, V342, P608, DOI 10.1124/jpet.112.192120
Nie XW, 2013, INT J BIOCHEM CELL B, V45, P964, DOI 10.1016/j.biocel.2013.01.017
Nielsen MJ, 2012, NAT REV GASTRO HEPAT, V9, P345, DOI 10.1038/nrgastro.2012.76
NovalesLi P, 1996, IMMUNOPHARMACOLOGY, V35, P155, DOI 10.1016/S0162-3109(96)00141-5
Novgorodov Sergei A, 2011, Int J Biochem Mol Biol, V2, P347
Nyhan WL, 2005, MOL GENET METAB, V86, P25, DOI 10.1016/j.ymgme.2005.07.027
NYHAN WL, 1969, J PEDIATR, V74, P20, DOI 10.1016/S0022-3476(69)80004-1
Oguma T, 2007, CLIN EXP ALLERGY, V37, P893, DOI 10.1111/j.1365-2222.2007.02719.x
Ohta A, 2011, MITOCHONDRION, V11, P1, DOI 10.1016/j.mito.2010.08.006
Ong WY, 2010, CURR MED CHEM, V17, P2746, DOI 10.2174/092986710791859289
Panossian A, 2009, CURR CLIN PHARMACOL, V4, P198, DOI 10.2174/157488409789375311
Pastural E, 2009, PROSTAG LEUKOTR ESS, V81, P253, DOI 10.1016/j.plefa.2009.06.003
Paul L, 2013, NUTR REV, V71, P239, DOI 10.1111/nure.12014
Peng WG, 2009, P NATL ACAD SCI USA, V106, P12489, DOI 10.1073/pnas.0902531106
Peng X, 2012, ACTA PHYSIOL, V204, P219, DOI 10.1111/j.1748-1716.2011.02298.x
Pimentel VC, 2013, NEUROCHEM RES, V38, P886, DOI 10.1007/s11064-013-0994-3
Rabiet MJ, 2005, EUR J IMMUNOL, V35, P2486, DOI 10.1002/eji.200526338
Riegl B, 2009, ANN NY ACAD SCI, V1162, P136, DOI 10.1111/j.1749-6632.2009.04493.x
Riteau N, 2012, CELL DEATH DIS, V3, DOI 10.1038/cddis.2012.144
Romero P, 2005, GENOME BIOL, V6
Sahu D, 2012, INT IMMUNOPHARMACOL, V12, P288, DOI 10.1016/j.intimp.2011.12.003
Salminen A, 2012, AGEING RES REV, V11, P230, DOI 10.1016/j.arr.2011.12.005
Scott I, 2010, MITOCHONDRION, V10, P316, DOI 10.1016/j.mito.2010.02.005
Sentelle RD, 2012, NAT CHEM BIOL, V8, P831, DOI 10.1038/NCHEMBIO.1059
Seong SY, 2004, NAT REV IMMUNOL, V4, P469, DOI 10.1038/nri1372
Seth RB, 2005, CELL, V122, P669, DOI 10.1016/j.cell.2005.08.012
Shanmugasundaram R, 2012, POULTRY SCI, V91, P1819, DOI 10.3382/ps.2011-02129
Silva JM, 2009, NEUROBIOL DIS, V34, P357, DOI 10.1016/j.nbd.2009.02.005
Smriga M, 2003, P NATL ACAD SCI USA, V100, P15370, DOI 10.1073/pnas.2436556100
Stipanuk MH, 2011, J INHERIT METAB DIS, V34, P17, DOI 10.1007/s10545-009-9006-9
SUTTON RAL, 1993, MINER ELECTROL METAB, V19, P232
Takabe K, 2008, PHARMACOL REV, V60, P181, DOI 10.1124/pr.107.07113
Thompson CR, 2005, J IMMUNOL, V174, P3551, DOI 10.4049/jimmunol.174.6.3551
West AP, 2011, NAT REV IMMUNOL, V11, P389, DOI 10.1038/nri2975
Williams BL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024585
Wood JH, 2010, CURR OPIN PEDIATR, V22, P315, DOI 10.1097/MOP.0b013e328338da48
Xia JS, 2012, J PHYSIOL-LONDON, V590, P2285, DOI 10.1113/jphysiol.2012.227983
Yang Z, 2012, OBES REV, V13, P58, DOI 10.1111/j.1467-789X.2012.01038.x
Yousefi S, 2008, NAT MED, V14, P949, DOI 10.1038/nm.1855
Zamek-Gliszczynski MJ, 2006, EUR J PHARM SCI, V27, P447, DOI 10.1016/j.ejps.2005.12.007
Zhang XY, 2011, AM J PHYSIOL-CELL PH, V301, pC451, DOI 10.1152/ajpcell.00458.2010
Zhou RB, 2011, NATURE, V469, P221, DOI 10.1038/nature09663
NR 125
TC 130
Z9 135
U1 2
U2 95
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1567-7249
EI 1872-8278
J9 MITOCHONDRION
JI Mitochondrion
PD MAY
PY 2014
VL 16
SI SI
BP 7
EP 17
DI 10.1016/j.mito.2013.08.006
PG 11
WC Cell Biology; Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Cell Biology; Genetics & Heredity
GA AH9OP
UT WOS:000336472000003
PM 23981537
OA hybrid
DA 2023-03-13
ER
PT J
AU Flowers, MD
Fiscus, EL
Burkey, KO
Booker, FL
Dubois, JJB
AF Flowers, Michael D.
Fiscus, Edwin L.
Burkey, Kent O.
Booker, Fitzgerald L.
Dubois, Jean-Jacques B.
TI Photosynthesis, chlorophyll fluorescence, and yield of snap bean
(Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone
SO ENVIRONMENTAL AND EXPERIMENTAL BOTANY
LA English
DT Article
DE snap bean; ozone sensitivity; photosynthesis; hormesis; air pollution
ID ELEVATED CO2; GROWTH; ASSIMILATION; LEAVES; CONDUCTANCE; RADIATION;
RESPONSES; EXPOSURE; HEALTH; FLUX
AB Understanding the impact of pollutant ozone (O-3) is a concern for agricultural production. This work was undertaken as the first comparative study of the effects Of O-3 on the photosynthetic processes and yield of three snap bean (Phaseolus vulgaris L.) genotypes with known differences in sensitivity to O-3 (S156, R123 and R331). Previous information showed R123 and R331 to be tolerant and S156 sensitive. The purpose was to identify physiological subsystems that may mediate those differences in sensitivity. Plants were grown in environmentally controlled field chambers with four levels Of O-3 (0, 15, 30 and 60 nmol mol(-1)). Net assimilation (A) and fluorescence were measured throughout the growing season and yield data were collected at physiological maturity. All genotypes were tolerant of low O-3 (<30 nmol mol(-1)) but the highest O-3 significantly reduced the yield in all three, with R331 and S156 being equally sensitive on a unit exposure basis. Yield reductions were correlated with A, especially during pod filling. No genotype showed any significant response of stomatal conductance (g(s)) indicating equal O-3 fluxes into the leaves in all genotypes. Mesophyll conductance (g(m)) was affected in S156 only, where it was reduced by 55% at 60 nmol mol(-1) O-3. There was an upward trend in F-0, and a downward trend in the variable fluorescence ratio (F-v/F-m) with increasing O-3 for S156 but not for the other genotypes. S156 was the only genotype to show significant decreases in photochemical quenching (q(p)) and R123 the only one to show significant decreases in non-photochemical quenching (q(n)). The sequence of loss of Rubisco content and/or activity and changes in g(m), F-0, and F-v/F-m could not be resolved in time and may all have been the result of generalized tissue destruction rather than sequential attack on individual subsystems. S156 had the highest photosynthetic rate in clean air but appeared to have no significant capacity to protect Rubisco from attack or to up-regulate Rubisco activity at high O-3, thus there was no reserve capacity, while R123 was able to maintain both Rubisco activity and A within narrow ranges. These data suggest that S156 has comparatively little anti-oxidant capacity and/or is deficient in its ability to regulate Rubisco activity. For future studies the best contrasts for resolving questions of physiological sensitivity to O-3 would be obtained from R123 and S156. Published by Elsevier B.V.
C1 USDA ARS, Plant Sci Res Unit, Raleigh, NC 27603 USA.
N Carolina State Univ, USDA ARS, Plant Sci Res Unit, Raleigh, NC 27695 USA.
USDA ARS, Air Qual Plant Sci Res Unit, Raleigh, NC 27603 USA.
C3 United States Department of Agriculture (USDA); North Carolina State
University; United States Department of Agriculture (USDA); United
States Department of Agriculture (USDA)
RP Fiscus, EL (corresponding author), USDA ARS, Plant Sci Res Unit, 3908 Inwood Rd, Raleigh, NC 27603 USA.
EM Mike.Flowers@oregonstate.edu; Ed.Fiscus@ars.usda.gov;
Kent.Burkey@ars.usda.gov; Fitz.Booker@ars.usda.gov;
Jean-Jacques.Dubois@ars.usda.gov
CR AMTHOR JS, 1988, NEW PHYTOL, V110, P319, DOI 10.1111/j.1469-8137.1988.tb00268.x
[Anonymous], 2001, CLIMATE CHANGE 2001
Bernacchi CJ, 2001, PLANT CELL ENVIRON, V24, P253, DOI 10.1111/j.1365-3040.2001.00668.x
Burkey KO, 2005, J ENVIRON QUAL, V34, P1081, DOI 10.2134/jeq2004.0008
Burkey KO, 2002, PHYSIOL PLANTARUM, V114, P387, DOI 10.1034/j.1399-3054.2002.1140308.x
Calatayud A, 2001, ENVIRON POLLUT, V115, P283, DOI 10.1016/S0269-7491(01)00101-4
Castagna A, 2001, NEW PHYTOL, V152, P223, DOI 10.1046/j.0028-646X.2001.00253.x
FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231
FARQUHAR GD, 1982, ANNU REV PLANT PHYS, V33, P317, DOI 10.1146/annurev.pp.33.060182.001533
Fiscus EL, 2005, PLANT CELL ENVIRON, V28, P997, DOI 10.1111/j.1365-3040.2005.01349.x
Fiscus EL, 1997, J EXP BOT, V48, P307, DOI 10.1093/jxb/48.2.307
Fiscus EL, 1999, ENVIRON EXP BOT, V41, P231, DOI 10.1016/S0098-8472(99)00011-8
Fowler D, 1999, WATER AIR SOIL POLL, V116, P5, DOI 10.1023/A:1005249231882
Guidi L, 2000, ENVIRON POLLUT, V107, P349, DOI 10.1016/S0269-7491(99)00170-0
Guidi L, 2002, NEW PHYTOL, V156, P377, DOI 10.1046/j.1469-8137.2002.00533.x
HARLEY PC, 1992, PLANT PHYSIOL, V98, P1429, DOI 10.1104/pp.98.4.1429
Heagle AS, 2002, J ENVIRON QUAL, V31, P2008, DOI 10.2134/jeq2002.2008
Littell R.C., 2006, SAS SYSTEM MIXED MOD, V2nd ed.
Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262
LONG SP, 2002, AIR POLLUTION PLANT, P69
MCKEE IF, 1995, PHOTOSYNTH RES, V45, P111, DOI 10.1007/BF00032582
Miller CA, 1995, AM J PREV MED, V11, P24, DOI 10.1016/S0749-3797(18)30382-9
MILLER JE, 1994, J ENVIRON QUAL, V23, P83, DOI 10.2134/jeq1994.00472425002300010012x
Morgan PB, 2003, PLANT CELL ENVIRON, V26, P1317, DOI 10.1046/j.0016-8025.2003.01056.x
PELL EJ, 1992, NEW PHYTOL, V120, P397, DOI 10.1111/j.1469-8137.1992.tb01080.x
Reid CD, 1998, J EXP BOT, V49, P1999, DOI 10.1093/jexbot/49.329.1999
ROSENQVIST E, 2003, PRACTICAL APPL CHLOR, P31, DOI DOI 10.1007/978-1-4615-0415-3_2
Sandermann H, 1996, ANNU REV PHYTOPATHOL, V34, P347, DOI 10.1146/annurev.phyto.34.1.347
NR 28
TC 118
Z9 133
U1 1
U2 46
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0098-8472
J9 ENVIRON EXP BOT
JI Environ. Exp. Bot.
PD NOV
PY 2007
VL 61
IS 2
BP 190
EP 198
DI 10.1016/j.envexpbot.2007.05.009
PG 9
WC Plant Sciences; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences; Environmental Sciences & Ecology
GA 218VG
UT WOS:000250042700011
DA 2023-03-13
ER
PT J
AU Eggers, C
Fujitani, M
Kato, R
Smid, S
AF Eggers, Carly
Fujitani, Masaya
Kato, Ryuji
Smid, Scott
TI Novel cannabis flavonoid, cannflavin A displays both a hormetic and
neuroprotective profile against amyloid beta-mediated neurotoxicity in
PC12 cells: Comparison with geranylated flavonoids, mimulone and
diplacone
SO BIOCHEMICAL PHARMACOLOGY
LA English
DT Article
DE Amyloid beta; Cannflavin A; Diplacone; Hormesis; Mimulone;
Neuroprotection
ID PRENYLATED FLAVONOIDS; FIBRIL; AGGREGATION; INHIBITION
AB Background: including inhibition of amyloid beta (A beta) fibrillisation and neurotoxicity of relevance to Alzheimer's disease. Cannabis contains a unique subset of prenylated flavonoids, the cannflavins. While selected conventional flavonoids have demonstrated anti-amyloid and neuroprotective potential, any neuroprotective bioactivity of prenylated flavonoids has not been determined. We evaluated the in vitro neuroprotective and anti-aggregative properties of the novel geranylated cannabis-derived flavonoid, cannflavin A against A beta 1-42 and compared it to two similarly geranylated flavonoids, mimulone and diplacone, to compare the bioactive properties of these unique flavonoids more broadly.
Methods: Neuronal viability were assessed in PC12 cells biochemically using the MTT assay in the presence of each flavonoid (1-200 mu M) for 48 h. Sub-toxic threshold test concentrations of each flavonoid were then applied to cells, alone or with concomitant incubation with the lipid peroxidant tert-butyl hyrdroperoxide (t-bhp) or amyloid beta (A beta 1-42; 0-2 mu M). Fluorescent staining was used to indicate effects of A beta 1-42 on PC12 cellular morphology, while direct effects of each flavonoid on A beta fibril formation and aggregation were assessed using the Thioflavin T (ThT) fluorometric kinetic assay and transmission electron microscopy (TEM) to visualise fibril and aggregate morphology.
Results: Cannflavin A demonstrated intrinsic hormetic effects on cell viability, increasing viability by 40% from 1 to 10 mu M but displaying neurotoxicity at higher (> 10-100 mu M) concentrations. Neither mimulone nor diplacone exhibited such a biphasic effect, instead showing only concentration-dependent neurotoxicity, with diplacone the more potent (from > 1 mu M). However at the lower concentrations (< 10 mu M), cannflavin A increased cell viability by up to 40%, while 10 mu M cannflavin A inhibited the neurotoxicity elicited by A beta 1-42 (0-2 mu M), reducing A beta aggregate adherence to PC-12 cells and associated neurite loss. The neuroprotective effects of cannflavin A were associated with a direct inhibition of A beta 1-42 fibril and aggregate density, evidenced by attenuated ThT fluorescence kinetics and microscopic evidence of both altered and diminished density of A beta aggregate and fibril morphology via electron microscopy.
Conclusions: These findings highlight a concentration-dependent hormetic and neuroprotective role of cannflavin A against A beta-mediated neurotoxicity, associated with an inhibition of A beta fibrillisation. The efficacy of the cannabis flavone may itself direct further lead development targeting neurodegeneration in Alzheimer's disease. However, the geranylated flavonoids generally displayed a comparatively potent neurotoxicity not observed with many conventional flavonoids in vitro.
C1 [Eggers, Carly; Smid, Scott] Univ Adelaide, Fac Hlth & Med Sci, Adelaide Med Sch, Discipline Pharmacol, Adelaide, SA, Australia.
[Fujitani, Masaya; Kato, Ryuji] Nagoya Univ, Dept Basic Med Sci, Grad Sch Pharmaceut Sci, Nagoya, Aichi, Japan.
[Kato, Ryuji] Nagoya Univ, Inst Nanolife Syst, Inst Innovat Future Soc, Div Micronano Mechatron, Nagoya, Aichi, Japan.
C3 University of Adelaide; Nagoya University; Nagoya University
RP Smid, S (corresponding author), Univ Adelaide, Fac Hlth Sci, Adelaide Med Sch, Discipline Pharmacol, Adelaide, SA 5005, Australia.
EM scott.smid@adelaide.edu.au
RI Kato, Ryuji/I-6952-2014
OI Smid, Scott/0000-0003-4192-7219
CR Akaishi T, 2008, NEUROSCI LETT, V444, P280, DOI 10.1016/j.neulet.2008.08.052
An TT, 2017, REDOX BIOL, V11, P315, DOI 10.1016/j.redox.2016.12.016
Baptista FI, 2014, ACS CHEM NEUROSCI, V5, P83, DOI 10.1021/cn400213r
BARRETT ML, 1985, BIOCHEM PHARMACOL, V34, P2019, DOI 10.1016/0006-2952(85)90325-9
BARRETT ML, 1986, EXPERIENTIA, V42, P452, DOI 10.1007/BF02118655
Bieschke J, 2010, P NATL ACAD SCI USA, V107, P7710, DOI 10.1073/pnas.0910723107
Botta B, 2005, CURR MED CHEM, V12, P713, DOI 10.2174/0929867053202241
Chen X, 2014, PHARM BIOL, V52, P655, DOI 10.3109/13880209.2013.853809
Cho JK, 2012, BIOORGAN MED CHEM, V20, P2595, DOI 10.1016/j.bmc.2012.02.044
Churches QI, 2014, BIOORG MED CHEM LETT, V24, P3108, DOI 10.1016/j.bmcl.2014.05.008
Das S, 2016, FOOD FUNCT, V7, P1138, DOI [10.1039/c5fo01281c, 10.1039/C5FO01281C]
Davinelli S, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-28
dos Santos TW, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092757
Ehrnhoefer DE, 2008, NAT STRUCT MOL BIOL, V15, P558, DOI 10.1038/nsmb.1437
Hanaki M, 2016, BIOORGAN MED CHEM, V24, P304, DOI 10.1016/j.bmc.2015.12.021
Hosek J, 2013, J NAT PROD, V76, P1586, DOI 10.1021/np400242e
Hudson SA, 2009, FEBS J, V276, P5960, DOI 10.1111/j.1742-4658.2009.07307.x
Lee Y, 2014, ACTA CRYSTALLOGR D, V70, P1357, DOI 10.1107/S1399004714002971
Marsh DT, 2017, BIOORGAN MED CHEM, V25, P3827, DOI 10.1016/j.bmc.2017.05.041
Moss MA, 2004, MOL PHARMACOL, V66, P592
Rea KA, 2019, PHYTOCHEMISTRY, V164, P162, DOI 10.1016/j.phytochem.2019.05.009
Ruthel G, 2003, J NEUROSCI, V23, P8618
Sadik CD, 2003, BIOCHEM PHARMACOL, V65, P773, DOI 10.1016/S0006-2952(02)01621-0
Sato M, 2013, J BIOL CHEM, V288, P23212, DOI 10.1074/jbc.M113.464222
Schneiderova K, 2015, PHYTOCHEM REV, V14, P799, DOI 10.1007/s11101-014-9376-y
Smejkal K, 2014, PHYTOCHEM REV, V13, P245, DOI 10.1007/s11101-013-9308-2
Song YH, 2017, J ENZYM INHIB MED CH, V32, P1195, DOI 10.1080/14756366.2017.1368502
Speciale A, 2011, CURR MOL MED, V11, P770, DOI 10.2174/156652411798062395
Teixeira J, 2018, INT J BIOCHEM CELL B, V97, P98, DOI 10.1016/j.biocel.2018.02.007
Ushikubo H, 2012, NEUROSCI LETT, V513, P51, DOI 10.1016/j.neulet.2012.02.006
Vauzour D, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/914273
Vochyanova Z, 2015, FITOTERAPIA, V101, P201, DOI 10.1016/j.fitote.2015.01.012
Watjen W, 2007, FOOD CHEM TOXICOL, V45, P119, DOI 10.1016/j.fct.2006.08.008
Werz Oliver, 2014, PharmaNutrition, V2, P53, DOI 10.1016/j.phanu.2014.05.001
Wu CH, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-18935-1
Yang XM, 2016, SCI REP-UK, V6, DOI 10.1038/srep24819
Yang XM, 2015, TRENDS FOOD SCI TECH, V44, P93, DOI 10.1016/j.tifs.2015.03.007
Zima A, 2010, MOLECULES, V15, P6035, DOI 10.3390/molecules15096035
NR 38
TC 18
Z9 19
U1 2
U2 30
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0006-2952
EI 1873-2968
J9 BIOCHEM PHARMACOL
JI Biochem. Pharmacol.
PD NOV
PY 2019
VL 169
AR 113609
DI 10.1016/j.bcp.2019.08.011
PG 9
WC Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy
GA KB3UR
UT WOS:000506425300006
PM 31437460
DA 2023-03-13
ER
PT J
AU Mtisi, M
Gwenzi, W
AF Mtisi, Munyaradzi
Gwenzi, Willis
TI Evaluation of the phytotoxicity of coal ash on lettuce (Lactuca sativa
L.) germination, growth and metal uptake
SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
LA English
DT Article
DE Bioassay; Bioavailability; Metal partitioning; Hormesis; Phytotoxicity;
Salinity
ID THERMAL POWER-PLANT; FLY-ASH; HEAVY-METALS; PHYSICOCHEMICAL PROPERTIES;
GENOTYPIC VARIATIONS; SEWAGE-SLUDGE; SALT STRESS; SOIL; ACCUMULATION;
TOXICITY
AB Land application of coal ash is considered an environmentally friendly option to improve soil quality, but limited information exists on metal bioavailability and phytotoxicity of coal ash to sensitive plant species such as lettuce (Lactuca sativa L.). Germination and pot bioassay experiments were conducted at six coal application rates (0% (control), 5%, 15%, 25%, 50% and 75% v/v) to investigate the hypothesis that, coal ash will have a hormetic effect on germination, growth, metal uptake and biomass yield of lettuce, characterized by stimulatory and phytotoxicity effects at low and high application rates, respectively. Total concentrations (mg/kg) of metals in coal ash spanned several orders of magnitude, and decreased in the order: Fe (5150.5), Mn (326.0), Zn (102.6), Cu (94.7), Ni (74.7) and Pb (11.6). Bioavailable concentrations of metals were very low (0.0-14.1 mg/kg), accounting for less than 2% of the total concentrations. Coal ash had no significant effect on germination indices, but had hormetic effects on radicle elongation, evidenced by stimulatory and phytotoxicity effects at low (5-25%) and high (50-75%) application rates, respectively. Coal ash application at 50% and 75% significantly (p < 0.05) reduced lettuce growth and edible biomass yield, but lower application rates (5-25%) were similar to the unamended soil (control). Fe, Mn, Zn, Cu and Ni bioavailability and plant uptake generally decreased with increasing coal ash application rates particularly at 50% and 75%. Soil pH significantly increased (p < 0.05) from 6.5 for the control to about 8 for 75% coal ash, while electrical conductivity (EC) increased by 2-7 times to about 0.9 and 1.5 dS/m at 50% and 75% coal ash, respectively. Significant inverse linear relationship (p < 0.05; r(2) = 0.80) were observed between edible and total biomass yields and EC, suggesting that increased salinity at high coal ash application rates could account for reduced growth and biomass. Partial elemental balances showed that plant uptake of metals was very low, accounting for just less than 2% of the bioavailable concentrations, while the bulk of the metals (98-99%) remained in the soil. In conclusion, the current findings show that coal ash may have hormetic and phytotoxic effects on sensitive plant species, an observation contrary to the bulk of earlier literature documenting beneficial effects of coal ash application to soils. Long-term field studies are required to confirm the current findings based on laboratory and pot bioassay experiments.
C1 [Mtisi, Munyaradzi; Gwenzi, Willis] Univ Zimbabwe, Biosyst & Environm Engn Res Grp, Dept Soil Sci & Agr Engn, POB MP167, Harare, Zimbabwe.
C3 University of Zimbabwe
RP Gwenzi, W (corresponding author), Univ Zimbabwe, Biosyst & Environm Engn Res Grp, Dept Soil Sci & Agr Engn, POB MP167, Harare, Zimbabwe.
EM wgwenzi@agric.uz.ac.zww
RI Gwenzi, Willis/AAD-4037-2019
OI Gwenzi, Willis/0000-0003-3149-1052
FU British Ecological Society (BES) - Ecologists in Africa [5774-6818]
FX We thank the two anonymous reviewers for their detailed and insightful
comments that greatly improved the quality of the manuscript and overall
presentation. We also thank Technical staff from the Department of Soil
Science and Agricultural Engineering, University of Zimbabwe for
providing laboratory assistance. Left-over laboratory reagents were
provided by a research project funded by the British Ecological Society
(BES) - Ecologists in Africa Grant No.: 5774-6818 awarded to WG, to
which we are very grateful. BES played no role in research process and
decision to publish the manuscript, and authors are solely responsible
for research design, implementation and decision to publish the
manuscript.
CR Akinci IE, 2010, AFR J BIOTECHNOL, V9, P4589
Alexander PD, 2006, ENVIRON POLLUT, V144, P736, DOI 10.1016/j.envpol.2006.03.001
Ametepey S. T., 2018, International Journal of Food Contamination, V5, DOI 10.1186/s40550-018-0067-0
[Anonymous], 2005, 112692 ISO
Arivazhagan K., 2011, WORLD COAL ASH C MAY, P9
Aroca R, 2013, J PLANT PHYSIOL, V170, P47, DOI 10.1016/j.jplph.2012.08.020
ASTM (American Society for Testing and Materials), 2003, E196302 ASTM
Babbitt CW, 2008, INT J LIFE CYCLE ASS, V13, P555, DOI 10.1007/s11367-008-0026-8
Baldantoni D, 2016, ECOTOX ENVIRON SAFE, V123, P89, DOI 10.1016/j.ecoenv.2015.05.019
Basu M, 2009, PROG NAT SCI-MATER, V19, P1173, DOI 10.1016/j.pnsc.2008.12.006
Benzarti S, 2008, ENVIRON TOXICOL, V23, P607, DOI 10.1002/tox.20405
Boriss H., 2005, COMMODITY PROFILE LE
Bouguerra S, 2016, ECOTOX ENVIRON SAFE, V129, P291, DOI 10.1016/j.ecoenv.2016.03.038
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Chaudhuri D, 2003, ENVIRON GEOL, V44, P419, DOI 10.1007/s00254-003-0777-2
Cleuvers M, 2003, TOXICOL LETT, V142, P185, DOI 10.1016/S0378-4274(03)00068-7
Evelin H, 2009, ANN BOT-LONDON, V104, P1263, DOI 10.1093/aob/mcp251
Galvin AP, 2013, CONSTR BUILD MATER, V40, P1207, DOI 10.1016/j.conbuildmat.2011.12.091
Gavina A, 2016, SCI TOTAL ENVIRON, V547, P413, DOI 10.1016/j.scitotenv.2015.12.163
Gavina A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059748
Bagur-Gonzalez MG, 2011, J SOIL SEDIMENT, V11, P281, DOI 10.1007/s11368-010-0285-4
Gupta AK, 2012, SUSTAIN AGR REV, V8, P269, DOI 10.1007/978-94-007-1905-7_11
Gupta DK, 2002, J PLANT RES, V115, P401, DOI 10.1007/s10265-002-0057-3
Gwenzi W, 2017, MINE WATER ENVIRON, V36, P520, DOI 10.1007/s10230-017-0439-3
Gwenzi W, 2016, WASTE MANAGE, V49, P114, DOI 10.1016/j.wasman.2015.12.029
Gwenzi W, 2016, CHEMOSPHERE, V147, P144, DOI 10.1016/j.chemosphere.2015.12.102
Gwenzi W, 2011, PLANT SOIL, V344, P255, DOI 10.1007/s11104-011-0744-8
Hillis DG, 2011, ARCH ENVIRON CON TOX, V60, P220, DOI 10.1007/s00244-010-9624-0
Howladar MF, 2016, ENERGY ECOL ENVIRON, V1, P233, DOI 10.1007/s40974-016-0022-y
*ISO, 1993, 112691 ISO
Izquierdo M, 2012, INT J COAL GEOL, V94, P54, DOI 10.1016/j.coal.2011.10.006
Jadhav UU, 2015, APPL BIOCHEM BIOTECH, V175, P870, DOI 10.1007/s12010-014-1323-2
Jayasinghe GY, 2012, J PLANT NUTR, V35, P453, DOI 10.1080/01904167.2012.639924
Jiang M, 2008, LETT APPL MICROBIOL, V47, P561, DOI 10.1111/j.1472-765X.2008.02454.x
Kabata-Pendias A., 2011, TRACE ELEMENTS SOILS, V4th, DOI [10.1201/b10158, DOI 10.1201/B10158]
Kapustka Larry, 2008, Integrated Environmental Assessment and Management, V4, P290, DOI 10.1897/IEAM_2007-084.1
Karuppiah M, 1997, J HAZARD MATER, V56, P53, DOI 10.1016/S0304-3894(97)00034-4
Kaur R, 2015, PARTICUL SCI TECHNOL, V33, P76, DOI 10.1080/02726351.2014.938378
Kikuchi R, 1999, RESOUR CONSERV RECY, V27, P333, DOI 10.1016/S0921-3449(99)00030-0
Kosmatka S. H., 2002, DES CONTROL CONCR MI
LASKOWSKI R, 1995, OIKOS, V73, P140, DOI 10.2307/3545738
Leon V, 2005, ANN BOT-LONDON, V95, P609, DOI 10.1093/aob/mci066
Linder G, 1989, EPA600D89109
LINDSAY WL, 1978, SOIL SCI SOC AM J, V42, P421, DOI 10.2136/sssaj1978.03615995004200030009x
Lors C, 2010, ENVIRON POLLUT, V158, P2640, DOI 10.1016/j.envpol.2010.05.005
Mahale NK, 2012, POL J ENVIRON STUD, V21, P1713
Marchiol L, 2004, ENVIRON POLLUT, V132, P21, DOI 10.1016/j.envpol.2004.04.001
Matsi T, 1999, ENVIRON POLLUT, V104, P107, DOI 10.1016/S0269-7491(98)00145-6
Mellem JJ, 2009, J ENVIRON SCI HEAL A, V44, P568, DOI 10.1080/10934520902784583
Musyoka NM, 2013, MINER ENG, V53, P9, DOI 10.1016/j.mineng.2013.06.019
Nyamapfene K., 1991, SOILS ZIMBABWE, P179
OECD/OCDE, 2006, OECD OCDE 227 OECD G
OECD/OCDE, 2006, OECD OCDE 208 OECD G
Onliikara A., 2008, NZ J CROP HORTIC SCI, V36, P265, DOI [10.1080/01140670809510243, DOI 10.1080/01140670809510243]
Pandard P, 2006, SCI TOTAL ENVIRON, V363, P114, DOI 10.1016/j.scitotenv.2005.12.016
Pequerul A., 1993, Optimization of plant nutrition: refereed papers from the Eighth International Colloquium for the Optimization of Plant Nutrition, 31 August-8 September 1992, Lisbon, Portugal., P3
Prasad MNV, 1999, HEAVY METAL STRESS P, P117, DOI [DOI 10.1007/978-3-662-07745-0, 10.1007/978-3-662-07745-0]
Rautaray SK, 2003, BIORESOURCE TECHNOL, V90, P275, DOI 10.1016/S0960-8524(03)00132-9
Ray P, 2005, INT J PHYTOREMEDIAT, V7, P199, DOI 10.1080/16226510500214673
Rayment GE, 1992, AUSTR LAB HDB SOIL W, V3
Sacristan D, 2015, SCI HORTIC-AMSTERDAM, V193, P346, DOI 10.1016/j.scienta.2015.06.051
Sahoo PK, 2013, APPL WATER SCI, V3, P567, DOI 10.1007/s13201-013-0113-2
Sajwan KS, 2003, ADV ENVIRON RES, V8, P77, DOI 10.1016/S1093-0191(02)00137-5
Sevugaperumal R., 2015, BIOCH PHYSL, V4, P172, DOI [10.4172/2168-9652.1000172, DOI 10.4172/2168-9652.1000172]
Shaheen SM, 2014, J ENVIRON MANAGE, V145, P249, DOI 10.1016/j.jenvman.2014.07.005
Singh JS, 2011, APPL SOIL ECOL, V47, P133, DOI 10.1016/j.apsoil.2010.11.011
Singh RP, 2010, REV ENVIRON SCI BIO, V9, P345, DOI 10.1007/s11157-010-9218-3
Singh S. J., 2013, ECOTOX ENVIRON SAFE, V89, P45
Skordas G., 2006, ENVIRON TOXICOL, V21, P317
Smith J. L., 1996, SOIL SCI SOC AM J SP
Soares C, 2016, CHEMOSPHERE, V165, P442, DOI 10.1016/j.chemosphere.2016.09.053
Su DC, 2004, ENVIRON INT, V29, P895, DOI 10.1016/S0160-4120(03)00052-7
Tsiridis V, 2012, ECOTOX ENVIRON SAFE, V84, P212, DOI 10.1016/j.ecoenv.2012.07.011
Ukwattage NL, 2013, FUEL, V109, P400, DOI 10.1016/j.fuel.2013.02.016
Valentinuzzi F, 2015, ENVIRON EXP BOT, V118, P85, DOI 10.1016/j.envexpbot.2015.06.010
Valerio ME, 2007, SCI TOTAL ENVIRON, V378, P63, DOI 10.1016/j.scitotenv.2007.01.007
VanderHoeven N, 1997, ENVIRONMETRICS, V8, P255, DOI 10.1002/(SICI)1099-095X(199705)8:3<255::AID-ENV246>3.0.CO;2-P
Visioli G, 2014, B ENVIRON CONTAM TOX, V92, P490, DOI 10.1007/s00128-013-1166-5
WHO/FAO (World Health Organization/Food and Agriculture Organization), 2007, EV CERT FOOD ADD CON, V68
Yang JX, 2010, J ENVIRON SCI, V22, P1246, DOI 10.1016/S1001-0742(09)60245-X
Yunusa IAM, 2012, CRIT REV ENV SCI TEC, V42, P559, DOI 10.1080/10643389.2010.520236
Yunusa IAM, 2011, J SOIL SEDIMENT, V11, P423, DOI 10.1007/s11368-010-0312-5
Zacco A, 2014, ENVIRON CHEM LETT, V12, P153, DOI 10.1007/s10311-014-0454-6
NR 83
TC 15
Z9 17
U1 0
U2 63
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0147-6513
EI 1090-2414
J9 ECOTOX ENVIRON SAFE
JI Ecotox. Environ. Safe.
PD APR 15
PY 2019
VL 170
BP 750
EP 762
DI 10.1016/j.ecoenv.2018.12.047
PG 13
WC Environmental Sciences; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Toxicology
GA HJ0ZC
UT WOS:000456890700090
PM 30583286
DA 2023-03-13
ER
PT J
AU Tapia, PC
AF Tapia, PC
TI Sublethal mitochondrial stress with an attendant stoichiometric
augmentation of reactive oxygen species may precipitate many of the
beneficial alterations in cellular physiology produced by caloric
restriction, intermittent fasting, exercise and dietary phytonutrients:
"Mitohormesis" for health and vitality
SO MEDICAL HYPOTHESES
LA English
DT Article
ID OXIDATIVE STRESS; CAENORHABDITIS-ELEGANS; ANTIOXIDANT NUTRIENTS;
VOLATILE ANESTHETICS; MEDIATED APOPTOSIS; GENE-EXPRESSION; CANCER CELLS;
LIFE-SPAN; CARDIOPROTECTION; PROTEIN
AB The precise mechanistic sequence producing the beneficial effects on health and lifespan seen with interventions as diverse as caloric restriction, intermittent fasting, exercise, and consumption of dietary phytonutrients is still under active characterization, with large swaths of the research community kept in relative isolation from one another. Among the explanatory models capable of assisting in the identification of precipitating elements responsible for beneficial influences on physiology seen in these states, the hormesis perspective on biological systems under stress has yielded considerable insight into likely evolutionarily consistent organizing principles functioning in all four conditions. Recent experimental findings provide the tantalizing initial lodestones for an entirety new research front examining molecular substrates of stress resistance. In this novel body of research, a surprising new twist has emerged: Reactive oxygen species, derived from the mitochondrial electron transport system, may be necessary triggering elements for a sequence of events that result in benefits ranging from the transiently cytoprotective to organismal-level longevity. With the recent appreciation that reactive oxygen species and reactive nitrogen species function as signaling elements in a interconnected matrix of signal transduction, the entire basis of many widely accepted theories of aging that predominated in the past may need to be reconsidered to facilitate the formulation of an new perspective more correctly informed by the most contemporaneous experimental findings. This perspective, the mitohormesis theory, can be used in many disparate domains of inquiry to potentially explain previous findings, as well as point to new targets of research. The utility of this perspective for research on aging is significant, but beyond that this perspective emphasizes the pressing need to rigorously characterize the specific contribution of the stoichiometry of reactive oxygen species and reactive nitrogen species in the various compartments of the cell to cytoprotection and vitality. Previous findings regarding the influences of free radical chemistry on cellular physiology may have represented assessments examining the consequences of isolated elevation of signaling elements within a larger signal transductive apparatus, rather than definitive characterizations of the only modality of reactive oxygen species (and reactive nitrogen species) influence. In applying this perspective, it may be necessary for the research community, as well as the practicing clinician, to engender a more sanguine perspective on organette level physiology, as it is now plausible that such entities have an evolutionarily orchestrated capacity to self-regulate that may be pathologically disturbed by overzealous use of antioxidants, particularly in the healthy. (c) 2005 Elsevier Ltd. All rights reserved.
C1 Univ Alabama, Sch Med, Med Student Serv, Birmingham, AL 35294 USA.
C3 University of Alabama System; University of Alabama Birmingham
RP Tapia, PC (corresponding author), Univ Alabama, Sch Med, Med Student Serv, VH P-100,1530 3rd Ave S, Birmingham, AL 35294 USA.
EM ptapia@uab.edu
FU Intramural NIH HHS Funding Source: Medline
CR Anson RM, 2004, AGING CELL, V3, P29, DOI 10.1111/j.1474-9728.2003.00077.x
Anson RM, 2003, P NATL ACAD SCI USA, V100, P6216, DOI 10.1073/pnas.1035720100
Anthony JR, 2005, P NATL ACAD SCI USA, V102, P6502, DOI 10.1073/pnas.0502225102
Ascensao A, 2005, INT J SPORTS MED, V26, P258, DOI 10.1055/s-2005-837570
Bienengraeber MW, 2005, VASC PHARMACOL, V42, P243, DOI 10.1016/j.vph.2005.02.005
Blackstone NW, 2005, P ROY SOC B-BIOL SCI, V272, P527, DOI 10.1098/rspb.2004.2981
Byfield MP, 2005, J BIOL CHEM, V280, P33076, DOI 10.1074/jbc.M507201200
Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222
CAREY FA, 1990, ADV ORGANIC CHEM
Ceaser EK, 2004, BIOCHEM SOC T, V32, P151, DOI 10.1042/BST0320151
Connor KM, 2005, J BIOL CHEM, V280, P16916, DOI 10.1074/jbc.M410690200
de Grey ADNJ, 2002, EUR J BIOCHEM, V269, P2003, DOI 10.1046/j.1432-1033.2002.02868.x
De Hert SG, 2005, ANESTH ANALG, V100, P1584, DOI 10.1213/01.ANE.0000153483.61170.0C
Deng YR, 2002, PROTOPLASMA, V219, P160, DOI 10.1007/s007090200017
Dewald O, 2005, CIRCULATION, V112, P407, DOI 10.1161/CIRCULATIONAHA.105.536318
FUMAROLA C, 2005, CELL DEATH DIFFER
Gao B., 1987, Computers in Physics, V1, P70
Gomez-Cabrera MC, 2005, J PHYSIOL-LONDON, V567, P113, DOI 10.1113/jphysiol.2004.080564
Gu YP, 2004, FEBS LETT, V577, P357, DOI 10.1016/j.febslet.2004.10.040
HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298
Heinzel FR, 2005, CIRC RES, V97, P583, DOI 10.1161/01.RES.0000181171.65293.65
HERBERT KE, 2005, EUR J NUTR
Hou DX, 2005, ARCH BIOCHEM BIOPHYS, V440, P101, DOI 10.1016/j.abb.2005.06.002
Hu FB, 2004, NEW ENGL J MED, V351, P2694, DOI 10.1056/NEJMoa042135
JANOFF A, 1964, INT ANESTHESIOL CLIN, V97, P251
Jazwinski SM, 2005, GENE, V354, P22, DOI 10.1016/j.gene.2005.03.040
JI LL, 1995, FREE RADICAL BIO MED, V18, P1079, DOI 10.1016/0891-5849(94)00212-3
JUNG EM, 2005, CARCINOGENESIS
Kimura S, 2005, HYPERTENSION, V45, P860, DOI 10.1161/01.HYP.0000163462.98381.7f
Kondo M, 2005, MECH AGEING DEV, V126, P637, DOI 10.1016/j.mad.2004.11.011
Kothan S, 2004, CAN J PHYSIOL PHARM, V82, P1084, DOI [10.1139/y04-113, 10.1139/Y04-113]
Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125
Lee CK, 2004, FREE RADICAL BIO MED, V36, P1043, DOI 10.1016/j.freeradbiomed.2004.01.015
Leek BT, 2001, AM J PHYSIOL-REG I, V280, pR441, DOI 10.1152/ajpregu.2001.280.2.R441
Liu J, 2005, STROKE, V36, P1264, DOI 10.1161/01.STR.0000166180.91042.02
MACHLIN LJ, 1987, FASEB J, V1, P441, DOI 10.1096/fasebj.1.6.3315807
Madamanchi NR, 2001, ARTERIOSCL THROM VAS, V21, P321, DOI 10.1161/01.ATV.21.3.321
Maemura K, 2005, IMMUNOL CELL BIOL, V83, P336, DOI 10.1111/j.1440-1711.2005.01323.x
Miller ER, 2005, ANN INTERN MED, V142, P37, DOI 10.7326/0003-4819-142-1-200501040-00110
Mouria M, 2002, INT J CANCER, V98, P761, DOI 10.1002/ijc.10202
MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124
MUSIEK ES, 2005, J BIOL CHEM, DOI DOI 10.1074JBC.M504785200
Ogawa K, 2004, ANAT REC PART A, V278A, P533, DOI 10.1002/ar.a.20024
OLOGHLEN A, 2005, CELL SIGNAL
Orhan H, 2004, FREE RADICAL RES, V38, P1269, DOI 10.1080/10715760400013763
Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023
PLETJUSHKINA OY, 2005, CELL DEATH DIFFER
Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705
Ridnour LA, 2005, FREE RADICAL BIO MED, V38, P1361, DOI 10.1016/j.freeradbiomed.2005.01.023
Santra S, 2004, ANN NEUROL, V56, P662, DOI 10.1002/ana.20240
Schoeler S, 2005, BIOCHEM BIOPH RES CO, V332, P43, DOI 10.1016/j.bbrc.2005.04.086
SHANG T, 2005, J BIOL CHEM
Shao BH, 2005, J BIOL CHEM, V280, P29311, DOI 10.1074/jbc.M504040200
Singh SV, 2005, J BIOL CHEM, V280, P19911, DOI 10.1074/jbc.M412443200
Smith EM, 2005, J BIOL CHEM, V280, P18717, DOI 10.1074/jbc.M414499200
Sofer A, 2005, MOL CELL BIOL, V25, P5834, DOI 10.1128/MCB.25.14.5834-5845.2005
Southam CM, 1943, PHYTOPATHOLOGY, V33, P517
Storz P, 2005, MOL CELL BIOL, V25, P8520, DOI 10.1128/MCB.25.19.8520-8530.2005
Strasser EM, 2005, BIOCHEM PHARMACOL, V70, P552, DOI 10.1016/j.bcp.2005.05.030
Sumikawa E, 2005, BIOCHEM BIOPH RES CO, V335, P558, DOI 10.1016/j.bbrc.2005.07.106
Tang L, 2005, MOL CANCER THER, V4, P1250, DOI 10.1158/1535-7163.MCT-05-0041
Tettweiler G, 2005, GENE DEV, V19, P1840, DOI 10.1101/gad.1311805
Tieu K, 2003, J CLIN INVEST, V112, P892, DOI 10.1172/JCI200318797
Tirosh O, 2003, EXP GERONTOL, V38, P955, DOI 10.1016/S0531-5565(03)00151-7
Ventura N, 2005, AGING CELL, V4, P109, DOI 10.1111/j.1474-9726.2005.00149.x
Wang GS, 2005, ACTA MATH SCI, V25, P7, DOI 10.1016/S0252-9602(17)30256-4
Wang X, 2004, MECH AGEING DEV, V125, P237, DOI 10.1016/j.mad.2003.12.007
YE L, 1987, CARCINOGENESIS, P22
Zhang XM, 2005, CANCER CHEMOTH PHARM, V55, P251, DOI 10.1007/s00280-004-0863-5
NR 69
TC 146
Z9 147
U1 0
U2 35
PU CHURCHILL LIVINGSTONE
PI EDINBURGH
PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE,
LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND
SN 0306-9877
J9 MED HYPOTHESES
JI Med. Hypotheses
PY 2006
VL 66
IS 4
BP 832
EP 843
DI 10.1016/j.mehy.2005.09.009
PG 12
WC Medicine, Research & Experimental
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Research & Experimental Medicine
GA 024KS
UT WOS:000236194500025
PM 16242247
DA 2023-03-13
ER
PT J
AU Wang, CY
Wu, BD
Jiang, K
Zhou, JW
AF Wang, Congyan
Wu, Bingde
Jiang, Kun
Zhou, Jiawei
TI Differences in functional traits between invasive and native Amaranthus
species under simulated acid deposition with a gradient of pH levels
SO ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY
LA English
DT Article
DE Invasive plant species; Leaf functional traits; Red amaranth; Redroot
pigweed; Simulated acid deposition
ID LEAF-AREA; SOLIDAGO-CANADENSIS; SEED-GERMINATION; LACTUCA-SATIVA; PLANT;
GROWTH; RAIN; PHOTOSYNTHESIS; RETROFLEXUS; COMMUNITIES
AB Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most treatments. Thus, competitive performance arose in most treatments when the two species were grown together. This may be due to the enhanced competitive intensity under interspecific coexistence. However, the values of the relative competition intensity of the leaf functional traits between amaranth and pigweed were all higher than zero under the pH 5.6 simulated acid deposition treatment. Thus, interspecific facilitation occurs when the two species are co-cultivated under the pH 5.6 simulated acid deposition treatment. This may be due the positive nutritional effects induced in the pH 5.6 simulated acid deposition treatment.
C1 [Wang, Congyan] Jiangsu Univ, Acad Environm Hlth & Ecol Secur, Inst Environm & Ecol, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China.
[Wang, Congyan] Jiangsu Univ, Sch Environm & Safety Engn, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China.
C3 Jiangsu University; Jiangsu University
RP Wang, CY (corresponding author), Jiangsu Univ, Acad Environm Hlth & Ecol Secur, Inst Environm & Ecol, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China.; Wang, CY (corresponding author), Jiangsu Univ, Sch Environm & Safety Engn, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China.
EM liuyuexue623@163.com
RI Wang, Congyan/B-1299-2010
OI Wang, Congyan/0000-0002-6132-3319
FU National Key Research & Development Program of China [2017YFC1200103];
National Natural Science Foundation of China [31300343]; Jiangsu
Collaborative Innovation Center of Technology and Material of Water
Treatment
FX This study was supported by National Key Research & Development Program
of China (2017YFC1200103), National Natural Science Foundation of China
(31300343), and Jiangsu Collaborative Innovation Center of Technology
and Material of Water Treatment. We are very grateful to the anonymous
reviewer for the insightful and constructive comments that greatly
improved this manuscript.
CR Armas C, 2004, ECOLOGY, V85, P2682, DOI 10.1890/03-0650
Bultynck L, 2004, ANN BOT-LONDON, V94, P99, DOI 10.1093/aob/mch110
Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3
Chen J, 2013, PLANT PHYSIOL BIOCH, V64, P41, DOI 10.1016/j.plaphy.2012.12.012
Duke S. O., 2006, Outlooks on Pest Management, V17, P29
Dwyer JM, 2014, ECOLOGY, V95, P399, DOI 10.1890/13-0412.1
Fan SF, 2013, HYDROBIOLOGIA, V711, P129, DOI 10.1007/s10750-013-1471-3
Feng YL, 2007, ACTA OECOL, V31, P40, DOI 10.1016/j.actao.2006.03.009
Funk JL, 2016, ECOLOGY, V97, P75, DOI 10.1890/15-0974.1
Gallagher RV, 2015, CONSERV BIOL, V29, P360, DOI 10.1111/cobi.12399
Gleason SM, 2004, TREE PHYSIOL, V24, P1087, DOI 10.1093/treephys/24.10.1087
Gross N, 2007, J ECOL, V95, P1296, DOI 10.1111/j.1365-2745.2007.01303.x
Gross N, 2013, FUNCT ECOL, V27, P1262, DOI 10.1111/1365-2435.12120
Grotkopp E, 2010, J APPL ECOL, V47, P1320, DOI 10.1111/j.1365-2664.2010.01878.x
Gruntman M, 2014, BIOL INVASIONS, V16, P141, DOI 10.1007/s10530-013-0509-9
Hang ZH, 2016, ZHENJIANG YB, V25, P27
He WM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031170
Ishii H, 2010, ECOL RES, V25, P715, DOI 10.1007/s11284-009-0668-4
Jasim B, 2017, SAUDI PHARM J, V25, P443, DOI 10.1016/j.jsps.2016.09.012
Jeong N, 2011, THEOR APPL GENET, V122, P865, DOI 10.1007/s00122-010-1492-5
Jiang MS, 2011, J METEOR SCI, V31, P99
Kardel F, 2010, ENVIRON POLLUT, V158, P788, DOI 10.1016/j.envpol.2009.10.006
LeBel P., 2013, American Journal of Plant Sciences, V4, P1278, DOI 10.4236/ajps.2013.46158
Leishman MR, 2007, NEW PHYTOL, V176, P635, DOI 10.1111/j.1469-8137.2007.02189.x
Liu FD, 2010, ACTA OECOL, V36, P149, DOI 10.1016/j.actao.2009.11.004
Mandak B, 2011, FLORA, V206, P697, DOI 10.1016/j.flora.2011.01.010
Marteinsdottir B, 2014, J VEG SCI, V25, P77, DOI 10.1111/jvs.12058
Meng FQ, 2014, OECOLOGIA, V174, P13, DOI 10.1007/s00442-013-2746-0
Mishra A., 2012, Journal of Environmental Research and Development, V6, P1127
Ordonez A, 2014, GLOBAL ECOL BIOGEOGR, V23, P264, DOI 10.1111/geb.12123
Pabian SE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039755
Powell KI, 2013, SCIENCE, V339, P316, DOI 10.1126/science.1226817
Qing H, 2011, ACTA OECOL, V37, P23, DOI 10.1016/j.actao.2010.11.002
Scheepens JF, 2010, OECOLOGIA, V164, P141, DOI 10.1007/s00442-010-1650-0
Sheppard CS, 2014, PLANT ECOL, V215, P1527, DOI 10.1007/s11258-014-0411-2
Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x
Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x
Wang C, 2017, S AFR J BOT, V111, P17, DOI 10.1016/j.sajb.2017.03.019
Wang CY, 2018, SCI TOTAL ENVIRON, V631-632, P702, DOI 10.1016/j.scitotenv.2018.03.061
Wang CY, 2018, ECOL ENG, V112, P55, DOI 10.1016/j.ecoleng.2017.12.025
Wang CY, 2017, AGR ECOSYST ENVIRON, V247, P329, DOI 10.1016/j.agee.2017.07.012
Wang CY, 2017, SCI NAT-HEIDELBERG, V104, DOI 10.1007/s00114-017-1482-4
Wang CY, 2017, POL J ENVIRON STUD, V26, P355, DOI 10.15244/pjoes/64240
Wang CY, 2017, J FORESTRY RES, V28, P241, DOI 10.1007/s11676-016-0290-6
Wang CY, 2016, CLEAN-SOIL AIR WATER, V44, P1591, DOI 10.1002/clen.201600144
Wang CY, 2016, POL J ENVIRON STUD, V25, P1279, DOI 10.15244/pjoes/61788
Wang CY, 2016, ECOTOXICOLOGY, V25, P555, DOI 10.1007/s10646-016-1614-1
Wang CY, 2016, POL J ENVIRON STUD, V25, P333, DOI 10.15244/pjoes/60328
Wang CY, 2010, SCI TOTAL ENVIRON, V408, P2706, DOI 10.1016/j.scitotenv.2010.03.023
Wang TJ, 2007, TERR ATMOS OCEAN SCI, V18, P995, DOI 10.3319/TAO.2007.18.5.995(A)
Wang WX, 2009, PROG CHEM, V21, P266
Wang Z, 2012, PHOTOSYNTHETICA, V50, P337, DOI 10.1007/s11099-012-0039-1
Xie S.Y., 2012, ENV MONITOR FOREWARN, V4, P33
Xu HQ, 2015, ENVIRON SCI POLLUT R, V22, P18260, DOI 10.1007/s11356-015-5066-6
Yang Y, 2011, J PHYTOPATHOL, V159, P635, DOI 10.1111/j.1439-0434.2011.01808.x
Yu HL, 2017, ENVIRON POLLUT, V231, P182, DOI 10.1016/j.envpol.2017.08.014
Zhang JE, 2007, CHEMOSPHERE, V67, P2131, DOI 10.1016/j.chemosphere.2006.12.095
Zhang YJ, 2012, NAT HAZARDS, V64, P1671, DOI 10.1007/s11069-012-0319-x
NR 58
TC 16
Z9 17
U1 2
U2 49
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1146-609X
EI 1873-6238
J9 ACTA OECOL
JI Acta Oecol.-Int. J. Ecol.
PD MAY
PY 2018
VL 89
BP 32
EP 37
DI 10.1016/j.actao.2018.04.006
PG 6
WC Ecology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA GI9YP
UT WOS:000434901800005
DA 2023-03-13
ER
PT J
AU Zhang, YY
Xu, G
Jiang, Y
Ma, C
Yang, GQ
AF Zhang, Yuanyuan
Xu, Gang
Jiang, Yu
Ma, Chao
Yang, Guoqing
TI Sublethal Effects of Imidacloprid on Fecundity, Apoptosis and Virus
Transmission in the Small Brown Planthopper Laodelphax striatellus
SO INSECTS
LA English
DT Article
DE imidacloprid; Laodelphax striatellus; fecundity; apoptosis; virus
transmission
ID PROGRAMMED CELL-DEATH; SOGATELLA-FURCIFERA; HEMIPTERA DELPHACIDAE;
BIOLOGICAL TRAITS; INDUCED HORMESIS; GENE-EXPRESSION; MYZUS-PERSICAE;
INSECTICIDE; REPRODUCTION; SUSCEPTIBILITY
AB Simple Summary The small brown planthopper (SBPH) Laodelphax striatellus is an economically important pest in Asia, especially in China. Imidacloprid, a neonicotinoid insecticide, is commonly applied in rice fields to control the planthoppers. However, the widespread application of imidacloprid also has led to the development of resistance and to other potentially negative effects on crop protection. The sublethal effects of imidacloprid have been reported in many insects. Here, we investigated the potential effects of different sublethal concentrations of imidacloprid on SBPH and found that imidacloprid could affect the fecundity, apoptosis and virus transmission in the viruliferous SBPH. The results indicated that sublethal concentrations of imidacloprid may increase the fecundity of SBPH and the impact of insecticides on the transmission of plant viruses by insects should be considered when insecticides are applied to manage insect pests. Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies.
C1 [Zhang, Yuanyuan; Xu, Gang; Jiang, Yu; Ma, Chao; Yang, Guoqing] Yangzhou Univ, Coll Hort & Plant Protect, Yangzhou 225009, Jiangsu, Peoples R China.
[Yang, Guoqing] Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain C, Yangzhou 225009, Jiangsu, Peoples R China.
[Yang, Guoqing] Yangzhou Univ, Minist Educ China, Joint Int Res Lab Agr & Agriprod Safety, Yangzhou 225009, Jiangsu, Peoples R China.
C3 Yangzhou University; Yangzhou University; Ministry of Education, China;
Yangzhou University
RP Xu, G; Yang, GQ (corresponding author), Yangzhou Univ, Coll Hort & Plant Protect, Yangzhou 225009, Jiangsu, Peoples R China.; Yang, GQ (corresponding author), Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain C, Yangzhou 225009, Jiangsu, Peoples R China.; Yang, GQ (corresponding author), Yangzhou Univ, Minist Educ China, Joint Int Res Lab Agr & Agriprod Safety, Yangzhou 225009, Jiangsu, Peoples R China.
EM zhangyuanyuan182@126.com; xugang@yzu.edu.cn; jiangyu1126@outlook.com;
machaoyzu@163.com; gqyang@yzu.edu.cn
RI zhang, yuanyuan/GYA-4428-2022; Xu, Gang/P-7444-2019
OI Xu, Gang/0000-0002-7379-8485
FU Natural Science Foundation of the Jiangsu Higher Education Institutions
of China [20KJB210010]; Lvyangjinfeng Talent Program of Yangzhou
FX FundingThis work was supported by the Natural Science Foundation of the
Jiangsu Higher Education Institutions of China (20KJB210010), and the
Lvyangjinfeng Talent Program of Yangzhou.
CR Bantz A, 2018, CURR OPIN INSECT SCI, V30, P73, DOI 10.1016/j.cois.2018.09.008
Bass C, 2015, PESTIC BIOCHEM PHYS, V121, P78, DOI 10.1016/j.pestbp.2015.04.004
Biondi A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076548
Brandt A, 2016, J INSECT PHYSIOL, V86, P40, DOI 10.1016/j.jinsphys.2016.01.001
Cao Y, 2019, INSECTS, V10, DOI 10.3390/insects10010003
Castellanos NL, 2021, ECOTOXICOLOGY, V30, P678, DOI 10.1007/s10646-021-02388-4
Cooper DM, 2009, APOPTOSIS, V14, P247, DOI 10.1007/s10495-009-0322-1
Coulon M, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220703
Dai CC, 2021, INSECTS, V12, DOI [10.3390/insects12080681, 10.3390/insects12080681/]
Deng JH, 2013, VIROL J, V10, DOI 10.1186/1743-422X-10-310
Di Prisco G, 2013, P NATL ACAD SCI USA, V110, P18466, DOI 10.1073/pnas.1314923110
Diao QY, 2018, SCI TOTAL ENVIRON, V630, P487, DOI 10.1016/j.scitotenv.2018.02.258
Doublet V, 2015, ENVIRON MICROBIOL, V17, P969, DOI 10.1111/1462-2920.12426
Farder-Gomes CF, 2021, SCI TOTAL ENVIRON, V794, DOI 10.1016/j.scitotenv.2021.148678
Farder-Gomes CF, 2021, SCI TOTAL ENVIRON, V774, DOI 10.1016/j.scitotenv.2021.145679
Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P269, DOI 10.1016/j.pestbp.2010.06.018
Gregorc A, 2011, PESTIC BIOCHEM PHYS, V99, P200, DOI 10.1016/j.pestbp.2010.12.005
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Guo Y, 2018, INSECT MOL BIOL, V27, P796, DOI 10.1111/imb.12518
He C, 2019, PESTIC BIOCHEM PHYS, V153, P136, DOI 10.1016/j.pestbp.2018.11.014
He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762
Huo Y, 2019, PHILOS T R SOC B, V374, DOI 10.1098/rstb.2018.0312
Huo Y, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1006909
Huo Y, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1003949
Jia DS, 2018, CURR OPIN VIROL, V28, P127, DOI 10.1016/j.coviro.2017.12.004
Ju JF, 2017, INSECT BIOCHEM MOLEC, V85, P11, DOI 10.1016/j.ibmb.2017.04.002
Kang ZW, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01729
Landmann F, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000758
Li WQ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204097
Li Y, 2020, PLOS PATHOG, V16, DOI 10.1371/journal.ppat.1008710
Liao X, 2019, CROP PROT, V118, P6, DOI 10.1016/j.cropro.2018.12.005
Liu BM, 2021, J ECON ENTOMOL, V114, P1568, DOI 10.1093/jee/toab122
Liu BM, 2021, J ECON ENTOMOL, V114, P1072, DOI 10.1093/jee/toab040
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Lord CEN, 2012, EUR J CELL BIOL, V91, P603, DOI 10.1016/j.ejcb.2012.02.002
Lu WW, 2017, PEST MANAG SCI, V73, P1709, DOI 10.1002/ps.4518
Martinez LC, 2019, ECOTOX ENVIRON SAFE, V167, P69, DOI 10.1016/j.ecoenv.2018.09.124
Mpakou VE, 2011, DEV GROWTH DIFFER, V53, P804, DOI 10.1111/j.1440-169X.2011.01288.x
Pang SM, 2020, TOXICS, V8, DOI 10.3390/toxics8030065
Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2
Richardson H, 2002, J IMMUNOL METHODS, V265, P21, DOI 10.1016/S0022-1759(02)00068-6
Rix RR, 2020, J ECON ENTOMOL, V113, P2179, DOI 10.1093/jee/toaa169
Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5
Roditakis E, 2017, PEST MANAG SCI, V73, P1574, DOI 10.1002/ps.4577
Rossi CD, 2013, MICROSC RES TECHNIQ, V76, P552, DOI 10.1002/jemt.22199
Ruttanaphan T, 2020, INSECTS, V11, DOI 10.3390/insects11100686
Skouras PJ, 2021, INSECTS, V12, DOI 10.3390/insects12080696
Tang XT, 2020, INSECTS, V11, DOI 10.3390/insects11040243
Tufail M, 2009, J INSECT PHYSIOL, V55, P87, DOI 10.1016/j.jinsphys.2008.11.007
Wang AH, 2005, J ECON ENTOMOL, V98, P1144, DOI 10.1603/0022-0493-98.4.1144
Wang XR, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00433-20
Wu JC, 2020, ANNU REV ENTOMOL, V65, P409, DOI 10.1146/annurev-ento-011019-025215
Wu W, 2019, GENES-BASEL, V10, DOI 10.3390/genes10110887
Wu YY, 2015, J ECON ENTOMOL, V108, P1486, DOI 10.1093/jee/tov146
Xu G, 2020, PEST MANAG SCI, V76, P1949, DOI 10.1002/ps.5729
Xu L, 2016, J ASIA-PAC ENTOMOL, V19, P683, DOI 10.1016/j.aspen.2016.06.013
Xu PF, 2019, CROP PROT, V117, P63, DOI 10.1016/j.cropro.2018.11.010
Xu QF, 2017, VIROL J, V14, DOI 10.1186/s12985-017-0732-6
Xu Y, 2021, ANNU REV PHYTOPATHOL, V59, P351, DOI 10.1146/annurev-phyto-020620-113020
Yang GQ, 2017, J ASIA-PAC ENTOMOL, V20, P830, DOI 10.1016/j.aspen.2017.05.005
Yu H, 2020, INSECT SCI, V27, P1158, DOI 10.1111/1744-7917.12741
Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013
Zhang K, 2014, J ECON ENTOMOL, V107, P1916, DOI 10.1603/EC14156
Zhang XL, 2017, J ASIA-PAC ENTOMOL, V20, P955, DOI 10.1016/j.aspen.2017.07.004
Zhao W, 2019, J GEN VIROL, V100, P877, DOI 10.1099/jgv.0.001255
Zhou C, 2017, J ASIA-PAC ENTOMOL, V20, P996, DOI 10.1016/j.aspen.2017.07.002
Zhu J, 2020, J ASIA-PAC ENTOMOL, V23, P98, DOI 10.1016/j.aspen.2019.10.018
NR 67
TC 4
Z9 5
U1 6
U2 24
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-4450
J9 INSECTS
JI Insects
PD DEC
PY 2021
VL 12
IS 12
AR 1131
DI 10.3390/insects12121131
PG 12
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA XZ3XO
UT WOS:000737588500001
PM 34940219
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Pusic, AD
Grinberg, YY
Mitchell, HM
Kraig, RP
AF Pusic, Aya D.
Grinberg, Yelena Y.
Mitchell, Heidi M.
Kraig, Richard P.
TI Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using
Spreading Depression In Vitro
SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
LA English
DT Article
DE Neuroscience; Issue 52; innate immunity; hormesis; microglia; T-cells;
hippocampus; slice culture; gene expression; laser dissection
microscopy; real-time qPCR; interferon-gamma
ID REAL-TIME PCR; HIPPOCAMPAL; QUANTIFICATION; EXPRESSION
AB Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers.
In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
C1 [Pusic, Aya D.; Grinberg, Yelena Y.; Mitchell, Heidi M.; Kraig, Richard P.] Univ Colorado, Med Ctr, Dept Neurol, Boulder, CO 80309 USA.
[Pusic, Aya D.; Grinberg, Yelena Y.; Kraig, Richard P.] Univ Colorado, Med Ctr, Comm Neurobiol, Boulder, CO 80309 USA.
C3 University of Colorado System; University of Colorado Boulder;
University of Colorado System; University of Colorado Boulder
RP Kraig, RP (corresponding author), Univ Colorado, Med Ctr, Dept Neurol, Boulder, CO 80309 USA.
EM rkraig@neurology.bsd.uchicago.edu
OI Grinberg, Yelena/0000-0003-4255-5293; Kraig, Richard/0000-0003-4584-1017
FU National Institute of Neurological Disorders and Stroke [NS-19108];
National Institute of Child Health and Disease [PO1-HD09402]; Migraine
Research Foundation; White Foundation
FX This work was supported by grants from the National Institute of
Neurological Disorders and Stroke (NS-19108), the National Institute of
Child Health and Disease (PO1-HD09402), the Migraine Research Foundation
and the White Foundation. Ms. Marcia P. Kraig assisted in the
preparation and maintenance of culture systems.
