
MGSurvE: A framework to optimize trap placement for
genetic surveillance of mosquito populations
S1 Text: Mathematical Model and Genetic Algorithm
Implementation
Héctor M. Sánchez C.1*, David L. Smith 2,3, John M. Marshall 1

1 Divisions of Epidemiology and Biostatistics, School of Public Health, University of
California, Berkeley, California, United States of America
2 Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA,
USA
3 Department of Health Metrics Sciences, School of Medicine, University of
Washington, Seattle, WA, USA

* sanchez.hmsc@berkeley.edu

Mathematical Formulation 1

The default implementation of MGSurvE assumes individuals traverse a landscape 2

following “random-walker” behavior according to a movement matrix (τ), the entries 3

of which, describe the probability of moving from population i to population j in one 4

time step. Incorporating traps as absorbing states within this formulation allows us to 5

calculate outcomes of interest, such as the mean time to absorption (i.e., being 6

trapped) using the properties of absorbing Markov chains. 7

Movement 8

The movement weight (α) between two sites (si → sj), is calculated according to an 9

arbitrary shape parameter (κ), which is a function of the distance between them (d), 10

and biological modifying parameters (ρ), which control the shape of the kernel. These 11

parameters are calibrated to expected distances that mosquitoes fly on a daily basis 12

(e.g., the decay rate of an exponential function). To account for resource-directed 13

movement, this shape parameter is then multiplied by the probability of movement 14

(λ), from the source site-type (ŝi) to the destination’s site-type (ŝj), which accounts 15

for the expected probabilities that individuals jump from one point-type to another. 16

α(si → sj) = κ(d(si → sj), ρ) ∗ λ(ŝi, ŝj) (1)
We calculate the movement weights between all the sites in the landscape and 17

normalize the resulting matrix to obtain our migration matrix τ : 18

τsn×sn =


α(s1 → s1) α(s1 → s2) ... α(s1 → sn−1) α(s1 → sn)
α(s2 → s1) α(s2 → s2) ... α(s2 → sn−1) α(s2 → sn)

...
α(sn−1 → s1) α(sn−1 → s2) ... α(sn−1 → sn−1) α(sn−1 → sn)
α(sn → s1) α(sn → s2) ... α(sn → sn−1) α(sn → sn)


(2)

December 18, 2023 1/8

All rows of τ sum to 1, as individuals are limited to move within the sn set of sites. 19

Movement with Traps 20

To calculate the movement matrix incorporating traps as absorbing states (χ), we 21

follow a similar process to calculate the trap probability weights (δ), as we did for the 22

movement weights (α). We determine the movement probability from any given site 23

(si) to any given trap (tj) based on the attractiveness profile (η̂), and the trap-type 24

attractiveness relative to the current mosquito resource (ϕ(ŝi, t̂j)). Equations 4 and 5 25

are included to mathematically describe that traps are absorbing states: 26

δ(si → tj) = η̂(d(si → tj), ρ̂t) ∗ ϕ(ŝi, t̂j) ⇒ νsn×tn (3)
δ(ti → sj ||ti → tj |i ̸= j) = 0 ⇒ 0tn×sn (4)

δ(ti → ti) = 1 ⇒ Itn×tn (5)

With these pieces in place, we can define our normalized full movement block 27

matrix with traps as follows, noting that rows must be renormalized to account for 28

possible movement from a site to a trap or to another site: 29

χ(sn+tn)×(sn+tn) =

(
τsn×sn νsn×tn

0tn×sn Itn×tn

)
(6)

Here, τ is our original migration matrix, ν is the probability that a random walker 30

moves from a site to a trap, the null matrix 0 represents the absorbing nature of the 31

traps, and I is the identity matrix stating that walkers who fall into a trap will stay in 32

that trap. 33

Fitness Function 34

With the Markov chain transition matrix including absorbing traps in canonical form 35

(χ), we can use the fundamental matrix (F), to calculate a range of Markov chaing 36

properties, including the expected number of time steps before an individual is 37

trapped/absorbed. The fundamental matrix is given by: 38

Fsn×sn = (I − τsn×sn)
−1 (7)

