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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The study investigates the association between human mobility (measured through mobile phone-
derived metrics) and the transmission of 17 common respiratory viruses in Seattle, WA over a 4-
year period, including the COVID-19 pandemic. 
 
The authors identified epidemic phases when mobility indicators were associated with disease 
dynamics, and characterized what specific indicators were most (or least) predictive of 
transmission, for all the viruses under study. 
 
My expertise is mainly related to the analysis of mobile phone-derived indicators and I will focus 
my comments on the aspects related to this part of the manuscript. 
Overall, this is a solid work based on an extensive analysis of several mobile phone indicators, and 
the collection of a vast range of epidemiological surveillance data. This makes the paper an 
important and novel contribution to the field, despite many other studies explored the association 
between mobile phone-derived mobility indicators and epidemic dynamics. Previous studies have 
indeed generally considered a single pathogen at a time. 
 
I believe the paper has enough merit to be published in Nature Communications. I have only a few 
comments that I consider minor, and I hope will help to improve the manuscript. 
 
1. Colocation and mixing data. In the discussion the authors acknowledge that “spatial co-location 
data may better approximate the interpersonal contacts” but they don’t provide a reference for 
this and cite the CoMix survey as a potential alternative to solve this issue. First, it’s true that co-
location data has been shown to be more informative in predicting the spread of SARS-CoV-2 than 
movement data. Two recent studies can support this claim: 
- Delussu, F. et al. 2023. The limits of human mobility traces to predict the spread of COVID-19: A 
transfer entropy approach. PNAS nexus, 2(10), pgad302. 
- Crawford FW, et al. 2022. Impact of close interpersonal contact on COVID-19 incidence: evidence 
from 1 year of mobile device data. Sci Adv. 8(1):5499. 
 
Second, Meta’s colocation maps are publicly available and could be used to test this claim in the 
present study as well. Colocation data from Meta measure the probability that two users from two 
locations are found in the same location at the same time, on a 600x600 meters grid. However, 
they are provided on a weekly basis, so this would need some adjusting with respect to the current 
analysis. 
 
2. Geographic scope. One limitation of the study is that its geographic scope is quite narrow, as 
the analysis focused on a single large metropolitan area of the US. The authors acknowledged such 
limitations, mainly considering the potential effects of within-city variations. At the same time, I 
would suggest acknowledging potential differences across the rural-urban divide, since it has been 
observed that mobility data may be less informative in sparsely populated areas (see Delussu et 
al. 2023) while the association is stronger in urban counties (see Kishore, N., et al 2022. 
Evaluating the reliability of mobility metrics from aggregated mobile phone data as proxies for 
SARS-CoV-2 transmission in the USA: a population-based study. The Lancet Digital Health, 4(1), 
e27-e36.) 
 
3. Forecasting models. I commend the addition of the forecasting analysis which adds an 
important piece to the puzzle, still, I am not fully convinced of the interpretation. From Table S3, it 
seems that using mobility indicators in the forecasting models not only does not improve the 
accuracy with respect to the simple AR models, but could worsen it. My conclusion would be that 
the additional information provided by mobility indicators with respect to the past knowledge of 
disease incidence to forecast future disease trends is very limited and often not significant. 
This is fully in line with the results found in the study by Delussu et al. 2023 which were based on 
different metrics and a different approach. 
Overall, even if correlation remains high (which however is not the metric commonly used to 
evaluate forecasts’ accuracy since it can easily take high values) I would conclude that when it 



comes to forecasting future disease incidence the usefulness of mobility data is often limited. 
 
4. GAM. To evaluate the association between mobility and disease, the authors used Generalized 
Additive Models. I would suggest adding a more detailed description of how a GAM is formulated, 
in mathematical terms and how is it able to capture non-linear relationships between two 
timeseries. I could not find this in the Methods but I think it is important to provide a full 
description of the approach for the readers. 
 
 
Reviewer: Michele Tizzoni 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The impacts of human mobility and its changes on the transmission of SARS-CoV-2 and other 
respiratory infections such as seasonal influenza have been widely investigated during the COVID-
19 pandemic. However, to what extent human mobility affected the dynamics of respiratory 
viruses before and after the pandemic remains less quantified. The research conducted by Perofsky 
A. et al aims to address this question by using a comprehensive and longitudinal dataset of 
respiratory pathogen surveillance/testing, mobile device geolocation-based human mobility in 
various settings, and public health interventions in Seattle from 2018 to 2022. Their findings 
further evidence the assumption that human mobility (or a proxy of contact rate) and the relevant 
travel interventions can reduce the spread and affect the rebound of both endemic and emerging 
respiratory viruses, with heterogeneity in the timing and lagged effects. Comments below could be 
addressed for improving this study. 
Major comments: 
1. The results show that in the early stage of the pandemic in 2020, mobility was a positive, 
leading indicator of transmission of all endemic viruses but negatively correlated with SARS-CoV-2 
activity. However, this may be true given the underreporting or the very low number of cases at 
the early stage of the COVID-19 outbreak. This might be related to the margin effect of Rt 
estimation (ie. high initial Rt values) using a dynamic model. 
2. Figs 4 and 5 (also other similar Figs in SI) seem quite complicated and hard to interpret, by 
including the positive lags between mobility and Rt. Theoretically, transmission can be mitigated by 
reducing travel and contact rates, either due to the governmental health policy or the concern of 
transmission in the public. Moreover, this paper aims to explore the impact of mobility on 
transmission. I think authors could just focus on the leading impact of human behaviour on Rt, ie. 
negative lags between behaviours and infection date-based Rt, and simplify figures and results. 
3. Are the data distributions suitable for Pearson cross-correlations and t-tests used in this study? 
Maybe use a non-parametric test, e.g Mann–Whitney U test? Instead of using GAMs, the 
distributed lag non-linear models (DLNM) framework can be used to simultaneously explore and 
represent non-linear exposure–response dependencies and delayed effects. 
4. A diagram will help understand the process of assembling, testing and adjusting data and 
reconstructing incidence. Another diagram will be also used to illustrate the statistical analysis and 
modelling framework of estimating Rt, exploring correlations, and GAMs. 
5. Even though mobility might be the same, the co-circulation and the different transmissibility of 
SARS-CoV-2 VOCs as well as the immunity could modify the effects of mobility and interventions. 
To partially address this issue, the model can include the proportion of VOCs and the vaccination 
rate or the cumulated proportion of infections among the population. 
6. Climatic factors, the interactions and competition between different viruses can also affect the 
transmission patterns. A multiple-year model including these factors across non-epidemic and 
epidemic seasons or waves should be considered. 
7. This study makes extensive use of incidence reconstruction, weekly aggregation, rolling and 
different time windows. It is unclear whether these data manipulations alter intrinsic correlations. I 
wonder what the overall correlation and modelling results using sample positivity would look like 
without all of these processes. 
 
