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SUMMARY
The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide associa-
tion studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s)
presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal
variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter
assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We
generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess
changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neu-
rons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expres-
sion of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We
have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector
genes and influences neurodevelopment and survival.
INTRODUCTION

Childhood obesity affects approximately 14.7 million individuals

aged 2–19 years in the United States, corresponding to approx-

imately one in five children and adolescents.1 The global preva-

lence of childhood obesity has increased substantially, rising

from less than 1% to more than 7% in recent decades.2 Obesity

increases the risk of leading causes of poor health and early

death via hypertension, metabolic disorders, cardiovascular dis-

ease, and common cancers.3 Common cases of obesity result

from both environmental and genetic factors.4 The genetic
Cell Genomics 4, 100556,
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component explains a large portion of obesity risk, with heritabil-

ity estimates ranging from 40% to 85%,5 but remains incom-

pletely understood. However, it is known that neuronal pathways

in the hypothalamus control food intake and are key regulators

for obesity.4 Several human stem cell-derived hypothalamic

neuron models have been developed6–10 to investigate the mo-

lecular basis of body weight regulation.6,10–18

Genome-wide association studies (GWAS) have identified

genomic regions that harbor susceptibility variants conferring

adult19,20 and childhood obesity21–24 risk. An ongoing challenge

is to translate GWAS loci into meaningful discoveries that can
May 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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expand our knowledge of complex traits. Most variants identified

by GWASs are non-coding, so their underlying mechanism is not

obvious.4 These non-coding variants likely influence disease risk

by functioning within cis-regulatory elements and altering

expression of effector genes within their topologically associ-

ating domain (TAD). These effector genes are not necessarily

the most proximal gene, as cis-regulatory elements can influ-

ence gene expression up to megabases away. Therefore, func-

tional characterization must be conducted to determine which

variants are causal and which effector genes, near or far, confer

susceptibility to disease. Most attention has been focused on

only the very strongest GWAS loci, such as FTO,25–27 while

many other loci that rank lower in the signal list remain

understudied.

Our latest childhood obesity trans-ancestral GWAS meta-

analysis identified a locus on chr12q13 named after its nearest

gene, FAIM2.21,22 This signal has also been independently re-

ported for obesity risk in children28,29 and adults30–33 across

several ancestral populations. Crucially, this locus is more pro-

nounced in children and ranks among more well-studied loci

such as FTO, MC4R, TMEM18, and BDNF in the pediatric

setting22; as such, it has been less studied given its less obvious

role in adult obesity pathogenesis.

To implicate candidate causal non-coding variants at the

chr12q13 obesity locus, our trans-ancestral fine-mapping refined

this signal to a 99% credible set of six single nucleotide polymor-

phisms (SNPs).22 More recently, Bayesian fine-mapping further

refined this locus to one signal with 95% credible sets of 1–4

SNPs depending on which body weight trait definition was used

(e.g., maximum weight, maximum BMI, mean weight).34 These

credible sets consistently implicate rs7132908 as the variant

with the highest computed probability of being causal.22,34 The

obesity risk A allele is common, with frequencies ranging from

10.25% to 60.53% across ethnicities35 and 28.86% globally.36

In addition to childhood obesity, this locus is also associated

with related traits: increased BMI in adults, increased weight in

adults, elevated type 2 diabetes susceptibility, increased body

fat percentage in children and adults,37 increased risk of problem-

atic alcohol use,38 BMI variance,39 increased waist circumfer-

ence,40 and earlier age at menarche.41

We used our established variant-to-gene mapping approach

that implicates potential cis-regulatory elements at GWAS loci

using assay for transposase-accessible chromatin with high-

throughput sequencing (ATAC-seq) to identify regions of acces-

sible chromatin and high-resolution promoter-focused Capture-

C/Hi-C to identify distal promoter interactions with those open

regions.11,42–47 rs7132908 resides within a putative cis-regulato-

ry element in several human neural cell types,11,46,47 consistent

with data from the Encyclopedia of DNA Elements (ENCODE)

consortium’s ‘‘Registry of candidate cis-Regulatory Elements’’

(version 3), which has annotated a cell-type-agnostic candidate

distal enhancer encompassing rs7132908 (candidate cis-regula-

tory element EH38E3015886).48

The rs7132908 region contacts promoters of FAIM2 and

several other genes within its TAD.11,46,47 We nominated these

genes as candidate effector genes. FAIM2 has additional sup-

port via colocalization with expression quantitative trait loci

(eQTL) data49 but has not been directly implicated in obesity
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pathogenesis. We used reporter assays in astrocytes to charac-

terize the cis-regulatory activity of rs7132908 and found that this

variant regulated FAIM2 expression with allele specificity.

Next, we generated hypothalamic neural progenitors and a het-

erogeneous population of hypothalamic neurons that were ho-

mozygous for either rs7132908 allele. We used bulk ATAC-seq

pre-differentiation and single-nucleus ATAC-seq post-differenti-

ation, when the cells were heterogeneous, to assess chromatin

accessibility. The rs7132908 region transitioned from closed to

open chromatin during differentiation from ESCs to hypothalam-

ic neurons. We also used bulk or single-nucleus RNA-seq to

characterize changes in gene expression at three time points

throughout differentiation, finding that rs7132908 genotype

regulated expression of FAIM2 and other genes in multiple cell

types. Finally, we report the striking observation that the

rs7132908 obesity risk A allele decreased the proportion of neu-

rons from 61% to 11%.Our data strongly implicate rs7132908 as

a causal variant at the chr12q13 obesity locus and nominates

FAIM2 as a candidate effector gene for further study.

RESULTS

The chr12q13 locus more strongly influences childhood
BMI
The effect size of the chr12q13 locus has been shown to

decrease as age increases using longitudinal data from children

3–17 years old.29 We sought to determine if the association be-

tween this locus and childhood BMI is stronger than adult BMI

using results from the most recent childhood50 and adult20 BMI

GWAS. We found that the effect of the chr12q13 locus on child-

hood BMI (b = 0.0704, standard error = 0.008) was significantly

stronger than its effect on adult BMI (b = 0.0303, standard error =

0.0018) (p value = 1.01 3 10�6).

FAIM2 is the lead candidate effector gene at the
chr12q13 childhood obesity locus
Chromosome conformation capture methods identify physical

interactions between genomic regions and can nominate

possible functional relationships, such as enhancer-promoter

interactions. The putative cis-regulatory element harboring

rs7132908 interacted variably with promoters of 11 candidate

effector genes (AC025154.2, AQP2, AQP5, AQP6, ASIC1,

BCDIN3D, FAIM2, LIMA1, LINC02395, LINC02396, and RAC-

GAP1) across neural cell types and their progenitors (Figure 1A;

Table S1),11,46,47 suggesting potential temporal and cell-type-

specific control of multiple genes in the region, similar to the

FTO locus.25–27 We performed colocalization analysis to inter-

sect eQTL signals from the Genotype-Tissue Expression

(GTEx) project with our variant-to-gene mapping results.49

With the conservative overlap of the two approaches, we found

that only FAIM2 was implicated by both analyses (Table S1). We

therefore nominated FAIM2 as the primary candidate effector

gene at this locus.

We sought to identify if loss-of-function mutations in any of the

coding, candidate effector genes (AQP2, AQP5, AQP6, ASIC1,

BCDIN3D, FAIM2, LIMA1, and RACGAP1) are associated with

cases of obesity in the Penn Medicine BioBank. We found that

none were significantly associated with obesity in either



Figure 1. rs7132908 regulates FAIM2 expression with allele and cell-type specificity
(A) Chromatin accessibility represented by ATAC-seq tracks depicting normalized reads and chromatin loops at the TAD containing rs7132908 in neural cell

types. Chromatin loops represent significant contacts between regions of open chromatin that harbored rs7132908 and a gene promoter. Gray dashed vertical

line indicates rs7132908 position.

(B) Graphic representation of firefly luciferase reporter vectors used in luciferase reporter assays.

(C‒F) Fold change of firefly luciferase fluorescence normalized to the promoter only control vector driven by the FAIM2 promoter in primary astrocytes (n = 7

biological replicates) (C), FAIM2 promoter in HEK293Ts (n = 7 biological replicates) (D), LIMA1 promoter in primary astrocytes (n = 8 biological replicates) (E), and

RACGAP1 promoter in primary astrocytes (n= 9 biological replicates) (F). Data are represented asmean ±SD. *p value <0.05, **p value <0.01, ***p value <0.001 by

one-way ANOVA with Tukey’s correction for multiple comparisons.
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European or African populations. We note that there were rela-

tively few rare coding variants in FAIM2 and no individuals

were homozygous for FAIM2 mutations.

Hypothalamic neurons and astrocytes are relevant
in vitro models to study the effects of rs7132908
genotype
rs7132908 is in the 30 untranslated region (UTR) of FAIM2 and

34,612 base pairs (bp) from the FAIM2 transcription start site.

The interaction between rs7132908 and the FAIM2 promoter
was observed in three neural cell types: primary astrocytes,

iPSC-derived cortical neural progenitors, and ESC-derived hy-

pothalamic neurons (Figure 1A; Table S1).11,46,47 We measured

gene expression to aid in prioritizing in vitromodels for our study.

FAIM2 expression was 2.26 transcripts permillion (TPM) in iPSC-

derived cortical neural progenitors, 42.85 TPM in primary astro-

cytes, and 136.75 TPM in ESC-derived hypothalamic neurons

(Table S1).11,46,47 We previously identified that BMI-associated

variants are significantly enriched in cis-regulatory elements

in a hypothalamic neuron model.11 While this significant
Cell Genomics 4, 100556, May 8, 2024 3
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enrichment has not been detected in primary astrocytes,47 seven

of nine candidate effector genes (AC025154.2, AQP5, AQP6,

FAIM2, LINC02395, LINC02396, and RACGAP1) nominated at

the chr12q13 locus in ESC-derived hypothalamic neurons were

also nominated in primary astrocytes (Figure 1A; Table S1), sug-

gesting similar genomic architecture in this region in these two

cellular settings. Therefore, ESC-derived hypothalamic neurons

and primary astrocytes were selected as in vitro models for

studying the putative cis-regulatory relationship between

rs7132908 and genes within its TAD.

rs7132908 regulates FAIM2 expression with allele and
cell-type specificity
Many commonly used reporter assays to assess cis-regulatory

function require a cell model that can be efficiently transfected.