The F matrix contains information on how many time steps an individual is 39

expected to spend in site j given that it started in site i, before falling into a trap. 40

Finally, to compute the fitness value (ϕ), we calculate the expected number of time 41

steps (T) before being trapped, when starting in transient site i: 42

Tsn×1 = Fsn×sn ∗ 1sn×1 (8)

Two metrics that we use in the current paper are: i) the expected number of time 43

steps before being trapped, averaged over all origin sites, i.e., mean(Tsn×1), and ii) the 44

maximum expected number of time steps before being trapped, considering all origin 45

sites, i.e., max(Tsn×1). The latter case represents the worst case scenario. 46

December 18, 2023 2/8

Implementation of the Genetic Algorithm 47

Genetic Algorithms borrow inspiration from biological inheritance processes to solve 48

optimization problems by generating a “population” of possible solutions 49

(chromosomes) from which the fittest are selected for mating and mutation. By 50

iterating this process over generations, we expect the population to slowly converge 51

upon the optimal region of our problem-space which would correspond to the solution 52

to the task at hand. 53

Here, we describe how MGSurvE makes use of this approach to solve the 54

optimization problem that can be phrased as: “Given a heterogeneous environment 55

and a limited number of traps, where should we place the traps?”. 56

Terminology When describing our genetic algorithm, the parallels with biological 57

processes might make the description of the methodology confusing. To alleviate this, 58

we provide a list of terms as used in GA literature and specifically in our application: 59

• Generation: One full discrete cycle of updates (fitness calculation, selection, 60

crossover, mutation) performed upon the current population. 61

• Population: A group of potential solutions (individuals). 62

• Individual: Potential solution to the optimization problem with the trap 63

positions being encoded in a genotype. 64

• Genotype: Way of storing the trap positions (used interchangeably with 65

individual throughout this document). 66

• Allele: Each slot in our genotype is an allele and contains the information of a 67

trap positions. 68

• Selection: The process of choosing individuals from the population for mating in 69

order to generate the next generation to be used in the optimization process. 70

• Mating (crossover): The process of mixing two selected genotypes to produce 71

viable offspring (where viable in this context is an acceptable potential solution 72

to the optimization problem). 73

• Mutation: Process of altering individual alleles in genotypes in a stochastic way 74

for individuals to be able to explore new potential solutions to the optimization 75

problem. 76

In the following description of the optimization process, the terms will be used 77

according to these definitions unless stated otherwise. 78

Optimization Workflow 79

If we want the algorithm to be able to convert our potential solutions to a fitness (or 80

cost) that can be optimized, we need to define our problem in a form that is 81

compatible with genetic algorithm approaches. In our case this is relatively simple, as 82

we encode the positions of the traps into the GA’s chromosomes as depicted in figure 83

1. For the continuous case, we store the trap positions directly into pairs of alleles, 84

whereas in the discrete case, we store the ID of the site in which the traps would be 85

positioned. 86

With this problem mapping at hand, we can go on to describe the set of 87

instructions to run at each generation (optimization step) of our genetic algorithm: 88

1. Fitness Calculation: Each individual in the population of potential solutions is 89

evaluated according to the calculations described in the “Mathematical 90

Formulation” section of this document. Specifically, we update the values for 91

equations 3 to 8. 92

December 18, 2023 3/8

Fig 1. Chromosome-to-trap-position mapping. Continuous optimization
chromosomes store trap (magenta crosses) coordinates in pairs of alleles (x/y or
lon/lat), while discrete optimization chromosomes store the id of the site (purple
circles) at which they are located.