 



Minor comments: 
8. The manuscript title may be revised to better reflect that this study covers 17 pathogens, the 4-
year period of pre-, during and post- pandemic years, the investigation of other human 
behaviours, as well as the study location. 
9. Table 1 - ‘Mean age’: What do the numbers in brackets represent? 
10. Please provide formulates about how to reconstruct daily incidence for each pathogen and 
adjust it for testing volume, demography, and syndromic surveillance rates across clinical settings. 
11. Authors limited the analysis to 17 viruses with ≥ 400 positive samples each during 2018-2022. 
This sounds a bit arbitrary. Maybe also test another number e.g 300 or 500 positive samples? 
12. Table S1 only mentions the number of pathogens that were tested from May 5, 2019. How 
many pathogens were targeted and detected between Nov 19, 2018 – May 4, 2019? 
13. SafeGraph and Meta Data for Good data have different data collection methods and use 
different baselines. How consistent are they? Maybe provide a diagram to illustrate this. 
14. The overall OxCGRT NPI stringency index data also include mobility-related and face masking 
measures. This study can use OxCGRT’s measure-specific index to avoid the multicollinearity in the 
model. 
 



Response to Reviewers 
 
Perofsky et al., “Impacts of human mobility on the citywide transmission dynamics of 18 respiratory 
viruses in pre- and post-COVID-19 pandemic years” (NCOMMS-23-60234) 
 
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The study investigates the association between human mobility (measured through mobile phone-
derived metrics) and the transmission of 17 common respiratory viruses in Seattle, WA over a 4-
year period, including the COVID-19 pandemic.  
 
The authors identified epidemic phases when mobility indicators were associated with disease 
dynamics, and characterized what specific indicators were most (or least) predictive of 
transmission, for all the viruses under study. 
 
My expertise is mainly related to the analysis of mobile phone-derived indicators, and I will focus 
my comments on the aspects related to this part of the manuscript.  
 
Overall, this is a solid work based on an extensive analysis of several mobile phone indicators, and 
the collection of a vast range of epidemiological surveillance data. This makes the paper an 
important and novel contribution to the field, despite many other studies explored the association 
between mobile phone-derived mobility indicators and epidemic dynamics. Previous studies have 
indeed generally considered a single pathogen at a time.  
 
I believe the paper has enough merit to be published in Nature Communications. I have only a few 
comments that I consider minor, and I hope will help to improve the manuscript. 
 
1. Colocation and mixing data. In the discussion the authors acknowledge that “spatial co-location 
data may better approximate the interpersonal contacts” but they don’t provide a reference for this 
and cite the CoMix survey as a potential alternative to solve this issue. First, it’s true that co-
location data has been shown to be more informative in predicting the spread of SARS-CoV-2 than 
movement data. Two recent studies can support this claim: 
- Delussu, F. et al. 2023. The limits of human mobility traces to predict the spread of COVID-19: A 
transfer entropy approach. PNAS nexus, 2(10), pgad302. 
- Crawford FW, et al. 2022. Impact of close interpersonal contact on COVID-19 incidence: evidence 
from 1 year of mobile device data. Sci Adv. 8(1):5499. 
 
Second, Meta’s colocation maps are publicly available and could be used to test this claim in the 
present study as well. Colocation data from Meta measure the probability that two users from two 
locations are found in the same location at the same time, on a 600x600 meters grid. However, they 
are provided on a weekly basis, so this would need some adjusting with respect to the current 
analysis. 
 
Response: We thank the reviewer for pointing us to Delussu et al, 2023 and Crawford et al. 2022, which 
support our comment in the discussion that spatial colocation data may better approximate interpersonal 
contacts that are relevant for disease transmission. We have added these references to the paragraph about 
the limitations of mobile device location data (Lines 393-395). 
 