Neuron-like cells produced by stem cell differentiation are

post-mitotic and transfection of these cells is very inefficient.

For this reason, and given the comparable observations

described above, we used primary astrocytes to characterize

the cis-regulatory function of the region harboring rs7132908

with luciferase reporter assays. We used vectors containing

either rs7132908 allele and promoters of interest and control

vectors (Figure 1B).

The putative enhancer sequence with the non-risk allele signif-

icantly increased luciferase expression 1.75-fold (adjusted p

value <0.001) (Figure 1C). In contrast, the same vector with a sin-

gle base change to the obesity risk A allele significantly

decreased luciferase expression 0.53-fold (adjusted p value =

0.003) (Figure 1C). We then used HEK293Ts to determine if this

cis-regulatory activity occurs in a non-neural cell type. In

HEK293Ts, the putative enhancer sequence harboring the non-

risk G allele did not significantly increase luciferase expression,

while the obesity risk allele decreased luciferase expression by

0.60-fold (adjusted p value = 0.037) (Figure 1D). We conclude

that rs7132908 regulates expression from the FAIM2 promoter

in astrocytes but displays weaker effects in non-neuronal

HEK293Ts.

In addition to FAIM2, our variant-to-gene mapping efforts in

primary astrocytes also nominated LIMA1 and RACGAP1 as

possible effector genes (Figure 1A; Table S1). However, when

we assessed the cis-regulatory activity of this region with the

LIMA1 and RACGAP1 promoter sequences, we observed no

significant changes in luciferase expression with either

rs7132908 allele, although we note the results for the risk A allele

with the RACGAP1 promoter were highly variable (Figures 1E

and 1F).

Transcription factors bind at regulatory sequences, such as

enhancers, and mediate the regulation of gene expression. We

predicted the impact of the obesity risk A allele on transcription

factor binding, identifying 12 transcription factors potentially

regulating gene expression at this chr12q13 locus: HNF4A,

HNF4G, PRD14, PRDM14, SRBP2, SREBF1, SREBF2, ZN143,

ZN423, ZN554, ZN768, and ZNF416.

rs7132908 genotype influences gene expression in
ESC-derived hypothalamic neural progenitors
After characterizing the cis-regulatory activity of rs7132908 in

astrocytes, we characterized the effect of the rs7132908 child-
4 Cell Genomics 4, 100556, May 8, 2024
hood obesity risk allele at multiple time points throughout differ-

entiation to hypothalamic neurons. We used the H9 ESC line,

which is homozygous for the rs7132908 non-risk G allele and

leveraged CRISPR-Cas9 homology-directed repair to generate

three isogenic, clonal lines that were homozygous for the

rs7132908 risk A allele.

To characterize chromatin accessibility in homogeneous

ESCs, we performed bulk ATAC-seq. The first principal compo-

nent was due to genotype at rs7132908 (Figure 2A); 286 peaks

were differentially accessible (Figure 2B; Table S2). However,

rs7132908 itself was not found in a peak of accessible chromatin

in these undifferentiated ESCs (Figure 2C).

To identify any transcriptional differences due to rs7132908

genotype in homogeneous ESCs, we performed bulk RNA-seq.

The first principal component, explaining 44.5% of the variation

between samples, was due to genotype at rs7132908 (Fig-

ure 2D). Forty-four genes were differentially expressed

(Figures 2E and 2F; Table S3). Forty-two genes were signifi-

cantly down-regulated in the rs7132908 risk A allele homozy-

gote ESCs, while just two genes were up-regulated. As most

enhancer-promoter interactions occur within the same TAD,

we wanted to determine if rs7132908 regulated expression of

genes within its TAD. However, none of the genes in the TAD

harboring rs713290851 were differentially expressed in ESCs.

We observed relatively small changes in expression and acces-

sibility due to the introduction of the obesity risk allele in ESCs,

consistent with the notion that rs7132908 primarily functions in

neural cells.

To generate hypothalamic neural progenitors and characterize

the effects of rs7132908 at this stage, we differentiated ESCs for

14 days using an established protocol (Figure 3A).6 Day 14 was

selected given it was the last day after direction toward ventral

diencephalon hypothalamic identity and cell cycle exit but before

neuron maturation.6 We compared the transcriptomic profile of

the hypothalamic neural progenitors homozygous for the

rs7132908 non-risk allele to profiles of primary human tissues

in the GTEx RNA-seq database49 (donor ages 20–71 years

old, with 68.1% 50 years or older) and primary human pediatric

hypothalamus tissue from three donors homozygous for the

rs7132908 non-risk allele (donor ages 4–14 years old, average

age = 8.67). The non-risk hypothalamic neural progenitors

most highly correlated with the primary human pediatric hypo-

thalamus tissue (correlation coefficient = 0.80, p value <0.001)

(Figure S1A).

To identify transcriptional differences due to rs7132908 ge-

notype in homogeneous hypothalamic neural progenitors, we

performed bulk RNA-seq. The first principal component, ex-

plaining 86.2% of the variation between samples, was due

to batch as we differentiated pairs of non-risk and risk allele

cells at two separate times (Figures S1B and S1C). Addition-

ally, principal variance component analysis determined that

the expected proportion of variance attributed to batch was

85.2% (Figure S1D). Therefore, we incorporated batch infor-

mation as a covariate in our linear model to adjust for this ef-

fect for our differential expression analysis and used corrected

expression data for visualizing the effects of batch correction,

following best practices. As a result, the first principal compo-

nent corresponded to rs7132908 genotype (Figures S1B and



Figure 2. The putative cis-regulatory region

harboring rs7132908 is inactive in ESCs

(A) PCA plot of ESC ATAC-seq libraries (GG n = 3,

AA n = 3 lines).

(B) Volcano plot of adjusted p values (�log10) and

fold change (log2) of ATAC-seq peaks tested for

differential accessibility due to the rs7132908

obesity risk allele in ESCs. Red dots indicate

differentially accessible peaks and black dots

indicate peaks with no significant differences in

accessibility.

(C) Chromatin accessibility represented by ATAC-

seq tracks depicting normalized reads across

FAIM2 in ESCs homozygous for either rs7132908

allele. Red vertical line indicates rs7132908 posi-

tion.

(D) PCA plot of ESCRNA-seq libraries (GG n = 2, AA

n = 3 lines).

(E) Volcano plot of adjusted p values (�log10) and

fold change (log2) of genes tested for differential

expression due to the rs7132908 obesity risk allele

in ESCs. Blue dots indicate down-regulated genes

and red dots indicate up-regulated genes. Gray

dots indicate genes with no significant differences

in expression.

(F) Heatmap depicting differentially expressed due

to the rs7132908 obesity risk allele in ESCs.
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S1C) and the expected proportion of variance attributed to

batch was decreased to 0% (Figure S1D); 6,494 genes were

differentially expressed (Figure 3B; Table S4). Five genes in

the TAD harboring rs713290851 were differentially expressed.

FAIM2 and three other genes (TMBIM6, LARP4, and COX14)

were down-regulated in the neural progenitors homozygous

for the rs7132908 risk A allele and AQP2 was up-regulated

(Figure 3C).

To explore global changes in gene expression, we clustered

the differentially expressed genes into five modules with hier-
C

archical clustering (Figure S1E). Even af-

ter batch correction, approximately 40%

of the remaining variance between sam-

ples was attributed to genes that were

variable across genotype and batch (Fig-

ure S1D), which comprised three mod-

ules (modules 1, 2, and 3) (Figure S1E).

Therefore, we selected the two modules

(modules 4 and 5) representing the

genes differentially expressed due to ge-

notype at rs7132908 and unaffected by

batch for downstream analysis (Fig-

ure S1E). Module 4 consisted of 216

genes consistently up-regulated in neu-

ral progenitors homozygous for the

rs7132908 risk A allele (Figure 3D).

Functional enrichment analysis of the

module 4 up-regulated genes identified

significantly enriched Gene Ontology

terms,52,53 with top-ranking biological

processes involving blood vessel devel-
opment, while other significant biological processes included

programmed cell death, apoptotic process, and intrinsic

apoptotic signaling pathway in response to endoplasmic

reticulum stress (Table S5). Module 5 consisted of 152

genes consistently down-regulated in neural progenitors

homozygous for the rs7132908 risk allele (Figure 3E).

The module 5 down-regulated genes were also used to iden-

tify any enriched Gene Ontology terms,52,53 however, no

significantly enriched biological processes were identified

(Table S5).
ell Genomics 4, 100556, May 8, 2024 5



Figure 3. rs7132908 genotype influences gene expression in ESC-derived hypothalamic neural progenitors

(A) Schematic of differentiation of ESCs to hypothalamic neurons, including duration, phases, and key small molecules to direct cell fates.

(B) Volcano plot of adjusted p values (�log10) and fold change (log2) of a total of genes tested for differential expression in hypothalamic neural progenitors. Blue

dots indicate down-regulated genes and red dots indicate up-regulated in hypothalamic neural progenitors homozygous for the obesity risk allele. Gray dots

indicate genes with no significant differences in expression.

(C) Boxplots of gene expression (normalized log2 cpm) for genes in the rs7132908 TAD that were differentially expressed.

(D) Heatmap depicting module 4 genes up-regulated due to the rs7132908 obesity risk allele in hypothalamic neural progenitors.

(E) Heatmap depicting module 5 genes down-regulated due to the rs7132908 obesity risk allele in hypothalamic neural progenitors. See also Figure S1.
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ESC-derived hypothalamic neurons molecularly
resemble the human hypothalamus
Next, we generated hypothalamic-like neurons by differentiating

for 40 days using an established protocol6 and then collected

nuclei (Figure 3A). Day 40 was selected given a previous charac-

terization of this protocol found that this duration was sufficient

to produce heterogeneous populations of functional neurons

that closely resemble those found in the human hypothalamus.6

These nuclei were used to simultaneously profile gene expres-

sion and open chromatin in each cell using a multi-omic single-

nucleus RNA-seq and ATAC-seq approach.