2. Individual Selection: A sub-sample of the population is selected for mating 93

(fitter individuals have higher probabilities to get selected). 94

3. Crossover (Mating): Individuals in the new pool are paired for their 95

chromosomes to be combined for the next generation’s offspring. 96

4. Mutation: The generated offspring is subject to random variations in their 97

chromosomes in hopes that some of these changes will lead to better solutions. 98

In this section, we will go through the details of each step and how the base 99

implementation of MGSurvE goes through each step (for both, discrete and 100

continuous optimization tasks) in an effort to find better solutions to trapping random 101

walkers as quickly as possible by iterating over the potential positions of the traps. 102

Fitness Calculation 103

The fitness (or cost) function is the quantity that guides the artificial evolutionary 104

process, and is the factor we will try to maximize or minimize. MGSurvE computes a 105

summary statistic on the time it would take for a random walker in our network to fall 106

into an absorbing site (a trap), given that it started from any site in our landscape 107

(Equation 8). To compute these statistics on our chromosomes, we follow this 108

procedure: 109

1. If the chromosome is discrete, place the traps in the positions of the matching 110

IDs of the sites stored in each allele of the potential solution. 111

2. With each of the traps’ attraction kernels (δ), their positions, and the base 112

migration matrix (τ), we update our full movement block matrix (Equation 6). 113

3. With this updated full movement block matrix and renormalized migration τ , we 114

calculate the expected number of time-steps before being trapped starting from 115

each site in the landscape (Equation 8). 116

4. Finally, to calculate our fitness, we apply a summary statistic function to these 117

set of expected time-steps (mean for a balanced placement over the landscape, 118

max to prioritize the most remote parts of the geography). 119

December 18, 2023 4/8

Fig 2. Chromosome to fitness calculation. If our chromosome is discrete (GD)
we place the traps in the position of the sites which correspond to the IDs stored in it
so that we have a representation that is equivalent to the continuous one (GC). To get
the fitness, we calculate Markov’s Fundamental Matrix (eq. 8) with the migration
matrix (τ), and the traps positions with their attraction kernels (δ); so that we obtain
a summary statistic of the time it would take for a random walker to fall into one of
the absorbing states.

This process is summarized in Fig 2, and repeated for each chromosome in our 120

current GA population. Once we have the fitness for each individual in the population, 121

we can go on to the selection step of the algorithm. 122

Selection 123

The selection process involves choosing individuals in a scheme that favors the fittest 124

entities from our pool in order to allow them to populate the next generation of 125

solutions in our evolutionary process. MGSurvE is compatible with any of the DEAP 126

selection operators but uses the tournament operator by default. In its stock 127

implementation, this process randomly takes a defined number of tournament 128

participants (tournament size) from the initial population, selects the fittest from 129

them and repeats the process until we have the desired population size in our next 130

generation (Fig 3). 131

Fig 3. Selection. Genotypes are selected randomly from the initial population (left)
based and compared in their fitness scores (middle). The one with the best score in
the selected grouped is copied to the new population (right). The process is repeated
until enough individuals have been selected to populate the next generation of our
algorithm.

December 18, 2023 5/8

Crossover 132

This step involves taking pairs of chromosomes and “mixing” their alleles to simulate 133

biological mating processes. The driving idea behind this process is that parent 134

solutions with good fitness values could produce better-fitted offspring through 135

combination of their genotypes. MGSurvE provides extensions to DEAP’s cxBlend 136

crossover operation for continuous optimization, in which a random subset of the 137

paired alleles are averaged out between the two parents; along with cxUniform for 138

discrete optimization tasks, in which alleles are swapped between the two parents to 139

generate the offspring (Fig 4). 140

Fig 4. Crossover. Pairs of genotypes are randomly selected, and their alleles are
mixed together (arrows) in order to generate offspring in hopes that they have better
solutions to the optimization task.

Mutation 141

The final step in our evolutionary process is to allow the alleles of selected individuals 142

in our population to “mutate” parts of their chromosomes to allow for new possible 143

solutions to be generated. This allows the evolutionary process to explore the vicinity 144

of the original chromosome in the solution space by modifying values of their alleles 145

(Fig 5). Our base MGSurvE implementation provides extensions to the mutGaussian 146

operator for continuous optimization operations (where an allele is modified with a 147

normal distribution centered at the allele’s value) along with a random uniform allele 148

replacement one for discrete tasks (where alleles are swapped with other possible sites 149

IDs in the landscape). 150

Fig 5. Mutation. Individuals are selected randomly for mutation, process in which
some of their alleles’ values are modified (arrows) so that the algorithm can explore for
novel solutions.

