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A Details on the financial market
agent-based model

In order to obtain a concise description at the level of
population dynamics, Omurtag and Sirovich derived a
mesoscopic Fokker-Plank-type (FP) IPDE [1] (a continu-
ity equation) for the agent probability density function
ρ(t, x), where the spatial variable corresponds to the
preference state of the agents, i.e. x ≡ X. For the par-
ticular problem, at the limit of infinitely many agents
and averaged along many possible trajectories, the conti-
nuity equation in terms of a probability flux J(t, x) and
a source Q(t, x) reads:

∂ρ(t, x)

∂t
= −∂J(t, x)

∂x
+Q(t, x),

with J(t, x) = −1

2
σ2
∂ρ(t, x)

∂x
− µρ(t, x),

(1)

where, if we denote the fluxes at the boundaries
J(t,±1) = J±, the source Q(t, x) can be set to be
Q(t, x) = (J+ + J−)δ(x) to compensate for the cre-
ation/disappearance of density at the boundaries.

The above equation can be written as:

∂ρ(t, x)

∂t
=

1

2
σ2(t)

∂2ρ(t, x)

∂x2
+
∂(µ(t, x)ρ(t, x))

∂x
+

+ (J+ + J−)δ(x).

(2)

In the above, σ2(t) is the time-dependent diffusivity
coefficient given by:

σ2(t) = ν+(ϵ+)2 + ν−(ϵ−)2, (3)

µ is the time-dependent, space-dependent drift coefficient,
given by:

µ(t, x) = γx− ν+ϵ+ − ν−ϵ−. (4)

J± denote the inflow and outflow through the boundaries
that are restored/re-injected at the origin through a Dirac
δ(x) in Eq. (2), in order to maintain agent conservation.
Indeed, since ρ is a probability distribution, the equation
has also to satisfy the normalization property:∫ 1

−1
ρ(t, x)dx = 1, ∀t; (5)

it is convenient to consider homogeneous Dirichlet bound-
ary conditions ρ(±1, t) = 0 and the agents there instan-
taneously reset back to X = 0. In addition, the fluxes at
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the boundaries J(t,±1) = J± are given by:

J±(t, x) = ∓1

2
σ2
∂ρ(t, x)

∂x

∣∣∣
x=±1

, (6)

reflecting the resetting process of agents that cross the
boundaries.
Besides, in order to solve/integrate the Eq. (2), one

has to find algebraic closures for the time-evolving dif-
fusivity σ and drift µ coefficients. In [1], a mean field
approximation of the buying/selling rates was proposed:

R± = ±ν±
∫ ±1

±1∓ϵ±
ρ(x, t)dx. (7)

Finally, based on Equation (in the main text):

ν±(t) = ν±ex + gR±(t), (8)

and Eq. (7), one obtains:

ν± =
ν±ex

1− g
∫ ±1
±1∓ϵ± ρ(x, t)dx

, (9)

from which one can retrieve at each time instance t, the
coefficients µ(t) and σ2(t) of the FP model, as defined
in Eqs. (3)-(4).
The designation “Fokker-Planck” notwithstanding, it

is important to restate that the above approximation
is an integro-differential equation with space-dependent
coefficients.

B Details on the Epidemic ABM

Compartmental models serve as structured population
models, where the population is categorized based on
their roles in the epidemiological process. We consider
a stochastic version of a susceptible-infected-recovered-
susceptible (SIRS) in discrete time. The rules that drive
the model are presented in the main text. Here we give
more details about the structure of the network on which
the dynamics evolves. This network is constructed in a
straightforward manner: within a population of N nodes,
it is assumed that each node can potentially be connected
to any of the other N−1 nodes with a probability p. This
implies that a node has an equal probability, denoted
as p, of forming a connection with every other node
in the network. Therefore, the degree distribution of
Erdös-Rényi network follows the binomial law:

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k, (10)

where k denote a degree value. The mean degree of the
network is E(k) = k̄ = pN . This distribution for p = 1

2
is exactly symmetric, while for other values of p < 1/2
is almost symmetric but with a “long tail”, i.e. there
is a very low probability for the occurrence of degrees
k > 2pN . In our computation we selected p = 0.0008
and N = 10, 000 which gives k̄ = 8. In particular along
all computation we have used a predetermined Erdös-
Rényi network, with the maximum degree of a node being
kmax = 21.