CR Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797
Caggiano AO, 1996, J COMP NEUROL, V369, P93, DOI 10.1002/(SICI)1096-9861(19960520)369:1<93::AID-CNE7>3.0.CO;2-F
Grinberg YY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019294
Gubern C, 2009, BMC MOL BIOL, V10, DOI 10.1186/1471-2199-10-57
Hailer NP, 1996, GLIA, V18, P319, DOI 10.1002/(SICI)1098-1136(199612)18:4<319::AID-GLIA6>3.0.CO;2-S
Hulse RE, 2008, J NEUROSCI, V28, P12199, DOI 10.1523/JNEUROSCI.3856-08.2008
KOROLEVA VI, 1985, ELECTROEN CLIN NEURO, V60, P55, DOI 10.1016/0013-4694(85)90951-4
Kunkler PE, 2005, J NEUROSCI, V25, P3952, DOI 10.1523/JNEUROSCI.0491-05.2005
Kunkler PE, 1998, J NEUROSCI, V18, P3416
Kunkler PE, 1997, J CEREBR BLOOD F MET, V17, P26, DOI 10.1097/00004647-199701000-00005
Mitchell H.M., 2010, JOVE-J VIS EXP, DOI [10.3791/2192, DOI 10.3791/2192]
Mitchell HM, 2011, J NEUROCHEM, V117, P187, DOI 10.1111/j.1471-4159.2010.07103.x
Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
Pusic A. D., 2010, Society for Neuroscience Abstract Viewer and Itinerary Planner, V40
Quinn B, 1996, J HISTOCHEM CYTOCHEM, V44, P71, DOI 10.1177/44.1.8543785
Ransohoff RM, 2009, ANNU REV IMMUNOL, V27, P119, DOI 10.1146/annurev.immunol.021908.132528
Tian YF, 2007, ACTA ANAESTH SCAND, V51, P158, DOI 10.1111/j.1399-6576.2006.01161.x
NR 17
TC 14
Z9 16
U1 0
U2 1
PU JOURNAL OF VISUALIZED EXPERIMENTS
PI CAMBRIDGE
PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA
SN 1940-087X
J9 JOVE-J VIS EXP
JI J. Vis. Exp.
PD JUN
PY 2011
IS 52
AR e2910
DI 10.3791/2910
PG 17
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA V36MB
UT WOS:000209214900042
PM 21694695
OA Green Submitted, Green Published
DA 2023-03-13
ER
PT J
AU Fu, WT
Chen, XC
Zheng, XY
Liu, AR
Wang, WJ
Ji, J
Wang, G
Guan, CF
AF Fu, Wenting
Chen, Xiancao
Zheng, Xiaoyan
Liu, Anran
Wang, Wenjing
Ji, Jing
Wang, Gang
Guan, Chunfeng
TI Phytoremediation potential, antioxidant response, photosynthetic
behavior and rhizosphere bacterial community adaptation of tobacco
(Nicotiana tabacum L.) in a bisphenol A-contaminated soil
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE Bisphenol A; Microbial community; Oxidative stress; Photosynthesis;
Phytoremediation; Tobacco
ID ENVIRONMENTAL ENDOCRINE DISRUPTOR; OXIDATIVE STRESS; LYCIUM-CHINENSE;
DEFENSE SYSTEM; GROWTH; WATER; TOLERANCE; REMOVAL; BPA; DEGRADATION
AB Bisphenol A (BPA) is an emerging organic pollutant, widely distributed and frequently detected in soil in recent years. BPA toxicity is a problem that needs to be solved in terms of both human health and agricultural production. Up to now, the toxic effect of BPA and its mechanism of action on plants, as well as the possibility of using plants to remediate BPA-contaminated soil, remain to be explored. In this study, six treatment groups were set up to evaluate the effects of different concentrations of BPA on the germination and growth of tobacco (Nicotiana tabacum L.) by medium experiments. Furthermore, the representative indexes of photosynthetic and antioxidant system were determined. Meanwhile, tobacco seedlings were cultivated in soil to further explore the effects of BPA on rhizosphere soil enzyme activity and bacterial community structure with or without 100 mg/kg BPA exposure. The enhancement of BPA removal efficiency from soil by phytoremediation using tobacco plants would also be estimated. Our results showed that high doses of BPA in solid medium remarkably inhibited tobacco seedling growth, and its toxicology effect was positively correlated with BPA concentration, while lower BPA exposure (< 20 mg/L) had little limitation on tobacco growth and induced hormesis effect, which was reflected mainly in the increase of root length. In pot experiments, the reducing of chlorophyll content (36.4%) and net photosynthetic rate (41.2%) meant the inhibition of tobacco photosynthetic process due to high concentration of BPA exposure (100 mg/kg) in soil. The increase of H2O2 and O-2(-) content suggested that BPA could destroy the balance of reactive oxygen species (ROS) in plants. However, tobacco plants still presented a high removal efficiency of BPA at the concentration of 100 mg/kg in soil, which could reach to 80% within 30 days. Furthermore, it was indicated that tobacco cultivation changed the structure of rhizosphere soil bacterial communities and the relative abundance of some valuable strains, including Proteobacteria, Acidobacteria and other strains, which might be participated in the BPA removal process. In addition, the tobacco-soil microbial system had the potential to reverse the negative effects caused by BPA through stimulating microorganism associated with soil nutrient cycling. In summary, tobacco is a competitive plant in phytoremediation of BPA-contaminated soil, though the growth of tobacco could be inhibited at high concentration of BPA. Moreover, tobacco might promote the removal efficiency of BPA by regulating the rhizosphere bacteria communities.
C1 [Fu, Wenting; Chen, Xiancao; Zheng, Xiaoyan; Liu, Anran; Wang, Wenjing; Ji, Jing; Wang, Gang; Guan, Chunfeng] Tianjin Univ, Sch Environm Sci & Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China.
C3 Tianjin University
RP Guan, CF (corresponding author), Tianjin Univ, Sch Environm Sci & Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China.
EM chunfengguan@tju.edu.cn
OI Guan, Chunfeng/0000-0001-9245-3362
FU National Natural Science Foundation of China [32171613]; Tianjin Rice
Industry Technology System Innovation Team Construction [ITTRRS2018007];
Tianjin Science and Technology Research and Development Plan Project
[19YFZCSN00280]
FX This work was supported by the National Natural Science Foundation of
China (32171613), Tianjin Rice Industry Technology System Innovation
Team Construction (ITTRRS2018007), and Tianjin Science and Technology
Research and Development Plan Project (19YFZCSN00280).
CR Ahammed GJ, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2020.113957
Ali I, 2016, ECOTOX ENVIRON SAFE, V124, P277, DOI 10.1016/j.ecoenv.2015.10.027
Cao HC, 2013, MOL BREEDING, V31, P655, DOI 10.1007/s11032-012-9823-7
Chen XC, 2019, CHEMOSPHERE, V233, P49, DOI 10.1016/j.chemosphere.2019.05.144
Cooper JE, 2011, CHEMOSPHERE, V85, P943, DOI 10.1016/j.chemosphere.2011.06.060
Douglas GM, 2020, NAT BIOTECHNOL, V38, P685, DOI 10.1038/s41587-020-0548-6
Ferrara G, 2006, PLANTA, V223, P910, DOI 10.1007/s00425-005-0147-2
Floch C, 2007, J MICROBIOL METH, V71, P319, DOI 10.1016/j.mimet.2007.09.020
Gao ML, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117179
Gassara F, 2013, CHEMOSPHERE, V92, P1356, DOI 10.1016/j.chemosphere.2013.02.071
Geens T, 2012, FOOD CHEM TOXICOL, V50, P3725, DOI 10.1016/j.fct.2012.07.059
Gibson R, 2010, CHEMOSPHERE, V81, P1437, DOI 10.1016/j.chemosphere.2010.09.006
Grobin A, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.132195
Guan CF, 2016, J GENET, V95, P875, DOI 10.1007/s12041-016-0710-6
Guan CF, 2015, J PLANT PHYSIOL, V175, P26, DOI 10.1016/j.jplph.2014.06.022
Heo J, 2019, BIORESOURCE TECHNOL, V281, P179, DOI 10.1016/j.biortech.2019.02.091
Huelsmann RD, 2021, J SEP SCI, V44, P1148, DOI 10.1002/jssc.202000923
Imai S, 2007, J BIOSCI BIOENG, V103, P420, DOI 10.1263/jbb.103.420
Jiang MY, 2001, PLANT CELL PHYSIOL, V42, P1265, DOI 10.1093/pcp/pce162
Jiang ZW, 2021, J HAZARD MATER, V410, DOI 10.1016/j.jhazmat.2020.124557
Kalam S, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.580024
Kielak AM, 2017, SCI REP-UK, V7, DOI 10.1038/srep41193
Kim D, 2018, CHEMOSPHERE, V209, P875, DOI 10.1016/j.chemosphere.2018.06.146
Kohler J, 2009, ENVIRON EXP BOT, V65, P245, DOI 10.1016/j.envexpbot.2008.09.008
Kreslavski VD, 2017, PLANT BIOLOGY, V19, P683, DOI 10.1111/plb.12598
Krishna MA, 2017, ENVIRON MOL MUTAGEN, V58, pS64
Kwak JI, 2018, J HAZARD MATER, V344, P390, DOI 10.1016/j.jhazmat.2017.10.048
Li JQ, 2021, J SOIL SCI PLANT NUT, V21, P1397, DOI 10.1007/s42729-021-00448-6
Li XY, 2018, ECOTOX ENVIRON SAFE, V157, P463, DOI 10.1016/j.ecoenv.2018.04.013
Li XY, 2018, ECOTOX ENVIRON SAFE, V150, P152, DOI 10.1016/j.ecoenv.2017.12.031
Lin H, 2021, J HAZARD MATER, V402, DOI 10.1016/j.jhazmat.2020.123829
Liu JM, 2021, ANTON LEEUW INT J G, V114, P457, DOI 10.1007/s10482-021-01533-7
Liu YH, 2017, ECOTOX ENVIRON SAFE, V135, P90, DOI 10.1016/j.ecoenv.2016.09.035
Lors C, 2010, CHEMOSPHERE, V81, P1263, DOI 10.1016/j.chemosphere.2010.09.021
Ma Y, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108575
Maksymiec W, 2006, ENVIRON EXP BOT, V57, P187, DOI 10.1016/j.envexpbot.2005.05.006
MATASSI G, 1991, NUCLEIC ACIDS RES, V19, P5561, DOI 10.1093/nar/19.20.5561
Navarrete AA, 2013, FEMS MICROBIOL ECOL, V83, P607, DOI 10.1111/1574-6941.12018
Nie LJ, 2015, ENVIRON TOXICOL CHEM, V34, P2363, DOI 10.1002/etc.3073
Nie LJ, 2015, ENVIRON TOXICOL CHEM, V34, P133, DOI 10.1002/etc.2770
Pan WJ, 2013, CHEMOSPHERE, V93, P2585, DOI 10.1016/j.chemosphere.2013.09.081
Pasqualini S, 2001, PLANT CELL ENVIRON, V24, P245, DOI 10.1111/j.1365-3040.2001.00671.x
Peng DL, 2020, PLANT SOIL, V450, P443, DOI 10.1007/s11104-020-04521-4
Phouthavong-Murphy JC, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56655-w
Qiu ZY, 2013, CHEMOSPHERE, V90, P1274, DOI [10.1016/j.chemosPhere.2012.09.085, 10.1016/j.chemosphere.2012.09.085]
Rapala M, 2017, ACTA BIOCHIM POL, V64, P407, DOI 10.18388/abp.2017_1626
Rasool B, 2021, ENVIRON POLLUT, V280, DOI 10.1016/j.envpol.2021.116903
Razinger J, 2008, ENVIRON POLLUT, V153, P687, DOI 10.1016/j.envpol.2007.08.018
Saiyood S, 2010, J HAZARD MATER, V178, P777, DOI 10.1016/j.jhazmat.2010.02.008
Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60
Shen KL, 2020, WORLD J PEDIATR, V16, P232, DOI 10.1007/s12519-020-00362-4
Sun H, 2013, ENVIRON TOXICOL CHEM, V32, P174, DOI 10.1002/etc.2042
Tartaglia M, 2022, FRONT PLANT SCI, V13, DOI 10.3389/fpls.2022.852513
Tartaglia M, 2022, J HAZARD MATER, V428, DOI 10.1016/j.jhazmat.2022.128246
Tong TL, 2021, SCI TOTAL ENVIRON, V792, DOI 10.1016/j.scitotenv.2021.148486
Wang QQ, 2015, ENVIRON TOXICOL CHEM, V34, P1127, DOI 10.1002/etc.2904
Wang SM, 2015, ENVIRON SCI POLLUT R, V22, P17653, DOI 10.1007/s11356-015-4972-y
Wu YC, 2014, PROTOPLASMA, V251, P1191, DOI 10.1007/s00709-014-0626-z
Xian Y, 2015, CHEMOSPHERE, V139, P604, DOI 10.1016/j.chemosphere.2014.12.060
Xiao CY, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121488
Yang YY, 2014, SCI TOTAL ENVIRON, V470, P1184, DOI 10.1016/j.scitotenv.2013.10.102
Yuan C, 2013, J APPL ELECTROCHEM, V43, P1163, DOI 10.1007/s10800-013-0600-z
Zaborowska M, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222312753
Zazouli MA, 2014, J ENVIRON HEALTH SCI, V12, DOI 10.1186/2052-336X-12-66
NR 64
TC 5
Z9 5
U1 28
U2 38
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD DEC
PY 2022
VL 29
IS 56
BP 84366
EP 84382
DI 10.1007/s11356-022-21765-y
EA JUL 2022
PG 17
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA 6I1PI
UT WOS:000819908500007
PM 35780263
DA 2023-03-13
ER
PT J
AU Li, LT
Guo, BL
Feng, CC
Liu, HT
Lin, D
AF Li, Lantao
Guo, Binglin
Feng, Chenchen
Liu, Haitao
Lin, Di
TI Growth, physiological, and temperature characteristics in chinese
cabbage pakchoi as affected by Cd- stressed conditions and identifying
its main controlling factors using PLS model
SO BMC PLANT BIOLOGY
LA English
DT Article
DE Cadmium; Chinese cabbage pakchoi (Brassica chinensis L.); Physiological
traits; Canopy temperature; PLS model
ID CADMIUM STRESS; REACTIVE OXYGEN; TOLERANCE MECHANISMS; PHOTOSYNTHETIC
RATE; ANTIOXIDANT ENZYME; HYDROGEN-PEROXIDE; OXIDATIVE STRESS;
HEAVY-METALS; ACCUMULATION; RESPONSES
AB Background: Although hormesis induced by heavy metals is a well-known phenomenon, the involved biological mechanisms are not fully understood. Cadmium (Cd) is a prevalent heavy metal in the environment. Exposure of Cd, via intake or consumption of Cd-contaminated air or food, poses a huge threat to human health. Chinese cabbage pakchoi (Brassica chinensis L.) is widely planted and consumed as a popular vegetable in China. Therefore, studying the response of Chinese cabbage pakchoi to Cd- stressed conditions is critical to assess whether cabbage can accumulate Cd and serve as an important Cd exposure pathway to human beings. In this study, we investigated the influence of Cd stress on growth, photosynthetic physiology, antioxidant enzyme activities, nutritional quality, anatomical structure, and canopy temperature in Chinese cabbage pakchoi. A partial least squares (PLS) model was used to quantify the relationship between physical and chemical indicators with Cd accumulation in cabbage, and identify the main controlling factors. Results: Results showed that Cd stress significantly inhibited cabbage's growth and development. When Cd stress was increased, the phenotypic indicators were significantly reduced. Meanwhile, Cd stress significantly enhanced the oxidative stress response of cabbage, such as the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and the content of malondialdehyde (MDA) in leaves. Such a change tended to increase fenestrated tissues' thickness but decrease the thickness of leaf and spongy tissues. Moreover, Cd stress significantly increased soluble sugar, protein, and vitamin C contents in leaves as well as the temperature in the plant canopy. The PLS model analysis showed that the studied phenotypic and physicochemical indicators had good relationships with Cd accumulation in roots, shoots, and the whole plant of cabbage, with high coefficient of determination (R-2) values of 0.891, 0.811, and 0.845, and low relative percent deviation (RPD) values of 3.052, 2.317, and 2.557, respectively. Furthermore, through analyzing each parameter's variable importance for projection (VIP) value, the SOD activity was identified as a key factor for indicating Cd accumulation in cabbage. Meanwhile, the effects of CAT on Cd accumulation in cabbage and the canopy mean temperature were also high. Conclusion: Cd stress has significant inhibitory effects and can cause damage cabbage's growth and development, and the SOD activity may serve as a key factor to indicate Cd uptake and accumulation in cabbage.
C1 [Li, Lantao; Liu, Haitao] Henan Agr Univ, Coll Resources & Environm, Zhengzhou 450002, Peoples R China.
[Guo, Binglin; Feng, Chenchen; Lin, Di] Henan Agr Univ, Coll Forestry, 63 Nongye Rd, Zhengzhou 450002, Peoples R China.
C3 Henan Agricultural University; Henan Agricultural University
RP Lin, D (corresponding author), Henan Agr Univ, Coll Forestry, 63 Nongye Rd, Zhengzhou 450002, Peoples R China.
EM lindi2018@henau.edu.cn
FU National Natural Science Foundation of China; Key Scientific and
Technological Project of Henan Province [41907323]; special fund for
young talents in Henan Agricultural University [222102320078];
[30500726]; [30500427]
FX This research was funded by the National Natural Science Foundation of
China (41907323), the Key Scientific and Technological Project of Henan
Province (222102320078), and the special fund for young talents in Henan
Agricultural University (30500726 and 30500427).
CR AbdElgawad H, 2020, ENVIRON POLLUT, V258, DOI 10.1016/j.envpol.2019.113705
Ali B, 2014, BIOL PLANTARUM, V58, P131, DOI 10.1007/s10535-013-0358-5
[安婷婷 An Tingting], 2021, [植物学报, Chinese Bulletin of Botany], V56, P347
Anjum SA, 2016, CLEAN-SOIL AIR WATER, V44, P29, DOI 10.1002/clen.201400905
Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701
Belimov AA, 2003, EUPHYTICA, V131, P25, DOI 10.1023/A:1023048408148
Brunel-Muguet S, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00213
Buckley TN, 2015, PLANT PHYSIOL, V168, P1616, DOI 10.1104/pp.15.00731
Chaney RL, 2004, BIOMETALS, V17, P549, DOI 10.1023/B:BIOM.0000045737.85738.cf
Chao YY, 2010, PLANT SOIL, V336, P39, DOI 10.1007/s11104-010-0438-7
Cho UH, 2005, PLANT SCI, V168, P113, DOI 10.1016/j.plantsci.2004.07.021
Clemens S, 2013, TRENDS PLANT SCI, V18, P92, DOI 10.1016/j.tplants.2012.08.003
DalCorso G, 2008, J INTEGR PLANT BIOL, V50, P1268, DOI 10.1111/j.1744-7909.2008.00737.x
Dutta S, 2018, PLANT SIGNAL BEHAV, V13, DOI 10.1080/15592324.2018.1460048
Ekmekci Y, 2008, J PLANT PHYSIOL, V165, P600, DOI 10.1016/j.jplph.2007.01.017
El Rasafi T, 2022, CRIT REV ENV SCI TEC, V52, P675, DOI 10.1080/10643389.2020.1835435
Fahad S, 2015, ENVIRON SCI POLLUT R, V22, P12439, DOI 10.1007/s11356-015-4518-3
Farooq H, 2015, TURK J AGRIC FOR, V39, P272, DOI 10.3906/tar-1405-54
Fernandez R, 2014, PLANT PHYSIOL BIOCH, V78, P63, DOI 10.1016/j.plaphy.2014.02.021
Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016
Goncalves JF, 2009, PLANT PHYSIOL BIOCH, V47, P814, DOI 10.1016/j.plaphy.2009.04.002
Guo JJ, 2019, ECOTOX ENVIRON SAFE, V172, P380, DOI 10.1016/j.ecoenv.2019.01.069
Gusman GS, 2013, PLANT PHYSIOL BIOCH, V71, P307, DOI 10.1016/j.plaphy.2013.08.006
Hermida-Carrera C, 2016, PLANT PHYSIOL, V171, P2549, DOI 10.1104/pp.16.01846
Hetherington AM, 2003, NATURE, V424, P901, DOI 10.1038/nature01843
Jia YueHui, 2018, Journal of Agro-Environment Science, V37, P1610
Jullien A, 2011, ANN BOT-LONDON, V107, P765, DOI 10.1093/aob/mcq205
Kaya C, 2020, PHYSIOL PLANTARUM, V168, P345, DOI 10.1111/ppl.13012
Korner C, 2021, ALPINE PLANT LIFE FU, P247
Kushwaha A, 2016, ENVIRON REV, V24, P39, DOI 10.1139/er-2015-0010
Li LT, 2022, FIELD CROP RES, V281, DOI 10.1016/j.fcr.2022.108490
Li LT, 2018, FIELD CROP RES, V215, P173, DOI 10.1016/j.fcr.2017.10.018
Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002
Mobin M, 2007, J PLANT PHYSIOL, V164, P601, DOI 10.1016/j.jplph.2006.03.003
Murshed R, 2013, PHYSIOL MOL BIOL PLA, V19, P363, DOI 10.1007/s12298-013-0173-7
NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867
Parihar P, 2015, ENVIRON SCI POLLUT R, V22, P4056, DOI 10.1007/s11356-014-3739-1
Pulford ID, 2003, ENVIRON INT, V29, P529, DOI 10.1016/S0160-4120(02)00152-6
Qin XB, 2014, ENVIRON SCI POLLUT R, V21, P11094, DOI 10.1007/s11356-014-3015-4
Rahat Nazar, 2012, American Journal of Plant Sciences, V3, P1476
Rahoui S, 2010, J HAZARD MATER, V178, P1128, DOI 10.1016/j.jhazmat.2010.01.115
Ramani H. R., 2017, International Journal of Plant Physiology and Biochemistry, V9, P1, DOI 10.5897/ijppb2015.0240
Rizwan M, 2017, CHEMOSPHERE, V182, P90, DOI 10.1016/j.chemosphere.2017.05.013
Rizwan M, 2016, ENVIRON SCI POLLUT R, V23, P17859, DOI 10.1007/s11356-016-6436-4
Rizwan M, 2016, ECOTOX ENVIRON SAFE, V130, P43, DOI 10.1016/j.ecoenv.2016.04.001
Romero-Puertas MC, 2019, ENVIRON EXP BOT, V161, P107, DOI 10.1016/j.envexpbot.2018.10.012
Romero-Puertas MC, 1999, FREE RADICAL RES, V31, pS25, DOI 10.1080/10715769900301281
Romero-Puertas MC, 2004, PLANT CELL ENVIRON, V27, P1122, DOI 10.1111/j.1365-3040.2004.01217.x
Sagardoy R, 2010, NEW PHYTOL, V187, P145, DOI 10.1111/j.1469-8137.2010.03241.x
Sandalio LM, 2001, J EXP BOT, V52, P2115, DOI 10.1093/jexbot/52.364.2115
Seo I, 2021, HORTIC ENVIRON BIOTE, V62, P737, DOI 10.1007/s13580-021-00378-3
Sergiev I., 1997, P B ACAD SCI, V51, P121, DOI DOI 10.1046/J.1365-3040.2001.00778.X
Seshadri B, 2016, GEODERMA, V270, P43, DOI 10.1016/j.geoderma.2015.11.029
Shahid MA, 2019, ECOTOX ENVIRON SAFE, V180, P588, DOI 10.1016/j.ecoenv.2019.05.037
Shi GR, 2010, PLANT GROWTH REGUL, V61, P45, DOI 10.1007/s10725-010-9447-z
Shi Y, 2021, ENVIRON SCI POLLUT R, V28, P35751, DOI 10.1007/s11356-021-12883-0
Sim H, 2022, SCI HORTIC-AMSTERDAM, V304, DOI 10.1016/j.scienta.2022.111311
Siuksta R, 2019, ENVIRON SCI POLLUT R, V26, P44, DOI 10.1007/s11356-018-3224-3
Soudek P, 2014, CHEMOSPHERE, V104, P15, DOI 10.1016/j.chemosphere.2013.09.079
Tai ZL, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14080852
Vaculik M, 2015, ECOTOX ENVIRON SAFE, V120, P66, DOI 10.1016/j.ecoenv.2015.05.026
Waalkes MP, 2003, MUTAT RES-FUND MOL M, V533, P107, DOI 10.1016/j.mrfmmm.2003.07.011
Wang DH, 2021, J AGRO ENV SCI, V37, P1610
Wang YW, 2014, BIOMETALS, V27, P389, DOI 10.1007/s10534-014-9720-0
Wang ZF, 2017, ECOTOX ENVIRON SAFE, V135, P75, DOI 10.1016/j.ecoenv.2016.09.013
[魏婧 Wei Jing], 2020, [植物生理学报, Plant Physiology Journal], V56, P2571
Wei SH, 2005, CHINESE SCI BULL, V50, P33, DOI 10.1360/982004-292
Wei X, 2008, RUSS J ECOL+, V39, P475, DOI 10.1134/S1067413608070035
Wi SH, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10121846
Yamori W, 2006, PLANT CELL ENVIRON, V29, P1659, DOI 10.1111/j.1365-3040.2006.01550.x
Zhang Di, 2015, Chinese Journal of Applied and Environmental Biology, V21, P188, DOI 10.3724/SP.J.1145.2014.09027
Zhao HY, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-89322-0
Zhou CZ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223609
Zhou J, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.115045
Zhou M, 2019, FUNCT INTEGR GENOMIC, V19, P281, DOI 10.1007/s10142-018-0646-4
Zhou WB, 2005, PLANT SCI, V169, P737, DOI 10.1016/j.plantsci.2005.05.030
Zhou Z, 2022, ENVIRON SCI POLLUT R, V29, P21739, DOI 10.1007/s11356-021-17371-z
Zhu GX, 2018, ECOTOX ENVIRON SAFE, V158, P300, DOI 10.1016/j.ecoenv.2018.04.045
NR 78
TC 0
Z9 0
U1 9
U2 9
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1471-2229
J9 BMC PLANT BIOL
JI BMC Plant Biol.
PD DEC 7
PY 2022
VL 22
IS 1
AR 571
DI 10.1186/s12870-022-03966-2
PG 15
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA 6W2SR
UT WOS:000895583000001
PM 36476235
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Bejarano, AC
Chandler, GT
He, LJ
Coull, BC
AF Bejarano, Adriana C.
Chandler, G. Thomas
He, Lijian
Coull, Bruce C.
TI Individual to population level effects of South Louisiana crude oil
water accommodated hydrocarbon fraction (WAF) on a marine meiobenthic
copepod
SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY
LA English
DT Article
DE chronic exposure; crude oil WAF; life-cycle toxicity test; meiofauna
ID TOXICITY; SEDIMENTS; CHLORPYRIFOS; STIMULATION; EXPRESSION; FIPRONIL;
HORMESIS
AB Acute toxicities of crude oil and crude oil water accommodated hydrocarbon fraction (WAF) are relatively well documented, but data on the biological effects of chronic exposures to WAF on species and populations are scarce. South Louisiana Sweet crude oil was used to assess the effects of crude oil WAF on the copepod Amphiascus tenuiremis' survival, development and reproduction. Effects were evaluated using a 96-well microplate full life-cycle toxicity test, a test that allows tracking of individuals from the nauplius stage to sexual maturation and reproduction. Briefly, 24-h hatched nauplii were followed to adulthood (n(i) = >= 120 nauplii/treatment) in individual glass-coated microplate wells containing 200 mu L of seawater solution. Treatments consisted of 10%, 30%, 50% and 100% Louisiana WAF, with seawater used as control. Nauplii were monitored through development to adulthood, and sexually mature virgin copepods were mated pairwise in wells containing original rearing treatments. Nauplius-to-copepodite survival was reduced by 57% in exposures to 100% WAF, relative to controls (88 +/- 3%), and copepodite-to-adult survival was reduced by 18% in the 50% WAF, relative to controls (98 3%). Analysis of development curves showed that nauplii in the 10% WAF developed significantly faster into copepodites, while nauplii in the 50% WAF developed significantly slower than controls. Although the naupliar developmental rate in the 100% WAF was not significantly different from the control, these nauplii showed an average 1.4 day delay in development into copepodites. Similarly, copepodite development into mature females and males was significantly enhanced by 1.2 to 1.8 days and delayed by 1.9 to 2.2 days (p < 0.05) in the 10% and 50% WAFs, respectively, compared to controls. Although the copepodite developmental rate in the 100% WAF was not significantly different from the control, these copepodites still showed an average 1.5 and 2.1 day delay in development into females and males, respectively. Analysis of reproductive endpoints showed that fertility was the only endpoint negatively affected by WAFs; reproductive failure increased by 30% and 41% in exposures to 30% and 100% WAF, respectively, compared to controls (3.33 +/- 4.71%). Leslie matrix population projections based on empirical microplate data indicated lower production rates through three generations of exposure to WAFs. Furthermore, a comparison between NIST and Louisiana crude oil WAFs using the same life-cycle approach indicated a greater chronic toxicity for the Louisiana WAF and an overall developmental delay in exposures to high WAFs (50% and 100% WAFs) from both crude oil types. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ S Carolina, Arnold Sch Publ Hlth, Dept Environm Hlth Sci, Columbia, SC 29208 USA.
Univ S Carolina, Dept Chem, Columbia, SC 29208 USA.
Univ S Carolina, Sch Environm, Columbia, SC 29208 USA.
C3 University of South Carolina System; University of South Carolina
Columbia; University of South Carolina System; University of South
Carolina Columbia; University of South Carolina System; University of
South Carolina Columbia
RP Bejarano, AC (corresponding author), Univ S Carolina, Arnold Sch Publ Hlth, Dept Environm Hlth Sci, Columbia, SC 29208 USA.
EM ACBejara@mailbox.sc.edu
OI bejarano, adriana/0000-0003-2818-4115
CR Ak├a┬akaya H.R., 1999, APPL POPULATION ECOL
ANDERSON JW, 1974, MAR BIOL, V27, P75, DOI 10.1007/BF00394763
[Anonymous], 1997, STAT ENV BIOL TOXICO
*ASTM INT, 2004, STANDARD TEST METHOD, P1, DOI DOI 10.1520/D2872
Bejarano AC, 2005, J EXP MAR BIOL ECOL, V321, P43, DOI 10.1016/j.jembe.2005.01.003
Bejarano AC, 2004, MAR POLLUT BULL, V49, P23, DOI 10.1016/j.marpolbul.2004.01.004
Bejarano AC, 2003, ENVIRON TOXICOL CHEM, V22, P3009, DOI 10.1897/03-40
BEJARANO AC, IN PRESS ENV TOXICOL
BONSDORFF E, 1990, MAR POLLUT BULL, V21, P355, DOI 10.1016/0025-326X(90)90799-E
Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874
Carman KR, 1997, LIMNOL OCEANOGR, V42, P561, DOI 10.4319/lo.1997.42.3.0561
Caswell Hal, 2001, pi
Chandler G. Thomas, 1996, P23
Chandler GT, 2004, ENVIRON SCI TECHNOL, V38, P6407, DOI 10.1021/es049654o
COULL BC, 1992, OCEANOGR MAR BIOL, V30, P191
Danovaro R, 2002, MAR ECOL PROG SER, V234, P95, DOI 10.3354/meps234095
EADSFORTH CV, 1997, OP9747002 THORNT SHE
ELMGREN R, 1983, MAR BIOL, V73, P51, DOI 10.1007/BF00396285
ESCARAVAGE V, 1989, TOPICS MARINE BIOL, V53, P551
Giere O., 2019, PERSPECTIVES MEIOBEN, P19
Green AS, 1996, ENVIRON TOXICOL CHEM, V15, P1182, DOI [10.1002/etc.5620150725, 10.1897/1551-5028(1996)015<1182:LSSTOS>2.3.CO;2]
GYLLENBERG G, 1986, ANN ZOOL FENN, V23, P395
HICKS GRF, 1983, OCEANOGR MAR BIOL, V21, P67
Lang K., 1948, P1
LINDEN O, 1976, Ambio, V5, P36
MOTHERSHEAD RF, 1992, MAR ENVIRON RES, V33, P145, DOI 10.1016/0141-1136(92)90138-C
NELSON AL, 1989, MAR ECOL PROG SER, V53, P51, DOI 10.3354/meps053051
*NRC, 1985, OIL SEA INP FAT EFF
Oberdorster E, 1999, TOXICOL APPL PHARM, V160, P101, DOI 10.1006/taap.1999.8745
Platt H.M., 1981, P207
Snyder MJ, 1998, ARCH BIOCHEM BIOPHYS, V358, P271, DOI 10.1006/abbi.1998.0878
Stark JS, 2003, J EXP MAR BIOL ECOL, V283, P21, DOI 10.1016/S0022-0981(02)00449-5
STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3
TATEM HE, 1978, ESTUAR COAST MAR SCI, V6, P365, DOI 10.1016/0302-3524(78)90128-7
USTACH JF, 1979, ESTUARIES, V2, P273, DOI 10.2307/1351575
NR 35
TC 48
Z9 57
U1 0
U2 17
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0022-0981
EI 1879-1697
J9 J EXP MAR BIOL ECOL
JI J. Exp. Mar. Biol. Ecol.
PD MAY 2
PY 2006
VL 332
IS 1
BP 49
EP 59
DI 10.1016/j.jembe.2005.11.006
PG 11
WC Ecology; Marine & Freshwater Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA 041VK
UT WOS:000237484200005
DA 2023-03-13
ER
PT J
AU Menendez, JA
Joven, J
Aragones, G
Barrajon-Catalan, E
Beltran-Debon, R
Borras-Linares, I
Camps, J
Corominas-Faja, B
Cufi, S
Fernandez-Arroyo, S
Garcia-Heredia, A
Hernandez-Aguilera, A
Herranz-Lopez, M
Jimenez-Sanchez, C
Lopez-Bonet, E
Lozano-Sanchez, J
Luciano-Mateo, F
Martin-Castillo, B
Martin-Paredero, V
Perez-Sanchez, A
Oliveras-Ferraros, C
Riera-Borrull, M
Rodriguez-Gallego, E
Quirantes-Pine, R
Rull, A
Tomas-Menor, L
Vazquez-Martin, A
Alonso-Villaverde, C
Micol, V
Segura-Carretero, A
AF Menendez, Javier A.
Joven, Jorge
Aragones, Gerard
Barrajon-Catalan, Enrique
Beltran-Debon, Raul
Borras-Linares, Isabel
Camps, Jordi
Corominas-Faja, Bruna
Cufi, Silvia
Fernandez-Arroyo, Salvador
Garcia-Heredia, Anabel
Hernandez-Aguilera, Anna
Herranz-Lopez, Maria
Jimenez-Sanchez, Cecilia
Lopez-Bonet, Eugeni
Lozano-Sanchez, Jesus
Luciano-Mateo, Fedra
Martin-Castillo, Begona
Martin-Paredero, Vicente
Perez-Sanchez, Almudena
Oliveras-Ferraros, Cristina
Riera-Borrull, Marta
Rodriguez-Gallego, Esther
Quirantes-Pine, Rosa
Rull, Anna
Tomas-Menor, Laura
Vazquez-Martin, Alejandro
Alonso-Villaverde, Carlos
Micol, Vicente
Segura-Carretero, Antonio
TI Xenohormetic and anti-aging activity of secoiridoid polyphenols present
in extra virgin olive oil A new family of gerosuppressant agents
SO CELL CYCLE
LA English
DT Article
DE hormesis; xenohormesis; olive oil; cancer; aging; mTOR; AMPK;
resveratrol; gerogenes; gerosuppression
ID ACTIVATED PROTEIN-KINASE; LIFE-SPAN EXTENSION; CANCER-ASSOCIATED
FIBROBLASTS; RESVERATROL-INDUCED APOPTOSIS; ENDOPLASMIC-RETICULUM
STRESS; APIGENIN INDUCES APOPTOSIS; INDUCED INSULIN-RESISTANCE; EGCG
INHIBITS ACTIVATION; OXIDATIVE DAMAGE THEORY; CELL-CYCLE ARREST
AB Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e. g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that: (1) The anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/ cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated beta-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.
C1 [Menendez, Javier A.; Corominas-Faja, Bruna; Cufi, Silvia; Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro] Catalan Inst Oncol, Translat Res Lab, Metab & Canc Grp, Girona, Spain.
[Menendez, Javier A.; Corominas-Faja, Bruna; Cufi, Silvia; Lopez-Bonet, Eugeni; Martin-Castillo, Begona; Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro] Girona Biomed Res Inst, Girona, Spain.
[Joven, Jorge; Aragones, Gerard; Beltran-Debon, Raul; Camps, Jordi; Garcia-Heredia, Anabel; Hernandez-Aguilera, Anna; Luciano-Mateo, Fedra; Martin-Paredero, Vicente; Riera-Borrull, Marta; Rodriguez-Gallego, Esther; Rull, Anna; Alonso-Villaverde, Carlos] Univ Rovira & Virgili, IISPV, Unitat Recerca Biomed URB CRB, E-43201 Reus, Spain.
[Barrajon-Catalan, Enrique; Herranz-Lopez, Maria; Perez-Sanchez, Almudena; Tomas-Menor, Laura; Micol, Vicente] Miguel Hernandez Univ, IBMC, Elche, Spain.
[Borras-Linares, Isabel; Fernandez-Arroyo, Salvador; Jimenez-Sanchez, Cecilia; Lozano-Sanchez, Jesus; Quirantes-Pine, Rosa; Segura-Carretero, Antonio] Univ Granada, Dept Analyt Chem, Fac Sci, E-18071 Granada, Spain.
[Borras-Linares, Isabel; Fernandez-Arroyo, Salvador; Jimenez-Sanchez, Cecilia; Lozano-Sanchez, Jesus; Quirantes-Pine, Rosa; Segura-Carretero, Antonio] Res & Dev Funct Food Ctr CIDAF, Granada, Spain.
[Lopez-Bonet, Eugeni] Dr Josep Trueta Univ Hosp, Dept Anat Pathol, Girona, Spain.
[Martin-Castillo, Begona] Catalan Inst Oncol, Clin Res Unit, Girona, Spain.
C3 Catalan Institute of Oncology; Universitat de Girona; Girona University
Hospital Dr. Josep Trueta; Institut d'Investigacio Biomedica de Girona
(IDIBGI); Universitat Rovira i Virgili; Institut d'Investigacio
Sanitaria Pere Virgili (IISPV); Universidad Miguel Hernandez de Elche;
University of Granada; Universitat de Girona; Girona University Hospital
Dr. Josep Trueta; Catalan Institute of Oncology
RP Menendez, JA (corresponding author), Catalan Inst Oncol, Translat Res Lab, Metab & Canc Grp, Girona, Spain.
EM jmenendez@idibgi.org; jjoven@grupsagessa.com; ansegura@ugr.es
RI Joven, Jorge/B-3360-2016; Barrajón-Catalán, Enrique/C-2884-2013;
Garcia-Heredia, Anabel/ABC-3161-2021; Fernández-Arroyo,
Salvador/M-6955-2015; Aragonès, Gerard/AAJ-9150-2021; Carretero, Antonio
Segura/B-6867-2014; Aragones, Gerard/F-9673-2016; MENENDEZ, JAVIER
A/C-6148-2016; Rull, Anna/A-9438-2017; Rodríguez-Gallego,
Esther/B-6581-2016; Herranz-Lopez, Maria/AAB-1933-2020; Camps,
Jordi/AAG-3080-2020; Beltrán-Debón, Raúl/A-9287-2014; Micol,
Vicente/K-6841-2014; Rodríguez-Gallego, Esther/AAE-5444-2021; Borrás,
Isabel/K-9154-2014
OI Joven, Jorge/0000-0003-2749-4541; Barrajón-Catalán,
Enrique/0000-0001-8113-0795; Fernández-Arroyo,
Salvador/0000-0003-0147-1712; Aragonès, Gerard/0000-0001-8657-5726;
Carretero, Antonio Segura/0000-0002-5564-5338; Aragones,
Gerard/0000-0001-8657-5726; MENENDEZ, JAVIER A/0000-0001-8733-4561;
Rull, Anna/0000-0002-8907-7754; Rodríguez-Gallego,
Esther/0000-0002-6363-2510; Herranz-Lopez, Maria/0000-0002-1819-7978;
Camps, Jordi/0000-0002-3165-3640; Beltrán-Debón,
Raúl/0000-0001-9691-1906; Micol, Vicente/0000-0001-8089-0696;
Rodríguez-Gallego, Esther/0000-0002-6363-2510; Borrás,
Isabel/0000-0002-5227-9002; Garcia-Heredia, Anabel/0000-0003-2876-1779;
Alonso-Villaverde, Carlos/0000-0001-8278-8388; Luciano-Mateo,
Fedra/0000-0002-8736-2455; Lopez-Bonet, Eugeni/0000-0002-9199-0702;
Martin-Castillo, Begona/0000-0001-8344-8174; Riera-Borrull,
Marta/0000-0003-4670-7290; Cufi, Silvia/0000-0002-2476-748X; Martin
Paredero, Vicente/0000-0002-2740-5847; Hernandez-Aguilera,
Anna/0000-0003-0954-295X
FU Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo, Fondo de
Investigacion Sanitaria (FIS), Spain) [CP05-00090, PI06-0778,
RD06-0020-0028]; Fundacion Cientifica de la Asociacion Espanola Contra
el Cancer (AECC, Spain); Ministerio de Ciencia e Innovacion (Plan
Nacional de I+D+ I, MICINN, Spain) [SAF2009-11579]; Ministerio de
Sanidad y Consumo, Fondo de Investigacion Sanitaria -FIS-, Spain
[CD08/00283]; (Formacion de Personal Investigador, FPI) from the
Ministerio de Ciencia e Innovacion (MICINN, Spain)
FX This work was financially supported by the Instituto de Salud Carlos III
(Ministerio de Sanidad y Consumo, Fondo de Investigacion Sanitaria
(FIS), Spain, grants CP05-00090, PI06-0778 and RD06-0020-0028), the
Fundacion Cientifica de la Asociacion Espanola Contra el Cancer (AECC,
Spain) and the Ministerio de Ciencia e Innovacion (SAF2009-11579, Plan
Nacional de I+D+ I, MICINN, Spain). Alejandro Vazquez-Martin received
the Sara Borrell post-doctoral contract (CD08/00283, Ministerio de
Sanidad y Consumo, Fondo de Investigacion Sanitaria -FIS-, Spain).
Silvia Cufi received a research fellowship (Formacion de Personal
Investigador, FPI) from the Ministerio de Ciencia e Innovacion (MICINN,
Spain).
CR Agarwal B, 2011, ANN NY ACAD SCI, V1215, P138, DOI 10.1111/j.1749-6632.2010.05850.x
Alkhalaf M, 2007, PHARMACOLOGY, V80, P134, DOI 10.1159/000103253
Amat R, 2007, J BIOL CHEM, V282, P34066, DOI 10.1074/jbc.M707114200
Rubiolo JA, 2008, EUR J PHARMACOL, V591, P66, DOI 10.1016/j.ejphar.2008.06.067
Anisimov VN, 2011, CELL CYCLE, V10, P4230, DOI 10.4161/cc.10.24.18486
Anisimov VN, 2010, AGING-US, V2, P760, DOI 10.18632/aging.100230
Antosh M, 2011, AGING-US, V3, P576, DOI 10.18632/aging.100342
Armour SM, 2009, AGING-US, V1, P515, DOI 10.18632/aging.100056
Athar M, 2009, ARCH BIOCHEM BIOPHYS, V486, P95, DOI 10.1016/j.abb.2009.01.018
Baek SJ, 2002, CARCINOGENESIS, V23, P425, DOI 10.1093/carcin/23.3.425
Baidez AG, 2007, J AGR FOOD CHEM, V55, P3373, DOI 10.1021/jf063166d
Balliet RM, 2011, CELL CYCLE, V10, P4065, DOI 10.4161/cc.10.23.18254
Banerjee KK, 2012, AGING-US, V4, P206, DOI 10.18632/aging.100435
Barger JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002264
Bass TM, 2007, MECH AGEING DEV, V128, P546, DOI 10.1016/j.mad.2007.07.007
Bauer MA, 2012, CELL CYCLE, V12
Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354
Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060
Bay BH, 2006, EXP BIOL MED, V231, P1516, DOI 10.1177/153537020623100910
Bayram B, 2012, REJUV RES, V15, P71, DOI 10.1089/rej.2011.1245
Beauchamp GK, 2005, NATURE, V437, P45, DOI 10.1038/437045a
Benavente-Garcia O, 2008, J AGR FOOD CHEM, V56, P6185, DOI 10.1021/jf8006568
Bendini A, 2007, MOLECULES, V12, P1679, DOI 10.3390/12081679
Bennetzen MV, 2012, CELL CYCLE, V11, P1827, DOI 10.4161/cc.20233
Bishayee A, 2010, CANCER PREV RES, V3, P753, DOI 10.1158/1940-6207.CAPR-09-0171
Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965
Blagosklonny MV, 2012, AM J PATHOL, V181, P1142, DOI 10.1016/j.ajpath.2012.06.024
Blagosklonny MV, 2012, AGING-US, V4, P547, DOI 10.18632/aging.100479
Blagosklonny MV, 2012, AGING-US, V4, P350, DOI 10.18632/aging.100461
Blagosklonny MV, 2012, AGING-US, V4, P159, DOI 10.18632/aging.100443
Blagosklonny MV, 2011, ONCOTARGET, V2, P1352
Blagosklonny MV, 2011, AGING-US, V3, P1130, DOI 10.18632/aging.100422
Blagosklonny MV, 2011, CELL CYCLE, V10, P4217, DOI 10.4161/cc.10.24.18595
Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411
Blagosklonny MV, 2010, CELL CYCLE, V9, P3151, DOI 10.4161/cc.9.16.13120
Blagosklonny MV, 2009, AGING-US, V1, P511, DOI 10.18632/aging.100059
Boissy P, 2005, CANCER RES, V65, P9943, DOI 10.1158/0008-5472.CAN-05-0651
Bolasco G, 2012, AGING-US, V4, P402, DOI 10.18632/aging.100464
Borras C, 2011, AGING-US, V3, P262, DOI 10.18632/aging.100279
Brocchieri L, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-19
Brooks CL, 2009, AGING-US, V1, P278, DOI 10.18632/aging.100031
Buckland G, 2011, BRIT J NUTR, V106, P1581, DOI 10.1017/S0007114511002078
Burks TN, 2011, AGING-US, V3, P1142, DOI 10.18632/aging.100409
Cabreiro F, 2011, FREE RADICAL BIO MED, V51, P1575, DOI 10.1016/j.freeradbiomed.2011.07.020
Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7
Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973
Calabrese EJ, 2012, EXP GERONTOL
Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002
Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007
Calvanese V, 2011, AGING-US, V3, P162, DOI 10.18632/aging.100272
Canto C, 2011, AGING-US, V3, P543, DOI 10.18632/aging.100326
Canuelo A, 2012, MECH AGEING DEV, V133, P563, DOI 10.1016/j.mad.2012.07.004
Carito V, 2012, CELL CYCLE, V11, P3403, DOI 10.4161/cc.21701
Carrasco-Pancorbo A, 2005, J SEP SCI, V28, P837, DOI 10.1002/jssc.200500032
Chan CH, 2010, THESCIENTIFICWORLDJO, V10, P1001, DOI 10.1100/tsw.2010.89
Chen AP, 1999, J BIOL CHEM, V274, P35505, DOI 10.1074/jbc.274.50.35505
Chen SF, 2012, J NUTR BIOCHEM, V23, P1100, DOI 10.1016/j.jnutbio.2011.06.003
Cheng AS, 2012, J AGR FOOD CHEM, V60, P9180, DOI 10.1021/jf302831d
Chiang CT, 2007, MOL CANCER THER, V6, P2127, DOI 10.1158/1535-7163.MCT-07-0107
Chinta SJ, 2009, J MOL NEUROSCI, V39, P157, DOI 10.1007/s12031-008-9170-7
Chondrogianni N, 2010, EXP GERONTOL, V45, P763, DOI 10.1016/j.exger.2010.07.001
Chung JH, 2012, AGING-US, V4, P144, DOI 10.18632/aging.100442
Chung SW, 2010, ARCH BIOCHEM BIOPHYS, V501, P79, DOI 10.1016/j.abb.2010.05.003
Cicerale S, 2009, CRIT REV FOOD SCI, V49, P218, DOI 10.1080/10408390701856223
Colomer R, 2008, CLIN TRANSL ONCOL, V10, P30, DOI 10.1007/s12094-008-0151-7
Colomer Ramon, 2006, Clin Transl Oncol, V8, P15, DOI 10.1007/s12094-006-0090-0
Comas M, 2012, AGING-US, V4, P715, DOI 10.18632/aging.100496
Corominas-Faja B, 2012, AGING-US, V4, P480, DOI 10.18632/aging.100472
Crozier A, 2009, NAT PROD REP, V26, P1001, DOI 10.1039/b802662a
Cufi S, 2012, CELL CYCLE, V11, P1235, DOI 10.4161/cc.11.6.19665
Das Samarjit, 2007, Inflammation & Allergy Drug Targets, V6, P168, DOI 10.2174/187152807781696464
Daugaard M, 2007, FEBS LETT, V581, P3702, DOI [10.1016/j.febslet.2007.05.039, 10.1016/j.febsiet.2007.05.039]
de la Lastra CA, 2005, MOL NUTR FOOD RES, V49, P405
Debnath J, 2005, AUTOPHAGY, V1, P66, DOI 10.4161/auto.1.2.1738
Del Barco S, 2011, ONCOTARGET, V2, P896, DOI 10.18632/oncotarget.387
Demidenko ZN, 2009, CELL CYCLE, V8, P1901, DOI 10.4161/cc.8.12.8810
Do GM, 2012, MOL NUTR FOOD RES, V56, P1282, DOI 10.1002/mnfr.201200067
Dominguez LJ, 2020, ENCYCLOPEDIA OF BIOMEDICAL GERONTOLOGY, VOL 2, P400, DOI [10.1097/00008469-200410000-00014, 10.1016/B978-0-12-801238-3.62178-5]
Donnelly LE, 2004, AM J PHYSIOL-LUNG C, V287, pL774, DOI 10.1152/ajplung.00110.2004
Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808
Eckschlager T, 2009, CURR PROTEIN PEPT SC, V10, P360, DOI 10.2174/138920309788922243
Edman U, 2009, AGING CELL, V8, P331, DOI 10.1111/j.1474-9726.2009.00480.x
Eirew P, 2012, STEM CELLS, V30, P344, DOI 10.1002/stem.1001
Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975
Endo S, 2007, MOL PHARMACOL, V72, P1337, DOI 10.1124/mol.107.039164
Erkekol FO, 2006, ANN ALLERG ASTHMA IM, V97, P370, DOI 10.1016/S1081-1206(10)60803-4
Escrich E, 2006, Clin Transl Oncol, V8, P868, DOI 10.1007/s12094-006-0150-5
Escrich E, 2007, MOL NUTR FOOD RES, V51, P1279, DOI 10.1002/mnfr.200700213
EVERSE J, 1973, ADV ENZYMOL RAMB, V37, P61
Fantin VR, 2006, CANCER CELL, V9, P425, DOI 10.1016/j.ccr.2006.04.023
Faubert B, 2012, CELL METAB IN PRESS
Feng HL, 2001, FERTIL STERIL, V76, P1136, DOI 10.1016/S0015-0282(01)02892-8
Frankel EN, 2011, J AGR FOOD CHEM, V59, P785, DOI 10.1021/jf103813t
Froy O, 2010, AGING-US, V2, P7, DOI 10.18632/aging.100116
Fu MF, 2006, MOL CELL BIOL, V26, P8122, DOI 10.1128/MCB.00289-06
Galli C, 1999, LIPIDS, V34, pS23, DOI [10.1007/BF02562224, 10.1007/s11745-999-333-4]
Garcia-Villalba R, 2012, J CHROMATOGR B, V898, P69, DOI 10.1016/j.jchromb.2012.04.021
Garcia-Villalba R, 2010, J PHARMACEUT BIOMED, V51, P416, DOI 10.1016/j.jpba.2009.06.021
Garcia-Villalba R, 2009, ELECTROPHORESIS, V30, P2688, DOI 10.1002/elps.200800807
Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595
Ginestier C, 2007, CELL STEM CELL, V1, P555, DOI 10.1016/j.stem.2007.08.014
Gosslau A, 2008, EUR J PHARMACOL, V587, P25, DOI 10.1016/j.ejphar.2008.03.027
Govin J, 2006, J BIOL CHEM, V281, P37888, DOI 10.1074/jbc.M608147200
Guachalla LM, 2010, CELL CYCLE, V9, P4058, DOI 10.4161/cc.9.20.13577
Guido C, 2012, ONCOTARGET, V3, P798, DOI 10.18632/oncotarget.574
Guido C, 2012, CELL CYCLE, V11, P3019, DOI 10.4161/cc.21384
Ha CW, 2011, AGING-US, V3, P319, DOI 10.18632/aging.100299
Halperin-Sheinfeld M, 2012, AGING-US, V4, P436, DOI 10.18632/aging.100468
Hao JJ, 2010, J NUTR BIOCHEM, V21, P634, DOI 10.1016/j.jnutbio.2009.03.012
Hardie DG, 2012, CHEM BIOL, V19, P1222, DOI 10.1016/j.chembiol.2012.08.019
Hardie DG, 2012, NAT REV MOL CELL BIO, V13, P251, DOI 10.1038/nrm3311
Hardie DG, 2011, AM J CLIN NUTR, V93, p891S, DOI 10.3945/ajcn.110.001925
Hawley SA, 2012, SCIENCE, V336, P918, DOI 10.1126/science.1215327
Hayes DP, 2011, MED HYPOTHESES, V77, P765, DOI 10.1016/j.mehy.2011.07.033
Haynes CM, 2010, J CELL SCI, V123, P3849, DOI 10.1242/jcs.075119
He XQ, 2012, J PHARMACOL EXP THER, V342, P81, DOI 10.1124/jpet.112.194142
Hedner T, 1998, CLIN RHEUMATOL, V17, P17, DOI 10.1007/BF01450953
Heiden MGV, 2009, SCIENCE, V324, P1029, DOI 10.1126/science.1160809
Heiss EH, 2007, J BIOL CHEM, V282, P26759, DOI 10.1074/jbc.M703229200
Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008
Herranz D, 2010, NAT REV CANCER, V10, P819, DOI 10.1038/nrc2962
Herranz D, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1001
Herranz D, 2010, AGING-US, V2, P315, DOI 10.18632/aging.100156
Hershko DD, 2008, CANCER-AM CANCER SOC, V112, P1415, DOI 10.1002/cncr.23317
Hirschey MD, 2011, AGING-US, V3, P635, DOI 10.18632/aging.100339
Hofseth LJ, 2010, AGING-US, V2, P183, DOI 10.18632/aging.100143
Hooper PL, 2010, CELL STRESS CHAPERON, V15, P761, DOI 10.1007/s12192-010-0206-x
Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019
Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960
Hsu CL, 2008, MOL NUTR FOOD RES, V52, P624, DOI 10.1002/mnfr.200890019
Hsu JD, 2011, J AGR FOOD CHEM, V59, P1996, DOI 10.1021/jf103656v
Huang CS, 1999, CARCINOGENESIS, V20, P237, DOI 10.1093/carcin/20.2.237
Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211
Huang DW, 2009, NUCLEIC ACIDS RES, V37, P1, DOI 10.1093/nar/gkn923
Huang HC, 2011, J AGR FOOD CHEM, V59, P6765, DOI 10.1021/jf201096v
Huang HC, 2008, ENDOCRINOLOGY, V149, P5972, DOI 10.1210/en.2008-0408
Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922
Hursting SD, 2010, CARCINOGENESIS, V31, P83, DOI 10.1093/carcin/bgp280
Hussain AR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024703
Hwang AB, 2011, AGING-US, V3, P304, DOI 10.18632/aging.100292
Hwang JT, 2007, ANN NY ACAD SCI, V1095, P441, DOI 10.1196/annals.1397.047
Iglesias-Bartolome R, 2012, ONCOTARGET, V3, P1061
Jang MS, 1997, SCIENCE, V275, P218, DOI 10.1126/science.275.5297.218
Joseph JA, 2005, AM J CLIN NUTR, V81, p313S, DOI 10.1093/ajcn/81.1.313S
Katsiki M, 2007, REJUV RES, V10, P157, DOI 10.1089/rej.2006.0513
Keaney M, 2004, FREE RADICAL BIO MED, V37, P239, DOI 10.1016/j.freeradbiomed.2004.04.005
Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012
Khanal P, 2011, CARCINOGENESIS, V32, P545, DOI 10.1093/carcin/bgr001
Khanna A, 2011, AGING-US, V3, P223, DOI 10.18632/aging.100276
Klappan AK, 2012, HISTOCHEM CELL BIOL, V137, P25, DOI 10.1007/s00418-011-0869-0
Kode A, 2008, AM J PHYSIOL-LUNG C, V294, pL478, DOI 10.1152/ajplung.00361.2007
Koehn FE, 2005, NAT REV DRUG DISCOV, V4, P206, DOI 10.1038/nrd1657
Komarova EA, 2012, AGING-US, V4, P709, DOI 10.18632/aging.100498
Konno K, 1999, P NATL ACAD SCI USA, V96, P9159, DOI 10.1073/pnas.96.16.9159
Kouda K, 2010, J PHYSIOL ANTHROPOL, V29, P127, DOI 10.2114/jpa2.29.127
Koukourakis MI, 2005, CLIN EXP METASTAS, V22, P25, DOI 10.1007/s10585-005-2343-7
Kroemer G, 2008, CANCER CELL, V13, P472, DOI 10.1016/j.ccr.2008.05.005
Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023
Lagiou P, 2006, BRIT J NUTR, V96, P384, DOI 10.1079/BJN20061824
Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013
Lai YY, 2011, RECENT PAT ANTI-CANC, V6, P178, DOI 10.2174/157489211795328495
Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x
Lane N, 2010, NATURE, V467, P929, DOI 10.1038/nature09486
Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8
Le A, 2010, P NATL ACAD SCI USA, V107, P2037, DOI 10.1073/pnas.0914433107
Lee C, 2011, ONCOGENE, V30, P3305, DOI 10.1038/onc.2011.91
Lee C, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003293
Lee J, 2010, AGING-US, V2, P527, DOI 10.18632/aging.100184
Lee JH, 2010, AGING-US, V2, P369, DOI 10.18632/aging.100157
Lee OH, 2010, BIORESOURCE TECHNOL, V101, P3751, DOI 10.1016/j.biortech.2009.12.052
Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057
Leontieva OV, 2012, CELL CYCLE, V11, P3926, DOI 10.4161/cc.21908
Leontieva OV, 2011, AGING-US, V3, P1078, DOI 10.18632/aging.100402
LEUNG TKC, 1990, BIOCHEM J, V267, P125, DOI 10.1042/bj2670125
LEUNG TKC, 1992, GENOMICS, V12, P74, DOI 10.1016/0888-7543(92)90409-L
Levesque H, 2000, REV MED INTERNE, V21, p8S, DOI 10.1016/S0248-8663(00)88720-2
Li JWH, 2009, SCIENCE, V325, P161, DOI 10.1126/science.1168243
Lin HK, 2010, NATURE, V464, P374, DOI 10.1038/nature08815
Lin JH, 2007, SCIENCE, V318, P944, DOI 10.1126/science.1146361
Liu BQ, 2010, BIOCHEM BIOPH RES CO, V391, P778, DOI 10.1016/j.bbrc.2009.11.137
Liu BL, 2007, CANCER BIOL THER, V6, P1833, DOI 10.4161/cbt.6.12.5161
Liu T, 2009, CANCER RES, V69, P1702, DOI 10.1158/0008-5472.CAN-08-3365
Longo VD, 2011, AGING-US, V3, P1039, DOI 10.18632/aging.100401
Longo VD, 2010, TRENDS PHARMACOL SCI, V31, P89, DOI 10.1016/j.tips.2009.11.004
Lopez-Miranda J, 2010, NUTR METAB CARDIOVAS, V20, P284, DOI 10.1016/j.numecd.2009.12.007
Low ICC, 2010, ANTIOXID REDOX SIGN, V13, P807, DOI 10.1089/ars.2009.3050
Lozano-Sanchez J, 2010, J AGR FOOD CHEM, V58, P9942, DOI 10.1021/jf101502q
Lu JB, 2001, CARCINOGENESIS, V22, P321, DOI 10.1093/carcin/22.2.321
Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842
Madeo F, 2010, AUTOPHAGY, V6, P160, DOI 10.4161/auto.6.1.10600
Mai A, 2011, AGING-US, V3, P819, DOI 10.18632/aging.100387
Malhotra JD, 2007, ANTIOXID REDOX SIGN, V9, P2277, DOI 10.1089/ars.2007.1782
Marcato P, 2011, CELL CYCLE, V10, P1378, DOI 10.4161/cc.10.9.15486
Marcato P, 2011, STEM CELLS, V29, P32, DOI 10.1002/stem.563
Marino G, 2008, AUTOPHAGY, V4, P807, DOI 10.4161/auto.6478
Marino G, 2008, HUM MOL GENET, V17, P2196, DOI 10.1093/hmg/ddn120
Marino G, 2011, AUTOPHAGY, V7, P647, DOI 10.4161/auto.7.6.15191
Martin-Montalvo A, 2011, ONCOGENE, V30, P505, DOI 10.1038/onc.2010.492
Martinez-Outschoorn UE, 2011, CELL CYCLE, V10, P1271, DOI 10.4161/cc.10.8.15330
Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380
Masoro Edward J., 2007, Dose-Response, V5, P163, DOI 10.2203/dose-response.06-005.Masoro
Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001
Mayer MP, 2005, CELL MOL LIFE SCI, V62, P670, DOI 10.1007/s00018-004-4464-6
McChesney JD, 2007, PHYTOCHEMISTRY, V68, P2015, DOI 10.1016/j.phytochem.2007.04.032
Menendez JA, 2008, INT J MOL MED, V22, P433, DOI 10.3892/ijmm_00000039
Menendez JA, 2007, BMC CANCER, V7, DOI 10.1186/1471-2407-7-80
Menendez JA, 2006, CURR PHARM BIOTECHNO, V7, P495, DOI 10.2174/138920106779116900
Menendez JA, 2011, AGING-US, V3, P1063, DOI 10.18632/aging.100407
Menendez JA, 2011, CELL CYCLE, V10, P3658, DOI 10.4161/cc.10.21.18128
Menendez JA, 2011, AGING-US, V3, P348, DOI 10.18632/aging.100316
Menendez JA, 2008, BMC CANCER, V8, DOI 10.1186/1471-2407-8-377
Menendez JA, 2009, INT J ONCOL, V34, P43, DOI 10.3892/ijo_00000127
MILNER CM, 1990, IMMUNOGENETICS, V32, P242
Minois N, 2012, CELL DEATH DIS, V3, DOI 10.1038/cddis.2012.139
Minois N, 2011, AGING-US, V3, P716, DOI 10.18632/aging.100361
Molinari G, 2009, ADV EXP MED BIOL, V655, P13, DOI 10.1007/978-1-4419-1132-2_2
Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167
Morselli E, 2009, AGING-US, V1, P961, DOI 10.18632/aging.100110
Mousa SA, 2009, AGING-US, V1, P412, DOI 10.18632/aging.100035
Naiman S, 2012, AGING-US, V4, P521, DOI 10.18632/aging.100478
Nelson LE, 2012, AM J PHYSIOL-CELL PH, V303, pC4, DOI 10.1152/ajpcell.00296.2011
Neznanov N, 2011, ONCOTARGET, V2, P209, DOI 10.18632/oncotarget.246
Nielsen AE, 2006, BIOMARK INSIGHTS, V1, P99
Noonan EJ, 2007, CELL STRESS CHAPERON, V12, P219, DOI 10.1379/CSC-278.1
Oliveras-Ferraros C, 2011, INT J ONCOL, V38, P1533, DOI 10.3892/ijo.2011.993
Owen R W, 2000, Lancet Oncol, V1, P107, DOI 10.1016/S1470-2045(00)00015-2
Owen RW, 2000, EUR J CANCER, V36, P1235, DOI 10.1016/S0959-8049(00)00103-9
Owen RW, 2000, CLIN CHEM, V46, P976
Pani G, 2010, AGING-US, V2, P514, DOI 10.18632/aging.100182
Panieri E, 2010, AGING-US, V2, P487, DOI 10.18632/aging.100183
Pardo PS, 2012, AGING-US, V4, P456, DOI 10.18632/aging.100470
Pardo PS, 2011, AGING-US, V3, P430, DOI 10.18632/aging.100312
Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011
Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105
Pedersen MO, 2009, PROG HISTOCHEM CYTO, V44, P29, DOI 10.1016/j.proghi.2008.10.001
Petrovski G, 2010, J CELL MOL MED, V14, P2543, DOI 10.1111/j.1582-4934.2010.01196.x
Pfluger PT, 2008, P NATL ACAD SCI USA, V105, P9793, DOI 10.1073/pnas.0802917105
Pospelova TV, 2012, CELL CYCLE, V11, P2402, DOI 10.4161/cc.20882
Pramanik D, 2012, ONCOTARGET, V3, P640, DOI 10.18632/oncotarget.543
Price NL, 2012, CELL METAB, V15, P675, DOI 10.1016/j.cmet.2012.04.003
Purushotham A, 2009, AGING-US, V1, P669, DOI 10.18632/aging.100076
Queen Brannon L, 2010, Curr Aging Sci, V3, P34
Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7
Raederstorff D, 2009, INT J VITAM NUTR RES, V79, P152, DOI 10.1024/0300-9831.79.3.152
Raffaghello L, 2010, CELL CYCLE, V9, P4474, DOI 10.4161/cc.9.22.13954
Ramadori G, 2011, AGING-US, V3, P325, DOI 10.18632/aging.100311
Rascon B, 2012, AGING-US, V4, P499, DOI 10.18632/aging.100474
Rattan SIS, 2005, EMBO REP, V6, pS25, DOI 10.1038/sj.embor.7400401
Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047
Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008
Richardson RB, 2009, AGING-US, V1, P887, DOI 10.18632/aging.100081
Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010
Rockenfeller P, 2010, BBA-MOL CELL RES, V1803, P499, DOI 10.1016/j.bbamcr.2010.01.001
Rodriguez KA, 2011, CURR PHARM DESIGN, V17, P2290
Rohde M, 2005, GENE DEV, V19, P570, DOI 10.1101/gad.305405
Roldan C, 2013, FOOD CHEM, V136, P392, DOI 10.1016/j.foodchem.2012.08.027
Ron D, 2007, NAT REV MOL CELL BIO, V8, P519, DOI 10.1038/nrm2199
Rubinsztein DC, 2011, CELL, V146, P682, DOI 10.1016/j.cell.2011.07.030
Safdie F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044603
Safdie FM, 2009, AGING-US, V1, P988, DOI 10.18632/aging.100114
Sahin K, 2012, J ANIM PHYSIOL AN N, V96, P66, DOI 10.1111/j.1439-0396.2010.01123.x
Salminen A, 2012, AGEING RES REV, V11, P230, DOI 10.1016/j.arr.2011.12.005
Sanz A, 2010, AGING-US, V2, P200, DOI 10.18632/aging.100137
SARGENT CA, 1989, P NATL ACAD SCI USA, V86, P1968, DOI 10.1073/pnas.86.6.1968
Saul N, 2008, MECH AGEING DEV, V129, P611, DOI 10.1016/j.mad.2008.07.001
Saunders LR, 2010, AGING-US, V2, P415, DOI 10.18632/aging.100176
Schlicker C, 2011, AGING-US, V3, P852, DOI 10.18632/aging.100388
Schug TT, 2010, AGING-US, V2, P129, DOI 10.18632/aging.100128
Seelinger G, 2008, PLANTA MED, V74, P1667, DOI 10.1055/s-0028-1088314
Sell S, 2004, CRIT REV ONCOL HEMAT, V51, P1, DOI 10.1016/j.critrevonc.2004.04.007
Serganova I, 2011, CLIN CANCER RES, V17, P6250, DOI 10.1158/1078-0432.CCR-11-0397
Servili M., 2009, Inflammopharmacology, V17, P76, DOI 10.1007/s10787-008-8014-y
She QB, 2001, CANCER RES, V61, P1604
Shimizu M, 2005, BIOCHEM BIOPH RES CO, V334, P947, DOI 10.1016/j.bbrc.2005.06.182
Shimizu M, 2005, CLIN CANCER RES, V11, P2735, DOI 10.1158/1078-0432.CCR-04-2014
Shimizu M, 2005, J EXP THER ONCOL, V5, P69
Sikora E, 2010, CURR PHARM DESIGN, V16, P884, DOI 10.2174/138161210790883507
Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019
Singh CK, 2012, REPROD SCI, V19, P949, DOI 10.1177/1933719112438972
Smith JJ, 2009, BMC SYST BIOL, V3, DOI 10.1186/1752-0509-3-31
Soare Andreea, 2011, Aging (Albany NY), V3, P374
Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y
Son WY, 1999, MOL HUM REPROD, V5, P1122, DOI 10.1093/molehr/5.12.1122
SOULEIMANI A, 1993, BIOCHEM BIOPH RES CO, V193, P330, DOI 10.1006/bbrc.1993.1628
Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132
Speciale A, 2011, CURR MOL MED, V11, P770, DOI 10.2174/156652411798062395
Steelman LS, 2011, AGING-US, V3, P192, DOI 10.18632/aging.100296
Stefanska B, 2012, BRIT J NUTR, V107, P781, DOI 10.1017/S0007114511003631
Stein S, 2010, AGING-US, V2, P353, DOI 10.18632/aging.100162
Surh YJ, 2011, ANN NY ACAD SCI, V1229, P1, DOI 10.1111/j.1749-6632.2011.06097.x
Svard M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022337
Thompson HJ, 2011, CANCER PREV RES, V4, P1736, DOI 10.1158/1940-6207.CAPR-11-0133
Timmers S, 2012, AGING-US, V4, P146, DOI 10.18632/aging.100445
Timmers S, 2011, CELL METAB, V14, P612, DOI 10.1016/j.cmet.2011.10.002
Trichopoulou A, 2004, PUBLIC HEALTH NUTR, V7, P943, DOI 10.1079/PHN2004558
Trichopoulou A, 2005, BMJ-BRIT MED J, V330, P991, DOI 10.1136/bmj.38415.644155.8F
Trichopoulou A, 2003, NEW ENGL J MED, V348, P2599, DOI 10.1056/NEJMoa025039
Trichopoulou A, 2007, MOL NUTR FOOD RES, V51, P1275, DOI 10.1002/mnfr.200700134
Tucci P, 2012, AGING-US, V4, P525, DOI 10.18632/aging.100481
Ungvari Z, 2010, AM J PHYSIOL-HEART C, V299, pH18, DOI 10.1152/ajpheart.00260.2010
Vakana E, 2011, ONCOTARGET, V2, P1322
Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038
Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361
Van Raamsdonk JM, 2010, ANTIOXID REDOX SIGN, V13, P1911, DOI 10.1089/ars.2010.3215
Van Raamsdonk JM, 2010, GENETICS, V185, P559, DOI 10.1534/genetics.110.115378
Vane JR, 2000, J PHYSIOL PHARMACOL, V51, P573
Vang O, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019881
Vazquez-Martin A, 2012, CELL CYCLE, V12
Vazquez-Martin A, 2012, SCI REP-UK, V2, DOI 10.1038/srep00964
Vazquez-Martin A, 2012, CELL CYCLE, V11, P974, DOI 10.4161/cc.11.5.19450
Vazquez-Martin A, 2012, REJUV RES, V15, P3, DOI 10.1089/rej.2011.1203
Vendrell A, 2011, AGING-US, V3, P1163, DOI 10.18632/aging.100419
Vetterli L, 2011, AGING-US, V3, P444, DOI 10.18632/aging.100304
Vinciguerra M, 2010, AGING-US, V2, P43
Visioli F, 2002, MED RES REV, V22, P65, DOI 10.1002/med.1028
Visioli F, 2002, CRIT REV FOOD SCI, V42, P209, DOI 10.1080/10408690290825529
Visioli F, 2001, WORLD REV NUTR DIET, V88, P233
Viswanathan M, 2005, DEV CELL, V9, P605, DOI 10.1016/j.devcel.2005.09.017
Walenta S, 2004, SEMIN RADIAT ONCOL, V14, P267, DOI 10.1016/j.semradonc.2004.04.004
Wang RH, 2008, CANCER CELL, V14, P312, DOI 10.1016/j.ccr.2008.09.001
Wang ZW, 2012, FRONT ONCOL, V1, DOI 10.3389/fonc.2011.00057
Wang ZW, 2012, ONCOTARGET, V3, P1294
Way TD, 2005, FEBS LETT, V579, P145, DOI 10.1016/j.febslet.2004.11.061
Way TD, 2004, J BIOL CHEM, V279, P4479, DOI 10.1074/jbc.M305529200
Weiss EP, 2011, AM J PHYSIOL-HEART C, V301, pH1205, DOI 10.1152/ajpheart.00685.2011
Whitaker-Menezes D, 2011, CELL CYCLE, V10, P1772, DOI 10.4161/cc.10.11.15659
Wietzke JA, 2003, J STEROID BIOCHEM, V84, P149, DOI 10.1016/S0960-0760(03)00024-4
Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x
Wiseman RL, 2010, CELL, V140, P590, DOI 10.1016/j.cell.2010.02.006
Wolter F, 2003, CARCINOGENESIS, V24, P469, DOI 10.1093/carcin/24.3.469
Woo KJ, 2007, BIOCHEM PHARMACOL, V73, P68, DOI 10.1016/j.bcp.2006.09.015
Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789
Xiang L, 2011, AGING-US, V3, P1098, DOI 10.18632/aging.100396
Xu J, 2012, CRIT REV FOOD SCI, V52, P373, DOI 10.1080/10408398.2010.500245
Yamaza H, 2010, AGING CELL, V9, P372, DOI 10.1111/j.1474-9726.2010.00563.x
Yan W, 2002, P NATL ACAD SCI USA, V99, P15920, DOI 10.1073/pnas.252341799
Yan Y, 2010, BMC CANCER, V10, DOI 10.1186/1471-2407-10-445
Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788
Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556
Yang ZH, 2010, AGING-US, V2, P331, DOI 10.18632/aging.100161
Yashin AI, 2010, DOSE-RESPONSE, V8, P41, DOI 10.2203/dose-response.09-024.Yashin
Zaveri NT, 2006, LIFE SCI, V78, P2073, DOI 10.1016/j.lfs.2005.12.006
Zhang D, 2011, AGING-US, V3, P158, DOI 10.18632/aging.100283
Zhang KZ, 2006, NEUROLOGY, V66, pS102, DOI 10.1212/01.wnl.0000192306.98198.ec
Zhu DH, 1997, DEVELOPMENT, V124, P3007
NR 347
TC 117
Z9 120
U1 1
U2 84
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1538-4101
EI 1551-4005
J9 CELL CYCLE
JI Cell Cycle
PD FEB 15
PY 2013
VL 12
IS 4
BP 555
EP 578
DI 10.4161/cc.23756
PG 24
WC Cell Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Cell Biology
GA 089PR
UT WOS:000314923000012
PM 23370395
OA Green Published
DA 2023-03-13
ER
PT J
AU Bonilla-Ramirez, L
Jimenez-Del-Rio, M
Velez-Pardo, C
AF Bonilla-Ramirez, Leonardo
Jimenez-Del-Rio, Marlene
Velez-Pardo, Carlos
TI Low doses of paraquat and polyphenols prolong life span and locomotor
activity in knock-down parkin Drosophila melanogaster exposed to
oxidative stress stimuli: Implication in autosomal recessive juvenile
Parkinsonism
SO GENE
LA English
DT Article
DE Antioxidant; Deferoxamine dopaminergic neurons; Epicathecin;
Epigallocathecin gallate; Propyl gallate
ID DOPAMINERGIC-NEURONS; MITOCHONDRIAL-FUNCTION; DJ-1 MUTANTS; DISEASE;
DEGENERATION; MODEL; HETEROGENEITY; SENSITIVITY; DYSFUNCTION; POPULATION
AB Previous studies have shown that polyphenols might be potent neuroprotective agents in Drosophila melanogaster wild type Canton-S acutely or chronically treated with paraquat (PQ), a selective toxin for elimination of dopaminergic (DAergic) neurons by oxidative stress (OS), as model of Parkinson's disease (PD). This study reports for the first time that knock-down (K-D) parkin Drosophila melanogaster (TH-GAL4; UAS-RNAi-parkin) chronically exposed to PQ (0.1-0.25 mM), FeSO4 (Fe, 0.1 mM), deferoxamine (DFO, 0.01 mM) alone or (0.1 mM) PQ in combination with polyphenols propyl gallate (PG, 0.1 mM) and epigallocathecin gallate (EGCG, 0.1, 0.5 mM) showed significantly higher life span and locomotor activity than untreated K-D flies or treated with (1, 5, 20 mM) PQ alone. Whilst gallic acid (GA, 0.1, 0.5 mM) alone or in the presence of PQ provoked no effect on K-D flies, epicathecin (EC, 0.5 mM) only showed a positive effect on prolonging K-D flies' life span. It is shown that PG (and EGCG) protected protocerebral posterolateral 1 (PPL1) DAergic neurons against PQ. Interestingly, the protective effect of low PQ concentrations, DFO and iron might be explained by a phenomenon known as "hormesis." However, pre-fed K-D flies with (0.1 mM) PQ for 7 days and then exposed to (0.25 mM) for additional 8 days affect neither survival nor climbing of K-D Drosophila compared to flies treated with (0.25 mM) PQ alone. Remarkably, K-D flies treated with 0.1 mM PQ (7 days) and then with (0.25 mM) PQ plus PG (8 days) behaved almost as flies treated with (0.25 mM) PQ. Taken these data suggest that antioxidant supplements that synergistically act with low pro-oxidant stimuli to prolong and increase locomotor activity become inefficient once a threshold of OS has been reached in K-D flies. Our present findings support the notion that genetically altered Drosophila melanogaster as suitable model to study genetic and environmental factors as causal and/or modulators in the development of autosomal recessive juvenile Parkinsonism (AR-JD)/PD. Most importantly, we have shown for the first time that low amounts of stressors induce a health-promoting extending effect in K-D parkin flies. Altogether our present results open new avenues for the screening, testing and development of novel antioxidant drugs against OS stimuli in neurodegenerative disorders. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Velez-Pardo, Carlos] Univ Antioquia UdeA, Sch Med, Med Res Inst, Neurosci Res Grp,SIU, Medellin, Colombia.