A previously published human hypothalamus single-cell RNA-

seq reference dataset54 was used to identify cell types in our da-

taset (Figure S2A). To ensure that the cell type identifications

were likely to be accurate, we prioritized cells with high-confi-

dence annotations using a classification score threshold
6 Cell Genomics 4, 100556, May 8, 2024
(R0.8) that was previously demonstrated to increase accu-

racy.55 This method identified cells as neurons, oligodendrocyte

precursors (OPCs), or fibroblasts based on their transcriptional

profile with classification scores above our threshold (Figure 4A).

These annotations are further supported by expression patterns

of known marker genes for each cell type, including MAP2 and

TUBB3 for neurons and COL1A1, COL1A2, and COL6A2 for fi-

broblasts (Figure 4B). We note that the OPC population did not

highly or uniformly express conventional marker genes, such

as PDGFRA, CSPG4, OLIG1, OLIG2, and SOX10 (Figure S2B),

although this population did express cell cycle genes, such as

CENPF and TOP2A, which have been observed in OPCs56 and

neural intermediate progenitors57 (Figure 4B).

Additionally, we compared the transcriptomic signatures of

each cell type to expression data in the GTEx RNA-seq data-

base49 (donor ages 20–71 years old, with 68.1% 50 years or



Figure 4. ESC-derived hypothalamic neurons molecularly resemble the human hypothalamus
(A) UMAP depicting all cells clustered by single-nucleus RNA-seq profile and annotated by cell type.

(B) Dot plot depicting average expression (scaled and log2 normalized counts) and percent of cells that expressed neuron (MAP2 and TUBB3), fibroblast

(COL1A1, COL1A2, and COL6A2), and OPC (CENPF and TOP2A) marker genes, split by cell type.

(C) UMAP depicting all neurons clustered by single-nucleus RNA-seq profile and annotated by cluster identity.

(D) Dot plot depicting average expression (scaled and log2 normalized counts) and percent of cells that expressed inhibitory (GAD1), excitatory (SLC17A6),

GABAergic (SLC32A1), and hypothalamic (POMC, NPY, OTP, and SST) neuron marker genes, split by cluster identity.

(E) Heatmap showing averagemodule scores across all neuron clusters for each human prenatal hypothalamic nucleus gene set published in the Allen Brain Atlas

database, plotted as the column Z score per neuron cluster. See also Figure S2.
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older) and primary human pediatric hypothalamus tissue from

three donors homozygous for the rs7132908 non-risk allele

(donor ages 4–14 years old, average age = 8.67). We found

that the neurons were most strongly correlated with pediatric hy-
pothalamus and adult hypothalamus (correlation coefficients =

0.56 and 0.54, respectively, p values <0.001), the OPCs corre-

lated most strongly with fibroblasts and pediatric hypothalamus

(correlation coefficients = 0.57 and 0.52, respectively, p values
Cell Genomics 4, 100556, May 8, 2024 7



(legend on next page)

8 Cell Genomics 4, 100556, May 8, 2024

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
<0.001), and the fibroblasts most strongly correlated with fibro-

blasts and tibial artery (correlation coefficients = 0.66 and 0.63,

respectively, p values <0.001) (Figures S2C‒S2E).
Within the neuron population (Figure 4C), there were distinct

expression patterns of markers for several neuron types,

including inhibitory (GAD1), excitatory (SLC17A6), and

GABAergic (SLC32A1) neurons (Figure 4D). We also identified

neuronal clusters expressing known hypothalamus genes,

such as POMC, NPY, OTP, and SST (Figure 4D). Next, we

compared the transcriptomic signatures of each neuronal

cluster (Figure 4C) to human prenatal hypothalamic subregion

gene sets published in the Allen Brain Atlas database,58–61

given that the neuron population displayed expression pat-

terns most similar to pediatric hypothalamus tissue. We

found that each cluster closely resembled the hypothalamic

arcuate nucleus, which regulates feeding behavior and energy

expenditure,62 the dorsomedial hypothalamic nucleus, which

regulates food intake and body weight,63 and the anterior hy-

pothalamic nucleus, which regulates defensive behaviors64

(Figure 4E).

The putative cis-regulatory region harboring rs7132908
is active in ESC-derived hypothalamic cell types
We used single-nucleus ATAC-seq to characterize chromatin

accessibility in the heterogeneous ESC-derived hypothalamic

cells. Unlike in the ESCs, the cis-regulatory element containing

rs7132908 was open in all cell types (Figure 5A).

When comparing chromatin accessibility globally between

rs7132908 genotypes across all annotated cells, 12,586

ATAC-seq peaks were differentially accessible (Figure 5B;

Table S6). We found that 565 transcription factor motifs were

significantly enriched in peaks more accessible with the

rs7132908 non-risk G allele and 446 were enriched in

peaks more accessible with the risk A allele (Table S7). The

peak harboring rs7132908 at chr12:49,868,731–49,869,775

(GRCh38) displayed decreased accessibility with the risk A

allele by 27.62% (adjusted p value = 1.08 3 10�88) when

considering all annotated cells. We also repeated these ana-

lyses in each annotated cell type and detected 3,406, 12,386,

and 7,543 significantly differentially accessible regions in neu-

rons, OPCs, and fibroblasts, respectively (Figures 5C–5E;

Table S6). The peak surrounding rs7132908 was less acces-

sible with the risk A allele by 40.74% in fibroblasts (adjusted p

value = 1.35 3 10�14), but more accessible in neurons with

the risk A allele by 78.92% (adjusted p value = 2.31 3 10�21)

and not significantly different in OPCs.We then identified signif-

icantly differentially accessible regions that were consistent be-

tween analyses when considering each individual cell type and
Figure 5. The putative cis-regulatory region harboring rs7132908 is ac

(A) Chromatin accessibility represented by ATAC-seq tracks depicting normaliz

vertical line indicates rs7132908 position.

(B‒E) Volcano plots of adjusted p values (�log10) and fold change (log2) of ATAC

allele in total cells (B), neurons (C), OPCs (D), and fibroblasts (E). Black or colored d

significant differences in accessibility.

(F) Bar plot of numbers of differentially accessible regions from (B)–(E) that overl

(G) ATAC-seq read enrichment heatmaps for groups of regions categorized in (F)

Windows indicate which cell type(s) yielded such groups of differentially accessi
all annotated cells combined (Figure 5F) and their top enriched

transcription factor motifs (Figure 5G). We conclude that

rs7132908 is in an active chromatin region post-differentiation

and that the rs7132908 risk A allele influences accessibility

locally and globally.
The rs7132908 obesity risk allele dramatically
decreases the proportion of neurons produced by
hypothalamic neuron differentiation
As expected, during each hypothalamic neuron differentiation,

we began to observe neuron morphology with brightfield micro-

scopy once the cells were exposed to BDNF in the neuron matu-

ration phase (days 14–40) (Figure 3A). Strikingly, there were

fewer cells exhibiting neuron morphology for those homozygous

for the rs7132908 risk A allele (Figure 6A). To confirm this obser-

vation, we stained day 40 cells from each genotype to detect

MAP2, a marker of mature neuron dendrites. Indeed, although

each well was seeded at the same density and cultured simulta-

neously, fewer MAP2+ cells were observed in the risk A allele

condition (Figure S3).

We further confirmed this result using our annotated single-

nucleus RNA-seq dataset. We partitioned the annotated cells

by genotype at rs7132908 and differentiation replicate sample,

then quantified the proportions of cells from each replicate

identified as neurons, OPCs, or fibroblasts in each condition,

which controlled for the number of nuclei sequenced per sam-

ple. On average, the cells homozygous for the rs7132908 non-

risk G allele were composed of 60.90% neurons, 18.33%

OPCs, and 20.77% fibroblasts (Figure 6B). In contrast, the

cells homozygous for the rs7132908 risk A allele were

composed of 10.69% neurons, 12.78% OPCs, and 76.53% fi-

broblasts (Figure 6C). A single base change from the

rs7132908 non-risk G allele to the obesity risk A allele in the

same genetic background was sufficient to substantially

decrease the proportion of neurons produced by hypothalam-

ic neuron differentiation.
rs7132908 genotype influences gene expression in
ESC-derived hypothalamic cell types
We identified changes in gene expression due to genotype at

rs7132908 in the ESC-derived hypothalamic cells. First, we

included all cells that passed our quality control and determined

that 85% of the variation between replicate samples was ex-

plained by the rs7132908 genotype (Figure S4A). We then iden-

tified that 6,409 genes were differentially expressed (Figures 7A

and 7B; Table S8). Four genes in the TAD harboring rs7132908,51

were differentially expressed; two were down-regulated in cells
tive in ESC-derived hypothalamic cell types

ed reads across FAIM2 in ESC-derived neurons, OPCs, and fibroblasts. Red

-seq peaks tested for differential accessibility due to the rs7132908 obesity risk

ots indicate differentially accessible peaks and gray dots indicate peakswith no

apped between analyses.

and their corresponding top-most enriched transcription factor binding motifs.

ble regions.
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Figure 6. The rs7132908 obesity risk allele

dramatically decreases the proportion of

neurons produced by hypothalamic neuron

differentiation

(A) Representative brightfield images of hypotha-

lamic neurons mid-differentiation on day 29 (scale

bar, 100 mm). Cells were homozygous for either the

rs7132908 non-risk allele (left) or obesity risk allele

(right).

(B and C) Proportion of total cells homozygous for

the rs7132908 non-risk allele annotated as each

cell type (n = 4 differentiation replicates) (B) and

homozygous for the rs7132908 obesity risk allele

annotated as each cell type (n = 4 differentiation

replicates) (C). Data are represented as mean ±

SD. See also Figure S3.
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homozygous for the rs7132908 risk A allele (FAIM2 and ASIC1)

and two were up-regulated (FMNL3 and LIMA1) (Figure 7C).