C Equation-Free approach

The Equation-Free (EF) framework, proposed in [2], op-
erates on the key assumption that for a given microscopic
simulator there exists a fundamental coarse description:
as the distributions evolve, higher-order moments quickly
become dependent on lower-order ones, ultimately con-
verging towards a slow invariant manifold. This con-
cept embodies the singularly perturbed system paradigm,
where the interconnected nonlinear ordinary differential
equations governing the moments of the agent distribu-
tion rapidly approach a low-dimensional slow manifold.
The main tool employed in the EF approach are the
so-called coarse time-steppers. Coarse time-steppers es-
tablish a link between microscopic simulators, such as
ABMs and traditional continuum numerical algorithms.
Such methods encompass a series of essential stages, as
outlined below:

• Assume we start from a coarse-scale initial condi-
tion, corresponding to the appropriate coarse-scale
variables x(t) (e.g., diffusion map coordinates) of
the evolving ensemble of agents at time t;

• Map the macroscopic description, x(t), through a
lifting operator, L, to an ensemble of consistent mi-
croscopic realizations:

X(t) = L(x(t)); (11)

• For an (appropriately chosen) short macroscopic
time ∆T , evolve these realizations using the black-
box ABM simulator to obtain the value(s):

X(t+∆T ) = Φ∆T (X(t)) ≡ Φ∆T (Lx(t)); (12)

• Map the ensemble of agents back to the macroscopic
description through the restriction operator M:

x(t+∆T ) =MX(t+∆T ). (13)
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The entire procedure, i.e., the coarse time-stepper, can
be thought of as a “black box”:

x(t+∆T ) = ϕ∆T [x(t)] ≡MΦ∆T (L[x(t)]). (14)

Such an approach, allows one to accelerate simulations
and also to perform bifurcation analysis [2]. To find a
stationary state x of eq.(14), if there exists, we seek a
solution of the following equation:

F (x) = x− ϕ∆T [x] = 0, (15)

wrapping around it the Newton-GMRES method [3].

D Machine Learning algorithms used

D.1 Diffusion Maps: a Dimensionality Re-
duction Approach

Diffusion Maps (DMAPs), proposed by Coifman and
Lafon [4, 5], is a manifold learning technique capable
of discovering linear and non-linear patterns in high-
dimensional data: an intrinsic embedding of the low-
dimensional manifold on which the data (are assumed
to) lie.
The algorithm, using a random walk on the available

data points (each considered as the node of a graph),
discovers the underlying structure of the data geometry
by approximating the Laplace-Beltrami operator on the
data manifold. In this graph the edges between nodes
(data points) represent the probability of transitioning
from one data point to another. Starting with the data
matrix X ∈ Rm×d, where m is the number of data points,
and d is the dimension of each data point xi, the DMAPs
algorithm constructs an affinity matrix (kernel matrix)
W : the entries of W are computed as:

wij = exp

(
−||xi − xj ||2

2ϵ

)
. (16)

where ϵ is a positive scale parameter. The metric || · ||
we consider here is the ℓ2 norm.

To make the kernel matrix invariant to the sampling
density, and to ensure numerical approximation of the
Laplace Beltrami operator the normalization

W̃ = P−1WP−1, Pii =

m∑
j=1

Wij (17)

is applied.

Then the matrix D ∈ Rm×m is constructed as Dii =∑m
j=1 W̃ij and the second normalization

A = D−1W̃ (18)

is applied to obtain the row-stochastic matrix A.
We then compute the eigendecomposition of A,

Aψi = λiψi, (19)

with the eigenvectors ψi sorted based on the eigenval-
ues λi. Proper selection of the eigenvectors that span
independent eigendirections (termed non-harmonics) is
necessary. The selection of the non-harmonic eigenvectors
is here obtained by applying the local linear regression
algorithm proposed by Dsilva et al. [6] on the computed
eigenvectors. This linear regression algorithm by fitting
eigenvectors ψi (where i > 1) as local linear functions of
previous eigenvectors can detect the non-harmonic eigen-
vectors. A normalized leave-one-out error, denoted as rk,
is used for this selection and quantifies gradually which
eigenvectors are independent (non-harmonic) and which
are not (harmonic). If the number of non-harmonic eigen-
vectors is smaller than d the dimensionality reduction is
achieved.