We agree that it would be ideal to test if spatial colocation correlates more strongly with Rt than large-
scale population movements inferred from foot traffic patterns. After some difficulty finding a public 
dataset for the Meta Colocation Maps, and communication with the Reviewer via the Editor, we learnt 
that this dataset is not publicly available but can be obtained through the Meta Data for Good Partner 
Portal, after requesting access and signing a DUA. The Colocation Map data for our study period are 
discontinued and no longer available in the portal, due to fundamental changes in how the colocation 
metric is calculated. We contacted the manager of research datasets for Meta Data for Good, and the data 
science team attempted to recover the discontinued dataset for us. Their approach was not successful so 
they recommended contacting other researchers from our institution who have used the Colocation Map 
data to ask if they’d be able to share the old dataset (per Meta’s DUA, researchers from different 
institutions cannot share data). Unfortunately, the other UW researchers did not have the discontinued 
Colocation dataset. Although we would have liked to incorporate a spatial colocation metric into our 
analysis, we could not obtain the discontinued dataset recommended by the reviewer and do not know of 
other spatial colocation datasets that are publicly accessible. 
 
In the paragraph on limitations of cellphone mobility data, we have added (Lines 395-397):  
 
“Although we would have liked to incorporate a spatial colocation metric into our analysis, at the time of 
writing, Meta Data for Good’s Colocation Map dataset is discontinued for our study period, and we did 
not know of other spatial location datasets that are publicly accessible.” 
 
2. Geographic scope. One limitation of the study is that its geographic scope is quite narrow, as the 
analysis focused on a single large metropolitan area of the US. The authors acknowledged such 
limitations, mainly considering the potential effects of within-city variations. At the same time, I 
would suggest acknowledging potential differences across the rural-urban divide, since it has been 
observed that mobility data may be less informative in sparsely populated areas (see Delussu et al. 
2023) while the association is stronger in urban counties (see Kishore, N., et al 2022. Evaluating the 
reliability of mobility metrics from aggregated mobile phone data as proxies for SARS-CoV-2 
transmission in the USA: a population-based study. The Lancet Digital Health, 4(1), e27-e36.) 
 
Response: Thank you for pointing out this limitation of our study. We now mention geographic scope in 
the paragraph about the limitations of cell phone mobility data, referencing Delussu et al. 2023, Kishore 
et al. 2022, and Jewell et al. 2021 (Lines 390-393). 
 
“Second, relationships between cellphone mobility and transmission are weaker in more sparsely 
populated areas1-3, due to differences in the data generation process and representativeness between 
urban and rural locations. Because our study is limited to a single metropolitan region, our findings may 
not be applicable to rural locations.” 
 
3. Forecasting models. I commend the addition of the forecasting analysis which adds an important 
piece to the puzzle, still, I am not fully convinced of the interpretation. From Table S3, it seems that 
using mobility indicators in the forecasting models not only does not improve the accuracy with 
respect to the simple AR models but could worsen it. My conclusion would be that the additional 
information provided by mobility indicators with respect to the past knowledge of disease incidence 
to forecast future disease trends is very limited and often not significant. This is fully in line with 
the results found in the study by Delussu et al. 2023 which were based on different metrics and a 
different approach. 
 
Overall, even if correlation remains high (which however is not the metric commonly used to 
evaluate forecasts’ accuracy since it can easily take high values) I would conclude that when it 
comes to forecasting future disease incidence the usefulness of mobility data is often limited. 



 
Response: Thank you for pointing this out. We have updated our analysis to consider models with 
autoregressive (AR) terms as “baseline” models to which other models with various combinations of AR, 
mobility, climatic, and virus-virus interaction terms are compared. Our results now focus on how mobility 
can improve prediction accuracy, and we tone down statements concerning the utility of mobility data in 
forecasting future transmission dynamics. We also cite that our results are consistent with Delussu et al. 
2023. 
 
For SARS-CoV-2 Rt, we found that models with mobility and AR terms had greater prediction accuracy 
compared to baseline models during the stay-at-home period in 2020 and during 2021-2022 (the time 
period encompassing COVID-19 vaccination and variant emergence), but not for the whole study period 
combined. For hRV and AdV, models with mobility and AR terms did not improve prediction accuracy 
over baseline models during any time period. 
 
In the main text, Lines 259-263: “When assessing model accuracy over the entire study period, models 
including mobility, climatic variables, or viral interference did not outperform baseline models for any of 
the three viruses (Figs. S19-S21; Table S3). Thus, although mobility data can provide small to moderate 
benefits to prediction accuracy, the additional information provided by past population movements is 
limited in comparison to knowledge of past disease incidence3.” 
 
In the supplementary results, third paragraph: “Overall, we found that prior disease activity alone is most 
beneficial for accurately projecting future transmission dynamics. Tracking mobility behavior is not 
essential for forecasting respiratory virus transmission, and the inclusion of mobility data can even be 
detrimental to prediction accuracy, depending on the pathogen and time period (Tables S3-S5). 
Monitoring major changes in mobility could still be helpful for general situational awareness and 
planning purposes in the early stages of an emerging disease outbreak, when testing capacity is low and 
the true incidence of the disease is unknown. However, prior information on mobility trends is unlikely to 
provide a net benefit to prediction accuracy when an epidemic is widely established in a population. This 
finding is consistent with another study that used a different modeling approach and set of mobility 
metrics to forecast COVID-19 cases and deaths in Europe3.” 
 
We originally included Pearson’s correlation coefficients because this accuracy metric was used in the 
original study4 that published the forecasting methodology we use in our study. We agree that Pearson 
correlations are not a standard accuracy metric in forecasting and are inappropriate to use in this context, 
due to their tendency to take high values and the test’s assumption of linearity. We now focus on root-
mean-squared-error (RMSE) and mean absolute error (MAE) in our results. 
 