C3 Universidad de Antioquia
RP Velez-Pardo, C (corresponding author), Univ Antioquia UdeA, Sch Med, Med Res Inst, Neurosci Res Grp,SIU, Calle 62 52-59,Bldg 1,Room 412, Medellin, Colombia.
EM carlos.velez@neurociencias.udea.edu.co
OI Bonilla-Ramirez, Leonardo/0000-0002-3203-9896; Jimenez-Del-Rio,
Marlene/0000-0003-3477-2386; Velez-Pardo, Carlos/0000-0002-0557-0411
FU Colciencias grant [1115-408-20504]
FX This work was supported by Colciencias grant 1115-408-20504 to CV-P and
MJ-D-R. LB-R is student at the Master Program in Biomedical Science
(CCBB) from UdeA.
CR Bekris LM, 2010, J GERIATR PSYCH NEUR, V23, P228, DOI 10.1177/0891988710383572
Bonilla E, 2006, NEUROCHEM RES, V31, P1425, DOI 10.1007/s11064-006-9194-8
Bonilla-Ramirez L, 2011, BIOMETALS, V24, P1045, DOI 10.1007/s10534-011-9463-0
Bretaud S, 2004, NEUROTOXICOL TERATOL, V26, P857, DOI 10.1016/j.ntt.2004.06.014
Burman JL, 2012, P NATL ACAD SCI USA, V109, P10438, DOI 10.1073/pnas.1120688109
Cha GH, 2005, P NATL ACAD SCI USA, V102, P10345, DOI 10.1073/pnas.0500346102
Chaudhuri A, 2007, J NEUROSCI, V27, P2457, DOI 10.1523/JNEUROSCI.4239-06.2007
Clark IE, 2006, NATURE, V441, P1162, DOI 10.1038/nature04779
Cocheme HM, 2008, J BIOL CHEM, V283, P1786, DOI 10.1074/jbc.M708597200
Coulom H, 2004, J NEUROSCI, V24, P10993, DOI 10.1523/JNEUROSCI.2993-04.2004
Cuervo AM, 2010, MOVEMENT DISORD, V25, pS49, DOI 10.1002/mds.22718
Dinis-Oliveira RJ, 2006, NEUROTOXICOLOGY, V27, P1110, DOI 10.1016/j.neuro.2006.05.012
Feany MB, 2000, NATURE, V404, P394, DOI 10.1038/35006074
Ortega-Arellano HF, 2011, NEUROCHEM RES, V36, P1073, DOI 10.1007/s11064-011-0451-0
Forno LS, 1996, J NEUROPATH EXP NEUR, V55, P259, DOI 10.1097/00005072-199603000-00001
Grandison RC, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004067
Greene JC, 2003, P NATL ACAD SCI USA, V100, P4078, DOI 10.1073/pnas.0737556100
Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855
Jankovic J, 2008, J NEUROL NEUROSUR PS, V79, P368, DOI 10.1136/jnnp.2007.131045
Jankovic Joseph, 2008, Neuropsychiatr Dis Treat, V4, P743
Jiang HB, 2004, HUM MOL GENET, V13, P1745, DOI 10.1093/hmg/ddh180
Jimenez-Del-Rio M, 2010, NEUROCHEM RES, V35, P227, DOI 10.1007/s11064-009-0046-1
Kuter K, 2007, BRAIN RES, V1155, P196, DOI 10.1016/j.brainres.2007.04.018
Lavara-Culebras E, 2007, GENE, V400, P158, DOI 10.1016/j.gene.2007.06.013
Lee SB, 2007, BIOCHEM BIOPH RES CO, V358, P534, DOI 10.1016/j.bbrc.2007.04.156
Li X, 2005, CHINESE MED J-PEKING, V118, P1357
Liu YL, 2009, AGING CELL, V8, P370, DOI 10.1111/j.1474-9726.2009.00471.x
Mao ZM, 2009, FRONT NEURAL CIRCUIT, V3, DOI 10.3389/neuro.04.005.2009
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
McPhail DB, 2003, J AGR FOOD CHEM, V51, P1684, DOI 10.1021/jf025922v
Munoz-Soriano V, 2011, PARKINSONS DIS-US, V2011, DOI 10.4061/2011/520640
Nuytemans K, 2010, HUM MUTAT, V31, P763, DOI 10.1002/humu.21277
Park J, 2005, GENE, V361, P133, DOI 10.1016/j.gene.2005.06.040
Pendleton RG, 2002, BEHAV GENET, V32, P89, DOI 10.1023/A:1015279221600
Peng C, 2012, EXP GERONTOL, V47, P170, DOI 10.1016/j.exger.2011.12.001
Peng C, 2011, J AGR FOOD CHEM, V59, P2097, DOI 10.1021/jf1046267
Pesah Y, 2004, DEVELOPMENT, V131, P2183, DOI 10.1242/dev.01095
Pineda-Trujillo N, 2006, AM J MED GENET B, V141B, P885, DOI 10.1002/ajmg.b.30375
Pineda-Trujillo N, 2009, IATREIA, V22, P122
Pineda-Trujillo NL, 2001, NEUROSCI LETT, V298, P87, DOI 10.1016/S0304-3940(00)01733-X
Rankin Carolyn A, 2011, Open Biochem J, V5, P9, DOI 10.2174/1874091X01105010009
Sang TK, 2007, J NEUROSCI, V27, P981, DOI 10.1523/JNEUROSCI.4810-06.2007
Sanz A, 2010, J BIOENERG BIOMEMBR, V42, P135, DOI 10.1007/s10863-010-9281-z
Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z
Sian-Hulsmann J, 2011, J NEUROCHEM, V118, P939, DOI 10.1111/j.1471-4159.2010.07132.x
Surendran S, 2010, NEUROL SCI, V31, P531, DOI 10.1007/s10072-010-0245-1
Thiruchelvam M, 2000, J NEUROSCI, V20, P9207
Thomas KJ, 2011, HUM MOL GENET, V20, P40, DOI 10.1093/hmg/ddq430
Villano D, 2007, TALANTA, V71, P230, DOI 10.1016/j.talanta.2006.03.050
Wang C, 2007, J NEUROSCI, V27, P8563, DOI 10.1523/JNEUROSCI.0218-07.2007
NR 50
TC 34
Z9 35
U1 1
U2 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-1119
J9 GENE
JI Gene
PD JAN 10
PY 2013
VL 512
IS 2
BP 355
EP 363
DI 10.1016/j.gene.2012.09.120
PG 9
WC Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Genetics & Heredity
GA 073UP
UT WOS:000313768900029
PM 23046578
DA 2023-03-13
ER
PT J
AU Alp, FN
Arikan, B
Ozfidan-Konakci, C
Gulenturk, C
Yildiztugay, E
Turan, M
Cavusoglu, H
AF Alp, Fatma Nur
Arikan, Busra
Ozfidan-Konakci, Ceyda
Gulenturk, Cagri
Yildiztugay, Evren
Turan, Metin
Cavusoglu, Halit
TI Hormetic activation of nano-sized rare earth element terbium on growth,
PSII photochemistry, antioxidant status and phytohormone regulation in
Lemna minor
SO PLANT PHYSIOLOGY AND BIOCHEMISTRY
LA English
DT Article
DE Antioxidant Chlorophyll fluorescence; Hormetic effect; Lemna minor;
Nano-size terbium
ID ABSCISIC-ACID; HYDROGEN-PEROXIDE; SEED-GERMINATION; OXIDATIVE STRESS;
PHOTOSYSTEM-II; NADPH OXIDASE; LANTHANUM; METABOLISM; CYTOKININ; CERIUM
AB Soils contaminated with rare earth elements (REEs) can damage agriculture by causing physiological disorders in plants which are evaluated as the main connection of the human food chain. A biphasic dose response with excitatory responses to low concentrations and inhibitory/harmful responses to high concentrations has been defined as hormesis. However, not much is clear about the ecological effects and potential risks of REEs to plants. For this purpose, here we showed the impacts of different concentrations of nano terbium (Tb) applications (510-25-50-100-250-500 mg L-1) on the accumulation of endogeneous certain ions and hormones, chlorophyll fluoresence, photochemical reaction capacity and antioxidant activity in duckweed (Lemna minor). Tb concentrations less than 100 mg L (-1) increased the contents of nitrogen (N), phosphate (P), potassium (K+), calcium (Ca2+), magnesium (Mg2+), manganese (Mn2+) and iron (Fe2+). Chlorophyll fluorescence (Fv/Fm and Fv/Fo) was suppressed under 250-500 mg L-1 Tb. In addition, Tb toxicity affected the trapped energy adversely by the active reaction center of photosystem II (PSII) and led to accumulation of inactive reaction centers, thus lowering the detected level of electron transport from photosystem II (PSII) to photosystem I (PSI). On the other hand, 5-100 mg L-1 Tb enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), NADPH oxidase (NOX), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST). Tb (5-50 mg L-1) supported the maintenance of cellular redox status by promoting antioxidant pathways involved in the ascorbateglutathione (AsA-GSH) cycle. In addition to the antioxidant system, the contents of some hormones such as indole-3-acetic acid (IAA), gibberellic acid (GA), cytokinin (CK) and salicylic acid (SA) were also induced in the presence of 5-100 mg L-1 Tb. In addition, the levels of hydrogen peroxide (H2O2) and lipid peroxidation (TBARS) were controlled through ascorbate (AsA) regeneration and effective hormonal modulation in L. minor. However, this induction in the antioxidant system and phytohormone contents could not be resumed after applications higher than 250 mg L-1 Tb. TBARS and H2O2, which indicate the level of lipid peroxidation, increased. The results in this study showed that Tb at appropriate concentrations has great potential to confer tolerance of duckweed by supporting the antioxidant system, protecting the biochemical reactions of photosystems and improving hormonal regulation.
C1 [Alp, Fatma Nur; Arikan, Busra; Gulenturk, Cagri; Yildiztugay, Evren] Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey.
[Ozfidan-Konakci, Ceyda] Necmettin Erbakan Univ, Fac Sci, Dept Mol Biol & Genet, TR-42090 Meram, Konya, Turkey.
[Turan, Metin] Yeditepe Univ, Fac Econ & Adm Sci, Dept Agr Trade & Management, TR-34755 Istanbul, Turkey.
[Cavusoglu, Halit] Selcuk Univ, Fac Sci, Dept Phys, TR-42130 Selcuklu, Konya, Turkey.
C3 Selcuk University; Necmettin Erbakan University; Yeditepe University;
Selcuk University
RP Yildiztugay, E (corresponding author), Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey.
EM fatmanur.alp@selcuk.edu.tr; busra.arikan@selcuk.edu.tr;
cozfidan@erbakan.edu.tr; 3816cagri@gmail.com; eytugay@selcuk.edu.tr;
metin.turan@yeditepe.edu.tr; hcavusoglu@selcuk.edu.tr
CR Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004
Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068
Basiglini E, 2018, ECOTOX ENVIRON SAFE, V153, P54, DOI 10.1016/j.ecoenv.2018.01.053
Battal Peyami, 2001, Turkish Journal of Botany, V25, P123
BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8
Bergmeyer H.U., 1970, METHODEN ENZYMATISCH, V2, DOI 10.1002/pauz.19750040306
Berwal M., 2018, ABIOTIC BIOTIC STRES, P1, DOI [10.5772/intechopen.82079, DOI 10.5772/INTECHOPEN.82079]
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Cao ZM, 2017, ENVIRON SCI-NANO, V4, P1086, DOI 10.1039/c7en00015d
Checler Frederic, 2017, HUM ECOL RISK ASSESS, V13, P2004, DOI [10.1080/15548627.2017.1363950, DOI 10.1080/10807039.2015.1133242, 10.1080/01904160701209287]
Cheeseman JM, 2006, J EXP BOT, V57, P2435, DOI 10.1093/jxb/erl004
Chen CM, 2014, PLANT PHYSIOL, V166, P370, DOI 10.1104/pp.114.245324
Chen HH, 2020, PLANT J, V101, P310, DOI 10.1111/tpj.14542
Cheng J, 2021, BIOTECHNOL APPL BIOC, V68, P1216, DOI 10.1002/bab.2043
Chu-Puga A, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8010009
CUTTING JGM, 1991, J PLANT GROWTH REGUL, V10, P85, DOI 10.1007/BF02279317
d'Aquino L, 2009, CHEMOSPHERE, V75, P900, DOI 10.1016/j.chemosphere.2009.01.026
Demuyakor John, 2015, ENV SCI AMP TECHNOLO, V10, pe202018, DOI [10.29333/ojcmt/8286, DOI 10.1021/ES505027P, 10.1097/FJC.0000000000000699]
Dridi N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14074153
Dutilleul C, 2003, PLANT PHYSIOL, V131, P264, DOI 10.1104/pp.011155
Fan ZB, 2020, HORTSCIENCE, V55, P310, DOI 10.21273/HORTSCI14661-19
Gupta R, 2021, PLANT SIGNAL BEHAV, V16, DOI 10.1080/15592324.2020.1865687
HERNANDEZMINANA FM, 1991, J HORTIC SCI BIOTECH, V66, P505, DOI 10.1080/00221589.1991.11516180
HERZOG V, 1973, ANAL BIOCHEM, V55, P554, DOI 10.1016/0003-2697(73)90144-9
Hong FS, 2003, BIOL TRACE ELEM RES, V94, P273, DOI 10.1385/BTER:94:3:273
Hong FS, 2002, BIOL TRACE ELEM RES, V89, P263, DOI 10.1385/BTER:89:3:263
Hossain MZ, 2006, BIOL PLANTARUM, V50, P210, DOI 10.1007/s10535-006-0009-1
Hu HQ, 2016, ENVIRON SCI POLLUT R, V23, P8902, DOI 10.1007/s11356-015-5962-9
Hu X, 2002, CHEMOSPHERE, V48, P621, DOI 10.1016/S0045-6535(02)00109-1
Hu ZY, 2004, J PLANT NUTR, V27, P183, DOI 10.1081/PLN-120027555
Hunt R, 2002, ANN BOT-LONDON, V90, P485, DOI 10.1093/aob/mcf214
Institute of Medicine, 2015, MOL MEMBR BIOL, DOI DOI 10.3109/09687681003616854
Ion R.M., 2021, HDB GREENER SYNTHESI, P355
Ippolito MP, 2011, PLANT BIOSYST, V145, P248, DOI 10.1080/11263504.2010.509937
Ippolito MP, 2007, CARYOLOGIA, V60, P125, DOI 10.1080/00087114.2007.10589559
Jiang MY, 2002, PLANTA, V215, P1022, DOI 10.1007/s00425-002-0829-y
Jogawat A., 2019, MOL PLANT ABIOTIC ST, P209, DOI 10.1002/9781119463665.ch11
Khan N, 2020, PLANT GROWTH REGUL, V90, P189, DOI 10.1007/s10725-020-00571-x
Kovarikova M, 2019, BIOL PLANTARUM, V63, P20, DOI 10.32615/bp.2019.003
LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
Liddelow Shane A., RENEWABLE SUSTAINABL, V41, P820, DOI [10.1016/j.it.2020.07.006, DOI 10.1016/J.RSER.2016.12.110]
Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE
Liu DW, 2012, J PLANT NUTR SOIL SC, V175, P907, DOI 10.1002/jpln.201200016
Liu DW, 2012, ENVIRON SCI POLLUT R, V19, P3282, DOI 10.1007/s11356-012-0844-x
Liu XQ, 2009, BIOL TRACE ELEM RES, V130, P141, DOI 10.1007/s12011-009-8321-1
Liu ZQ, 2022, COMPOS PART B-ENG, V244, DOI 10.1016/j.compositesb.2022.110186
Loktyushkin A. V, 2019, Moscow University Biological Sciences Bulletin, V74, P81, DOI 10.3103/S009639251902007X
Luo JP, 2008, J RARE EARTH, V26, P869, DOI 10.1016/S1002-0721(09)60023-5
MITTLER R, 1993, ANAL BIOCHEM, V212, P540, DOI 10.1006/abio.1993.1366
Mubarik MS, 2021, PHYSIOL PLANTARUM, V172, P1269, DOI 10.1111/ppl.13325
NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867
Nyomora AMS, 1997, FRESEN J ANAL CHEM, V357, P1185, DOI 10.1007/s002160050328
Oliveira HC, 2016, NITRIC OXIDE-BIOL CH, V61, P10, DOI 10.1016/j.niox.2016.09.010
PALNI LMS, 1983, PLANT PHYSIOL, V72, P858, DOI 10.1104/pp.72.3.858
Paradiso A, 2008, PLANT CELL PHYSIOL, V49, P362, DOI 10.1093/pcp/pcn013
Qamaruddin M, 1991, SCAND J FOREST RES, V6, P41, DOI 10.1080/02827589109382645
Rachappanavar V, 2022, SCI HORTIC-AMSTERDAM, V304, DOI 10.1016/j.scienta.2022.111302
Rajput VD, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10040267
Ramos SJ, 2016, CURR POLLUT REP, V2, P28, DOI 10.1007/s40726-016-0026-4
Rao KVM, 2000, PLANT SCI, V157, P113, DOI 10.1016/S0168-9452(00)00273-9
Rhaman MS, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10010037
RICCI G, 1984, ANAL BIOCHEM, V143, P226, DOI 10.1016/0003-2697(84)90657-2
Rodziewicz P, 2014, ACTA PHYSIOL PLANT, V36, P1, DOI 10.1007/s11738-013-1402-y
Rostami Saeid, VACUUM, V220, P818, DOI [10.1016/j.scs.2018.10.007, DOI 10.1016/J.IJADHADH.2018.10.001, 10.1016/J.CHEMOSPHERE.2018.12.203, DOI 10.1016/J.VACUUM.2018.05.012]
Sagi M, 2001, PLANT PHYSIOL, V126, P1281, DOI 10.1104/pp.126.3.1281
Salem SS, 2021, BIOL TRACE ELEM RES, V199, P344, DOI 10.1007/s12011-020-02138-3
Salvi P, 2021, PLANT CELL REP, V40, P1305, DOI 10.1007/s00299-021-02683-8
Sameena P., 2021, J PHOTOCHEM PHOTOB A, V8, DOI [10.1016/j.jpap.2021.100059, DOI 10.1016/J.JPAP.2021.100059]
SEEVERS PM, 1971, PLANT PHYSIOL, V48, P353, DOI 10.1104/pp.48.3.353
Shamsipur M, 2018, COORDIN CHEM REV, V374, P153, DOI 10.1016/j.ccr.2018.07.006
Shan CJ, 2020, PROTOPLASMA, V257, P1487, DOI 10.1007/s00709-020-01510-3
Shi HT, 2013, PLANT PHYSIOL BIOCH, V71, P226, DOI 10.1016/j.plaphy.2013.07.021
Soliman SA, 2009, THERMOCHIM ACTA, V491, P84, DOI 10.1016/j.tca.2009.03.006
Song WP, 2002, J RARE EARTH, V20, P658
Stjepanovic N., 2011, HEURISTICS FDN ADAPT, V30, P1558, DOI [10.1093/annonc/mdz233, DOI 10.1093/ACPROF:OSO/9780199744282.001.0001]
Syrvatka V, 2022, TRENDS BIOTECHNOL, V40, P1088, DOI 10.1016/j.tibtech.2022.02.006
Wang LH, 2014, P NATL ACAD SCI USA, V111, P12936, DOI 10.1073/pnas.1413376111
Wang LH, 2009, CHEMOSPHERE, V77, P1019, DOI 10.1016/j.chemosphere.2009.07.065
WOODBURY W, 1971, ANAL BIOCHEM, V44, P301, DOI 10.1016/0003-2697(71)90375-7
Xiao R, 2019, LUMINESCENCE, V34, P90, DOI 10.1002/bio.3583
Yao RQ, 2021, J AM CHEM SOC, V143, P17360, DOI 10.1021/jacs.1c09085
Zhang CH, 2013, ACTA PHARM SIN B, V3, P20, DOI 10.1016/j.apsb.2012.12.005
Zicari MA, 2018, ECOTOX ENVIRON SAFE, V163, P536, DOI 10.1016/j.ecoenv.2018.07.113
Zulfiqar F, 2022, J HAZARD MATER, V427, DOI 10.1016/j.jhazmat.2021.127891
NR 84
TC 1
Z9 1
U1 2
U2 2
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
PI ISSY-LES-MOULINEAUX
PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE
SN 0981-9428
EI 1873-2690
J9 PLANT PHYSIOL BIOCH
JI Plant Physiol. Biochem.
PD JAN 1
PY 2023
VL 194
BP 361
EP 373
DI 10.1016/j.plaphy.2022.11.031
PG 13
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA 7U0OG
UT WOS:000911837200007
OA Bronze
DA 2023-03-13
ER
PT J
AU Ye, RR
Peterson, DR
Kitamura, SI
Segner, H
Seemann, F
Au, DWT
AF Ye, Roy R.
Peterson, Drew R.
Kitamura, Shin-Ichi
Segner, Helmut
Seemann, Frauke
Au, Doris W. T.
TI Sex-specific immunomodulatory action of the environmentalestrogen 17
alpha-ethynylestradiol alongside with reproductive impairment in fish
SO AQUATIC TOXICOLOGY
LA English
DT Article
DE Estrogenic EDCs; EE2; E. tarda; Immunotoxicity; Innate immunity;
Reproductive impairment; Marine medaka; Oryzias melastigma;
Sex-difference; Complement system; Toll-like receptor
ID ENDOCRINE-DISRUPTING CHEMICALS; MEDAKA ORYZIAS-MELASTIGMA; BASS
DICENTRARCHUS-LABRAX; IMMUNE-SYSTEM; ESTROGEN-RECEPTORS;
GENE-EXPRESSION; SYNTHETIC ESTROGEN; GILTHEAD SEABREAM; RAINBOW-TROUT;
BONY FISH
AB Estrogenic endocrine disrupting chemicals (EEDCs) are present ubiquitously in sediments and aquatic ecosystems worldwide. The detrimental impact of EEDCs on the reproduction of wildlife is widely recognized. Increasing evidence shows the immunosuppressive effects of EEDCs in vertebrates. Yet, no studies have considered concomitantly EEDC-induced impacts on reproductive impairment and immune suppression in vivo, which are deemed essential for risk assessment and environmental monitoring. In this study, EE2 was used as a representative EEDC, for parallel evaluation of EEDC-induced immune suppression (immune marker gene expression, leukocyte numbers, host resistance assay, and immune competence index) and reproductive impairment (estrogen responsive gene expression, fecundity, fertilization success, hatching success, and reproductive competence index) in an established fish model (marine medaka Oryzias melastigma), considering sex-specific induction and adaptation and recovery responses under different EE2 exposure scenarios. The findings in marine medaka reveal distinct sex differences in the EE2-mediated biological responses. For female fish, low concentration of exogenous EE2 (33 ng/L) could induce hormesis (immune enhancement), enable adaptation (restored reproduction) and even boost fish resistance to bacterial challenge after abatement of EE2. However, a prolonged exposure to high levels of EE2 (113 ng/L) not only impaired FO immune function, but also perturbed females recovering from reproductive impairment, resulting in a persistent impact on the F1 generation output. Thus, for female fish, the exposure concentration of EE2 is more critical than the dose of EE2 in determining the impacts of EE2 on immune function and reproduction. Conversely, male fish are far more sensitive than females to the presence of low levels of exogenous EE2 in water and the EE2-mediated biological impacts are clearly dose-dependent. It is also evident in male fish that direct contact of EE2 is essential to sustain impairments of immune competence and reproductive output as well as deregulation of immune function genes in vivo. The immunomodulatory pathways altered by EE2 were deciphered for male and female fish, separately. Downregulation of hepatic tlr3 and c3 (in female) and tlr3, tlr5 and c3 (in male) may be indicative of impaired fish immune competence. Taken together, impaired immune competence in the EE2-exposed fish poses an immediate thread on the survival of FO population. Impaired reproduction in the EE2-exposed fish can directly affect F1 output. Parallel evaluation of immune competence and reproduction are important considerations when assessing the risk of sublethal levels of EE2/EEDCs in aquatic environments.
C1 [Ye, Roy R.; Peterson, Drew R.; Seemann, Frauke; Au, Doris W. T.] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Kowloon, Hong Kong, Peoples R China.
[Kitamura, Shin-Ichi] Ehime Univ, Ctr Marine Environm Studies, Matsuyama, Ehime 7908577, Japan.
[Segner, Helmut] Univ Bern, Ctr Fish & Wildlife Hlth, CH-3012 Bern, Switzerland.
[Seemann, Frauke] Texas A&M Univ, Dept Life Sci, 6300 Ocean Dr, Corpus Christi, TX 78412 USA.
C3 City University of Hong Kong; Ehime University; University of Bern;
Texas A&M University System
RP Seemann, F (corresponding author), Texas A&M Univ, Dept Life Sci, 6300 Ocean Dr, Corpus Christi, TX 78412 USA.; Au, DWT (corresponding author), City Univ Hong Kong, Dept Chem, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China.
EM Frauke.Seemann@tamucc.edu; bhdwtau@cityu.edu.hk
RI Seemann, Frauke/AAX-6021-2020; Segner, Helmut/D-5714-2014
OI Seemann, Frauke/0000-0002-7294-6829; Kitamura,
Shin-Ichi/0000-0001-7357-3369; Peterson, Drew/0000-0001-7882-629X;
Segner, Helmut/0000-0002-1783-1295
FU Research Grants Council of the Hong Kong Special Administrative Region,
China [9041943, CityU 160013]; City University of Hong Kong [7004660];
State Key Laboratory in Marine Pollution
FX The work described in this paper was supported by grants from the
Research Grants Council of the Hong Kong Special Administrative Region,
China (Project No. 9041943; CityU 160013), the City University of Hong
Kong (Grant no. 7004660) and the State Key Laboratory in Marine
Pollution. Prof Peter Yu is acknowledged for his input and support
regarding the development of the ICI and RCI formula. The authors would
like to acknowledge Dr J. Humble, Dr A. Shanthanagouda, Dr M. Dong and
K.L. Wong for their technical assistance.
CR Burgos-Aceves MA, 2016, FISH SHELLFISH IMMUN, V58, P42, DOI 10.1016/j.fsi.2016.09.006
Aris AZ, 2014, ENVIRON INT, V69, P104, DOI 10.1016/j.envint.2014.04.011
Armstrong BM, 2016, CHEMOSPHERE, V144, P366, DOI 10.1016/j.chemosphere.2015.08.078
Bo J, 2012, COMP BIOCHEM PHYS D, V7, P191, DOI 10.1016/j.cbd.2012.02.005
Bo J, 2011, MAR POLLUT BULL, V63, P267, DOI 10.1016/j.marpolbul.2011.05.014
Bowden TJ, 2008, FISH SHELLFISH IMMUN, V25, P373, DOI 10.1016/j.fsi.2008.03.017
Burkhardt-Holm P, 2008, CHIMIA, V62, P376, DOI 10.2533/chimia.2008.376
Caballero I, 2017, SCI REP-UK, V7, DOI 10.1038/srep40981
Cabas I, 2012, DEV COMP IMMUNOL, V36, P547, DOI 10.1016/j.dci.2011.09.011
Cabas I, 2011, MOL IMMUNOL, V48, P2079, DOI 10.1016/j.molimm.2011.07.001
Campbell CG, 2006, CHEMOSPHERE, V65, P1265, DOI 10.1016/j.chemosphere.2006.08.003
Casanova-Nakayama A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19040932
Cheung NKM, 2013, J FISH BIOL, V83, P295, DOI 10.1111/jfb.12164
Cuesta A, 2007, FISH SHELLFISH IMMUN, V23, P693, DOI 10.1016/j.fsi.2007.01.015
Danion M, 2011, AQUAT TOXICOL, V105, P300, DOI 10.1016/j.aquatox.2011.06.022
Dong M., 2017, FISH SHELLFISH IMMUN
Fuzzen MLM, 2015, AQUAT TOXICOL, V160, P106, DOI 10.1016/j.aquatox.2015.01.009
Hannah MF, 2008, BRAIN BEHAV IMMUN, V22, P503, DOI 10.1016/j.bbi.2007.10.005
Hou YL, 2012, GENE, V511, P398, DOI 10.1016/j.gene.2012.09.060
Jin YX, 2010, FISH SHELLFISH IMMUN, V28, P854, DOI 10.1016/j.fsi.2010.02.009
Jurgens MD, 2002, ENVIRON TOXICOL CHEM, V21, P480, DOI 10.1002/etc.5620210302
Kim H. S., 2018, MOL ECOL RESOUR
Kleinbaum D.G., 2010, SURVIVAL ANAL, V3
Kovats S, 2015, CELL IMMUNOL, V294, P63, DOI 10.1016/j.cellimm.2015.01.018
KUMAR D, 1994, RELIAB ENG SYST SAFE, V44, P177, DOI 10.1016/0951-8320(94)90010-8
Lafont AG, 2016, GEN COMP ENDOCR, V235, P177, DOI 10.1016/j.ygcen.2015.11.021
Lange R, 2001, ENVIRON TOXICOL CHEM, V20, P1216, DOI 10.1002/etc.5620200610
Law WY, 2001, GEN COMP ENDOCR, V121, P163, DOI 10.1006/gcen.2000.7593
Lee YS, 2017, EXP MOL MED, V49, DOI 10.1038/emm.2017.207
Lei BL, 2009, CHEMOSPHERE, V76, P36, DOI 10.1016/j.chemosphere.2009.02.035
Lesmeister MJ, 2005, REPROD BIOL ENDOCRIN, V3, DOI 10.1186/1477-7827-3-74
Liarte S, 2011, DEV COMP IMMUNOL, V35, P840, DOI 10.1016/j.dci.2011.03.015
Liebig M, 2005, CHEMOSPHERE, V59, P271, DOI 10.1016/j.chemosphere.2004.10.051
Liu S, 2012, WATER RES, V46, P3754, DOI 10.1016/j.watres.2012.04.006
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Markle JG, 2014, TRENDS IMMUNOL, V35, P97, DOI 10.1016/j.it.2013.10.006
Massart S, 2014, AQUAT TOXICOL, V157, P57, DOI 10.1016/j.aquatox.2014.10.003
Mills LJ, 2005, SCI TOTAL ENVIRON, V343, P1, DOI 10.1016/j.scitotenv.2004.12.070
Nagpal N., 2009, WATER QUALITY GUIDEL
Oda K, 2006, MOL SYST BIOL, V2, DOI 10.1038/msb4100057
Owen R, 2012, NATURE, V485, P441, DOI 10.1038/485441a
Palaszynski KM, 2005, ENDOCRINOLOGY, V146, P3280, DOI 10.1210/en.2005-0284
Palti Y, 2011, DEV COMP IMMUNOL, V35, P1263, DOI 10.1016/j.dci.2011.03.006
Park CH, 2001, J BIOL CHEM, V276, P7806, DOI 10.1074/jbc.M008922200
Peterson D. R., 2018, THESIS, P203
Pressley ME, 2005, DEV COMP IMMUNOL, V29, P501, DOI 10.1016/j.dci.2004.10.007
R Core Team, 2019, R LANG ENV STAT COMP
Rehberger K., 2017, CRIT REV TOXICOL, P1
Robinson CD, 2003, AQUAT TOXICOL, V62, P119, DOI 10.1016/S0166-445X(02)00079-6
Roved J, 2017, HORM BEHAV, V88, P95, DOI 10.1016/j.yhbeh.2016.11.017
Schafers C, 2007, J TOXICOL ENV HEAL A, V70, P768, DOI 10.1080/15287390701236470
Schmid T, 2002, TOXICOL LETT, V131, P65, DOI 10.1016/S0378-4274(02)00043-7
Seemann F, 2017, COMP BIOCHEM PHYS C, V199, P81, DOI 10.1016/j.cbpc.2017.03.010
Seemann F, 2016, J APPL TOXICOL, V36, P815, DOI 10.1002/jat.3215
Seemann F, 2013, MAR ENVIRON RES, V87-88, P44, DOI 10.1016/j.marenvres.2013.03.003
Segner H, 2013, GEN COMP ENDOCR, V191, P190, DOI 10.1016/j.ygcen.2013.05.015
Shike H, 2002, EUR J BIOCHEM, V269, P2232, DOI 10.1046/j.1432-1033.2002.02881.x
Song JY, 2012, ENVIRON SCI POLLUT R, V19, P2300, DOI 10.1007/s11356-012-0737-z
Sun LW, 2011, FISH SHELLFISH IMMUN, V30, P1131, DOI 10.1016/j.fsi.2011.02.020
Ternes TA, 1999, SCI TOTAL ENVIRON, V225, P81, DOI 10.1016/S0048-9697(98)00334-9
Thilagam H, 2009, ENVIRON TOXICOL CHEM, V28, P1722, DOI 10.1897/08-642.1
Thorpe KL, 2003, ENVIRON SCI TECHNOL, V37, P1142, DOI 10.1021/es0201348
WANG R, 1994, DEV COMP IMMUNOL, V18, P377, DOI 10.1016/0145-305X(94)90003-5
Wang YD, 2010, PEPTIDES, V31, P1026, DOI 10.1016/j.peptides.2010.02.025
Wenger M, 2012, MAR BIOTECHNOL, V14, P530, DOI 10.1007/s10126-012-9473-0
Wenger M, 2011, FISH SHELLFISH IMMUN, V31, P90, DOI 10.1016/j.fsi.2011.04.007
Whitacre CC, 1999, SCIENCE, V283, P1277, DOI 10.1126/science.283.5406.1277
Xu DH, 2008, PARASITOL RES, V103, P979, DOI 10.1007/s00436-008-1044-y
Yang Q, 2012, ENDOCRINOLOGY, V153, P3170, DOI 10.1210/en.2011-2045
Ye RR, 2017, ENVIRON SCI POLLUT R, V24, P27687, DOI 10.1007/s11356-016-7208-x
Ye RR, 2012, ENVIRON SCI POLLUT R, V19, P2477, DOI 10.1007/s11356-012-0887-z
Ying GG, 2003, WATER RES, V37, P3785, DOI 10.1016/S0043-1354(03)00261-6
Zhou JL, 2007, ENVIRON SCI TECHNOL, V41, P206, DOI 10.1021/es0619298
NR 73
TC 17
Z9 17
U1 0
U2 23
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0166-445X
EI 1879-1514
J9 AQUAT TOXICOL
JI Aquat. Toxicol.
PD OCT
PY 2018
VL 203
BP 95
EP 106
DI 10.1016/j.aquatox.2018.07.019
PG 12
WC Marine & Freshwater Biology; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Marine & Freshwater Biology; Toxicology
GA GV5MY
UT WOS:000446147500011
PM 30099325
DA 2023-03-13
ER
PT J
AU Horgan, FG
Penalver-Cruz, A
AF Horgan, Finbarr G.
Penalver-Cruz, Ainara
TI Compatibility of Insecticides with Rice Resistance to Planthoppers as
Influenced by the Timing and Frequency of Applications
SO INSECTS
LA English
DT Article
DE BPH32; cypermethrin; deltamethrin; hormesis; phytotoxicity; prophylactic
insecticides; resurgence; secondary outbreak
ID NILAPARVATA-LUGENS STAL; PESTICIDE-INDUCED SUSCEPTIBILITY; HOST-PLANT
RESISTANCE; BROWN PLANTHOPPER; BIOCHEMICAL-CHANGES; INDUCED RESURGENCE;
HOMOPTERA; DELPHACIDAE; CARBOFURAN; TOXICITY
AB Simple Summary The brown planthopper, Nilaparvata lugens (Stal)(BPH) is a pest of rice in Asia. Varietal resistance is proposed as an alternative to insecticides that reduces BPH densities. However, in practice, resistance is often combined with insecticide use. We examined the effects of combining seven insecticides with resistance. We applied insecticides as one, two or three applications (experiment 1), or as early or late applications (experiment 2) to resistant (IR62) and susceptible (IR64) rice in a screenhouse environment. Carbofuran and fipronil reduced BPH biomass density. Single applications of cartap hydrochloride, cypermethrin, or buprofezin reduced BPH biomass densities on IR62, but not on IR64 (i.e., synergies); however, the effects were weak and multiple applications of all insecticides (>= 2) eliminated synergies. Multiple applications of deltamethrin were antagonistic to resistance as indicated by higher densities of planthoppers on treated IR62 than on treated IR64. In non-infested plants from experiment 2, late applications reduced rice yields compared to early applications. Results suggest that early applications of some insecticides risk enhancing BPH densities, whereas late applications risk reducing rice yields. To avoid negative effects, applications should be made in compliance with Integrated Pest Management principals and multiple insecticide applications to BPH resistant rice should be avoided. The brown planthopper, Nilaparvata lugens (Stal)(BPH) is a pest of rice in Asia. We examined the effects of seven insecticides combined with host resistance against BPH. In a screenhouse environment, we treated BPH-infested and non-infested resistant (IR62) and susceptible (IR64) rice with buprofezin, carbofuran, cartap hydrochloride, cypermethrin, deltamethrin, fipronil, or thiamethoxam + chlorantraniliprole. In one experiment, plants received one, two or three applications. In a second experiment, plants received one early or late insecticide application. Carbofuran and fipronil reduced planthopper biomass densities but resistance did not contribute to these effects (i.e., resistance was redundant). Single applications of cartap hydrochloride (at 20 or 50 days after sowing (DAS)), cypermethrin (20 DAS), or buprofezin (50 DAS) reduced BPH biomass densities on IR62 (i.e., synergies); other insecticides and application times, and multiple applications of all insecticides did not reduce BPH biomass densities on IR62 more than on IR64 (i.e., either resistance or insecticides were redundant). Deltamethrin (three applications) was antagonistic to resistance, but host resistance tended to buffer against the negative effects of single deltamethrin applications. Yields of infested IR62 were not statistically improved by insecticide applications. Late applications reduced yields of non-infested rice. We discuss how prophylactic insecticide applications could destabilize BPH populations and reduce the productivity and profitability of resistant rice.
C1 [Horgan, Finbarr G.] EcoLaVerna Integral Restorat Ecol, Bridestown T56 P499, Cty Cork, Ireland.
[Horgan, Finbarr G.] Univ Edinburgh, Univ BHF Ctr Cardiovasc Sci, Ctr Pesticide Suicide Prevent, Edinburgh EH16 4TJ, Midlothian, Scotland.
[Horgan, Finbarr G.] Univ Catolica Maule, Escuela Agron, Fac Ciencias Agrarias & Forestales, Casilla 7-D, Curico 3349001, Chile.
[Penalver-Cruz, Ainara] Univ Rennes, Inst Natl Rech Agri Alimentat & Environ INRAE, Inst Genet Environm & Protect Plantes IGEPP, Inst Agro, F-49045 Angers, France.
[Penalver-Cruz, Ainara] Int Rice Res Inst, Makati 1226, Metro Manila, Philippines.
C3 University of Edinburgh; Universidad Catolica del Maule; INRAE; Institut
Agro; CGIAR; International Rice Research Institute (IRRI)
RP Horgan, FG (corresponding author), EcoLaVerna Integral Restorat Ecol, Bridestown T56 P499, Cty Cork, Ireland.; Horgan, FG (corresponding author), Univ Edinburgh, Univ BHF Ctr Cardiovasc Sci, Ctr Pesticide Suicide Prevent, Edinburgh EH16 4TJ, Midlothian, Scotland.; Horgan, FG (corresponding author), Univ Catolica Maule, Escuela Agron, Fac Ciencias Agrarias & Forestales, Casilla 7-D, Curico 3349001, Chile.
EM f.horgan@ecolaverna.org; ainara.penalver@agrocampus-ouest.fr
RI Peñalver-Cruz, Ainara/J-7559-2018
OI Peñalver-Cruz, Ainara/0000-0003-4942-5328; Horgan,
Finbarr/0000-0003-3796-667X
FU Bill and Melinda Gates Foundation [OPP52303]; Global Rice Science
Platform (GRiSP)
FX This research was funded by the Bill and Melinda Gates Foundation
(Cereal Systems Initiative for South Asia (CSISA): OPP52303) and the
Global Rice Science Platform (GRiSP) under the directorship of Achim
Dobermann.
CR ADDELMAN S, 1974, AM STAT, V28, P21, DOI 10.2307/2683524
Anand Kumar A.D.V.S.L.P., 2019, J ENTOMOL ZOOL STUD, V7, P874
Azzam S, 2009, INT J PEST MANAGE, V55, P347, DOI 10.1080/09670870902934872
Bandong JP, 2002, CROP PROT, V21, P803, DOI 10.1016/S0261-2194(02)00043-1
Borkar V., 2018, INT J CHEM STUD, V6, P9
Bottrell DG, 2012, J ASIA-PAC ENTOMOL, V15, P122, DOI 10.1016/j.aspen.2011.09.004
Braganca I., 2018, BIOT ABIOTIC STRESS, P47
CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773
Cheng C. H., 1979, International Rice Research Institute: Brown planthopper: threat to rice production in Asia., P251
Cuong NL, 1997, CROP PROT, V16, P707, DOI 10.1016/S0261-2194(97)00068-9
Deng LL, 2008, ARCH ENVIRON CON TOX, V55, P652, DOI 10.1007/s00244-008-9149-y
Dhaka S. S., 2011, Annals of Plant Protection Sciences, V19, P324
FABELLAR LT, 1986, CROP PROT, V5, P254, DOI 10.1016/0261-2194(86)90059-1
Fujita D, 2013, CRIT REV PLANT SCI, V32, P162, DOI 10.1080/07352689.2012.735986
Gallagher Kevin D., 1994, P599
Ghosal Abhijit, 2019, Journal of Basic and Applied Zoology, V80, P6, DOI 10.1186/s41936-019-0077-3
Gimenez-Moolhuyzen M, 2020, INSECTS, V11, DOI 10.3390/insects11020069
Gonzalez-Doncel M, 2004, ARCH ENVIRON CON TOX, V48, P87, DOI 10.1007/s00244-003-0223-1
HAMID A, 1988, J AGRON CROP SCI, V161, P11, DOI 10.1111/j.1439-037X.1988.tb00637.x
Heinrichs E. A., 1978, International Rice Research Newsletter, V3, P10
Heinrichs E.A., 1994, BIOL MANAGEMENT RICE
HEINRICHS EA, 1982, ENVIRON ENTOMOL, V11, P1269, DOI 10.1093/ee/11.6.1269
HEINRICHS EA, 1982, ENVIRON ENTOMOL, V11, P78, DOI 10.1093/ee/11.1.78
HEINRICHS EA, 1984, ENVIRON ENTOMOL, V13, P455, DOI 10.1093/ee/13.2.455
Horgan FG, 2017, BURL DODDS AGR SCI, V4, P309, DOI 10.19103/AS.2016.0003.23
Horgan F.G., 2021, CROPS, V1, P166, DOI [10.3390/crops1030016, DOI 10.3390/CROPS1030016]
Horgan FG, 2021, INSECTS, V12, DOI 10.3390/insects12110989
Horgan FG, 2021, INSECTS, V12, DOI 10.3390/insects12100847
Horgan FG, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80704-4
Horgan FG, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240130
Horgan FG, 2020, ENVIRON MANAGE, V65, P787, DOI 10.1007/s00267-020-01272-x
Horgan FG, 2020, CROP PROT, V127, DOI 10.1016/j.cropro.2019.104963
Horgan FG, 2019, INSECTS, V10, DOI 10.3390/insects10100328
Horgan FG, 2019, CROP PROT, V115, P47, DOI 10.1016/j.cropro.2018.09.013
Horgan FG, 2018, CROP PROT, V110, P21, DOI 10.1016/j.cropro.2018.03.013
Horgan FG, 2018, FIELD CROP RES, V217, P53, DOI 10.1016/j.fcr.2017.12.008
Horgan FG, 2017, AGRONOMY-BASEL, V7, DOI 10.3390/agronomy7040062
Horgan FG, 2016, ENTOMOL EXP APPL, V158, P284, DOI 10.1111/eea.12400
Horgan FG, 2015, CROP PROT, V78, P222, DOI 10.1016/j.cropro.2015.09.014
Horgan FG, 2013, ENTOMOL EXP APPL, V148, P1, DOI 10.1111/eea.12080
Jahn GC, 2004, J ECON ENTOMOL, V97, P1923, DOI 10.1603/0022-0493-97.6.1923
JOSHI R C, 1992, International Rice Research Newsletter, V17, P9
Khush G.S., 2005, IR VARIETIES THEIR I
Kim J.-b., 1984, Korean Journal of Plant Protection, V23, P233
Kim S.-C, 1987, KOREAN J WEED SCI, V7, P98
Ko K, 2015, J ECON ENTOMOL, V108, P69, DOI 10.1093/jee/tou053
Kumar Anand A. D. V. S. L. P., 2020, Indian Journal of Entomology, V82, P809, DOI 10.5958/0974-8172.2020.00102.9
Kumar R, 2013, B ENVIRON CONTAM TOX, V90, P482, DOI 10.1007/s00128-012-0926-y
Mackill DJ, 2018, RICE, V11, DOI 10.1186/s12284-018-0208-3
Maclean J., 2013, RICE ALMANAC
Mahabaleshwar Hegde, 2009, Karnataka Journal of Agricultural Sciences, V22, P511
Matteson Patricia C., 1994, P656
Moore MT, 2010, ARCH ENVIRON CON TOX, V59, P574, DOI 10.1007/s00244-010-9519-0
Moriya S., 1975, Proceedings of the Association for Plant Protection of Kyushu, V21, P68
Muthayya S, 2014, ANN NY ACAD SCI, V1324, P7, DOI 10.1111/nyas.12540
NAGATA T, 1986, APPL ENTOMOL ZOOL, V21, P357, DOI 10.1303/aez.21.357
Nakanishi K, 2018, ENVIRON SCI POLLUT R, V25, P35352, DOI 10.1007/s11356-018-3440-x
Nanthakumar M, 2012, PESTIC BIOCHEM PHYS, V102, P146, DOI 10.1016/j.pestbp.2011.12.006
Nayak A., 2017, J ENTOMOL ZOOL STUD, V5, P1177
Nguyen CD, 2021, BREEDING SCI, V71, P497, DOI 10.1270/jsbbs.21034
Otieno PO, 2010, J ENVIRON SCI HEAL B, V45, P137, DOI [10.1080/10934520903425459, 10.1080/03601230903472058]
Parsaeyan E, 2018, CROP PROT, V110, P269, DOI 10.1016/j.cropro.2017.03.026
PATHAK M. D, 1994, INSECT PEST RICE
Pawar R.D., 2020, J ENTOMOL ZOOL STUD, V8, P685
Pazini Juliano de Bastos, 2016, Pesqui. Agropecu. Trop., V46, P327, DOI 10.1590/1983-40632016v4640844
PEDIGO LP, 1986, ANNU REV ENTOMOL, V31, P341, DOI 10.1146/annurev.en.31.010186.002013
Cruz AP, 2011, ENTOMOL EXP APPL, V141, P245, DOI 10.1111/j.1570-7458.2011.01193.x
REISSIG WH, 1982, ENVIRON ENTOMOL, V11, P165, DOI 10.1093/ee/11.1.165
Rubia E, 1986, BIOL TOXICOLOGICAL S
SALIM M, 1987, CROP PROT, V6, P28, DOI 10.1016/0261-2194(87)90024-X
Samanta S., 2020, J ENTOMOL ZOOL STUD, V8, P1529
SATAPATHY MK, 1984, TROP PEST MANAGE, V30, P170, DOI 10.1080/09670878409370873
Sharma RK, 2012, CELL MOL BIOL, V58, P128, DOI 10.1170/T931
Suri KS, 2011, CROP PROT, V30, P118, DOI 10.1016/j.cropro.2010.11.008
Tanaka K, 2000, APPL ENTOMOL ZOOL, V35, P177, DOI 10.1303/aez.2000.177
Thorburn C, 2015, INSECTS, V6, P381, DOI 10.3390/insects6020381
Uddin A. B. M. A., 2020, SAARC Journal of Agriculture, V18, P117, DOI 10.3329/sja.v18i1.48386
Van den Berg H, 2000, J APPL ECOL, V37, P959, DOI 10.1046/j.1365-2664.2000.00543.x
Vorley W.T., 1985, International Rice Research Newsletter, V10, P19
Wan Jaafar WN, 2013, ACTA BIOL MALAYS, V2, P115
Wang HY, 2008, CROP PROT, V27, P514, DOI 10.1016/j.cropro.2007.08.004
Wang LP, 2010, CROP PROT, V29, P1280, DOI 10.1016/j.cropro.2010.07.009
Widawsky D, 1998, AGR ECON-BLACKWELL, V19, P203, DOI 10.1016/S0169-5150(98)00049-8
Wu JC, 2004, INT J PEST MANAGE, V50, P55, DOI 10.1080/09670870310001630397
Wu JC, 2001, ENTOMOL EXP APPL, V100, P119, DOI 10.1023/A:1019284703260
Wu Jin-cai, 2003, Scientia Agricultura Sinica, V36, P1163
Wu JC, 2020, ANNU REV ENTOMOL, V65, P409, DOI 10.1146/annurev-ento-011019-025215
Yang GQ, 2017, J ASIA-PAC ENTOMOL, V20, P830, DOI 10.1016/j.aspen.2017.05.005
Zhang CP, 2016, J ENVIRON SCI HEAL B, V51, P351, DOI 10.1080/03601234.2015.1120606
NR 89
TC 3
Z9 3
U1 8
U2 12
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-4450
J9 INSECTS
JI Insects
PD FEB
PY 2022
VL 13
IS 2
AR 106
DI 10.3390/insects13020106
PG 25
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA ZV7CC
UT WOS:000770682600001
PM 35206680
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Xu, Q
Qin, JH
Sun, H
Wang, XQ
Chen, WQ
Li, Z
AF Xu, Qin
Qin, Jihong
Sun, Hui
Wang, Xiaoqin
Chen, Wenqing
Li, Zhi
TI Effects of soil cadmium exposure on physio-ecological characteristics of
Bletilla striata
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE Bletilla striata; Soil; Heavy metal; Cd; Pollution; Physio-ecological
characteristics
ID HEAVY-METALS; RISK-ASSESSMENT; POLLUTION; POLYSACCHARIDE; CONTAMINATION;
EXPRESSION; GROWTH; PLANTS; CHINA; RICE
AB Bletilla striata (Thunb.) Reichb.f. has shown rather extraordinary medicinal and economic value in recent years. However, the artificial cultivation of B. striata faces quite a lot of obstacles, especially the quality degradation and heavy metal pollution problems. Cadmium (Cd) in particular, is reported to generally exceed the standard in the artificial cultivation of B. striata. So far, little attention has been paid to analyze the effects of heavy metals on the growth and the medicinal treatment efficacy of B. striata. Herein, we investigate the physio-ecological response of B. striata under gradient Cd concentration treatment: Control (0.285 mg kg(-1)); Tr-1 (0.655 mg kg(-1)); Tr-2 (1.285 mg kg(-1)); Tr-3 (7.675 mg kg(-1)); Tr-4 (54.885 mg kg(-1)), so as to provide a reference for the study of the Cd response regulation on B. striata. In this work, we examined the biomass, total carbon, total nitrogen, and content of B. striata polysaccharides (BSP, the functional component of B. striata), as well as the absorption proportion of Cd in B. striata. Based on the preliminary research, ecological risk assessment and human health risk assessment were allocated. Experiments were conducted in two batches (2018 and 2019, sampling in the same season) with the following findings: (1) The biomass showed no pronounced differences between the treatments or the sampling dates, only reached significant decrease at 54.885 mg kg(-1) (Tr-4) soil Cd concentration in 2019; (2) The total carbon of B. striata under Cd treatment was in line with the Hormesis effect and reached a peak at 0.655 mg kg(-1) (Tr-1) soil Cd concentration; (3) The total nitrogen content was generally promoted under Cd treatment with the highest content at 1.225 mg kg(-1) (Tr-2); (4) The total BSP content in two sampling years are both sorted in decreasing order: Tr-4 < Tr-3 < Tr-2 < Tr-1 < Control; (5) The Cd content in Bletillae Rhizoma (tuber of B. striata) under 0.655 mg kg(-1) soil Cd treatment was within the threshold stipulated in Chinese Pharmacopoeia in 2018 batch and in 2019 batch, only the control group was qualified with a safe plantation limit of Cd. The results of ecological risk assessment showed moderate toxic risk under Tr-1 (0.655 mg Cd kg(-1)) and the human health risk assessment indicated negligible toxic effects on human health. Overall, the soil Cd concentration should be lower than 0.655 mg kg(-1), if safe cultivation, medicinal effect of B. striata and human health risk are taken into consideration.
C1 [Xu, Qin; Sun, Hui; Wang, Xiaoqin; Chen, Wenqing; Li, Zhi] Sichuan Univ, Dept Environm Sci & Engn, Chengdu 610065, Peoples R China.
[Qin, Jihong] Chengdu Univ, Dept Environm Engn, Chengdu 610106, Peoples R China.
C3 Sichuan University; Chengdu University
RP Li, Z (corresponding author), Sichuan Univ, Dept Environm Sci & Engn, Chengdu 610065, Peoples R China.
EM xuqin@stu.scu.edu.cn; qinjihong@cdu.edu.cn; sunhui@scu.edu.cn;
wangxq_scu@qq.com; chenwenqing@scu.edu.cn; lizhi_scu@scu.edu.cn
FU National Key Research and Development Program of China [2017YFC1700705]
FX This research was funded by the National Key Research and Development
Program of China (No. 2017YFC1700705).