D.2 Feedforward Neural Networks

Feedforward Neural Networks (FNN) are a class of pow-
erful machine learning tools, characterized by a layered
structure of interconnected computing units (neurons),
that are nowadays widely used for supervised learning
tasks, such as regression, classification, forecasting and
model identification. The great popularity of FNN is due
to their capability to approximate any (piecewise) con-
tinuous (multivariate) function, to any desired accuracy,
as it is stated in the celebrated universal approximation
theorem [7, 8]. This implies that any failure of a net-
work must arise from an inadequate choice/calibration
of weights and biases or an insufficient number of hidden
nodes.
Let us consider a FNN with a N0-dimensional input

y0, with L hidden-layers composed by Nl neurons. The

output y
(l)
j of the j-th neuron (j = 1, . . . , Nl) in the

l-th layer (l = 1, . . . , L) consists of an evaluation of
the so-called activation function ψ : R 7→ R of a linear
combination of neurons’ outputs of the previous layer:

y
(l)
j =

Nl∑
i=1

ψ(w
(l)
ji y

(l−1)
i + b

(l)
i ) (20)

3



SI: Task-Oriented Machine Learning Surrogates for Tipping Points of Agent-Based Models

where the weights w
(l)
ji are the weights of the connection

between neurons i and j belonging to two consecutive

layers, and b
(l)
i s are the so-called biases. If we denote

by Φl : y(l−1) ∈ RNl−1 7→ yl ∈ RNl the map between the
(l − 1)-st layer to the l-th layer, then we can express the
output yL+1 of the network as the composition of all the
layer maps:

y(L+1) = Φ(L+1) ◦ · · · ◦ Φ1(y(0)). (21)

D.2.1 Training of the FNN

For supervised learning tasks, the goal is to find an opti-
mal (most of the times is just sub-optimal) configuration
of weights and biases that minimize a loss/cost func-
tion, usually defined as the Mean-Squared error between
the current output of the network and the desired out-
put d = (d1, . . . , dk, . . . , dM ) along a collection of M

data samples y
(0)
1 , . . . ,y

(0)
k , . . . ,y

(0)
M that constitute the

so-called training set:

E =

M∑
k=1

||dk − y
(L+1)
k ||22. (22)

For our computations we used the Bayesian regularized
back-propagation updating the weight values using the
Levenberg-Marquardt algorithm [9] as implemented in
the Deep Learning toolbox of Matlab 2021a. For learn-
ing the IPDE we used a FNN with two hidden layers,
both with 16 Neurons employing a hyperbolic tangent
activation function. Levenberg-Marquardt emulates a
second-order Newton-like scheme by computing an ap-
proximation of the Hessian matrix Hp of the loss function
as:

Hp ≈ JT
p Jp, (23)

where Jp is the Jacobian matrix of the network errors
with respect to weights and biases. Thus, the vector p
collecting all trainable parameters is iteratively adjusted
as follow:

p← p− (JT
p Jp + µI)−1JT

p e, (24)

where e is a vector of network errors.

D.3 Random Projection Neural Networks

Random Projection Neural Networks (RPNNs) are a
family of Artificial neural networks including Random

Vector Functional Links (RVFLs) [10], Random Fourier
Features (RFF) [11], Reservoir Computing [12, 13] and
Extreme Learning Machines (ELMs) [14]. For a brief
review of RPNNs see our paper [15]. Here, for simplicity
we consider a feedforward RPNN, with one single hidden
layer, one output layer with linear activation function

and zero output bias b
(2)
i = 0, that can be written as:

y(2) =
N∑
i=1

w
(2)
i ψ(w

(1)
i y(0) + b

(1)
i ) (25)

and we consider a training set of M points

y
(0)
1 , . . . ,y

(0)
k , . . . ,y

(0)
M with desired outputs d =

(d1, . . . , dk, . . . , dM ). Randomly fixing w1
i and b

(1)
i , we

can rewrite (25) as a linear system in the unknowns w(2):

d = w(2)Φ (26)

where Φ ∈ RN×M is the matrix with elements:

Φik = ψ(w
(1)
i y

(0)
k + b

(1)
i ). (27)

Therefore, one can find the output weights as a linear
least square problem, here using the pinv of Matlab,
employing the Moore-Penrose pseudo-inverse (with a
regularizing tolerance 1e−6).