4. GAM. To evaluate the association between mobility and disease, the authors used Generalized 
Additive Models. I would suggest adding a more detailed description of how a GAM is formulated, 
in mathematical terms and how it is able to capture non-linear relationships between two time 
series. I could not find this in the Methods, but I think it is important to provide a full description 
of the approach for the readers.  
 
Response: Our revised manuscript provides more details about our GAM approach in the supplementary 
methods (section “Multivariable generalized additive regression models”), including additional 
background information concerning how GAMs are able to capture nonlinear relationships and the formal 
mathematical equation for the best fit minimal models of Rt. 
 
Reviewer #2 (Remarks to the Author): 
 
The impacts of human mobility and its changes on the transmission of SARS-CoV-2 and other 



respiratory infections such as seasonal influenza have been widely investigated during the COVID-
19 pandemic. However, to what extent human mobility affected the dynamics of respiratory viruses 
before and after the pandemic remains less quantified. The research conducted by Perofsky A. et al 
aims to address this question by using a comprehensive and longitudinal dataset of respiratory 
pathogen surveillance/testing, mobile device geolocation-based human mobility in various settings, 
and public health interventions in Seattle from 2018 to 2022. Their findings further evidence the 
assumption that human mobility (or a proxy of contact rate) and the relevant travel interventions 
can reduce the spread and affect the rebound of both endemic and emerging respiratory viruses, 
with heterogeneity in the timing and lagged effects. Comments below could be addressed for 
improving this study. 
 
Major comments: 
1. The results show that in the early stage of the pandemic in 2020, mobility was a positive, leading 
indicator of transmission of all endemic viruses but negatively correlated with SARS-CoV-2 
activity. However, this may be true given the underreporting or the very low number of cases at the 
early stage of the COVID-19 outbreak. This might be related to the margin effect of Rt estimation 
(ie. high initial Rt values) using a dynamic model. 
 
Response: Thank you for pointing out this caveat concerning our finding that SARS-CoV-2 Rt lagged 
mobility during the early months of 2020. In response to this comment, we have both highlighted the 
potential issue in the discussion and revised our analyses to remove very early pandemic observations. 
Our revised manuscript now mentions that Rt estimates at the beginning of the pandemic may be 
upwardly biased, due to low case counts and limited testing capacity. Further, to minimize the potential 
influence of uncertain Rt estimates on cross-correlation coefficients, our revised manuscript limits SARS-
CoV-2 Rt estimates to dates after February 28, 2020, when the first community acquired case was 
detected, and cumulative confirmed cases exceeded 50. By March 1, 2020, the 95% prediction intervals 
of Rt are within 15% of the median value. 
 
Discussion, Lines 334-344: “Mobility had a negative, lagging relationship with SARS-CoV-2 𝑅! during 
the early months of 2020, suggesting that Seattle residents adjusted their behavior in response to COVID-
19 case counts or restrictions rather than the reverse. This result is consistent with a comprehensive 
analysis of US counties, which found that not all major cities (e.g., San Francisco) experienced strong 
positive associations between mobility and infection growth rates during the first wave2. A caveat is that 
𝑅! estimates during this time were likely upwardly biased, due to low case counts, sampling biases, and 
rapid increases in testing capacity, and may not have fully captured the steepness of transmission 
declines after NPIs were implemented. To mitigate this issue, we limited SARS-CoV-2 𝑅! estimates to 
dates after February 28, 2020, when the first community-acquired case was detected, and cumulative 
confirmed cases exceeded 50. We also applied centered smoothing windows to case counts, 𝑅! estimates, 
and mobility indicators so that cross-correlations captured broad signals that were accurately oriented in 
time5,6.” 
 
Methods, Lines 584-587: “Due to limited testing at the beginning of the pandemic, in cross-correlations 
we limited SARS-CoV-2 𝑅! estimates to dates after February 28, 2020, when the first community-
acquired case was confirmed, and cumulative confirmed cases exceeded 50. By March 1, 2020, the 95% 
prediction intervals of SARS-CoV-2 𝑅! were within 15% of the median value.” 
 
2. Figs 4 and 5 (also other similar Figs in SI) seem quite complicated and hard to interpret, by 
including the positive lags between mobility and Rt. Theoretically, transmission can be mitigated by 
reducing travel and contact rates, either due to the governmental health policy or the concern of 
transmission in the public. Moreover, this paper aims to explore the impact of mobility on 



transmission. I think authors could just focus on the leading impact of human behaviour on Rt, i.e. 
negative lags between behaviours and infection date-based Rt and simplify figures and results. 
 
Response: We appreciate the reviewer’s suggestions for ways to simplify our figures so that they are 
easier to interpret. For figures showing average monthly cross-correlations and optimal lags (e.g., Figure 
4), we opted to keep both leading and lagging relationships between mobility and Rt, because showing 
only leading relationships (i.e., mobility leads Rt) removes our ability to visualize a key finding that 
mobility initially lagged SARS-CoV-2 Rt at the beginning of the pandemic. To simplify Figure 4, we 
limit the mobility metrics to those that have the strongest correlations with endemic pathogen Rt during 
Fall 2019; the original version of the figure showing all mobility metrics is now in the supplement (Figure 
S10). For figures showing rolling cross-correlations (e.g., Figure 5), we now constrain cross-correlations 
to leading or synchronous relationships between mobility and Rt, which reduces noise and improves 
interpretability for readers. 
 