We identified genes differentially expressed within each an-

notated cell type. rs7132908 genotype explained 21%, 84%,

and 78% of the variation between replicate samples in the neu-

rons, OPCs, and fibroblasts, respectively (Figures S4B‒S4D).
Fifty-two, 2,678, and 1,911 genes were differentially expressed

in neurons (Figures 7D and 7E; Table S8), OPCs (Figures 7F

and 7G; Table S8), and fibroblasts (Figures 7H and 7I;

Table S8), respectively. When considering genes located in

the same TAD as rs7132908,51 no genes were differentially ex-

pressed in neurons, while one gene was differentially ex-

pressed in OPCs (LIMA1 up-regulated) (Figure 7J), and two

genes were differentially expressed in fibroblasts (FAIM2

down-regulated; FMNL3 up-regulated) (Figure 7K). Functional

enrichment analyses of up-regulated genes in both OPCs and

fibroblasts identified similar Gene Ontology terms,52,53

including the biological processes of cell death and apoptosis

(Table S9), while processes such as nervous system develop-

ment, neuron differentiation, and neuron projection develop-

ment were enriched among down-regulated genes (Table S9).

However, the comparably shorter lists of significantly up- and

down-regulated genes in neurons did not identify any signifi-

cantly enriched biological processes.

As our sequencing efforts only captured transcriptional differ-

ences at three time points, we were therefore motivated to quan-

tify FAIM2 expression in all cells throughout the 40-day hypotha-

lamic neuron differentiation using real-time qPCR. FAIM2

expression peaked around day 14 in cells homozygous for the

rs7132908 non-risk allele and around day 12 in cells homozy-
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gous for the risk allele (Figures S5A and

S5B), which represents the hypothalamic

neural progenitor phase of the differentia-

tion (Figure 3A). Average FAIM2 expres-

sion was also higher with the non-risk

allele on all measured days from day 14–

40 (Figures S5A and S5B). We also char-

acterized FAIM2 expression in vivo using

our primary human pediatric (donor ages

4–14 years old, average age = 7.5) hypo-

thalamus tissue RNA-seq data and deter-
mined that FAIM2 was highly expressed (median TPM = 415.66,

n = 4) (Figure S5C; Table S10).

DISCUSSION

The chr12q13 locus was first associated with variation in adult

BMI andweight in 2009,65 BMI as a longitudinal trait during child-

hood (ages 3–17) in 2012,29 and childhood obesity as a dichoto-

mous trait in 2012.21 The genotypic risk effect at the chr12q13 lo-

cus during childhood decreased as age increased,29 which

suggests this locus may regulate age-dependent pathways in

early childhood and could explain why this locus is more pro-

nounced in childhood. More than 1,000 independent loci are

now associated with measurements of obesity24 and only a

few have been studied extensively enough to pinpoint a causal

variant and implicate effector genes, such as the FTO25–27 and

2q24.3 loci.66

Fine-mapping by our group22 and others34 has refined the

chr12q13 locus to credible sets of 1–6 SNPs, depending on

methods. While rs7132908 is the strongest variant detected

with colocalization analysis using multiple ancestral popula-

tions,34 we cannot rule out additional causal signals at this locus.

A global functional investigation of BMI-associated SNPs in 30

UTRs found that the rs7132908 obesity risk allele disrupted

miRNA binding activity of miR-330-5p in hamster ovary cells

and human subcutaneous preadipocytes, leading to an increase

in FAIM2 expression.67 These results may, however, not accu-

rately reflect regulation of FAIM2 expression in vivo as this

gene is primarily expressed in the brain; furthermore, this micro-

RNA (miRNA) product is a passenger strand that is typically



Figure 7. rs7132908 genotype influences gene expression in ESC-derived hypothalamic cell types

(A, D, F, H) Heatmaps depicting differentially expressed genes due to the rs7132908 risk allele in all cells (A), neurons (D), OPCs (F), and fibroblasts (G).

(B, E, G, I) Volcano plots of adjusted p values (�log10) and fold change (log2) of genes tested for differential expression due to the rs7132908 obesity risk allele in

all cells (B), neurons (E), OPCs (G), and fibroblasts (I). Colored dots indicate differentially expressed genes and gray dots indicate genes with no significant

differences in expression.

(C, J, K) Boxplots of gene expression (log10 normalized counts) for genes in the rs7132908 TAD that were differentially expressed in all cells (C), OPCs (J), and

fibroblasts (K). See also Figures S4 and S5.
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found in lower abundance due to degradation duringmiRNA pro-

cessing.68 More recently, others carrying out global analyses

have implicated an enhancer in the region harboring rs7132908

with a luciferase reporter assay and found that, in mouse

neuronal hypothalamus cells, the obesity risk allele significantly

decreased enhancer activity with a minimal promoter,69 consis-

tent with our results.

The rs7132908 obesity risk A allele led to differential expres-

sion of zero TAD genes in ESCs, five TAD genes in hypothalam-

ic neural progenitors (AQP2, COX14, FAIM2, LARP4, and

TMBIM6), one TAD gene in OPCs (LIMA1), and two TAD genes

in fibroblasts (FAIM2 and FMNL3). These results, in combina-

tion with our observation that rs7132908 is not accessible in

ESCs, suggest that rs7132908 does not regulate gene expres-
sion in stem cells. These results also implicate different effector

genes depending on cell type, in agreement with the luciferase

assay results where enhancer activity was observed in primary

astrocytes but not HEK293Ts. Only FAIM2 was implicated in

more than one cell type and its expression was consistently

down-regulated with the obesity risk allele. Taken together,

we demonstrated that rs7132908 resides within a cis-regulatory

element that confers allele-specific and cell-type-specific ef-

fects on the expression of FAIM2 and other genes within its

TAD. This result mirrors the well-studied FTO locus, where

the rs1421085 obesity risk allele decreases the expression of

IRX3 and IRX5 during early differentiation of mesenchymal pro-

genitors to adipocytes26 and increases the expression of Fto in

brown adipocytes.27
Cell Genomics 4, 100556, May 8, 2024 11
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We did not observe large differences in accessibility at

rs7132908 due to genotype in any cell type. Therefore, signifi-

cant changes in effector gene expression are likely due to differ-

ences in transcription factor binding affinity. We predicted that

the rs7132908 risk allele disrupts binding of 12 transcription fac-

tors, many of which are known to be both activators and repres-

sors and are ubiquitously expressed. Further investigation is

warranted to determine which specific transcription factors

regulate gene expression at the chr12q13 locus.

We made the striking observation that the rs7132908 obesity

risk A allele decreased the proportion of hypothalamic neurons

produced by stem cell differentiation. We also observed that

the obesity risk allele led to up-regulation of cell death and

apoptosis gene sets and down-regulation of neuron develop-

ment gene sets. However, orexigenic neurons were underrepre-

sented in our model and we could not detect if any orexigenic or

anorexigenic neuronal cell cluster or subpopulation was more

severely decreased, highlighting the need for more experiments

to determine how the rs7132908 obesity risk allele could in-

crease appetite and childhood obesity risk. We observed that

the rs7132908 obesity risk allele most significantly led to up-

regulation of blood vessel development gene sets. One possible

explanation is that these neural progenitors gave rise to mostly

fibroblasts and fibroblasts play a significant role in the formation

of new blood vessels by secreting angiogenic growth factors.70

Our working hypothesis is that rs7132908 regulates FAIM2

and possibly other genes that are required for normal anorexi-

genic neuron development or survival at a crucial time point in

development and prior to adulthood. Genes downstream of

rs7132908 may be less important in adulthood or a compensa-

tory mechanism could arise later in life to decrease the effect

of the rs7132908 risk allele. This is supported by our finding

that FAIM2 expression was highest in neural progenitors homo-

zygous for the rs7132908 non-risk allele after only 14 days of dif-

ferentiation and that the obesity risk allele caused an approxi-

mate 50% decrease in FAIM2 expression at this time. Mice

with reduced Faim2 expression or Faim2 null mice have reduced

cerebellar size, internal granular layer thickness, and Purkinje

neuron development, which are more severe in early develop-

mental stages with substantial recovery over time.71 These ob-

servations could help explain the difference in the magnitude

of the effect of the chr12q13 risk genotype on BMI with

increasing age that is reported in this study and by others.29

FAIM2 protects neurons from Fas-induced apoptosis72,73 and

regulates neurite outgrowth,74 neuroplasticity,75 and synapse

formation.76 While Faim2 null mice have only been previously

used to study neurological71,77–79 and immune80 phenotypes,

one study reported that Faim2 null mice at 10–12 weeks of age

and fed a standard diet ad libitum displayed subtle increases

in fat content.77 Rodent studies have also demonstrated that

Faim2 expression increased in the hypothalamic arcuate nucleus

in response to restricted food intake81 and food deprivation.82 As

for a mechanism that could explain the relationship between the

rs7132908 risk allele and obesity, we propose that the resulting

decrease in FAIM2 expression could cause altered proportions

of orexigenic and anorexigenic neurons in the hypothalamus. If

an individual had fewer anorexigenic POMC neurons, they would

experience an increased appetite and higher risk of becoming
12 Cell Genomics 4, 100556, May 8, 2024
overweight. FAIM2 is expressed in neurons outside of the

hypothalamus, and while no associations between the

chr12q13 locus or FAIM2 and neurological traits in children

have been reported, further exploration into possible neurolog-

ical comorbidities should be explored.

The rs7132908 risk allele has remained common in most hu-

man ancestral populations. This may be due to it previously

providing an evolutionary advantage when food was scarcer

and the risk of starvation was higher. Conversely, the impact of

the rs7132908 risk allele, which like all GWAS variants should

have amodest effect, may be exacerbated by our current obeso-

genic environment with higher caloric foods andmore food avail-

ability than ever before.

We acknowledge that our methods nominate FAIM2 as a

strong candidate effector gene at this locus, but do not rule

out other potentially causal genes. Future work must also be

dedicated to directly test our hypothesis that FAIM2 is a causal

gene for childhood obesity. Using human exonic sequencing

data from the Penn Medicine BioBank, we observed relatively

few rare FAIM2 variants and no individuals homozygous for

any given FAIM2 mutations, suggesting that FAIM2 mutations

may be strongly deleterious. FAIM2 knockout and over expres-

sion stem cell lines could be differentiated to hypothalamic neu-

rons to test if changes in FAIM2 expression is responsible for our

observation of decreased neurons in vitro. The use of Faim2

knockout mice would also aid in determining if decreased

Faim2 expression leads to changes in appetite, body fat, hypo-

thalamic neuron composition, or neurodevelopment, which

would make progress toward identifying the precise mechanism

by which the rs7132908 genotype increases childhood

obesity risk.