Random Fourier Features (RFF) [11] is a partic-
ularly interesting and straightforward RPNN approach,
that uses the cosine as the activation function of the net-
work, i.e., ψ(·) = cos(·). This choice leads to a random
Fourier basis expansion approximation. As proposed in
[11], we sampled the weights that connect the input and
the hidden layer from the following distribution

p(w) = 2π(−
D
2
)exp

(
−||w||

2
2

2

)
, (28)

where D is the dimension of the input space. For the
choice of the biases we used an uniform distribution in
the interval [0, 2π]. For learning the IPDE we used a a
single hidden layer RFF with 350 neurons.

E Details on Learning the Integro-
Partial Differential Equation for
the finance ABM

E.1 Training and test data sets

ABM simulations were performed using N = 50, 000
agents, with ν+ex = ν−ex = 20, γ = 1, ϵ− = −0.072,

4
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ϵ+ = 0.075. The mimetic strength g is our bifurcation pa-
rameter. For the data set, we selected 41 equally-spaced
points in the range g ∈ [30, 50] and for each of the values
of g, we randomly generated 1000 different initial pro-
files ρ0, as Gaussian distributions ρ0 ∼ N (m̃0, s̃

2
0) with

varying mean m̃0 and variance s̃20. The initial m̃0 and s̃0
were uniformly randomly sampled as m̃0 ∼ U([−0.3, 0.3]),
s̃0 ∼ U([0.3, 0.5]). The initial state of the agents is sam-
pled from the initial distribution ρ0, creating a consistent
microscopic realization. At each time step, as the agents
dynamically evolve, to estimate the corresponding coarse-
grained density profile, we used 81 equally-spaced bins,
with equispaced centers xi ∈ [−1, 1]. Since we are deal-
ing with a stochastic model, in order to generate smooth
enough profiles for the spatial derivatives, for each fixed
initial condition, we ran 100 random stochastic realiza-
tions, and we averaged along the generated copies of
the density field. Then to further smooth out the com-
puted densities, we applied a weighted moving average
smoothing ρi as ρ

⋆
i = 2ρi+ρi−1+ρi+1

4 . (i denotes spatial
mesh points).

The ABM simulations were run for a time interval
t ∈ [0, 15] and we collected points with a time step of
∆t = 0.25. When the mean value X̄ crossed, ±0.4 we
stopped the simulations, because the pdf profile blows
up, very fast after that. Furthermore, we also ignored
the first two time points, to exclude the initial “healing”
transients due to the way we initialize (see the discussion
for such healing periods in [2]). We thus end up with
a data set consisting of 40 (values of g) ×100 (initial
conditions) ×58 (maximum time points ignoring the first
2 steps of the transient) ×81 (space points) ≈ 15× 106

data points. Since the amount of data is practically too
large, for the training set we have randomly downsampled
to 106 data and used the remaining data as our test set.

E.2 Feature selection for the mesoscopic
IPDE model

For dealing with the “curse of dimensionality” in train-
ing the FNN, learning our IPDE model, we used ARD
as implemented in Matlab by the function fitrgp for
feature selection. Here, we a priori selected as candi-
date features, the space x per se, the field ρ, the first ρx,
second ρxx and third ρxxx spatial derivatives estimated
with central finite differences, as well as I± defined as the

integrals of ρ in a small region close to the boundaries:

I±(t) = ±
∫ ±1

±1∓ϵ
ρ(x, t)dx, (29)

where ϵ = 0.05 corresponds to the size of the last two
bins of the grid. We note that the latter two candidate
mesoscopic variables I± as defined above are related to
the buying and selling rates (see Eq.7), yet they do not
depend on the frequencies v± as the true buying and
selling rates do. These “internal”/hidden variables v±

are considered unknown. We also consider unknown the
“quantum” jump sizes ϵ±. The target variable to learn is
the time derivative, at each collocation point x, estimated
with forward FD as:

