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1. Supplementary methods 

1.1 Additional references related to the prediction of EGFR status using CT images 

1. Wang C, Ma J, Shao J, Zhang S, Liu Z, Yu Y, Li W. Predicting EGFR and PD-L1 status in NSCLC 

patients using multitask AI system based on CT images. Frontiers in immunology. 2022 Feb 

18;13:813072. 

 

2. Tan X, Li Y, Wang S, Xia H, Meng R, Xu J, Duan Y, Li Y, Yang G, Ma Y, Jin Y. Predicting EGFR 

mutation, ALK rearrangement, and uncommon EGFR mutation in NSCLC patients by driverless 

artificial intelligence: a cohort study. Respiratory Research. 2022 Dec;23(1):1-3. 

 

3. Nguyen HS, Ho DK, Nguyen NN, Tran HM, Tam KW, Le NQ. Predicting EGFR Mutation Status 

in Non–Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-

Analysis. Academic Radiology. 2023 Apr 28. 

 

4. Silva F, Pereira T, Morgado J, Frade J, Mendes J, Freitas C, Negrao E, De Lima BF, Da Silva MC, 

Madureira AJ, Ramos I. EGFR assessment in lung cancer CT images: analysis of local and holistic 

regions of interest using deep unsupervised transfer learning. IEEE Access. 2021 Apr 2;9:58667-

76.  
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1.2  Inclusion criteria, data collection timeframe, data sources, and CT scanner information for each 

cohort 

 

COHORT 1, 2, and 3 

 

Cohorts 1-3 were consecutively included between Jan. 1st, 2015, and Dec. 31, 2021. To ensure a robust and 

reliable analysis, we divided the data into three distinct cohorts based on the time periods of data collection. 

 

Cohort 1 was primarily utilised to train the AIPS-M machine learning and deep learning models, and it 

served as the foundation for our research study. Cohort 2 and Cohort 3 were reserved exclusively for 

independent testing of the trained models. This approach allowed us to evaluate the performance and 

generalizability of the models in an unbiased manner, specifically within the Indian population. 

 

Regarding the differences between the cohorts, we would like to provide more clarity. Although the data 

were collected from the same institution, there were certain variations in demographic characteristics, 

disease stages, and treatment approaches over the years. These differences may have influenced the 

outcomes and model performance, and by separating the cohorts, we aimed to capture the potential temporal 

changes in cancer-related patterns and account for them during model evaluation. 

 

The utilisation of independent testing cohorts (Cohorts 2 and 3) was essential to ensure that our machine 

learning and deep learning models could reliably predict cancer-related outcomes in a real-world setting. It 

helped validate the models' performance, minimise overfitting, and establish their robustness for use in the 

Indian clinical context. 

 

All the patients in Cohorts 1, 2 and 3 satisfied the following inclusion criteria:  

1. histologically confirmed primary lung cancer 

2. pathologic examination of tumour specimens has been carried out with proven records of EGFR 

mutation status 

3. diagnostic CT data obtained 

 

Patients were excluded if:  

1. received treatment before the CT examination 

2. the duration between the CT examination and subsequent gene sequencing exceeded one-month 

 

Technical information:  

 

1. Total number of subjects: 2066 (Cohort 1 = 1379, Cohort 2 = 591, Cohort 3 = 96) 
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2. Data collection timeframe: Retrospectively collected between January 2015 till December 2021 

 

3. Source of data: Rajiv Gandhi Cancer Institute and Research Centre, New Delhi  

 

4. Scanner manufacturer and model:  

 

Manufacturer Name Model Name 

GE Medical Systems Discovery 600, Discovery 610, Discovery MI, Discovery 

ST, Discovery STE 

Philips GEMINI TF TOF 64, TruFlight Select, Ingenuity TF 

PET/CT 

Siemens 1080, 1093, Biograph 16, Biograph 20, Biograph 

20_mCT, Biograph 40, Biograph 64, Biograph 64_mCT, 

Biograph16_TruePoint, Biograph20, Biograph20_mCT, 

Biograph40_TruePoint 

 

 

5. CT scanning parameters:  

a. Slice thickness: CT images with slice thicknesses equal to 5mm and 1mm were included 

b. Peak voltage:  Information not available in the DICOM metadata. 

c. X-ray tube current:  Information not available in the DICOM metadata. 

 

6. Mutational Testing: The subjects diagnosed with lung carcinoma were subjected to EGFR testing 

by the therascreen EGFR Mutation detection kit as per manufacturer recommendations for tissue 

genotyping, plasma-based genotyping by Roche cobas V2 and bioRAD droplet digital PCR. 

 

7. Clinical data: The hospital’s medical records were used to determine the patient’s clinical data 

such as age, gender, smoking status, and histology.  

 

COHORT 4 

 

All the patients in Cohort 4 satisfied the following inclusion criteria:  

1. Data in the TCIA cohort 4 (Stanford Hospital) is publicly available. All 211 patients who have both 

EGFR gene detection and thick CT images were included (168 EGFR-wild type patients and 43 

EGFR-mutant patients). 