Overall, we functionally validated rs7132908 as a causal SNP

at one of the strongest but commonly overlooked childhood

obesity GWAS loci, implicated FAIM2 and other cell-type-spe-

cific effector genes, and nominated pathways acting down-

stream of the SNP involving nervous system development and

cell death. We have also generated datasets from primary astro-

cytes and multiple time points throughout hypothalamic neuron

differentiation that will serve as a resource to aid investigation

of other loci and traits. This progress toward characterizing the

precise mechanism underlying the association between the

chr12q13 genomic region and obesity should enable future

work with this key locus and guide comparable efforts to ulti-

mately identify therapeutic targets.

Limitations of the study
There are several other limitations to our study to consider. First,

although our ESC-derived in vitromodel of hypothalamic neuro-

genesis expresses some appropriate marker genes, it likely does

not fully recapitulate the hypothalamus during childhood. All the

neuron clusters most closely resembled human hypothalamic

tissue from the arcuate nucleus, anterior nucleus, and dorsome-

dial nucleus. While we intentionally used a differentiation proto-

col established to generate arcuate neurons, other hypothalamic

nuclei, such as the paraventricular nucleus, also play key roles in

appetite regulation and we were unable to represent all relevant

neuron sub-types in our model. We also generated non-neuronal

cell types (OPCs and fibroblasts) that correlated most highly with
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cultured fibroblasts in the GTEx RNA-seq database49 but still ex-

pressed neuronal markers (MAP2 and TUBB3) at some level,

likely due to exposure to neuron maturation cell culture medium

for 26 days. While we reported changes in gene expression and

chromatin accessibility in these additional cell types, they may

not be as biologically relevant. Second, we performed indepen-

dent stem cell differentiations that led to batch effects, especially

in the hypothalamic neural progenitor RNA-seq dataset. To

reduce these effects, we included batch as a covariate in the

linear model when detecting differentially expressed genes in

this cell type. We also quantified the expected proportion of vari-

ance attributable to genotype and batch using principal variance

component analysis and determined that post-batch correction,

40% of the remaining variance was attributable to both batch

and genotype. Therefore, some genes that we detected to be

significantly differentially expressed were still influenced by

batch. As a result, we only included gene sets from modules

that were consistent across the two differentiation batches in

our downstream enrichment analysis. Third, we used the female

H9 ESC line which prevented us from detecting sex-specific dif-

ferences. Fourth, we did not investigate the effects of the

rs7132908 obesity risk A allele in vivo. We were able to obtain

four pediatric hypothalamus tissue samples, but with just three

homozygous for the rs7132908 non-risk allele and only one het-

erozygote, this sample size was insufficient for allele-specific

expression or eQTL analyses. In the future, increased accessi-

bility to human pediatric hypothalamus tissue would aid investi-

gation at the chr12q13 obesity locus.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Primary astrocyte model

B HEK293T model

B ESC model

B Pediatric postmortem brain tissue

d METHOD DETAILS

B Mycoplasma contamination testing

B Bulk ATAC-seq library preparation

B Hi-C library preparation

B RNA extraction from cells

B DNA and RNA extraction from tissue

B Bulk RNA-seq library preparation

B Primary astrocyte transfection optimization

B Generation of luciferase assay vectors

B Transfection of primary astrocytes

B Transfection of HEK293Ts

B Luciferase assay

B Generation of rs7132908 risk allele ESCs

B Karyotyping

B DNA extraction from cells

B SNP genotyping

B Screening for CRISPR off-target effects

B Preparation of differentiation medium
B Differentiation to neural progenitors

B Differentiation to neurons

B Fluorescent immunohistochemistry

B Nuclei isolation

B Single-nucleus library preparation

B cDNA generation

B Real-time qPCR

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Effect size comparison

B GWAS-eQTL colocalization

B Gene burden testing

B Luciferase assay data analysis

B Transcription factor binding prediction

B CNV detection

B De novo CNV detection

B Bulk RNA-seq analysis

B Bulk ATAC-seq analysis

B Hi-C analysis

B Single-nucleus pre-processing

B Cell type identification

B Transcriptome correlation

B Single-nucleus differential expression

B Single-nucleus differential accessibility

B Real-time qPCR analysis

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2024.100556.

ACKNOWLEDGMENTS

We thank Dr. Bill Manley, Madeleine Salvatore, and Danny Frederick for

training in stem cell culture; Dr. Guo-li Ming and Dr. Sarshan Pather for sharing

data and code; Dr. Dhruv Sareen and Andrew Gross for sharing protocols and

technical support; Gina Pacella for experiment design guidance; Dr. Jonathan

Schug and Mitchell Conery for providing bioinformatic guidance; Dr. Alexis

Crockett for providingmouse brain tissue for a pilot study; Dr. Shaon Sengupta

for sharing equipment; Children’s Hospital of Philadelphia Human Pluripotent

Stem Cell Core; Children’s Hospital of Philadelphia Center for Applied Geno-

mics; Children’s Hospital of Philadelphia Flow Cytometry Core; University of

Pennsylvania Genomic and Sequencing Core DNA Sequencing Laboratory;

and University of Pennsylvania Cell Center Services. We acknowledge the

Penn Medicine BioBank for providing data and thank the patient-participants

of Penn Medicine who consented to participate in this research program. We

would also like to thank the Penn Medicine BioBank team and Regeneron Ge-

netics Center for providing genetic variant data for analysis. The Penn Medi-

cine BioBank is approved under IRB protocol #813913 and is supported by

the Perelman School of Medicine at the University of Pennsylvania, a gift

from the Smilow family, and the National Center for Advancing Translational

Sciences of the National Institutes of Health under CTSA award number

UL1TR001878. Human tissue was obtained from the NIH Neurobiobank at

the University of Maryland, Baltimore, MD. Some figures were created with

BioRender.com. S.H.L is supported by the NICHD (F31 HD105404). S.F.A.G.

is supported by the NICHD (R01 HD056465), the NIDDK (UM1 DK126194),

and the Daniel B. Burke Endowed Chair for Diabetes Research. Biobank-spe-

cific acknowledgments are included in the supplemental information.

AUTHOR CONTRIBUTIONS

S.H.L. and S.F.A.G. conceived the project. S.H.L. designed the experiments.

S.H.L., C.M.V., N.D., and K.C. performed cell culture. S.H.L. and C.M.V.

collected cell materials. S.H.L. processed human tissue. S.H.L. and C.M.V.

conducted cell line validation. S.H.L. optimized transfection. S.H.L., C.M.V.,

and N.D. performed luciferase assays. S.H.L. performed luciferase assay anal-

ysis. J.A.M. performed CRISPR. S.H.L. and K.C. performed
Cell Genomics 4, 100556, May 8, 2024 13

https://doi.org/10.1016/j.xgen.2024.100556
https://doi.org/10.1016/j.xgen.2024.100556
http://BioRender.com


Article
ll

OPEN ACCESS
immunocytochemistry and imaging. S.H.L., K.B., and S.L. prepared bulk RNA-

seq libraries. J.A.P. and K.M.H. prepared bulk ATAC-seq libraries. J.A.P. and

S.H.L. prepared Hi-C libraries. S.H.L. prepared nuclei for sequencing. J.A.P.

sequenced bulk RNA-seq, ATAC-seq, and Hi-C libraries. J.P.B. performed ef-

fect size comparison. M.C.P. performed gene burden testing. S.H.L., K.B.T,

A.C., and M.C.P. performed bulk RNA-seq analyses. M.C.P., K.B.T., and

A.C. performed bulk ATAC-seq analyses. K.B.T. performed transcription fac-

tor, colocalization, and Hi-C analyses. S.H.L., K.B.T., and M.A.H. performed

single-nucleus RNA-seq analyses. K.B.T. and S.H.L. performed single-nu-

cleus ATAC-seq analyses. S.H.L. performed real-time qPCR. S.F.A.G.,

M.C.P., A.D.W., S.A.A., and J.A.P. provided critical feedback and supervision.

S.H.L. and S.F.A.G. wrote the original manuscript draft. All authors reviewed

and edited the final manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 29, 2023

Revised: March 21, 2024

Accepted: April 8, 2024

Published: May 1, 2024

REFERENCES

1. Bryan, S., Afful, J., Carroll, M., Te-Ching, C., Orlando, D., Fink, S., and

Fryar, C. (2021). National Health and Nutrition Examination Survey

2017–March 2020 Prepandemic Data Files Development of Files and

Prevalence Estimates for Selected Health Outcomes. National Health

Statistics Reports. https://doi.org/10.15620/cdc:106273.

2. NCD Risk Factor Collaboration NCD-RisC (2017). Worldwide trends in

body-mass index, underweight, overweight, and obesity from 1975 to

2016: a pooled analysis of 2416 population-based measurement studies

in 128.9 million children, adolescents, and adults. Lancet 390, 2627–

2642. https://doi.org/10.1016/S0140-6736(17)32129-3.

3. Lobstein, T., Baur, L., and Uauy, R.; IASO International Obesity Task-

Force (2004). Obesity in children and young people: a crisis in public

health. Obes. Rev. 5 (Suppl 1), 4–104. https://doi.org/10.1111/j.1467-

789X.2004.00133.x.

4. Loos, R.J.F., and Yeo, G.S.H. (2022). The genetics of obesity: from dis-

covery to biology. Nat. Rev. Genet. 23, 120–133. https://doi.org/10.

1038/s41576-021-00414-z.

5. Silventoinen, K., Jelenkovic, A., Sund, R., Hur, Y.M., Yokoyama, Y.,
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Antibodies

Anti-MAP2 (Chicken, Polyclonal) Abcam Cat# ab5392; Lot# GR3450786-1;

RRID: AB_2138153

Anti-TTF-1/NKX2.1 (Mouse, Monoclonal) Cell Marque Cat# 343M-95; Lot# 0000051910;

RRID: AB_1158934

Anti-NeuN (Mouse, Monoclonal) Millipore Sigma Cat# MAB377; RRID: AB_2298772

Anti-Chicken Alexa Fluor 488 (Goat, Polyclonal) Abcam Cat# ab150169; RRID: AB_2636803

Anti-Mouse Alexa Fluor 488 (Goat, Polyclonal) Invitrogen Cat# A-11001; RRID: AB_2534069

Biological samples

Frozen hypothalamus region, left hemisphere.