CR Bai JunHua, 2007, Agricultural Sciences in China, V6, P437, DOI 10.1016/S1671-2927(07)60067-4
Bastami KD, 2014, MAR POLLUT BULL, V81, P262, DOI 10.1016/j.marpolbul.2014.01.029
Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938
Che T., 2016, YUNNAN KEJI GUANLI, V29, P41
Chen YW, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111311
Chowdhury A, 2021, ENVIRON SCI POLLUT R, V28, P33042, DOI 10.1007/s11356-021-12566-w
Clemens S, 2016, ANNU REV PLANT BIOL, V67, P489, DOI 10.1146/annurev-arplant-043015-112301
CPC, 2015, CHINESE PHARMACOPOEI
DalCorso G, 2010, PLANT SIGNAL BEHAV, V5, P663, DOI 10.4161/psb.5.6.11425
Diao HJ, 2008, J BIOSCI BIOENG, V105, P85, DOI 10.1263/jbb.105.85
DOELMAN P, 1984, B ENVIRON CONTAM TOX, V32, P717, DOI 10.1007/BF01607562
Duan QN, 2016, B ENVIRON CONTAM TOX, V97, P303, DOI 10.1007/s00128-016-1857-9
Efeoglu B., 2009, EUR ASIA J BIOSCI, P97, DOI [10.5053/ejobios.2009.3.0.13, DOI 10.5053/EJ0BIOS.2009.3.0.13, DOI 10.5053/EJOBIOS.2009.3.0.13]
Faller P, 2005, BBA-BIOENERGETICS, V1706, P158, DOI 10.1016/j.bbabio.2004.10.005
Fu Yu-hao, 2017, Shengtaixue Zazhi, V36, P1965, DOI 10.13292/j.1000-4890.201707.025
Fusco N, 2005, J EXP BOT, V56, P3017, DOI 10.1093/jxb/eri299
Guan L-Z., 2009, J SHENYANG AGRI U, V40
Guo Lan-Ping, 2020, Zhongguo Zhong Yao Za Zhi, V45, P1969, DOI 10.19540/j.cnki.cjcmm.20200302.101
HAKANSON L, 1980, WATER RES, V14, P975, DOI 10.1016/0043-1354(80)90143-8
Huang Lu-Qi, 2007, Zhongguo Zhong Yao Za Zhi, V32, P277
Huang Y, 2019, SCI TOTAL ENVIRON, V651, P3034, DOI 10.1016/j.scitotenv.2018.10.185
Ihedioha JN, 2017, ENVIRON GEOCHEM HLTH, V39, P497, DOI 10.1007/s10653-016-9830-4
Ikewuchi JC, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01501
Li, 2014, THESIS CHANGAN U
Li F-Q, 2006, LISHIZHEN MED MAT ME, V17, P2457
Lin F, 2019, CENTRAL S PHARM, V17, P74
Liu, 2018, THESIS HUNAN AGR U
Lu, 2018, THESIS GUANGXI U
[卢红玲 Lu Hongling], 2014, [南方农业学报, Journal of Southern Argiculture], V45, P1986
Luo, 2019, THESIS CENTRAL S U F
Ma Shi-hong, 2009, Detergent & Cosmetics, V32, P30
Maret W, 2013, METAL IONS LIFE SCI, V11, P1, DOI 10.1007/978-94-007-5179-8_1
MEP, 1995, ENV QUAL STAND SOILS
MEP, 2016, HJ7812016 MEP
Miho Y, 2003, NAT MED, V57, P55
Ministry of Environmental Protection of P R China (MEP), 2014, CHIN SOIL POLL SURV
[莫争 Mo Zheng], 2002, [环境化学, Environmental Chemistry], V21, P110
Moulick D, 2018, J HAZARD MATER, V355, P187, DOI 10.1016/j.jhazmat.2018.05.017
National Food and Drug Administration, 2015, SAF TECHN STAND COSM
Naz A, 2020, ENVIRON GEOCHEM HLTH, V42, P4213, DOI 10.1007/s10653-020-00603-5
[农云军 Nong Yunjun], 2016, [质谱学报, Journal of Chinese Mass Spectrometry Society], V37, P68
Peng, 2019, THESIS JISHOU U
Peng Q, 2014, CARBOHYD POLYM, V107, P119, DOI 10.1016/j.carbpol.2014.02.042
Qin RJ, 2007, TREE PHYSIOL, V27, P313, DOI 10.1093/treephys/27.2.313
Qu Y, 2016, CARBOHYD POLYM, V148, P345, DOI 10.1016/j.carbpol.2016.04.081
Raj D, 2017, HUM ECOL RISK ASSESS, V23, P767, DOI 10.1080/10807039.2016.1278519
[任晓航 Ren Xiaohang], 2019, [中草药, Chinese Traditional and Herbal Drugs], V50, P2480
Sharma SS, 2009, TRENDS PLANT SCI, V14, P43, DOI 10.1016/j.tplants.2008.10.007
[宋霄君 Song Xiaojun], 2018, [植物营养与肥料学报, Journal of Plant Nutrition and Fertitizer], V24, P1588
Storelli MM, 2008, FOOD CHEM TOXICOL, V46, P2782, DOI 10.1016/j.fct.2008.05.011
[孙爱静 Sun Aijing], 2016, [中国药学杂志, Chinese Pharmaceutical Journal], V51, P101
Takata T., 1978, Japanese Journal of Hygiene, V32, P691
Tan D., 2015, CHINESE J HLTH LABOR, V25, P471
Tanwir K, 2015, ENVIRON SCI POLLUT R, V22, P9193, DOI 10.1007/s11356-015-4076-8
Tao A., 2013, JIANGSU AGR SCI, V41, P6, DOI [DOI 10.15889/J.ISSN.1002-1302.2013.11.036, 10.15889/j.issn.1002-1302.2013.11.036]
Uluturhan E, 2011, MAR POLLUT BULL, V62, P1989, DOI 10.1016/j.marpolbul.2011.06.019
USEPA, 2020, REG SCR LEV RSLS GEN
Wang, 2014, THESIS BEIJING U CHE
Wang CM, 2006, BIOTECHNOL LETT, V28, P539, DOI 10.1007/s10529-006-0011-x
Wang Li-Xin, 2001, Zhongguo Zhongyao Zazhi, V26, P690
Wang XiaoJin, 2019, Journal of Agro-Environment Science, V38, P1218
Wang YR, 2019, INT J BIOL MACROMOL, V122, P628, DOI 10.1016/j.ijbiomac.2018.10.201
Xiao P-G, 2004, CHINA J CHINESE MAT
[张曼 Zhang Man], 2019, [中草药, Chinese Traditional and Herbal Drugs], V50, P5103
Zhang Shu-Qi, 2020, Bulletin of Botanical Research, V40, P224, DOI [10.7525/j.issm1673-5102.2020.02.009, 10.7525/j.issn.1673-5102.2020.02.009]
Zhuo W-W, 2014, J N PHARM, V11, P69
王爱民, 2009, [中国中药杂志, China Journal of Chinese Materia Medica], V34, P2963
NR 67
TC 0
Z9 0
U1 1
U2 35
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD JAN
PY 2022
VL 29
IS 3
BP 4008
EP 4023
DI 10.1007/s11356-021-15809-y
EA AUG 2021
PG 16
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA YD3SB
UT WOS:000685427100020
PM 34398374
DA 2023-03-13
ER
PT J
AU Lim, CJ
Basri, M
Ee, GCL
Omar, D
AF Lim, Chaw Jiang
Basri, Mahiran
Ee, Gwendoline Cheng Lian
Omar, Dzolkhifli
TI Phytoinhibitory activities and extraction optimization of potent
invasive plants as eco-friendly weed suppressant against Echinochloa
colona (L.) Link
SO INDUSTRIAL CROPS AND PRODUCTS
LA English
DT Article
DE Invasive plant; Mikania micrantha Kunth ex HBK; phytoinhibitory
activity; Echinochloa colona (L.) Link; response surface methodology;
sustainable weed management
ID ANTIOXIDANT ACTIVITY; AGERATUM-CONYZOIDES; ALLELOCHEMICALS; GERMINATION;
SEEDS; MANAGEMENT; COMPONENTS; RESISTANCE; AGITATION; HORMESIS
AB Parasitic Echinochloa colona (L.) Link has globally invaded paddy fields that could devote to severe grain yield loss. Prolonged extensive application of commercial synthetic herbicides could pose the weed evolved resistance, bioaccumulation and environmental deterioration. Hence, this paper pertains to the aim of investigating potent natural products which have shown considerable phytotoxic activities, subsequent phytotoxin studies and extraction optimization for pre -emergent control of E. colona. In the phytotoxicity study, a suite of invasive plants was procured and the leaf, stem and root extracts were evaluated by in vitro germination and seedling growth assays. The invasive plant extracts exhibited multiple Magnitudes of inhibition against E. colona in the plant species-, plant part-and concentration-dependent manners. Along with the dose -response study, the leaf extracts of Mikania micrantha Kunth ex H.B.K., Clidemia hirta (L) D. Don, Dicranopteris linearis (Burm.f.) Underw. and Ageratum conyzoides L. showed the attainable half maximal effective doses (ED50) below the concentration 100 g biomass dry weight equivalent (BDWE)/L, indicating the top -ranked inhibition of E. colona among the investigated plant extracts. The top -ranked phytotoxic leaf extracts Were subjected to qualitative and quantitative characterizations including extraction yield, total phenolic content, phytocheinical screening and spectroscopic analysis of the phytochemicals with possible inhibitory effect. Joint putative allelochemicals consisting of 16 phenolics and 5 aromatics were detected concurrently by liquid chromatography-mass spectrom-try (LC -MS), were found contributed to the appreciable germination inhibition. Amongst the abundant phenolic acids were protocatechuic acid, gallic acid, p-hydroxyphenylatetic acid and chlorogenic acid. To suit the industrial desire in product development, the phytotoxic leaves were processed through extraction optimization using response surface methodology (RSM). A multivariate face -centered cube design (FCCD) was established to seek the functional relationship between the process variables (extraction time, agitation speed and solvent consumption) and the response (germination inhibition). Quadratic response surface models were obtained with the Models significance and significant effect of the process factors at 95% confidence interval were examined by various statistical analyses. Verification experiments at the optimal conditions were well matched with the predicted values, along with absolute errors in the range 3.63% to 6.70%, indicating the proposed quadratic models Were valid and useful prediction of the extraction conditions. These outcomes provide the valuable findings on the possible Use of potent invasive plants as bioeffective, economical and eco-friendly herbicide alternative towards fostering the sustainable weed management.(C) 2017 Elsevier B.V. All rights reserved.
C1 [Lim, Chaw Jiang; Basri, Mahiran; Ee, Gwendoline Cheng Lian] Univ Putra Malaysia, Fac Sci, Dept Chem, Upm Serdang 43400, Selangor, Malaysia.
[Omar, Dzolkhifli] Univ Putra Malaysia, Fac Agr, Dept Plant Protect, Upm Serdang 43400, Selangor, Malaysia.
[Basri, Mahiran] Univ Putra Malaysia, Inst Biosci, Lab Mol Biomed, Upm Serdang 43400, Selangor, Malaysia.
C3 Universiti Putra Malaysia; Universiti Putra Malaysia; Universiti Putra
Malaysia
RP Lim, CJ; Basri, M (corresponding author), Univ Putra Malaysia, Fac Sci, Dept Chem, Upm Serdang 43400, Selangor, Malaysia.
EM jj_lim84@yahoo.com.my; mahiran@upm.edu.my
OI Lim, Chaw Jiang/0000-0002-9027-4448
FU Ministry of Higher Education (MOHE) Malaysia
FX Appreciative thanks to G.T. Goh, M. Arumugam, B. Shammugasamy, A.
Rajeendran and K. Venkatachalam for their tremendous assistance in plant
materials acquisition, dissection and bioassay evaluation, and Dr. R. Go
for plants authentication. The main author (C J. Lim) would like to
gratefully acknowledge the Ministry of Higher Education (MOHE) Malaysia
for supporting him MyPhD scholarship (MyBrainl5 program) in his PhD
degree study.
CR Aghilinategh N, 2015, FOOD SCI NUTR, V3, P331, DOI 10.1002/fsn3.224
Al-Charchafchi F., 2006, DIRASAT PURE SCI, V33, P168
Alberti A, 2014, FOOD CHEM, V149, P151, DOI 10.1016/j.foodchem.2013.10.086
Asaduzzaman M, 2012, SCI HORTIC-AMSTERDAM, V134, P26, DOI 10.1016/j.scienta.2011.11.035
Ash GJ, 2010, BIOL CONTROL, V52, P230, DOI 10.1016/j.biocontrol.2009.08.007
Barwal A, 2016, ENVIRON SCI POLLUT R, V23, P9944, DOI 10.1007/s11356-016-6250-z
Bas D, 2007, J FOOD ENG, V78, P836, DOI 10.1016/j.jfoodeng.2005.11.024
Batish DR, 2009, PLANT GROWTH REGUL, V57, P137, DOI 10.1007/s10725-008-9329-9
Bhadoria P. B. S., 2011, American Journal of Experimental Agriculture, V1, P7
Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen
Cerdeira AL, 2012, WEED SCI, V60, P212, DOI 10.1614/WS-D-11-00160.1
Chauhan BS, 2012, WEED TECHNOL, V26, P1, DOI 10.1614/WT-D-11-00105.1
Chauhan BS, 2009, WEED SCI, V57, P235, DOI 10.1614/WS-08-141.1
Choo WeeSim, 2011, Advances in Applied Science Research, V2, P418
Cruz O.R., 1998, J CHEM ECOL, V24, P2039
Dayan FE, 2012, PEST MANAG SCI, V68, P519, DOI 10.1002/ps.2332
Dayan FE, 2009, PLANT-DERIVED NATURAL PRODUCTS: SYNTHESIS, FUNCTION, AND APPLICATION, P361, DOI 10.1007/978-0-387-85498-4_17
Dayan FE, 2009, BIOORGAN MED CHEM, V17, P4022, DOI 10.1016/j.bmc.2009.01.046
dos Santos WD, 2008, J CHEM ECOL, V34, P1230, DOI 10.1007/s10886-008-9522-3
Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic
Ekta Joshi, 2013, Plant Knowledge Journal, V2, P119
El-Gawad A.M.A., 2015, EGYPT J BASIC APPL S, V2, P303
Esmaeili AK, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/643285
Faravani M, 2008, NOT BOT HORTI AGROBO, V36, P54
Farooq M, 2011, SOIL TILL RES, V111, P87, DOI 10.1016/j.still.2010.10.008
Flory SL, 2009, J APPL ECOL, V46, P434, DOI 10.1111/j.1365-2664.2009.01610.x
Gaines TA, 2012, WEED TECHNOL, V26, P480, DOI 10.1614/WT-D-12-00029.1
Gan CY, 2011, FOOD CHEM, V124, P1277, DOI 10.1016/j.foodchem.2010.07.074
Golisz A, 2007, WEED BIOL MANAG, V7, P164, DOI 10.1111/j.1445-6664.2007.00252.x
Gressel J, 2009, PEST MANAG SCI, V65, P1164, DOI 10.1002/ps.1842
Gulzar A, 2016, PROTOPLASMA, V253, P1211, DOI 10.1007/s00709-015-0862-x
Hagan DL, 2013, J CHEM ECOL, V39, P312, DOI 10.1007/s10886-013-0241-z
Harvey JA, 2005, J CHEM ECOL, V31, P287, DOI 10.1007/s10886-005-1341-1
Holm L.G., 1991, WORLDS WORST WEEDS D, P609
Hong C, 2009, BIOMASS BIOENERG, V33, P721, DOI 10.1016/j.biombioe.2008.11.004
Hossain Mohammad Amzad, 2013, Asian Pacific Journal of Tropical Biomedicine, V3, P705, DOI 10.1016/S2221-1691(13)60142-2
Hou XJ, 2008, CARBOHYD POLYM, V72, P67, DOI 10.1016/j.carbpol.2007.07.034
Hussain AI, 2012, FOOD ANAL METHOD, V5, P890, DOI 10.1007/s12161-011-9325-y
Ismail AB., 2014, J SAUDI SOC AGR SCI, V15, P112, DOI [10.1016/j.jssas.2014.06.002, DOI 10.1016/J.JSSAS.2014.06.002]
Ismaini L., 2015, PROS SEM NAS MAS BIO, V1, P834
JAYAKRISHNAN BM, 2014, EUR J EXP BIOL, V4, P47
Jeganathan PM, 2014, PREP BIOCHEM BIOTECH, V44, P56, DOI 10.1080/10826068.2013.791629
Jones W.P., 2012, NATURAL PRODUCTS ISO, P327
Kato-Noguchi H, 2012, PLANT ECOL, V213, P1937, DOI 10.1007/s11258-012-0096-3
Kocacaliskan I, 2009, FRESEN ENVIRON BULL, V18, P249
Kong CH, 2004, PLANT SOIL, V264, P149, DOI 10.1023/B:PLSO.0000047759.65133.fa
Kong CH, 2010, WEED BIOL MANAG, V10, P73, DOI 10.1111/j.1445-6664.2010.00373.x
Kovalchuk I, 2003, PLANT CELL ENVIRON, V26, P1531, DOI 10.1046/j.1365-3040.2003.01076.x
Krishnaswamy K, 2013, FOOD BIOPROCESS TECH, V6, P441, DOI 10.1007/s11947-012-0800-2
Li JM, 2010, WEED BIOL MANAG, V10, P194, DOI 10.1111/j.1445-6664.2010.00384.x
Li ZH, 2010, MOLECULES, V15, P8933, DOI 10.3390/molecules15128933
Lima RB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080542
Macel M, 2011, PHYTOCHEM REV, V10, P75, DOI 10.1007/s11101-010-9181-1
Maran JP, 2015, J FOOD SCI TECH MYS, V52, P92, DOI 10.1007/s13197-013-0985-z
Maran JP, 2013, ALEX ENG J, V52, P507, DOI 10.1016/j.aej.2013.06.007
Maran JP, 2012, DYES PIGMENTS, V95, P465, DOI 10.1016/j.dyepig.2012.06.007
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Mavroudis NE, 1998, J FOOD ENG, V35, P191, DOI 10.1016/S0260-8774(98)00015-6
Mehrafarin A, 2011, AFR J AGR RES, V6, P4631
Mussatto SI, 2008, CELLULOSE, V15, P711, DOI 10.1007/s10570-008-9215-7
Ng L. Y., 2012, Research Journal of Phytochemistry, V6, P61
Paulucci VP, 2013, REV BRAS FARMACOGN, V23, P94, DOI 10.1590/S0102-695X2012005000117
Phisut N., 2012, International Food Research Journal, V19, P7
Pilkington JL, 2014, IND CROP PROD, V58, P15, DOI 10.1016/j.indcrop.2014.03.016
Pinelo M, 2005, FOOD CHEM, V92, P109, DOI 10.1016/j.foodchem.2004.07.015
Pisula NL, 2010, J TORREY BOT SOC, V137, P81, DOI 10.3159/09-RA-040.1
Rao AN, 2007, ADV AGRON, V93, P153, DOI 10.1016/S0065-2113(06)93004-1
Rao N.K., 2006, BIOVERS INT, V8, P50
Rostami M, 2014, IND CROP PROD, V58, P160, DOI 10.1016/j.indcrop.2014.04.015
Rudrappa T, 2007, J CHEM ECOL, V33, P1898, DOI 10.1007/s10886-007-9353-7
Shao H, 2005, J CHEM ECOL, V31, P1657, DOI 10.1007/s10886-005-5805-0
Silva GF, 2011, FUEL PROCESS TECHNOL, V92, P407, DOI 10.1016/j.fuproc.2010.10.002
Singh K., 2013, J RICE RES, V1, P1, DOI DOI 10.4172/JRR.1000105
Soares AR, 2014, PLANT SIGNAL BEHAV, V9, DOI 10.4161/psb.28275
Sultana B, 2007, FOOD CHEM, V104, P1106, DOI 10.1016/j.foodchem.2007.01.019
Sultana B, 2009, MOLECULES, V14, P2167, DOI 10.3390/molecules14062167
Tawaha AM, 2003, J AGRON CROP SCI, V189, P298, DOI 10.1046/j.1439-037X.2003.00047.x
Teerarak M, 2010, BIORESOURCE TECHNOL, V101, P5677, DOI 10.1016/j.biortech.2010.02.038
Tiwari Gaurav, 2010, Pharm Methods, V1, P25, DOI 10.4103/2229-4708.72226
Valle A, 2011, PROCESS BIOCHEM, V46, P358, DOI 10.1016/j.procbio.2010.09.011
Valverde BE, 2007, WEED TECHNOL, V21, P310, DOI 10.1614/WT-06-097.1
Varnalis AI, 2004, J FOOD ENG, V61, P153, DOI 10.1016/S0260-8774(03)00082-7
Wang C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055587
Wang HQ, 2008, ALLELOPATHY J, V22, P205
Wei XY, 2004, BIOCHEM SYST ECOL, V32, P1091, DOI 10.1016/j.bse.2004.04.013
Wu X, 2011, INT J MOL SCI, V12, P6255, DOI 10.3390/ijms12096255
Yang B, 2009, INNOV FOOD SCI EMERG, V10, P610, DOI 10.1016/j.ifset.2009.03.003
Zhou B, 2013, J AGR FOOD CHEM, V61, P5310, DOI 10.1021/jf401605g
Zohra S. F., 2012, Journal of Natural Product and Plant Resources, V2, P512
Zuo SP, 2016, ENVIRON SCI POLLUT R, V23, P15703, DOI 10.1007/s11356-016-6770-6
NR 90
TC 13
Z9 14
U1 0
U2 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-6690
EI 1872-633X
J9 IND CROP PROD
JI Ind. Crop. Prod.
PD JUN
PY 2017
VL 100
BP 19
EP 34
DI 10.1016/j.indcrop.2017.01.025
PG 16
WC Agricultural Engineering; Agronomy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture
GA EP9IL
UT WOS:000397687200003
DA 2023-03-13
ER
PT J
AU O'Brien, PJ
Irwin, W
Diaz, D
Howard-Cofield, E
Krejsa, CM
Slaughter, MR
Gao, B
Kaludercic, N
Angeline, A
Bernardi, P
Brain, P
Hougham, C
AF O'Brien, P. J.
Irwin, W.
Diaz, D.
Howard-Cofield, E.
Krejsa, C. M.
Slaughter, M. R.
Gao, B.
Kaludercic, N.
Angeline, A.
Bernardi, P.
Brain, P.
Hougham, C.
TI High concordance of drug-induced human hepatotoxicity with in vitro
cytotoxicity measured in a novel cell-based model using high content
screening
SO ARCHIVES OF TOXICOLOGY
LA English
DT Article
DE HCS; hepatotoxicity; human; sublethal; multi-parameter
ID COHERENT MULTIPROBE FLUORESCENCE; MECHANISTIC ASSAYS; MALIGNANT
HYPERTHERMIA; CHO-CELLS; PERSPECTIVE; TOXICOLOGY; TOXICITY;
SUSCEPTIBILITY; LYMPHOCYTES; GLUTATHIONE
AB To develop and validate a practical, in vitro, cell-based model to assess human hepatotoxicity potential of drugs, we used the new technology of high content screening (HCS) and a novel combination of critical model features, including (1) use of live, human hepatocytes with drug metabolism capability, (2) preincubation of cells for 3 days with drugs at a range of concentrations up to at least 30 times the efficacious concentration or 100 mu M, (3) measurement of multiple parameters that were (4) morphological and biochemical, (5) indicative of prelethal cytotoxic effects, (6) representative of different mechanisms of toxicity, (7) at the single cell level and (8) amenable to rapid throughput. HCS is based on automated epifluorescence microscopy and image analysis of cells in a microtiter plate format. The assay was applied to HepG2 human hepatocytes cultured in 96-well plates and loaded with four fluorescent dyes for: calcium (Fluo-4 AM), mitochondrial membrane potential (TMRM), DNA content (Hoechst 33342) to determine nuclear area and cell number and plasma membrane permeability (TOTO-3). Assay results were compared with those from 7 conventional, in vitro cytotoxicity assays that were applied to 611 compounds and shown to have low sensitivity (< 25%), although high specificity (similar to 90%) for detection of toxic drugs. For 243 drugs with varying degrees of toxicity, the HCS, sublethal, cytotoxicity assay had a sensitivity of 93% and specificity of 98%. Drugs testing positive that did not cause hepatotoxicity produced other serious, human organ toxicities. For 201 positive assay results, 86% drugs affected cell number, 70% affected nuclear area and mitochondrial membrane potential and 45% affected membrane permeability and 41% intracellular calcium concentration. Cell number was the first parameter affected for 56% of these drugs, nuclear area for 34% and mitochondrial membrane potential for 29% and membrane permeability for 7% and intracellular calcium for 10%. Hormesis occurred for 48% of all drugs with positive response, for 26% of mitochondrial and 34% nuclear area changes and 12% of cell number changes. Pattern of change was dependent on the class of drug and mechanism of toxicity. The ratio of concentrations for in vitro cytotoxicity to maximal efficaciousness in humans was not different across groups (12 +/- 22). Human toxicity potential was detected with 80% sensitivity and 90% specificity at a concentration of 30x the maximal efficacious concentration or 100 mu M when efficaciousness was not considered. We conclude that human hepatotoxicity is highly concordant with in vitro cytotoxicity in this novel model and as detected by HCS.
C1 Pfizer Global Res & Dev, Sandwich Labs, Safety Sci Europe, Sandwich, Kent, England.
CEREP, Seattle, WA USA.
Univ Padua, I-35100 Padua, Italy.
C3 Pfizer; University of Padua
RP O'Brien, PJ (corresponding author), Pfizer Global Res & Dev, Sandwich Labs, Safety Sci Europe, Sandwich, Kent, England.
EM Peter.OBrien@pfizer.com
RI Bernardi, Paolo/C-3656-2008; O'Brien, Peter James/AAE-4798-2020
OI Bernardi, Paolo/0000-0001-9187-3736; O'Brien, Peter
James/0000-0003-4290-3585
CR Abraham VC, 2004, TRENDS BIOTECHNOL, V22, P15, DOI 10.1016/j.tibtech.2003.10.012
Andrade Raul J, 2004, Expert Opin Drug Saf, V3, P329, DOI 10.1517/14740338.3.4.329
BARHOUMI R, 1995, CYTOMETRY, V19, P226, DOI 10.1002/cyto.990190306
Bernardi P, 2001, TRENDS BIOCHEM SCI, V26, P112, DOI 10.1016/S0968-0004(00)01745-X
Boelsterli UA, 2003, CURR OPIN DRUG DISC, V6, P81
Boelsterli UA, 2003, TOXICOL MECH METHOD, V13, P3, DOI 10.1080/15376510309824
BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x
Bugelski PJ, 2000, PHARMACEUT RES, V17, P1265, DOI 10.1023/A:1026495503939
Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5
*CER, 2005, 90059 CER
COLOMBO B, 1965, BIOCHEM BIOPH RES CO, V18, P389, DOI 10.1016/0006-291X(65)90719-9
Fung M, 2001, DRUG INF J, V35, P293, DOI 10.1177/009286150103500134
*GENSTAT, 2002, GENST WIND REL 6 1
Giuliano KA, 2003, ASSAY DRUG DEV TECHN, V1, P565, DOI 10.1089/154065803322302826
*GRAPHP SOFTW INC, 2004, GRAPHP PRISM VERS 4
Gurtu V, 1997, ANAL BIOCHEM, V251, P98, DOI 10.1006/abio.1997.2220
Haskins JR, 2001, ARCH TOXICOL, V75, P425, DOI 10.1007/s002040100251
Jaeschke H, 2002, TOXICOL SCI, V65, P166, DOI 10.1093/toxsci/65.2.166
Kalgutkar AS, 2005, CURR DRUG METAB, V6, P161, DOI 10.2174/1389200054021799
Kaplowitz N, 2005, NAT REV DRUG DISCOV, V4, P489, DOI 10.1038/nrd1750
Kaplowitz N, 2001, DRUG SAFETY, V24, P483, DOI 10.2165/00002018-200124070-00001
Lee WM, 2003, NEW ENGL J MED, V349, P474, DOI 10.1056/NEJMra021844
LEVESQUE A, 1995, J IMMUNOL METHODS, V178, P71, DOI 10.1016/0022-1759(94)00243-P
Lewis JH, 2002, CURR OPIN GASTROEN, V18, P307, DOI 10.1097/00001574-200205000-00004
Lewis W, 2003, NAT REV DRUG DISCOV, V2, P812, DOI 10.1038/nrd1201
LORICO A, 1986, BIOCHEM PHARMACOL, V35, P2443, DOI 10.1016/0006-2952(86)90474-0
MESELSON M, 1958, COLD SPRING HARB SYM, V23, P9, DOI 10.1101/SQB.1958.023.01.004
Nociari MM, 1998, J IMMUNOL METHODS, V213, P157, DOI 10.1016/S0022-1759(98)00028-3
OBRIEN PJ, 1989, AM J VET RES, V50, P131
OBRIEN PJ, 1990, AM J VET RES, V51, P1038
OBRIEN PJ, 2003, P TOX 03 LOND UK
Olson H, 2000, REGUL TOXICOL PHARM, V32, P56, DOI 10.1006/rtph.2000.1399
Olson H, 1998, TOXICOL LETT, V103, P535, DOI 10.1016/S0378-4274(98)00261-6
Olson HM, 2001, CRIT REV TOXICOL, V31, P659, DOI 10.1080/20014091111910
PHILLIPS GW, 2005, P SOC BIOM SCREEN
Plymale DR, 1999, NAT MED, V5, P351, DOI 10.1038/6574
Russo MW, 2004, LIVER TRANSPLANT, V10, P1018, DOI 10.1002/lt.20204
Schoonen WGEJ, 2005, TOXICOL IN VITRO, V19, P491, DOI 10.1016/j.tiv.2005.01.002
Schoonen WGEJ, 2005, TOXICOL IN VITRO, V19, P505, DOI 10.1016/j.tiv.2005.01.003
Slaughter MR, 2002, TOXICOL APPL PHARM, V178, P63, DOI 10.1006/taap.2001.9322
Xu JJ, 2004, CHEM-BIOL INTERACT, V150, P115, DOI 10.1016/j.cbi.2004.09.011
NR 41
TC 464
Z9 502
U1 2
U2 99
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0340-5761
EI 1432-0738
J9 ARCH TOXICOL
JI Arch. Toxicol.
PD SEP
PY 2006
VL 80
IS 9
BP 580
EP 604
DI 10.1007/s00204-006-0091-3
PG 25
WC Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Toxicology
GA 072HJ
UT WOS:000239664200005
PM 16598496
DA 2023-03-13
ER
PT J
AU Andreazza, F
Oliveira, EE
Martins, GF
AF Andreazza, Felipe
Oliveira, Eugenio E.
Martins, Gustavo Ferreira
TI Implications of Sublethal Insecticide Exposure and the Development of
Resistance on Mosquito Physiology, Behavior, and Pathogen Transmission
SO INSECTS
LA English
DT Review
DE host-seeking behavior; insecticide exposure; insecticide resistance;
mosquito; pathogen transmission
ID AEDES-ALBOPICTUS DIPTERA; ANOPHELES-GAMBIAE; SODIUM-CHANNELS; MALARIA
VECTOR; PERMETHRIN RESISTANCE; INDUCED HORMESIS; CULICIDAE; AEGYPTI;
DELTAMETHRIN; MECHANISMS
AB Mosquitoes are one of the greatest threats to human lives; they transmit a wide range of pathogens, including viruses that cause lethal diseases. Mosquitoes are found in both aquatic (as larvae or pupae) and terrestrial (as adults) environments during their complex life cycle. For decades, insecticides have been systematically used on mosquitoes with the aim to reduce their population. Little is known about how the stress resulting from the exposure of mosquitoes to insecticides impacts the tri-partite relationship between the mosquitoes, their vertebrate hosts, and the pathogens they transmit. In this work, we review existing experimental evidence to obtain a broad picture on the potential effects of the (sub)lethal exposure of hematophagous mosquitoes to different insecticides. We have focused on studies that have advanced our understanding of their physiological and behavioral responses (including the mechanisms behind insecticide resistance) and the spread of pathogens by these vectors-understudied but critically important issues for epidemiology. Studying these exposure-related effects is of paramount importance for predicting how they respond to insecticide exposure and whether this exposure makes them more or less likely to transmit pathogens.
For many decades, insecticides have been used to control mosquito populations in their larval and adult stages. Although changes in the population genetics, physiology, and behavior of mosquitoes exposed to lethal and sublethal doses of insecticides are expected, the relationships between these changes and their abilities to transmit pathogens remain unclear. Thus, we conducted a comprehensive review on the sublethal effects of insecticides and their contributions to insecticide resistance in mosquitoes, with the main focus on pyrethroids. We discuss the direct and acute effects of sublethal concentrations on individuals and populations, the changes in population genetics caused by the selection for resistance after insecticide exposure, and the major mechanisms underlying such resistance. Sublethal exposures negatively impact the individual's performance by affecting their physiology and behavior and leaving them at a disadvantage when compared to unexposed organisms. How these sublethal effects could change mosquito population sizes and diversity so that pathogen transmission risks can be affected is less clear. Furthermore, despite the beneficial and acute aspects of lethality, exposure to higher insecticide concentrations clearly impacts the population genetics by selecting resistant individuals, which may bring further and complex interactions for mosquitoes, vertebrate hosts, and pathogens. Finally, we raise several hypotheses concerning how the here revised impacts of insecticides on mosquitoes could interplay with vector-mediated pathogens' transmission.
C1 [Andreazza, Felipe; Oliveira, Eugenio E.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil.
[Martins, Gustavo Ferreira] Univ Fed Vicosa, Dept Biol Geral, BR-36570900 Vicosa, MG, Brazil.
[Andreazza, Felipe] Duke Univ, Dept Biol, Durham, NC 27708 USA.
C3 Universidade Federal de Vicosa; Universidade Federal de Vicosa; Duke
University
RP Martins, GF (corresponding author), Univ Fed Vicosa, Dept Biol Geral, BR-36570900 Vicosa, MG, Brazil.
EM felipe.andreazza@ufv.br; eugenio@ufv.br; gmartins@ufv.br
RI de Oliveira, Eugênio Eduardo/F-4045-2016; Andreazza, Felipe/D-1702-2016
OI Andreazza, Felipe/0000-0003-3424-3177; Martins,
Gustavo/0000-0003-0614-8551
FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil
[CAPES-001]; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico-Brasil [CNPq-142205/2017-6, 404844/2018-9, 301725/2019-5,
308576/2018-7, 427304/2018-0]; Fundacao de Amparo a Pesquisa do Estado
de Minas Gerais (Fapemig)
FX Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil
(CAPES-001), Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico-Brasil (CNPq-142205/2017-6 for FA; 404844/2018-9 and
301725/2019-5 for GFM; 308576/2018-7 and 427304/2018-0 for EEO), and
Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (Fapemig).
CR Alkassab AT, 2018, ECOTOX ENVIRON SAFE, V147, P200, DOI 10.1016/j.ecoenv.2017.08.047
Allan SA, 2009, J AM MOSQUITO CONTR, V25, P338, DOI 10.2987/09-5854.1
Alout H, 2008, COMP BIOCHEM PHYS B, V150, P271, DOI 10.1016/j.cbpb.2008.03.008
Alout H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0389
Alout H, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063849
Andreazza F, 2021, PLOS NEGLECT TROP D, V15, DOI 10.1371/journal.pntd.0009546
[Anonymous], 2013, UNDERSTANDING CONSEQ
Antonio GE, 2009, PEST MANAG SCI, V65, P323, DOI 10.1002/ps.1683
Arnaud L, 2002, HEREDITY, V89, P425, DOI 10.1038/sj.hdy.6800167
Bara JJ, 2014, PARASITOL RES, V113, P2879, DOI 10.1007/s00436-014-3949-y
Bataillard D, 2020, ECOL EVOL, V10, P5079, DOI 10.1002/ece3.6261
Bayoh MN, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-62
Beerntsen BT, 2000, MICROBIOL MOL BIOL R, V64, P115, DOI 10.1128/MMBR.64.1.115-137.2000
Benelli G, 2015, PARASITOL RES, V114, P2801, DOI 10.1007/s00436-015-4586-9
Berticat C, 2002, GENET RES, V79, P41, DOI 10.1017/S001667230100547X
Brogdon WG, 1999, J ECON ENTOMOL, V92, P298, DOI 10.1093/jee/92.2.298
Bui M, 2019, BMC NEUROSCI, V20, DOI 10.1186/s12868-019-0511-y
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Carrieri M, 2009, J AM MOSQUITO CONTR, V25, P149, DOI 10.2987/08-5852.1
Casimiro S, 2006, J MED ENTOMOL, V43, P267, DOI 10.1603/0022-2585(2006)043[0267:IRIAFD]2.0.CO;2
Chareonviriyaphap T, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-280
Chen WF, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6549
Chouin-Carneiro T, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004543
Cohnstaedt LW, 2011, J VECTOR ECOL, V36, P395, DOI 10.1111/j.1948-7134.2011.00180.x
Cooke MK, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0766-4
Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030
Deletre E, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-019-3343-9
Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440
Diop MM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121755
Dong K, 2014, INSECT BIOCHEM MOLEC, V50, P1, DOI 10.1016/j.ibmb.2014.03.012
Du YZ, 2010, TOXICOL APPL PHARM, V247, P53, DOI 10.1016/j.taap.2010.05.016
DUKEEN MYH, 1986, B ENTOMOL RES, V76, P451, DOI 10.1017/S0007485300014942
Ellegren H, 2016, NAT REV GENET, V17, P422, DOI 10.1038/nrg.2016.58
ELLIOTT M, 1977, ACS SYM SER, V42, P1
Essandoh J, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-404
ESTRADA JG, 1986, J AM MOSQUITO CONTR, V2, P57
Fawaz EY, 2014, J VECTOR ECOL, V39, P347, DOI 10.1111/jvec.12110
Fernandes KM, 2015, MED VET ENTOMOL, V29, P245, DOI 10.1111/mve.12122
Fernandes KM, 2019, CHEMOSPHERE, V221, P464, DOI 10.1016/j.chemosphere.2019.01.068
ffrench-Constant RH, 2017, CURR OPIN INSECT SCI, V21, P39, DOI 10.1016/j.cois.2017.04.011
Freitas RCP, 2016, J STORED PROD RES, V69, P257, DOI 10.1016/j.jspr.2016.09.006
Gatton ML, 2013, EVOLUTION, V67, P1218, DOI 10.1111/evo.12063
Gazave L, 2001, HEREDITY, V87, P441, DOI 10.1046/j.1365-2540.2001.00926.x
GEORGHIOU GP, 1972, ANNU REV ECOL SYST, V3, P133, DOI DOI 10.1146/ANNUREV.ES.03.110172.001025
Gong YH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00486-0
Gould F., 1984, Bulletin of the Entomological Society of America, V30, P34
Griffin JT, 2010, PLOS MED, V7, DOI 10.1371/journal.pmed.1000324
Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x
Guedes RNC, 2018, J APPL ENTOMOL, V142, P457, DOI 10.1111/jen.12500
Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669
Guo Q, 2017, INSECT BIOCHEM MOLEC, V84, P15, DOI 10.1016/j.ibmb.2017.03.006
Haddi K, 2017, SCI REP-UK, V7, DOI 10.1038/srep46549
Haddi K, 2015, J ECON ENTOMOL, V108, P362, DOI 10.1093/jee/tou049
Hardstone MC, 2010, J MED ENTOMOL, V47, P188, DOI 10.1603/ME09131
HARDY JL, 1983, ANNU REV ENTOMOL, V28, P229, DOI 10.1146/annurev.en.28.010183.001305
Hauser G, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-3983-9
Jones CM, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-24
Jung JW, 2015, SCI REP-UK, V5, DOI 10.1038/srep13444
Kadala A, 2011, NEUROTOXICOLOGY, V32, P320, DOI 10.1016/j.neuro.2011.02.007
Kasai S, 1998, ARCH INSECT BIOCHEM, V37, P47, DOI 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S
Keeling M.J., 2011, MODELING INFECT DIS
Kliot A, 2012, PEST MANAG SCI, V68, P1431, DOI 10.1002/ps.3395
Knecht H, 2018, PATHOGENS, V7, DOI 10.3390/pathogens7030067
Kristan M, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1384-x
Leal WS, 2013, ANNU REV ENTOMOL, V58, P373, DOI 10.1146/annurev-ento-120811-153635
Liu F, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22847-0
Liu NN, 2015, ANNU REV ENTOMOL, V60, P537, DOI 10.1146/annurev-ento-010814-020828
Liu PY, 2010, J ENVIRON SCI-CHINA, V22, P1123, DOI 10.1016/S1001-0742(09)60227-8
Lopes MP, 2018, PEST MANAG SCI, V74, P1311, DOI 10.1002/ps.4815
Lucas KJ, 2015, CURR OPIN INSECT SCI, V11, P1, DOI 10.1016/j.cois.2015.06.004
LYIMO EO, 1992, PARASITOLOGY, V104, P233, DOI 10.1017/S0031182000061667
Lynch PA, 2016, ELIFE, V5, DOI 10.7554/eLife.15416
Main BJ, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2817-5
Manda H, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002074
Manda H, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001243
Marcombe S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101992
Marcombe S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030989
MENGLE DC, 1958, J ECON ENTOMOL, V51, P750, DOI 10.1093/jee/51.6.750
Meunier L, 2006, INSECT MOL BIOL, V15, P475, DOI 10.1111/j.1365-2583.2006.00659.x
Michalski ML, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000875
Mitri C, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0924-8
Moiroux N, 2012, J INFECT DIS, V206, P1622, DOI 10.1093/infdis/jis565
Moltini-Conclois I, 2018, INSECTS, V9, DOI 10.3390/insects9040193
Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001
Mutuku FM, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-356
Muturi EJ, 2011, VECTOR-BORNE ZOONOT, V11, P1157, DOI 10.1089/vbz.2010.0209
Narahashi T, 2000, J PHARMACOL EXP THER, V294, P1
Ndiath MO, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-340
Lien NTK, 2018, J VECTOR ECOL, V43, P184, DOI 10.1111/jvec.12298
Niitepold K, 2009, ECOLOGY, V90, P2223, DOI 10.1890/08-1498.1
Oliveira EE, 2013, NEUROTOXICOLOGY, V38, P42, DOI 10.1016/j.neuro.2013.06.001
Paris M, 2011, PEST MANAG SCI, V67, P122, DOI 10.1002/ps.2046
Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028
Pigeault R., 2021, PARASITOLOGIA, V1, P3, DOI [10.3390/parasitologia1010003, DOI 10.3390/PARASITOLOGIA1010003]
Platt N, 2015, HEREDITY, V115, P243, DOI 10.1038/hdy.2015.33
Potikasikorn J, 2005, AM J TROP MED HYG, V73, P343, DOI 10.4269/ajtmh.2005.73.343
Pottier MA, 2012, INSECT MOL BIOL, V21, P568, DOI 10.1111/j.1365-2583.2012.01160.x
Quistad GB., 1995, PYRETHRUM FLOWERS PR, P1
Ranson H, 2016, TRENDS PARASITOL, V32, P187, DOI 10.1016/j.pt.2015.11.010
Rascalou G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036858
Reddy MR, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-184
Richards SL, 2017, RES REP TROP MED, V8, P53, DOI 10.2147/RRTM.S133411
Ritthison W, 2014, J VECTOR ECOL, V39, P32, DOI 10.1111/j.1948-7134.2014.12067.x
Rivero A, 2011, J MED ENTOMOL, V48, P694, DOI 10.1603/ME10121
ROBERT LL, 1989, J AM MOSQUITO CONTR, V5, P239
Romero A, 2009, J MED ENTOMOL, V46, P51, DOI 10.1603/033.046.0107
Russell TL, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-80
Sanford MR, 2013, J INSECT BEHAV, V26, P494, DOI 10.1007/s10905-012-9368-y
Santos HP, 2018, ENVIRON SCI POLLUT R, V25, P1418, DOI 10.1007/s11356-017-0569-y
Santos MF, 2016, J PEST SCI, V89, P231, DOI 10.1007/s10340-015-0666-y
Seenivasagan T, 2014, PARASITOL RES, V113, P1927, DOI 10.1007/s00436-014-3840-x
Siegert PY, 2009, J ECON ENTOMOL, V102, P2061, DOI 10.1603/029.102.0607
Silva SM, 2017, ENTOMOL EXP APPL, V163, P220, DOI 10.1111/eea.12559
Silva-Filha MHNL, 2021, TOXINS, V13, DOI 10.3390/toxins13080523
Silver K, 2017, CURR MED CHEM, V24, P2912, DOI 10.2174/0929867323666161216143844
Silver KS, 2014, ADV INSECT PHYSIOL, V46, P389, DOI 10.1016/B978-0-12-417010-0.00005-7
SILVERMAN J, 1994, ENVIRON ENTOMOL, V23, P425, DOI 10.1093/ee/23.2.425
Singh OP, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-146
Smith T, 2008, PARASITOLOGY, V135, P1507, DOI 10.1017/S0031182008000371
Soderlund DM, 2002, TOXICOLOGY, V171, P3, DOI 10.1016/S0300-483X(01)00569-8
Sougoufara S, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-125
Stehle S, 2015, P NATL ACAD SCI USA, V112, P5750, DOI 10.1073/pnas.1500232112
Sun XH, 2019, PARASITOLOGY, V146, P197, DOI 10.1017/S0031182018001002
Sunday O.O., 2016, INT J MOSQ RES, V3, P20
Tainchum K, 2016, J VECTOR ECOL, V41, P254, DOI 10.1111/jvec.12220
Thomas MB, 2016, P NATL ACAD SCI USA, V113, P8900, DOI 10.1073/pnas.1609889113
Tirados I, 2006, MED VET ENTOMOL, V20, P425, DOI 10.1111/j.1365-2915.2006.652.x
Tmimi FZ, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2625-y
Tokponnon FT, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-76
Tome HW, 2014, PARASITE VECTOR, V7, DOI 10.1186/1756-3305-7-195
Tosi S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01361-8
Tuelher ES, 2017, J PEST SCI, V90, P397, DOI 10.1007/s10340-016-0777-0
TURELL MJ, 1992, J MED ENTOMOL, V29, P49, DOI 10.1093/jmedent/29.1.49
Vais H, 2000, J GEN PHYSIOL, V115, P305, DOI 10.1085/jgp.115.3.305
Valbon WR, 2019, PESTIC BIOCHEM PHYS, V156, P87, DOI 10.1016/j.pestbp.2019.02.008
Valbon WR, 2018, CHEMOSPHERE, V191, P350, DOI 10.1016/j.chemosphere.2017.10.061
van Breugel F, 2015, CURR BIOL, V25, P2123, DOI 10.1016/j.cub.2015.06.046
Vantaux A, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1514-5
Vezilier J, 2013, EVOL APPL, V6, P497, DOI 10.1111/eva.12037
Vezilier J, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-379
Viana M, 2016, P NATL ACAD SCI USA, V113, P8975, DOI 10.1073/pnas.1603431113
Vinauger C, 2016, TRENDS PARASITOL, V32, P761, DOI 10.1016/j.pt.2016.06.003
Vulule JM, 1999, MED VET ENTOMOL, V13, P239, DOI 10.1046/j.1365-2915.1999.00177.x
Wang GL, 2011, PESTIC BIOCHEM PHYS, V101, P227, DOI 10.1016/j.pestbp.2011.09.010
Weetman D, 2015, MOL ECOL, V24, P2656, DOI 10.1111/mec.13197
Wei H, 2004, PESTIC BIOCHEM PHYS, V80, P12, DOI 10.1016/j.pestbp.2004.05.001
WELLING W, 1977, ANNU REV ENTOMOL, V22, P53, DOI 10.1146/annurev.en.22.010177.000413
White MT, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-153
WHO, 2020, WORLD MAL REP 2011
WHO, 2021, FACT SHEETS MAL 1 AP
WHO, 2021, FACT SHEETS DENG SEV
World Health Organization (WHO), 2012, WHOHTMNTDVEM20125
Xiao CY, 2017, J ASIA-PAC ENTOMOL, V20, P1287, DOI 10.1016/j.aspen.2017.09.013
Xu Q, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047609
Yang L, 2020, PEST MANAG SCI, V76, P118, DOI 10.1002/ps.5562
Yohannes M, 2005, TROP MED INT HEALTH, V10, P1274, DOI 10.1111/j.1365-3156.2005.01512.x
Yohannes M, 2012, MED VET ENTOMOL, V26, P103, DOI 10.1111/j.1365-2915.2011.00955.x
Zanuncio JC, 2011, B ENVIRON CONTAM TOX, V87, P608, DOI 10.1007/s00128-011-0405-x
Zhou C, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27062-4
Zhou GF, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020318
Zhou YH, 2018, FRONT BEHAV NEUROSCI, V12, DOI 10.3389/fnbeh.2018.00086
NR 162
TC 3
Z9 3
U1 3
U2 11
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-4450
J9 INSECTS
JI Insects
PD OCT
PY 2021
VL 12
IS 10
AR 917
DI 10.3390/insects12100917
PG 18
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA WU1XE
UT WOS:000716344500001
PM 34680686
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Akkaya, O
Perez-Pantoja, DR
Calles, B
Nikel, PI
de Lorenzo, V
AF Akkaya, Ozlem
Perez-Pantoja, Danilo R.
Calles, Belen
Nikel, Pablo I.
de Lorenzo, Victor
TI The Metabolic Redox Regime of Pseudomonas putida Tunes Its Evolvability
toward Novel Xenobiotic Substrates
SO MBIO
LA English
DT Article
DE NADPH oxidases; Pseudomonas putida; reactive oxygen species;
biodegradation; dinitrotoluene; evolution; oxidative stress
ID HORIZONTAL GENE-TRANSFER; GRAM-NEGATIVE BACTERIA; OXIDATIVE STRESS;
NITROAROMATIC COMPOUNDS; CATABOLIC PATHWAYS; AROMATIC-COMPOUNDS;
BIODEGRADATION; EVOLUTION; HORMESIS; KT2440
AB During evolution of biodegradation pathways for xenobiotic compounds involving Rieske nonheme iron oxygenases, the transition toward novel substrates is frequently associated with faulty reactions. Such events release reactive oxygen species (ROS), which are endowed with high mutagenic potential. In this study, we evaluated how the operation of the background metabolic network by an environmental bacterium may either foster or curtail the still-evolving pathway for 2,4-dinitrotoluene (2,4-DNT) catabolism. To this end, the genetically tractable strain Pseudomonas putida EM173 was implanted with the whole genetic complement necessary for the complete biodegradation of 2,4-DNT (recruited from the environmental isolate Burkholderia sp. R34). By using reporter technology and direct measurements of ROS formation, we observed that the engineered P. putida strain experienced oxidative stress when catabolizing the nitroaromatic substrate. However, the formation of ROS was neither translated into significant activation of the SOS response to DNA damage nor did it result in a mutagenic regime (unlike what has been observed in Burkholderia sp. R34, the original host of the pathway). To inspect whether the tolerance of P. putida to oxidative challenges could be traced to its characteristic reductive redox regime, we artificially altered the NAD(P)H pool by means of a water-forming, NADH-specific oxidase. Under the resulting low-NAD(P)H status, catabolism of 2,4-DNT triggered a conspicuous mutagenic and genomic diversification scenario. These results indicate that the background biochemical network of environmental bacteria ultimately determines the evolvability of metabolic pathways. Moreover, the data explain the efficacy of some bacteria (e.g., pseudomonads) to host and evolve with new catabolic routes.
IMPORTANCE Some environmental bacteria evolve with new capacities for the aerobic biodegradation of chemical pollutants by adapting preexisting redox reactions to novel compounds. The process typically starts by cooption of enzymes from an available route to act on the chemical structure of the substrate-to-be. The critical bottleneck is generally the first biochemical step, and most of the selective pressure operates on reshaping the initial reaction. The interim uncoupling of the novel substrate to preexisting Rieske nonheme iron oxygenases usually results in formation of highly mutagenic ROS. In this work, we demonstrate that the background metabolic regime of the bacterium that hosts an evolving catabolic pathway (e.g., biodegradation of the xenobiotic 2,4-DNT) determines whether the cells either adopt a genetic diversification regime or a robust ROS-tolerant status. Furthermore, our results offer new perspectives to the rational design of efficient whole-cell biocatalysts, which are pursued in contemporary metabolic engineering.
C1 [Akkaya, Ozlem] Gebze Tech Univ, Fac Sci, Dept Mol Biol & Genet, Kocaeli, Turkey.
[Perez-Pantoja, Danilo R.] Univ Tecnol Metropolitana, Programa Inst Fomento Invest Desarrollo & Innovac, Santiago, Chile.
[Calles, Belen; de Lorenzo, Victor] Ctr Nacl Biotecnol, Syst & Synthet Biol Program, Madrid, Spain.
[Nikel, Pablo I.] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Lyngby, Denmark.
C3 Gebze Technical University; Universidad Tecnologica Metropolitana;
Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro
Nacional de Biotecnologia (CNB); Technical University of Denmark
RP de Lorenzo, V (corresponding author), Ctr Nacl Biotecnol, Syst & Synthet Biol Program, Madrid, Spain.; Nikel, PI (corresponding author), Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Lyngby, Denmark.
EM pabnik@biosustain.dtu.dk; vdlorenzo@cnb.csic.es
RI Perez-Pantoja, Danilo/ABD-1286-2020; Akkaya, Özlem/AAB-9755-2019; Nikel,
Pablo Ivan/L-4146-2014; Pérez-Pantoja, Danilo/AAF-4197-2019
OI Akkaya, Özlem/0000-0003-0478-1417; Nikel, Pablo
Ivan/0000-0002-9313-7481; Pérez-Pantoja, Danilo/0000-0001-5720-2162; de
Lorenzo, Victor/0000-0002-6041-2731
FU TUBITAK-BIDEP through the International Postdoctoral Research
Scholarship Programme [2219]; HELIOS Project of the Spanish Ministry of
Economy and Competitiveness [BIO2015-66960-C3-2-R]; ARISYS contract of
the European Union [ERC-2012-ADG-322797]; EmPowerPutida contract of the
European Union [EUH2020-BIOTEC-2014-2015-6335536]; MADONNA contract of
the European Union [H2020-FET-OPEN-RIA-2017-1-766975]; Novo Nordisk
Foundation [NNF10CC1016517]; Danish Council for Independent Research
(SWEET, DFF Research Project) [8021-00039B]
FX L. Eltis (Canada) for inspiring discussions. O.A. was supported by
TUBITAK-BIDEP through the International Postdoctoral Research
Scholarship Programme 2219.; This study was supported by HELIOS Project
of the Spanish Ministry of Economy and Competitiveness
BIO2015-66960-C3-2-R (MINECO/FEDER), and by ARISYS
(ERC-2012-ADG-322797), EmPowerPutida (EUH2020-BIOTEC-2014-2015-6335536),
and MADONNA (H2020-FET-OPEN-RIA-2017-1-766975) contracts of the European
Union to V.D.L. The study was also supported by the Novo Nordisk
Foundation (grant NNF10CC1016517) and the Danish Council for Independent
Research (SWEET, DFF Research Project 8021-00039B) to P.I.N.
CR Abella M, 2007, J BACTERIOL, V189, P8855, DOI 10.1128/JB.01213-07
Artsimovitch I, 2005, CELL, V122, P351, DOI 10.1016/j.cell.2005.07.014
Baharoglu Z, 2014, FEMS MICROBIOL REV, V38, P1126, DOI 10.1111/1574-6976.12077
Baker JL, 2014, J BACTERIOL, V196, P2166, DOI 10.1128/JB.01542-14
Baquero F, 2017, MBIO, V8, DOI 10.1128/mBio.01950-17
Belda E, 2016, ENVIRON MICROBIOL, V18, P3403, DOI 10.1111/1462-2920.13230
Benedetti I, 2016, DATA BRIEF, V6, P738, DOI 10.1016/j.dib.2016.01.022
Benedetti I, 2016, METAB ENG, V33, P109, DOI 10.1016/j.ymben.2015.11.004
Bolton JL, 2000, CHEM RES TOXICOL, V13, P135, DOI 10.1021/tx9902082
Bowman LAH, 2011, ADV MICROB PHYSIOL, V59, P135, DOI 10.1016/B978-0-12-387661-4.00006-9
Cadet J, 2003, MUTAT RES-FUND MOL M, V531, P5, DOI 10.1016/j.mrfmmm.2003.09.001
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223
Calero P, 2019, MICROB BIOTECHNOL, V12, P98, DOI 10.1111/1751-7915.13292
Campbell EA, 2001, CELL, V104, P901, DOI 10.1016/S0092-8674(01)00286-0
Chavez FP, 2004, APPL ENVIRON MICROB, V70, P3064, DOI 10.1128/AEM.70.5.3064-3072.2004
Chen JD, 2017, GENE DEV, V31, P1382, DOI 10.1101/gad.302547.117
Comini MA, 2016, FREE RADICAL RES, V50, P246, DOI 10.3109/10715762.2015.1110241
Copley SD, 2009, NAT CHEM BIOL, V5, P560, DOI 10.1038/nchembio.197
Couce A, 2009, FEMS MICROBIOL REV, V33, P531, DOI 10.1111/j.1574-6976.2009.00165.x
Czechowska K, 2012, ENVIRON SCI TECHNOL, V46, P1201, DOI 10.1021/es203352y
Danchin A, 2011, GENES-BASEL, V2, P998, DOI 10.3390/genes2040998
de las Heras A, 2011, MOL MICROBIOL, V82, P287, DOI 10.1111/j.1365-2958.2011.07825.x
Drlica K, 1997, MICROBIOL MOL BIOL R, V61, P377, DOI 10.1128/.61.3.377-392.1997
Durao P, 2018, TRENDS MICROBIOL, V26, P677, DOI 10.1016/j.tim.2018.01.005
Dvorak P, 2017, BIOTECHNOL ADV, V35, P845, DOI 10.1016/j.biotechadv.2017.08.001
Dvorak P, 2015, MICROB CELL FACT, V14, DOI 10.1186/s12934-015-0393-3
Ebert BE, 2011, APPL ENVIRON MICROB, V77, P6597, DOI 10.1128/AEM.05588-11
Ferraro DJ, 2005, BIOCHEM BIOPH RES CO, V338, P175, DOI 10.1016/j.bbrc.2005.08.222
Foster PL, 2005, MUTAT RES-FUND MOL M, V569, P3, DOI 10.1016/j.mrfmmm.2004.07.017
Fuchs G, 2011, NAT REV MICROBIOL, V9, P803, DOI 10.1038/nrmicro2652
Furusawa C, 2018, CURR OPIN BIOTECH, V54, P45, DOI 10.1016/j.copbio.2018.01.026
Galhardo RS, 2007, CRIT REV BIOCHEM MOL, V42, P399, DOI 10.1080/10409230701648502
Galvao TC, 2005, APPL ENVIRON MICROB, V71, P883, DOI 10.1128/AEM.71.2.883-892.2005
Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001
Gibson DT, 2000, CURR OPIN BIOTECH, V11, P236, DOI 10.1016/S0958-1669(00)00090-2
Gomez J. G. C., 2012, ADV APPL BIOTECHNOLO, P41
Gomez-Gil L, 2007, J BACTERIOL, V189, P5705, DOI 10.1128/JB.01476-06
Gutierrez A, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2607
HAIGLER BE, 1994, J BACTERIOL, V176, P3433, DOI 10.1128/jb.176.11.3433-3437.1994
Haigler BE, 1996, J BACTERIOL, V178, P6019, DOI 10.1128/jb.178.20.6019-6024.1996
Harms A, 2016, SCIENCE, V354, DOI 10.1126/science.aaf4268
Ilmjarv T, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182484
Imbeault NYR, 2000, J BIOL CHEM, V275, P12430, DOI 10.1074/jbc.275.17.12430
Jatsenko T, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170719
Jatsenko T, 2010, MUTAT RES-FUND MOL M, V683, P106, DOI 10.1016/j.mrfmmm.2009.10.015
Johnson GR, 2003, APPL MICROBIOL BIOT, V62, P110, DOI 10.1007/s00253-003-1341-4
Johnson GR, 2002, J BACTERIOL, V184, P4219, DOI 10.1128/JB.184.15.4219-4232.2002
Ju KS, 2010, MICROBIOL MOL BIOL R, V74, P250, DOI 10.1128/MMBR.00006-10
Kanaly RA, 2010, MICROB BIOTECHNOL, V3, P136, DOI 10.1111/j.1751-7915.2009.00130.x
Kang YS, 2007, MICROBIOL-SGM, V153, P3246, DOI 10.1099/mic.0.2007/008896-0
Kim J, 2014, APPL MICROBIOL BIOT, V98, P6933, DOI 10.1007/s00253-014-5883-4
Kivisaar M, 2011, MOL MICROBIOL, V82, P265, DOI 10.1111/j.1365-2958.2011.07824.x
Kivisaar M, 2010, FEMS MICROBIOL LETT, V312, P1, DOI 10.1111/j.1574-6968.2010.02027.x
Koonin Eugene V, 2016, F1000Res, V5, DOI 10.12688/f1000research.8737.1
Kurt Z, 2018, APPL ENVIRON MICROB, V84, DOI 10.1128/AEM.00104-18
Lee K, 1999, J BACTERIOL, V181, P2719, DOI 10.1128/JB.181.9.2719-2725.1999
Lemire J, 2017, J APPL MICROBIOL, V123, P798, DOI 10.1111/jam.13509
Lieder S, 2015, MICROB CELL FACT, V14, DOI 10.1186/s12934-015-0207-7
Benedetti IM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052000
Martinez-Garcia E, 2015, ENVIRON MICROBIOL, V17, P76, DOI 10.1111/1462-2920.12492
Martinez-Garcia Esteban, 2014, Front Bioeng Biotechnol, V2, P46, DOI 10.3389/fbioe.2014.00046
Martinez-Garcia E, 2011, METHODS MOL BIOL, V813, P267, DOI 10.1007/978-1-61779-412-4_16
Mathieu A, 2016, CELL REP, V17, P46, DOI 10.1016/j.celrep.2016.09.001
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
Migliore L, 2013, DOSE-RESPONSE, V11, P550, DOI 10.2203/dose-response.13-002.Migliore
Mishra S, 2012, ARCH BIOCHEM BIOPHYS, V525, P145, DOI 10.1016/j.abb.2012.04.014
MORIYA M, 1993, MOL GEN GENET, V239, P72, DOI 10.1007/BF00281603
Nike PI, 2016, CURR OPIN CHEM BIOL, V34, P20, DOI 10.1016/j.cbpa.2016.05.011
Nikel P. I., 2016, HYDROCARBON LIPID MI, P39, DOI DOI 10.1007/8623_2015_84
Nikel PI, 2018, METAB ENG, V50, P142, DOI 10.1016/j.ymben.2018.05.005
Nikel PI, 2016, ENVIRON MICROBIOL, V18, P3565, DOI 10.1111/1462-2920.13434
Nikel PI, 2015, J BIOL CHEM, V290, P25920, DOI 10.1074/jbc.M115.687749
Nikel PI, 2015, MBIO, V6, DOI 10.1128/mBio.00340-15
Nikel PI, 2014, NEW BIOTECHNOL, V31, P562, DOI 10.1016/j.nbt.2014.02.006
Nikel PI, 2014, NAT REV MICROBIOL, V12, P368, DOI 10.1038/nrmicro3253
Nikel PI, 2014, ENVIRON MICROBIOL, V16, P239, DOI 10.1111/1462-2920.12224
Nikel PI, 2013, MICROB CELL FACT, V12, DOI [10.1186/1475-2859-12-50, 10.1186/s12934-014-0159-3]
Nikel PI, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0377
Nikel PI, 2013, METAB ENG, V15, P98, DOI 10.1016/j.ymben.2012.09.006
Nikel PI, 2013, J BIOTECHNOL, V163, P143, DOI 10.1016/j.jbiotec.2012.05.002
Nikel PI, 2014, ENVIRON MICROBIOL, V16, P628, DOI 10.1111/1462-2920.12360
Nishino SF, 2000, APPL ENVIRON MICROB, V66, P2139, DOI 10.1128/AEM.66.5.2139-2147.2000
Ohmori H, 2001, MOL CELL, V8, P7, DOI 10.1016/S1097-2765(01)00278-7
Palmer AC, 2013, NAT REV GENET, V14, P243, DOI 10.1038/nrg3351
Parales RE, 1998, J BACTERIOL, V180, P2337, DOI 10.1128/JB.180.9.2337-2344.1998
Parales RE, 2004, SOIL BIOL, V2, P175
Patrauchan MA, 2008, J BACTERIOL, V190, P37, DOI 10.1128/JB.01122-07
Perez-Pantoja D., 2017, AEROBIC UTILIZATION, P1, DOI [10.1007/978-3-319-39782-5_33-1, DOI 10.1007/978-3-319-39782-5_33-1, 10.1007/978- 3-319-39782-5_33-1]
Perez-Pantoja D, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003764
Perez-Pantoja D, 2012, ENVIRON MICROBIOL, V14, P1091, DOI 10.1111/j.1462-2920.2011.02613.x
PEREZPANTOJA D, 2010, HDB HYDROCARBON LIPI, P799, DOI DOI 10.1007/978-3-540-77587-4_60
Rosche WA, 2000, METHODS, V20, P4, DOI 10.1006/meth.1999.0901
Sambrook J., 2001, MOL CLONING LAB MANU
Seffernick JL, 2016, APPL ENVIRON MICROB, V82, P1638, DOI 10.1128/AEM.03594-15
Silva-Rocha R, 2013, NUCLEIC ACIDS RES, V41, pD666, DOI 10.1093/nar/gks1119
Singh R, 2007, J BACTERIOL, V189, P6665, DOI 10.1128/JB.00555-07
Soucy SM, 2015, NAT REV GENET, V16, P472, DOI 10.1038/nrg3962
SPAIN JC, 1995, ANNU REV MICROBIOL, V49, P523, DOI 10.1146/annurev.mi.49.100195.002515
SPANGGORD RJ, 1991, APPL ENVIRON MICROB, V57, P3200, DOI 10.1128/AEM.57.11.3200-3205.1991
Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043
Tachon S, 2011, J BACTERIOL, V193, P3000, DOI 10.1128/JB.01466-10
Tamburro A, 2004, FEMS MICROBIOL LETT, V241, P151, DOI 10.1016/j.femsle.2004.10.013
Tarassova K, 2009, J BACTERIOL, V191, P3604, DOI 10.1128/JB.01803-08
Tavita K, 2012, MUTAT RES-FUND MOL M, V737, P12, DOI 10.1016/j.mrfmmm.2012.07.004
Thomas CM, 2005, NAT REV MICROBIOL, V3, P711, DOI 10.1038/nrmicro1234
vanderMeer JR, 1997, ANTON LEEUW INT J G, V71, P159, DOI 10.1023/A:1000166400935
Wackett LP, 2004, J BIOL CHEM, V279, P41259, DOI 10.1074/jbc.R400014200
Winkler JR, 2015, Q REV BIOPHYS, V48, P411, DOI 10.1017/S0033583515000062
NR 109
TC 38
Z9 38
U1 2
U2 26
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 2150-7511
J9 MBIO
JI mBio
PD JUL-AUG
PY 2018
VL 9
IS 4
AR e01512-18
DI 10.1128/mBio.01512-18
PG 16
WC Microbiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Microbiology
GA GS7MC
UT WOS:000443884300082
PM 30154264
OA gold, Green Published, Green Submitted
DA 2023-03-13
ER
PT J
AU Jenkins, GJS
Zair, Z
Johnson, GE
Doak, SH
AF Jenkins, Gareth J. S.
Zair, Zoulikha
Johnson, George E.