 

Technical information: 

1. Total number of subjects: 211 

 

2. Data collection timeframe: Subjects were recruited between April 7th, 2008 and September 15th, 
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2012 (Bakr et al., 2018). 

 

3. Source of data: Stanford University School of Medicine, Stanford, California, United States and 

Veterans Affairs Healthcare System, Palo Alto, California, United States 

 

4. Scanner manufacturer and model: The choice of scanners varied depending on the institution and 

the preferences of the physicians, and scanning protocols also differed among them (Bakr et al., 

2018). 

 

5. CT scanning parameters:  

a. Slice thickness:  0.625–3 mm (median: 1.5 mm) 

b. Peak voltage: 80–140 kVp (mean 120 kVp). 

c. X-ray tube current: 124–699 mA (mean 220 mA) 

 

6. Mutational Testing: Single nucleotide mutation detection was performed using SNaPshot 

technology based on a dideoxy single-base extension of oligonucleotide primers after multiplex 

polymerase chain reaction (PCR). Exons 18, 19, 20 and 21 were tested for EGFR mutations. 

 

 

COHORT 5 

 

All the patients in Cohort 5 satisfied the following inclusion criteria:  

1. Both standard-dose diagnostic CT scans and lower-dose CT scans from lung cancer screening 

examinations were considered acceptable for inclusion in the dataset.  

2. For each scan included in the Database, a crucial requirement was that the collimation and 

reconstruction interval should not exceed 3 mm.  

 

Technical Information: 

1. Total number of patients: 1018 

 

2. Data collection timeframe: NA (Not provided by the authors) 

 

3. Source of data: A collaborative effort involving seven academic centres and eight medical imaging 

companies was undertaken to identify, address, and resolve complex organisational, technical, and 

clinical issues. The objective was to establish a strong foundation for a comprehensive database 

(Armato et al., 2011).  

 

4. Scanner manufacturer and model: The dataset comprised scans from various scanner 

manufacturers and models. Specifically, it included 670 scans from seven different GE Medical 

Systems LightSpeed scanner models, 74 scans from four different Philips Brilliance scanner 

models, 205 scans from five different Siemens Definition, Emotion, and Sensation scanner models, 

and 69 scans from Toshiba Aquilion scanners (Armato et al., 2011). 

 

5. CT scanning parameters:  
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a. Slice thickness: 0.6 mm (n=7), 0.75 mm (n=30), 0.9 mm (n=2), 1.0 mm (n=58), 1.25 mm 

(n=349), 1.5 mm (n=5), 2.0 mm (n=124), 2.5 mm (n=322), 3.0 mm (n=117), 4.0 mm (n=1), 

and 5.0 mm (n=3). 

b. Peak voltage: 120 kV (n=818), 130 kV (n=31), 135 kV (n=69), and 140 kV (n=100) 

c. X-ray tube current: 40–627 mA (mean 222.1 mA)  

 

6. Estimated size range of the lung nodules: As per the annotated Cohort  5 [n = 1010] received from 

the expert radiologists, the estimated range of the nodules is 3 mm to 30 mm (Armato et al., 2011). 
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1.3  Potential solutions to tackle systematic differences due to site, scanner, and scanning parameters 

The following are the potential solutions to tackle systemic differences due to site, scanner, and scanning 

parameters: 

1. Standardisation of Acquisition Parameters: Ensuring that the acquisition parameters, such as 

voxel size, field of view, and slice thickness, are standardised across all sites. This step helps to 

minimise variations that can arise due to differences in scanning protocols. 

2. Image Preprocessing: Preprocessing techniques like intensity normalisation and image 

registration may have been used to align the images and make them consistent across cohorts. 

Intensity normalisation ensures that pixel values have a common scale, while image registration 

corrects for spatial misalignments between images.   

3. Feature Extraction: Instead of using raw pixel values directly, features may have been extracted 

from the images to capture relevant information while reducing the impact of site-specific 

variations. Common feature extraction techniques include texture analysis, shape analysis, and 

radiomic features.    

4. Domain Adaptation: Advanced techniques like domain adaptation or transfer learning might have 

been applied to make the model more robust to domain shifts between different sites. These 

methods enable the model to learn from both source and target domains, effectively mitigating the 

effects of site-related differences. 

5. Data Augmentation: Data augmentation techniques may have been used to artificially increase 

the size of the dataset, ensuring a more diverse representation of imaging data from different sites. 

This helps the model generalise better to unseen data. 

6. Multi-Site Validation: To assess the model's performance on unseen data from different sites, a 

multi-site validation approach might have been employed. This involves training the model on data 

from one or more sites and testing it on data from a different site, allowing the evaluation of cross-

site generalisation. 

7. Cohort-Specific Model Fine-Tuning: Depending on the extent of site-specific variations, cohort-

specific fine-tuning of the model might have been performed. This process adapts the model's 

parameters to the peculiarities of each cohort while ensuring a certain level of generalizability. 

We applied rescaling and windowing techniques to DICOM images before training the object detection 

models. The sequence involved the following steps: 
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1. Rescaling: We normalised the intensity values of the DICOM images to a standardised range 

(between 0 and 255). This step ensured that the object detection models received input with 

consistent intensity ranges across images in different cohorts and avoided any biases resulting from 

varying intensity scales.  