3. Are the data distributions suitable for Pearson cross-correlations and t-tests used in this study? 
Maybe use a non-parametric test, e.g. Mann–Whitney U test? Instead of using GAMs, the 
distributed lag non-linear models (DLNM) framework can be used to simultaneously explore and 
represent non-linear exposure–response dependencies and delayed effects. 
 
Response: Thank you for pointing out that our data may violate the assumptions of some of the statistical 
tests we originally included in the paper.  
 
For analyses measuring mean changes in Rt before and after two major events, the snowstorm in February 
2019 and the State of Emergency declaration in late February 2020, the datasets are too small to test if the 
distributions of Rt values meet the assumption of normality for t-tests. In the revised manuscript, we now 
use nonparametric bootstrap tests of the ratio of two means (with 1000 samples) instead of t-tests of the 
ratio of two means (Lines 574-577). 
 
Pearson correlation tests do not require normality to estimate the correlation coefficient r itself; however, 
the test requires that the joint distribution of X and Y is bivariate normal to make inferences about the 
relationship (e.g., to test the null hypothesis, r = 0). We do not think it is necessarily inappropriate to test 
for linear relationships between mobility and Rt, because our P-values for statistical significance are 
estimated via a nonparametric time series block bootstrap approach that shuffles the mobility time series 
1000 times and assesses if observed correlations fall within the null distribution of correlation 
coefficients. In our revised manuscript we replace Pearson correlation tests with nonparametric Spearman 
rank correlation tests, which measure monotonic relationships between variables and do not assume 
linearity or an underlying distribution of the data. Although we found qualitatively similar results for 
Pearson and Spearman tests, we appreciate the reviewer’s suggestion to examine the assumptions of our 
statistical tests more closely. 
 
Concerning the reviewer’s suggestion to consider DLNMs instead of GAMs, we found that the DLNM 
framework can be incorporated into GAMs7, by including a cross-basis function as a model covariate. 
DLNMs on their own are more restrictive than GAMs, because they require the user to select the 
parametric form of the functions expressing the dose-lag-response relationship7,. We modified our GAMs 
to include the cross-basis of mobility and time lags of up to 14 days. We also tested tensor product 
smooths of mobility and time lags, which are similar to cross-basis functions7, and more well documented 
in R (via the “mgcv” package). Including the bivariate cross-basis or tensor product smooth of mobility 
and time lags reveals which lags of mobility have the strongest positive or negative relationships with Rt. 
However, including interactions between mobility and time lags removes our ability to visualize whether 
relationships between mobility and Rt are linear or nonlinear. As an example, see the figure below 



showing the partial effects of tensor product smooths of mobility and time lags on RSV B Rt during the 
2019-2020 season. 

 
 
We also experienced issues with model convergence and overfitting when incorporating the cross-basis or 
tensor product smooth of mobility and time lags. Based on the DLNM literature, it seems that this 
approach is traditionally used in epidemiological studies assessing the cumulative lagged effects of 
pollutants on disease outcomes over the course of decades (e.g., Neophytou et al. 20188). GAMs are 
already parameter heavy models, and our time series of Rt and mobility focus on the exponential growth 
phase of each epidemic wave (2- to 6-month time periods, depending on the pathogen and time period). 
Our issues with non-identifiability likely stem from having more covariates in the model than our dataset 
can realistically support. Thus, we opted to keep our simpler original analysis, which was intended to 
select the most important behavioral predictors of Rt and to visualize the shape and direction of 
relationships between mobility and Rt. As a sensitivity analysis we tested GAMs with lagged mobility 
covariates (e.g., 7-day or 14-day lags), but lagged mobility trends did not improve model fit over the 
original models that focused on synchronous relationships between mobility and Rt. However, in our 
forecasting models of pathogen Rt, we now include lagged mobility covariates. 
 
4. A diagram will help understand the process of assembling, testing and adjusting data and 
reconstructing incidence. Another diagram will be also used to illustrate the statistical analysis and 
modelling framework of estimating Rt, exploring correlations, and GAMs. 

Response: To help readers understand the process of reconstructing incidences, our revised manuscript 
includes mathematical formulas in the methods section (“Reconstructing pathogen incidences,” Lines 510 
- 560) and a flowchart in the supplement (Figure S25). We have also added a diagram showing an 
overview of statistical analyses performed in our study and their various inputs (Figure S28). 

5. Even though mobility might be the same, the co-circulation and the different transmissibility of 
SARS-CoV-2 VOCs as well as the immunity could modify the effects of mobility and interventions. 
To partially address this issue, the model can include the proportion of VOCs and the vaccination 
rate or the cumulated proportion of infections among the population. 
 
Response: In our study, GAMs measuring the effects of mobility on SARS-CoV-2 Rt are separated by 
waves. Given the wave-by-wave analysis, the short time series of each wave, and collinearity/concurvity 
among covariates, it would be difficult to disentangle the individual effects of variant emergence, 
vaccination, and mobility on Rt with our current approach. Further, testing the effects of vaccination or 
variant emergence on Rt on a wave-by-wave basis could be “fraught with difficulty9,” given that pre-
existing levels of natural immunity vary across individual waves. Lastly, Rt is estimated from the sum of 
prior infections weighted by the generation interval, with past infections propagating new infections. The 
weighting of cumulative incidence by the generation interval makes it so that infections that occurred 



prior to the past few weeks (i.e., the length of SARS-CoV-2’s serial interval) have very low or no weight 
in the estimation of present-day Rt. However, because cumulative incidence is intrinsically linked to the 
estimation of Rt, it could be considered a form of "circular" analysis10 to include it as a predictor of Rt in 
regression models.  
 