ρt(x, t) =
∂ρ(x, t)

∂t
=
ρ(x, t+ dt)− ρ(x, t)

dt
. (30)

The effective relevance weights Wr(·) of the features, as
obtained by using ARD, are Wr(ρ) = 0.25, Wr(ρx) =
0.22, Wr(ρxx) = 0.14, Wr(ρxxx) = 0.04, Wr(I

+) =
0.18, Wr(I

−) = 0.12, Wr(x) = 0.27. As can be noted,
the third derivative is the least important feature, and
we thus decided to disregard it; the most important fea-
ture is the space x highlighting that the IPDE is not
translational invariant. The dependency on x implicitly
captures the location of the source term Q representing
the resetting of the state of the agents at the origin as in
the FP IPDE Eq. (2). Note that the integral features I±

are also important. This is in line with the theoretical
results regarding the FP IPDE Eq. (2).

F Details on Learning the Stochas-
tic Differential Equations for the
financial ABM

F.1 Data collection and preprocessing

In this section we describe how we collected data, specif-
ically targeted to the neighborhood of the tipping point,
for the purpose of learning a parametric mean-field SDE.
ABM simulations were performed using N = 50, 000
agents, with ν± = 20, ϵ+ = 0.075, ϵ− = −0.072, γ = 1.
We selected 11 equally-spaced values of the mimetic
strength g, which is used as bifurcation parameter, in
the range g ∈ [42, 47]. We gathered at each time stamp
the state of every agent (Xi), as well as the overall buy-
ing/selling rates (R+ and R−). For convenience, we use

5
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the vector s = (X1, X2, · · · , Xn, R
+, R−)T , and denote

the mean preference value of the agent state as:

X̄ =
1

n

n∑
i=1

Xi.

To select initial conditions that populate the state
space (in terms of X̄, across multiple values of the pa-
rameter g) the following protocol was used: We start
by running one trajectory of the full ABM for g = 47,
which ultimately leads to an explosion. This trajectory
was initialized by sampling the agents from a triangular
distribution p(X), as implemented in python, with lower
limit −1, upper limit 1, and mode −0.6, corresponding
to a value X̄ ≈ −0.2. This trajectory was stopped using
the termination condition X̄ ≤ 0.4, indicative of incipient
explosion. We selected 25 distinct instances of the state
of agents along the stochastic trajectory, corresponding
to 25 different values of X̄ in the range [−0.02, 0.32].
Then, for each value of the parameter g, we simulated
a total of 50 new stochastic trajectories, two for each
distinct initial condition.
As previously done in [16], in order to find the data-

based one-dimensional coarse observable ψ1, the DMAPs
algorithm is carried out on 39 intermediate coarse vari-
ables. Thus, we set up 37 percentile points p1, p2, · · · , p37
referring to our discretization of the cumulative distri-
bution function (cdf) of the agents’ preference state.
For each pi, we computed its quantile function value
Q(pi), where the quantile function Q(·) is defined as
the inverse function of (cdf) FX of the random variable
X. The first 19 percentile values p1, p2, · · · , p18, p19 are
set as 0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.0075,
0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4,
0.5. The last 18 probability values are set to be sym-
metric with the first 18, i.e. pi = 1 − p38−i, ∀i =
20, 21, · · · , 37; The remaining two coarse variable are
the overall buying and selling rates. Therefore, the
full state s has a coarse 39-dimensional representation
s′ = (Q(p1), Q(p2), · · · , Q(p37), R

+, R−)T .