2. Windowing: We applied windowing to adjust the intensity ranges of the DICOM images based on 

the specific visualisation requirements. We selected an appropriate window width and level so that 

we can emphasise certain structures or pathologies while suppressing others, enhancing the 

visibility of the relevant information for the object detection model. 

By applying rescaling followed by windowing, we optimised the data representation for training an object 

detection model. 
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1.4 Enhancing Cohort 5 representativeness for AIPS-N model generalisation: standardisation, 

diversity, and harmonisation strategies 

Steps taken to ensure the representativeness of Cohort 5 for training the AIPS-N model and its subsequent 

generalisation to Cohorts 1-4: 

1. Image Format and Consistency: All images within Cohorts 1-5 adhere to a uniform CT format 

and are stored in 3D DICOM format. This standardisation guarantees that input for the AIPS-N 

model remains consistent, mitigating any potential disparities in image data. 

 

2. Nature of Images: Confirming the reviewer's observation, we affirm that all images across these 

cohorts are exclusively focused on lung cancer cases. This singular emphasis ensures direct 

relevance to the training process for the AIPS-N model. 

 

3. Comprehensive Selection Process: The selection of Cohort 5 was meticulously undertaken to 

encompass a diverse spectrum of lung cancer scenarios, mirroring those present in Cohorts 1-4. 

The selection process factored in various clinical aspects, lesion attributes, and patient 

demographics. This approach aimed to minimise bias resulting from concentrating solely on 

specific subsets of cases. 

 

4. Global Diversity: Importantly, Cohort 5's images were collected from diverse geographical 

locations worldwide. This global inclusion introduces ethnic diversity, enriching the dataset's 

representation. 

 

5. Data Harmonization Techniques: It is noteworthy that data harmonisation techniques were 

employed across all cohorts to enhance consistency. Rescaling normalised intensity values to a 

standardised range (0 to 255), ensuring uniformity, while windowing adjusted intensity ranges 

based on visualisation needs. This technique emphasised specific structures or pathologies, 

enhancing information visibility for object detection models. 

In summary, the careful curation of Cohort 5, standardised image format, consistent focus on lung cancer, 

global diversity, and data harmonisation collectively underscore its representativeness. These measures 

synergistically contribute to the AIPS-N model's capacity for effective generalisation across diverse 

cohorts, aligning with our aim to ensure accuracy and applicability in various lung cancer scenarios. 
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1.5 Comprehensive 3D Image Annotation for Lung Cancer Nodules by Radiologists: Blinded-Read 

and Unblinded-Read Phases 

Each subject in the study was associated with both a clinical thoracic CT scan and an XML file containing 

the results of a comprehensive two-phase image annotation process. This annotation process involved the 

participation of four experienced thoracic radiologists.  

During the initial blinded-read phase, each radiologist independently reviewed every CT scan in a blind 

manner. They carefully examined the scans and marked any identified lesions belonging to one of three 

specific categories: "nodule greater than or equal to 3 mm," "nodule less than 3 mm," and "non-nodule 

greater than or equal to 3 mm." The purpose of this phase was to capture the individual radiologists' 

independent interpretations and annotations without any influence or bias from other radiologists.  

Following the blinded-read phase, the study proceeded to the subsequent unblinded-read phase. In this 

phase, each radiologist independently reviewed their own initial marks alongside the anonymized 

annotations made by the other three radiologists. The radiologists had access to all the marks, allowing 

them to consider multiple perspectives and opinions. 

During the unblinded-read phase, each radiologist carefully reviewed and assessed the combined 

annotations to render their final opinion on the presence and classification of lung nodules in each CT scan. 

The goal of this phase was to leverage the collective expertise and insights of the four radiologists to identify 

lung nodules as comprehensively as possible. The process aimed to capture a diverse range of opinions 

without enforcing a forced consensus among the radiologists. 

By conducting this two-phase image annotation process, the study aimed to maximise the identification of 

lung nodules while accommodating the inherent variability in radiologists' interpretations and opinions. 

This approach allowed for a comprehensive evaluation of the lung nodules present in each CT scan while 

acknowledging the importance of individual expertise and diverse perspectives within the radiology 

community. 
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1.6  Hyperparameters tuned while training the Faster R-CNN model.  

● Number of GPUs 

cfg.SOLVER.REFERENCE WORLD SIZE = 2 

 

● Number of data loading threads 

cfg.DATALOADER.NUM_WORKERS = 4 

 

● Number of images per batch 

cfg.SOLVER.IMS_PER_BATCH = 4 

 

● Base learning rate 

cfg.SOLVER.BASE_LR = 0.0125  

 

● Number of iterations  

cfg.SOLVER.MAX_ITER = 100  #1500 No. of iterations   

 

● Number of ROI heads batches per image 

cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 256 

 

● Number of classes  

cfg.MODEL.ROI_HEADS.NUM_CLASSES corresponds to the number of classes in each 

property (Table 2) 

 

● No. of iterations after which the validation set is evaluated 

cfg.TEST.EVAL_PERIOD = 100  

 

All other configurations are kept as default from Detectron2. Interested readers can refer to Detectron2’s 

documentation page for further details about these default configurations.  
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1.7 Merging AIPS-N Scores with clinical factors  

 

The AIPS-N scores are generated for the five nodule features including malignancy, margin, sphericity, 

spiculation, and texture. It is important to note that different nodules have different AIPS-N scores assigned 

to each feature, for example, a nodule could be assigned a score of 2 (moderately unlikely) for malignancy 

as shown in the following table.  

