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Support materials

1 Optimization of the scMNMF model
Since the scMNMF objective function is non-convex, we use an iterative
strategy to solve it, where one variable is optimized by fixing the other
variables, and the iterations continue until the algorithm converges to reach
the termination standard. The objective function is as follows
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let Φ1,Φ2,Φ3 be the Lagrange multiplier for constraints W ≥ 0,B ≥
0, F ≥ 0, then Lagrange L of scMNMF objective function is
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Considering the presence of the L1-norm, here we use the ADMM
(Alternating Direction Method of Multipliers) algorithm to optimize this
problem. Take into account the Karush-Kuhn-Tucker (KKT) conditions,
and then calculating the partial derivatives of W,Hk, B, F , respectively,
we have
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where σ, σ1 > 0 are penalty parameter, T, Tk are Lagrange
multiplier.Then we can get the update rules and summarize the algorithm
as follows

2 Convergence analysis
We conducted a convergence analysis on the iterative formulas of each
variable obtained by the alternating iterative method. For each variable,
we discussed its convergence and attempted to find the optimal solution.
Here, we will only discuss W, and the same applies to Hk, B, andF .
Construct a auxiliary function G(W,W t), let diagonal matrix
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take the second-order Taylor expansion of F (W ).

Algorithm 1 Optimize our proposed model by alternatingly updating
1: Input: single-cell multi-omics data matrix Xk , parameters p, k1, α.
2: Initialize: InitializeW,Hk, B, F , maximum number of iterations and

stop error.
3: Iterate the following processes until convergence:
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where Soft(x) := sgn(x)(|x| − y)+, (x)+ = max(x, 0)

4: Output: W,Hk, B, F
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The following is a proof that matrix Mij is positive semi-definite.
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Consequently, it converges in accordance with the iterative process.

3 Parameter selection
The parameters p, k1 represent the number of latent variables used for
dimension reduction and the number of clusters (i.e., the number of cell
types). For the parameter p, we use the instability-based NMF model to
calculate the specific value. scMNMF algorithm runs t times with random
initial solutions and gets t basis matrices, denoted as M1, · · · ,Mt.
Support two matrices M1 and M2, a t × t matrix G is defined where
the element gij is the cross correlation between the i-th column of the
matrix M1 and the j-th column of matrix M2. Then the dissimilarity
between M1 and M2 is defined as
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1
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Where g·j denotes the j-th column of matrix G. The instability is the
discrepancy of all the basis matrices for p, which is defined as

γ(p) =
2

t(t− 1)

∑
1≤i≤j≤t

diss (M1,M2)

The p corresponding to the minimal γ(p) is selected as the number of
rows in G. For the parameters k1, considering partial label information is
known, then the number of clusters can be directly taken as the value of
parameter k1. We use cross validation to find the optimal values for µi,
however, allµi have been set to 0.5 in the experiment to save computational
time since the the clustering performance is insensitive to the parameter.
The parameters λk and α are used to balance the strength of the fitting
term and the regularization term. Similar to the DRjCC model, we define

the values of the two parameters as follows:

λk =
‖Xk‖2
‖Hk‖2

, α =
‖W‖2
‖B‖2
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Then λk and α are automatically updated according to this formula.

4 Data pre-processing
Before the experiment, we preprocessed the input single-cell multi-omics
data matrix Xk with the following steps:

1. Delete genes that are not expressed on all cells..
2. Filtering out genes that are only present in a small number of cells.
3. Log transformation and normalization.

5 Informative gene selection
The selection of informative genes involves determining how many
informative genes to choose and how to extract them. Here are the steps
we take to select informative genes:

1. Normalize the matrix H such that the mean of each row is 0.
2. Calculate the eigenvalues and corresponding eigenvectors of the

matrix HHT . Arrange them in descending order of eigenvalues,
denoted as λ1 > · · · > λn and y1, . . . ,yn respectively.

3. Select the number k of informative genes: For the selection of k,
we choose the value of k such that the cumulative contribution of
the largest k eigenvalues is greater than a threshold δ, i.e., k =

argl
∑l
i=1 λi/

∑n
i=1 λi ≥ δ. Here, we set the threshold δ to

0.95.
4. Define the weight of the i-th gene as βi =

∑k
j=1 λjyji, and select

the top k genes based on the weights in descending order.

We selected 28 informative genes from the 10X_10K dataset using this
approach, which refer to Table 1 for the specific gene names.

6 Support table and figures
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(a) (b)

Fig. 1. ACC, NMI of different algorithms on 2 simulated datasets and 5 real single-cell multi-omics datasets.

(a) (b)

Fig. 2. Boxplots of different algorithms on 5 real single-cell multi-omics datasets.

(a) (b)

(c)

Fig. 3. Sankey plots: (a)"SMAGE dataset", (b)"Spleen dataset", (c)"BMNC dataset".
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Table 1. Maker gene for 10X_10K dataset, where the bolded genes indicated a significant correlation with the survival time of patients.

ACOT7 YBX1 DEPDC1 MYL9
CDC20 GATA2 FCGR2B ORC1
FANCI RRM2 CDCA8 PRDX1
C1QB HELLS NASP FCGR2B
OSTC DDOST CKS1B RPN2
SPARC GP9 LAMP5 WARS
UGCG IGHV3-30 PAICS KIF23

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Visualization of cell clusters before and after dimension reduction of the other four datasets.
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Fig. 5. Kaplan–Meier survival analysis of marker genes.