F.2 Statistical mechanics-based computation
of escape times

The second approach for estimating escape times involves
numerical computation of the escape times based on the
known closed-form expression for the one-dimensional
SDE:

dxt = µ(xt; ε)dt+ σ(xt; ε)dWt. (31)

Here we report the expressions for the constant diffusivity
case, since the identified diffusivities in our case appear
not to be state (or parameter) dependent, see Section
F. The effective potential Ue for a one-dimensional SDE
with constant diffusivity is given by:

Ue(x) =

∫ x

x0

−µ(x)
σ2/2

dx, (32)

where x0 is an arbitrarily selected reference point in
which the potential is taken to be zero, µ(x) is the drift,
and σ is the diffusivity. Equation (32) is derived from
the steady-state solution of the Fokker-Planck equation,
see the Section C in [17].
It has been pointed out in [18] that, there is a closed-

form expression of escape times for one-dimensional sys-
tems with constant diffusivity (33).

dxt = −∇Ue(xt)dt+

√
2

β
dWt, x0 ∈ (a, b), (33)

where Ue(xt) is the effective potential of the system,
(a, b) are the left and right boundaries of the interval of
interest, and β is the inverse temperature, inspired from
thermodynamics. Compared with (31), we can transform
our learned SDE form into (33) by setting

µ(xt) = −∇Ue(xt) = −
dUe(xt)

dxt
;σ =

√
2

β
. (34)

Notice that one can also consider the drift term µ(xt)
as the force term in an energy field. The mean escape
time for systems like (33) can be written as a univariate
integral:

⟨τ⟩ =
∫ b

a
ρ(x;x0)dx, (35)

where ρ(x;x0) is the occupation density of particles at
x = x0 which solves the boundary value problem (see
Section F.2),−

d

dx

(
β−1ρ′(x) + ρ(x)U ′

e(x)
)
= δ(x− x0), in (a, b),

ρ(a) = ρ(b) = 0.

The occupation density ρ can be computed as the solution
of the above boundary value problem:

ρ(x;x0) = β

∫ x

a
(G(x0)−H(z − x0))eβ(Ue(z)−Ue(x))dz,

(36)

6
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Supplementary Figure 1: Additional results for two alternative SDEs surrogates. (a)-(b) The constructed bifurcation
diagrams are based on the drift component of the identified effective SDEs in terms of (a) X̄, and of (b) R+. The
bifurcation point is marked with a black square. (c)-(d) Histograms of escape times obtained with simulations of
10,000 stochastic trajectories for the SDE models trained on (c) X̄, (d) R+.

where H(·) is the Heaviside step function and G(·) is
defined as

G(x0) =

∫ b
x0
eβUe(η)dη∫ b

a e
βUe(η)dη

. (37)

The above analysis does not depend on the choice of po-
tential reference point. Consider another representation
of the potential U ′

e(·) that actually has

U ′
e(η)− Ue(η) = C (38)

for ∀η ∈ R, where C is a constant. One can substitute
(38) in (37) to get

G′(x0) =

∫ b
x0
eβU

′
e(η)dη∫ b

a e
βU ′

e(η)dη
=

∫ b
x0
eβ(Ue(η)+C)dη∫ b

a e
β(Ue(η)+C)dη

=

=
eβC

∫ b
x0
eβUe(η)dη

eβC
∫ b
a e

βU ′
e(η)dη

= G(x0);

(39)

this implies that the function G(·) is independent of the
reference point. As the exponential term in (36) is a

function of the difference of potential values, the choice
of the reference point will not affect the value of the
occupation density ρ(·), nor the values of escape times
⟨τ⟩. In practice, the integration can be performed numer-
ically using a quadrature scheme. However, quadrature
schemes are susceptible to numerical errors under some
circumstances. For example, if the diffusivity is small,
σ ≪ 1 (and thus β is large), this leads to exponential
values that might be numerically intractable and impede
the utilization of the method.

To address this issue, we transform the SDE (31) by
x 7→ y(x) = x/σ and apply Itô’s lemma to obtain the
SDE,

dyt = σ−1µ(σyt; g)dt+ dWt. (40)

where the diffusivity in this case is one.

This transformation allows us to compute the escape
times in terms of the transformed variables yt and using
β = 2, which alleviates the numerical issues. The escape
times for the transformed variable yt and the original
variables are the same. This allows us to transform

7
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the SDEs identified from the trained neural networks
to compute the escape times using (35). It is worth
mentioning that the applied transformation, even though
it circumvents the numerical issues arising because of
the diffusivity in cases where the potential is large (and
therefore the exponent of the potential is also large),
would still be susceptible to numerical issues in other
regimes.