1674, 8 years old, male

NIH NeuroBioBank N/A

Frozen hypothalamus region, left hemisphere.

5309, 14 years old, female

NIH NeuroBioBank N/A

Frozen hypothalamus region, left hemisphere.

5976, 4 years old, female

NIH NeuroBioBank N/A

Frozen hypothalamus region, left hemisphere.

6032, 4 years old, male

NIH NeuroBioBank N/A

Chemicals, peptides, and recombinant proteins

1M HEPES Gibco Cat# 15630-080

0.25% Trypsin-EDTA Gibco Cat# 25200-056

Dulbecco’s Phosphate-Buffered Saline (DPBS)

without calcium and magnesium

Corning Cat# 21-031-CV

Heat-Inactivated FBS Gibco Cat# 10082-147

Dulbecco’s Modified Eagle’s Medium (DMEM) ATCC Cat# 30-2002

100X Antibiotic-Antimycotic Gibco Cat# 15240062

200 mM L-Glutamine Corning Cat# 25-005-CI

PBS, pH 7.4 Gibco Cat# 10010023

ROCK Inhibitor Y-27632 Stemcell Technologies Cat# 72304

Matrigel hESC-Qualified Matrix, LDEV-free Corning Cat# 354277

Versene Solution Gibco Cat# 15040-066

DMSO Sigma Cat# D2650-100ML

mFreSR Stemcell Technologies Cat# 05854

Accutase Stemcell Technologies Cat# 07920

Opti-MEM Reduced Serum Media Gibco Cat# 31985-062

4% Paraformaldehyde Biotium Cat# 22023

XhoI NEB Cat# R0146S

Miller’s LB Broth Corning Cat# 46-050-CM

LB + Ampicillin (100 mg/mL) Agar Plates University of Pennsylvania

Cell Center Service Facility

Cat# 6005

Ampicillin Corning Cat#61-238-RH

AflII NEB Cat# R0520S

Lipofectamine Stem Transfection Reagent Invitrogen Cat# STEM00003

BfaI NEB Cat# R0568S

TRIzol Reagent Invitrogen Cat# 15596018

DNase I Zymo Cat# E1009-A

100% Ethanol Electron Microscopy Sciences Cat#15055

TrypLE Express Enzyme ThermoFisher Cat# 12605036
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DMEM/F12 Gibco Cat# 11320-033

Matrigel Growth Factor Reduced Basement

Membrane Matrix

Corning Cat# 354230

Iscove’s Dulbecco’s Medium (IMDM) Gibco Cat# 12440053

KnockOut Serum Replacement Gibco Cat# 10828-010

MEM Non-Essential Amino Acids Solution Gibco Cat# 11140050

100 mM Sodium Pyruvate Gibco Cat# 11360070

Penicillin-Streptomycin (10,000 U/mL) Gibco Cat# 15140122

b-Mercaptoethanol Sigma Life Science Cat# M3148-25ML

Recombinant Human FGF basic/FGF2/bFGF

(146 aa) Protein

R&D Systems Cat# 233-FB

1M Tris-HCl Buffer, pH 7.5 Invitrogen Cat# 15567027

Tween 20, 10% (w/v) Roche Cat# 11332465001

JumpStart Taq DNA Polymerase Sigma Aldrich Cat# D6558-50UN

AMPure XP Beads Beckman Coulter Cat# A63881

IGEPAL CA-630 Sigma Cat# I8896-50ML

Triton X-100 Sigma Cat# X100-5ML

10X PBST Buffer Strength Solution Bio Basic Cat# PW004

DAPI (40,6-Diamidino-2-Phenylindole,

Dilactate)

Invitrogen Cat# D3571

ProLong Gold Antifade Mountant Invitrogen Cat# P36930

Corticosterone Sigma Cat# 27840

Linoleic Acid Sigma Cat# L1376

Linolenic Acid Sigma Cat# L2376

(±)-a-Lipoic Acid Sigma Cat# T5625

Progesterone Sigma Cat# P0130

Retinyl Acetate Sigma Cat# 46958

(±)-a-Tocopherol Sigma Cat# T3251

DL-a-Tocopherol Acetate Sigma Cat# T3376

Bovine Serum Albumin Sigma Cat# A4919

Sodium Bicarbonate Sigma Cat# S5761

L-Ascorbic Acid Sigma Cat# A8960

Putrescine Dihydrochloride Sigma Cat# P5780

D(+)-Galactose Sigma Cat# G5388

Holo-Transferrin Sigma Cat# T0665

Catalase Sigma Cat# C1345

L-Carnitine Hydrochloride Sigma Cat# C0283

Glutathione Sigma Cat# G4251

Sodium Selenite Sigma Cat# S5261

Ethanolamine Sigma Cat# E9508

Triiodo-L-Thyronine Sodium Salt Sigma Cat# T6397

Insulin Solution, Human Sigma Cat# 19278

Superoxide Dismutase Sigma Cat# S5395

LDN-193189 (hydrochloride) Cayman Chemical Cat# 19396

SB-431542 (hydrate) Cayman Chemical Cat# 13031

SAG Cayman Chemical Cat# 11914

Purmorphamine Tocris Cat# 4551

IWR-1-Endo Cayman Chemical Cat# 13659

DAPT Cayman Chemical Cat# 13197

All-Trans Retinoic Acid Cayman Chemical Cat# 11017
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Human BDNF Miltenyi Biotec Cat# 130-093-811

Laminin Sigma Cat# L2020-1MG

Hanks’ Balanced Salt Solution Sigma Cat# H8264-100ML

7.5% Bovine Serum Albumin Solution Sigma Cat# A8412-100ML

1M Trizma Hydrochloride, pH 7.4 Sigma Cat# T2194-100ML

5M Sodium Chloride Solution Sigma Cat# 59222C-500ML

1M Magneisum Chloride Solution Sigma Cat# M1028-100ML

Protector RNase Inhibitor Roche Cat# 03335402001

100 mM DTT Agilent Cat# 600089-53

GlutaMAX Gibco Cat# 35050061

Critical commercial assays

AGM Astrocyte Growth Medium BulletKit Lonza Cat# CC-3186

mTeSR1 Complete Kit Stemcell Technologies Cat# 85850

LookOut Mycoplasma PCR Detection Kit Sigma Aldrich Cat# MP0035-1KT

Lipofectamine LTX Reagent with PLUS Reagent Invitrogen Cat# 15338030

Monarch DNA Gel Extraction Kit NEB Cat# T1020S

Gibson Assembly HiFi HC 1-Step Kit Codex Cat# GA1100-4X10

NEB Stable Competent E. coli (High Efficiency) NEB Cat# C3040H

QIAprep Spin Miniprep Kit Qiagen Cat# 27106

EndoFree Plasmid Maxi Kit Qiagen Cat# 12362

Q5 Site-Directed Mutagenesis Kit NEB Cat# E0552S

NEBNext High-Fidelity 2X PCR Master Mix NEB Cat# M0541S

Lipofectamine 3000 Transfection Reagent Invitrogen Cat# L3000001

Dual-Luciferase Reporter Assay System Promega Cat# E1960

Direct-zol RNA Miniprep Kit Zymo Cat# R2050

Qubit RNA High Sensitivity Assay Kit Invitrogen Cat# Q32855

SuperScript IV VILO Master Mix with

ezDNase Enzyme

Invitrogen Cat# 11766050

Phusion High-Fidelity DNA Polymerase NEB Cat# M0530S

NucleoSpin Gel and PCR Clean-Up Kit Takara Cat# 740609

Gibson Assembly Kit NEB Cat# E2611

FAIM2 TaqMan Gene Expression Assay ThermoFisher Scientific Cat# 4331182, Assay ID Hs00392345_m1

18S TaqMan Gene Expression Assay ThermoFisher Scientific Cat# 4331182, Assay ID Hs99999901_s1

TaqMan Fast Advanced Master Mix Applied Biosystems Cat# 4444557

Quick-DNA Miniprep Plus Kit Zymo Cat# D4068

Infinium Global Screening Array-24 v3.0 Kit Illumina Cat# 20030770

Infinium OmniExpressExome-8 v1.6 Kit Illumina Cat# 20024676

Quick-DNA/RNA Miniprep Plus Kit Zymo Cat# D7003

RNA 6000 Nano Kit Agilent Cat# 5067-1511

QIAseq FastSelect RNA Removal Kit Qiagen Cat# 333180

NEBNext Ultra II Directional RNA Library

Prep for Illumina Kit

NEB Cat# E7760S

NEBNext Oligos for Illumina

(Dual Index Primers Set 1)

NEB Cat# E7600S

Qubit dsDNA High Sensitivity Assay Kit Invitrogen Cat# Q32851

DNA 1000 Kit Agilent Cat# 5067-1504

Tagment DNA TDE1 Enzyme and Buffer Kit Illumina Cat# 20034197

Nextera DNA CD Indexes Kit Illumina Cat# 20018708

MinElute PCR Purification Kit Qiagen Cat# 28004
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High Sensitivity D1000 ScreenTape Assay Agilent Cat# 5067–5587, 5067–5585,

5067–5603, 5067-5584

High Sensitivity D5000 ScreenTape Assay Agilent Cat# 5067–5594, 5067–5593, 5067-5592

Chromium Next GEM Chip J Single Cell Kit 10X Genomics Cat# 1000230

Chromium Next GEM Single Cell Multiome

ATAC + Gene Expression Reagent Bundle

10X Genomics Cat# 1000285

Dual Index Kit TT Set A 10X Genomics Cat# 1000215

Arima-HiC Kit Arima Genomics Cat# A510008

Swift Accel-NGS 2S Plus DNA Library Kit Swift Biosciences Cat# 21024/21096

Swift 2S Indexing Kit Swift Biosciences Cat# 28096

KAPA Library Quantification Kit Roche Cat# 07960140001

Deposited data

Raw and processed Hi-C data This paper GEO: GSE241592; https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE241592