 

Feature 

name 
Score = 1 Score = 2 Score = 3 Score = 4 Score = 5 

Sphericity Linear Ovoid/Linear Ovoid Ovoid/Round NA 

Margin Poorly Defined 
Near Poorly 

Defined 
Medium Margin Near Sharp Sharp 

Texture Non-Solid/GGO Non-Solid/Mixed 
Part 

Solid/Mixed 
Solid/Mixed Solid 

Malignancy Highly Unlikely 
Moderately 

Unlikely 
Indeterminate 

Moderately 

Suspicious 

Highly 

Suspicious 

Spiculation No Spiculation 
Nearly No 

Spiculation 

Medium 

Spiculation 

Near Marked 

Spiculation 

Marked 

Spiculation 
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1.8 Imputation of missing categorical and numerical data 

The AIPS-N scores of each nodule are combined with the patient’s clinical factors which include age, 

gender, the status of smoking, and histology. The AIPS-N scores combined with the clinical factors of each 

patient, result in merged data with 9 input features as depicted below:  

 

Nodule Age# Gender* Smoking* Histology* Sphericity* Margin* Texture* Malignancy* Spiculation* 

1 57 M Non-smoker Adenocarcinoma 2 5 2 1 5 

2 66 F Smoker Squamous Cell 
Carcinoma 

4 4 4 5 3 

#Numerical variable  

*Categorical variable  

 

In our case, the missingness is not systematic or related to certain data characteristics (e.g., certain 

categories in the categorical variables or specific ranges in the numerical variables). Plus, the missingness 

appears to be random and not related to any observable factors, therefore it is reasonable to consider it as 

Missing Completely At Random (MCAR).  

 

For MCAR data, using the mean value as an imputation strategy to impute numerical variables is reasonable 

because it preserves the central tendency of the variable. By filling in missing values with the mean, we 

maintain the overall average value, which helps to minimise the potential bias in subsequent analyses. For 

categorical data, imputing missing values with the value that appears most frequently (mode) is a logical 

choice. This is because the mode represents the most common category in the dataset. By assigning the 

mode to the missing values, we maintain the distribution and frequency of the categories, thus preserving 

the overall pattern and preventing any undue influence on subsequent analyses (Haukoos et al., 2007). 
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1.9 Optimum value of deep learning parameters 

 

● Number of hidden layers = 2 

● Number of units = 1900 

● Weights regularisation with the ‘l2’ regularisation function 

● Bias regularisation with the 'l1_l2' regularisation function 

● Weights constraint with max-norm having a value of 2 

● Bias constraint with max-norm having a value of 1 

● Weights initialization with ‘glorot_uniform' 

● Learning rate = 0.01 

● Stepsize = 150 

● Decay rate = 0.2 

● Stair = False 

● Epsilon = 1e-07 

● Tuner/epochs = 2 

● Tuner/initial epoch = 0 

● Tuner/bracket = 6 

● Tuner/round = 0 
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1.10 Training, validation, and testing using Cohort 4 

 

Merged data from 211 patients in Cohort 4 (White population) including the number of features, and the 

number of wild-type and mutant samples: 

 

Total number of patients Number of input features 
Wild-type samples  Mutant samples 

211 9 168 43 

 

Cohort 4 with balanced classes after re-sampling of data using RandomOversampler (Ghorbani et al., 

2020): 

 

Before random oversampling 

Wild-type samples  Mutant samples Total 

168 43 211 

After random oversampling 

168 168 336 

 

Cohort 4 split into training, validation, and testing subsets:  

 

Training subset Validation subset Testing subset 

Wild-type 

samples  

Mutant 

samples 

Wild-type 

samples  

Mutant 

samples 

Wild-type 

samples  

Mutant 

samples 

117 118 31 20 20 30 
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1.11 Techniques to avoid data leakage 

Data leakage is a critical issue in machine learning training that can lead to overestimation of model 

performance and invalid results. To avoid data leakage, we used the following techniques: 

1. Train-Validation Split: We ensured a proper separation between the training and validation datasets 

before any preprocessing or feature engineering. The validation set was only used for evaluation, 

and no information from it was used during training. Additionally, a testing set (holdout set)1 was 

kept separate from the rest of the data and was only used to evaluate the model's performance after 

it had been trained. 

2. Cross-Validation: We used K-fold cross-validation (Xiong et al., 2020) for evaluating the 

performance of the models by training them on multiple subsets of the data.  

3. Feature Engineering: We conducted feature scaling and normalisation on the training set and then 

applied to the test set. 