Solution Selection and Evaluation 151

As with any stochastic optimization task, we need to run our optimization routines 152

several times to be able to evaluate the performance of our algorithm. This helps us to 153

both notice if it is getting stuck in local optima, and to explore potentially better 154

solutions (as the starting points in solution space will be different in each iteration). 155

One of the ways to check how the algorithm is performing is to plot the evolution of 156

the best solution of each one of the iterations across the GAs generations (Fig 6). 157

Some of the problems that can be detected with these plots include: 158

• Lack of exploration: If our plot is constantly flat-lining, we might need to 159

increase our mutation and crossover rates to allow for more exploration. Another 160

December 18, 2023 6/8

option is to lower the tournament size in the selection algorithm or increasing 161

the population size. 162

• Solution instability: If our plot is jumping up and down, our mutation and 163

crossover rates are probably too high, so we are losing our best solutions often. 164

• Running the algorithm for few generations: When our algorithm is not run for 165

enough generations, our plot will not have been stabilized to any value in the 166

plot. We can correct this by simply running the algorithm for longer generation 167

spans. 168

• Widely-varying starting points: If our first generations start at very different 169

points in terms of fitness, we might need to increase our population size. 170

Fig 6. Solution selection and evaluation. By plotting the evolution of the system
we can check and diagnose potential problems with our parameters and algorithm.

Parameter Selection 171

In terms of avoiding local optima, that is a complex topic which, unfortunately, comes 172

down to a combination of rules of thumb and trial and error. In our specific domain, 173

and after lots of benchmarks and tests, we settled for the following initial “auto” 174

parameters for the GA optimization routines. Here, we explain their use, default 175

values, and provide some information on what to expect if they are modified 176

(parameters marked with asterisk “*” only apply to the continuous optimization case): 177

• population size (popSize=12.5 times the initial number of traps): This value 178

controls the number of potential solutions (genotypes) at each GA generation. If 179

this parameter is too big, many solutions can be evaluated at once, but a lot of 180

computer memory has to be allocated to storing the genotypes; in contrast, if it 181

is too small the algorithm will be slow or incapable of finding optimum solutions 182

as exploration would be limited. 183

• genotype mating probability (mate=0.3): Probability of any potential solution to 184

be selected for mating. If this value is too high, the algorithm might not 185

converge but if it’s too slow it might take a long time to generate good results. 186

• allele mating crossover rate (cxpb=0.5): Probability of each allele in a pair of 187

solutions selected for crossover. If this value is too high, the algorithm might not 188

converge. 189

December 18, 2023 7/8

• allele mating blend* (alpha=0.5): In continuous optimization, when this value is 190

set to 1/2, the alleles selected from the genotypes are averaged out to produce 191

offspring. No explorations on this parameter were made and should probably not 192

be changed from the default. 193

• genotype mutation probability (mutpb=0.4): Probability of each genotype to be 194

selected for mutation process. Lowering this value too much leads to the 195

algorithm not being able to explore new solutions, while increasing it too much 196

hinders the stability of the GA. 197

• allele mutation probability (ipb=0.5): Individual allele’s probability to be selected 198

for mutation. Higher values favor exploration at the expense of solution stability. 199

• allele mutation center* (mean=0): For continuous optimization, using a value of 200

zero centers a random normal distribution around the current value of the allele. 201

No explorations on this parameter were made and it should be kept at default to 202

avoid solutions to “creep out” of the landscape’s bounding box. 203

• allele mutation deviation* (sd=1/2.5 times the difference between the maximum 204

span in the landscape’s bounding box): For continuous optimization, it determines 205

the standard deviation on the normal distribution from which the mutation 206

value is drawn. Higher values lead to more exploration but lower solution 207

stability, while lower values make it more difficult to explore for new solutions. 208

• population tournament size (tSize=3): This integer controls the number of 209

genotypes grabbed for comparison and selection of the one with the highest 210

fitness to populate the next generation of solutions. If this value is set too high 211

the algorithm could get stock in local optima easily. 212

December 18, 2023 8/8