Raw and processed RNA-seq data This paper GEO: GSE241050; https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE241050

Raw and processed ATAC-seq data This paper GEO: GSE241591; https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE241591

Raw and processed single-nucleus

RNA-seq data

This paper GEO: GSE241594; https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE241594

Raw and processed single-nucleus

ATAC-seq data

This paper GEO: GSE241593; https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE241593

Experimental models: Cell lines

NHA - Human Astrocytes Lonza Cat# CC-2565

HEK293T Cells ATCC Cat# CRL-3216; RRID: CVCL_0063

WA09 (H9) Human Embryonic Stem Cells

(NIH Approval Number: NIHhESC-10-0062)

WiCell Research Institute Lot# DL-05; RRID: CVCL_9773

WA09 (H9) Human Embryonic Stem Cells

(NIH Approval Number: NIHhESC-10-0062),

rs7132908 AA Clone 2.1

This paper N/A

WA09 (H9) Human Embryonic Stem Cells

(NIH Approval Number: NIHhESC-10-0062),

rs7132908 AA Clone 9.1

This paper N/A

WA09 (H9) Human Embryonic Stem Cells

(NIH Approval Number: NIHhESC-10-0062),

rs7132908 AA Clone 10.1

This paper N/A

Oligonucleotides

Oligonucleotides See Table S13 N/A

Recombinant DNA

LentiCRISPRv2-mCherry plasmid Agata Smogorzewska Addgene Cat# 99154; RRID: Addgene_99154

FAIM2 miRNA 30 UTR target clone in

pEZX-MT05 reporter vector

GeneCopoeia Cat# HmiT096491-MT05

FAIM2 promoter clone in pEZX-PG02

reporter vector

GeneCopoeia Cat# HPRM47354-PG02

LIMA1 promoter clone in pEZX-PG02

reporter vector

GeneCopoeia Cat# HPRM34453-PG02

RACGAP1 promoter clone in pEZX-PG02

reporter vector

GeneCopoeia Cat# HPRM34625-PG02

pGL4.10[luc2] reporter vector Promega Cat# E6651

pRL-TK reporter vector Promega Cat# E2241

pGL4.10[luc2]-rs7132908G-FAIM2 This paper N/A
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pGL4.10[luc2]-rs7132908A-FAIM2 This paper N/A

pGL4.10[luc2]-FAIM2 This paper N/A

pGL4.10[luc2]-rs7132908G-LIMA1 This paper N/A

pGL4.10[luc2]-rs7132908A-LIMA1 This paper N/A

pGL4.10[luc2]-LIMA1 This paper N/A

pGL4.10[luc2]-rs7132908G-RACGAP1 This paper N/A

pGL4.10[luc2]-rs7132908A-RACGAP1 This paper N/A

pGL4.10[luc2]-RACGAP1 This paper N/A

gRNA_Cloning vector Mali et al.83 Addgene Cat# 41824; RRID: Addgene_41824

gRNA_Cloning-rs7132908gRNA vector This paper N/A

pCas9_GFP Ding et al.84 Addgene Cat# 44719; RRID: Addgene_44719

Software and algorithms

SnapGene v6.0.2 SnapGene https://www.snapgene.com/; RRID: SCR_015052

Prism v10.0.0 GraphPad https://www.graphpad.com/features;

RRID: SCR_002798

CRISPOR v5.01 Concordet85 http://crispor.tefor.net/; RRID: SCR_015935

Excel v2202 Microsoft RRID: SCR_016137

AriaMx v1.5 Agilent https://www.agilent.com/en/product/real-

time-pcr-%28qpcr%29/real-time-pcr-%

28qpcr%29-instruments/ariamx-

software-download

2100 Bioanalyzer Expert vB.02.11.SI824 Agilent https://explore.agilent.com/Software-Download-

2100-Expert?productURL=https%3A%2F%

2Fwww.agilent.com%2Fen%2Fproduct%

2Fautomated-electrophoresis%2Fbioanalyzer-

systems%2Fbioanalyzer-software%2F2100-

expert-software-228259; RRID: SCR_019715

FastQC v0.11.9 Andrews86; FASTQC87 https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/; RRID: SCR_014583

Kallisto v0.48.0 Bray et al.88; Bray et al.89 https://pachterlab.github.io/kallisto/;

RRID: SCR_016582

bcl2fastq2 Conversion v2.20 Illumina https://sapac.support.illumina.com/

downloads/bcl2fastq-conversion-

software-v2-20.html; RRID: SCR_015058

R v4.2.2 and v4.2.3 Comprehensive R Archive Network https://cran.r-project.org/; RRID: SCR_001905

RStudio v2022.07 and v2023.06.0 + 421 Posit https://posit.co/download/rstudio-desktop/

cellSens Standard v2.3 Olympus https://www.olympus-lifescience.com/

en/software/cellsens/

ImageJ v1.54days Schneider et al.90 https://imagej.nih.gov/ij/download.html;

RRID: SCR_003070

PennCNV v1.0.5 GitHub https://penncnv.openbioinformatics.org/

en/latest/user-guide/download/;

RRID: SCR_002518

PLINK v1.90b6.18 Harvard University https://zzz.bwh.harvard.edu/plink/

download.shtml; RRID: SCR_001757

Cell Ranger ARC v2.0.2 10X Genomics https://support.10xgenomics.com/

single-cell-multiome-atac-gex/software/

pipelines/latest/installation;

RRID: SCR_023897

Scrublet v0.2.3 Wolock et al.91 https://github.com/swolock/scrublet;

RRID: SCR_018098
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SoupX v1.6.2 Young et al.92 https://github.com/constantAmateur/

SoupX; RRID: SCR_019193

Harmony v0.1.1 Korsunsky et al.93 https://cran.r-project.org/web/packages/

harmony/index.html; RRID: SCR_022206

TapeStation Analysis Software v4.1.1 Agilent https://www.agilent.com/en/product/

automated-electrophoresis/tapestation-

systems/tapestation-software/

tapestation-software-379381

Seurat v4.3.0 Hao et al.94 https://satijalab.org/seurat/articles/

install.html; RRID: SCR_016341

SCTransform v0.3.5 Choudhary et al.95; Hafemeister et al.96 https://cran.r-project.org/web/packages/

sctransform/index.html; RRID: SCR_022146

gprofiler2 v0.2.1 Raudvere et al.97; Kolberg et al.98 https://cran.r-project.org/web/packages/

gprofiler2/vignettes/gprofiler2.html;

RRID: SCR_018190

tximport v1.24.0 Soneson et al.99 https://bioconductor.org/packages/

release/bioc/html/tximport.html;

RRID: SCR_016752

edgeR v3.38.4 and v3.40.2 Robinson et al.100 https://bioconductor.org/packages/release/

bioc/html/edgeR.html; RRID: SCR_012802

ensembldb v2.20.2 Rainer et al.101 https://bioconductor.org/packages/

release/bioc/html/ensembldb.html;

RRID: SCR_019103

EnsDb.Hsapiens.v86 v2.99.0 Bioconductor https://bioconductor.org/packages/

release/data/annotation/html/

EnsDb.Hsapiens.v86.html

limma v3.52.4 Ritchie et al.102 https://bioconductor.org/packages/

release/bioc/html/limma.html;

RRID: SCR_010943

bowtie2 v2.2.6 Langmead et al.103 https://bowtie-bio.sourceforge.net/

bowtie2/index.shtml; RRID:

SCR_016368

Picard v2.7.1 GitHub https://github.com/broadinstitute/picard;

RRID: SCR_006525

SAMtools v1.7 Danecek et al.104 http://www.htslib.org/; RRID: SCR_002105

MACS2 v2.1.1 Zhang et al.105 https://pypi.org/project/MACS2/

csaw v1.32.0 Lun et al.106 https://bioconductor.org/packages/

release/bioc/html/csaw.html

ggplot2 v3.4.2 Wickham107 https://cran.r-project.org/web/

packages/ggplot2/index.html;

RRID: SCR_014601

pheatmap v1.0.12 Comprehensive R Archive Network https://cran.r-project.org/web/packages/

pheatmap/index.html; RRID: SCR_016418

plotly v4.10.1 Comprehensive R Archive Network https://cran.r-project.org/web/packages/

plotly/index.html

MACS3 v3.0.0b2 GitHub https://github.com/macs3-project/MACS

Signac v1.10.0 Stuart et al.108 https://stuartlab.org/signac/articles/

install.html; RRID: SCR_021158

DESeq2 v1.38.3 Love et al.109 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html;

RRID: SCR_015687

SingleCellExperiment v1.20.1 Amezquita et al.110; Amezquita et al.111 https://bioconductor.org/packages/

release/bioc/html/

SingleCellExperiment.html

(Continued on next page)
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Matrix.utils v0.9.8 Comprehensive R Archive Network https://rdrr.io/cran/Matrix.utils/

apeglm v1.20.0 Zhu et al.112 https://bioconductor.org/packages/

release/bioc/html/apeglm.html

gplots v3.1.3 Comprehensive R Archive Network https://cran.r-project.org/web/packages/

gplots/index.html

UCSC Genome Browser (GRCh37/hg19) University of California Santa Cruz https://genome.ucsc.edu/cgi-bin/

hgGateway; RRID: SCR_005780

HICUP pipeline v0.7.4 Wingett et al.113 https://www.bioinformatics.babraham.ac.uk/

projects/hicup/; RRID: SCR_005569

Pairtools v0.3.0 Open2C et al.114 https://pairtools.readthedocs.io/en/latest/

installation.html; RRID: SCR_023038

Pairix v0.3.7 Lee et al.115 https://github.com/4dn-dcic/pairix

Cooler v0.8.11 Abdennur et al.116 https://pypi.org/project/cooler/

Mustache v1.0.1 Roayaei Ardakany et al.117 https://github.com/ay-lab/mustache

Fit-Hi-C2 v2.0.7 Kaul et al.118 https://github.com/ay-lab/fithic

BSgenome v1.68.0 Bioconductor https://bioconductor.org/packages/

release/bioc/html/BSgenome.html

SNPlocs.Hsapiens.dbSNP155.GRCh38 0.99.24 Bioconductor https://bioconductor.org/packages/

release/data/annotation/html/

SNPlocs.Hsapiens.dbSNP155.