4. Data Imputation: If missing data imputation seemed necessary, we filled in missing values based 

on information from the training set only (Haukoos et al., 2007).  
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1.12 Factors that may have contributed to the comparatively poorer precision and F1 score in Cohort 

3, as compared to Cohort 2, for the AIPS-M ML model trained using Cohort 1 

The cause could be due to data imbalance, data distribution shift, feature relevance, data quality, model, 

and domain shift. As per our analysis, there are two major differences between Cohort 2 (C2) [n = 591] and 

Cohort 3 (C3) [n = 96]. First, the total number of samples in Cohort 3 is very less than the number of 

samples in Cohort 2. Second, the presence of a class imbalance in Cohort 3, with unequal representation of 

positive and negative cases, can affect the precision and F1 score. A disproportionate number of instances 

in one class could lead to biased predictions and lower performance metrics.  

Cohort  Number of positive 

samples 

Number of negative 

samples 

The ratio of positive and 

negative samples 

Cohort 2  305 286 51.6 : 48.4 

Cohort 3 27 69 28.13 : 71.87  

C2 + C3 332 355 48.23 : 51.77 

 

In a separate experiment, we combined validation Cohort 2 and Cohort 3 to form a balanced validation 

cohort, ensuring an equal representation of samples from both cohorts. The trained ML models were then 

validated using this merged cohort, and the obtained results are as follows: 

Algorithm AUC Accuracy F1 score Precision Recall 

SVM 0.69 0.67 0.7 0.63 0.8 

Random Forest 0.87 0.86 0.87 0.82 0.92 

Decision Tree Classifier 0.84 0.84 0.84 0.79 0.91 

XGB 0.86 0.86 0.86 0.8 0.92 

Randomised Search CV 0.87 0.86 0.87 0.82 0.92 

GridSearchCV 0.87 0.86 0.87 0.82 0.92 

 
In the merged cohort, both the F1 score and precision exhibit notably higher values when compared to 

Cohort 3 and are comparable to the values observed in Cohort 2.  
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1.13 Rationale for developing AIPS-M models for the Indian and White populations separately 
 

Developing AIPS-M models separately for the Indian and White populations is based on the understanding 

that population-specific characteristics and variations can influence model performance and 

generalizability. This approach ensures that the models are tailored to each population's unique features and 

improves accuracy. The decision to develop them separately for the Indian and White populations depends 

on factors such as data availability and potential population-specific differences in imaging features.  

However, the AIPS-N was not developed separately for the Indian and White populations. The AIPS-

Nodule (AIPS-N) model was developed using the LIDC-IDRI CT image dataset (Cohort 5) from TCIA 

(The Cancer Imaging Archive). This dataset consisted of 1010 patients and a total of 244,527 images. If 

there are sufficient annotated data and indications of population-specific variations, developing separate 

AIPS-N models can capture these nuances and enhance performance.  
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2. Supplementary figures 

2.1 CT slice, corresponding mask and annotation 

 
Supplementary Figure S1: The figure depicts the corresponding mask (B) and annotation (C) (JSON 

format) of a CT slice (A) 
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2.2 Contrast between a CT slice before and after preprocessing (windowing) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S2: The contrast between a CT image before preprocessing and after setting the 

window width to 1500 HU and window level to -500 HU for the evaluation of lung parenchyma 
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2.3 Diagram with combined results (AUC) of ML models and the DL model trained using Cohort 1 

Supplementary Figure S3: Combined results (AUC metric) of ML models and the DL model trained using 

Cohort 1  
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2.4 Diagram with performance metrics obtained from all the machine learning algorithms trained 

using Cohort 1 (Indian population) on the validation subset 

 

 
 

Supplementary Figure S4: Performance metrics obtained from all the machine learning algorithms 

trained using Cohort 1 (Indian population) on the validation subset.  
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2.5 Diagram with performance metrics obtained from all the machine learning (ML) algorithms on 

the testing Cohort 2, consisting of the Indian population 

 

 
Supplementary Figure S5: Performance metrics obtained from all the machine learning (ML) 

algorithms on the testing Cohort 2, consisting of the Indian population.  
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2.6 Diagram with performance metrics obtained from all the machine learning (ML) algorithms 

applied to the testing Cohort 3, consisting of the Indian population. 

 

 
Supplementary Figure S6: Performance metrics obtained from all the machine learning (ML) 

algorithms applied to the testing Cohort 3, consisting of the Indian population.  
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2.7 Diagram with testing metrics obtained from all the machine learning (ML) models applied to the 

validation Cohort 4, consisting of the White population 

 

 

 
Supplementary Figure S7: Testing metrics obtained from all the machine learning (ML) models 

applied to the validation Cohort 4, consisting of the White population. This evaluation allowed us 

to assess and compare the performance of the ML algorithms in predicting outcomes specifically 

within the White population. 
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2.8 Diagram with performance metrics obtained from the DL model applied to testing Cohort 2 and 

Cohort 3, consisting of the Indian population and Cohort 4, consisting of the White population 

 

 

 
Supplementary Figure S8: Performance metrics obtained from the DL model applied to testing 

Cohort 2 and Cohort 3, consisting of the Indian population and Cohort 4, consisting of the White 

population.  
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2.9 Diagram with performance metrics obtained from all the machine learning (ML) algorithms 

trained using Cohort 4 (White population) on the validation subset 

 