F.3 Additional Results: Two physical based
alternative mean-field SDEs

In this section, we illustrate results obtained for two alter-
native one-dimensional mean-field SDE surrogates, using
as their effective state variable X̄ and R+, respectively;
these were omitted in the main text for brevity.

The constructed bifurcation diagrams from the identi-
fied deterministic drift of the two SDE surrogates trained
on X̄ and R+ are shown in Supplementary Figure 1a-1b.
The bifurcation point, in both cases, occurs for g∗ ≈ 45.5.
Indeed, we obtained a tipping point at g∗ = 45.90 with
a corresponding X̄∗ = 0.1751 for the SDE trained on X̄;
and at g∗ = 45.76, with a corresponding R+∗ = 0.003586
for the SDE trained on R+. The identified bifurcation
point (our tipping point) for all three identified SDE
models is consistent with the value reported in Liu P. et
al [3, 16, 19].

For each of the identified SDEs, in terms of X̄ and
R+ respectively, we estimated escape time distribution
by computing 10, 000 stochastic simulations. Histograms
of the obtained escape times for X̄ and R+ are shown
in Supplementary Figure 1c-1d, respectively. Means of
escape times distribution and their standard deviations
for the identified SDE in terms of X̄ and R+ here. We
computed for the SDE on X̄ a mean of 75627.73 and
standard deviation 75198.20, for g = 45.25. While for
g = 45.61 we got mean 468.06 and standard deviation
of 456.71. For the SDE on R+ at g = 43.25 we got
mean 73.61 and standard deviation 63.95. While at
g = 43.15 we got mean 436.59 and standard deviation
420.82. Similarly to the computations reported in the
main text, for the SDE models in X̄ and R+ we estimated
the mean escape times for g = 45.25; We also found
parameter values of g that provide comparable mean
escape time with that of the full ABM for g = 45.25.

The estimated escape times of the identified SDE in
X̄ for g = 45.25 is much larger than any other model
(including the ABM). This might suggest that this sur-

rogate model might be unreliable. The surrogate SDE
model constructed in R+ has an escape time similar to
the model trained on ψ1.

F.4 Additional Result: Escape Times by
quadrature

In this Section we report results of the alternative ap-
proach discussed in Section F.2 to compute escape times
for one-dimensional systems. This computation of mean
escape times involves quadrature integration for the three
different SDE surrogates in X̄, R+, ψ1 coordinates, re-
spectively. The transformation is discussed in Section
F.2. The estimated mean escape times for g = 45.25
are reported here. For the SDE trained on ψ1 we got
mean 22.23. For the SDE trained on X̄ the quadrature
algorithm did not converge. For the SDE trained on R+

we got mean 39.64.

As it can be seen these results, the estimated escape
times for the SDEs on the R+ and ψ1 are comparable
to the ones obtained with the Monte-Carlo simulations
(reported in the main text in the Paragraph about Rare-
event analysis of catastrophic shifts). However, the es-

Model z β a b

σ−1X̄ 43.89 2 10.00 62.71

σ−1R+ 4.34 2 0.00 8.65

σ−1ψ1 41.87 2 36.91 48.00

Supplementary Table 1: The parameter values used
for the escape time computations with the quadrature
method across the three transformed models.

cape times obtained with the SDE trained on X̄ did not
converge because of overflow errors. The latter is due to
numerical issues that arise in the quadrature involving
the computation of the exponential of the potential in
Eq. (37).

We now discuss in more detail how the parameters α, β
and z, specifying the limits of the integrals in equation
37, were selected for the quadrature integration:

1. The parameter z indicates the point where the pro-
cess is initiated. In our case this was selected to be
the stable steady state identified by the drift network
for a fixed value of the parameter g = 45.25. We set
the value of the potential for Ue(·) to be equal to
zero.

8



SI: Task-Oriented Machine Learning Surrogates for Tipping Points of Agent-Based Models

2. The parameter β is estimated based on the diffusivity
σ of the SDE. Assuming that σ =

√
2β−1 and thus

β = 2
σ2 . Because β is being raised to an exponent for

the quadrature computations, when σ is not close
to one, numerical overflow can arise. This is the
reason we decided to perform Itô’s transformation
to the SDE mentioned in Section F.2 and shown in
Eq. (40).