Doak, Shareen H.
TI Genotoxic thresholds, DNA repair, and susceptibility in human
populations
SO TOXICOLOGY
LA English
DT Review
DE DNA damage; Mutation; Dose-response; Threshold; DNA repair; Hormesis
ID LUNG-CANCER RISK; IN-VITRO; MGMT; POLYMORPHISMS; GENES; VARIANTS;
MUTATION; AGENTS
AB It has been long assumed that DNA damage is induced in a linear manner with respect to the dose of a direct acting genotoxin. Thus, it is implied that direct acting genotoxic agents induce DNA damage at even the lowest of concentrations and that no "safe" dose range exists. The linear (non-threshold) paradigm has led to the one-hit model being developed. This "one hit" scenario can be interpreted such that a single DNA damaging event in a cell has the capability to induce a single point mutation in that cell which could (if positioned in a key growth controlling gene) lead to increased proliferation, leading ultimately to the formation of a tumour.
There are many groups (including our own) who, for a decade or more, have argued, that low dose exposures to direct acting genotoxins may be tolerated by cells through homeostatic mechanisms such as DNA repair. This argument stems from the existence of evolutionary adaptive mechanisms that allow organisms to adapt to low levels of exogenous sources of genotoxins. We have been particularly interested in the genotoxic effects of known mutagens at low dose exposures in human cells and have identified for the first time, in vitro genotoxic thresholds for several mutagenic alkylating agents (Doak et al., 2007). Our working hypothesis is that DNA repair is primarily responsible for these thresholded effects at low doses by removing low levels of DNA damage but becoming saturated at higher doses. We are currently assessing the roles of base excision repair (BER) and methylguanine-DNA methyltransferase (MGMT) for roles in the identified thresholds (Doak et al., 2008). This research area is currently important as it assesses whether "safe" exposure levels to mutagenic chemicals can exist and allows risk assessment using appropriate safety factors to define such exposure levels. Given human variation, the mechanistic basis for genotoxic thresholds (e.g. DNA repair) has to be well defined in order that susceptible individuals are considered.
In terms of industrial exposures to known mutagens, knowing the dose relationships and protective mechanisms involved, offers the possibility of screening workers for susceptibility to mutation through examining DNA repair gene polymorphisms. Hence, thresholds may exist for certain mutagens, but there will undoubtedly be human subpopulations who are more at risk from low dose exposures than others and who should not be exposed, if possible. By studying polymorphisms in DNA repair genes, susceptible individuals may be identified, and additional safety factors appropriately targeted to these populations. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
C1 [Jenkins, Gareth J. S.; Zair, Zoulikha; Johnson, George E.; Doak, Shareen H.] Swansea Univ, Swansea Sch Med, Inst Life Sci, Swansea SA2 8PP, W Glam, Wales.
C3 Swansea University
RP Jenkins, GJS (corresponding author), Swansea Univ, Swansea Sch Med, Inst Life Sci, Singleton Pk, Swansea SA2 8PP, W Glam, Wales.
EM g.j.jenkins@swansea.ac.uk
RI ; Johnson, George/J-2488-2014
OI jenkins, gareth/0000-0002-5437-8389; Johnson,
George/0000-0001-5643-9942; Doak, Shareen/0000-0002-6753-1987
FU European Chemical Industry Council/Long-Range Research Initiative;
Hoffman LaRoche
FX We acknowledge the funding provided by the European Chemical Industry
Council/Long-Range Research Initiative and Hoffman LaRoche which enabled
recent experimental work to be carried out.
CR [Anonymous], 2000, GUIDANCE STRATEGY TE
Armstrong MJ, 1997, MUTAT RES-FUND MOL M, V373, P167, DOI 10.1016/S0027-5107(96)00234-5
Bailey GS, 2009, CHEM RES TOXICOL, V22, P1264, DOI 10.1021/tx9000754
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Crosbie PAJ, 2008, INT J CANCER, V122, P791, DOI 10.1002/ijc.23059
Doak SH, 2007, CANCER RES, V67, P3904, DOI 10.1158/0008-5472.CAN-06-4061
Doak SH, 2008, MUTAT RES-FUND MOL M, V648, P9, DOI 10.1016/j.mrfmmm.2008.09.016
Doecke J, 2008, INT J CANCER, V123, P174, DOI 10.1002/ijc.23410
Elhajouji A, 1997, MUTAGENESIS, V12, P133, DOI 10.1093/mutage/12.3.133
Gocke E., 2009, TOXICOLOGY LETT
HANAWALT PC, 1994, SCIENCE, V266, P1957, DOI 10.1126/science.7801121
Hasty P, 2003, SCIENCE, V299, P1355, DOI 10.1126/science.1079161
Henderson L, 2000, MUTAT RES-GEN TOX EN, V464, P123, DOI 10.1016/S1383-5718(99)00173-4
Hoeijmakers JHJ, 2009, NEW ENGL J MED, V361, P1475, DOI 10.1056/NEJMra0804615
Jascur T, 2006, INT J CANCER, V119, P2030, DOI 10.1002/ijc.22023
Johnson G.E., 2009, MUTAT RES
Kaina B, 1998, MUTAT RES-FUND MOL M, V405, P179, DOI 10.1016/S0027-5107(98)00135-3
Kaina B, 2007, DNA REPAIR, V6, P1079, DOI 10.1016/j.dnarep.2007.03.008
Kirkland D, 2007, MUTAT RES-GEN TOX EN, V628, P31, DOI 10.1016/j.mrgentox.2006.11.008
Lutz WK, 2000, HUM EXP TOXICOL, V19, P566, DOI 10.1191/096032700701546488
Lynch A, 2003, MUTAGENESIS, V18, P345, DOI 10.1093/mutage/geg003
Ogino S, 2007, CARCINOGENESIS, V28, P1985, DOI 10.1093/carcin/bgm160
Pegg AE, 2007, DNA REPAIR, V6, P1071, DOI 10.1016/j.dnarep.2007.03.012
PERERA FP, 1988, MUTAT RES, V205, P255, DOI 10.1016/0165-1218(88)90021-3
Povey AC, 2007, DNA REPAIR, V6, P1134, DOI 10.1016/j.dnarep.2007.03.022
REBECK GW, 1991, J BACTERIOL, V173, P2068, DOI 10.1128/jb.173.6.2068-2076.1991
Riches LC, 2008, MUTAGENESIS, V23, P331, DOI 10.1093/mutage/gen039
Rusin M, 1999, Hum Mutat, V14, P269, DOI 10.1002/(SICI)1098-1004(1999)14:3<269::AID-HUMU13>3.0.CO;2-6
Sofuni T, 2000, MUTAT RES-GEN TOX EN, V464, P97, DOI 10.1016/S1383-5718(99)00170-9
Swenberg JA, 2008, CHEM RES TOXICOL, V21, P253, DOI 10.1021/tx700408t
Szadkowski M, 2005, CANCER RES, V65, P4525, DOI 10.1158/0008-5472.CAN-05-0080
Veld CWOH, 1997, MUTAGENESIS, V12, P417, DOI 10.1093/mutage/12.6.417
Vineis P, 2009, JNCI-J NATL CANCER I, V101, P24, DOI 10.1093/jnci/djn437
Zienolddiny S, 2006, CARCINOGENESIS, V27, P560, DOI 10.1093/carcin/bgi232
Zito R, 2001, J EXP CLIN CANC RES, V20, P315
NR 35
TC 31
Z9 31
U1 0
U2 21
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0300-483X
J9 TOXICOLOGY
JI Toxicology
PD DEC 30
PY 2010
VL 278
IS 3
SI SI
BP 305
EP 310
DI 10.1016/j.tox.2009.11.016
PG 6
WC Pharmacology & Pharmacy; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy; Toxicology
GA 703ZK
UT WOS:000286020300008
PM 19932733
OA Green Published
DA 2023-03-13
ER
PT J
AU Alp, FN
Arikan, B
Ozfidan-Konakci, C
Gulenturk, C
Yildiztugay, E
Turan, M
Cavusoglu, H
AF Alp, Fatma Nur
Arikan, Busra
Ozfidan-Konakci, Ceyda
Gulenturk, Cagri
Yildiztugay, Evren
Turan, Metin
Cavusoglu, Halit
TI Hormetic activation of nano-sized rare earth element terbium on growth,
PSII photochemistry, antioxidant status and phytohormone regulation in
Lemna minor
SO PLANT PHYSIOLOGY AND BIOCHEMISTRY
LA English
DT Article
DE Antioxidant; Chlorophyll fluorescence; Hormetic effect; Lemna minor;
Nano -size terbium
ID ABSCISIC-ACID; OXIDE NANOPARTICLES; HYDROGEN-PEROXIDE; SEED-GERMINATION;
OXIDATIVE STRESS; PHOTOSYSTEM-II; NADPH OXIDASE; LANTHANUM; METABOLISM;
CERIUM
AB Soils contaminated with rare earth elements (REEs) can damage agriculture by causing physiological disorders in plants which are evaluated as the main connection of the human food chain. A biphasic dose response with excitatory responses to low concentrations and inhibitory/harmful responses to high concentrations has been defined as hormesis. However, not much is clear about the ecological effects and potential risks of REEs to plants. For this purpose, here we showed the impacts of different concentrations of nano terbium (Tb) applications (5-10-25-50-100-250-500 mg L-1) on the accumulation of endogeneous certain ions and hormones, chlorophyll fluoresence, photochemical reaction capacity and antioxidant activity in duckweed (Lemna minor). Tb concen-trations less than 100 mg L-1 increased the contents of nitrogen (N), phosphate (P), potassium (K+), calcium (Ca2+), magnesium (Mg2+), manganese (Mn2+) and iron (Fe2+). Chlorophyll fluorescence (Fv/Fm and Fv/Fo) was suppressed under 250-500 mg L-1 Tb. In addition, Tb toxicity affected the trapped energy adversely by the active reaction center of photosystem II (PSII) and led to accumulation of inactive reaction centers, thus lowering the detected level of electron transport from photosystem II (PSII) to photosystem I (PSI). On the other hand, 5-100 mg L-1 Tb enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), NADPH oxidase (NOX), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST). Tb (5-50 mg L-1) supported the maintenance of cellular redox status by promoting antioxidant pathways involved in the ascorbate-glutathione (AsA-GSH) cycle. In addition to the antioxidant system, the contents of some hormones such as indole-3-acetic acid (IAA), gibberellic acid (GA), cytokinin (CK) and salicylic acid (SA) were also induced in the presence of 5-100 mg L-1 Tb. In addition, the levels of hydrogen peroxide (H2O2) and lipid peroxidation (TBARS) were controlled through ascorbate (AsA) regeneration and effective hormonal modulation in L. minor. However, this induction in the antioxidant system and phytohormone contents could not be resumed after ap-plications higher than 250 mg L-1 Tb. TBARS and H2O2, which indicate the level of lipid peroxidation, increased. The results in this study showed that Tb at appropriate concentrations has great potential to confer tolerance of duckweed by supporting the antioxidant system, protecting the biochemical reactions of photosystems and improving hormonal regulation.
C1 [Alp, Fatma Nur; Arikan, Busra; Gulenturk, Cagri; Yildiztugay, Evren] Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey.
[Ozfidan-Konakci, Ceyda] Necmettin Erbakan Univ, Fac Sci, Dept Mol Biol & Genet, TR-42090 Meram, Konya, Turkey.
[Turan, Metin] Yeditepe Univ, Fac Econ & Adm Sci, Dept Agr Trade & Management, TR-34755 Istanbul, Turkey.
[Cavusoglu, Halit] Selcuk Univ, Fac Sci, Dept Phys, TR-42130 Selcuklu, Konya, Turkey.
C3 Selcuk University; Necmettin Erbakan University; Yeditepe University;
Selcuk University
RP Yildiztugay, E (corresponding author), Selcuk Univ, Fac Sci, Dept Biotechnol, TR-42130 Selcuklu, Konya, Turkey.
EM fatmanur.alp@selcuk.edu.tr; busra.arikan@selcuk.edu.tr;
cozfidan@erbakan.edu.tr; 3816cagri@gmail.com; eytugay@selcuk.edu.tr;
metin.turan@yeditepe.edu.tr; hcavusoglu@selcuk.edu.tr
CR Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004
Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068
Basiglini E, 2018, ECOTOX ENVIRON SAFE, V153, P54, DOI 10.1016/j.ecoenv.2018.01.053
Battal Peyami, 2001, Turkish Journal of Botany, V25, P123
BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8
Bergmeyer H.U., 1970, METHODEN ENZYMATISCH, V2, DOI 10.1002/pauz.19750040306
Berwal M., 2018, ABIOTIC BIOTIC STRES, P1, DOI [10.5772/intechopen.82079, DOI 10.5772/INTECHOPEN.82079]
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Cao ZM, 2017, ENVIRON SCI-NANO, V4, P1086, DOI 10.1039/c7en00015d
Cheeseman JM, 2006, J EXP BOT, V57, P2435, DOI 10.1093/jxb/erl004
CHEIKH N, 1994, PLANT PHYSIOL, V106, P45, DOI 10.1104/pp.106.1.45
Chen CM, 2014, PLANT PHYSIOL, V166, P370, DOI 10.1104/pp.114.245324
Chen HH, 2020, PLANT J, V101, P310, DOI 10.1111/tpj.14542
Cheng J, 2021, BIOTECHNOL APPL BIOC, V68, P1216, DOI 10.1002/bab.2043
Chu-Puga A, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8010009
CUTTING JGM, 1991, J PLANT GROWTH REGUL, V10, P85, DOI 10.1007/BF02279317
d'Aquino L, 2009, CHEMOSPHERE, V75, P900, DOI 10.1016/j.chemosphere.2009.01.026
Dridi N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14074153
Dutilleul C, 2003, PLANT PHYSIOL, V131, P264, DOI 10.1104/pp.011155
Fan ZB, 2020, HORTSCIENCE, V55, P310, DOI 10.21273/HORTSCI14661-19
Gupta R, 2021, PLANT SIGNAL BEHAV, V16, DOI 10.1080/15592324.2020.1865687
Gwenzi W, 2018, SCI TOTAL ENVIRON, V636, P299, DOI 10.1016/j.scitotenv.2018.04.235
HERNANDEZMINANA FM, 1991, J HORTIC SCI BIOTECH, V66, P505, DOI 10.1080/00221589.1991.11516180
HERZOG V, 1973, ANAL BIOCHEM, V55, P554, DOI 10.1016/0003-2697(73)90144-9
Hong FS, 2003, BIOL TRACE ELEM RES, V94, P273, DOI 10.1385/BTER:94:3:273
Hong FS, 2002, BIOL TRACE ELEM RES, V89, P263, DOI 10.1385/BTER:89:3:263
Hossain MZ, 2006, BIOL PLANTARUM, V50, P210, DOI 10.1007/s10535-006-0009-1
Hu HQ, 2016, ENVIRON SCI POLLUT R, V23, P8902, DOI 10.1007/s11356-015-5962-9
Hu X, 2002, CHEMOSPHERE, V48, P621, DOI 10.1016/S0045-6535(02)00109-1
Hu ZY, 2004, J PLANT NUTR, V27, P183, DOI 10.1081/PLN-120027555
Hunt R, 2002, ANN BOT-LONDON, V90, P485, DOI 10.1093/aob/mcf214
Ion R.M., 2021, HDB GREENER SYNTHESI, P355
Ippolito MP, 2011, PLANT BIOSYST, V145, P248, DOI 10.1080/11263504.2010.509937
Ippolito MP, 2007, CARYOLOGIA, V60, P125, DOI 10.1080/00087114.2007.10589559
Jiang MY, 2002, PLANTA, V215, P1022, DOI 10.1007/s00425-002-0829-y
Jogawat A., 2019, MOL PLANT ABIOTIC ST, P209, DOI 10.1002/9781119463665.ch11
Khan N, 2020, PLANT GROWTH REGUL, V90, P189, DOI 10.1007/s10725-020-00571-x
Kovarikova M, 2019, BIOL PLANTARUM, V63, P20, DOI 10.32615/bp.2019.003
KURAISHI S, 1991, PLANT CELL PHYSIOL, V32, P585, DOI 10.1093/oxfordjournals.pcp.a078120
LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE
Liu DW, 2012, J PLANT NUTR SOIL SC, V175, P907, DOI 10.1002/jpln.201200016
Liu DW, 2012, ENVIRON SCI POLLUT R, V19, P3282, DOI 10.1007/s11356-012-0844-x
Liu XQ, 2009, BIOL TRACE ELEM RES, V130, P141, DOI 10.1007/s12011-009-8321-1
Liu ZQ, 2022, COMPOS PART B-ENG, V244, DOI 10.1016/j.compositesb.2022.110186
Loktyushkin A. V, 2019, Moscow University Biological Sciences Bulletin, V74, P81, DOI 10.3103/S009639251902007X
Luo JP, 2008, J RARE EARTH, V26, P869, DOI 10.1016/S1002-0721(09)60023-5
Ma YH, 2015, NANOTOXICOLOGY, V9, P262, DOI 10.3109/17435390.2014.921344
MITTLER R, 1993, ANAL BIOCHEM, V212, P540, DOI 10.1006/abio.1993.1366
Mubarik MS, 2021, PHYSIOL PLANTARUM, V172, P1269, DOI 10.1111/ppl.13325
NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867
Nyomora AMS, 1997, FRESEN J ANAL CHEM, V357, P1185, DOI 10.1007/s002160050328
Oliveira HC, 2016, NITRIC OXIDE-BIOL CH, V61, P10, DOI 10.1016/j.niox.2016.09.010
PALNI LMS, 1983, PLANT PHYSIOL, V72, P858, DOI 10.1104/pp.72.3.858
Paradiso A, 2008, PLANT CELL PHYSIOL, V49, P362, DOI 10.1093/pcp/pcn013
Qamaruddin M, 1991, SCAND J FOREST RES, V6, P41, DOI 10.1080/02827589109382645
Rachappanavar V, 2022, SCI HORTIC-AMSTERDAM, V304, DOI 10.1016/j.scienta.2022.111302
Rajput VD, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10040267
Ramos SJ, 2016, CURR POLLUT REP, V2, P28, DOI 10.1007/s40726-016-0026-4
Rao KVM, 2000, PLANT SCI, V157, P113, DOI 10.1016/S0168-9452(00)00273-9
Rhaman MS, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10010037
RICCI G, 1984, ANAL BIOCHEM, V143, P226, DOI 10.1016/0003-2697(84)90657-2
Rodziewicz P, 2014, ACTA PHYSIOL PLANT, V36, P1, DOI 10.1007/s11738-013-1402-y
Sagi M, 2001, PLANT PHYSIOL, V126, P1281, DOI 10.1104/pp.126.3.1281
Salem SS, 2021, BIOL TRACE ELEM RES, V199, P344, DOI 10.1007/s12011-020-02138-3
Salvi P, 2021, PLANT CELL REP, V40, P1305, DOI 10.1007/s00299-021-02683-8
Sameena P., 2021, J PHOTOCHEM PHOTOB A, V8, DOI [10.1016/j.jpap.2021.100059, DOI 10.1016/J.JPAP.2021.100059]
SEEVERS PM, 1971, PLANT PHYSIOL, V48, P353, DOI 10.1104/pp.48.3.353
Shamsipur M, 2018, COORDIN CHEM REV, V374, P153, DOI 10.1016/j.ccr.2018.07.006
Shan CJ, 2020, PROTOPLASMA, V257, P1487, DOI 10.1007/s00709-020-01510-3
Shi HT, 2013, PLANT PHYSIOL BIOCH, V71, P226, DOI 10.1016/j.plaphy.2013.07.021
Soliman SA, 2009, THERMOCHIM ACTA, V491, P84, DOI 10.1016/j.tca.2009.03.006
Song WP, 2002, J RARE EARTH, V20, P658
Syrvatka V, 2022, TRENDS BIOTECHNOL, V40, P1088, DOI 10.1016/j.tibtech.2022.02.006
Wang LH, 2014, P NATL ACAD SCI USA, V111, P12936, DOI 10.1073/pnas.1413376111
Wang LH, 2009, CHEMOSPHERE, V77, P1019, DOI 10.1016/j.chemosphere.2009.07.065
WOODBURY W, 1971, ANAL BIOCHEM, V44, P301, DOI 10.1016/0003-2697(71)90375-7
Xiao R, 2019, LUMINESCENCE, V34, P90, DOI 10.1002/bio.3583
Xu XK, 2007, J PLANT NUTR, V30, P557, DOI 10.1080/01904160701209287
Yang L, 2006, J CHROMATOGR A, V1104, P230, DOI 10.1016/j.chroma.2005.12.012
Yao RQ, 2021, J AM CHEM SOC, V143, P17360, DOI 10.1021/jacs.1c09085
Zhang CH, 2013, ACTA PHARM SIN B, V3, P20, DOI 10.1016/j.apsb.2012.12.005
Zicari MA, 2018, ECOTOX ENVIRON SAFE, V163, P536, DOI 10.1016/j.ecoenv.2018.07.113
Zulfiqar F, 2022, J HAZARD MATER, V427, DOI 10.1016/j.jhazmat.2021.127891
NR 84
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
PI ISSY-LES-MOULINEAUX
PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE
SN 0981-9428
EI 1873-2690
J9 PLANT PHYSIOL BIOCH
JI Plant Physiol. Biochem.
PD JAN
PY 2023
VL 194
BP 361
EP 373
DI 10.1016/j.plaphy.2022.11.031
PG 13
WC Plant Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Plant Sciences
GA 8D3QC
UT WOS:000918210700003
OA Bronze
DA 2023-03-13
ER
PT J
AU Dolling, R
Mendelski, MN
Paul, RJ
AF Doelling, Ramona
Mendelski, Martha N.
Paul, Ruediger J.
TI Bacterial diet and weak cadmium stress affect the survivability of
Caenorhabditis elegans and its resistance to severe stress
SO HELIYON
LA English
DT Article
DE Cell biology; Molecular biology; Toxicology; Physiology
ID SIGNALING PATHWAY; ESCHERICHIA-COLI; C. ELEGANS; LIFE-SPAN; KINASE;
EXPRESSION; LONGEVITY; PROTEIN; LIPOPOLYSACCHARIDE; METABOLISM
AB Stress may have negative or positive effects in dependence of its intensity (hormesis). We studied this phenomenon in Caenorhabditis elegans by applying weak or severe abiotic (cadmium, CdCl2) and/or biotic stress (different bacterial diets) during cultivation/breeding of the worms and determining their developmental speed or survival and performing transcriptome profiling and RT-qPCR analyses to explore the genetic basis of the detected phenotypic differences. To specify weak or severe stress, developmental speed was measured at different cadmium concentrations, and survival assays were carried out on different bacterial species as feed for the worms. These studies showed that 0.1 mu mol/L or 10 mmol/L of CdCl2 were weak or severe abiotic stressors, and that E. coli HT115 or Chitinophaga arvensicola feeding can be considered as weak or severe biotic stress. Extensive phenotypic studies on wild type (WT) and different signaling mutants (e.g., kgb-1 Delta and pmk-1 Delta) and genetic studies on WT revealed, inter alia, the following results. WT worms bred on E. coli OP50, which is a known cause of high lipid levels in the worms, showed high resistance to severe abiotic stress and elevated gene expression for protein biosynthesis. WT worms bred under weak biotic stress (E. coli HT115 feeding which causes lower lipid levels) showed an elevated resistance to severe biotic stress, elevated gene expression for the innate immune response and signaling but reduced gene expression for protein biosynthesis. WT worms bred under weak biotic and abiotic stress (E. coli HT115 feeding plus 0.1 mu mol/L of CdCl2) showed high resistance to severe biotic stress, elevated expression of DAF-16 target genes (e.g., genes for small heat shock proteins) but further reduced gene expression for protein biosynthesis. WT worms bred under weak biotic but higher abiotic stress (E. coli HT115 feeding plus 10 mmol/L of CdCl2) showed re-intensified gene expression for the innate immune response, signaling, and protein biosynthesis, which, however, did not caused a higher resistance to severe biotic stress. E. coli OP50 feeding as well as weak abiotic and biotic stress during incubations also improved the age-specific survival probability of adult WT worms. Thus, this study showed that a bacterial diet resulting in higher levels of energy resources in the worms (E. coli OP50 feeding) or weak abiotic and biotic stress promote the resistance to severe abiotic or biotic stress and the age-specific survival probability of WT.
C1 [Doelling, Ramona; Mendelski, Martha N.; Paul, Ruediger J.] Univ Munster WWU, Inst Zoophysiol, D-48143 Munster, Germany.
C3 University of Munster
RP Paul, RJ (corresponding author), Univ Munster WWU, Inst Zoophysiol, D-48143 Munster, Germany.
EM paulr@uni-muenster.de
RI Paul, Rüdiger/ABG-3698-2020
FU Deutsche Forschungsgemeinschaft [Pa 308/13-1]
FX This work was supported by the Deutsche Forschungsgemeinschaft (Pa
308/13-1).
CR Bargmann C.I., 2006, WORMBOOK, DOI [DOI 10.1895/WORMBOOK.1.123.1, 10.1895/WORMBOOK.1.123.1]
Bargmann CI, 1998, SCIENCE, V282, P2028, DOI 10.1126/science.282.5396.2028
Becker D, 2011, BIOL CELL, V103, P351, DOI 10.1042/BC20100145
Bertin G, 2006, BIOCHIMIE, V88, P1549, DOI 10.1016/j.biochi.2006.10.001
Bolz DD, 2010, J BIOL CHEM, V285, P10832, DOI 10.1074/jbc.M109.091629
Bourne HR, 1997, CURR OPIN CELL BIOL, V9, P134, DOI 10.1016/S0955-0674(97)80054-3
Broeks A, 1996, EMBO J, V15, P6132, DOI 10.1002/j.1460-2075.1996.tb01001.x
Brooks KK, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007545
BUTTGEREIT F, 1995, BIOCHEM J, V312, P163, DOI 10.1042/bj3120163
Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa
Cash HL, 2006, SCIENCE, V313, P1126, DOI 10.1126/science.1127119
CASTANEDA O, 1995, TOXICON, V33, P603, DOI 10.1016/0041-0101(95)00013-C
Dasgupta S, 1998, MOL MICROBIOL, V28, P629, DOI 10.1046/j.1365-2958.1998.00828.x
Du M, 2009, ENVIRON TOXICOL PHAR, V27, P314, DOI 10.1016/j.etap.2008.11.011
Feder ME, 2005, J EVOLUTION BIOL, V18, P901, DOI 10.1111/j.1420-9101.2005.00921.x
Fujiki K, 2010, MOL CELL BIOL, V30, P995, DOI 10.1128/MCB.01131-09
Garigan D, 2002, GENETICS, V161, P1101
Garsin DA, 2001, P NATL ACAD SCI USA, V98, P10892, DOI 10.1073/pnas.191378698
Gems D, 2000, GENETICS, V154, P1597
Gerke P, 2014, CELL PHYSIOL BIOCHEM, V34, P1951, DOI 10.1159/000366392
Haimes J., 2010, DEMONSTRATION DELTA
Halaschek-Wiener J, 2005, GENOME RES, V15, P603, DOI 10.1101/gr.3274805
Hattori A, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003315
Hoogewijs D, 2008, BMC MOL BIOL, V9, DOI 10.1186/1471-2199-9-9
Huffman DL, 2004, P NATL ACAD SCI USA, V101, P10995, DOI 10.1073/pnas.0404073101
Hughes SL, 2009, J PROTEOME RES, V8, P3512, DOI 10.1021/pr9001806
Jia K, 2004, DEVELOPMENT, V131, P3897, DOI 10.1242/dev.01255
Kamath RS, 2001, GENOME BIOL, V2, DOI 10.1186/gb-2000-2-1-research0002
KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0
Keshet A, 2017, MOL GENET GENOMICS, V292, P1341, DOI 10.1007/s00438-017-1351-z
Klena J, 2005, J BACTERIOL, V187, P1710, DOI 10.1128/JB.187.5.1710-1715.2005
Klumpen E, 2017, BIOL CELL, V109, P39, DOI 10.1111/boc.201600017
Koga M, 2000, EMBO J, V19, P5148, DOI 10.1093/emboj/19.19.5148
Lackner DH, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-4-r25
Leroy M, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-187
Maier W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000376
Marshall OJ, 2004, BIOINFORMATICS, V20, P2471, DOI 10.1093/bioinformatics/bth254
Martinez-Finley EJ, 2011, J TOXICOL-US, V2011, DOI 10.1155/2011/895236
Matz CJ, 2007, ENVIRON SCI TECHNOL, V41, P5143, DOI 10.1021/es070452c
Mertenskotter A, 2013, CELL STRESS CHAPERON, V18, P293, DOI 10.1007/s12192-012-0382-y
Miller DL, 2009, CURR BIOL, V19, P1233, DOI 10.1016/j.cub.2009.05.066
Mizuno T, 2008, MOL CELL BIOL, V28, P7041, DOI 10.1128/MCB.00938-08
Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789
Oliveira RP, 2009, AGING CELL, V8, P524, DOI 10.1111/j.1474-9726.2009.00501.x
Panowski SH, 2009, TRENDS ENDOCRIN MET, V20, P259, DOI 10.1016/j.tem.2009.03.006
PREHM P, 1975, EUR J BIOCHEM, V56, P41, DOI 10.1111/j.1432-1033.1975.tb02205.x
Prehm P., 1976, FEBS J, P171
Rai UN, 1998, WATER AIR SOIL POLL, V106, P171, DOI 10.1023/A:1004923908436
Roh JY, 2006, ENVIRON TOXICOL CHEM, V25, P2946, DOI 10.1897/05-676R.1
Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051
Schulenburg H, 2008, IMMUNOBIOLOGY, V213, P237, DOI 10.1016/j.imbio.2007.12.004
STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5
Stiernagle Theresa, 2006, WormBook, P1
Tarazona S, 2011, GENOME RES, V21, P2213, DOI 10.1101/gr.124321.111
Thomas JH, 2006, GENETICS, V172, P127, DOI 10.1534/genetics.104.040030
Troemel ER, 2006, PLOS GENET, V2, P1725, DOI 10.1371/journal.pgen.0020183
Uno M, 2013, CELL REP, V3, P79, DOI 10.1016/j.celrep.2012.12.018
Wullschleger S, 2006, CELL, V124, P471, DOI 10.1016/j.cell.2006.01.016
Xiao R, 2015, CELL REP, V11, P1123, DOI 10.1016/j.celrep.2015.04.024
Young JAT, 2004, P NATL ACAD SCI USA, V101, P12781, DOI 10.1073/pnas.0404890101
NR 60
TC 2
Z9 2
U1 1
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
EI 2405-8440
J9 HELIYON
JI Heliyon
PD JAN
PY 2019
VL 5
IS 1
AR e01126
DI 10.1016/j.heliyon.2019.e01126
PG 38
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA HN3JZ
UT WOS:000460080900028
PM 30705981
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Rombke, J
Moser, T
AF Rombke, J
Moser, T
TI Validating the enchytraeid reproduction test: organisation and results
of an international ringtest
SO CHEMOSPHERE
LA English
DT Article
DE Enchytraeus albidus; sub-lethal laboratory test; ringtest; soil;
carbendazim; 4-nitrophenol
ID OLIGOCHAETES ANNELIDA; ORGANIC-CHEMICALS; EARTHWORM; TOXICITY; SOIL;
BENOMYL
AB In this paper the experiences concerning the organisation and results of the enchytraeid reproduction test (ERT) ringtest are summarised (for details see J. Rombke. T. Moser, Organisation and Performance of an International Ringtest for the Validation of the Enchytraeid Reproduction Test, vols. I and II. UBA-Texte 4/99, 1999 150 223 pp).
The performance of this ringtest was in line with requirements published by OECD. It was sponsored by the German Federal Environmental Agency (Umweltbundesamt; UBA, Berlin). The UBA was also actively engaged (together with the European Chemicals Bureau, Ispra) in a scientific task force, which consisted of seven scientists experienced in terrestrial ecology and ecotoxicology.
29 institutions (mainly from universities and contract research laboratories) from 15 countries of Europe and North America participated actively in the ringtest. The co-ordinating laboratory centrally distributed the test chemicals, guidance papers and test organisms to all participants. In addition, several training courses were organised.
Most participants performed two tests with the fungicide Carbendazim and two with 4-nitrophenol. For each chemical, one test was designed according to an EC(x) approach and the other according to an NOEC approach. Several aspects of the test protocol were modified based on the experiences gained during the ringtest.
A major aspect of the project was the detailed statistical evaluation of the test results (for details see A. Weyers, J. Rombke, T. Moser, T. Ratte, Results of and statistical implications from the enchytraeid reproduction ringtest, 2001, submitted), leading to recommendations for an optimised ecotoxicological test design. A total of 92 tests were performed according to the protocol which is among the highest number ever performed in a ringtest. About 72% met the validity criteria (control mortality <20%, >25 juveniles per 10 adults).
The effects of the two test chemicals on enchytraeid reproduction were in the range expected from data in the literature on oligochaete toxicity. However, statistical evaluation of the data was sometimes difficult as a result of the high variability in the number of juveniles. This variability was caused by several reasons, including hormesis effects or lack of experience of some participants.
Comparison of the data from the NOEC and EC(x) approaches pointed to a clear advantage in favour of the latter. In most cases EC(10) values were lower than the NOEC values determined in the same test. For details see A. Weyers et al. (loc. cit.).
Reproducibility of the test data and practicability of the ERT ringtest were of the same order of magnitude as other ringtests recently performed. As a result of the ringtest, the ERT draft guideline was significantly improved. The new version is currently being standardised by OECD, ISO and ASTM. (C) 2002 Elsevier Science Ltd. All rights reserved.
C1 ECT Oekotoxikol GmbH, D-65439 Florsheim, Germany.
C3 ECT Oekotoxikologie GmbH
RP Rombke, J (corresponding author), ECT Oekotoxikol GmbH, Bottger Str 2-14, D-65439 Florsheim, Germany.
EM j.roembke@ect.de
OI Rombke, Jorg/0000-0003-1341-634X
CR ACHAZI RK, 1995, NEWSLETTER ENCHYTRAE, V4, P7
ADEMA DM, 1985, ACT S INT EC TERR, P199
[Anonymous], 2016, GUID TEST CHEM
[Anonymous], 1984, 38402 DIN
[Anonymous], 2005, 10390 ISO
*ASTM, 2000, E167697 ASTM
BALLS M, 1995, 23 ATLA, P129
BBA (Biologische Bundesanstalt fur Landund Forstwirtschaft), 1994, RICHTL PRUF PFLANZ
BOCKTING GJM, 1992, 679101013 RIVM
BORN H, 1993, THESIS U BREMEN GERM
BOUGUENEC V, 1987, THESIS U TOULOUSE 3
BREEMEN D, 1994, 719102025 RIVM
*BUA, 1992, BUA STOFFB, V75
CAIRNS J, 1986, BIOSCIENCE, V36, P670, DOI 10.2307/1310388
CHRISTENSEN B, 1995, EFFECTS PESTICIDES M
Cluzeau D., 1992, P225
Collado R, 1999, PEDOBIOLOGIA, V43, P625
DIDDEN W, 2002, IN PRESS ECOTOXICOL
*DIN, 1981, 5725 DINISO
DOMSCH KH, 1992, PESTIZIDE BODEN
Dott W., 1995, BIOASSAYS SOILS
Edwards C A, 1984, 9360 EUR EN
ELZER U, 1993, THESIS FU BERLIN GER
*EU, 1996, 148894 EC
FEDERSCHMIDT A, 1994, THESIS U FRANKFURT G
FUNKE W, 1991, 6487953127147 BER BA
Graefe U., 1991, Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, V66, P487
HASSANIZADEH SM, 1992, ADV WATER RESOUR, V15, P1
Heck M, 1995, NEWSLETTER ENCHYTRAE, V4, P69
HEUNGENS A, 1984, PEDOBIOLOGIA, V26, P13714
HUHTA V, 1984, PEDOBIOLOGIA, V27, P245
HUNDRINKE K, 2001, OKOTOXIKOLOGISCHE GE
*ISO, 2000, 16387 ISO WD
*ISO, 1995, 112682 ISO DIS
IVLEVA I. V., 1953, ZOOLOGICHESKII ZHURNAL, V32, P394
KASPRZAK K, 1982, PEDOBIOLOGIA, V23, P217
KAUFMAN ES, 1975, HYDROBIOL J, V11, P4446
Kokta C., 1992, P213
KORINKOVA J, 1968, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V32, P300
Kristufek V, 1995, PEDOBIOLOGIA, V39, P547
KULA H, 1994, SETAC SP P, P241
LEARNER MA, 1972, ANN APPL BIOL, V70, P251, DOI 10.1111/j.1744-7348.1972.tb04711.x
LOFSHOLMIN A, 1981, SWED J AGR RES, V11, P141
Lokke H., 1998, HDB SOIL INVERTEBRAT
Mallett MJ, 1997, ENVIRON TOXICOL CHEM, V16, P528, DOI [10.1897/1551-5028(1997)016<0528:ICOAMT>2.3.CO;2, 10.1002/etc.5620160319]
MOTHESWAGNER U, 1992, CHEMOSPHERE, V24, P1653, DOI 10.1016/0045-6535(92)90408-J
NEUHAUSER EF, 1985, J ENVIRON QUAL, V14, P383, DOI 10.2134/jeq1985.00472425001400030015x
NEUHAUSER EF, 1986, COMP BIOCHEM PHYS C, V83, P197, DOI 10.1016/0742-8413(86)90036-8
NOTENBOOM J, 1994, 719102029 RIVM I
*OECD, 1984, 208 OECD GUID TEST C
OECD, 2004, HTTPSATPROMEGACOMENP, DOI [10.1787/9789264123298-en, 10.1787/9789264070264-en, DOI 10.1787/9789264070264-EN]
*OECD, 1993, LEITF ENTW OECD PRUF
*OECD, 1996, REP OECD WORKSH HARM
OECD (Organization for Economic Co-operation and Development), 1998, OECD SER PRINC GOOD
PEDERSEN F, 1994, DISCUSSION PAPER REG
PURSCHKE G, 1991, COMP BIOCHEM PHYS C, V100, P119, DOI 10.1016/0742-8413(91)90136-H
RIEPERT F, 1995, ISOTC190SC4WG2
ROBERTS BL, 1985, ENVIRON TOXICOL CHEM, V4, P307, DOI 10.1897/1552-8618(1985)4[307:HOCTE]2.0.CO;2
Rombke J., 1989, Archives of Toxicology Supplement, V13, P402
ROMBKE J, 1994, SETAC SP P, P229
Rombke J., 1999, ORG PERFORMANCE INT, V1
ROMBKE J, 1995, Z UMWELTWISSENSCHAFT, V8, P158
ROMBKE J, 1996, NEWSLETTER ENCHYTRAE, V5, P73
ROMBKE J, 1991, 1060305101 BATT I FR
ROMBKE J, 1995, Z UMWELTCHEM OKOTOX, V7, P246
ROMBKE J, 1989, HYDROBIOLOGIA, V180, P235
*ROY SOC CHEM, 1994, AGR HDB
Ruther U., 1990, Acta Biologica Benrodis, V2, P125
VANGESTEL CAM, 1994, SETAC SP P, P205
VANGESTEL CAM, 1991, THESIS RIJKSUNIV UTR
WALUM E, 1994, TOXICOL IN VITRO, V8, P807, DOI 10.1016/0887-2333(94)90073-6
Westheide W., 1991, P497
WESTHEIDE W, 1991, COMP BIOCHEM PHYS C, V100, P221, DOI 10.1016/0742-8413(91)90157-O
Westheide W., 1989, Verhandlungen der Gesellschaft fuer Oekologie, V17, P793
WEUFFEN W, 1968, Archiv fuer Experimentelle Veterinaermedizin, V22, P127
WEYERS A, 2002, UNPUB
*WHO, 1995, CARB ENV HLTH CRIT
WILLUHN J, 1994, J BIOL CHEM, V269, P24688
[No title captured]
[No title captured]
[No title captured]
NR 81
TC 74
Z9 77
U1 0
U2 25
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-6535
J9 CHEMOSPHERE
JI Chemosphere
PD FEB
PY 2002
VL 46
IS 7
BP 1117
EP 1140
AR PII S0045-6535(01)00113-8
DI 10.1016/S0045-6535(01)00113-8
PG 24
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA 527NE
UT WOS:000174191500018
PM 11999775
DA 2023-03-13
ER
PT J
AU Li, K
Qian, J
Wang, PF
Wang, C
Lu, BH
Jin, W
He, XX
Tang, SJ
Zhang, C
Gao, P
AF Li, Kun
Qian, Jin
Wang, Peifang
Wang, Chao
Lu, Bianhe
Jin, Wen
He, Xixian
Tang, Sijing
Zhang, Chao
Gao, Pan
TI Responses of freshwater biofilm formation processes (from colonization
to maturity) to anatase and rutile TiO2 nanoparticles: Effects of
nanoparticles aging and transformation
SO WATER RESEARCH
LA English
DT Article
DE Aging; TiO2 nanoparticles; Crystalline phase; Physicochemical
transformation; Freshwater biofilm formation; Quorum sensing
ID EXTRACELLULAR POLYMERIC SUBSTANCES; TO-CELL COMMUNICATION; BOUND
HUMIC-ACID; TITANIA NANOPARTICLES; CRYSTALLINE PHASES; ACTIVATED-SLUDGE;
TOXICITY; NANO-TIO2; DIATOMS; NANOMATERIALS
AB Most of the current studies on the toxicology of pristine nanoparticles (NPs) are environmentally irrelevant, because their "aging" process accompanied by the physicochemical transformation is inevitable in the environment. Considering aging phenomenon will gain a better understanding of the toxicity and fate of NPs in the environment. Here, we focused on the physicochemical transformation of anataseNPs (TiO2-A) and rutile-NPs (TiO2-R) after 90 days of aging and investigated the responses of freshwater biofilm formation to the stress changes of naturally aged TiO2-NPs (aTiO(2)-NPs). We found that after aging, the TiO2-NPs underwent sophisticated physicochemical transformations in the original morphology and microstructure owing to organic and crystal salts inclusions, such as energy band changes and the formation of Ti3+ on the NPs surfaces. These comprehensive transformations increased the stability of NPs in the exposed suspension. However, the physicochemical transformations were crystal-forms-dependent, and aging did not change the crystal structure and crystallinity. Interestingly, compared to pristine NPs, aTiO(2)-NPs showed much lower cytotoxicity and had the weaker ability to promote or inhibit the biofilm formation (p < 0.05) owing to the passivation of photoactivity caused by the comprehensive effect of the inclusions, especially for aTiO 2 -A. Regardless of aging or not of crystal forms, responses of biofilm formation were exposure-concentration-dependent, namely low concentration promotion (0.1 mg/L) and high concentration inhibition (10 mg/L), e.g., role transition of the pioneers (algae or bacteria) in initial colonization, extracellular polymeric substances (EPS) secretion and compositions of development stages with polysaccharide (PS)-rich and protein (PRO)-rich stages, and biomass and cell activity at different depths of mature biofilms. The reactive oxygen species (ROS) induced by TiO2-NPs showed typical hormesis. The changing trends of the autoinducers (c-di-GMP and quorum sensing signals including AHL and AI-2) were highly consistent with the growth stages of biofilms and were stimulated or suppressed by TiO2-NPs. The NPs crystal-dependently changed the microorganism community structures, while the UPGMA clustering of bacteria was based on the growth stages of the biofilms. The toxic mechanisms revealed that photoactivity and nanoscale retention of particles are the main reasons for the differences in the ecological stress capacity of four kinds of TiO2-NPs. Aging reduced characteristic differences of two pristine NPs and even reversed their relative stresses levels (p > 0.05). However, the toxicity of high-concentration aTiO(2)-NPs (10 mg/L) remained serious in a water environment. This study provides a better understanding for the water environmental risks evaluation and policy control of nanoparticles, that is, the effect of time aging has to be considered. (C) 2020 Elsevier Ltd. All rights reserved.
C1 [Li, Kun; Qian, Jin; Wang, Peifang; Wang, Chao; Lu, Bianhe; Jin, Wen; He, Xixian; Tang, Sijing; Zhang, Chao; Gao, Pan] Hohai Univ, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Nanjing 210098, Peoples R China.
[Li, Kun; Qian, Jin; Wang, Peifang; Wang, Chao; Lu, Bianhe; Jin, Wen; He, Xixian; Tang, Sijing; Zhang, Chao; Gao, Pan] Hohai Univ, Coll Environm, Nanjing 210098, Peoples R China.
C3 Hohai University; Hohai University
RP Qian, J; Wang, PF (corresponding author), Hohai Univ, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Nanjing 210098, Peoples R China.
EM hhuqj@hhu.edu.cn; pfwang2005@hhu.edu.cn
RI Wang, Chao/GXF-8353-2022
OI Qian, Jin/0000-0002-9368-387X
FU National Key Plan for Research and Development of China
[2016YFC0401703]; National Science Funds for Creative Research Groups of
China [51421006]; World-Class Universities (Disciplines) and
Characteristic Development Guidance Funds for the Central Universities;
Fundamental Research Funds for the Central Universities [2019B63314];
Key Program of National Natural Science Foundation of China [91647206];
National Natural Science Foundation of China [51779078]; Natural Science
Foundation of Jiangsu Province of China [BK20171438]; Postgraduate
Research & Practice Innovation Program of Jiangsu Province
[SJKY19_0530]; Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD)
FX This project was supported by the National Key Plan for Research and
Development of China [grant no. 2016YFC0401703], the National Science
Funds for Creative Research Groups of China [grant no. 51421006], the
World-Class Universities (Disciplines) and Characteristic Development
Guidance Funds for the Central Universities, the Fundamental Research
Funds for the Central Universities [grant no. 2019B63314], the Key
Program of National Natural Science Foundation of China [grant no.
91647206], the National Natural Science Foundation of China [grant no.
51779078], the Natural Science Foundation of Jiangsu Province of China
[grant no. BK20171438], the Postgraduate Research & Practice Innovation
Program of Jiangsu Province (grant no. SJKY19_0530), and Priority
Academic Program Development of Jiangsu Higher Education Institutions
(PAPD).
CR Baek S, 2020, ENVIRON TOXICOL, V35, P87, DOI 10.1002/tox.22845
Bassler BL, 2002, CELL, V109, P421, DOI 10.1016/S0092-8674(02)00749-3
Bernier SP, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00020
Bi XD, 2012, ISR J AQUACULT-BAMID, V64
Boehm A, 2010, CELL, V141, P107, DOI 10.1016/j.cell.2010.01.018
Bruckner CG, 2011, ENVIRON MICROBIOL, V13, P1052, DOI 10.1111/j.1462-2920.2010.02411.x
Chen LK, 2018, CHEM RES CHINESE U, V34, P44, DOI 10.1007/s40242-018-7193-3
Chen MY, 2006, ENVIRON SCI TECHNOL, V40, P6642, DOI 10.1021/es0612955
Chowdhury I, 2012, ENVIRON SCI TECHNOL, V46, P6968, DOI 10.1021/es2034747
Chrost R.J., 1991, ENV CONTROL SYNTHESI, DOI [10.1007/978-1-4612-3090-8_3., DOI 10.1007/978-1-4612-3090-8_3]
COOKSEY KE, 1995, AQUAT MICROB ECOL, V9, P87, DOI 10.3354/ame009087
Dignac MF, 1998, WATER SCI TECHNOL, V38, P45, DOI 10.1016/S0273-1223(98)00676-3
Dreszer C, 2014, WATER RES, V50, P200, DOI 10.1016/j.watres.2013.11.024
Gambino M, 2016, BIOFOULING, V32, P167, DOI 10.1080/08927014.2015.1134515
Gil-Allue C, 2015, ENVIRON SCI TECHNOL, V49, P1165, DOI 10.1021/es5050166
Guillard C, 2005, INT J PHOTOENERGY, V7, P1, DOI 10.1155/S1110662X05000012
Guo MM, 2019, J HAZARD MATER, V380, DOI 10.1016/j.jhazmat.2019.120905
Hall-Stoodley L, 2004, NAT REV MICROBIOL, V2, P95, DOI 10.1038/nrmicro821
He XJ, 2016, J ENVIRON SCI, V42, P50, DOI 10.1016/j.jes.2015.05.028
Hoffman LR, 2005, NATURE, V436, P1171, DOI 10.1038/nature03912
Hund-Rinke K, 2006, ENVIRON SCI POLLUT R, V13, P225, DOI 10.1065/espr2006.06.311
Iswarya V, 2015, AQUAT TOXICOL, V161, P154, DOI 10.1016/j.aquatox.2015.02.006
Jassby D, 2012, ENVIRON SCI TECHNOL, V46, P6934, DOI 10.1021/es202009h
Joint I, 2002, SCIENCE, V298, P1207, DOI 10.1126/science.1077075
Karaolis DKR, 2005, ANTIMICROB AGENTS CH, V49, P1029, DOI 10.1128/AAC.49.3.1029-1038.2005
Kearns DB, 2010, NAT REV MICROBIOL, V8, P634, DOI 10.1038/nrmicro2405
Kulacki KJ, 2012, ENVIRON TOXICOL CHEM, V31, P2414, DOI 10.1002/etc.1962
Leon A, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7010049
Li K, 2019, ENVIRON SCI TECHNOL, V53, P4542, DOI 10.1021/acs.est.8b04991
Li K, 2017, ENVIRON POLLUT, V231, P1433, DOI 10.1016/j.envpol.2017.09.004
Li WH, 2018, NUCLEIC ACIDS RES, V46, P7270, DOI 10.1093/nar/gky611
Lin DH, 2012, WATER RES, V46, P4477, DOI 10.1016/j.watres.2012.05.035
LIU D, 1993, WATER RES, V27, P361, DOI 10.1016/0043-1354(93)90035-G
Liu N, 2016, ACS NANO, V10, P6062, DOI 10.1021/acsnano.6b01657
Lowry GV, 2012, ENVIRON SCI TECHNOL, V46, P6893, DOI 10.1021/es300839e
Mathur A, 2017, INT BIODETER BIODEGR, V116, P17, DOI 10.1016/j.ibiod.2016.09.024
Neale PA, 2013, WATER SCI TECHNOL, V68, P1440, DOI 10.2166/wst.2013.388
Neu TR, 1997, FEMS MICROBIOL ECOL, V24, P11, DOI 10.1016/S0168-6496(97)00027-5
Nowack B, 2012, ENVIRON TOXICOL CHEM, V31, P50, DOI 10.1002/etc.726
Ouyang K, 2017, ENVIRON POLLUT, V231, P1104, DOI 10.1016/j.envpol.2017.07.003
Pan L, 2011, J AM CHEM SOC, V133, P10000, DOI 10.1021/ja2035927
PORTER KG, 1980, LIMNOL OCEANOGR, V25, P943, DOI 10.4319/lo.1980.25.5.0943
Qian J, 2017, BIORESOURCE TECHNOL, V241, P276, DOI 10.1016/j.biortech.2017.05.121
Qiang LW, 2015, ENVIRON POLLUT, V206, P644, DOI 10.1016/j.envpol.2015.08.032
Qin YK, 2017, ENVIRON SCI-NANO, V4, P1178, DOI 10.1039/c6en00664g
Romani A. M., 2010, BIOFOULING, P137, DOI DOI 10.1002/9781444315462.CH10
Shade A, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00417
Simm R, 2004, MOL MICROBIOL, V53, P1123, DOI 10.1111/j.1365-2958.2004.04206.x
Smith KA, 2019, J MATER SCI, V54, P13221, DOI 10.1007/s10853-019-03825-w
Sun J, 2014, ENVIRON SCI TECHNOL, V48, P11962, DOI 10.1021/es502360c
Tait K, 2005, ENVIRON MICROBIOL, V7, P229, DOI 10.1111/j.1462-2920.2004.00706.x
Tan LR, 2018, ENVIRON SCI POLLUT R, V25, P17128, DOI 10.1007/s11356-018-1894-5
Tan LR, 2016, RSC ADV, V6, P78132, DOI 10.1039/c6ra15025j
Tang J, 2018, TRENDS BIOTECHNOL, V36, P1171, DOI 10.1016/j.tibtech.2018.06.009
Thuptimdang P, 2015, J HAZARD MATER, V290, P127, DOI 10.1016/j.jhazmat.2015.02.073
Tong TZ, 2015, ENVIRON SCI TECH LET, V2, P12, DOI 10.1021/ez5004023
Vance ME, 2015, BEILSTEIN J NANOTECH, V6, P1769, DOI 10.3762/bjnano.6.181
Vevers WF, 2008, ECOTOXICOLOGY, V17, P410, DOI 10.1007/s10646-008-0226-9
Vu B, 2009, MOLECULES, V14, P2535, DOI 10.3390/molecules14072535
Wang MM, 2015, NANOTOXICOLOGY, V9, P972, DOI 10.3109/17435390.2014.992816
Wang PF, 2019, ENVIRON SCI-NANO, V6, P2626, DOI [10.1039/c9en00389d, 10.1039/C9EN00389D]
Wang PF, 2018, WATER RES, V133, P208, DOI 10.1016/j.watres.2018.01.031
Wang R, 1997, NATURE, V388, P431, DOI 10.1038/41233
Wolska KI, 2016, J APPL GENET, V57, P225, DOI 10.1007/s13353-015-0309-2
Xu J, 2013, EARTH PLANET SC LETT, V363, P156, DOI 10.1016/j.epsl.2012.12.008
Xu Y, 2019, ENVIRON SCI POLLUT R, V26, P9293, DOI 10.1007/s11356-019-04340-w
Yan JQ, 2013, PHYS CHEM CHEM PHYS, V15, P10978, DOI 10.1039/c3cp50927c
Yang CY, 2016, MAR POLLUT BULL, V107, P118, DOI 10.1016/j.marpolbul.2016.04.010
Yang CY, 2016, CHEM ECOL, V32, P169, DOI 10.1080/02757540.2015.1120722
Zhang HN, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06289-7
Zhang H, 2016, NANOIMPACT, V3-4, P75, DOI 10.1016/j.impact.2016.08.004
Zhang Li-li, 2007, Huanjing Kexue, V28, P795
Zhou ZX, 2017, ECOL MODEL, V360, P150, DOI 10.1016/j.ecolmodel.2017.06.027
NR 73
TC 13
Z9 13
U1 15
U2 117
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0043-1354
J9 WATER RES
JI Water Res.
PD SEP 1
PY 2020
VL 182
AR 115953
DI 10.1016/j.watres.2020.115953
PG 17
WC Engineering, Environmental; Environmental Sciences; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Environmental Sciences & Ecology; Water Resources
GA NO0CU
UT WOS:000569156100012
PM 32559664
DA 2023-03-13
ER
PT J
AU Gomez-Merino, FC
Trejo-Tellez, LI
Garcia-Jimenez, A
Escobar-Sepulveda, HF
Ramirez-Olvera, SM
AF Carlos Gomez-Merino, Fernando
Iris Trejo-Tellez, Libia
Garcia-Jimenez, Atonaltzin
Fernando Escobar-Sepulveda, Hugo
Monzerrat Ramirez-Olvera, Sara
TI Silicon flow from root to shoot in pepper: a comprehensive in silico
analysis reveals a potential linkage between gene expression and hormone
signaling that stimulates plant growth and metabolism
SO PEERJ
LA English
DT Article
DE Solanaceae; Capsicum annuum; in silico analysis; Gene expression;
Beneficial elements; Silicon; Hormesis
ID FUNCTIONAL-CHARACTERIZATION; TRANSPORTER GENES; MULTIPLE LEVELS;
NUTRIENT-UPTAKE; ARABIDOPSIS; TOMATO; RICE; STRAWBERRY; IDENTIFICATION;
ACCUMULATION
AB Background: Silicon (Si) is categorized as a quasi-essential element for plants thanks to the benefits on growth, development and metabolism in a hormetic manner. Si uptake is cooperatively mediated by Lsi1 and Lsi2. Nevertheless, Lsi channels have not yet been identified and characterized in pepper (Capsicum annuum), while genes involved in major physiological processes in pepper are Si-regulated. Furthermore, Si and phytohormones may act together in regulating plant growth, metabolism and tolerance against stress. Our aim was to identify potential synergies between Si and phytohormones stimulating growth and metabolism in pepper, based on in silico data.
Methods: We established a hydroponic system to test the effect of Si (0, 60, 125 and 250 mg L-1 Si) on the concentrations of this element in different pepper plant tissues. We also performed an in silico analysis of putative Lsi genes from pepper and other species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum) and Arabidopsis thaliana, to look for cis-acting elements responsive to phytohormones in their promoter regions. With the Lsi1 and Lsi2 protein sequences from various plant species, we performed a phylogenetic analysis. Taking into consideration the Lsi genes retrieved from tomato, potato and Arabidopsis, an expression profiling analysis in different plant tissues was carried out. Expression of Si-regulated genes was also analyzed in response to phytohormones and different plant tissues and developmental stages in Arabidopsis.
Results: Si concentrations in plant tissues exhibited the following gradient: roots > stems > leaves. We were able to identify 16 Lsi1 and three Lsi2 genes in silico in the pepper genome, while putative Lsi homologs were also found in other plant species. They were mainly expressed in root tissues in the genomes analyzed. Both Lsi and Si-regulated genes displayed cis-acting elements responsive to diverse phytohormones. In Arabidopsis, Si-regulated genes were transcriptionally active in most tissues analyzed, though at different expressed levels. From the set of Si-responsive genes, the NOCS2 gene was highly expressed in germinated seeds, whereas RABH1B, and RBCS-1A, were moderately expressed in developed flowers. All genes analyzed showed responsiveness to phytohormones and phytohormone precursors.
Conclusion: Pepper root cells are capable of absorbing Si, but small amounts of this element are transported to the upper parts of the plant. We could identify putative Si influx (Lsi1) and efflux (Lsi2) channels that potentially participate in the absorption and transport of Si, since they are mainly expressed in roots. Both Lsi and Si-regulated genes exhibit cis-regulatory elements in their promoter regions, which are involved in phytohormone responses, pointing to a potential connection among Si, phytohormones, plant growth, and other vital physiological processes triggered by Si in pepper.
C1 [Carlos Gomez-Merino, Fernando; Iris Trejo-Tellez, Libia] Coll Postgrad Agr Sci, Dept Soil Sci Lab, Texcoco, State Of Mexico, Mexico.
[Garcia-Jimenez, Atonaltzin; Monzerrat Ramirez-Olvera, Sara] Coll Postgrad Agr Sci, Dept Plant Physiol, Texcoco, State Of Mexico, Mexico.
[Fernando Escobar-Sepulveda, Hugo] Univ Talca, Inst Biol Sci, Talca, Chile.
C3 Universidad de Talca
RP Gomez-Merino, FC (corresponding author), Coll Postgrad Agr Sci, Dept Soil Sci Lab, Texcoco, State Of Mexico, Mexico.
EM fernandg@colpos.mx
RI Gómez-Merino, Fernando Carlos/D-2224-2014; LIBIA,
TREJO-TÉLLEZ/AAV-8118-2021; Gomez-Merino, Fernando Carlos/B-2423-2015
OI Gomez-Merino, Fernando Carlos/0000-0001-8496-2095
FU Mexico's National Science and Technology Council (CONACYT); Secretariat
of Foreign Affairs, through the Mexican Agency for International
Development Cooperation (AMEXCID)
FX This study was funded by Mexico's National Science and Technology
Council (CONACYT) and its Secretariat of Foreign Affairs, through the
Mexican Agency for International Development Cooperation (AMEXCID), for
the scholarships granted to Atonaltzin Garcia-Jimemnez and Hugo Fernando
Escobar-Sepulveda, respectively. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
CR Abdel-Haliem MEF, 2017, ECOL ENG, V99, P282, DOI 10.1016/j.ecoleng.2016.11.060
Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006
Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005
Ahanger MA, 2020, J EXP BOT, V71, P6758, DOI 10.1093/jxb/eraa291
Alcantar GG, 1999, HDB CHEM ANAL PLANT, V10
Ali N, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01475
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2
[Anonymous], 2009, THESIS
Artyszak A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8050136
Balazadeh S, 2008, PLANT BIOLOGY, V10, P63, DOI 10.1111/j.1438-8677.2008.00088.x
Bateman A, 2019, NUCLEIC ACIDS RES, V47, pD506, DOI 10.1093/nar/gky1049
Beitz E, 2006, P NATL ACAD SCI USA, V103, P269, DOI 10.1073/pnas.0507225103
Bhalerao R, 2003, PLANT PHYSIOL, V131, P430, DOI 10.1104/pp.012732
Braga FT, 2009, PESQUI AGROPECU BRAS, V44, P128, DOI 10.1590/S0100-204X2009000200003
Broadley M, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P191, DOI 10.1016/B978-0-12-384905-2.00007-8
Brunings AM, 2009, ANN APPL BIOL, V155, P161, DOI 10.1111/j.1744-7348.2009.00347.x
Bui ATK, 2020, ENVIRON GEOCHEM HLTH, V42, P3753, DOI 10.1007/s10653-020-00626-y
Chang CR, 2016, CELL, V167, P325, DOI 10.1016/j.cell.2016.08.031
Choi WG, 2007, J BIOL CHEM, V282, P24209, DOI 10.1074/jbc.M700982200
Coskun D, 2019, NEW PHYTOL, V223, P514, DOI 10.1111/nph.15764
Coskun D, 2019, NEW PHYTOL, V221, P67, DOI 10.1111/nph.15343
Deren C. W., 2001, SILICON AGR, P149, DOI DOI 10.1016/S0928-3420(01)80012-4
Deshmukh R, 2016, FUNCT ECOL, V30, P1277, DOI 10.1111/1365-2435.12570
Deshmukh RK, 2013, PLANT MOL BIOL, V83, P303, DOI 10.1007/s11103-013-0087-3
Deshmukh RK, 2015, PLANT J, V83, P489, DOI 10.1111/tpj.12904
Elsokkary I. H., 2018, Alexandria Science Exchange, V39, P534
EPSTEIN E, 1994, P NATL ACAD SCI USA, V91, P11, DOI 10.1073/pnas.91.1.11
Epstein E, 1999, ANNU REV PLANT PHYS, V50, P641, DOI 10.1146/annurev.arplant.50.1.641
Exley C, 2019, NEW PHYTOL, V223, P511, DOI 10.1111/nph.15752
Exley C, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00853
Fauteux F, 2005, FEMS MICROBIOL LETT, V249, P1, DOI 10.1016/j.femsle.2005.06.034
Fauteux F, 2006, P NATL ACAD SCI USA, V103, P17554, DOI 10.1073/pnas.0606330103
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
Ghareeb H, 2011, PHYSIOL MOL PLANT P, V75, P83, DOI 10.1016/j.pmpp.2010.11.004
Gomez-Merino FC, 2018, BIOTIC ABIOTIC STRES, P137, DOI DOI 10.1007/978-981-10-9029-5_6
Guntzer F, 2012, AGRON SUSTAIN DEV, V32, P201, DOI 10.1007/s13593-011-0039-8
Haddad C, 2019, PLANTA, V249, P1645, DOI 10.1007/s00425-019-03120-7
HANDRECK KA, 1968, PLANT SOIL, V29, P449, DOI 10.1007/BF01348976
Hawkins C, 2017, HORTIC RES-ENGLAND, V4, DOI 10.1038/hortres.2017.29
Heine G, 2005, J PLANT NUTR SOIL SC, V168, P600, DOI 10.1002/jpln.200420508
Hodson MJ, 2005, ANN BOT-LONDON, V96, P1027, DOI 10.1093/aob/mci255
Hruz Tomas, 2008, Advances in Bioinformatics, V2008, P420747, DOI 10.1155/2008/420747
Trejo-Tellez LI, 2020, PEERJ, V8, DOI 10.7717/peerj.9224
Kaur H, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8040081
Khan A, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9050620
Khan A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55651-4
Kim YH, 2014, BMC PLANT BIOL, V14, DOI 10.1186/1471-2229-14-13
Kim YH, 2011, BIOL TRACE ELEM RES, V144, P1175, DOI 10.1007/s12011-011-9047-4
Krebs R. E, 2006, HIST USE OUR EARTHS
Kumar S, 2016, MOL BIOL EVOL, DOI [DOI 10.1093/M0LBEV/MSW054, 10.1093/molbev/msw054]
Latef AAA, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00243
Lee SK, 2010, AGROFOREST SYST, V80, P333, DOI 10.1007/s10457-010-9299-6
Lescot M, 2002, NUCLEIC ACIDS RES, V30, P325, DOI 10.1093/nar/30.1.325
Luyckx M, 2017, PLANTS-BASEL, V6, DOI 10.3390/plants6030037
Luyckx M, 2016, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00411
Ma J. F., 2001, SILICON AGR, V8, P17, DOI DOI 10.1016/S0928-3420(01)80006-9
Ma JF, 2006, NATURE, V440, P688, DOI 10.1038/nature04590
Ma JF, 2002, SOIL FERTILIZER PLAN
Ma JF, 2007, PLANT PHYSIOL, V145, P919, DOI 10.1104/pp.107.107599
Ma JF, 2015, TRENDS PLANT SCI, V20, P435, DOI 10.1016/j.tplants.2015.04.007
Ma JF, 2010, ADV EXP MED BIOL, V679, P99
Macias-Bobadilla I, 2020, GENET RESOUR CROP EV, V67, P1331, DOI 10.1007/s10722-020-00912-9
Mandlik R, 2020, J EXP BOT, V71, P6703, DOI 10.1093/jxb/eraa301
Manivannan A, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/3076357
Manivannan A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01346
Markovich O, 2017, PLANT CELL ENVIRON, V40, P1189, DOI 10.1111/pce.12913
Marodin JC, 2014, HORTIC BRAS, V32, P220, DOI 10.1590/S0102-05362014000200018
Marschner P, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P1
Mitani N, 2005, PLANT CELL PHYSIOL, V46, P279, DOI 10.1093/pcp/pci018
Mitani-Ueno N, 2011, J EXP BOT, V62, P4391, DOI 10.1093/jxb/err158
Montpetit J, 2012, PLANT MOL BIOL, V79, P35, DOI 10.1007/s11103-012-9892-3
Muneer S, 2017, J PLANT GROWTH REGUL, V36, P836, DOI 10.1007/s00344-017-9687-5
Nikolic M, 2007, PLANT PHYSIOL, V143, P495, DOI 10.1104/pp.106.090845
Ouellette S, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00949
Pareek A, 2020, J EXP BOT, V71, P451, DOI 10.1093/jxb/erz518
Pereira HS, 2003, REV BRAS CIENC SOLO, V27, P101, DOI 10.1590/S0100-06832003000100011
Pontigo S, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00642
Potter SC, 2018, NUCLEIC ACIDS RES, V46, pW200, DOI 10.1093/nar/gky448
R Core Team, 2022, R LANG ENV STAT COMP
Rogalla H, 2002, PLANT CELL ENVIRON, V25, P549, DOI 10.1046/j.1365-3040.2002.00835.x
Sahebi M, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/396010
SAITOU N, 1987, MOL BIOL EVOL, V4, P406, DOI 10.1093/oxfordjournals.molbev.a040454
Sakurai G, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01187
SAS, 2011, SAS STAT US GUID VER
Sasaki A, 2016, J EXP BOT, V67, P3645, DOI 10.1093/jxb/erw060
Savvas D, 2015, SCI HORTIC-AMSTERDAM, V196, P66, DOI 10.1016/j.scienta.2015.09.010
Shivaraj SM, 2017, SCI REP-UK, V7, DOI 10.1038/srep46137
Sievers F, 2011, MOL SYST BIOL, V7, DOI 10.1038/msb.2011.75
Singh A, 2020, J EXP BOT, V71, P6730, DOI 10.1093/jxb/eraa300
Song A, 2009, J HAZARD MATER, V172, P74, DOI 10.1016/j.jhazmat.2009.06.143
Steiner A. A., 1984, Proceedings of the Sixth International Congress on Soilless Culture., P633
Sun H, 2020, PLANT CELL ENVIRON, V43, P732, DOI 10.1111/pce.13679
Takahashi E., 1990, Comments on Agricultural and Food Chemistry, V2, P99
Takano J, 2006, PLANT CELL, V18, P1498, DOI 10.1105/tpc.106.041640
Cuong TX, 2017, RICE SCI, V24, P283, DOI 10.1016/j.rsci.2017.06.002
Tubaa BS, 2015, SILICON PLANT DIS, P7, DOI 10.1007/978-3-319-22930-0_2
Tubana BS, 2016, SOIL SCI, V181, P393, DOI 10.1097/SS.0000000000000179
Vaculik M, 2020, J EXP BOT, V71, P6744, DOI 10.1093/jxb/eraa288
Vatansever R, 2017, BIOMETALS, V30, P185, DOI 10.1007/s10534-017-9992-2
Waese J, 2016, CURR PLANT BIOL, V7-8, P2, DOI 10.1016/j.cpb.2016.12.001
Waese J, 2017, PLANT CELL, V29, P1806, DOI 10.1105/tpc.17.00073
Wallace IS, 2005, BIOCHEMISTRY-US, V44, P16826, DOI 10.1021/bi0511888
Winter D, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000718
Wu JW, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00453
Xu DH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-67333-7
Yan GC, 2018, J INTEGR AGR, V17, P2138, DOI 10.1016/S2095-3119(18)62037-4
Zargar SM, 2019, 3 BIOTECH, V9, DOI 10.1007/s13205-019-1613-z
Zellner W, 2019, J PLANT NUTR, V42, P1028, DOI 10.1080/01904167.2019.1589500
Zhang XH, 2018, ENVIRON SCI POLLUT R, V25, P25916, DOI 10.1007/s11356-018-2595-9
Zhang Y, 2018, J INTEGR AGR, V17, P2151, DOI 10.1016/S2095-3119(18)62038-6
Zhao XQ, 2010, PLANT PHYSIOL, V153, P1871, DOI 10.1104/pp.110.157867
Zhu YX, 2014, AGRON SUSTAIN DEV, V34, P455, DOI 10.1007/s13593-013-0194-1
Zimmermann P, 2014, BIODATA MIN, V7, DOI 10.1186/1756-0381-7-18
NR 113
TC 7
Z9 7
U1 1
U2 13
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
SN 2167-8359
J9 PEERJ
JI PeerJ
PD NOV 4
PY 2020
VL 8
AR e10053
DI 10.7717/peerj.10053
PG 41
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA OK9HH
UT WOS:000584954300001
PM 33194376
OA gold, Green Published
DA 2023-03-13
ER
PT J
AU Medo, I
Stojnic, B
Marcic, D
AF Medo, Irena
Stojnic, Bojan
Marcic, Dejan
TI Acaricidal activity and sublethal effects of the microbial pesticide
spinosad on Tetranychus urticae (Acari: Tetranychidae)
SO SYSTEMATIC AND APPLIED ACAROLOGY
LA English
DT Article
DE T. urticae; spinosad; toxicity; life history traits; population growth
ID 2-SPOTTED SPIDER-MITE; LIFE-TABLE PARAMETERS; RED MITE; HORMESIS;
INSECTICIDES; EFFICACY; IMPACT
AB Laboratory bioassays were conducted to evaluate the toxicity of the microbial pesticide spinosad to different life stages of the two-spotted spider mite, Tetranychus urticae Koch, as well as its sublethal effects on reproduction and population growth of this important mite pest. The biopesticide was applied to bean primary leaves or leaf discs carrying spider mites using a Potter spray tower (2.7 mg/cm(2) aqueous deposit). The following LC50 and LC90 (mg/L) estimates for motile stages were obtained in acute toxicity bioassays: 27.52 and 116.72 (larvae), 36.55 and 136.20 (protonymphs), 82.76 and 721.28 (female deutonymphs), and 61.47 and 457.21 (adult females). Spinosad showed no significant ovicidal action: toxic effect observed after spraying eggs (LC50 = 105.78 mg/L, LC90 = 596.95 mg/L) was the result of its residual action on larvae that hatched from the treated eggs. The effects of spinosad on life history traits and population growth of adult female survivors from treatments with 240, 120 and 60 mg/L were evaluated in two successive 7-day bioassays on untreated leaf discs. In the first bioassay, females that survived treatments as 24 h old eggs and completed their juvenile development on treated leaves had significantly lower gross fecundity, net fecundity and instantaneous rate of increase (r(i)) but the reduction was merely 4-6%, 9-11%, and 2-3%, respectively. Female longevity was significantly reduced (approximately by half a day) only after treatment with 240 mg/L. In the second bioassay, in which females were treated during their pre-ovipositional period, the treatments with 240 and 120 mg/L significantly reduced their gross fecundity (16-17%), net fecundity (28-31%), ri values (8-9%) and female longevity (approximately by one day). Spinosad effects on the intrinsic rate of increase (rm) and other demographic parameters were evaluated in two successive bioassays in which life tables were constructed for females that survived treatment with 120 mg/L at the egg stage (first demographic bioassay) or pre-ovipositional period (second demographic bioassay). In the first bioassay, the intrinsic rate of increase was significantly higher in treated (r(m) = 0.278) than control mites (r(m) = 0.267) as a result of higher net fertility at the beginning of reproduction of treated females. In the second bioassay, treated females had significantly lower rm than control females (0.254 and 0.283, respectively). The results obtained in this study indicate that spinosad, applied against insect pests (at field relevant rates of 60-240 mg/L), could eliminate a part of T. urticae population as well, but survivors would retain a significant potential for population recovery.