Supplementary Figure S9A: Performance metrics obtained from all the machine learning (ML) 

algorithms trained using Cohort 4 (White population) on the validation subset  
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2.10 Diagram with performance metrics obtained from all the machine learning (ML) algorithms 

trained using Cohort 4 (White population) on the testing subset 

 

 

 

 

Supplementary Figure S9B: Performance metrics obtained from all the machine learning (ML) 

algorithms trained using Cohort 4 (White population) on the testing subset  
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2.11 Diagram with performance metrics obtained from the DL algorithm trained using Cohort 4 

(White population) on the validation and testing subsets 

 

 

Supplementary Figure S10: Performance metrics obtained from the DL algorithm trained using 

Cohort 4 (White population) on the validation and testing subsets  
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2.12 A magnified version of the predictions made by the AIPS-N model 

 

 

Supplementary Figure S11: A magnified version of the predictions made by the AIPS-N model. 

The zoom level, which refers to the degree to which an image or object is enlarged compared to 

its original size, is set at 2x. 
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3. Supplementary Tables 

3.1 Division of images and annotations into training, validation, and testing subsets for each feature. 

 

Sr. No. Feature Total images Images in the 

training subset 

Images in the 

validation subset 

Images in the 

testing subset 

1. Malignancy 3817 2671 573 573 

2. Margin 3817 2671 573 573 

3. Sphericity 3817 2671 573 573 

4. Spiculation 3817 2671 573 573 

5. Texture 3817 2671 573 573 
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3.2 The number of images in the training subset were balanced according to the class with the fewest 

images to mitigate the influence of class imbalance on the model’s performance 

Feature name Total images Images in the 

training subset 

Images in the 

validation subset 

Images in the 

testing subset 

Malignancy 1501 355 573 573 

Margin 1626 480 573 573 

Spiculation 1451 305 573 573 

Sphericity 1978 832 573 573 

Texture 1596 450 573 573 
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3.3 Merged data from 1379 Indian patients in Cohort 1 including the number of features, and the 

number of wild-type and mutant samples.   

 

Total number of patients Number of input features 
Wild-type samples  Mutant samples 

1379 9 699 680 
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3.4 Cohort 1 with balanced classes after re-sampling of data using RandomOversampler  

 

Before using RandomOversampler (Ghorbani et al., 2020) 

Wild-type samples  Mutant samples Total 

699 680 1379 

After using RandomOversampler (Ghorbani et al., 2020) 

699 699 1398 
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3.5 Cohort 1 split into training and validation subsets  

 

Training subset Validation subset 

Wild-type samples  Mutant samples Wild-type samples  Mutant samples 

489 489 210 210 
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3.6 Performance metrics of the AIPS-M ML models trained using Cohort 1 (Indian population) in 

predicting EGFR genotype in the validation subset  

 

Algorithm AUC 

AUC 95% 

CI* Accuracy 

Accuracy 

95% CI* F1 score 

F1 score 

95% CI* Precision 

Precision 

95% CI* Recall 

Recall 95% 

CI* 

SVM 

(Morgado et 

al., 2021) 0.7 0.64 to 0.76 0.7 0.64 to 0.76 0.73 0.67 to 0.79 0.71 

0.64 to 

0.78 0.75 0.69 to 0.81 

Random 

Forest (Jia et 

al., 2019) 0.89 0.85 to 0.92 0.89 0.85 to 0.92 0.9 0.88 to 0.92 0.89 

0.87 to 

0.91 0.91 0.89 to 0.93 

Decision Tree 

Classifier 

(Anzar et al., 

2019) 0.86 0.82 to 0.90 0.86 0.82 to 0.90 0.88 0.86 to 0.90 0.84 

0.81 to 

0.87 0.92 0.90 to 0.94 

XGB 

(Morgado et 

al., 2021) 0.88 0.85 to 0.91 0.88 0.85 to 0.91 0.9 0.88 to 0.92 0.87 

0.84 to 

0.90 0.91 0.89 to 0.93 

Randomised 

Search CV 0.88 0.85 to 0.91 0.88 0.85 to 0.91 0.89 0.88 to 0.91 0.86 

0.84 to 

0.88 0.9 0.89 to 0.91 

GridSearchC

V (Ventura 

et al., 2021) 0.88 0.85 to 0.91 0.88 0.85 to 0.91 0.9 0.88 to 0.92 0.89 

0.87 to 

0.91 0.89 0.88 to 0.90 

 

*Confidence Interval 
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3.7 Performance metrics of the AIPS-M ML in predicting EGFR genotype in the testing Cohort 2 

(Indian population) 

 

Algorithm AUC 

AUC 95% 

CI* Accuracy 

Accuracy 

95% CI* F1 score 

F1 score 

95% CI* Precision 

Precision 

95% CI* Recall 

Recall 95% 

CI* 

SVM (Morgado 

et al., 2021) 0.71 0.67 to 0.74 0.71 0.67 to 0.74 0.75 0.72 to 0.78 0.69 0.64 to 0.74 0.82 0.77 to 0.87 