We agree with the reviewer that exploring the effect of prior immunity would be important over the 
course of an entire epidemic wave. Although it is possible to adjust Rt for susceptible depletion with our 
semi-mechanistic modeling approach, the Epidemia framework cannot incorporate the waning of 
immunity or cross-immunity between variants. Thus, we opted to not explicitly account for changes in 
immunity in the Rt estimation process, because we believe it requires a fully mechanistic approach to be 
done properly. Further, our GAM analyses are restricted to timeframes spanning the exponential growth 
phase of each outbreak, when Rt exceeds 1 and susceptible depletion is limited, which reduces the 
confounding effects of depletion of susceptibles on Rt. 
 
Our forecasting approach for SARS-CoV-2 Rt is not hindered by short time series and can better handle 
collinearity between covariates. In the revised manuscript we now incorporate covariates for cumulative 
vaccination coverage and variant circulation in models forecasting SARS-CoV-2 Rt. 
 
6. Climatic factors, the interactions and competition between different viruses can also affect the 
transmission patterns. A multiple-year model including these factors across non-epidemic and 
epidemic seasons or waves should be considered. 
 
Response: We have implemented the reviewer’s suggestion for our forecasting analyses, with limited 
results (detailed below). We have refrained from exploring the effects of climatic factors and viral 
interference across all of our analyses, because it would require a much longer time series of incidence 
(several years of pre-pandemic data) or complex multi-pathogen mechanistic models accounting for viral 
seeding, the influx of susceptibles each season, and the emergence of antigenic variants (for SARS-CoV-2 
and influenza viruses). Kissler et al. 202011 used a simple statistical model to estimate the effects of 
seasonality (modeled via splines) and cross-immunity on the circulation of two seasonal coronaviruses 
prior to the COVID-19 pandemic. However, their multi-year model focused on the epidemic period of 
each virus (i.e., did not include intervening periods with low or no circulation) and included 5 years of 
pre-pandemic data. Our study consists of 2 pre-pandemic seasons and a 2-year period of low circulation 
for most endemic viruses. Thus, it would be difficult to measure the effects of pathogen interactions or 
meteorological factors on transmission, given our limited dataset. Further, viral interference at the 
individual host level is well-established, but the epidemiological impact of this phenomenon is not well 
understood, even for the most well-studied pathogens in our dataset: influenza and RSV. 
 
For our forecasting models of Rt, we focused on 3 pathogens with continuous circulation throughout our 
study period: rhinovirus, adenovirus, and SARS-CoV-2. These models include covariates for past viral 
activity, cellphone mobility, viral interference (the impact of SARS-CoV-2 circulation on rhinovirus or 
adenovirus Rt, and vice versa), and local environmental conditions (temperature, precipitation, and 
humidity). We found that climatic variables slightly improved predictions for SARS-CoV-2 Rt and 
adenovirus Rt during Seattle’s stay-at-home period in 2020 but did not improve prediction accuracy for 
any of the three viruses over the course the entire study period. Covariates for viral interactions did not 
improve model performance for any of the three viruses. 
 
7. This study makes extensive use of incidence reconstruction, weekly aggregation, rolling and 
different time windows. It is unclear whether these data manipulations alter intrinsic correlations. I 
wonder what the overall correlation and modelling results using sample positivity would look like 
without all of these processes. 
 



Response: In the revised manuscript we provide more detailed justifications for our methodology, which 
is intended to capture intrinsic correlations and reduce observational noise in the data. 
 
To estimate pathogen incidence, we chose to multiply the percentage of respiratory samples testing 
positive for a particular pathogen by the percentage of respiratory-like illness visits because this measure 
is considered to be a more robust estimate of respiratory virus activity than percent positive alone and has 
been used successfully in many epidemiological modeling studies11-16. We smoothed incidences prior to 
Rt estimation so that changes in Rt are more representative of true rises or declines in transmission and 
less influenced by imperfect observation and reporting irregularities5,6,17. In sensitivity analyses varying 
the degree of smoothing, estimating Rt from raw incidences caused model convergence issues and highly 
variable Rt estimates, consistent with the findings of Huisman et al. 20226. Huisman et al. 2022 found that 
smoothing incidences prior to deconvolution causes slight misestimations of Rt during steep changes; 
however, the authors concluded that the benefit of improved model performance and more stable Rt 
estimates outweighs this issue. In the revised manuscript we now include a supplementary figure of 
unadjusted percent positive values to show readers how noisy the raw pathogen presence/absence data are 
(Figure S26). 
 
Our analysis of rolling cross-correlations is intended to capture dynamic, biologically relevant trends in 
which mobility indicators are most strongly correlated with Rt, across different pathogens and time 
periods. For cross-correlations spanning Fall 2019 to June 2022, we chose to use weekly averages of Rt 
and mobility, rather than daily values, to reduce noise and focus on broad long-term trends. Additionally, 
it is difficult to visualize daily rolling cross-correlations over long time periods because it involves 
squishing many data points together. We chose 5-month rolling windows because this length of time 
provides a good trade-off between reducing noise and retaining a biologically relevant time window. In 
sensitivity analyses varying the length of rolling window, we found that shorter time windows introduced 
more noise into the results (e.g., alternating positive and negative correlations rather than consistent long-
term trends) while longer windows diminished our ability to pinpoint when mobility most strongly 
correlated with Rt. The cross-correlation analysis for the 2018-2019 season uses daily estimates of Rt and 
mobility because the time window of analysis is short, and we wanted to capture the impact of a short 
interruption in movement (a major snowstorm) on Rt. 
 