C1 [Medo, Irena; Marcic, Dejan] Inst Pesticides & Environm Protect, Dept Appl Entomol, Banatska 31B,POB 163, Belgrade 11080, Serbia.
[Stojnic, Bojan] Univ Belgrade, Fac Agr, Nemanjina 6, Belgrade 11080, Serbia.
C3 University of Belgrade
RP Marcic, D (corresponding author), Inst Pesticides & Environm Protect, Dept Appl Entomol, Banatska 31B,POB 163, Belgrade 11080, Serbia.
EM dejan.marcic@pesting.org.rs
RI Marčić, Dejan/J-4228-2019
OI Marčić, Dejan/0000-0001-9696-0273; Stojnic, Bojan/0000-0002-0189-1330
FU Ministry of Education, Science and Technological Development of the
Republic of Serbia [TR31043]
FX This research was funded by the Ministry of Education, Science and
Technological Development of the Republic of Serbia (Grant No. TR31043)
CR Akca I, 2015, J ECON ENTOMOL, V108, P1466, DOI 10.1093/jee/tov187
[Anonymous], 2015, TWOSEX MSCHART COMPU
BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Carey J.R., 1993, APPL DEMOGRAPHY BIOL
CAREY JR, 1982, OECOLOGIA, V52, P389, DOI 10.1007/BF00367964
Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030
Cote KW, 2002, HORTSCIENCE, V37, P906, DOI 10.21273/HORTSCI.37.6.906
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
DITTRICH V, 1974, ENVIRON ENTOMOL, V3, P534, DOI 10.1093/ee/3.3.534
Dripps JE, 2011, RSC GREEN CHEM SER, V11, P163
Efron B., 1994, INTRO BOOTSTRAP, V57
Forbes VE, 2002, PHILOS T R SOC B, V357, P1299, DOI 10.1098/rstb.2002.1129
Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646
Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124
He HG, 2011, INT J ACAROL, V37, P1, DOI 10.1080/01647954.2010.491798
Hoy CW, 1998, ANNU REV ENTOMOL, V43, P571, DOI 10.1146/annurev.ento.43.1.571
Huang Y. B., 2012, J AGRIC FOR, V61, P37, DOI DOI 10.1016/B978-0-12-803265-7.00011-7
Ismail MSM, 2007, EXP APPL ACAROL, V43, P129, DOI 10.1007/s10493-007-9108-8
James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729
Jones T, 2005, PEST MANAG SCI, V61, P179, DOI 10.1002/ps.939
JONES VP, 1984, CAN ENTOMOL, V116, P1033, DOI 10.4039/Ent1161033-7
Kim M, 2006, CROP PROT, V25, P542, DOI 10.1016/j.cropro.2005.08.010
Marcic D, 2003, EXP APPL ACAROL, V30, P249, DOI 10.1023/B:APPA.0000006541.68245.94
Marcic D, 2015, SYST APPL ACAROL-UK, V20, P25
Marcic D, 2014, EXP APPL ACAROL, V64, P375, DOI 10.1007/s10493-014-9831-x
Martini X, 2012, PEST MANAG SCI, V68, P1471, DOI 10.1002/ps.3330
MEYER JS, 1986, ECOLOGY, V67, P1156, DOI 10.2307/1938671
Miles M., 2006, IOBC-WPRS Bulletin, V29, P53
Robertson J. L., 2007, PESTICIDE BIOASSAYS
ROBERTSON JL, 1990, J ECON ENTOMOL, V83, P8, DOI 10.1093/jee/83.1.8
Sabelis M.W., 1985, P265
Saito Y, 2010, PLANT MITES AND SOCIALITY: DIVERSITY AND EVOLUTION, P1, DOI 10.1007/978-4-431-99456-5
Santis EL, 2012, PEST MANAG SCI, V68, P914, DOI 10.1002/ps.3250
Stark JD, 1997, ECOTOX ENVIRON SAFE, V37, P273, DOI 10.1006/eesa.1997.1552
Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621
Stavrinides MC, 2009, BIOL CONTROL, V48, P267, DOI 10.1016/j.biocontrol.2008.10.017
Thompson GD, 2000, PEST MANAG SCI, V56, P696, DOI 10.1002/1526-4998(200008)56:8<696::AID-PS182>3.0.CO;2-5
Tjosvold SA, 2001, ACTA HORTIC, P93, DOI 10.17660/ActaHortic.2001.547.11
Tuan SJ, 2016, J ECON ENTOMOL, V109, P502, DOI 10.1093/jee/tov386
van der Linden A., 2011, IOBC WPRS B, V68, P97
van Leeuwen T, 2005, EXP APPL ACAROL, V37, P93, DOI 10.1007/s10493-005-0139-8
Villanueva RT, 2006, J ECON ENTOMOL, V99, P843, DOI 10.1603/0022-0493-99.3.843
Wang L, 2016, PESTIC BIOCHEM PHYS, V132, P102, DOI 10.1016/j.pestbp.2016.02.002
Zhang ZhiQiang, 2003, Mites of greenhouses: identification, biology and control, DOI 10.1079/9780851995908.0000
[No title captured]
NR 46
TC 5
Z9 5
U1 2
U2 33
PU SYSTEMATIC & APPLIED ACAROLOGY SOC LONDON, NATURAL HISTORY MUSEUM
PI LONDON
PA DEPT ENTOMOLOGY, LONDON, SW7 5BD, ENGLAND
SN 1362-1971
J9 SYST APPL ACAROL-UK
JI Syst. Appl. Acarol.
PD OCT
PY 2017
VL 22
IS 10
BP 1748
EP 1762
DI 10.11158/saa.22.10.14
PG 15
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA FJ5FL
UT WOS:000412773300014
DA 2023-03-13
ER
PT J
AU Hussain, S
Iqbal, N
Brestic, M
Raza, MA
Pang, T
Langham, DR
Safdar, ME
Ahmed, S
Wen, BX
Gao, Y
Liu, WG
Yang, WY
AF Hussain, Sajad
Iqbal, Nasir
Brestic, Marian
Raza, Muhammad Ali
Pang, Ting
Langham, Derald Ray
Safdar, Muhammad Ehsan
Ahmed, Shoaib
Wen, Bingxiao
Gao, Yang
Liu, Weiguo
Yang, Wenyu
TI Changes in morphology, chlorophyll fluorescence performance and Rubisco
activity of soybean in response to foliar application of ionic titanium
under normal light and shade environment
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Titanium; Photosynthesis; Chlorophyll fluorescence; Rubisco; Leaf area
ID PHOTOSYNTHETIC RESPONSES; NANOPARTICLE TOXICITY; OXIDE NANOPARTICLES;
TIO2 NANOPARTICLES; DIOXIDE; GROWTH; BULK; ACCUMULATION; NANO-TIO2;
PLANTS
AB Titanium (Ti) is considered an essential element for plant growth; however, its role in crop performance through stimulating the activities of certain enzymes, enhancing chlorophyll content and photosynthesis, and improving crop morphology and growth requires more study. We therefore conducted a laboratory experiments to study the effects of ionic Ti application on morphology, growth, biomass distribution, chlorophyll fluorescence performance and Rubisco activity of soybean (Glycine max L.) under normal light (NL) and shade conditions (SC). In this study, we sprayed soybean plants with five different levels of ionic Ti (T1 = 0, T2 = 1.25, T3 = 2.5, T4 = 5 and T5 = 10 mg Ti Plant(-1)) through foliar application method. Our results show that with increasing moderate (2.5 mg Ti Plant(-1)) Ti concentration, the chlorophyll pigments (chlorophyll [Chl] a, b, carotenoid [Car]), plant biomass, photochemical efficiency of photosystem 11 (Fv/Fm), and electron transport rate (ETR) of soybean increased, but higher levels (5-10 mg Ti Plant 1), resulted in leaf anatomical and chloroplast structural disruptions under both NL and SC. Soybean plants showed maximum biomass, leaf area, leaf thickness, Chl a, b, Car, Rubisco activity, Fv/Fm and ETR for T3 at 2.5 mg Ti Plant 1; however, declined significantly for T5 at high concentration of 10 mg Plant(-1).In NL, the application of 2.5 mg Ti Plant(-1)(T3) increased the Chl a,b, and total Chl contents 40,20, and 27%, as compared to control treatment (T1). In SC, the application of 1.25 mg Ti mg Plant(-1)(T2) increased the Chl a, b, and total Chl contents 38, 19, and 14% as compared to control treatment. In NL, the Fv/Fm, (qP, PSII, and ETR were higher in the T3 treatment over the T1 (control) by 7, 0.3, 16, and 16%, respectively. In SC, the Fv/Fm, (LP, PSII, and ETR were higher in the T3 treatment over the T1 (control) by 5, 5, 19, and 19%, respectively. Moreover, Rubisco activity was at peak (55 and 6% increase under NL and SC) at 2.5 mg Ti Plant and decreased with increasing Ti concentration, reaching the lowest at 10 mg Ti Plant(-1), which indicates that leaf cells were damaged as observed in the leaf anatomy. We concluded that ionic Ti expresses a hormesis effect: at lower concentrations, promoting soybean growth, however, at higher concentrations, suppressing soybean growth both under NL and SC. We therefore suggest that under different light stress conditions, Ti application could serve to mitigate abiotic stresses, especially in intercropping systems. (C) 2018 Published by Elsevier B.V.
C1 [Hussain, Sajad; Iqbal, Nasir; Raza, Muhammad Ali; Pang, Ting; Ahmed, Shoaib; Wen, Bingxiao; Gao, Yang; Liu, Weiguo; Yang, Wenyu] Sichuan Agr Univ, Coll Agron, 211 Huimin Rd, Chengdu 611130, Sichuan, Peoples R China.
[Hussain, Sajad; Iqbal, Nasir; Raza, Muhammad Ali; Pang, Ting; Ahmed, Shoaib; Wen, Bingxiao; Gao, Yang; Liu, Weiguo; Yang, Wenyu] Sichuan Agr Univ, Key Lab Crop Ecophysiol & Farming Syst Southwest, Minist Agr, Sichuan Engn Res Ctr Crop Strip Intercropping Sys, Chengdu, Sichuan, Peoples R China.
[Brestic, Marian] Slovak Univ Agr, Nitra, Slovakia.
[Langham, Derald Ray] Sesame Res LLC, San Antonio, TX 78217 USA.
[Safdar, Muhammad Ehsan] Univ Sargodha, Coll Agr, Sargodha, Pakistan.
C3 Sichuan Agricultural University; Ministry of Agriculture & Rural
Affairs; Sichuan Agricultural University; Slovak University of
Agriculture Nitra; University of Sargodha
RP Liu, WG (corresponding author), Sichuan Agr Univ, Coll Agron, 211 Huimin Rd, Chengdu 611130, Sichuan, Peoples R China.
EM lwgsy@126.com; mssiyangwy@sicau.edu.cn
RI Brestic, Marian/A-8263-2012; Hussain, Sajad/GZL-5573-2022; Raza,
Muhammad Ali/R-8597-2019; Hussain, Sajad/S-4261-2019; Safdar,
Muhammad/AFO-2376-2022
OI Brestic, Marian/0000-0003-3470-6100; Raza, Muhammad
Ali/0000-0003-3817-6848; Hussain, Sajad/0000-0001-9100-360X; Safdar,
Muhammad/0000-0002-1865-5182; Iqbal, Nasir/0000-0003-1133-8229
FU National Key Research and Development Program of China [2018YFD1000905];
National Natural Science Foundation of China [31671626, 31201170]
FX This work was funded by the National Key Research and Development
Program of China (2018YFD1000905) and the National Natural Science
Foundation of China (31671626 and 31201170). I would like to say humble
thanks to my respected parents Bashir Ahmed (Father) and my Mother for
their prayers and wishes.
CR Arif N, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.3389/fenvs.2016.00069
Boykov I. N., 2018, GENOMICS
Carvajal M., 1995, LEAF SPRAY TI 4 ASCO
Castiglione MR, 2016, ENVIRON EXP BOT, V130, P11, DOI 10.1016/j.envexpbot.2016.05.002
Castiglione MR, 2011, J NANOPART RES, V13, P2443, DOI 10.1007/s11051-010-0135-8
Choi HG, 2015, HORTIC ENVIRON BIOTE, V56, P575, DOI 10.1007/s13580-015-0023-3
Cox A, 2016, PLANT PHYSIOL BIOCH, V107, P147, DOI 10.1016/j.plaphy.2016.05.022
Dai YJ, 2009, ENVIRON EXP BOT, V65, P177, DOI 10.1016/j.envexpbot.2008.12.008
Fan YF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0198159
Feizi H, 2013, CHEMOSPHERE, V91, P506, DOI 10.1016/j.chemosphere.2012.12.012
Gao FQ, 2008, BIOMETALS, V21, P211, DOI 10.1007/s10534-007-9110-y
Gururani MA, 2015, MOL PLANT, V8, P1304, DOI 10.1016/j.molp.2015.05.005
Haghighi M, 2012, BIOL TRACE ELEM RES, V150, P381, DOI 10.1007/s12011-012-9481-y
Hruby M, 2002, J PLANT NUTR, V25, P577, DOI 10.1081/PLN-120003383
Huang D, 2011, PHOTOSYNTHETICA, V49, P611, DOI 10.1007/s11099-011-0076-1
Jaberzadeh A, 2013, NOT BOT HORTI AGROBO, V41, P201
Jun L., 2015, PLOS ONE, V10
KELEMEN G, 1993, FOOD STRUCT, V12, P67
Kunderlikova K, 2016, J CENT EUR AGRIC, V17, P950, DOI 10.5513/JCEA01/17.4.1797
Latef AAHA, 2018, LAND DEGRAD DEV, V29, P1065, DOI 10.1002/ldr.2780
Li CX, 2019, MICROB ECOL, V77, P967, DOI 10.1007/s00248-018-1273-2
Liu X, 2017, FIELD CROP RES, V200, P38, DOI 10.1016/j.fcr.2016.10.003
LYU SH, 2017, FRONT PLANT SCI, V8
Moaveni P, 2011, INT C ENV AGR ENG IC
Morteza E, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-247
Nautsch-Laufer C., 1974, WIRKUNG TITAN STOFFW
Pan YH, 2017, PLANT PHYSIOL BIOCH, V113, P110, DOI 10.1016/j.plaphy.2017.01.027
Paradies J, 2006, J INORG BIOCHEM, V100, P1260, DOI 10.1016/j.jinorgbio.2006.02.011
Qu MN, 2017, PLANT PHYSIOL, V175, P248, DOI 10.1104/pp.17.00332
Rafique R, 2018, DATA BRIEF, V17, P890, DOI 10.1016/j.dib.2018.02.002
Raliya R, 2015, METALLOMICS, V7, P1584, DOI [10.1039/c5mt00168d, 10.1039/C5MT00168D]
Raliya Ramesh, 2015, Biotechnol Rep (Amst), V5, P22, DOI 10.1016/j.btre.2014.10.009
RAMAKRISHNA RS, 1989, ENVIRON EXP BOT, V29, P293, DOI 10.1016/0098-8472(89)90002-6
Samadi N., 2015, INT J PLANT SOIL SCI, V3, P408
Servin AD, 2013, ENVIRON SCI TECHNOL, V47, P11592, DOI 10.1021/es403368j
Shao QS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085996
Song U, 2013, BIOL TRACE ELEM RES, V155, P93, DOI 10.1007/s12011-013-9765-x
Szymanska R, 2016, ENVIRON POLLUT, V213, P957, DOI 10.1016/j.envpol.2016.03.026
Tumburu L, 2015, ENVIRON TOXICOL CHEM, V34, P70, DOI 10.1002/etc.2756
Vu JCV, 2001, J PLANT PHYSIOL, V158, P295, DOI 10.1078/0176-1617-00290
Wang WN, 2013, J NANOPART RES, V15, DOI 10.1007/s11051-013-1417-8
Wojcik P, 2004, J PLANT NUTR, V27, P2033, DOI [10.1081/PLN-200030108, 10.1081/LPLA-200030108]
Wu Y, 2019, J PLANT GROWTH REGUL, V38, P359, DOI 10.1007/s00344-018-9844-5
Wu YS, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10026-5
Xie Ting, 2018, HUNAN AGR SCI, V1, P51
YANG F, 2018, FRONT PLANT SCI, V9
Yao X., 2017, PLANT GROWTH REGUL, V83, P1
Zahra Z, 2015, J AGR FOOD CHEM, V63, P6876, DOI 10.1021/acs.jafc.5b01611
Ze YG, 2011, BIOL TRACE ELEM RES, V143, P1131, DOI 10.1007/s12011-010-8901-0
Zhang X., 2012, CONTINUOUS METHOD PR
ZHOU T, 2016, FRONT PLANT SCI, V7
Zivcak M, 2014, PHOTOSYNTH RES, V119, P339, DOI 10.1007/s11120-014-9969-8
NR 52
TC 73
Z9 80
U1 13
U2 171
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD MAR 25
PY 2019
VL 658
BP 626
EP 637
DI 10.1016/j.scitotenv.2018.12.182
PG 12
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA HI1AI
UT WOS:000456175700060
PM 30580217
DA 2023-03-13
ER
PT J
AU Petcu, V
Oprea, G
Ciontu, C
Stefanic, G
AF Petcu, Victor
Oprea, Georgeta
Ciontu, Costica
Stefanic, Gheorghe
TI STUDIES ON THE EFFECT OF SOME HERBICIDES (SINGLE AND DIFFERENT MIXTURES)
ON WEEDS CONTROL AND SOIL QUALITY IN MAIZE
SO ROMANIAN AGRICULTURAL RESEARCH
LA English
DT Article
DE aryloxiacid herbicides; combined herbicides; maize; weed infestation;
efficiency; soil cellulolytic activity; soil respiration
AB Maize or corn is the third most important crop worldwide; the area occupied by this crop is over 157 million acres. In Romania, corn is the main crop. One of the main problems linked to this crop facing Romania is the weeds control. Different types of pre and post-emergence herbicides are available in the market, but their effectiveness on different weed species in the field still needs to be determined under different agro-climatic conditions.
During the period 2012-2013 on the experimental field of the SC Profarma Holding SRL from Fundulea, under non irrigated conditions on cambic chernozem soil a field experiment with maize (Zea mays) was carried out.
The paper presents the results concerning the efficiency of some herbicides (aryloxiacid and different mixtures) on weeds control in maize crop and their impact on soil quality.
In the year 2013 the degree of weed infestation was higher due to heavy rainfall, but we got a good weed control with the combined herbicides in both years. Higher effect of new combined herbicides applied in vegetation against annual weeds, is due to their broad spectrum, including annual "resistant" dicotyledonous, such as Xanthium strumarium, Solanum nigrum, Sinapis arvensis.
The treatments with pre-emergence herbicide with dimethenamide P + pendimethalin (trade name Wing P) and post-emergence herbicide with bentazone + dicamba (trade name Cambio), achieved a rate of weed control of 97%, being qualified as having very good efficiency.
The treatments with acetochlor (trade name Guardian) and 2,4D + dicamba (trade name Ceredin) achieved a level of weed control of 88%, because the foxtail (Setaria spp.) could not be controlled effectively by a this single post-emergence herbicide.
Corn yields in control variants were 4430 kg ha(-1) and 4830 kg ha(-1) in the two years of experimentation. All of the herbicides tested, ensured higher average yields compared to the control. Yields were very significantly correlated with weed control efficiency of herbicides (r = 0.91***; r = 0.93***).
Cellulolytic activity of soil was influenced by climatic conditions, type of herbicide used and time of applications. Water stress negatively influenced soil cellulolytic activity. In optimal conditions of soil humidity, cellulolytic activity increased, except after applying dimethenamide P + terbuthylazine herbicide (Akris), suggesting an improvement of biological conditions in soil (except for the above mentioned herbicide).
Soil respiration was influenced by herbicides applied. Among the herbicides studied Izoxaflutole + terbuthylazine (Merlin Duo) negatively influenced soil respiration. Herbicides dimethenamide P (Frontier Forte), dimethenamide P + terbuthylazine (Akris) and dimethenamide P + pendimethalin (Wing) had a beneficial effect, suggesting (1) a possible use of herbicides and/or their breakdown products by certain microorganisms in soil as a carbon source, leading to an increase in soil respiration, or (2) the effects of simulation (hormesis) of vital processes from the soil.
C1 [Petcu, Victor; Ciontu, Costica] Univ Agron Sci & Vet Med Bucharest, Fac Agr, Bucharest 011464, Romania.
[Oprea, Georgeta; Stefanic, Gheorghe] Natl Agr Res & Dev Inst Fundulea, Fundulea 915200, Calarasi County, Romania.
C3 University of Agronomic Science & Veterinary Medicine - Bucharest
RP Petcu, V (corresponding author), Univ Agron Sci & Vet Med Bucharest, Fac Agr, 59 Marasti Blvd,Dist 1, Bucharest 011464, Romania.
EM petcuvictor86@yahoo.com
RI Petcu, Victor/AAD-8038-2019
OI Petcu, Victor/0000-0002-7126-4324
CR Avidano L, 2005, APPL SOIL ECOL, V30, P21, DOI 10.1016/j.apsoil.2005.01.003
Berca M., 2004, MANAGEMENTUL INTEGRA
Ghinea L., 1998, Romanian Agricultural Research, P55
Nadasy E., 2007, RELATIONSHIP HERBICI
Petsikos-Panagiotarou N., 2000, P 1 EUR C PEST REL O, P185
Popescu Alexandrina, 2007, AN INCDA FUNDULEA, VLXXV, P343
Sannino F, 2001, CHEMOSPHERE, V45, P417, DOI 10.1016/S0045-6535(01)00045-5
Stefanic G., 2006, BIOL SOLURILOR AGRIC
Stefanic G, 2011, ROM AGRIC RES, V28, P165
Yao XH, 2006, EUR J SOIL BIOL, V42, P120, DOI 10.1016/j.ejsobi.2005.12.001
Zabaloy MC, 2008, COMMUN SOIL SCI PLAN, V39, P370, DOI 10.1080/00103620701826506
NR 11
TC 8
Z9 9
U1 0
U2 17
PU NATL AGRICULTURAL RESEARCH & DEVELOPMENT INST
PI FUNDULEA
PA CALARASI COUNTY, FUNDULEA, 915200, ROMANIA
SN 1222-4227
J9 ROM AGRIC RES
JI Rom. Agric. Res.
PY 2015
VL 32
BP 245
EP 252
PG 8
WC Agronomy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture
GA CV7EC
UT WOS:000364434200029
DA 2023-03-13
ER
PT J
AU Garcia-de Blas, E
Mateo, R
Alonso-Alvarez, C
AF Garcia-de Blas, Esther
Mateo, Rafael
Alonso-Alvarez, Carlos
TI Specific carotenoid pigments in the diet and a bit of oxidative stress
in the recipe for producing red carotenoid-based signals
SO PEERJ
LA English
DT Article
DE Sexual signaling; Sexual selection; Carotenoids; Color signaling;
Oxidative stress; Avian coloration; Carotenoid supplementation; Handicap
theory; Carotenoid transformation; Hormesis
ID MALE AMERICAN GOLDFINCHES; TREATED SEED INGESTION; HISTORY TRADE-OFFS;
SEXUAL ATTRACTIVENESS; IMMUNE ACTIVATION; INTESTINAL-ABSORPTION;
ANTIOXIDANT CAPACITY; COLOR PATTERNS; MATE CHOICE; METABOLISM
AB Colorful ornaments have been the focus of sexual selection studies since the work of Darwin. Yellow to red coloration is often produced by carotenoid pigments. Different hypotheses have been formulated to explain the evolution of these traits as signals of individual quality. Many of these hypotheses involve the existence of a signal production cost. The carotenoids necessary for signaling can only be obtained from food. In this line, carotenoid-based signals could reveal an individual's capacity to find sufficient dietary pigments. However, the ingested carotenoids are often yellow and became transformed by the organism to produce pigments of more intense color (red ketocarotenoids). Biotransformation should involve oxidation reactions, although the exact mechanism is poorly known. We tested the hypothesis that carotenoid biotransformation could be costly because a certain level of oxidative stress is required to correctly perform the conversion. The carotenoid-based signals could thus reveal the efficiency of the owner in successfully managing this challenge. In a bird with ketocarotenoid-based ornaments (the red-legged partridge; Alectoris rufa), the availability of different carotenoids in the diet (i.e. astaxanthin, zeaxanthin and lutein) and oxidative stress were manipulated. The carotenoid composition was analyzed and quantified in the ornaments, blood, liver and fat. A number of oxidative stress biomarkers were also measured in the same tissues. First, we found that color and pigment levels in the ornaments depended on food levels of those carotenoids used as substrates in biotransformation. Second, we found that birds exposed to mild levels of a free radical generator (diquat) developed redder bills and deposited higher amounts of ketocarotenoids (astaxanthin) in ornaments. Moreover, the same diquat-exposed birds also showed a weaker resistance to hemolysis when their erythrocytes were exposed to free radicals, with females also enduring higher oxidative damage in plasma lipids. Thus, higher color production would be linked to higher oxidative stress, supporting the biotransformation hypothesis. The recent discovery of an avian oxygenase enzyme involved in converting yellow to red carotenoids may support our results. Nonetheless, the effect could also depend on the abundance of specific substrate carotenoids in the diet. Birds fed with proportionally higher levels of zeaxanthin showed the reddest ornaments with the highest astaxanthin concentrations. Moreover, these birds tended to show the strongest diquat-mediated effect. Therefore, in the evolution of carotenoid-based sexual signals, a biotransformation cost derived from maintaining a well-adjusted redox machinery could coexist with a cost linked to carotenoid acquisition and allocation (i.e. a resource allocation trade-off).
C1 [Garcia-de Blas, Esther; Mateo, Rafael; Alonso-Alvarez, Carlos] CSIC UCLM JCCM, Inst Invest Recursos Cineget IREC, Ciudad Real, Spain.
[Alonso-Alvarez, Carlos] CSIC, MNCN, Ecol Evolituva, Madrid, Spain.
C3 Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Instituto
de Investigacion en Recursos Cinegeticos (IREC); Universidad de
Castilla-La Mancha; Consejo Superior de Investigaciones Cientificas
(CSIC)
RP Alonso-Alvarez, C (corresponding author), CSIC UCLM JCCM, Inst Invest Recursos Cineget IREC, Ciudad Real, Spain.; Alonso-Alvarez, C (corresponding author), CSIC, MNCN, Ecol Evolituva, Madrid, Spain.
EM carlos.alonso@csic.es
RI Mateo, Rafael/A-3117-2011; Mateo, Rafael/AAU-1480-2020; Alonso-Alvarez,
Carlos/M-6804-2014
OI Mateo, Rafael/0000-0003-1307-9152; Mateo, Rafael/0000-0003-1307-9152;
Alonso-Alvarez, Carlos/0000-0002-4765-551X
FU Consejo Superior de Investigaciones Cientificas (CSIC) - Fondo Social
Europeo (EU); Consejeria de Educacion y Ciencia, Junta de Comunidades de
Castilla la Mancha [PII1I09-0271-5037]; Ministerio de Economia y
Competitividad from the Spanish Government [CGL2009-10883-C02-02,
CGL2015-69338-C2-2-P]
FX Esther Garcia-de Blas was supported by a predoctoral grant (JAE-PRE)
from the Consejo Superior de Investigaciones Cientificas (CSIC)
co-financed by Fondo Social Europeo (EU). This study was funded by
Consejeria de Educacion y Ciencia, Junta de Comunidades de Castilla la
Mancha (project ref.: PII1I09-0271-5037) and Ministerio de Economia y
Competitividad (CGL2009-10883-C02-02 and CGL2015-69338-C2-2-P) from the
Spanish Government. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
CR Alonso-Alvarez C, 2008, J EVOLUTION BIOL, V21, P1789, DOI 10.1111/j.1420-9101.2008.01591.x
Alonso-Alvarez C, 2004, AM NAT, V164, P651, DOI 10.1086/424971
Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x
Alonso-Alvarez C, 2012, BEHAV ECOL SOCIOBIOL, V66, P731, DOI 10.1007/s00265-012-1321-8
Alonso-Alvarez C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019403
Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395
Andersson Malte, 1994
Romero-Haro AA, 2015, AM NAT, V185, P390, DOI 10.1086/679613
Romero-Haro AA, 2014, PHYSIOL BIOCHEM ZOOL, V87, P353, DOI 10.1086/674432
Bize P, 2014, OECOLOGIA, V174, P1097, DOI 10.1007/s00442-013-2840-3
BLACHE D, 1992, LUNAR-BASED CHEMICAL ANALYSIS LABORATORY, P82
Black AT, 2008, TOXICOL APPL PHARM, V231, P384, DOI 10.1016/j.taap.2008.05.014
Blem Charles R., 2000, P327, DOI 10.1016/B978-012747605-6/50014-6
Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142
Bradbury Jack W., 1998, pi
Britton G, 1995, FASEB J, V9, P1551, DOI 10.1096/fasebj.9.15.8529834
Britton G, 2009, CAROTENOIDS SER, V5, P173, DOI 10.1007/978-3-7643-7501-0_3
BRUSH AH, 1976, AUK, V93, P725
BRUSH AH, 1990, FASEB J, V4, P2969, DOI 10.1096/fasebj.4.12.2394316
Canene-Adams K, 2009, CAROTENOIDS SER, V5, P115, DOI 10.1007/978-3-7643-7501-0_7
Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027
Cohen A, 2007, COMP BIOCHEM PHYS B, V147, P110, DOI 10.1016/j.cbpb.2006.12.015
Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x
Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1]
Costantini D, 2012, BEHAV ECOL SOCIOBIOL, V66, P1195, DOI 10.1007/s00265-012-1362-z
Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x
Cristovao AC, 2009, ANTIOXID REDOX SIGN, V11, P2105, DOI [10.1089/ars.2009.2459, 10.1089/ARS.2009.2459]
Darwin C., 1871, P423
del Val E, 2009, NATURWISSENSCHAFTEN, V96, P989, DOI 10.1007/s00114-009-0554-5
del Val E, 2009, NATURWISSENSCHAFTEN, V96, P797, DOI 10.1007/s00114-009-0534-9
Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791
El-Agamey Ali, 2008, V4, P119
ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861
ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x
Foley J.D., 1984, FUNDAMENTALS INTERAC
FOX DL, 1970, COMP BIOCHEM PHYSIOL, V34, P707, DOI 10.1016/0010-406X(70)90296-3
Fraser PD, 1997, J BIOL CHEM, V272, P6128, DOI 10.1074/jbc.272.10.6128
Furr HC, 1997, J NUTR BIOCHEM, V8, P364, DOI 10.1016/S0955-2863(97)00060-0
Fussell KC, 2011, FREE RADICAL BIO MED, V50, P874, DOI 10.1016/j.freeradbiomed.2010.12.035
Galvan I, 2009, P ROY SOC B-BIOL SCI, V276, P3089, DOI 10.1098/rspb.2009.0774
Garcia-de Blas E, 2015, OECOLOGIA, V177, P259, DOI 10.1007/s00442-014-3163-8
Garcia-de Blas E, 2014, NATURWISSENSCHAFTEN, V101, P407, DOI 10.1007/s00114-014-1169-z
Garcia-de Blas E, 2013, PHYSIOL BIOCHEM ZOOL, V86, P483, DOI 10.1086/671812
Garcia-de Blas E, 2011, J CHROMATOGR B, V879, P341, DOI 10.1016/j.jchromb.2010.12.019
Getty T, 2006, TRENDS ECOL EVOL, V21, P83, DOI 10.1016/j.tree.2005.10.016
Girard A, 2005, NUTRITION, V21, P240, DOI 10.1016/j.nut.2004.04.022
Giraudeau M, 2013, COMP BIOCHEM PHYS A, V166, P406, DOI 10.1016/j.cbpa.2013.07.014
Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194
GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8
Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x
Halliwell B, 2007, RADICALS IN BIOLOGY
Hartley RC, 2004, TRENDS ECOL EVOL, V19, P353, DOI 10.1016/j.tree.2004.04.002
Hasson O, 1997, J THEOR BIOL, V185, P139, DOI 10.1006/jtbi.1996.0258
HATA M, 1972, B JPN SOC SCI FISH, V38, P339
Hill G. E., 2006, BIRD COLORATION
HILL GE, 1994, ETHOL ECOL EVOL, V6, P351, DOI 10.1080/08927014.1994.9522986
HILL GE, 1990, ANIM BEHAV, V40, P563, DOI 10.1016/S0003-3472(05)80537-8
Hill GE, 2002, RED BIRD BROWN BAG, DOI DOI 10.1093/ACPROF:OSO/9780195148480.001.0001
Hill GE, 2012, AM NAT, V180, pE127, DOI 10.1086/667861
Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x
Horak P, 2007, AM NAT, V170, P625, DOI 10.1086/521232
Hurd T.R., 2009, REDOX SIGNALING REGU, P13, DOI DOI 10.1002/9783527627585.CH2
Isaksson C, 2008, P ROY SOC B-BIOL SCI, V275, P309, DOI 10.1098/rspb.2007.1474
Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5
Jenni-Eiermann S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097650
Johnson JD, 2013, BIOCHIMIE, V95, P436, DOI 10.1016/j.biochi.2012.10.021
Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865
Koch RE, 2017, FUNCT ECOL, V31, P9, DOI 10.1111/1365-2435.12664
Koch RE, 2016, PHYSIOL BIOCHEM ZOOL, V89, P61, DOI 10.1086/684485
KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137
LaFountain AM, 2013, ARCH BIOCHEM BIOPHYS, V539, P126, DOI 10.1016/j.abb.2013.07.001
Lesgards JF, 2002, ENVIRON HEALTH PERSP, V110, P479, DOI 10.1289/ehp.02110479
Littell R.C., 2006, SAS SYSTEM MIXED MOD, V2nd ed.
Lopes RJ, 2016, CURR BIOL, V26, P1427, DOI 10.1016/j.cub.2016.03.076
Lopez-Antia A, 2015, ENVIRON TOXICOL CHEM, V34, P1320, DOI 10.1002/etc.2925
Lopez-Antia A, 2015, ENVIRON RES, V136, P97, DOI 10.1016/j.envres.2014.10.023
LOZANO GA, 1994, OIKOS, V70, P309, DOI 10.2307/3545643
Martinez A, 2008, J PHYS CHEM A, V112, P9037, DOI 10.1021/jp803218e
Maynard-Smith J., 2003, ANIMAL SIGNALS
McClean CM, 2011, RES SPORTS MED, V19, P1, DOI 10.1080/15438627.2011.534963
McGraw KJ, 2010, PHYSIOL BIOCHEM ZOOL, V83, P97, DOI 10.1086/648396
McGraw KJ, 2009, NATURWISSENSCHAFTEN, V96, P987, DOI 10.1007/s00114-009-0544-7
McGraw KJ, 2005, NATURWISSENSCHAFTEN, V92, P375, DOI 10.1007/s00114-005-0003-z
McGraw KJ, 2006, PHYSIOL BEHAV, V87, P103, DOI 10.1016/j.physbeh.2005.09.001
McGraw KJ, 2004, J AVIAN BIOL, V35, P471, DOI 10.1111/j.0908-8857.2004.03405.x
McGraw KJ, 2004, BIOL J LINN SOC, V83, P273, DOI 10.1111/j.1095-8312.2004.00388.x
McGraw KJ, 2004, PHYSIOL BIOCHEM ZOOL, V77, P484, DOI 10.1086/383506
McGraw KJ, 2001, FUNCT ECOL, V15, P732, DOI 10.1046/j.0269-8463.2001.00574.x
Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3
Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x
MILLER NJ, 1993, CLIN SCI, V84, P407, DOI 10.1042/cs0840407
Miller NJ, 1996, FEBS LETT, V384, P240, DOI 10.1016/0014-5793(96)00323-7
Moller AP, 2000, AVIAN POULT BIOL REV, V11, P137
Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x
Mortensen A, 2001, ARCH BIOCHEM BIOPHYS, V385, P13, DOI 10.1006/abbi.2000.2172
Mougeot F, 2009, J AVIAN BIOL, V40, P67, DOI 10.1111/j.1600-048X.2008.04439.x
Mundy NI, 2016, CURR BIOL, V26, P1435, DOI 10.1016/j.cub.2016.04.047
Negro JJ, 2000, COMP BIOCHEM PHYS B, V126, P347, DOI 10.1016/S0305-0491(00)00180-2
Ohkubo M, 1999, COMP BIOCHEM PHYS B, V124, P333, DOI 10.1016/S0305-0491(99)00124-8
Ohno M, 2011, FOOD CHEM TOXICOL, V49, P1285, DOI 10.1016/j.fct.2011.03.009
Panfili G, 2004, J AGR FOOD CHEM, V52, P6373, DOI 10.1021/jf0402025
Perez-Rodriguez L, 2008, NATURWISSENSCHAFTEN, V95, P821, DOI 10.1007/s00114-008-0389-5
Perez-Rodriguez L, 2008, J EXP BIOL, V211, P2155, DOI 10.1242/jeb.017178
Perez-Rodriguez L, 2008, BEHAV ECOL SOCIOBIOL, V62, P995, DOI 10.1007/s00265-007-0527-7
Perez-Rodriguez L, 2010, J EXP BIOL, V213, P1685, DOI 10.1242/jeb.039982
Perez-Rodriguez L, 2009, BIOESSAYS, V31, P1116, DOI 10.1002/bies.200900070
Pietsch W, 2005, AGGLOMERATION IND, V1
Rodriguez-Estival J, 2010, ENVIRON RES, V110, P469, DOI 10.1016/j.envres.2010.03.008
Romero-Haro AA, 2015, FRONT ECOL EVOL, V3, DOI 10.3389/fevo.2015.00035
Saks L, 2003, FUNCT ECOL, V17, P555, DOI 10.1046/j.1365-2435.2003.00765.x
Sato Y, 2012, J PHARM PHARM SCI, V15, P256, DOI 10.18433/J38K56
Schoefs B, 2001, FEBS LETT, V500, P125, DOI 10.1016/S0014-5793(01)02596-0
Sewalk CJ, 2000, J TOXICOL ENV HEAL A, V62, P33, DOI 10.1080/00984100050201659
Simons MJP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043088
Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151
Stirnemann I, 2009, EMU, V109, P344, DOI 10.1071/MU08069
Stradi R, 1998, COLOUR FLIGHT CAROTE
Sun LY, 2011, FASEB J, V25, P398, DOI 10.1096/fj.10-164376
Surai PF, 2012, WORLD POULTRY SCI J, V68, P465, DOI 10.1017/S0043933912000578
Surai PF, 2001, COMP BIOCHEM PHYS B, V128, P743, DOI 10.1016/S1096-4959(00)00369-9
Toomey MB, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-3
Toomey MB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021653
Toomey MB, 2010, ARCH BIOCHEM BIOPHYS, V504, P161, DOI 10.1016/j.abb.2010.06.033
Tyssandier V, 2002, AM J CLIN NUTR, V75, P526, DOI 10.1093/ajcn/75.3.526
Vallverdu-Coll N, 2015, ENVIRON SCI TECHNOL, V49, P3839, DOI 10.1021/es505148d
van den Berg H, 1999, NUTR REV, V57, P1, DOI 10.1111/j.1753-4887.1999.tb01769.x
VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547
Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480
Volker O., 1957, Journal fuer Ornithologie, V98, P210, DOI 10.1007/BF01676225
von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1, DOI 10.1098/rspb.1999.0597
Wahl RUR, 1998, J CHEM SOC PERK T 2, P2009, DOI 10.1039/a801624k
Wang YM, 2010, EUR J NUTR, V49, P327, DOI 10.1007/s00394-009-0089-8
Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2
Wilmes A, 2011, TOXICOL IN VITRO, V25, P613, DOI 10.1016/j.tiv.2010.12.009
Xu JM, 2007, J PINEAL RES, V42, P166, DOI 10.1111/j.1600-079X.2006.00401.x
ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3
Zeman M, 2005, BIOLOGIA, V60, P61
NR 137
TC 21
Z9 21
U1 4
U2 39
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
SN 2167-8359
J9 PEERJ
JI PeerJ
PD SEP 1
PY 2016
VL 4
AR e2237
DI 10.7717/peerj.2237
PG 48
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA DV9MQ
UT WOS:000383265000001
PM 27635308
OA Green Published, Green Submitted, gold
DA 2023-03-13
ER
PT J
AU Batta, Y
Juhasz, J
Farrell, T
AF Batta, Yashvardhan
Juhasz, Janos
Farrell, Tom
TI Accuracy of Dose Calculation for Hemibody Treatments at Extended
Distance Using a Commercial Treatment Planning System
SO JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES
LA English
DT Article
DE Radiation hormesis; hemibody irradiation; treatment planning; low-dose
radiation therapy
AB Purpose: The objective of this study was to assess the accuracy of monitor units (MUs) calculation for extended distance hemibody (HB) treatments in Pinnacle, a commercial treatment planning system. The agreement between planning and delivery of low-dose radiation therapy (LD-RT) was assessed with direct comparison to expected doses and tabulated total body irradiation (TBI) calculations. Studies over the past decades indicate that LD-RT has strong potential to be an effective treatment modality for cancer patients with minimal toxicities. This physics-based study aims to provide sufficient conclusions required for prospective clinical studies involving HB irradiation regimes. Specifically, this study may provide reassurance of MU calculation in the Pinnacle system for an upcoming trial regarding nontargeted LD-RT for recurrent prostate cancer.
Methods: Water phantom: A plan was created in Pinnacle to deliver 100 cGy to a water phantom with an ion chamber mount. A percent depth dose was obtained. Electrometer readings were recorded with each irradiation of 400 MUs at varying ion chamber depths at extended distance. A percent depth dose was created from tabulated data. Anthropomorphic phantom: A parallel opposed pair plan was created in Pinnacle to deliver 150 cGy over 10 fractions to the umbilicus of the phantom at 4 m extended source-to-surface distance. The MUs required to deliver 150 cGy, as per Pinnacle were delivered to the phantom using 6 MV photons. Thermoluminescent dosimeters (TLD), used to measure exposure using light-emitting crystals, were placed along six reference locations (lung, mid-T-spine, abdomen, mid-pelvis, thigh, and mid-abdomen) on the phantom. TLD measurements were then compared with the Pinnacle-derived ROI mean doses. For experiment 2, TBI calculation factors were used to determine the required MUs to deliver 150 cGy to the prescription (Rx) point. The calculated MUs were delivered, and TLD readings were recorded to compare the level of agreement of using TBI calculations for HB treatments.
Results: Water phantom: Pinnacle did not accurately estimate dmax at extended distance; however, it did accurately estimate the dose past d(max). Anthropomorphic phantom: A 10% variation to expected dose was deemed significant. Both Pinnacle and TBI calculations were accurate methods of planning HB LD-RT treatment, with insignificant difference. Pinnacle's overall average variation across ROIs was borderline significant at 12.1%.
Conclusion: At extended source-to-surface distance, Pinnacle inaccurately estimated the entrance dose and dmax. Anthropomorphic phantom studies indicated borderline significant variation, as per the implemented 10% limit. TBI calculations presented similar conclusions. For purposes of HB LD-RT, a borderline 10% variation will have insignificant impact to the patient's ability to tolerate treatment. Trial-eligible prostate cancer patients are currently being treated for HB LD-RT at the Juravinski Cancer Centre.
C1 [Batta, Yashvardhan] McMaster Univ, Med Radiat Sci, Hamilton, ON, Canada.
[Juhasz, Janos; Farrell, Tom] Juravinski Canc Ctr, Dept Med Phys, Hamilton, ON, Canada.
C3 McMaster University; McMaster University
RP Batta, Y (corresponding author), McMaster Univ, Dept Radiat Therapy, Med Radiat Sci, Juravinski Canc Ctr,Hamilton Hlth Sci, 3040 Mallbridge Crescent, Mississauga, ON L4T2C6, Canada.
EM battay@mcmaster.ca
CR [Anonymous], 2013, PEREZ BRADYS PRINCIP
Bockel S, 2017, CANCER RADIOTHER, V21, P244, DOI 10.1016/j.canrad.2016.12.005
CANELLOS GP, 1975, BRIT J CANCER, V31, P474
Derer A, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00505
Ganapathy K, 2012, J MED PHYS, V37, P214, DOI 10.4103/0971-6203.103607
Gyurkocza B, 2014, BLOOD, V124, P344, DOI 10.1182/blood-2014-02-514778
Hayes A. R., 2013, COMPUT MATH METHOD M, V2013, P1
Lavallee M-C, 2008, Med Phys, V35, P3408, DOI 10.1118/1.2965958
Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327
Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7
Wills C., 2016, APPL RAD ONCOLOGY
NR 11
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 1939-8654
J9 J MED IMAGING RADIAT
JI J. Med. Imaging Radiat. Sci.
PD JUN
PY 2019
VL 50
IS 2
BP 261
EP 271
DI 10.1016/j.jmir.2018.12.004
PG 11
WC Radiology, Nuclear Medicine & Medical Imaging
WE Emerging Sources Citation Index (ESCI)
SC Radiology, Nuclear Medicine & Medical Imaging
GA IB2VV
UT WOS:000470127700012
PM 31176434
DA 2023-03-13
ER
PT J
AU Heininger, K
AF Heininger, K
TI Aging is a deprivation syndrome driven by a germ-soma conflict
SO AGEING RESEARCH REVIEWS
LA English
DT Review
DE aging; longevity; deprivation syndrome; evolution; reproduction; gonadal
hormones; stress resistance; metabolism; oxidative stress; mitochondria;
caloric restriction; hormesis; metabolic syndrome; mutagenesis;
glucocorticosteroids; insulin; leptin; NPY; differentiation; apoptosis;
cancer; Alzheimer's disease; diabetes mellitus; glucose-fatty acid
cycle; germ-soma conflict theory
ID GONADOTROPIN-RELEASING-HORMONE; PROGRAMMED CELL-DEATH; MITOCHONDRIAL-DNA
MUTATIONS; LIFE-SPAN EXTENSION; HYPOTHALAMIC ARCUATE NUCLEUS;
PITUITARY-GONADAL AXIS; CENTRAL-NERVOUS-SYSTEM; CYTOCHROME-C-OXIDASE;
RAT SKELETAL-MUSCLE; AGE-RELATED-CHANGES
AB Evolution through natural selection can be described as driven by a perpetual conflict of individuals competing for limited resources. Recently, I postulated that the shortage of resources godfathered the evolutionary achievements of the differentiation-apoptosis programming [Rev. Neurosci. 12 (2001) 217]. Unicellular deprivation-induced differentiation into germ cell-like spores can be regarded as the archaic reproduction events which were fueled by the remains of the fratricided cells of the apoptotic fruiting body. Evidence has been accumulated suggesting that conserved through the ages as the evolutionary legacy of the germ-soma conflict, the somatic loss of immortality during the ontogenetic segregation of primordial germ cells recapitulates the archaic fate of the fruiting body. In this heritage, somatic death is a germ cell-triggered event and has been established as evolutionary-fixed default state following asymmetric reproduction in a world of finite resources. Aging, on the other hand, is the stress resistance-dependent phenotype of the somatic resilience that counteracts the germ cell-inflicted death pathway. Thus, aging is a survival response and, in contrast to current beliefs, is antagonistically linked to death that is not imposed by group selection but enforced upon the soma by the selfish genes of the "enemy within". Environmental conditions shape the trade-off solutions as compromise between the conflicting germ-soma interests. Mechanistically, the neuroendocrine system, particularly those components that control energy balance, reproduction and stress responses, orchestrate these events. The reproductive phase is a self-limited process that moulds onset and progress of senescence with germ cell-dependent factors, e.g. gonadal hormones. These degenerate the regulatory pacemakers of the pineal-hypothalamic-pituitary network and its peripheral, e.g. thymic, gonadal and adrenal targets thereby eroding the trophic milieu. The ensuing cellular metabolic stress engenders adaptive adjustments of the glucose-fatty acid cycle, responses that are adequate and thus fitness-boosting under fuel shortage (e.g. during caloric restriction) but become detrimental under fuel abundance. In a Janus-faced capacity, the cellular stress response apparatus expresses both tolerogenic and mutagenic features of the social and asocial deprivation responses [Rev. Neurosci. 12 (2001) 217]. Mediated by the derangement of the energy-Ca2+-redox homeostatic triangle, a mosaic of dedifferentiation/apoptosis and mutagenic responses actuates the gradual exhaustion of functional reserves and eventually results in a multitude of aging-related diseases. This scenario reconciles programmed and stochastic features of aging and resolves the major inconsistencies of current theories by linking ultimate and proximate causes of aging. Reproduction, differentiation, apoptosis, stress response and metabolism are merged into a coherent regulatory network that stages aging as a naturally selected, germ cell-triggered and reproductive phase-modulated deprivation response. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
C1 Univ Dusseldorf, Dept Neurol, D-4000 Dusseldorf, Germany.
C3 Heinrich Heine University Dusseldorf
RP Heininger, K (corresponding author), Univ Dusseldorf, Dept Neurol, D-4000 Dusseldorf, Germany.