Random Forest 

(Jia et al., 2019) 0.9 0.84 to 0.94 0.9 0.84 to 0.94 0.91 0.88 to 0.94 0.87 0.84 to 0.90 0.96 0.93 to 0.99 

Decision Tree 

Classifier 

(Anzar et al., 

2019) 0.87 0.84 to 0.89 0.87 0.84 to 0.89 0.89 0.86 to 0.92 0.82 0.78 to 0.86 0.96 0.93 to 0.99 

XGB (Morgado 

et al., 2021) 0.86 0.83 to 0.89 0.86 0.83 to 0.89 0.87 0.84 to 0.90 0.83 0.81 to 0.85 0.92 0.90 to 0.94 

Randomised 

Search CV 0.91 0.88 to 0.94 0.91 0.88 to 0.94 0.91 0.88 to 0.94 0.89 0.86 to 0.92 0.95 0.93 to 0.97 

GridSearchCV 

(Ventura et al., 

2021) 0.90 0.87 to 0.93 0.90 0.87 to 0.93 0.91 0.88 to 0.94 0.88 0.85 to 0.91 0.95 0.93 to 0.97 

 

*Confidence Interval  
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3.8 Performance metrics of the AIPS-M ML in predicting EGFR genotype in the testing Cohort 3 

(Indian population).  

 

Algorithm AUC 

AUC 95% 

CI* Accuracy 

Accuracy 

95% CI* F1 score 

F1 score 

95% CI* Precision 

Precision 95% 

CI* Recall 

Recall 95% 

CI* 

SVM 

(Morgado et 

al., 2021) 0.59 0.52 to 0.66 0.49 0.40 to 0.58 0.45 0.36 to 0.54 0.31 0.23 to 0.39 0.79 0.70 to 0.88 

Random Forest 

(Jia et al., 

2019) 0.72 0.67 to 0.77 0.76 0.72 to 0.80 0.58 0.53 to 0.63 0.54 0.48 to 0.59 0.63 0.57 to 0.69 

Decision Tree 

Classifier 

(Anzar et al., 

2019) 0.7 0.60 to 0.70 0.74 0.68 to 0.79 0.56 0.51 to 0.61 0.5 0.44 to 0.56 0.63 0.57 to 0.69 

XGB 

(Morgado et 

al., 2021) 0.88 0.85 to 0.91 0.84 0.81 to 0.87 0.78 0.75 to 0.81 0.65 0.62 to 0.68 0.96 0.92 to 0.99 

Randomised 

Search CV 0.72 0.67 to 0.77 0.77 0.73 to 0.81 0.59 0.54 to 0.64 0.56 0.50 to 0.62 0.62 0.58 to 0.66 

GridSearchCV 

(Ventura et al., 

2021) 0.72 0.67 to 0.77 0.77 0.73 to 0.81 0.59 0.54 to 0.64 0.56 0.50 to 0.62 0.62 0.58 to 0.66 

 

*Confidence Interval 
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3.9 Performance metrics of the AIPS-M ML in predicting EGFR genotype in the testing Cohort 4 

(White population)    

 

Algorithm AUC 

AUC 95% 

CI* Accuracy 

Accuracy 

95% CI* F1 score 

F1 score 

95% CI* Precision 

Precision 

95% CI* Recall 

Recall 95% 

CI* 

SVM (Morgado 

et al., 2021) 0.70 

0.62 to 

0.78 0.70 0.63 to 0.77 0.69 0.61 to 0.77 0.72 0.64 to 0.79 0.66 0.59 to 0.73 

Random Forest 

(Jia et al., 2019) 0.92 

0.88 to 

0.96 0.92 0.89 to 0.95 0.92 0.89 to 0.95 0.90 0.87 to 0.93 0.94 0.91 to 0.97 

Decision Tree 

Classifier (Anzar 

et al., 2019) 0.84 

0.80 to 

0.88 0.84 0.81 to 0.87 0.85 0.82 to 0.88 0.78 0.74 to 0.82 0.94 0.91 to 0.97 

XGB (Morgado 

et al., 2021) 0.64 

0.59 to 

0.69 0.69 0.66 to 0.72 0.42 0.37 to 0.47 0.34 0.31 to 0.37 0.56 0.52 to 0.60 

Randomised 

Search CV 0.93 

0.90 to 

0.96 0.93 0.90 to 0.96 0.93 0.90 to 0.96 0.92 0.89 to 0.95 0.94 0.91 to 0.97 

GridSearchCV 

(Ventura et al., 

2021) 0.93 

0.90 to 

0.96 0.93 0.90 to 0.96 0.93 0.90 to 0.96 0.92 0.89 to 0.95 0.94 0.91 to 0.97 

 

*Confidence Interval  



 

42 

3.10 Performance metrics of the AIPS-M deep learning (DL) model in predicting EGFR genotype in 

Cohorts 2 and 3 (Indian population) and Cohort 4 (White population) 

 

 AUC Accuracy 

Cohort 2 (n=591) 0.79 0.8 

Cohort 3 (n=96) 0.79 0.79 

Cohort 4 (n=211) 0.9 0.89 
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3.11 Training and testing of ML and DL algorithms using only the clinical factors to evaluate their 

performance compared to models trained with both clinical factors and AIPS-N scores 