3. The parameters a and b denote the limits of the
integral. For the SDEs trained on R+ and X̄ we
set a as the point beyond which the probability of
observing the trajectory is negligible. This assumes
that the potential energy becomes too large beyond
this point. We set b as the value of the state vari-
able (R+ or X̄) at which the trajectory has already
surpassed the unstable steady state. The role of a
and b for the SDE trained on ψ1 is reversed since
the potential is flipped.

In Supplementary Table 1 we report the parameters
z, β, a and b for the three SDE models. Please note that
for all those cases the parameter β was set to β = 2
because of the applied Itô’s transformation.

F.5 Details on Neural Network Architectures
for learning SDEs

In this Section, we provide a short description of the four
neural networks trained on the DMAPs coordinate ψ1,
the mean preference state X̄, the buying rate R+ and
ϕ1 to identify four different one-dimensional mean-field
SDEs. For all four networks, we used 5 hidden layers
with 32 neurons for each layer. The activation functions
for the drift neural network were selected as tanh and for
the diffusivity as softplus. The data were split 90|10
into training|validation subset.

G Details on the epidemic ABM sim-
ulations

G.1 Data collection for learning the ML
mean-field-level SIR

ABM simulations were performed using N = 10, 000
agents on an Erdös Rényi distributed network (see Sec-
tion B).

The probability λ that susceptible individuals become
infected is our bifurcation parameter. For the data set, we

selected 51 equally spaced points in the range λ ∈ (0, 0.5].
For each of the values of λ, we created a grid of 146 points
in the triangle with corners [(0, 0), (0, 1), (1, 0)]. The grid
points are concentrated close to the edges [(0, 0)− (0, 1)]
and [(0, 0)− (1, 0)] and also close to the effective unstable
steady-states, obtained by the EF approach in [20]. These
values correspond to the initial values at time t = 0 of the
densities [S0] and [I0] that are constrained by [S]+[I] ≤ 1.
These initial states are then lifted into the agents’ space,
i.e. randomly picking a fraction of [S] nodes and a
fraction of [I] nodes in the network and assigning the
corresponding state S and I. The remaining nodes are
then set as R. At each time step t of the ABM, we collect
the densities [S](t) and [I](t). Since we are dealing with
a stochastic model, for each initial condition, we ran
20 stochastic simulations of the ABM, and we averaged
along the generated copies (realizations) of the density
variables.

The ABM simulations were performed for a time in-
terval t ∈ [0, 12] with a constant time step of ∆t = 1
corresponding to 1 day in unit of time. We ignored the
first two time points, to avoid the initial “healing” tran-
sients. We thus collected a data set consisting 51 (values
of λ) ×146 (initial conditions) ×10 (time points) ×20
(copies) ≈ 1, 500, 000 data points. The estimation of the
time derivative for learning the system of ML mean-field-
level ODEs, was made with a three-point centered Finite
Difference stencil.

G.2 Data collection for learning the ML SDE
surrogate targeted in the neighborhood
of the tipping point

We have in this case, focused our attention on a smaller
region in parameter space, targeted to the tipping point,
where the dynamics is effectively one-dimensional. In
particular we have selected 21 parameter values in λ ∈
[0.2, 0.4] and for each a fixed grid of 63 initial conditions
in the box ([S0], [I0]) ∈ [0.05, 0.3]× [0.25, 0.7]. We have
also run the ABM for 20 time instants, collecting 5
different stochastic realization (we do not average in this
case, as we are interested in learning also the stochastic
nature of the dynamics). We ignored the first five time
points, to avoid the initial “healing” transients and also
to keep only the long-term dynamics that live on the one-
dimensional manifold. Therefore we obtained a data set
consisting of 21 (values of λ) ×63 (initial conditions) ×15
(time points) ×5 (different realizations) ≈ 100, 000 data
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points. However for the ML SDE surrogate, the data
were randomly subsampled to just 25, 000 data points.
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