EM kurt.heininger@web.de
CR Abel TW, 1999, J CLIN ENDOCR METAB, V84, P2111, DOI 10.1210/jc.84.6.2111
ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI [10.2307/2410191, 10.1111/j.1558-5646.1993.tb01241.x]
Adler CM, 2001, SYNAPSE, V42, P252, DOI 10.1002/syn.1111
Agarwal S, 1995, MECH AGEING DEV, V85, P55, DOI 10.1016/0047-6374(95)01655-4
Agata K, 1999, SEMIN CELL DEV BIOL, V10, P377, DOI 10.1006/scdb.1999.0324
AKIYAMA T, 1992, DEVELOPMENT, V115, P1175
AlonsoSolis R, 1996, CELL MOL NEUROBIOL, V16, P357, DOI 10.1007/BF02088101
Andersen LB, 2000, ARCH INTERN MED, V160, P1621, DOI 10.1001/archinte.160.11.1621
ANDRES R, 1984, PRINCIPLES GERIATRIC, P759
Anisimov VN, 2001, MECH AGEING DEV, V122, P41, DOI 10.1016/S0047-6374(00)00184-6
[Anonymous], 1991, EVOLUTIONARY BIOL AG
[Anonymous], 1994, EVOLUTION AGE STRUCT, DOI DOI 10.1017/CBO9780511525711
Apfeld J, 1999, NATURE, V402, P804, DOI 10.1038/45544
ARAUJO FB, 1995, ATHEROSCLEROSIS, V117, P61, DOI 10.1016/0021-9150(94)05558-Z
ARKING R, 1998, BIOL AGING
Ashrafi K, 2000, GENE DEV, V14, P1872
Ashrafi K, 1999, P NATL ACAD SCI USA, V96, P9100, DOI 10.1073/pnas.96.16.9100
Aspinall R, 2000, BIOGERONTOLOGY, V1, P273, DOI 10.1023/A:1010046532657
AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x
Azhar G, 1999, MECH AGEING DEV, V112, P5, DOI 10.1016/S0047-6374(99)00048-2
AZUMA T, 1993, J NEUROL SCI, V120, P87, DOI 10.1016/0022-510X(93)90030-3
Balser EJ, 1998, BIOL BULL-US, V194, P187, DOI 10.2307/1543049
BALTRUSCH HJF, 1988, ANN NY ACAD SCI, V521, P1, DOI 10.1111/j.1749-6632.1988.tb35261.x
Barazzoni R, 2000, J BIOL CHEM, V275, P3343, DOI 10.1074/jbc.275.5.3343
Barazzoni R, 2001, AM J PHYSIOL-ENDOC M, V280, pE413, DOI 10.1152/ajpendo.2001.280.3.E413
Barja G, 2000, AGING CLIN EXP RES, V12, P342, DOI 10.1007/BF03339859
Barker MG, 1999, FEMS MICROBIOL LETT, V177, P199, DOI 10.1111/j.1574-6968.1999.tb13732.x
Bartke A, 1998, EXP GERONTOL, V33, P675, DOI 10.1016/S0531-5565(98)00032-1
Baynes JW, 2000, BIOGERONTOLOGY, V1, P235, DOI 10.1023/A:1010034213093
Behrman HR, 2001, J SOC GYNECOL INVEST, V8, pS40, DOI 10.1016/S1071-5576(00)00106-4
Bejma J, 1999, J APPL PHYSIOL, V87, P465, DOI 10.1152/jappl.1999.87.1.465
BELL G, 1984, AM NAT, V124, P600, DOI 10.1086/284300
Berker M, 1996, ACTA NEUROCHIR, V138, P1224, DOI 10.1007/BF01809752
Bernardis LL, 1998, P SOC EXP BIOL MED, V218, P284
BERTRAND H, 1993, MOL CELL BIOL, V13, P6778, DOI 10.1128/MCB.13.11.6778
BJORNTORP P, 1995, J INTERN MED, V238, P401
Bjorntorp P, 1999, ANN NY ACAD SCI, V892, P297, DOI 10.1111/j.1749-6632.1999.tb07803.x
BLAAK EE, 2001, J CLIN ENDOCR METAB, V84, P3764
Blair SN, 2001, MED SCI SPORT EXER, V33, pS379, DOI 10.1097/00005768-200105001-01549
BLOCH GJ, 1988, J COMP NEUROL, V275, P613, DOI 10.1002/cne.902750409
BODE H, 1986, CURR TOP DEV BIOL, V20, P257, DOI 10.1016/S0070-2153(08)60668-7
Bohni R, 1999, CELL, V97, P865, DOI 10.1016/S0092-8674(00)80799-0
Bonavera JJ, 1998, J NEUROENDOCRINOL, V10, P93, DOI 10.1046/j.1365-2826.1998.00177.x
Boss O, 2000, DIABETES, V49, P143, DOI 10.2337/diabetes.49.2.143
Bossis I, 2000, BIOL REPROD, V62, P1436, DOI 10.1095/biolreprod62.5.1436
Boulianne GL, 2001, MECH AGEING DEV, V122, P883, DOI 10.1016/S0047-6374(01)00245-7
Braeckman BP, 1999, TRENDS MICROBIOL, V7, P270, DOI 10.1016/S0966-842X(99)01534-6
Braeckman BP, 2001, MECH AGEING DEV, V122, P673, DOI 10.1016/S0047-6374(01)00222-6
BRANN DW, 1995, NEUROENDOCRINOLOGY, V61, P213, DOI 10.1159/000126843
BRAWER JR, 1993, BIOL REPROD, V49, P647, DOI 10.1095/biolreprod49.4.647
Brehm A, 1999, MOL CELL BIOL, V19, P2635
Brierley EJ, 1998, ANN NEUROL, V43, P217, DOI 10.1002/ana.410430212
Brody JA, 2000, AGE AGEING, V29, P75, DOI 10.1093/ageing/29.1.75
BRONSON RT, 1981, AM J VET RES, V42, P1606
Brugger P, 1998, BIOL RHYTHM RES, V29, P121, DOI 10.1076/brhm.29.2.121.1450
Bruning JC, 2000, SCIENCE, V289, P2122, DOI 10.1126/science.289.5487.2122
BUCK S, 1993, HEREDITY, V71, P23, DOI 10.1038/hdy.1993.103
BUENO J, 1976, BRAIN RES, V101, P67, DOI 10.1016/0006-8993(76)90988-4
Burdon RH, 1996, FEBS LETT, V383, P150, DOI 10.1016/0014-5793(96)00230-X
Burkle A, 2000, BIOGERONTOLOGY, V1, P41, DOI 10.1023/A:1010089924898
Burks DJ, 2000, NATURE, V407, P377, DOI 10.1038/35030105
Buszczak M, 2000, CELL DEATH DIFFER, V7, P1071, DOI 10.1038/sj.cdd.4400755
CALLESESCANDON J, 1995, J APPL PHYSIOL, V78, P266, DOI 10.1152/jappl.1995.78.1.266
Campisi J, 2001, EXP GERONTOL, V36, P607, DOI 10.1016/S0531-5565(00)00230-8
Carey JR, 1997, BETWEEN ZEUS AND THE SALMON, P127
Caruso C, 2001, MECH AGEING DEV, V122, P445, DOI 10.1016/S0047-6374(00)00255-4
Castrillon DH, 2000, P NATL ACAD SCI USA, V97, P9585, DOI 10.1073/pnas.160274797
Ceriello A, 1997, DIABETIC MED, V14, pS45, DOI 10.1002/(SICI)1096-9136(199708)14:3+3.3.CO;2-I
Chainy GBN, 1997, ANDROLOGIA, V29, P343
Chan SJ, 2000, AM ZOOL, V40, P213
Chen HL, 1999, P NATL ACAD SCI USA, V96, P14877, DOI 10.1073/pnas.96.26.14877
CHEN Q, 1995, P NATL ACAD SCI USA, V92, P4337, DOI 10.1073/pnas.92.10.4337
Cherkasova V, 2000, J MOL BIOL, V300, P433, DOI 10.1006/jmbi.2000.3880
CHIK CL, 1989, ACTA ENDOCRINOL-COP, V120, P569, DOI 10.1530/acta.0.1200569
Chippindale AK, 1996, EVOLUTION, V50, P753, DOI 10.1111/j.1558-5646.1996.tb03885.x
Chu SC, 1999, LIFE SCI, V64, P2299, DOI 10.1016/S0024-3205(99)00181-2
Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991
CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67
Clark WR, 1999, BIOL BASIS AGING DEA
CLARKE CH, 1976, MUTAT RES, V36, P147, DOI 10.1016/0027-5107(76)90003-8
Cohen P, 2001, J CLIN INVEST, V108, P1113, DOI 10.1172/JCI200113914
Cohen PG, 2001, MED HYPOTHESES, V56, P702, DOI 10.1054/mehy.2000.1169
Comfort A., 1979, BIOL SENESCENCE
CORBISIER P, 1993, MECH AGEING DEV, V71, P47, DOI 10.1016/0047-6374(93)90034-O
Cunningham MJ, 1999, BIOL REPROD, V60, P216, DOI 10.1095/biolreprod60.2.216
CURTIS HJ, 1963, SCIENCE, V141, P686, DOI 10.1126/science.141.3582.686
Curtiss LK, 2000, IMMUNOL RES, V21, P167, DOI 10.1385/IR:21:2-3:167
Curtsinger JW, 1995, ANNU REV GENET, V29, P553
DaCunha GL, 1996, EXP GERONTOL, V31, P705, DOI 10.1016/S0531-5565(96)00056-3
DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010
Dallman MF, 1995, ANN NY ACAD SCI, V771, P730, DOI 10.1111/j.1749-6632.1995.tb44724.x
Danzer SC, 1999, MOL BRAIN RES, V66, P200, DOI 10.1016/S0169-328X(99)00024-8
DARR D, 1995, FREE RADICAL BIO MED, V18, P195, DOI 10.1016/0891-5849(94)00118-4
Das UN, 1999, PROSTAG LEUKOTR ESS, V61, P157, DOI 10.1054/plef.1999.0085
DAWKINS R, 1995, RIVER EDEN DARWINIAN
Dawkins Richard, 1989, SELFISH GENE
De Benedictis G, 2001, MECH AGEING DEV, V122, P909, DOI 10.1016/S0047-6374(01)00247-0
De Benedictis G, 2000, EXP GERONTOL, V35, P795, DOI 10.1016/S0531-5565(00)00169-8
Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141
DENCKLA WD, 1975, LIFE SCI, V16, P31
Derventzi A, 1996, ANTICANCER RES, V16, P2901
DESJARDINS GC, 1995, EXP GERONTOL, V30, P253
DEWINDE JH, 1997, YEAST STRESS RESPONS, P7
Doria G, 2000, VACCINE, V18, P1591, DOI 10.1016/S0264-410X(99)00491-0
Drapeau MD, 2000, EXP GERONTOL, V35, P71, DOI 10.1016/S0531-5565(99)00082-0
Draye X, 1996, EXP GERONTOL, V31, P717, DOI 10.1016/S0531-5565(96)00073-3
Drygas W, 2000, INT J SPORTS MED, V21, P235, DOI 10.1055/s-2000-309
Du XL, 1999, FREE RADICAL BIO MED, V27, P752, DOI 10.1016/S0891-5849(99)00079-9
Dubey DP, 2000, MECH AGEING DEV, V113, P117, DOI 10.1016/S0047-6374(99)00102-5
Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x
Duffy PH, 1997, ENVIRON RES, V73, P242, DOI 10.1006/enrs.1997.3714
DULLAART RPF, 1995, J CLIN ENDOCR METAB, V80, P3002, DOI 10.1210/jc.80.10.3002
El-Haschimi K, 2000, J CLIN INVEST, V105, P1827, DOI 10.1172/JCI9842
Endrich MM, 1996, BIOL CELL, V88, P15, DOI 10.1016/S0248-4900(97)86826-8
Ereskovsky AV, 2000, BIOL BULL, V198, P77, DOI 10.2307/1542805
Ergon T, 2001, NATURE, V411, P1043, DOI 10.1038/35082553
Esposito LA, 1999, P NATL ACAD SCI USA, V96, P4820, DOI 10.1073/pnas.96.9.4820
ESPOSITODELPUENTE A, 1994, INT J OBESITY, V18, P766
EVERITT AV, 1995, MECH AGEING DEV, V78, P39, DOI 10.1016/0047-6374(94)01514-M
Facchini FS, 2000, FREE RADICAL BIO MED, V29, P1302, DOI 10.1016/S0891-5849(00)00438-X
Fannin SW, 1999, ARCH BIOCHEM BIOPHYS, V372, P399, DOI 10.1006/abbi.1999.1508
Ferrini M, 1999, NEUROENDOCRINOLOGY, V69, P129, DOI 10.1159/000054411
Festa A, 2000, CIRCULATION, V102, P42, DOI 10.1161/01.CIR.102.1.42
Finch C., 2000, CHANCE DEV AGING
Finch C. E., 1990, LONGEVITY SENESCENCE
Finch CE, 1997, BETWEEN ZEUS AND THE SALMON, P245
Finch CE, 1997, SCIENCE, V278, P407, DOI 10.1126/science.278.5337.407
Finch CE, 2001, ANNU REV GENOM HUM G, V2, P435, DOI 10.1146/annurev.genom.2.1.435
Finch CE, 1998, J GERONTOL A-BIOL, V53, pB235, DOI 10.1093/gerona/53A.4.B235
Flurkey K, 2001, P NATL ACAD SCI USA, V98, P6736, DOI 10.1073/pnas.111158898
Frame LT, 1998, ENVIRON HEALTH PERSP, V106, P313
Franceschi C, 1999, AGING CLIN EXP RES, V11, P69, DOI 10.1007/BF03399643
Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117
Fukagawa NK, 1999, FREE RADICAL BIO MED, V27, P1437, DOI 10.1016/S0891-5849(99)00189-6
Gabbita SP, 1997, FREE RADICAL BIO MED, V23, P191, DOI 10.1016/S0891-5849(97)00043-9
Gabriely I, 2001, MECH AGEING DEV, V122, P1565, DOI 10.1016/S0047-6374(01)00287-1
GAGE MJG, 1995, P ROY SOC B-BIOL SCI, V261, P25, DOI 10.1098/rspb.1995.0112
Gartenberg MR, 2000, CURR OPIN MICROBIOL, V3, P132, DOI 10.1016/S1369-5274(00)00064-3
Gatto M, 1996, J OPTIMIZ THEORY APP, V90, P79, DOI 10.1007/BF02192247
Gavis ER, 1997, TRENDS CELL BIOL, V7, P485, DOI 10.1016/S0962-8924(97)01162-8
Gems D, 2000, BIOGERONTOLOGY, V1, P289, DOI 10.1023/A:1026546719091
Gershon D, 1999, EXP GERONTOL, V34, P613, DOI 10.1016/S0531-5565(99)00010-8
Gibbs RB, 1997, BRAIN RES, V757, P10, DOI 10.1016/S0006-8993(96)01432-1
GILAD GM, 1995, MECH AGEING DEV, V78, P75, DOI 10.1016/0047-6374(94)01529-U
Gilchrest BA, 1997, FASEB J, V11, P322, DOI 10.1096/fasebj.11.5.9141498
Ginsberg HN, 2000, J CLIN INVEST, V106, P453, DOI 10.1172/JCI10762
Giordano M, 2001, BEHAV BRAIN RES, V120, P97, DOI 10.1016/S0166-4328(00)00367-3
GIRALDI T, 1994, ANN NY ACAD SCI, V719, P526, DOI 10.1111/j.1749-6632.1994.tb56856.x
Godon C, 1998, J BIOL CHEM, V273, P22480, DOI 10.1074/jbc.273.35.22480
Golden TR, 2001, MECH AGEING DEV, V122, P1577, DOI 10.1016/S0047-6374(01)00288-3
GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777
Gould, 1977, EVER DARWIN
GOULD SJ, 1992, BIOESSAYS, V14, P275, DOI 10.1002/bies.950140413
GOYA RG, 1992, EXP CLIN IMMUNOGENET, V9, P188
Grachev ID, 2001, J NEUROCHEM, V76, P582, DOI 10.1046/j.1471-4159.2001.00026.x
GRADY D, 1992, ANN INTERN MED, V117, P1016, DOI 10.7326/0003-4819-117-12-1016
GRAVES JL, 1993, GROWTH DEVELOP AGING, V57, P233
GRAVES JL, 1993, GENETICA, V91, P99, DOI 10.1007/BF01435991
Greenberg JA, 2000, MECH AGEING DEV, V115, P107, DOI 10.1016/S0047-6374(00)00108-1
GREENSTEIN BD, 1992, INT J IMMUNOPHARMACO, V14, P541, DOI 10.1016/0192-0561(92)90115-2
Grzelak A, 2001, FEBS LETT, V492, P123, DOI 10.1016/S0014-5793(01)02244-X
Guarente L, 1999, NAT GENET, V23, P281, DOI 10.1038/15458
Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700
Guralnik JM, 2000, AGING CLIN EXP RES, V12, P65, DOI 10.1007/BF03339893
Ha HJ, 2000, KIDNEY INT, V58, pS19, DOI 10.1046/j.1523-1755.2000.07704.x
HALEYZITLIN V, 1993, MUTAT RES, V295, P237, DOI 10.1016/0921-8734(93)90023-V
HALL KY, 1984, MECH AGEING DEV, V24, P163, DOI 10.1016/0047-6374(84)90068-X
Hamet P, 1997, J HYPERTENS, V15, P1573, DOI 10.1097/00004872-199715120-00058
HAMILTON JB, 1969, J GERONTOL, V24, P395, DOI 10.1093/geronj/24.4.395
Hammond CB, 2000, AM J MANAG CARE, V6, pS746
Han ES, 2001, J NUTR, V131, P1687, DOI 10.1093/jn/131.6.1687
Hansen BC, 1999, ANN NY ACAD SCI, V892, P1, DOI 10.1111/j.1749-6632.1999.tb07782.x
HANSEN ES, 1990, MUTAT RES, V239, P163, DOI 10.1016/0165-1110(90)90004-U
HAOURIGUI M, 1994, STEROIDS, V59, P46, DOI 10.1016/0039-128X(94)90044-2
Harlow BL, 2000, MATURITAS, V35, P3, DOI 10.1016/S0378-5122(00)00092-X
HARMAN D, 1983, AGE, V6, P86, DOI 10.1007/BF02432509
Harris RBS, 2000, ANNU REV NUTR, V20, P45, DOI 10.1146/annurev.nutr.20.1.45
Hart RW, 1999, TOXICOL SCI, V52, P3
Havel PJ, 2000, NEUROENDOCRINOLOGY IN PHYSIOLOGY AND MEDICINE, P335
Hayflick L, 1994, WHY WE AGE
Heininger K, 1999, HUM PSYCHOPHARM CLIN, V14, P525, DOI 10.1002/(SICI)1099-1077(199912)14:8<525::AID-HUP140>3.0.CO;2-T
Heininger K, 2000, REV NEUROSCIENCE, V11, P213
Heininger K, 1999, HUM PSYCHOPHARM CLIN, V14, P363, DOI 10.1002/(SICI)1099-1077(199908)14:6<363::AID-HUP125>3.0.CO;2-R
Heininger K, 2001, REV NEUROSCIENCE, V12, P217
Hekimi S, 1998, TRENDS GENET, V14, P14, DOI 10.1016/S0168-9525(97)01299-7
Helenius M, 1999, EXP CELL RES, V248, P194, DOI 10.1006/excr.1999.4393
Henden Thale, 1992, Biological Signals, V1, P34
Hensey C, 1998, DEV BIOL, V203, P36, DOI 10.1006/dbio.1998.9028
Herrington DM, 1995, ANN NY ACAD SCI, V774, P271
HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909
Heyer BS, 2000, GENE DEV, V14, P2072
HIROKAWA K, 1992, ACTA PATHOL JAPON, V42, P537
Hirokawa K, 2001, CELL MOL BIOL, V47, P97
HOLLSTEIN M, 1991, SCIENCE, V253, P49, DOI 10.1126/science.1905840
HORVITZ HR, 1992, CELL, V68, P237, DOI 10.1016/0092-8674(92)90468-R
HOSONO R, 1989, EXP GERONTOL, V24, P251, DOI 10.1016/0531-5565(89)90016-8
HSIEH RH, 1994, BIOCHEM MOL BIOL INT, V32, P1009
Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694
HUANG HH, 1987, NEUROBIOL AGING, V8, P465, DOI 10.1016/0197-4580(87)90042-X
Hudson EK, 1998, FREE RADICAL RES, V29, P573, DOI 10.1080/10715769800300611
Hulbert AJ, 2000, ANNU REV PHYSIOL, V62, P207, DOI 10.1146/annurev.physiol.62.1.207
Hung SH, 1997, J FORMOS MED ASSOC, V96, P812
HUNT JV, 1991, FREE RADICAL RES COM, V12-3, P115, DOI 10.3109/10715769109145775
Huppert FA, 1998, EXP GERONTOL, V33, P593, DOI 10.1016/S0531-5565(98)00033-3
Ichikawa M, 2000, MECH AGEING DEV, V113, P23, DOI 10.1016/S0047-6374(99)00093-7
Iida T, 1998, P NATL ACAD SCI USA, V95, P11274, DOI 10.1073/pnas.95.19.11274
Ikenishi K, 1998, DEV GROWTH DIFFER, V40, P1
Ikeno Y, 1997, AGE, V20, P107, DOI 10.1007/s11357-997-0010-4
Imai S, 2000, NATURE, V403, P795, DOI 10.1038/35001622
Inazu Y, 1999, DEV GENET, V25, P339, DOI 10.1002/(SICI)1520-6408(1999)25:4<339::AID-DVG8>3.0.CO;2-3
Ishii N, 2000, FREE RADICAL RES, V33, P857, DOI 10.1080/10715760000301371
Itahana K, 2001, EUR J BIOCHEM, V268, P2784, DOI 10.1046/j.1432-1327.2001.02228.x
Jakubowski W, 2000, FREE RADICAL BIO MED, V28, P659, DOI 10.1016/S0891-5849(99)00266-X
JAZWINSKI SM, 1993, GENETICA, V91, P35, DOI 10.1007/BF01435986
Jazwinski SM, 2001, MECH AGEING DEV, V122, P865, DOI 10.1016/S0047-6374(01)00244-5
Jazwinski SM, 2000, TRENDS GENET, V16, P506, DOI 10.1016/S0168-9525(00)02119-3
Johnson TE, 1997, BETWEEN ZEUS AND THE SALMON, P108
Johnson TE, 2000, EXP GERONTOL, V35, P687, DOI 10.1016/S0531-5565(00)00138-8
JOHNSON TE, 1984, MECH AGEING DEV, V28, P23, DOI 10.1016/0047-6374(84)90150-7
JUCKETT DA, 1987, MECH AGEING DEV, V38, P49, DOI 10.1016/0047-6374(87)90110-2
Judd SJ, 1998, REPROD FERT DEVELOP, V10, P65, DOI 10.1071/R98024
KADENBACH B, 1995, MUTAT RES-DNAGING G, V338, P161, DOI 10.1016/0921-8734(95)00021-W
Kagawa Y, 1999, BIOCHEM BIOPH RES CO, V266, P662, DOI 10.1006/bbrc.1999.1884
Kale SP, 1996, DEV GENET, V18, P154, DOI 10.1002/(SICI)1520-6408(1996)18:2<154::AID-DVG8>3.0.CO;2-8
Kalra SP, 1996, FRONT NEUROENDOCRIN, V17, P371, DOI 10.1006/frne.1996.0010
KALRA SP, 1993, J REPROD FERTIL, P11
Kaplan JR, 1996, PSYCHOSOM MED, V58, P598, DOI 10.1097/00006842-199611000-00008
Kashikawa M, 1999, DEV GROWTH DIFFER, V41, P495
Kastin AJ, 2001, NEUROSCI LETT, V310, P69, DOI 10.1016/S0304-3940(01)02074-2
Kaufmann JA, 2001, J NEUROCHEM, V76, P1099, DOI 10.1046/j.1471-4159.2001.00118.x
Kawamura K, 2000, ZOOL SCI, V17, P281, DOI 10.2108/jsz.17.281
Kayser EB, 2001, J BIOL CHEM, V276, P20551, DOI 10.1074/jbc.M011066200
Kelly JJ, 1998, CLIN EXP PHARMACOL P, V25, pS51, DOI 10.1111/j.1440-1681.1998.tb02301.x
KENDALL MD, 1990, CELL TISSUE RES, V261, P555, DOI 10.1007/BF00313535
Kennaway DJ, 1997, BIOL SIGNAL, V6, P247
KENNEDY BK, 1995, CELL, V80, P485, DOI 10.1016/0092-8674(95)90499-9
Kim JD, 1996, AGING-CLIN EXP RES, V8, P123, DOI 10.1007/BF03339566
KINCADE PW, 1994, IMMUNOL REV, V137, P119, DOI 10.1111/j.1600-065X.1994.tb00661.x
Kipling D, 2001, MATURITAS, V38, P25, DOI 10.1016/S0378-5122(00)00189-4
Kirk DL, 1997, ANNU REV GENET, V31, P359, DOI 10.1146/annurev.genet.31.1.359
Kirkwood TBL, 1997, PHILOS T R SOC B, V352, P1765, DOI 10.1098/rstb.1997.0160
Kirkwood TBL, 2000, J ANAT, V197, P587, DOI 10.1046/j.1469-7580.2000.19740587.x
Kirkwood TBL, 2001, EXP GERONTOL, V36, P413, DOI 10.1016/S0531-5565(00)00255-2
KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0
KISSEBAH AH, 1994, PHYSIOL REV, V74, P761, DOI 10.1152/physrev.1994.74.4.761
Klapper W, 2001, MECH AGEING DEV, V122, P695, DOI 10.1016/S0047-6374(01)00223-8
KLEBANOV S, 1995, J GERONTOL A-BIOL, V50, pB78, DOI 10.1093/gerona/50A.2.B78
KLOEDEN PE, 1994, ANN NY ACAD SCI, V719, P474, DOI 10.1111/j.1749-6632.1994.tb56852.x
Knaut H, 2000, J CELL BIOL, V149, P875, DOI 10.1083/jcb.149.4.875
Koistinen HA, 1998, MED SCI SPORT EXER, V30, P805, DOI 10.1097/00005768-199806000-00005
Koll F, 2001, MECH AGEING DEV, V122, P205, DOI 10.1016/S0047-6374(00)00232-3
KOLTER R, 1993, ANNU REV MICROBIOL, V47, P855, DOI 10.1146/annurev.micro.47.1.855
Kopsidas G, 1998, MUTAT RES-FUND MOL M, V421, P27, DOI 10.1016/S0027-5107(98)00150-X
KORF HW, 1994, ANN NY ACAD SCI, V719, P13, DOI 10.1111/j.1749-6632.1994.tb56818.x
Korpelainen H, 1999, HUM HERED, V49, P183, DOI 10.1159/000022871
KOUFOPANOU V, 1993, P ROY SOC B-BIOL SCI, V254, P107, DOI 10.1098/rspb.1993.0134
Kowald A, 1999, EXP GERONTOL, V34, P605, DOI 10.1016/S0531-5565(99)00011-X
Kozloff EN, 2000, INVERTEBR REPROD DEV, V37, P95, DOI 10.1080/07924259.2000.9652408
Krebs CJ, 1999, P NATL ACAD SCI USA, V96, P1686, DOI 10.1073/pnas.96.4.1686
Krebs RA, 1999, HEREDITY, V83, P46, DOI 10.1038/sj.hdy.6885410
Kristal BS, 1998, AGE, V21, P1, DOI 10.1007/s11357-998-0001-0
Kujala UM, 1998, JAMA-J AM MED ASSOC, V279, P440, DOI 10.1001/jama.279.6.440
Kumazawa T, 1998, TERATOLOGY, V57, P146, DOI 10.1002/(SICI)1096-9926(199803)57:3<146::AID-TERA4>3.0.CO;2-Z
Lackey BR, 2000, THERIOGENOLOGY, V53, P1147, DOI 10.1016/S0093-691X(00)00259-4
Lan CT, 2001, BRAIN RES, V910, P1, DOI 10.1016/S0006-8993(01)02714-7
Lane MA, 2000, J AM AGING ASSOC, V23, P1, DOI 10.1007/s11357-000-0001-1
LANG E, 1994, Z GERONTOL, V27, P10
LANTHIER A, 1986, J STEROID BIOCHEM, V25, P445, DOI 10.1016/0022-4731(86)90259-1
Lanza RP, 2000, SCIENCE, V288, P665, DOI 10.1126/science.288.5466.665
LAPOLT PS, 1995, ENDOCRINOLOGY, V136, P5533, DOI 10.1210/en.136.12.5533
LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905
LARSEN PL, 1995, GENETICS, V139, P1567
Lass A, 1999, BIOFACTORS, V9, P199, DOI 10.1002/biof.5520090215
Laun P, 2001, MOL MICROBIOL, V39, P1166, DOI 10.1046/j.1365-2958.2001.02317.x
Lee A. K., 1985, EVOLUTIONARY ECOLOGY
Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390
LEE IM, 1995, JAMA-J AM MED ASSOC, V273, P1179, DOI 10.1001/jama.273.15.1179
Lee IM, 1997, AGING CLIN EXP RES, V9, P2, DOI 10.1007/BF03340123
Lee IM, 2000, AM J EPIDEMIOL, V151, P293, DOI 10.1093/oxfordjournals.aje.a010205
LEEDOM L, 1994, ANN NY ACAD SCI, V743, P61, DOI 10.1111/j.1749-6632.1994.tb55787.x
LEOPOLD AC, 1961, SCIENCE, V134, P1727, DOI 10.1126/science.134.3492.1727
Lewis K, 2000, MICROBIOL MOL BIOL R, V64, P503, DOI 10.1128/MMBR.64.3.503-514.2000
LI HY, 1994, ENDOCRINOLOGY, V135, P240, DOI 10.1210/en.135.1.240
Liang P, 1997, DIABETES, V46, P920, DOI 10.2337/diabetes.46.5.920
Lin K, 2001, NAT GENET, V28, P139, DOI 10.1038/88850
Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126
Lin SS, 2001, J BIOL CHEM, V276, P36000, DOI 10.1074/jbc.M103509200
Lin Y L, 1990, Chin J Physiol, V33, P291
Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943
Linnane AW, 1998, ANN NY ACAD SCI, V854, P202, DOI 10.1111/j.1749-6632.1998.tb09903.x
Lithgow Gordon J., 1996, P55
Liu JK, 1999, NEUROCHEM RES, V24, P1479, DOI 10.1023/A:1022597010078
Longo VD, 1999, NEUROBIOL AGING, V20, P479, DOI 10.1016/S0197-4580(99)00089-5
Longo VD, 1996, J BIOL CHEM, V271, P12275, DOI 10.1074/jbc.271.21.12275
Lopez JF, 1999, BIOL PSYCHIAT, V46, P1461, DOI 10.1016/S0006-3223(99)00266-8
Luo JY, 2001, CELL, V107, P137, DOI 10.1016/S0092-8674(01)00524-4
MacArthur R., 1967, THEORY ISLAND BIOGEO
Machesky LM, 1998, CURR BIOL, V8, P607, DOI 10.1016/S0960-9822(98)70233-7
MacMillan-Crow LA, 1998, BIOCHEMISTRY-US, V37, P1613, DOI 10.1021/bi971894b
MAEKAWA H, 1994, MOL GEN GENET, V244, P456, DOI 10.1007/BF00583896
Maestroni GJM, 2001, EXPERT OPIN INV DRUG, V10, P467, DOI 10.1517/13543784.10.3.467
Maiello M, 1998, GERONTOLOGY, V44, P15, DOI 10.1159/000021977
MALABU UH, 1992, PEPTIDES, V13, P1097, DOI 10.1016/0196-9781(92)90013-S
Maldonado TA, 2000, BRAIN RES, V858, P237, DOI 10.1016/S0006-8993(99)02328-8
Malone EA, 1996, GENETICS, V143, P1193
Manova K, 1998, DEV DYNAM, V213, P293, DOI 10.1002/(SICI)1097-0177(199811)213:3<293::AID-AJA6>3.0.CO;2-D
Martinez DE, 1998, EXP GERONTOL, V33, P217, DOI 10.1016/S0531-5565(97)00113-7
Martinez DE, 1996, EXP GERONTOL, V31, P699, DOI 10.1016/S0531-5565(96)00099-X
MARTINEZ DE, 1992, P NATL ACAD SCI USA, V89, P9920, DOI 10.1073/pnas.89.20.9920
MASLIAH E, 1993, NEUROLOGY, V43, P192, DOI 10.1212/WNL.43.1_Part_1.192
Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X
MASORO EJ, 1992, ANN NY ACAD SCI, V663, P403, DOI 10.1111/j.1749-6632.1992.tb38684.x
Masoro EJ, 1998, J TOXICOL ENV HEAL B, V1, P243, DOI 10.1080/10937409809524554
Masoro EJ, 1995, AGING-CLIN EXP RES, V7, P407, DOI 10.1007/BF03324354
Matsuyama SI, 1998, PROTOPLASMA, V201, P172, DOI 10.1007/BF01287413
Mattson MP, 2000, BRAIN RES, V886, P47, DOI 10.1016/S0006-8993(00)02790-6
MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832
McArdle A, 2000, J ANAT, V197, P539, DOI 10.1046/j.1469-7580.2000.19740539.x
McCall K, 1998, SCIENCE, V279, P230, DOI 10.1126/science.279.5348.230
MCCARTER RJ, 1992, AM J PHYSIOL, V263, pE448, DOI 10.1152/ajpendo.1992.263.3.E448
McCarter RJM, 1997, AGING-CLIN EXP RES, V9, P73, DOI 10.1007/BF03340130
MCCARTER RJM, 1996, GERONTOLOGIST, V36, P165
MCCARTY MF, 1994, MED HYPOTHESES, V43, P253, DOI 10.1016/0306-9877(94)90076-0
McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398
Meaney MJ, 2001, ANN NY ACAD SCI, V935, P50
Mecocci P, 2000, FREE RADICAL BIO MED, V28, P1243, DOI 10.1016/S0891-5849(00)00246-X
Medawar P. B., 1952, UNSOLVED PROBLEM BIO
MEDVEDEV ZA, 1981, MECH AGEING DEV, V17, P331, DOI 10.1016/0047-6374(81)90052-X
Meissner M, 1999, CURR GENET, V36, P363, DOI 10.1007/s002940050511
MEITES J, 1990, P SOC EXP BIOL MED, V195, P304, DOI 10.3181/00379727-195-43150B
Melov S, 1999, MUTAT RES-DNA REPAIR, V434, P233, DOI 10.1016/S0921-8777(99)00031-2
Michikawa Y, 1999, SCIENCE, V286, P774, DOI 10.1126/science.286.5440.774
Mihaylova VT, 1999, P NATL ACAD SCI USA, V96, P7427, DOI 10.1073/pnas.96.13.7427
Miller MA, 2000, DEV BIOL, V224, P326, DOI 10.1006/dbio.2000.9790
Miller RA, 2000, J GERONTOL A-BIOL, V55, pB455, DOI 10.1093/gerona/55.9.B455
Miller SM, 1999, DEVELOPMENT, V126, P649
Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990
Miquel J, 1998, EXP GERONTOL, V33, P113, DOI 10.1016/S0531-5565(97)00060-0
MIZOGUCHI K, 1992, NEUROSCI LETT, V138, P157, DOI 10.1016/0304-3940(92)90495-S
Mlekusch W, 1996, MECH AGEING DEV, V92, P43, DOI 10.1016/S0047-6374(96)01801-5
MOBBS CV, 1992, J GERONTOL, V47, pB48, DOI 10.1093/geronj/47.2.B48
MOBBS CV, 1993, GENETICA, V91, P239, DOI 10.1007/BF01436001
Moore MA, 1998, EUR J CANCER PREV, V7, P89
Morales AV, 1997, ENDOCRINOLOGY, V138, P3967, DOI 10.1210/en.138.9.3967
MORLEY JE, 2000, SCI GERIATRICS, P143
Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0
Mosinger BJ, 1999, BBA-MOL BASIS DIS, V1453, P180, DOI 10.1016/S0925-4439(98)00100-8
Mott JL, 1999, ANN NY ACAD SCI, V893, P353, DOI 10.1111/j.1749-6632.1999.tb07853.x
Mott JL, 2001, MUTAT RES-FUND MOL M, V474, P35, DOI 10.1016/S0027-5107(00)00159-7
MUNKRES KD, 1984, MECH AGEING DEV, V24, P83, DOI 10.1016/0047-6374(84)90177-5
Murakami K, 1999, MATURITAS, V33, P71, DOI 10.1016/S0378-5122(99)00040-7
MYDLARSKI MB, 1995, NEUROBIOL AGING, V16, P977, DOI 10.1016/0197-4580(95)02018-7
MYERS RB, 1988, J STEROID BIOCHEM, V31, P305, DOI 10.1016/0022-4731(88)90354-8
Mystkowski P, 2000, NUTRITION, V16, P937, DOI 10.1016/S0899-9007(00)00458-5
NAGATA T, 1994, INT J DEV BIOL, V38, P321
Nathan L, 1998, SEMIN REPROD ENDOCR, V16, P309, DOI 10.1055/s-2007-1016289
NELSON JF, 1995, NEUROBIOL AGING, V16, P837, DOI 10.1016/0197-4580(95)00072-M
Nestelbacher R, 2000, EXP GERONTOL, V35, P63, DOI 10.1016/S0531-5565(99)00087-X
Neuberg M, 1997, ENDOCRINE, V7, P107, DOI 10.1007/BF02778075
NICHOLS NR, 1995, NEUROBIOL AGING, V16, P105, DOI 10.1016/0197-4580(95)80013-H
Nicoletti VG, 1998, NEUROCHEM RES, V23, P55, DOI 10.1023/A:1022449403619
Nilsson PM, 1996, MED HYPOTHESES, V47, P39, DOI 10.1016/S0306-9877(96)90041-9
Nishikawa T, 2000, NATURE, V404, P787, DOI 10.1038/35008121
Nooden Larry D., 1996, P94
Nooden LD, 2001, J EXP BOT, V52, P2151, DOI 10.1093/jexbot/52.364.2151
Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432
Norwood TH, 1996, EXP GERONTOL, V31, P61, DOI 10.1016/0531-5565(95)02020-9
Nulton-Persson AC, 2001, J BIOL CHEM, V276, P23357, DOI 10.1074/jbc.M100320200
Nystrom T, 1999, CURR OPIN MICROBIOL, V2, P214, DOI 10.1016/S1369-5274(99)80037-X
OBRIEN IAD, 1986, CLIN ENDOCRINOL, V24, P359, DOI 10.1111/j.1365-2265.1986.tb01639.x
OHKOSHI N, 1995, MUSCLE NERVE, V18, P1265, DOI 10.1002/mus.880181108
OHTSU T, 1993, J BIOL CHEM, V268, P1830
Okasha SA, 2001, TOXICOLOGY, V163, P49, DOI 10.1016/S0300-483X(01)00374-2
Okatani Y, 1998, J PINEAL RES, V25, P245, DOI 10.1111/j.1600-079X.1998.tb00394.x
Okatani Y, 2000, J PINEAL RES, V28, P111, DOI 10.1034/j.1600-079X.2001.280207.x
OLSEN NJ, 1991, ENDOCRINOLOGY, V129, P2471, DOI 10.1210/endo-129-5-2471
ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730
Osiewacz HD, 1999, EXP GERONTOL, V34, P901, DOI 10.1016/S0531-5565(99)00063-7
Osiewacz HD, 2001, ARCH GERONTOL GERIAT, V32, P185, DOI 10.1016/S0167-4943(01)00096-6
OYEYINKA GO, 1984, GERONTOLOGY, V30, P188, DOI 10.1159/000212628
Ozawa T, 1999, J BIOENERG BIOMEMBR, V31, P377, DOI 10.1023/A:1005479920097
PABLOS MI, 1993, NEUROSCI LETT, V159, P211, DOI 10.1016/0304-3940(93)90836-A
Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910
Pahlavani MA, 2000, FRONT BIOSCI-LANDMRK, V5, pD580, DOI 10.2741/Pahlavani
Pahlavani MA, 1997, DRUG TODAY, V33, P25
Pampfer S, 2000, PLACENTA, V21, pS3, DOI 10.1053/plac.1999.0519
Paolisso G, 2000, EUR J CLIN INVEST, V30, P888, DOI 10.1046/j.1365-2362.2000.00729.x
Paolisso G, 1998, J AM GERIATR SOC, V46, P833, DOI 10.1111/j.1532-5415.1998.tb02716.x
Papaconstantinou John, 1996, P150
PARCHMENT RE, 1993, INT J DEV BIOL, V37, P75
PARDUCZ A, 1993, NEUROSCIENCE, V53, P395, DOI 10.1016/0306-4522(93)90203-R
Park PU, 1999, MOL CELL BIOL, V19, P3848
Parr T, 1999, GERONTOLOGY, V45, P121, DOI 10.1159/000022075
PARSONS PA, 1995, HEREDITY, V75, P216, DOI 10.1038/hdy.1995.126
PARTRIDGE L, 1993, GENETICA, V91, P89, DOI 10.1007/BF01435990
Partridge L., 1986, P45
PASQUALINI C, 1986, ENDOCRINOLOGY, V119, P2484, DOI 10.1210/endo-119-6-2484
Pawelec G, 2001, TRENDS IMMUNOL, V22, P422, DOI 10.1016/S1471-4906(01)01987-1
Pecqueur C, 2001, J BIOL CHEM, V276, P8705, DOI 10.1074/jbc.M006938200
Pennisi E, 2000, SCIENCE, V289, P1131, DOI 10.1126/science.289.5482.1131
Pesce M, 2000, MOL REPROD DEV, V55, P452, DOI 10.1002/(SICI)1098-2795(200004)55:4<452::AID-MRD14>3.0.CO;2-S
Pickup JC, 1998, DIABETOLOGIA, V41, P1241, DOI 10.1007/s001250051058
Pierpaoli W, 1997, EXP GERONTOL, V32, P587, DOI 10.1016/S0531-5565(96)00163-5
Pierpaoli W, 2001, J ANTI-AGING MED, V4, P31, DOI 10.1089/109454501750225668
Piers LS, 1998, J APPL PHYSIOL, V85, P2196, DOI 10.1152/jappl.1998.85.6.2196
Ping L, 1997, NEUROENDOCRINOLOGY, V66, P246, DOI 10.1159/000127245
Piraino S, 1996, BIOL BULL-US, V190, P302, DOI 10.2307/1543022
Pla M, 2000, FEBS LETT, V472, P14, DOI 10.1016/S0014-5793(00)01424-1
Pletcher SD, 1998, EVOLUTION, V52, P454, DOI [10.1111/j.1558-5646.1998.tb01645.x, 10.2307/2411081]
Poindexter JS, 2000, APPL ENVIRON MICROB, V66, P4105, DOI 10.1128/AEM.66.9.4105-4111.2000
Ponnappan Usha, 1998, Frontiers in Bioscience, V3, pD152
Porte D, 1999, ANN NY ACAD SCI, V892, P73, DOI 10.1111/j.1749-6632.1999.tb07786.x
Prolla TA, 2001, TRENDS NEUROSCI, V24, pS21, DOI 10.1016/S0166-2236(00)01957-3
Puca AA, 2001, P NATL ACAD SCI USA, V98, P10505, DOI 10.1073/pnas.181337598
Raffa RB, 1998, NEUROSCI BIOBEHAV R, V22, P789, DOI 10.1016/S0149-7634(97)00070-5
Ramsey JJ, 2000, EXP GERONTOL, V35, P1131, DOI 10.1016/S0531-5565(00)00166-2
Ramsey JJ, 2000, FREE RADICAL BIO MED, V29, P946, DOI 10.1016/S0891-5849(00)00417-2
Randerath Kurt, 1996, P198
RAO G, 1990, J NUTR, V120, P602, DOI 10.1093/jn/120.6.602
Rasmussen DD, 2001, J PINEAL RES, V31, P89, DOI 10.1034/j.1600-079X.2001.310113.x
RASMUSSEN JE, 1990, ENDOCRINOLOGY, V126, P235, DOI 10.1210/endo-126-1-235
Reaven GM, 1999, ANN NY ACAD SCI, V892, P45, DOI 10.1111/j.1749-6632.1999.tb07784.x
Redins CA, 1999, TISSUE CELL, V31, P233, DOI 10.1054/tice.1999.0010
Reiter RJ, 1999, MECH AGEING DEV, V110, P157, DOI 10.1016/S0047-6374(99)00058-5
Reznick D, 2001, EXP GERONTOL, V36, P791, DOI 10.1016/S0531-5565(00)00241-2
Reznick DN, 1997, EXP GERONTOL, V32, P245, DOI 10.1016/S0531-5565(96)00129-5
Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147
Ricklefs RE, 1995, AGING NATURAL HIST
Riddle DL, 1999, NATURE, V399, P308, DOI 10.1038/20557
Riha VF, 1996, J GERONTOL A-BIOL, V51, pB284, DOI 10.1093/gerona/51A.4.B284
Risby TH, 1999, J APPL PHYSIOL, V86, P617, DOI 10.1152/jappl.1999.86.2.617
Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137
Rohner-Jeanrenaud F, 1999, ANN NY ACAD SCI, V892, P261, DOI 10.1111/j.1749-6632.1999.tb07800.x
ROUSSELL D, 1994, PARASITOL TODAY, V10, P110, DOI 10.1016/0169-4758(94)90011-6
ROWE JW, 1983, J CLIN INVEST, V71, P1581, DOI 10.1172/JCI110914
Rudolph KL, 1999, CELL, V96, P701, DOI 10.1016/S0092-8674(00)80580-2
Rustin P, 2000, MECH AGEING DEV, V114, P201, DOI 10.1016/S0047-6374(00)00102-0
SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171
Saffman EE, 1999, CELL MOL LIFE SCI, V55, P1141, DOI 10.1007/s000180050363
Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x
Salvioli S, 2001, FEBS LETT, V492, P9, DOI 10.1016/S0014-5793(01)02199-8
Samec S, 1999, DIABETES, V48, P436, DOI 10.2337/diabetes.48.2.436
Sanders EJ, 1997, CELL DEATH DIFFER, V4, P188, DOI 10.1038/sj.cdd.4400235
Scarpace PJ, 2000, DIABETES, V49, P431, DOI 10.2337/diabetes.49.3.431
Scarpace PJ, 2000, J ENDOCRINOL, V164, P331, DOI 10.1677/joe.0.1640331
Schafer KH, 1997, BRAIN RES PROTOC, V1, P109, DOI 10.1016/S1385-299X(96)00017-7
SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343
SCHMID HA, 1993, GERONTOLOGY, V39, P189
Schultz C, 1997, NEUROSCI LETT, V237, P93, DOI 10.1016/S0304-3940(97)00817-3
SCHWARTZ AG, 1994, J GERONTOL, V49, pB37, DOI 10.1093/geronj/49.2.B37
Schwartz MW, 1999, AM J CLIN NUTR, V69, P584
Schwarze SR, 1998, FREE RADICAL BIO MED, V25, P740, DOI 10.1016/S0891-5849(98)00153-1
Scrofano MM, 1998, MECH AGEING DEV, V105, P31, DOI 10.1016/S0047-6374(98)00077-3
Seeman TE, 2001, P NATL ACAD SCI USA, V98, P4770, DOI 10.1073/pnas.081072698
Sehl ME, 2001, J GERONTOL A-BIOL, V56, pB198, DOI 10.1093/gerona/56.5.B198
SEIFER DB, 1994, MENOPAUSE, V1, P83
Sell DR, 2000, FASEB J, V14, P145, DOI 10.1096/fasebj.14.1.145
SELTZER A, 1992, ENDOCRINOLOGY, V130, P1896, DOI 10.1210/en.130.4.1896
Selye H, 1975, STRESS LIFE
Serrano M, 2001, CURR OPIN CELL BIOL, V13, P748, DOI 10.1016/S0955-0674(00)00278-7
Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521
Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x
Sharma P, 1998, GERONTOLOGY, V44, P78, DOI 10.1159/000021988
Sharma SP, 1997, BIOCHEM MOL BIOL INT, V41, P869
Sheeba V, 2000, J BIOL RHYTHM, V15, P380, DOI 10.1177/074873000129001477
Shibata N, 1999, DEV BIOL, V206, P73, DOI 10.1006/dbio.1998.9130
SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771
Shimokawa I, 2001, MECH AGEING DEV, V122, P1511, DOI 10.1016/S0047-6374(01)00284-6
SIEDE W, 1990, MUTAT RES, V245, P287, DOI 10.1016/0165-7992(90)90158-G
Silbermann R, 2000, EVOLUTION, V54, P2038
Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1
Simon VR, 1997, CELL MOTIL CYTOSKEL, V37, P199, DOI 10.1002/(SICI)1097-0169(1997)37:3<199::AID-CM2>3.0.CO;2-2
Simpson L, 2001, EXP CELL RES, V264, P29, DOI 10.1006/excr.2000.5130
Skalicky M, 1999, AGING-CLIN EXP RES, V11, P227, DOI 10.1007/BF03339663
Skulachev VP, 1998, BBA-BIOENERGETICS, V1363, P100, DOI 10.1016/S0005-2728(97)00091-1
Smith BJ, 1997, J APPL TOXICOL, V17, P265, DOI 10.1002/(SICI)1099-1263(199709)17:5<265::AID-JAT451>3.0.CO;2-6
Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59
Solano JM, 1999, AM J PHYSIOL-ENDOC M, V277, pE708, DOI 10.1152/ajpendo.1999.277.4.E708
Sonntag WE, 1999, J GERONTOL A-BIOL, V54, pB521, DOI 10.1093/gerona/54.12.B521
Sorensen JG, 1999, HEREDITAS, V131, P155, DOI 10.1111/j.1601-5223.1999.00155.x
Souza-Pinto NC, 1999, NUCLEIC ACIDS RES, V27, P1935, DOI 10.1093/nar/27.8.1935
SPENCER RP, 1993, MED HYPOTHESES, V40, P102, DOI 10.1016/0306-9877(93)90137-F
Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597
Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763
STEWART J, 1988, ENDOCRINOLOGY, V123, P1934, DOI 10.1210/endo-123-4-1934
Storz G, 2000, BACTERIAL STRESS RESPONSES, P47
Stragier P, 1996, ANNU REV GENET, V30, P297, DOI 10.1146/annurev.genet.30.1.297
Stratakis CA, 1995, ANN NY ACAD SCI, V771, P1, DOI 10.1111/j.1749-6632.1995.tb44666.x
Sugiyama M, 1999, CURR OPIN PLANT BIOL, V2, P61, DOI 10.1016/S1369-5266(99)80012-0
Surwit RS, 1996, PSYCHOSOM MED, V58, P582, DOI 10.1097/00006842-199611000-00006
Suzuki M, 1999, ENDOCR J, V46, P521, DOI 10.1507/endocrj.46.521
SWAAB DF, 1994, J NEUROENDOCRINOL, V6, P681, DOI 10.1111/j.1365-2826.1994.tb00635.x
Sweet DH, 1997, MOL CELL BIOL, V17, P6223, DOI 10.1128/MCB.17.11.6223
Tam PPL, 1997, MECH DEVELOP, V68, P3, DOI 10.1016/S0925-4773(97)00123-8
Tanaka M, 2000, MECH AGEING DEV, V116, P65, DOI 10.1016/S0047-6374(00)00149-4
Tannenbaum BM, 1997, AM J PHYSIOL-ENDOC M, V273, pE1168, DOI 10.1152/ajpendo.1997.273.6.E1168
Tarin JJ, 1998, MOL HUM REPROD, V4, P281, DOI 10.1093/molehr/4.3.281
Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987
Tatar M, 2001, EXP GERONTOL, V36, P723, DOI 10.1016/S0531-5565(00)00238-2
Tatar M, 1999, AM ZOOL, V39, P920
Taub J, 1999, NATURE, V399, P162, DOI 10.1038/20208
TAYLOR GT, 1993, J ENDOCRINOL, V137, P115, DOI 10.1677/joe.0.1370115
TELFORD N, 1987, NEUROENDOCRINOLOGY, V46, P481, DOI 10.1159/000124869
Temple JL, 2000, BIOL REPROD, V63, P1721, DOI 10.1095/biolreprod63.6.1721
TETZ VV, 1993, J GEN MICROBIOL, V139, P855, DOI 10.1099/00221287-139-4-855
THACKER J, 1976, MUTAT RES, V38, P43, DOI 10.1016/0165-1161(76)90078-9
Theodoridis GC, 1996, J THEOR BIOL, V178, P61, DOI 10.1006/jtbi.1996.0007
Thomas F, 2001, HUM BIOL, V73, P271, DOI 10.1353/hub.2001.0029
Thomas JN, 1997, J PINEAL RES, V23, P123, DOI 10.1111/j.1600-079X.1997.tb00344.x
Thorpe SR, 1996, DRUG AGING, V9, P69, DOI 10.2165/00002512-199609020-00001
Tissenbaum HA, 2000, P NATL ACAD SCI USA, V97, P460, DOI 10.1073/pnas.97.1.460
Toussaint O, 2000, EXP GERONTOL, V35, P927, DOI 10.1016/S0531-5565(00)00180-7
Tower J, 2000, MECH AGEING DEV, V118, P1, DOI 10.1016/S0047-6374(00)00152-4
Toyooka Y, 2000, MECH DEVELOP, V93, P139, DOI 10.1016/S0925-4773(00)00283-5
Tran PV, 2001, INVERTEBR REPROD DEV, V39, P21, DOI 10.1080/07924259.2001.9652464
TRENTINI GP, 1992, NEUROENDOCRINOLOGY, V56, P364, DOI 10.1159/000126250
Tretter L, 2000, J NEUROSCI, V20, P8972
TROSKO JE, 1980, MED HYPOTHESES, V6, P455, DOI 10.1016/0306-9877(80)90098-5
TROXLER RG, 1977, ATHEROSCLEROSIS, V26, P151, DOI 10.1016/0021-9150(77)90098-3
Tsai HW, 2001, BIOL REPROD, V64, P684, DOI 10.1095/biolreprod64.2.684
Tsang WY, 2001, J BIOL CHEM, V276, P32240, DOI 10.1074/jbc.M103999200
Tsunekawa N, 2000, DEVELOPMENT, V127, P2741
Tucic N, 1997, EVOLUTION, V51, P1896, DOI 10.1111/j.1558-5646.1997.tb05112.x
Turker MS, 2000, MECH AGEING DEV, V117, P1, DOI 10.1016/S0047-6374(00)00133-0
Tuzcu EM, 2001, CIRCULATION, V103, P2705
Unger RH, 2001, FASEB J, V15, P312, DOI 10.1096/fj.00-0590
Vaillant GE, 2001, AM J PSYCHIAT, V158, P839, DOI 10.1176/appi.ajp.158.6.839
Van Voorhies WA, 2001, EXP GERONTOL, V36, P55, DOI 10.1016/S0531-5565(00)00208-4
Vandenbroucke JP, 1998, LANCET, V351, P1064, DOI 10.1016/S0140-6736(05)79038-3
VANVOLLENHOVEN RF, 1994, CLEV CLIN J MED, V61, P276, DOI 10.3949/ccjm.61.4.276
VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0
Vardi P, 2000, MED HYPOTHESES, V55, P521, DOI 10.1054/mehy.2000.1112
Vaskivuo TE, 2001, J CLIN ENDOCR METAB, V86, P3421, DOI 10.1210/jc.86.7.3421
Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855
VAWTER L, 1986, SCIENCE, V234, P194, DOI 10.1126/science.3018931
Velde ERT, 1998, MATURITAS, V30, P119
Veldhuis JD, 2000, J ANTI-AGING MED, V3, P269, DOI 10.1089/rej.1.2000.3.269
Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1
Vieira HLA, 2001, ONCOGENE, V20, P4305, DOI 10.1038/sj.onc.1204575
Vijg J, 2000, MUTAT RES-FUND MOL M, V447, P117, DOI 10.1016/S0027-5107(99)00202-X
Viveros MP, 2001, J NEUROIMMUNOL, V114, P80, DOI 10.1016/S0165-5728(00)00457-4
Volkers N, 2000, J NATL CANCER I, V92, P192, DOI 10.1093/jnci/92.3.192
Volloch V, 1999, EXP CELL RES, V253, P483, DOI 10.1006/excr.1999.4682
Von Zglinicki T, 2000, ANN NY ACAD SCI, V908, P99, DOI 10.1111/j.1749-6632.2000.tb06639.x
VRIEND J, 1990, GROWTH DEVELOP AGING, V54, P165
Wadhwa R, 2000, Prog Mol Subcell Biol, V24, P191
WALLACE DC, 1967, J CHRON DIS, V20, P475, DOI 10.1016/0021-9681(67)90079-3
Wanagat J, 2000, FACT RES INTERV GER, V1-2, P153
WANG E, 1995, CANCER RES, V55, P2284
Wang HS, 1999, J ENDOCRINOL, V161, P1, DOI 10.1677/joe.0.1610001
Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X
Warner HR, 1997, CURR TOP CELL REGUL, V35, P107, DOI 10.1016/S0070-2137(97)80004-0
Waters DJ, 2000, PROSTATE, V43, P272, DOI 10.1002/1097-0045(20000601)43:4<272::AID-PROS6>3.0.CO;2-D
Wei YH, 1998, ANN NY ACAD SCI, V854, P155, DOI 10.1111/j.1749-6632.1998.tb09899.x
Weindruch R, 2001, J NUTR, V131, p918S, DOI 10.1093/jn/131.3.918S
Weindruch R., 1988, RETARDATION AGING DI
Weismann A., 1889, ESSAYS HEREDITY KIND
WHEELER JC, 1995, P NATL ACAD SCI USA, V92, P10408, DOI 10.1073/pnas.92.22.10408
WIDMAIER EP, 1995, PROSTAG LEUKOTR ESS, V52, P179, DOI 10.1016/0952-3278(95)90019-5
WILAMOWSKA A, 1992, J PINEAL RES, V13, P1, DOI 10.1111/j.1600-079X.1992.tb00047.x
Williams G. C., 1966, P307
WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x
WilschBrauninger M, 1997, J CELL BIOL, V139, P817, DOI 10.1083/jcb.139.3.817
Wilson JB, 1997, PHYSIOL PLANTARUM, V99, P511, DOI 10.1034/j.1399-3054.1997.990321.x
Windmill KF, 1998, TISSUE CELL, V30, P104, DOI 10.1016/S0040-8166(98)80011-6
Wise PM, 1997, RECENT PROG HORM RES, V52, P279
WOITCZAK L, 1993, BIOCHIM BIOPHYS ACTA, V1183, P41, DOI 10.1016/0005-2728(93)90004-Y
Wylie C, 1999, CELL, V96, P165, DOI 10.1016/S0092-8674(00)80557-7
WYNDHAM JR, 1987, ARCH GERONTOL GERIAT, V6, P323, DOI 10.1016/0167-4943(87)90012-4
WynfordThomas D, 1996, ONCOL RES, V8, P387
Yan H, 1997, BIOCHEM J, V328, P599, DOI 10.1042/bj3280599
Yan LJ, 2000, FREE RADICAL BIO MED, V29, P1143, DOI 10.1016/S0891-5849(00)00423-8
Yan LJ, 1998, P NATL ACAD SCI USA, V95, P12896, DOI 10.1073/pnas.95.22.12896
Yang HC, 1999, CURR BIOL, V9, P1111, DOI 10.1016/S0960-9822(99)80480-1
YANG SL, 1993, ACTA ENDOCRINOL-COP, V129, P543, DOI 10.1530/acta.0.1290543
Yeo EJ, 2000, MOL CELLS, V10, P415
YIE SM, 1995, NEUROENDOCRINOLOGY, V62, P93, DOI 10.1159/000126993
Young TE, 2000, PLANT MOL BIOL, V44, P283, DOI 10.1023/A:1026588408152
Zahn RK, 2000, MECH AGEING DEV, V119, P101, DOI 10.1016/S0047-6374(00)00170-6
Zhou JN, 1999, MICROSC RES TECHNIQ, V44, P36, DOI 10.1002/(SICI)1097-0029(19990101)44:1<36::AID-JEMT5>3.0.CO;2-F
Zimmet P, 1999, ANN NY ACAD SCI, V892, P25, DOI 10.1111/j.1749-6632.1999.tb07783.x
Zirkin BR, 1997, EXP GERONTOL, V32, P529, DOI 10.1016/S0531-5565(96)00165-9
Zou S, 2000, P NATL ACAD SCI USA, V97, P13726, DOI 10.1073/pnas.260496697
Zuo Z, 1996, ENDOCRINOLOGY, V137, P2334, DOI 10.1210/en.137.6.2334
NR 584
TC 22
Z9 23
U1 0
U2 21
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 1568-1637
EI 1872-9649
J9 AGEING RES REV
JI Ageing Res. Rev.
PD JUN
PY 2002
VL 1
IS 3
BP 481
EP 536
AR PII S1568-1637(02)00015-6
DI 10.1016/S1568-1637(02)00015-6
PG 56
WC Cell Biology; Geriatrics & Gerontology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Cell Biology; Geriatrics & Gerontology
GA 603AP
UT WOS:000178536900012
PM 12067599
DA 2023-03-13
ER
PT J
AU Durak, R
Jedryczka, M
Czajka, B
Dampc, J
Wielgusz, K
Borowiak-Sobkowiak, B
AF Durak, Roma
Jedryczka, Malgorzata
Czajka, Beata
Dampc, Jan
Wielgusz, Katarzyna
Borowiak-Sobkowiak, Beata
TI Mild Abiotic Stress Affects Development and Stimulates Hormesis of Hemp
Aphid Phorodon cannabis
SO INSECTS
LA English
DT Article
DE temperature; herbicide; enzymatic markers; Cannabis sativa; demographic
parameters
ID GLUTATHIONE S-TRANSFERASES; SITOBION-AVENAE; HEMIPTERA APHIDIDAE;
RESISTANCE; HERBICIDES; PLANT; TEMPERATURE; PARAMETERS; POPULATION;
ADAPTATION
AB Simple Summary
For centuries, hemp has been used by humans as a source of natural fiber. Nowadays, it is a multipurpose crop with many uses, but the most valuable are hemp metabolites including terpenes and cannabinoids. During the cultivation of hemp, farmers encounter wilting plants, inhabited by the hemp aphid-a persistent plant-damaging insect. The species lives mainly on the undersides of leaves and on flower stalks and feeds on the phloem sap. We studied the effects of temperature and the herbicide used by farmers in routine hemp cultivation on the population biology of hemp aphids. Hemp aphids thrived best at moderate temperatures between 20 and 25 degrees C. At this temperature range, they lived for about 25 days, during which they reproduced for 15 days, producing between 54.5 and 111.6 nymphs in total per female. At 28 degrees C, aphid survival and reproductive capacity were much lower. Treatment of plants with herbicide caused mild stress in aphids and resulted in increased aphid reproduction and a change in their behavior; aphids settled on lower parts of the plant rather than on the top part of the plant (growing point), which is normal in untreated plants. This new knowledge may help to manage the hemp aphid and reduce damage to hemp crops in the future.
The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of meteorological (temperature) and agronomical (herbicide) factors on the biology of the hemp aphid. In one experiment, hemp plants were kept at constant temperatures ranging from 20 to 30 degrees C, and aphid survival and fecundity were measured. In a related experiment conducted at 20 degrees C, plants were treated with field-appropriate rates of a selective graminicide containing quizalofop-P-tefuryl (40 gL(-1), 4.38%, HRAC group 1), commonly used to control weeds in hemp, and aphid enzyme activity was measured in addition to population parameters. We found that hemp aphids could live, feed and reproduce within the whole studied range of temperatures, demonstrating its great evolutionary plasticity. However, the optimal temperature for development was 25 degrees C, at which the insect lived and reproduced for 25 and 15 days, respectively, with an average fecundity of 7.5 nymphs per reproduction day. The herbicide treatment increased the activity of superoxide dismutase (SOD), catalase (CAT), beta-glucosidase, S-glutathione transferase (GST), oxidoreductive peroxidase (POD), and polyphenol oxidase (PPO) in the aphids, but only on certain days after treatment, which indicates a mild stress in aphid tissues, related to a higher reproduction and changed feeding behavior; aphids moved from the actively growing tips compared to untreated plants. The results of these experiments are discussed in terms of the impact on the future management of this pest.
C1 [Durak, Roma; Dampc, Jan] Univ Rzeszow, Dept Expt Biol & Chem, Pigonia 1, PL-35310 Rzeszow, Poland.
[Jedryczka, Malgorzata] Polish Acad Sci, Inst Plant Genet, Strzeszynska 34, PL-60479 Poznan, Poland.
[Czajka, Beata; Borowiak-Sobkowiak, Beata] Poznan Univ Life Sci, Dept Entomol & Environm Protect, Dabrowskiego 159, PL-60594 Poznan, Poland.
[Wielgusz, Katarzyna] Natl Res Inst, Dept Breeding & Agron Fibrous & Energy Plants, Inst Nat Fibers & Med Plants, Wojska Polskiego 71B, PL-60630 Poznan, Poland.
C3 University of Rzeszow; Polish Academy of Sciences; Institute of Plant
Genetics of the Polish Academy of Sciences; Poznan University of Life
Sciences; Institute of Natural Fibres & Medicinal Plants
RP Borowiak-Sobkowiak, B (corresponding author), Poznan Univ Life Sci, Dept Entomol & Environm Protect, Dabrowskiego 159, PL-60594 Poznan, Poland.
EM rdurak@univ.rzeszow.pl; mjed@igr.poznan.pl; beataczajka1996@gmail.com;
jdampc@ur.edu.pl; katarzyna.wielgusz@iwnirz.pl;
beata.borowiak@up.poznan.pl
OI Dampc, Jan/0000-0001-5180-0292; Durak, Roma/0000-0001-9100-766X;
Jedryczka, Malgorzata/0000-0001-8583-0772; Wielgusz,
Katarzyna/0000-0002-0241-3621; Borowiak-Sobkowiak,
Beata/0000-0002-4485-7925
FU Institute of Natural Fibers and Medicinal Plants; Polish Ministry of
Science and Higher Education [005/RID/2018/19]; Institute of Plant
Genetics, PAS
FX This research was funded by the Institute of Natural Fibers and
Medicinal Plants, project agreement with the Institute of Plant
Genetics, PAS, signed on 15 March 2020. Publication was co-financed
within the framework of the Polish Ministry of Science and Higher
Education's program: Regional Initiative Excellence"in the years
2019-2022 (No. 005/RID/2018/19). All authors have read and agreed to the
published version of the manuscript.
CR Aebi H., 1984, METHOD ENZYMOL, V105, P121
Ahn JJ, 2020, INSECTS, V11, DOI 10.3390/insects11080481
Alford L, 2018, INSECT SCI, V25, P905, DOI 10.1111/1744-7917.12460
Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532
Bakro F., 2018, IOBC/WPRS Bulletin, V136, P9
Bakro F, 2020, J SEP SCI, V43, P2817, DOI 10.1002/jssc.201900822
Bale JS, 2002, GLOBAL CHANGE BIOL, V8, P1, DOI 10.1046/j.1365-2486.2002.00451.x
BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605
Birgucu AK, 2016, J KANSAS ENTOMOL SOC, V89, P72
Blackman RL, 2007, APHIDS AS CROP PESTS, P1, DOI 10.1079/9780851998190.0001
Borowiak-Sobkowiak B, 2017, ACTA SCI POL-HORTORU, V16, P39
Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541]
Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa
Cantele C, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9111131
Carelli G, 2002, HUM EXP TOXICOL, V21, P103, DOI 10.1191/0960327102ht219oa
Ceballos G, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400253
Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10
Chown SL, 2004, INSECT PHYSL ECOLOGY, P1
Chrzanowski G, 2012, CROP PROT, V35, P71, DOI 10.1016/j.cropro.2012.01.005
Cividanes FJ, 2012, PESQUI AGROPECU BRAS, V47, P505, DOI 10.1590/S0100-204X2012000400005
Cranshaw W, 2019, J INTEGR PEST MANAG, V10, DOI 10.1093/jipm/pmz023
Cranshaw Whitney S., 2018, Insecta Mundi, V662, P1
Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler
Dampc J, 2020, INSECTS, V11, DOI 10.3390/insects11070436
Dawidziuk A, 2012, GRANA, V51, P240, DOI 10.1080/00173134.2011.649016
DeJong RJ, 2007, P NATL ACAD SCI USA, V104, P2121, DOI 10.1073/pnas.0608407104
Despres L, 2007, TRENDS ECOL EVOL, V22, P298, DOI 10.1016/j.tree.2007.02.010
Dixon A.F.G., 1987, World Crop Pests, V2A, P269
Dixon A.F.G., 1998, APHID ECOLOGY OPTIMI, V2nd ed., P1
Durak R, 2016, ETHOL ECOL EVOL, V28, P188, DOI 10.1080/03949370.2015.1034785
Durak R, 2020, ENVIRON EXP BOT, V176, DOI 10.1016/j.envexpbot.2020.104100
Durak R, 2018, ETHOL ECOL EVOL, V30, P416, DOI 10.1080/03949370.2017.1409272
Durak R, 2014, PHYSIOL ENTOMOL, V39, P313, DOI 10.1111/phen.12077
FAO, 2018, FUT FOOD AGR ALT PAT
Ferman H, 1969, PHYTOPATHOLOGY, V57, P69
Francis F, 2005, ARCH INSECT BIOCHEM, V58, P166, DOI 10.1002/arch.20049
Grotenhermen F, 2016, CRIT REV PLANT SCI, V35, P378, DOI 10.1080/07352689.2016.1265360
Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x
Gupta G, 2008, J PEST SCI, V81, P9, DOI 10.1007/s10340-007-0175-8
Halbert S, 2016, TRIOLOGY ENT SECT, V55, P6
Heie Ole E., 1994, Fauna Entomologica Scandinavica, V28, P1
Hill MP, 2012, BIOCONTROL SCI TECHN, V22, P1321, DOI 10.1080/09583157.2012.725825
Hulle M, 2010, CR BIOL, V333, P497, DOI 10.1016/j.crvi.2010.03.005
Jaworski Tomasz, 2013, Lesne Prace Badawcze, V74, P345
KATAGIRI C, 1979, INSECT BIOCHEM, V9, P199, DOI 10.1016/0020-1790(79)90051-9
Kellermann V, 2009, SCIENCE, V325, P1244, DOI 10.1126/science.1175443
Kraus EC, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43361-w
Krishnan N, 2007, J INSECT PHYSIOL, V53, P67, DOI 10.1016/j.jinsphys.2006.10.001
Krzyzanowski R., 2018, Agronomy Science, V73, P29, DOI 10.24326/as.2018.3.3
Lalouette L, 2011, COMP BIOCHEM PHYS A, V158, P229, DOI 10.1016/j.cbpa.2010.11.007
LAUREMA S, 1985, INSECT BIOCHEM, V15, P211, DOI 10.1016/0020-1790(85)90010-1
LESZCZYNSKI B, 1992, J APPL ENTOMOL, V113, P61, DOI 10.1111/j.1439-0418.1992.tb00636.x
Lipok J, 2009, ECOTOX ENVIRON SAFE, V72, P1701, DOI 10.1016/j.ecoenv.2009.03.007
Lopez-Martinez G, 2008, INSECT BIOCHEM MOLEC, V38, P796, DOI 10.1016/j.ibmb.2008.05.006
LOWRY OH, 1951, J BIOL CHEM, V193, P265
Lubawy J, 2019, J EXP BIOL, V222, DOI 10.1242/jeb.213744
Lukasik I, 2013, BIOCHEM SYST ECOL, V51, P232, DOI 10.1016/j.bse.2013.09.001
Lukaszewicz S, 2021, EUR ZOOL J, V88, P58, DOI 10.1080/24750263.2020.1853831
Mackos-Iwaszko E, 2015, ACTA SCI POL-HORTORU, V14, P189
Matsumura T, 2017, ARCH INSECT BIOCHEM, V96, DOI 10.1002/arch.21421
Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007
McPartland J.M, 1996, J INT HEMP ASS, V3, P52
Mehrparvar M, 2007, EUR J ENTOMOL, V104, P631, DOI 10.14411/eje.2007.078
MILES PW, 1964, J INSECT PHYSIOL, V10, P121, DOI 10.1016/0022-1910(64)90100-3
Saska P, 2016, SCI REP-UK, V6, DOI 10.1038/srep27801
Schluttenhofer C, 2017, TRENDS PLANT SCI, V22, P917, DOI 10.1016/j.tplants.2017.08.004
Shrestha S., 2019, ACTA SCI-AGRON, V3, P74, DOI [10.31080/ASAG.2019.03.0727, DOI 10.31080/ASAG.2019.03.0727]
Small E., 2017, CANNABIS SATIVA L BO, P1, DOI 10.1007/978-3-319-54564-6_1
Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621
SZELEGIEWICZ H, 1968, Katalog Fauny Polski, P1
Urbanska A., 2009, EJPAU, V12, P27
Wachowska U, 2018, ECOTOX ENVIRON SAFE, V162, P77, DOI 10.1016/j.ecoenv.2018.06.042
Wang Y, 2001, FREE RADICAL BIO MED, V30, P1254, DOI 10.1016/S0891-5849(01)00520-2
Watson D.P., 2000, HEMP DIS PESTS MANAG, P1
Wilkaniec A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245398
Wozniak A, 2019, J PLANT PHYSIOL, V240, DOI 10.1016/j.jplph.2019.152996
WYATT IJ, 1977, J APPL ECOL, V14, P757, DOI 10.2307/2402807
Zhang SZ, 2015, J INSECT PHYSIOL, V73, P47, DOI 10.1016/j.jinsphys.2015.01.004
NR 80
TC 3
Z9 3
U1 1
U2 10
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-4450
J9 INSECTS
JI Insects
PD MAY
PY 2021
VL 12
IS 5
AR 420
DI 10.3390/insects12050420
PG 19
WC Entomology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Entomology
GA SH3HE
UT WOS:000654025400001
PM 34066736
OA Green Published, gold
DA 2023-03-13
ER
PT J
AU Nunn, AVW
Guy, GW
Bell, JD
AF Nunn, Alistair V. W.
Guy, Geoffrey W.
Bell, Jimmy D.
TI Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and
tipping point - The view from two systems
SO IMMUNOBIOLOGY
LA English
DT Article
DE Endocannabinoid; FOXO; metabolic syndrome; Tipping point; Redox;
Hormesis; Mitochondria
ID NF-KAPPA-B; ACTIVATED-RECEPTOR-GAMMA; CANNABINOID RECEPTORS; OXIDATIVE
STRESS; LIFE-SPAN; TRANSCRIPTION FACTORS; CALORIC RESTRICTION;
GENE-EXPRESSION; ADIPOSE-TISSUE; PROTEIN-KINASE
AB The endocannabinoid system (ECS) was only 'discovered' in the 1990s. Since then, many new ligands have been identified, as well as many new intracellular targets - ranging from the PPARs, to mitochondria, to lipid rafts. It was thought that blocking the CB-1 receptor might reverse obesity and the metabolic syndrome. This was based on the idea that the ECS was dysfunctional in these conditions. This has met with limited success. The reason may be that the ECS is a homeostatic system, which integrates energy seeking and storage behaviour with resistance to oxidative stress. It could be viewed as having thrifty actions. Thriftiness is an innate property of life, which is programmed to a set point by both environment and genetics, resulting in an epigenotype perfectly adapted to its environment. This thrifty set point can be modulated by hormetic stimuli, such as exercise, cold and plant micronutrients. We have proposed that the physiological and protective insulin resistance that underlies thriftiness encapsulates something called 'redox thriftiness', whereby insulin resistance is determined by the ability to resist oxidative stress. Modern man has removed most hormetic stimuli and replaced them with a calorific sedentary lifestyle, leading to increased risk of metabolic inflexibility. We suggest that there is a tipping point where lipotoxicity in adipose and hepatic cells induces mild inflammation, which switches thrifty insulin resistance to inflammation-driven insulin resistance. To understand this, we propose that the metabolic syndrome could be seen from the viewpoint of the ECS, the mitochondrion and the FOXO group of transcription factors. FOX has many thrifty actions, including increasing insulin resistance and appetite, suppressing oxidative stress and shifting the organism towards using fatty acids. In concert with factors such as PGC-1, they also modify mitochondrial function and biogenesis. Hence, the ECS and FOX() may interact at many points: one of which may be via intracellular redox signalling. As cannabinoids have been shown to modulate reactive oxygen species production, it is possible that they can upregulate anti-oxidant defences. This suggests they may have an 'endohormetic' signalling function. The tipping point into the metabolic syndrome may be the result of a chronic lack of hormetic stimuli (in particular, physical activity), and thus, stimulus for PGC-1, with a resultant reduction in mitochondrial function and a reduced lipid capacitance. This, in the context of a positive calorie environment, will result in increased visceral adipose tissue volume, abnormal ectopic fat content and systemic inflammation. This would worsen the inflammatory-driven pathological insulin resistance and inability to deal with lipids. The resultant oxidative stress may therefore drive a compensatory anti-oxidative response epitomised by the ECS and FOXO. Thus, although blocking the ECS (e.g. via rimonabant) may induce temporary weight loss, it may compromise long-term stress resistance. Clues about how to modulate the system more safely are emerging from observations that some polyphenols, such as resveratrol and possibly, some phytocannabinoids, can modulate mitochondrial function and might improve resistance to a modern lifestyle. (C) 2009 Elsevier GmbH. All rights reserved.