 

Performance metric of models trained using 

Cohort 1 (Indian population) 

With clinical factors 

only 

With clinical factors 

and AIPS-N scores  

Average AUC value of ML models on the validation 

subset  

0.73 0.85 

Average AUC value of ML models on the testing 

Cohort 2 (Indian population) 

0.72 0.86 

Average AUC value of ML models on the testing 

Cohort 3 (Indian population) 

0.64 0.72 

Average AUC value of ML models on the testing 

Cohort 4 (White population) 

0.6 0.83 

AUC value of the DL model on the validation subset  0.79 0.86 

AUC value of the DL model on the testing Cohort 2 

(Indian population) 

0.7 0.79 

AUC value of the DL model on the testing Cohort 3 

(Indian population) 

0.57 0.79 

AUC value of the DL model on the testing Cohort 4 

(White population) 

0.61 0.9 
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3.12 Performance metrics obtained from all the machine learning (ML) algorithms trained using 

Cohort 4 (White population) on the validation subset  

 

Algorithm AUC 

AUC 95% 

CI* Accuracy 

Accuracy 

95% CI* F1 score 

F1 score 95% 

CI* Precision 

Precision 95% 

CI* Recall 

Recall 

95% CI* 

SVM (Morgado 

et al., 2021) 0.7 0.63 to 0.77 0.7 0.57 to 0.74 0.65 0.51 to 0.70 0.6 0.44 to 0.65 0.7 

0.57 to 

0.73 

Random Forest 

(Jia et al., 2019) 0.89 0.86 to 0.92 0.88 0.84 to 0.91 0.86 0.82 to 0.90 0.82 0.78 to 0.86 0.9 

0.87 to 

0.93 

Decision Tree 

Classifier 

(Anzar et al., 

2019) 0.82 0.78 to 0.86 0.8 0.75 to 0.85 0.78 0.73 to 0.83 0.69 0.60 to 0.77 0.9 

0.87 to 

0.93 

XGB (Morgado 

et al., 2021) 0.85 0.80 to 0.90 0.84 0.78 to 0.90 0.81 0.76 to 0.86 0.75 0.70 to 0.80 0.9 

0.86 to 

0.94 

Randomised 

Search CV 0.8 0.77 to 0.83 0.8 0.76 to 0.84 0.76 0.73 to 0.80 0.73 0.71 to 0.76 0.8 

0.81 to 

0.89 

GridSearchCV 

(Ventura et al., 

2021) 0.82 0.78 to 0.86 0.82 0.77 to 0.86 0.78 0.75 to 0.83 0.76 0.73 to 0.79 0.8 

0.82 to 

0.89 

 

*Confidence Interval 
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3.13 Performance metrics obtained from all the machine learning (ML) algorithms trained using 

Cohort 4 (White population) on the testing subset  

 

Algorithm AUC 

AUC 95% 

CI* Accuracy 

Accuracy 

95% CI* F1 score 

F1 score 

95% CI* Precision 

Precision 95% 

CI* Recall 

Recall 

95% CI* 

SVM 

(Morgado et 

al., 2021) 0.6 0.43 to 0.57 0.59 0.49 to 0.69 0.6 0.49 to 0.61 0.7 0.57 to 0.73 0.53 0.38 to 0.68 

Random Forest 

(Jia et al., 

2019) 0.95 0.92 to 0.98 0.96 0.93 to 0.99 0.97 0.94 to 0.99 0.94 0.91 to 0.97 1 0.97 to 1.00 

Decision Tree 

Classifier 

(Anzar et al., 

2019) 0.9 0.85 to 0.95 0.92 0.88 to 0.96 0.94 0.90 to 0.98 0.88 0.83 to 0.93 1 0.97 to 1.00 

XGB 

(Morgado et 

al., 2021) 0.92 0.88 to 0.96 0.94 0.90 to 0.98 0.95 0.92 to 0.98 0.9 0.86 to 0.94 1 0.97 to 1.00 

Randomised 

Search CV 0.83 0.81 to 0.87 0.9 0.86 to 0.94 0.92 0.89 to 0.95 0.88 0.84 to 0.92 0.97 0.94 to 0.99 

GridSearchCV 

(Ventura et al., 

2021) 0.88 0.83 to 0.91 0.9 0.87 to 0.93 0.92 0.89 to 0.95 0.88 0.84 to 0.92 0.97 0.94 to 0.99 
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3.14 Performance metrics obtained from the deep learning (DL) algorithm trained using Cohort 4 

(White population) on the validation and testing subsets 

 AUC Accuracy 

Validation subset 0.9 0.82 

Testing subset 0.86 0.88 
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Table 3.15: Predictions of the AIPS-M model 

 

Sr. No. Algorithm Prediction 

1. Support Vector Machine (SVM) True Positive 

2. Random Forest True Positive 

3. Decision Tree Algorithm True Positive 

4. Grid Search Cross-Validation True Positive 

5. Randomised Search Cross-Validation True Positive 
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