For consistency, the same smoothing window is applied to the time series of mobility and Rt for each 
pathogen and mobility indicator. If the observed correlations are spurious, we would not observe 
consistent patterns across pathogens during key epidemiological time points, such as the stay-at-home 
period in March 2020, the major snowstorm in February 2019, the first months of enveloped virus 
rebound in the spring and summer of 2021, and the Omicron BA.1 wave in late 2021. 
 
Minor comments: 
 
8. The manuscript title may be revised to better reflect that this study covers 17 pathogens, the 4-
year period of pre-, during and post- pandemic years, the investigation of other human behaviours, 
as well as the study location. 
 
Response: We appreciate this suggestion and would like to include more detail in our title; however, the 
journal limits the title to 15 words. We’ve added the number of pathogens to the title, if the Editor will 
allow us to go a little over the word limit. 
 
9. Table 1 - ‘Mean age’: What do the numbers in brackets represent? 
 



Response: Thank you for catching this. We now specify that the brackets enclose the standard deviation 
of age. 
 
10. Please provide formulates about how to reconstruct daily incidence for each pathogen and 
adjust it for testing volume, demography, and syndromic surveillance rates across clinical settings. 
 
Response: Our revised manuscript now includes formulas for each step of incidence reconstruction 
(Lines 510 - 560). 
 
11. Authors limited the analysis to 17 viruses with ≥ 400 positive samples each during 2018-2022. 
This sounds a bit arbitrary. Maybe also test another number e.g. 300 or 500 positive samples? 
 
Response: We agree that our original statement concerning limiting the analysis to pathogens with 
sufficient sampling did not provide enough information concerning the decision process for which 
pathogens we included. If we increase the threshold to 500 positives, hPIV 1 + 2 would no longer be 
included in the analysis. Decreasing the threshold to 300 positives would not add any pathogens to the 
analysis. Our custom OpenArray platform did not test for all pathogens for the entire duration of the 
study, which causes some pathogens to have low numbers of positives. We now provide more 
information in the methods concerning why certain pathogens were excluded (Lines 450-456).  
 
In our revised manuscript, we now include non-rhinovirus enterovirus (EV), which we originally 
excluded because our laboratory assay cannot differentiate between single enterovirus infections and 
enterovirus-rhinovirus coinfections. Given that we do not exclude coinfections for the other pathogens, 
EV is now incorporated into our analysis. 
 
12. Table S1 only mentions the number of pathogens that were tested from May 5, 2019. How many 
pathogens were targeted and detected between Nov 19, 2018 – May 4, 2019? 
 
Response: Thank you for catching this. In the original manuscript we failed to include the first version of 
the OpenArray panel that spanned March to April 2019, which is now added to the Table S1. We clarified 
with our co-authors that testing did not begin until March 2019, even though sample collection started in 
November 2018. This information is now included in the caption of Table S1. 
 
13. SafeGraph and Meta Data for Good data have different data collection methods and use 
different baselines. How consistent are they? Maybe provide a diagram to illustrate this. 
 
Response: Our revised manuscript includes a figure showing how we combined these two data sources 
into one metric (Figure S24). 
 
14. The overall OxCGRT NPI stringency index data also include mobility-related and face masking 
measures. This study can use OxCGRT’s measure-specific index to avoid the multicollinearity in 
the model.  
 
Response: Although the Oxford Stringency Index (OSI) includes policy mandates that could affect 
mobility it does not measure the actual implementation of policy measures or adherence to mandates. The 
particular index we use does not include an indicator for masking. We have added more information 
about the specific policies included in the OSI to the methods (Lines 504-509). 
 
“We obtained daily values for the stringency index (Fig. 1), which combines all containment and closure 
indicators (C1-C8: school and university closures, workplace closures, cancellation of public events, 
restrictions on gatherings, closures of public transport, stay-at-home orders, restrictions on internal 



movement, and restrictions on international travel) and the H1 indicator (public information campaigns). 
The Oxford Stringency Index is based on policy mandates in place over time and does not measure the 
actual implementation of NPIs or population adherence to mandates18.” 
 
References 
 
1 Kishore, N. et al. Evaluating the reliability of mobility metrics from aggregated mobile phone 

data as proxies for SARS-CoV-2 transmission in the USA: a population-based study. Lancet 
Digit Health 4, e27-e36 (2022). https://doi.org/10.1016/S2589-7500(21)00214-4 

2 Jewell, S. et al. It's complicated: characterizing the time-varying relationship between cell phone 
mobility and COVID-19 spread in the US. NPJ Digit Med 4, 152 (2021). 
https://doi.org/10.1038/s41746-021-00523-3 

3 Delussu, F., Tizzoni, M. & Gauvin, L. The limits of human mobility traces to predict the spread 
of COVID-19: A transfer entropy approach. PNAS Nexus 2, pgad302 (2023). 
https://doi.org/10.1093/pnasnexus/pgad302 