C1 [Nunn, Alistair V. W.; Bell, Jimmy D.] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, London W12 0HS, England.
[Guy, Geoffrey W.] GW Pharmaceut, Salisbury SP4 0JQ, Wilts, England.
C3 Imperial College London
RP Nunn, AVW (corresponding author), Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Metab & Mol Imaging Grp, Du Cane Rd, London W12 0HS, England.
EM alistair.nunn@btconnect.com; gwg@gwpharm.com; jimmy.bell@csc.mrc.co.uk
RI Sanguansri, Luz/B-6630-2011; Nunn, Alistair/ABE-2462-2020
OI Sanguansri, Luz/0000-0003-1908-7604; Bell, Jimmy/0000-0003-3804-1281
FU MRC [MC_U120061305] Funding Source: UKRI; Medical Research Council
[MC_U120061305] Funding Source: researchfish; Medical Research Council
[MC_U120061305] Funding Source: Medline
CR Adler AS, 2007, GENE DEV, V21, P3244, DOI 10.1101/gad.1588507
Alikhani M, 2005, J BIOL CHEM, V280, P12096, DOI 10.1074/jbc.M412171200
Andersson U, 2004, J BIOL CHEM, V279, P12005, DOI 10.1074/jbc.C300557200
Andrews ZB, 2008, NATURE, V454, P846, DOI 10.1038/nature07181
Athanasiou A, 2007, BIOCHEM BIOPH RES CO, V364, P131, DOI 10.1016/j.bbrc.2007.09.107
Bab IA, 2007, ANN NY ACAD SCI, V1116, P414, DOI 10.1196/annals.1402.014
Bandyopadhyay GK, 2005, DIABETES, V54, P2351, DOI 10.2337/diabetes.54.8.2351
Bari M, 2005, J BIOL CHEM, V280, P12212, DOI 10.1074/jbc.M411642200
Bastelica D, 2002, ARTERIOSCL THROM VAS, V22, P173, DOI 10.1161/hq0102.101552
Batkai S, 2007, AM J PHYSIOL-HEART C, V293, pH909, DOI 10.1152/ajpheart.00373.2007
Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060
Bluher M, 2006, DIABETES, V55, P3053, DOI 10.2337/db06-0812
Bonnard C, 2008, J CLIN INVEST, V118, P789, DOI 10.1172/JCI32601
Brady NR, 2004, BIOPHYS J, V87, P2022, DOI 10.1529/biophysj.103.035097
Bromberg KD, 2008, SCIENCE, V320, P903, DOI 10.1126/science.1152662
Brookes PS, 2004, AM J PHYSIOL-CELL PH, V287, pC817, DOI 10.1152/ajpcell.00139.2004
Chen J, 2005, MOL BRAIN RES, V134, P215, DOI 10.1016/j.molbrainres.2004.10.044
Chen YQ, 2008, AUTOPHAGY, V4, P246, DOI 10.4161/auto.5432
Chevaleyre V, 2007, NEURON, V54, P801, DOI 10.1016/j.neuron.2007.05.020
Choi SL, 2001, BIOCHEM BIOPH RES CO, V287, P92, DOI 10.1006/bbrc.2001.5544
Christensen R, 2007, LANCET, V370, P1706, DOI 10.1016/S0140-6736(07)61721-8
Chung HY, 2006, ANTIOXID REDOX SIGN, V8, P572, DOI 10.1089/ars.2006.8.572
Civitarese AE, 2007, PLOS MED, V4, P485, DOI 10.1371/journal.pmed.0040076
Coll T, 2006, DIABETES, V55, P2779, DOI 10.2337/db05-1494
Corton JC, 2005, J GERONTOL A-BIOL, V60, P1494, DOI 10.1093/gerona/60.12.1494
Corton JC, 2004, J BIOL CHEM, V279, P46204, DOI 10.1074/jbc.M406739200
Crossland H, 2008, J PHYSIOL-LONDON, V586, P5589, DOI 10.1113/jphysiol.2008.160150
Curtis C, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-12-r262
D'Eon TM, 2008, DIABETES, V57, P1262, DOI 10.2337/db07-1186
Dandona P, 2005, CIRCULATION, V111, P1448, DOI 10.1161/01.CIR.0000158483.13093.9D
De Petrocellis L, 1995, BIOCHEM MOL BIOL INT, V36, P1127
Delerive P, 1999, J BIOL CHEM, V274, P32048, DOI 10.1074/jbc.274.45.32048
DeMorrow S, 2007, J BIOL CHEM, V282, P13098, DOI 10.1074/jbc.M608238200
DeMorrow S, 2008, AM J PHYSIOL-GASTR L, V295, pG1150, DOI 10.1152/ajpgi.90455.2008
Derkinderen P, 2003, J NEUROSCI, V23, P2371
Di Marzo V, 2001, NATURE, V410, P822, DOI 10.1038/35071088
Dietrich A, 2004, BRIT J SPORT MED, V38, P536, DOI 10.1136/bjsm.2004.011718
Do Y, 2004, J IMMUNOL, V173, P2373, DOI 10.4049/jimmunol.173.4.2373
Dowell P, 2003, J BIOL CHEM, V278, P45485, DOI 10.1074/jbc.M309069200
Downer EJ, 2007, EUR J PHARMACOL, V564, P57, DOI 10.1016/j.ejphar.2007.02.025
Doyon C, 2006, DIABETES, V55, P3403, DOI 10.2337/db06-0504
Dumitru CA, 2007, ANTIOXID REDOX SIGN, V9, P1535, DOI 10.1089/ars.2007.1692
Eikelis N, 2005, EXP PHYSIOL, V90, P673, DOI 10.1113/expphysiol.2005.031385
El-Remessy AB, 2003, AM J PATHOL, V163, P1997, DOI 10.1016/S0002-9440(10)63558-4
Engeli S, 2005, DIABETES, V54, P2838, DOI 10.2337/diabetes.54.10.2838
Erusalimsky JD, 2007, ARTERIOSCL THROM VAS, V27, P2524, DOI 10.1161/ATVBAHA.107.151167
Esposito K, 2008, INT J IMPOT RES, V20, P358, DOI 10.1038/ijir.2008.9
Essers MAG, 2004, EMBO J, V23, P4802, DOI 10.1038/sj.emboj.7600476
Fehm HL, 2006, PROG BRAIN RES, V153, P129, DOI 10.1016/S0079-6123(06)53007-9
Feingold K, 2004, AM J PHYSIOL-ENDOC M, V286, pE201, DOI 10.1152/ajpendo.00205.2003
Ferrara N, 2008, REJUV RES, V11, P139, DOI 10.1089/rej.2007.0576
Freedland Eric S, 2004, Nutr Metab (Lond), V1, P12, DOI 10.1186/1743-7075-1-12
Fride E, 2001, EUR J PHARMACOL, V419, P207, DOI 10.1016/S0014-2999(01)00953-0
FRIDE E, 1993, EUR J PHARMACOL, V231, P313, DOI 10.1016/0014-2999(93)90468-W
Fujita K, 2006, CIRC J, V70, P1437, DOI 10.1253/circj.70.1437
Gammon CM, 2005, ENDOCRINOLOGY, V146, P4491, DOI 10.1210/en.2004-1672
Gary-Bobo M, 2006, MOL PHARMACOL, V69, P471, DOI 10.1124/mol.105.015040
Gledhill JR, 2007, P NATL ACAD SCI USA, V104, P13632, DOI 10.1073/pnas.0706290104
Goldstein BJ, 2005, ANTIOXID REDOX SIGN, V7, P1021, DOI 10.1089/ars.2005.7.1021
Gomes AR, 2008, CELL CYCLE, V7, P3133, DOI 10.4161/cc.7.20.6920
Gross DN, 2008, ONCOGENE, V27, P2320, DOI 10.1038/onc.2008.25
Guarente L, 2008, CELL, V132, P171, DOI 10.1016/j.cell.2008.01.007
Guzman M, 2004, J BIOL CHEM, V279, P27849, DOI 10.1074/jbc.M404087200
Hampson AJ, 1998, P NATL ACAD SCI USA, V95, P8268, DOI 10.1073/pnas.95.14.8268
Handschin C, 2008, NATURE, V454, P463, DOI 10.1038/nature07206
HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298
Hayden MS, 2008, CELL, V132, P344, DOI 10.1016/j.cell.2008.01.020
He F, 2007, MOL PHARMACOL, V72, P1289, DOI 10.1124/mol.107.036566
Horbinski C, 2005, FREE RADICAL BIO MED, V38, P2, DOI 10.1016/j.freeradbiomed.2004.09.030
Hosaka T, 2004, P NATL ACAD SCI USA, V101, P2975, DOI 10.1073/pnas.0400093101
Hotamisligil GS, 2005, DIABETES, V54, pS73, DOI 10.2337/diabetes.54.suppl_2.S73
Housley MP, 2008, J BIOL CHEM, V283, P16283, DOI 10.1074/jbc.M802240200
Hu MCT, 2004, CELL, V117, P225, DOI 10.1016/S0092-8674(04)00302-2
Huang HJ, 2007, J CELL SCI, V120, P2479, DOI 10.1242/jcs.001222
Hudson NJ, 2008, MED HYPOTHESES, V70, P693, DOI 10.1016/j.mehy.2007.05.042
Incerpi S, 2007, J PHARM PHARMACOL, V59, P1711, DOI 10.1211/jpp.59.12.0014
Jacobs KM, 2008, INT J BIOL SCI, V4, P291
Jbilo O, 2005, FASEB J, V19, P1567, DOI 10.1096/fj.04-3177fje
Jeong SK, 2008, J KOREAN MED SCI, V23, P789, DOI 10.3346/jkms.2008.23.5.789
Jia W, 2006, MOL CANCER RES, V4, P549, DOI 10.1158/1541-7786.MCR-05-0193
Juan-Pico P, 2006, CELL CALCIUM, V39, P155, DOI 10.1016/j.ceca.2005.10.005
Kadoi Y, 2005, CRIT CARE MED, V33, P2629, DOI 10.1097/01.CCM.0000187010.14426.CC
Kirkham TC, 2001, PSYCHOPHARMACOLOGY, V153, P267, DOI 10.1007/s002130000596
Kitamura T, 2006, NAT MED, V12, P534, DOI 10.1038/nm1392
Kola B, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001797
Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013
Laviola L, 2006, DIABETES, V55, P952, DOI 10.2337/diabetes.55.04.06.db05-1414
Lecour S, 2006, J CARDIOVASC PHARM, V47, P158, DOI 10.1097/01.fjc.0000198520.28674.41
Lee BH, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000213
Lee CY, 2008, INT IMMUNOPHARMACOL, V8, P732, DOI 10.1016/j.intimp.2008.01.018
Linnane AW, 2007, BIOGERONTOLOGY, V8, P445, DOI 10.1007/s10522-007-9096-4
Lopez-Alemany R, 2003, EUR J BIOCHEM, V270, P814, DOI 10.1046/j.1432-1033.2003.03453.x
Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103
Malcher-Lopes R, 2008, EUR J PHARMACOL, V583, P322, DOI 10.1016/j.ejphar.2007.12.033
Mathias S, 1998, BIOCHEM J, V335, P465, DOI 10.1042/bj3350465
Matias I, 2008, J NEUROENDOCRINOL, V20, P100, DOI 10.1111/j.1365-2826.2008.01678.x
MAYERS JR, 2008, FASEB J
McKallip RJ, 2002, J PHARMACOL EXP THER, V302, P451, DOI 10.1124/jpet.102.033506
Mechoulam R, 2002, Sci STKE, V2002, pre5, DOI 10.1126/stke.2002.129.re5
Menon SG, 2007, ONCOGENE, V26, P1101, DOI 10.1038/sj.onc.1209895
Morris BJ, 2005, J HYPERTENS, V23, P1285, DOI 10.1097/01.hjh.0000173509.45363.dd
Motaghedi R, 2008, OBESITY, V16, P1727, DOI 10.1038/oby.2008.309
Nakamura T, 2008, MOL CELL ENDOCRINOL, V281, P47, DOI 10.1016/j.mce.2007.10.007
Nalam Roopa L, 2008, J Biol, V7, P23, DOI 10.1186/jbiol84
Narbonne P, 2009, NATURE, V457, P210, DOI 10.1038/nature07536
Narkar VA, 2008, CELL, V134, P405, DOI 10.1016/j.cell.2008.06.051
Nunn Alistair V W, 2007, Nucl Recept, V5, P1
NUNN AV, 2007, P BRIT PHARM SOC
NUNN AV, 2009, NUTR METAB IN PRESS
O'Sullivan SE, 2007, BRIT J PHARMACOL, V152, P576, DOI 10.1038/sj.bjp.0707423
Oh SW, 2005, P NATL ACAD SCI USA, V102, P4494, DOI 10.1073/pnas.0500749102
Olusi SO, 2002, INT J OBESITY, V26, P1159, DOI 10.1038/sj.ijo.0802066
Pacher P, 2008, BRIT J PHARMACOL, V153, P252, DOI 10.1038/sj.bjp.0707582
Palomer X, 2009, CARDIOVASC RES, V81, P703, DOI 10.1093/cvr/cvn327
Panikashvili D, 2005, J CEREBR BLOOD F MET, V25, P477, DOI 10.1038/sj.jcbfm.9600047
Parsons PA, 2007, BIOGERONTOLOGY, V8, P613, DOI 10.1007/s10522-007-9101-y
Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011
Pertwee RG, 2005, LIFE SCI, V76, P1307, DOI 10.1016/j.lfs.2004.10.025
Pfluger PT, 2008, P NATL ACAD SCI USA, V105, P9793, DOI 10.1073/pnas.0802917105
Pitsavos Christos, 2006, Review of Diabetic Studies, V3, P118, DOI 10.1900/RDS.2006.3.118
Planavila A, 2005, CARDIOVASC RES, V65, P832, DOI 10.1016/j.cardiores.2004.11.011
Powles T, 2005, BLOOD, V105, P1214, DOI 10.1182/blood-2004-03-1182
PSARRA AM, 2008, BIOCH BIOPHYS ACTA
Ramsey MR, 2006, NAT CELL BIOL, V8, P1213, DOI 10.1038/ncb1106-1213
Rector RS, 2007, AM J PHYSIOL-ENDOC M, V293, pE500, DOI 10.1152/ajpendo.00116.2007
Rival Y, 2002, EUR J PHARMACOL, V435, P143, DOI 10.1016/S0014-2999(01)01589-8
Rockwell CE, 2006, MOL PHARMACOL, V70, P101, DOI 10.1124/mol.105.019117
Salih DAM, 2008, CURR OPIN CELL BIOL, V20, P126, DOI 10.1016/j.ceb.2008.02.005
Salminen A, 2008, CELL MOL LIFE SCI, V65, P1049, DOI 10.1007/s00018-008-7461-3
Sandstrom ME, 2006, J PHYSIOL-LONDON, V575, P251, DOI 10.1113/jphysiol.2006.110601
Sarafian TA, 2006, AM J PHYSIOL-LUNG C, V290, pL1202, DOI 10.1152/ajplung.00371.2005
Sareen D, 2006, INVEST OPHTH VIS SCI, V47, P3708, DOI 10.1167/iovs.06-0119
Sarker KP, 2003, J NEUROCHEM, V85, P50, DOI 10.1046/j.1471-4159.2003.01663.x
SIEGMUND SV, 2007, FASEB J
Skulachev VP, 2001, TRENDS BIOCHEM SCI, V26, P23, DOI 10.1016/S0968-0004(00)01735-7
St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024
Steiner MA, 2008, PSYCHONEUROENDOCRINO, V33, P54, DOI 10.1016/j.psyneuen.2007.09.008
Stoger R, 2008, BIOESSAYS, V30, P156, DOI 10.1002/bies.20700
Storlien L, 2004, P NUTR SOC, V63, P363, DOI 10.1079/PNS2004349
Sugiura T, 2004, J PHARMACOL SCI, V96, P367, DOI 10.1254/jphs.FMJ04003X3
Sun G, 2005, DIABETES, V54, P3336, DOI 10.2337/diabetes.54.11.3336
Takamura T, 2007, BIOCHEM BIOPH RES CO, V361, P379, DOI 10.1016/j.bbrc.2007.07.006
Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009
Taylor AH, 2007, HUM REPROD UPDATE, V13, P501, DOI 10.1093/humupd/dmm018
Tedesco L, 2008, DIABETES, V57, P2028, DOI 10.2337/db07-1623
Tham DM, 2002, PHYSIOL GENOMICS, V11, P21, DOI 10.1152/physiolgenomics.00062.2002
van der Poorten D, 2008, HEPATOLOGY, V48, P449, DOI 10.1002/hep.22350
Vellai T, 2009, CELL DEATH DIFFER, V16, P94, DOI 10.1038/cdd.2008.126
Vellani V, 2001, J PHYSIOL-LONDON, V534, P813, DOI 10.1111/j.1469-7793.2001.00813.x
Viveros M. P., 2008, Endocrine Metabolic & Immune Disorders-Drug Targets, V8, P220, DOI 10.2174/187153008785700082
Volek Jeff S, 2005, Nutr Metab (Lond), V2, P31, DOI 10.1186/1743-7075-2-31
Wajchenberg BL, 2000, ENDOCR REV, V21, P697, DOI 10.1210/er.21.6.697
WANG F, 2008, MOL BIOL CELL
Wang HB, 2007, PROSTAG OTH LIPID M, V83, P62, DOI 10.1016/j.prostaglandins.2006.09.009
Wang MC, 2005, CELL, V121, P115, DOI 10.1016/j.cell.2005.02.030
Wang MC, 2008, SCIENCE, V322, P957, DOI 10.1126/science.1162011
Wei YZ, 2008, WORLD J GASTROENTERO, V14, P193, DOI 10.3748/wjg.14.193
Williams J, 2006, AAPS J, V8, pE655, DOI 10.1208/aapsj080474
Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789
Yamaji K, 2003, THROMB HAEMOSTASIS, V89, P875, DOI 10.1055/s-0037-1613475
Yamazaki S, 2006, EMBO J, V25, P3515, DOI 10.1038/sj.emboj.7601236
Yasuda H, 2008, P NATL ACAD SCI USA, V105, P3106, DOI 10.1073/pnas.0708349105
Zhang XQ, 2008, CELL, V135, P61, DOI 10.1016/j.cell.2008.07.043
Zimmer A, 1999, P NATL ACAD SCI USA, V96, P5780, DOI 10.1073/pnas.96.10.5780
NR 164
TC 12
Z9 13
U1 1
U2 12
PU ELSEVIER GMBH
PI MUNICH
PA HACKERBRUCKE 6, 80335 MUNICH, GERMANY
SN 0171-2985
EI 1878-3279
J9 IMMUNOBIOLOGY
JI Immunobiology
PD AUG
PY 2010
VL 215
IS 8
BP 617
EP 628
DI 10.1016/j.imbio.2009.03.005
PG 12
WC Immunology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Immunology
GA 640JR
UT WOS:000281048000006
PM 19457573
DA 2023-03-13
ER
PT J
AU Karasyova, TA
Klose, EO
Menzel, R
Steinberg, CEW
AF Karasyova, Tatyana A.
Klose, Edgar O.
Menzel, Ralph
Steinberg, Christian E. W.
TI Natural organic matter differently modulates growth of two closely
related coccal green algal species
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE growth promotion; growth reduction; humic substances; Monoraphidium
convolutum; Monoraphidium minutum; natural organic matter
ID NEMATODE CAENORHABDITIS-ELEGANS; SIZE-EXCLUSION CHROMATOGRAPHY;
PLANKTONIC FOOD-CHAINS; HUMIC SUBSTANCES; MICROCYSTIN-LR;
MASS-SPECTROMETRY; REVERSE-OSMOSIS; CRUDE EXTRACTS; DANIO-RERIO;
LIFE-SPAN
AB Background and Aim. Humic substances (HS) comprise the majority of dead and living organic carbon, including organisms. In the environment, they are considered to be chemically inert or at least refractory. Recent papers, however, show that HS (including natural organic matter - NOM, isolated by reverse osmosis) are natural chemicals which interact with aquatic organisms. They are taken up and cause a variety of stress defense reactions which are well known from man-made chemicals. These reactions include chaperon activation, induction and modulation of biotransformation enzymes, or induction of antioxidant defense enzymes. One specific reaction with freshwater plants is the reduction of photosynthetic oxygen release. In this contribution, we compare the susceptibilities (cell yield) of two closely related coccal green algae, Monoraphidium convolutum and M. minutum, towards various NOM isolates.
Methods. Cultures of M. convolutum and M. minutum were obtained from the algal collection of the Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, and from the Culture Collection of Algae, Gottingen, and maintained in a common medium. The cultures were non-axenic. The algae were exposed to 5 mg L-1 DOC of each humic material, an environmentally realistic concentration. Cell numbers were counted microscopically in Neugebauer cuvettes in 5 replicates on days 1, 4, 7, 10, 14, and 21.
Results and Discussion. Almost all NOM isolates modulated the growth of the algae. Only the NOM of a Norwegian raised peat bog lake did not reveal any significant effect with M. convolutum. In general, the results with two algal species are by no means uniform. For instance, Suwannee River NOM causes a decrease in cell density with M. minutum, but temporarily stimulates the growth of M. convolutum. The opposite applies to Aurevann NOM: Growth increase in M. minutum, but a bi-phasic response in M. convolutum. Different responses of both Monoraphidium species must be attributed to intrinsic factors of the algae rather than only to chemical features of the exposed materials, because the exposures were identical with both algal species. The reduction in growth yields can be explained as a herbicide-like mode of action that affects the photosystem 11 most prevalently. The growth promoting effect remains somewhat obscure. It may be due to (1) an increase in bioavailability of some trace nutrients in the presence of HS, (2) the release of some growth promoting substances by microbial or photochemical processing of the humic materials, and (3) a hormetic effect upon the exposure of HS. Hormesis means stimulation of organisms or metabolic activities when exposed to noxes in low concentrations. However, it is still open to discussion why the growth promotion only applies to one or the other, but not simultaneously to both Monoraphidium species.
Conclusion. Exposure of the closely related coccal green algal species to humic material changes their growth characteristics. Since the reactions are not consistent within the two species and the various humic materials, it seems that the less sensitive species is favored by HS exposure. The environmental relevance, however, is subject to future studies.
C1 Humboldt Univ, Inst Biol, D-12437 Berlin, Germany.
Leibniz Inst Freshwater Ecol & Inland Fisheries, IGB, Berlin, Germany.
NIGMI, Cent Asian Hydrometeorol Inst, Tashkent, Uzbekistan.
Garzauer Chaussee, STIC, INNO Concept GmbH, D-15344 Strausberg, Germany.
C3 Humboldt University of Berlin; Leibniz Institut fur Gewasserokologie und
Binnenfischerei (IGB)
RP Steinberg, CEW (corresponding author), Arboretum, Spathstr 80-81, D-12437 Berlin, Germany.
EM christian_ew_steinberg@web.de
RI Steinberg, Christian/O-8572-2019
OI Steinberg, Christian E.W./0000-0002-3132-8901
CR [Anonymous], 1985, AQUATIC HUMIC SUBSTA
[Anonymous], 2001, J PHYCOL, DOI DOI 10.1016/J.JGLR.2021.05.008
Babica P, 2005, ENVIRON SCI POLLUT R, V12, P369, DOI 10.1065/espr2005.05.259
Baganz D, 1998, WATER RES, V32, P948, DOI 10.1016/S0043-1354(97)00207-8
Bierkens J, 1998, COMP BIOCHEM PHYS A, V120, P29, DOI 10.1016/S1095-6433(98)10006-5
Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001
Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a
Chen W, 2005, ENVIRON TOXICOL, V20, P323, DOI 10.1002/tox.20108
Cole JJ, 1999, ECOSYSTEMS, V2, P215, DOI 10.1007/s100219900069
*DIN EN, 1998, 1484 DIN EN
GELLER A, 1985, SCHWEIZ Z HYDROL, V47, P27, DOI 10.1007/BF02538182
Gems D, 2005, MECH AGEING DEV, V126, P381, DOI 10.1016/j.mad.2004.09.001
Gjessing ET, 1999, ENVIRON INT, V25, P145, DOI 10.1016/S0160-4120(98)00119-6
Gjessing ET, 1998, WATER RES, V32, P3108, DOI 10.1016/S0043-1354(98)00060-8
Hoque E, 2003, J CHROMATOGR A, V1017, P97, DOI 10.1016/j.chroma.2003.08.038
Hoss S, 2001, FRESHWATER BIOL, V46, P1, DOI 10.1046/j.1365-2427.2001.00639.x
Hu ZQ, 2004, ENVIRON TOXICOL, V19, P571, DOI 10.1002/tox.20064
Jansson M, 2003, LIMNOL OCEANOGR, V48, P1711, DOI 10.4319/lo.2003.48.4.1711
JONES RI, 1992, HYDROBIOLOGIA, V229, P73, DOI 10.1007/BF00006992
Korner S, 2002, J PHYCOL, V38, P862, DOI 10.1046/j.1529-8817.2002.t01-1-02001.x
Ladakis M, 2006, J SOIL SEDIMENT, V6, P46, DOI 10.1065/jss2005.10.150
Leu E, 2002, PLANT PHYSIOL, V130, P2011, DOI 10.1104/pp.011593
Liu YM, 2006, ENVIRON TOXICOL, V21, P289, DOI 10.1002/tox.20182
Meinelt T, 2004, AQUAT SCI, V66, P239, DOI 10.1007/s00027-004-0706-9
Menzel R, 2005, ENVIRON SCI TECHNOL, V39, P8324, DOI 10.1021/es050884s
Morrow G, 2004, J BIOL CHEM, V279, P43382, DOI 10.1074/jbc.C400357200
Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789
Nicklisch A, 1999, INT REV HYDROBIOL, V84, P233
Oberemm A, 1999, ENVIRON TOXICOL, V14, P77, DOI 10.1002/(SICI)1522-7278(199902)14:1<77::AID-TOX11>3.0.CO;2-F
Oberemm A, 1997, WATER RES, V31, P2918, DOI 10.1016/S0043-1354(97)00120-6
Ou DY, 2005, ENVIRON TOXICOL, V20, P373, DOI 10.1002/tox.20114
PAUL A, 2004, SITZUNGSBER AKAD MN, V12, P209
Pflugmacher S, 2006, SCI TOTAL ENVIRON, V357, P169, DOI 10.1016/j.scitotenv.2005.03.021
Pflugmacher S, 2004, HUMIC SUBSTANCES: NATURE'S MOST VERSATILE MATERIALS, P327
Prokhotskaya VY, 2000, RUSS J PLANT PHYSL+, V47, P772, DOI 10.1023/A:1026659228774
Reemtsma T, 2003, ANAL CHEM, V75, P1500, DOI 10.1021/ac0261294
Reemtsma T, 2005, ENVIRON SCI TECHNOL, V39, P3507, DOI 10.1021/es0480466
Rohrlack T, 2005, ENVIRON MICROBIOL, V7, P1667, DOI 10.1111/j.1462-2920.2005.00877.x
Rohrlack T, 2005, LIMNOL OCEANOGR, V50, P440, DOI 10.4319/lo.2005.50.2.0440
Rohrlack T, 2004, APPL ENVIRON MICROB, V70, P5047, DOI 10.1128/AEM.70.8.5047-5050.2004
Rohrlack T, 2001, APPL ENVIRON MICROB, V67, P3523, DOI 10.1128/AEM.67.8.3523-3529.2001
Rohrlack T, 1999, J PLANKTON RES, V21, P1489, DOI 10.1093/plankt/21.8.1489
SALONEN K, 1992, HYDROBIOLOGIA, V229, P143, DOI 10.1007/BF00006997
Seitzinger SP, 2005, LIMNOL OCEANOGR, V50, P1
SERKIZ SM, 1990, WATER RES, V24, P911, DOI 10.1016/0043-1354(90)90142-S
Steinberg C, 2003, ECOLOGY HUMIC SUBSTA
Steinberg CEW, 2003, FRESEN ENVIRON BULL, V12, P391
Steinberg CEW, 2002, INT REV HYDROBIOL, V87, P121, DOI 10.1002/1522-2632(200201)87:1<121::AID-IROH121>3.0.CO;2-Z
Steinberg CEW, 2002, ACTA HYDROCH HYDROB, V29, P399
Steinberg CEW, 1996, ACTA HYDROCH HYDROB, V24, P98, DOI 10.1002/aheh.19960240207
Steinberg CEW, 2006, FRESHWATER BIOL, V51, P1189, DOI 10.1111/j.1365-2427.2006.01571.x
Timofeyev MA, 2006, ENVIRON TOXICOL, V21, P104, DOI 10.1002/tox.20161
Timofeyev MA, 2004, SCI TOTAL ENVIRON, V319, P115, DOI 10.1016/S0048-9697(03)00444-3
TIMOFEYEV MA, 2006, IN PRESS COMP BIOC B
TRANVIK LJ, 1992, HYDROBIOLOGIA, V229, P107, DOI 10.1007/BF00006994
VOGT RD, 2001, NATURAL ORGANIC MATT
Xian QM, 2006, ENVIRON SCI POLLUT R, V13, P233, DOI 10.1065/espr2006.06.314
NR 57
TC 19
Z9 21
U1 0
U2 32
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD MAR
PY 2007
VL 14
IS 2
BP 88
EP 93
DI 10.1065/espr2006.06.317
PG 6
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA 150LO
UT WOS:000245218500003
PM 17455817
DA 2023-03-13
ER
PT J
AU Singh, VP
Kumar, J
Singh, S
Prasad, SM
AF Singh, Vijay Pratap
Kumar, Jitendra
Singh, Samiksha
Prasad, Sheo Mohan
TI Dimethoate modifies enhanced UV-B effects on growth, photosynthesis and
oxidative stress in mung bean (Vigna radiata L.) seedlings: Implication
of salicylic acid
SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
LA English
DT Article
DE Antioxidants; Dimethoate; Mung bean; Oxidative stress; Reactive oxygen
species; Salicylic acid; UV-B radiation
ID ANTIOXIDANT DEFENSE SYSTEM; NITRIC-OXIDE; GLUTATHIONE; RESPONSES;
TOLERANCE; CULTIVARS; COPPER; WHEAT; CHLOROPLASTS; ALLEVIATION
AB The present study is aimed to investigate implication of salicylic acid (SA) in regulation of dimethoate (30 and 150 ppm designated as D-1 and D-2, respectively) and enhanced UV-B radiation (ambient + supplemental; ambient + 4.0 kJ m(-2) and ambient + 8.0 kJ m(-2), designated as UV-B-1 and UV-B-2, respectively) induced responses in mung bean seedlings. Seeds of Vigna radiata L. cv. Narendra 1 were surface sterilized, washed thoroughly and soaked for 24 h in sterilized distilled water. Soaked seeds were sown in acid washed sterilized sand filled in plastic trays, and incubated in dark at 26 +/- 2 degrees C for 2 days. The seedlings were grown in growth chamber at 26 +/- 2 degrees C with 12 h photoperiod (350 mu mol photons m(-2) s(-1), PAR) and watered regularly. Six day old seedlings of equal size were gently transferred in 0.2 strength Rorison nutrient medium (pH 6.8) for acclimatization. Thereafter, dimethoate (30 and 150 ppm designated as D-1 and D-2, respectively) and enhanced UV-B radiation treatments were given. On the 12th day, seedlings of each set were harvested and various parameters related to growth, pigments, photosynthesis, oxidative stress and antioxidant system were analyzed. The D-2 dose of dimethoate and UV-B-1 and UV-B-2 alone and together significantly (P < 0.05) declined growth, photosynthetic pigments and photosynthesis (Fv/Fm and qP except NPQ) which were accompanied by significant decrease in SA level. Similarly, D-2 and UV-B also enhanced (P < 0.05) accumulation of reactive oxygen species and concomitantly damaging effects on lipids, proteins and membrane stability were observed. In contrast, in SA-pretreated seedlings damaging impacts of D-2, UV-B-1 and UV-B-2 alone and together were significantly (P < 0.05) alleviated. Besides this, interestingly D-1 dose of dimethoate alone had stimulatory effect on growth and it also ameliorated damaging effects of both the doses of UV-B. The activity of superoxide dismutase was stimulated by all the combinations. However, catalase, glutathione reductase and dehydroascorbate reductase activities were significantly (P < 0.05) inhibited by D-2, UV-B-1 and UV-B-2 while SA-pretreatment ameliorated D-2 and UV-B-induced inhibitions in activities of these enzymes. Total ascorbate and glutathione pools also decreased by D-2 and both doses of UV-B; however, in SA-pretreated seedlings their amounts were significantly (P < 0.05) higher than D-2, UV-B-1 and UV-B-2 alone. Interestingly, D-1 also alleviated damaging impact of UV-B-1 and UV-B-2 on total ascorbate and glutathione pools. Results revealed that D-2, UV-B-1 and UV-B-2 might alter SA biosynthesis that results into declined SA level which might be related with their toxicity. However, SA-pretreatment might act as a signal that reduces oxidative stress by triggering up-regulation of antioxidants hence improved growth and photosynthesis noticed. Alleviation of UV-B toxicity by D-1 suggests about hormesis that triggers SA biosynthesis and hence protection against both doses of UV-B was observed. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Singh, Vijay Pratap] Govt Ramanuj Pratap Singhdev Post Grad Coll, Korea 497335, Chhattisgarh, India.
[Kumar, Jitendra; Prasad, Sheo Mohan] Univ Allahabad, Dept Bot, Ranjan Plant Physiol & Biochem Lab, Allahabad 211002, Uttar Pradesh, India.
[Singh, Samiksha; Prasad, Sheo Mohan] Univ Lucknow, Dept Environm Sci, Lucknow 226025, Uttar Pradesh, India.
C3 University of Allahabad; Lucknow University
RP Prasad, SM (corresponding author), Univ Allahabad, Dept Bot, Ranjan Plant Physiol & Biochem Lab, Allahabad 211002, Uttar Pradesh, India.
EM vijaypratap.au@gmail.com
RI Kumar, Jitendra/AGH-1864-2022; Singh, Samiksha/GSJ-1944-2022; Singh,
Vijay Pratap/AAD-6157-2021
OI Kumar, Jitendra/0000-0002-7208-3111; Singh, Vijay
Pratap/0000-0002-5772-5438; Singh, Samiksha/0000-0003-2068-3059
FU University Grants Commission, New Delhi, India [41-460/2012(SR)]; UGC
[RGNF-2012-13-SC-UTT-33185]
FX The University Grants Commission, New Delhi, India is thankfully
acknowledged for providing financial assistant to Dr. S.M. Prasad as PI
(Project no: 41-460/2012(SR)). Authors are also thankful to Dr. Devinder
Kaur, Centre of Food Technology, University of Allahabad, Allahabad for
conducting HPLC analysis. One of the authors, Jitendra Kumar, is
thankful to UGC for providing financial assistance as JRF
(RGNF-2012-13-SC-UTT-33185).
CR Aebi H, 1984, Methods Enzymol, V105, P121
Alla MMN, 2008, PESTIC BIOCHEM PHYS, V90, P8, DOI 10.1016/j.pestbp.2007.07.003
Alla MMN, 2008, ACTA PHYSIOL PLANT, V30, P371, DOI 10.1007/s11738-008-0134-x
BABBS CF, 1989, PLANT PHYSIOL, V90, P1267, DOI 10.1104/pp.90.4.1267
Bandurska H, 2013, ENVIRON EXP BOT, V94, P9, DOI 10.1016/j.envexpbot.2012.03.001
Biever J.J., 2014, J EXP BOT IN PRESS
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
BREHE JE, 1976, ANAL BIOCHEM, V74, P189, DOI 10.1016/0003-2697(76)90323-7
Buettner G.R., 1996, HDB ANTIOXIDANTS, P91
Cambrolle J, 2011, ENVIRON EXP BOT, V71, P57, DOI 10.1016/j.envexpbot.2010.10.017
Chen F, 2010, PLANT PHYSIOL BIOCH, V48, P663, DOI 10.1016/j.plaphy.2010.05.001
Choudhary KK, 2014, ECOTOX ENVIRON SAFE, V100, P178, DOI 10.1016/j.ecoenv.2013.10.032
Dong CJ, 2011, SCI HORTIC-AMSTERDAM, V129, P629, DOI 10.1016/j.scienta.2011.05.005
Durrant WE, 2004, ANNU REV PHYTOPATHOL, V42, P185, DOI 10.1146/annurev.phyto.42.040803.140421
ELSTNER EF, 1976, ANAL BIOCHEM, V70, P616, DOI 10.1016/0003-2697(76)90488-7
FAO/WHO, 1968, MON FAO WHO, P1
Flint SD, 2003, PHYSIOL PLANTARUM, V117, P145, DOI 10.1034/j.1399-3054.2003.1170118.x
Foyer CH, 2003, PHYSIOL PLANTARUM, V119, P355, DOI 10.1034/j.1399-3054.2003.00223.x
Freeman JL, 2005, PLANT PHYSIOL, V137, P1082, DOI 10.1104/pp.104.055293
Gangwar S, 2011, SCI HORTIC-AMSTERDAM, V129, P321, DOI 10.1016/j.scienta.2011.03.026
Gao Q, 2008, J PLANT PHYSIOL, V165, P138, DOI 10.1016/j.jplph.2007.04.002
Garcia MXU, 2000, BBA-GENE STRUCT EXPR, V1492, P295, DOI 10.1016/S0167-4781(00)00063-4
Gayatridevi S, 2012, PLANT PHYSIOL BIOCH, V52, P154, DOI 10.1016/j.plaphy.2011.12.005
GENTY B, 1990, PHOTOSYNTH RES, V25, P249, DOI 10.1007/BF00033166
GIANNOPOLITIS CN, 1977, PLANT PHYSIOL, V59, P315, DOI 10.1104/pp.59.2.309
GOSSETT DR, 1994, CROP SCI, V34, P706, DOI 10.2135/cropsci1994.0011183X003400030020x
HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1
Hopkins L, 2002, PLANT CELL ENVIRON, V25, P617, DOI 10.1046/j.1365-3040.2002.00834.x
Kalinowska R, 2010, ENVIRON POLLUT, V158, P2778, DOI 10.1016/j.envpol.2010.03.003
Kang GZ, 2013, BIOL PLANTARUM, V57, P718, DOI 10.1007/s10535-013-0335-z
Katagi T., 2000, METABOLISM AGROCHEMI, P43
Kazemi N, 2010, SCI HORTIC-AMSTERDAM, V126, P402, DOI 10.1016/j.scienta.2010.07.037
Lee S, 2010, NEW PHYTOL, V188, P626, DOI 10.1111/j.1469-8137.2010.03378.x
LEVINE RL, 1994, METHOD ENZYMOL, V233, P346
LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350
Lucier G.W., 1967, THESIS U MARYLAND CO
Mishra V, 2008, PESTIC BIOCHEM PHYS, V92, P30, DOI 10.1016/j.pestbp.2008.05.003
Mishra V, 2009, SCI HORTIC-AMSTERDAM, V120, P373, DOI 10.1016/j.scienta.2008.11.024
Mohammed AR, 2011, ENVIRON EXP BOT, V70, P174, DOI 10.1016/j.envexpbot.2010.09.001
NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867
Nault BA, 2004, CROP PROT, V23, P147, DOI 10.1016/j.cropro.2003.08.002
O'Donnell PJ, 2001, PLANT J, V25, P315, DOI 10.1046/j.1365-313x.2001.00968.x
Qiu ZH, 2004, CROP PROT, V23, P1131, DOI 10.1016/j.cropro.2004.04.005
Sairam RK, 2002, PLANT SCI, V163, P1037, DOI 10.1016/S0168-9452(02)00278-9
SANTI R, 1959, NATURE, V183, P398, DOI 10.1038/183398a0
SCHAEDLE M, 1977, PLANT PHYSIOL, V59, P1011, DOI 10.1104/pp.59.5.1011
Singh DP, 2014, PESTIC BIOCHEM PHYS, V110, P63, DOI 10.1016/j.pestbp.2014.03.002
Singh VP, 2013, PLANT PHYSIOL BIOCH, V71, P155, DOI 10.1016/j.plaphy.2013.07.003
Singh VP, 2012, PLANT PHYSIOL BIOCH, V61, P61, DOI 10.1016/j.plaphy.2012.09.005
Srivastava AK, 2008, PESTIC BIOCHEM PHYS, V91, P186, DOI 10.1016/j.pestbp.2008.04.002
STRID A, 1994, PHOTOSYNTH RES, V39, P475, DOI 10.1007/BF00014600
Tang XK, 2014, PESTIC BIOCHEM PHYS, V110, P44, DOI 10.1016/j.pestbp.2014.02.006
Velikova V, 2000, PLANT SCI, V151, P59, DOI 10.1016/S0168-9452(99)00197-1
W.M.O. (World Meteorological Organization), 2007, SCI ASS OZ DEPL, V50, P572
Wirstam M, 1999, J AM CHEM SOC, V121, P10178, DOI 10.1021/ja991997c
Xie YJ, 2012, J EXP BOT, V63, P3869, DOI [10.1093/jxb/ers078, 10.1093/jxb/ers201]
Xing W, 2010, PLANT PHYSIOL BIOCH, V48, P873, DOI 10.1016/j.plaphy.2010.08.006
Xu K, 2007, PLANT SCI, V172, P139, DOI 10.1016/j.plantsci.2006.08.001
Zancan S, 2008, ENVIRON EXP BOT, V63, P71, DOI 10.1016/j.envexpbot.2007.11.013
Zhou ZS, 2009, ENVIRON EXP BOT, V65, P27, DOI 10.1016/j.envexpbot.2008.06.001
NR 60
TC 30
Z9 30
U1 0
U2 27
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0048-3575
EI 1095-9939
J9 PESTIC BIOCHEM PHYS
JI Pest. Biochem. Physiol.
PD NOV
PY 2014
VL 116
BP 13
EP 23
DI 10.1016/j.pestbp.2014.09.007
PG 11
WC Biochemistry & Molecular Biology; Entomology; Physiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Entomology; Physiology
GA AU7YN
UT WOS:000345814300002
PM 25454516
DA 2023-03-13
ER
PT J
AU Williams, GM
Iatropoulos, MJ
AF Williams, GM
Iatropoulos, MJ
TI Alteration of liver cell function and proliferation: Differentiation
between adaptation and toxicity
SO TOXICOLOGIC PATHOLOGY
LA English
DT Article
DE liver cell function; liver cell structure; proliferation; adaptation;
toxicity; adverse effects; nonadverse effects
ID MICROSOMAL-ENZYME-INDUCTION; ACYL-COA OXIDASE; RAT-LIVER; DNA-REPAIR;
GENE-EXPRESSION; RISK-ASSESSMENT; NEOPLASTIC CONVERSION; MECHANISTIC
DATA; FREE-RADICALS; LONG-TERM
AB Exposure of experimental animals to biologically effective levels of chemicals, either endogenous or exogenous, the latter of either synthetic or natural origin, elicits a response(s) that reflects the diverse ways in which the various units of organization of an organism deal with chemical perturbation. For some chemicals, an initial response constitutes an adaptive effect that maintains homeostasis. Disruption of this equilibrium at any level of organization leads to an adverse effect, or toxicity. The livers of laboratory animals and humans, like other organs, undergo programmed phases of growth and development, characterized by proliferation followed by differentiation. With organ maturity, the process of differentiation leads to the commitment of differentiated cells to constitutive functions that maintain homeostasis and to specialized functions that serve organismal needs. In the mature livers of all species, proliferation of all cell types subsides to a low level. Thus, the mature liver consists of 2 types of cells: intermediate cells, the hepatocytes, which replicate infrequently, but can respond to signals for replication, and replicating cells, the stemcells, endothelial, Kupffer, and stellate cells (Ito or pericytes), bile duct epithelium, and granular lymphocytes (pit cells). Quantifiable alterations or effects at the molecular level underlie alterations at the organelle level, which in turn lead to alterations at the cellular level, which can ultimately be manifested as a change in the whole organism. Alterations can be quantal (binary), either all or none, as with cell replication, cell necrosis or apoptosis, and cell differentiation, which take place at the cellular level. They can also be graded or continuous (nonbinary), as with enzyme induction, organelle hypertrophy, and extracellular matrix elaboration, occurring either at the intra- or extra (supra) cellular level. Any quantifiable change induced in the function or structure of a cell or tissue constitutes a response or effect. Each of the several types of cell in the liver responds to a given stimulus according to its localization and function. Generally, renewing cells are more vulnerable to chemical injury than intermediate cells, which are largely quiescent. Hepatic adaptive responses usually involve actions of the chemical on cellular regulatory pathways, often receptor mediated, leading to changes in gene expression and ultimately alteration of the metabolome. The response is directed toward maintaining homeostasis through modulation of various cellular and extracellular functions. At all levels of organization, adaptive responses are beneficial in that they enhance the capacity of all units to respond to chemical induced stress, are reversible and preserve viability. Such adaptation at subtoxic exposures is also referred to as hormesis. In contrast, adverse or toxic effects in the liver often involve chemical reaction with cellular macromolecules and produce disruption of homeostasis. Such effects diminish the capacity for response, can be nonreversible at all levels of organization, and can compromise viability. An exposure that elicits an adaptive response can produce toxicity with longer or higher exposures (ie, above a threshold) and the mechanism of action changes with the effective dose. A variety of hepatic adaptive and toxic effects has been identified. Examples of adaptive effects are provided by phenobarbital and ciprofibrate, whereas p-dichlorobenzene and 2-acetylamino fluorene illustrate different toxic effects.
The effects of chemicals in the liver are, in general, similar between experimental animals and humans, although exceptions exist. Thus, identification and monitoring of both types of effect are integral in the safety assessment of chemical exposures.
C1 New York Med Coll, Dept Pathol, Valhalla, NY 10595 USA.
C3 New York Medical College
RP Williams, GM (corresponding author), New York Med Coll, Dept Pathol, Basic Sci Bldg,Sunshine Cottage Rd, Valhalla, NY 10595 USA.
CR Abdo KM, 1996, EXP TOXICOL PATHOL, V48, P129, DOI 10.1016/S0940-2993(96)80033-9
Amacher DE, 1997, TOXICOL APPL PHARM, V142, P143, DOI 10.1006/taap.1996.8007
Amacher DE, 1998, FOOD CHEM TOXICOL, V36, P831, DOI 10.1016/S0278-6915(98)00066-0
[Anonymous], 1987, Natl Inst Health Consens Dev Conf Consens Statement, V6, P1
ANUGWA FOI, 1989, GROWTH DEVELOP AGING, V53, P167
ARIAS IM, 1993, HEPATOLOGY, V17, P318, DOI 10.1016/0270-9139(93)90095-5
ARTHUR MJP, 1985, GASTROENTEROLOGY, V89, P1114, DOI 10.1016/0016-5085(85)90218-5
BAKER GT, 1991, POTENTIAL NUTRITIONA, P3
BLAZKA ME, 1995, TOXICOL APPL PHARM, V133, P43, DOI 10.1006/taap.1995.1125
BLOMHOFF R, 1991, FASEB J, V5, P271, DOI 10.1096/fasebj.5.3.2001786
Borst P, 1999, BBA-BIOMEMBRANES, V1461, P347, DOI 10.1016/S0005-2736(99)00167-4
BRAUER RW, 1963, PHYSIOL REV, V43, P115, DOI 10.1152/physrev.1963.43.1.115
BREEN AP, 1995, FREE RADICAL BIO MED, V18, P1033, DOI 10.1016/0891-5849(94)00209-3
BRESNICK E, 1997, CANC MED, V1, P143
BRESNICK E, 1997, CANC MED, V4
Brues AM, 1936, ARCH PATHOL, V22, P658
BUCHER NLR, 1963, INT REV CYTOL, V15, P245, DOI 10.1016/S0074-7696(08)61119-5
BUDROE JD, 1992, TOXICOL APPL PHARM, V113, P192, DOI 10.1016/0041-008X(92)90114-8
BUDUNOVA IV, 1994, CELL BIOL TOXICOL, V10, P71, DOI 10.1007/BF00756491
Butterworth B E, 1992, IARC Sci Publ, P279
Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x
Capen CC, 2001, TOXICOL PATHOL, V29, P8, DOI 10.1080/019262301301418829
CARDELL EL, 1997, COMPREHENSIVE TOXICO, V9, P11
Carthew P, 1998, TOXICOL SCI, V44, P46, DOI 10.1006/toxs.1998.2473
Casciano DA, 2000, DRUG METAB REV, V32, P1, DOI 10.1081/DMR-100100561
COHEN AJ, 1981, FOOD COSMET TOXICOL, V19, P585, DOI 10.1016/0015-6264(81)90509-5
Cohen SD, 1997, DRUG METAB REV, V29, P59, DOI 10.3109/03602539709037573
COHEN SM, 1990, SCIENCE, V249, P1007, DOI 10.1126/science.2204108
CONNEY AH, 1960, J PHARMACOL EXP THER, V130, P1
CONNEY AH, 1956, CANCER RES, V16, P450
CONNEY AH, 1982, CANCER RES, V42, P4875
COUNTS JL, 1995, REGUL TOXICOL PHARM, V21, P418, DOI 10.1006/rtph.1995.1056
CRADDOCK VM, 1971, JNCI-J NATL CANCER I, V47, P899
CRAMPTON RF, 1977, TOXICOLOGY, V7, P289, DOI 10.1016/0300-483X(77)90049-X
CRAMPTON RF, 1977, TOXICOLOGY, V7, P307, DOI 10.1016/0300-483X(77)90050-6
D'Amours D, 1999, BIOCHEM J, V342, P249, DOI 10.1042/0264-6021:3420249
DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1
Davis J. R. E., 1997, P13
DESMET VJ, 1999, CLIN HEPATOLOGY, V1, P51
DESMET VJ, 1999, CLIN HEPATOLOGY, V2
DESMEULES J, 1999, CLIN HEPATOLOGY, V1, P145
Elia M, 1991, ENERGY METABOLISM TI, P61
ELIA M, 1991, ENERGY METABOLISM TI, P19
FARBER E, 1956, CANCER RES, V16, P142
Farber J, 1979, TOXIC INJURY LIVER A, P215
FARBER JL, 1982, PROG LIVER DIS, V7, P347
Fey G H, 1990, Prog Liver Dis, V9, P89
Fishback FC, 1929, ARCH PATHOL, V7, P955
FRENKEL K, 1992, PHARMACOL THERAPEUT, V53, P127, DOI 10.1016/0163-7258(92)90047-4
GANT TW, 1995, TOXICOL APPL PHARM, V133, P269, DOI 10.1006/taap.1995.1151
Gilbert D, 1965, Food Cosmet Toxicol, V3, P417, DOI 10.1016/S0015-6264(65)80129-8
GRAEVES P, 1990, HISTOPATHOLOGY PRECL
Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309
GRISHAM JW, 1962, CANCER RES, V22, P842
HADDAD FG, 1999, CLIN HEPATOLOGY, V1, P65
HADDAD FG, 1999, CLIN HEPATOLOGY, V2
Hart RW, 1996, EXP TOXICOL PATHOL, V48, P121, DOI 10.1016/S0940-2993(96)80032-7
Hathway DE, 2000, BIOL REV, V75, P95, DOI 10.1017/S0006323199005447
Hipfner DR, 1999, BBA-BIOMEMBRANES, V1461, P359, DOI 10.1016/S0005-2736(99)00168-6
Hoffmann WE., 1999, CLIN CHEM LAB ANIMAL, P399
Iatropoulos Michael J., 1993, V9, P245
Iatropoulos MJ, 1996, EXP TOXICOL PATHOL, V48, P175, DOI 10.1016/S0940-2993(96)80039-X
IATROPOULOS MJ, 1994, EXP TOXICOL PATHOL, V45, P391, DOI 10.1016/S0940-2993(11)80365-9
International Agency for Research on Cancer, 1994, 24 IARC
JULIANO RL, 1976, BIOCHIM BIOPHYS ACTA, V455, P152, DOI 10.1016/0005-2736(76)90160-7
JUNGERMANN K, 1995, HISTOCHEM CELL BIOL, V103, P81, DOI 10.1007/BF01454004
Kacew S, 1996, J TOXICOL ENV HEALTH, V47, P1
KATAYAMA S, 1984, J NATL CANCER I, V73, P141
Kauffmann HM, 1997, HEPATOLOGY, V26, P980, DOI 10.1053/jhep.1997.v26.pm0009328323
KIM NW, 1994, SCIENCE, V266, P2011, DOI 10.1126/science.7605428
KIRKWOOD TBL, 2000, GERIATRIC MED, P35
KLAUNIG JE, 1988, TOXICOL PATHOL, V16, P381, DOI 10.1177/019262338801600310
Kool M, 1997, CANCER RES, V57, P3537
LASKIN DL, 1991, ADV EXP MED BIOL, V283, P499
LEWIS W, 1995, NAT MED, V1, P417, DOI 10.1038/nm0595-417
Lindahl T, 1999, SCIENCE, V286, P1897, DOI 10.1126/science.286.5446.1897
LOEWENSTEIN WR, 1979, BIOCHIM BIOPHYS ACTA, V560, P1, DOI 10.1016/0304-419X(79)90002-7
MACSWEEN RNM, 1994, PATHOLOGY LIVER, V3, P1
MAJNO G, 1996, CELLS TISSUES DIS PR, P16
Martin DS, 2000, CANCER RES, V60, P6776
MASLANSKY CJ, 1985, MECH AGEING DEV, V29, P191, DOI 10.1016/0047-6374(85)90018-1
Matthews Dwight E., 1994, P1
MCCUSKEY RS, 1997, COMPREHENSIVE TOXICO, V9, P1
Meyer UA, 1999, DRUG METAB REV, V31, P365, DOI 10.1081/DMR-100101924
Michalopoulos GK, 1997, SCIENCE, V276, P60, DOI 10.1126/science.276.5309.60
Moennikes O, 2000, CANCER RES, V60, P5087
NATHANSON MH, 1991, HEPATOLOGY, V14, P551, DOI 10.1016/0270-9139(91)90198-5
NEBERT DW, 1987, ANNU REV BIOCHEM, V56, P945, DOI 10.1146/annurev.biochem.56.1.945
Nicholson JK, 1999, XENOBIOTICA, V29, P1181, DOI 10.1080/004982599238047
Nover L., 1991, HEAT SHOCK RESPONSE
O'Connor PJ, 2000, TOXICOL PATHOL, V28, P375, DOI 10.1177/019262330002800304
Oda K, 2000, CELL, V102, P849, DOI 10.1016/S0092-8674(00)00073-8
OLSEN JH, 1995, CANCER RES, V55, P294
Olson H, 2000, REGUL TOXICOL PHARM, V32, P56, DOI 10.1006/rtph.2000.1399
Pandha H. S., 1997, P323
PAOLINI M, 1995, CHEM-BIOL INTERACT, V95, P127, DOI 10.1016/0009-2797(94)03352-8
Parkinson A, 1996, CASARETT DOULLS TOXI, P113
PATEL T, 1995, HEPATOLOGY, V21, P1725, DOI 10.1002/hep.1840210635
PELKONEN O, 1994, DRUG INF J, V28, P225
PERAINO C, 1971, CANCER RES, V31, P1506
Perrone CE, 1998, TOXICOL APPL PHARM, V150, P277, DOI 10.1006/taap.1998.8413
Pieper AA, 1999, TRENDS PHARMACOL SCI, V20, P171, DOI 10.1016/S0165-6147(99)01292-4
PLAA GL, 2001, PRINCIPLES METHODS T, P1145
POPP JA, 1994, PROG CLIN BIOL RES, V387, P193
RATAIN MJ, 1997, CANC MED, P875
REED JC, 1994, J CELL BIOL, V124, P1, DOI 10.1083/jcb.124.1.1
REMMER H, 1959, N-S ARCH EX PATH PH, V235, P279
Rice JM, 1999, TOXICOL SCI, V49, P166, DOI 10.1093/toxsci/49.2.166
RINGER DP, 1987, CARCINOGENESIS, V8, P1749, DOI 10.1093/carcin/8.11.1749
RUSSELL RM, 1992, AM J CLIN NUTR, V55, P1203
Santoro MG, 2000, BIOCHEM PHARMACOL, V59, P55, DOI 10.1016/S0006-2952(99)00299-3
SCAMPINI G, 1993, TOXICOL PATHOL, V21, P369, DOI 10.1177/019262339302100404
SCHULTEHERMANN R, 1979, TOXIC INJURY LIVER, P385
SEARLE J, 1987, J GASTROEN HEPATOL, V2, P77, DOI 10.1111/j.1440-1746.1987.tb00152.x
SELL S, 1990, CANCER RES, V50, P3811
Sirma H, 1996, LIVER, V16, P166
STENBACK F, 1986, J NATL CANCER I, V76, P327
TANAKA T, 1986, CHEM-BIOL INTERACT, V58, P13, DOI 10.1016/S0009-2797(86)80083-7
TANAKA T, 1987, CARCINOGENESIS, V8, P1171, DOI 10.1093/carcin/8.9.1171
TGROSKO JE, 1990, MOUSE LIVER CARCINOG
TONG C, 1980, P NATL ACAD SCI-BIOL, V77, P7377, DOI 10.1073/pnas.77.12.7377
Trepicchio WL, 2001, TOXICOL PATHOL, V29, P242, DOI 10.1080/019262301317052521
Tugwood JD, 1996, ANN NY ACAD SCI, V804, P252, DOI 10.1111/j.1749-6632.1996.tb18620.x
Umemura T, 1998, DRUG CHEM TOXICOL, V21, P57, DOI 10.3109/01480549809017851
UMEMURA T, 1993, CANCER LETT, V73, P1, DOI 10.1016/0304-3835(93)90181-8
Umemura T, 1999, CARCINOGENESIS, V20, P1115, DOI 10.1093/carcin/20.6.1115
Verna L, 1996, PHARMACOL THERAPEUT, V71, P83, DOI 10.1016/0163-7258(96)00063-0
Wallace DC, 1999, SCIENCE, V283, P1482, DOI 10.1126/science.283.5407.1482
Waxman DJ, 1999, ARCH BIOCHEM BIOPHYS, V369, P11, DOI 10.1006/abbi.1999.1351
WEISIGER RA, 1988, AM J PHYSIOL, V255, pG822, DOI 10.1152/ajpgi.1988.255.6.G822
Whysner J, 1996, PHARMACOL THERAPEUT, V71, P153, DOI 10.1016/0163-7258(96)00067-8
Williams G M, 1980, Ann N Y Acad Sci, V349, P273, DOI 10.1111/j.1749-6632.1980.tb29532.x
WILLIAMS GM, 1989, MUTAT RES, V221, P263, DOI 10.1016/0165-1110(89)90039-0
Williams GM, 1996, ANN NY ACAD SCI, V804, P554, DOI 10.1111/j.1749-6632.1996.tb18645.x
Williams GM, 2000, REGUL TOXICOL PHARM, V32, P283, DOI 10.1006/rtph.2000.1433
Williams GM, 2000, TOXICOL PATHOL, V28, P388, DOI 10.1177/019262330002800306
Williams GM, 1998, TOXICOL SCI, V45, P152
WILLIAMS GM, 1981, FOOD COSMET TOXICOL, V19, P577, DOI 10.1016/0015-6264(81)90508-3
WISSE E, 1999, CLIN HEPATOLOGY, P33
YAMAMOTO K, 1985, LAB INVEST, V52, P103
YAMASAKI H, 1990, CARCINOGENESIS, V11, P1051, DOI 10.1093/carcin/11.7.1051
Zhu BT, 1997, CANCER RES, V57, P2419
NR 142
TC 126
Z9 130
U1 0
U2 9
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0192-6233
EI 1533-1601
J9 TOXICOL PATHOL
JI Toxicol. Pathol.
PD JAN 1
PY 2002
VL 30
IS 1
BP 41
EP 53
DI 10.1080/01926230252824699
PG 13
WC Pathology; Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pathology; Toxicology
GA 558ED
UT WOS:000175952600007
PM 11890475
OA Bronze
DA 2023-03-13
ER
PT J
AU Kostoff, RN
AF Kostoff, Ronald N.
TI Literature-related discovery and innovation - update
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Literature-related discovery; Literature-Related Discovery and
Innovation; Text mining; Multiple sclerosis; Discovery; Innovation;
Disease prevention; Disease treatment
AB Literature-Related Discovery and Innovation (LRDI - formerly LRD - literature-related discovery) integrates 1) discovery generation from disparate literatures with 2) the wealth of knowledge contained in prior art to 3) potentially reverse chronic and infectious diseases and/or 4) potentially solve technical problems that appear intractable. This article describes the evolution of LRDI by the author and the insights gained/lessons learned over the past decade. To illustrate the potential power of LRDI, the article emphasizes the relationship between the results of our 2008 LRDI multiple sclerosis (MS) study and a recent demonstration of MS reversal.
Lessons learned from the six LRDI medical studies done so far include:
The main operational problem in the author's LRDI approach is selecting the most important concepts from extremely large volumes of potential discovery retrieval. This is contrary to most published LRDI research, where the discovery focus is searching for rare events.
It is important to have topical specialist(s) working closely with information technologist(s); the topical specialist(s) applies judgment in selecting the most important concepts.
A functional form of the information retrieval query with proximity searching capability provides highly selective filtering for discovery retrieval and core prevention/treatment retrieval; the functional form of the query with proximity searching capability allows the use of full-text for discovery and core prevention/treatment.
Bibliographic coupling (identifying papers that share common references) combined with text-based relationships strengthens selection for potential discovery further.
Having 'skin-in-the-game' (being affected personally) relative to the medical outcome is a strong incentive to do whatever is necessary to solve the research problem.
Hormesis is critical to healing; relatively modest doses of stimuli tend to be beneficial, whereas relatively large doses may be harmful. The synergy of hormetic treatment doses produces effects larger than combinations of individual doses and requires smaller doses when combined; the synergy of hormetic doses allows conversion of megadoses of nutrients typically reported in lab/clinical studies to physiological (food-level) doses and associated increased safety.
Co-promoters (combinations of toxic stimuli required to produce disease symptoms) are extremely important for explaining seemingly conflicting results; if true co-promotion is present, elimination of one of the co-promoters may be adequate for removing symptoms, even though the overall problem persists.
Prior art (potential treatments already published in the literature but not pursued by mainline medicine) may have much to contribute to potentially solve many serious medical problems; much of prior art is overlooked, especially low-tech prior art (e.g., foods, food extracts, herbs, etc.).
Systemic and focused treatments are both necessary components of healing, but neither will be fully, or many times even partially, effective until the cause(s) is identified and removed. Any medical approach that involves administering treatments for chronic and infectious diseases without addressing the cause(s) results in a broad range of outcomes mainly involving substitution of one set of symptoms for another.
Past results of LRDI medical studies showed much overlap among preventatives/systemic treatments for different diseases. Differences will arise mainly in focused treatments, especially those involving high technology.
The central parameters to healing in much medical research are never identified nor reported. Many treatments require a combination of skilled practitioners, cause removal, and immune/neural/endocrine/circulatory systems to be healthy for full effectiveness, yet practitioner skill, degree of cause removal, and immune system et al. health are never reported. A lack of this information does not allow efficacy of different treatments to be compared. Reviews and meta-analyses that compare and draw conclusions about the effectiveness of these different treatments without the above critical information being reported are of extremely limited value and credibility.
Finally, the most important deficiency for fully reversing chronic and infectious diseases, as well as rapidly accelerating healing of injuries and wounds, is the credibility and integrity of the medical literature itself, especially in areas that concern commercial and government/political sensitivities. In the evaluation of many concepts that deviated from the norm, it was difficult to ascertain whether the difference was based on solid high-quality research, poor research, or deliberately skewed research. (C) 2012 Elsevier Inc. All rights reserved.
C1 Georgia Inst Technol, Sch Publ Policy, Gainesville, VA 20155 USA.
C3 University System of Georgia; Georgia Institute of Technology
RP Kostoff, RN (corresponding author), Georgia Inst Technol, Sch Publ Policy, 13500 Tallyrand Way, Gainesville, VA 20155 USA.
EM ronald.kostoff@pubpolicy.gatech.edu
CR [Anonymous], 2006, RAD RES CULT NEGATIV
Hardell L, 2011, INT J ONCOL, V38, P1465, DOI 10.3892/ijo.2011.947
Havas M, 2006, ELECTROMAGN BIOL MED, V25, P259, DOI 10.1080/15368370601044192
Kostoff RN, 2007, ADA473643 DTIC
Kostoff RN, JASIST IN PRESS
Kostoff RN, 2010, ADA525269 DTIC
Kostoff RN, 2009, ANNU REV INFORM SCI, V43, P241
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P226, DOI 10.1016/j.techfore.2007.11.007
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P165, DOI 10.1016/j.techfore.2007.11.004
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P239, DOI 10.1016/j.techfore.2007.11.002
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P256, DOI 10.1016/j.techfore.2007.11.009
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P203, DOI 10.1016/j.techfore.2007.11.005
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P276, DOI 10.1016/j.techfore.2007.11.003
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P215, DOI 10.1016/j.techfore.2007.11.006
Kostoff RN, 2008, TECHNOL FORECAST SOC, V75, P186, DOI 10.1016/j.techfore.2007.11.010
Kostoff RN, 2011, TECHNOL FORECAST SOC, V78, P1164, DOI 10.1016/j.techfore.2011.03.022
Oreskes N., 2011, MERCHANTS DOUBTS HAN
Schraub S, 2010, ONCOLOGIE, V12, P675, DOI 10.1007/s10269-010-1960-1
Sismondo S, 2010, BIOETHICS, V24, P273, DOI 10.1111/j.1467-8519.2008.01702.x
Steen RG, 2011, J MED ETHICS, V37, P688, DOI 10.1136/jme.2011.043133
SWANSON DR, 1986, PERSPECT BIOL MED, V30, P7
Swanson DR, 2001, J AM SOC INF SCI TEC, V52, P797, DOI 10.1002/asi.1135
Swanson DR, 1999, LIBR TRENDS, V48, P48
Wahls T.L., 2010, MINDING MY MITOCHOND
Wahls TL, 2011, J GEN INTERN MED, V26, P1215, DOI 10.1007/s11606-010-1631-3
Wise J, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d7201
NR 26
TC 19
Z9 19
U1 2
U2 62
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD MAY
PY 2012
VL 79
IS 4
BP 789
EP 800
DI 10.1016/j.techfore.2012.02.002
PG 12
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA 929TD
UT WOS:000303087700017
PM 32287411
OA Green Published
DA 2023-03-13
ER
EF