4 Yang, S., Santillana, M. & Kou, S. C. Accurate estimation of influenza epidemics using Google 
search data via ARGO. Proc Natl Acad Sci U S A 112, 14473-14478 (2015). 
https://doi.org/10.1073/pnas.1515373112 

5 Gostic, K. M. et al. Practical considerations for measuring the effective reproductive number, Rt. 
PLoS Comput Biol 16, e1008409 (2020). https://doi.org/10.1371/journal.pcbi.1008409 

6 Huisman, J. S. et al. Estimation and worldwide monitoring of the effective reproductive number 
of SARS-CoV-2. Elife 11 (2022). https://doi.org/10.7554/eLife.71345 

7 Gasparrini, A., Scheipl, F., Armstrong, B. & Kenward, M. G. A penalized framework for 
distributed lag non-linear models. Biometrics 73, 938-948 (2017). 
https://doi.org/10.1111/biom.12645 

8 Neophytou, A. M. et al. Exposure-Lag-Response in Longitudinal Studies: Application of 
Distributed-Lag Nonlinear Models in an Occupational Cohort. Am J Epidemiol 187, 1539-1548 
(2018). https://doi.org/10.1093/aje/kwy019 

9 Jewell, N. P. & Lewnard, J. A. On the use of the reproduction number for SARS-CoV-2: 
Estimation, misinterpretations and relationships with other ecological measures. J R Stat Soc Ser 
A Stat Soc (2022). https://doi.org/10.1111/rssa.12860 

10 Makin, T. R. & Orban de Xivry, J. J. Ten common statistical mistakes to watch out for when 
writing or reviewing a manuscript. Elife 8 (2019). https://doi.org/10.7554/eLife.48175 

11 Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the 
transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860-868 
(2020). https://doi.org/10.1126/science.abb5793 

12 Bedford, T. et al. Integrating influenza antigenic dynamics with molecular evolution. Elife 3, 
e01914 (2014). https://doi.org/10.7554/eLife.01914 

13 Pei, S., Kandula, S., Yang, W. & Shaman, J. Forecasting the spatial transmission of influenza in 
the United States. Proc Natl Acad Sci U S A 115, 2752-2757 (2018). 
https://doi.org/10.1073/pnas.1708856115 

14 Goldstein, E., Cobey, S., Takahashi, S., Miller, J. C. & Lipsitch, M. Predicting the epidemic sizes 
of influenza A/H1N1, A/H3N2, and B: a statistical method. PLoS Med 8, e1001051 (2011). 
https://doi.org/10.1371/journal.pmed.1001051 

15 Goldstein, E., Viboud, C., Charu, V. & Lipsitch, M. Improving the estimation of influenza-related 
mortality over a seasonal baseline. Epidemiology 23, 829-838 (2012). 
https://doi.org/10.1097/EDE.0b013e31826c2dda 

16 Pei, S., Teng, X., Lewis, P. & Shaman, J. Optimizing respiratory virus surveillance networks 
using uncertainty propagation. Nat Commun 12, 222 (2021). https://doi.org/10.1038/s41467-020-
20399-3 

https://doi.org/10.1016/S2589-7500(21)00214-4
https://doi.org/10.1038/s41746-021-00523-3
https://doi.org/10.1093/pnasnexus/pgad302
https://doi.org/10.1073/pnas.1515373112
https://doi.org/10.1371/journal.pcbi.1008409
https://doi.org/10.7554/eLife.71345
https://doi.org/10.1111/biom.12645
https://doi.org/10.1093/aje/kwy019
https://doi.org/10.1111/rssa.12860
https://doi.org/10.7554/eLife.48175
https://doi.org/10.1126/science.abb5793
https://doi.org/10.7554/eLife.01914
https://doi.org/10.1073/pnas.1708856115
https://doi.org/10.1371/journal.pmed.1001051
https://doi.org/10.1097/EDE.0b013e31826c2dda
https://doi.org/10.1038/s41467-020-20399-3
https://doi.org/10.1038/s41467-020-20399-3


17 Cori, A., Ferguson, N. M., Fraser, C. & Cauchemez, S. A new framework and software to 
estimate time-varying reproduction numbers during epidemics. Am J Epidemiol 178, 1505-1512 
(2013). https://doi.org/10.1093/aje/kwt133 

18 Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government 
Response Tracker). Nat Hum Behav 5, 529-538 (2021). https://doi.org/10.1038/s41562-021-
01079-8 

 

https://doi.org/10.1093/aje/kwt133
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1038/s41562-021-01079-8


REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I thank the authors for addressing my remarks and revising the manuscript accordingly. 
I understand that Meta's Colocation Maps for the study period are not publicly available, as I 
erroneously wrote in my original assessment. I appreciate the authors' effort to access the data 
although unsuccessful. 
 
I think the manuscript has improved and can be accepted for publication in Nature 
Communications. 
 
Reviewer #1 (Remarks on code availability): 
 
I haven't reviewed the code, as I am not an expert user of R. 
 
From what I see in the repository, a detailed explanation of how to use the code is missing but the 
README says "documentation forthcoming". 
I imagine the authors will provide more details upon publication. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
Thank you for your detailed response. The flow charts for pathogen incidence reconstruction and 
statistical analysis look great. 
 
Reviewer #2 (Remarks on code availability): 
 
The link can be opened. I only browsed the files, but did not test the code (and some data cannot 
be made public due to the data access agreement). Overall, the entire GitHub repository structure 
and Readme document are relatively clear and complete. 
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