GRCh38.html

MotifDb v1.42.0 Bioconductor https://bioconductor.org/packages/

release/bioc/html/MotifDb.html

motifbreakR v2.14.2 Coetzee et al.119 https://bioconductor.org/packages/

release/bioc/html/motifbreakR.html

ColoQuiaL Chen et al.120 https://github.com/bvoightlab/

ColocQuiaL

STAR v2.7.9a Dobin et al.121 https://github.com/alexdobin/

STAR; RRID: SCR_004463

HTSeq-count v0.11.3 Anders et al.122 https://shicheng-guo.github.io/research/

1941/01/08/HTseq; RRID: SCR_011867

SKAT v2.2.5 Comprehensive R Archive Network http://cran.nexr.com/web/packages/

SKAT/index.html; RRID: SCR_009396

PVCA v3.18 Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/pvca.html;

RRID: SCR_001356

Other

Falcon Round-Bottom Polystyrene Test

Tubes with Cell Strainer Snap Cap,

35 mm, 5 mL

Fisher Scientific Cat# 08-771-23

ZR BashingBead Lysis Tubes, 2 mm Zymo Cat# 56003-50

#1.5 Acid-Treated Coverslips,

12 mm diameter

Fisher Scientific Cat# NC0706236

Nunc Cell-Culture Treated 6-well Plates ThermoFisher Scientific Cat# 140675

Costar 24-well Clear TC-Treated

Multiple Well Plates

Corning Cat# 3524

75 cm2 U-Shaped Canted Neck Cell

Culture Flask with Plug Seal Cap

Corning Cat# 430720U

Falcon 25 cm2 Rectangular Canted

Neck Cell Culture Flask with Blue

Plug Seal Screw Cap

Corning Cat# 353014

Falcon 100 mm TC-Treated Cell Culture Dish Corning Cat# 353003

White 96-well Immuno Microlite 1+ Plates Thermo Scientific Cat# 7571
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Struan F. A.

Grant (grants@chop.edu).

Materials availability
Vectors (pGL4.10[luc2]-rs7132908G-FAIM2, pGL4.10[luc2]-rs7132908A-FAIM2, pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-rs7132908G-

LIMA1, pGL4.10[luc2]-rs7132908A-LIMA1, pGL4.10[luc2]-LIMA1, pGL4.10[luc2]-rs7132908G-RACGAP1, pGL4.10[luc2]-rs7132

908A-RACGAP1, pGL4.10[luc2]-RACGAP1, and gRNA_Cloning-rs7132908gRNA) and cell lines (WA09 (H9) rs7132908 AA human

embryonic stem cell clones 2.1, 9.1, and 10.1) generated in this study will be available from the lead contact with a completed Ma-

terials Transfer Agreement. This study did not generate any other new unique reagents.

Data and code availability
Hi-C, RNA-seq, ATAC-seq, single-nucleus RNA-seq, and single-nucleus ATAC-seq data have been deposited at Gene Expression

Omnibus (GEO) and are publicly available as of the date of publication. Accession numbers are listed in the Key resources table. Hu-

man embryonic stem cell and tissue genotyping data reported in this study cannot be deposited in a public repository to protect

donor confidentiality. To request access, contact the lead contact. This paper does not report original code. Any additional informa-

tion required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary astrocyte model
Primary Normal Human Astrocytes (NHA) of unknown sex were obtained from Lonza as cryopreserved cells. The cells were obtained

at passage 1 and used before passage 10, as recommended. They were cultured following Lonza technical instructions in Lonza

Astrocyte Growth Medium and in a humidified incubator at 37�C with 5% CO2. For thawing, cells were thawed quickly at 37�C, re-
suspended, and added slowly to an excess of warmed medium to seed at approximately 6,500 cells/cm2 in a T75 flask. For

passaging, 70–80% confluent cells were washed with 30 mM HEPES buffered saline solution in water, incubated at 37�C with

0.025% trypsin-EDTA in DPBS for 3–4 min or until 90% of the cells rounded up, treated with 2 volumes of 5% FBS in DPBS to

neutralize the trypsin, rinsed off the culture vessel with gentle pipetting, pelleted by centrifugation at 160 rcf for 5 min at 4�C, and
then resuspended and seeded at the desired density. The cells were cultured in T75 flasks, 6-well plates, and 24-well plates. For

freezing, cells were lifted as for passaging, resuspended to 1,000,000 cells/mL in FBS with 10% DMSO, frozen in 1 mL aliquots

at �1 �C/min, and stored long-term in liquid nitrogen. The cells tested negative for mycoplasma contamination (Figure S6A).

HEK293T model
293T human female cells were obtained from ATCC as cryopreserved cells (ATCC Cat# CRL-3216; RRID: CVCL_0063). They were

cultured following ATCC product information in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% FBS, 1X Antibiotic-

Antimycotic, and 2 mM L-glutamine and in a humidified incubator at 37�C with 5% CO2. For thawing, cells were thawed quickly

at 37�C, resuspended, added slowly to an excess of warmed medium, pelleted by centrifugation at 125 rcf for 7 min at 25�C, resus-
pended in warmedmedium, and seeded at approximately 17,500 cells/cm2 in a 10 cm dish. For passaging, 90% confluent cells were

washed with PBS, incubated at 37�C with 0.25% trypsin-EDTA for 4–5 min, treated with 2 volumes of medium to neutralize the

trypsin, pelleted by centrifugation at 1,200 rcf for 2 min at 25�C, and then resuspended and seeded at the desired density. The cells

were cultured in 10 cm dishes, 6-well plates, and 24-well plates. For freezing, cells were lifted as for passaging, resuspended to

1,000,000 cells/mL in mediumwith 5%DMSO, frozen in 1mL aliquots at�1 �C/min, and stored long-term in liquid nitrogen. The cells

tested negative for mycoplasma contamination (Figure S6A).

ESC model
WA09 (H9) human female embryonic stem cells were obtained from theWiCell Research Institute as cryopreserved cells (WiCell Lot#

DL-05; RRID: CVCL_9773). Before use, the cells were authenticated with short tandem repeat analysis to confirm cell line identity.

They were cultured following WiCell protocols in mTeSR1 medium, on Matrigel hESC-qualified matrix, and in a humidified incubator

at 37�C with 5% CO2. During CRISPR editing, the cells were briefly cultured on Matrigel Growth Factor Reduced Basement Mem-

brane Matrix diluted in IMDM and mouse embryonic fibroblasts (MEFs) and in DMEM/F12 medium supplemented with 15% volume

KnockOut Serum Replacement, 100 mM non-essential amino acids, 1 mM sodium pyruvate, 2 mM L-glutamine, 50 U/mL penicillin-

streptomycin, 0.1 mM b-mercaptoethanol, and 10 ng/mL human bFGF. For thawing, cells were thawed quickly at 37�C, resus-
pended, added slowly to an excess of warmed medium, pelleted by centrifugation at 200 rcf for 5 min at 25�C, resuspended in

warmed medium, and seeded into 1 well of a 6-well plate. For passaging as colonies, cells in large colonies were washed with Ver-

sene, incubated at room temperature with Versene for 6–9 min, rinsed off the culture vessel with medium and gentle pipetting, and

then split across new culture vessels, generally using a 1:12 ratio. For passaging as single cells, cells in large colonies were washed
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with DPBS, incubated at 37�C with Accutase for 2–5 min, treated with 2 volumes of medium to neutralize the Accutase, pelleted by

centrifugation at 200 rcf for 4 min at 25�C, and then resuspended and seeded at the desired density. For passaging when cultured on

MEFs, MEFs were removed by incubating with TrypLE Express Enzyme for 3 min at room temperature. 10 mM ROCK Inhibitor

Y-27632 was added to the medium for 24 h after thawing or passaging as single cells. The cells were cultured in 10 cm dishes,

T25 flasks, 6-well plates, and 24-well plates. For freezing, cells were lifted as colonies as for passaging, pelleted by centrifugation

at 200 rcf for 4 min at 25�C, resuspended in 2 mL mFreSR medium/lifted well of a 6-well plate, frozen in 1 mL aliquots at �1 �C/min,

and stored long-term in liquid nitrogen. The cells were validated with karyotyping (Figure S6B) and tested negative for mycoplasma

contamination (Figure S6A).

Pediatric postmortem brain tissue
Frozen human pediatric hypothalamus tissue from 4 postmortem individuals were obtained. The tissue donors included a 4-year-old

male, 8-year-old male, 4-year-old female, and 14-year-old female, all classified as white and with no clinical diagnoses. The number

of samples was limited by tissue availability.

METHOD DETAILS

Mycoplasma contamination testing
Cells were cultured in the absence of antibiotics for several days and until 90–100% confluent. Medium was then collected and used

to detect mycoplasma by PCR using the LookOut Mycoplasma PCR Detection kit with JumpStart Taq DNA polymerase, following

manufacturer’s instructions. PCR products, including positive and negative controls, were visualized with gel electrophoresis. Band

sizes from experimental samples were compared to the negative control to determine that all cell cultures were negative for myco-

plasma contamination (Figure S6A).

Bulk ATAC-seq library preparation
ATAC-seq libraries were prepared from primary astrocytes with 3 technical replicates, the rs7132908 non-risk G allele ESCs with 3

technical replicates and the rs7132908 risk A allele ESCs with 3 biological replicates. 50,000–100,000 cells from each replicate were

centrifuged at 550 rcf for 5 min at 4�C to pellet. Each cell pellet was washed with cold PBS and resuspended in 50 mL cold lysis buffer

(10 mM Tris-HCl, pH 7.4, 10 mMNaCl, 3 mMMgCl2, and 0.1% IGEPAL CA-630) then immediately centrifuged at 550 rcf for 10 min at

4�C. Nuclei were resuspended in transposition reaction mix (25 mL 2X Tagment DNA Buffer, 2.5 mL TDE1 Tagment DNA Enzyme, and

22.5 mL nuclease-free water) on ice, then incubated for 45 min at 37�C. The tagmented DNA was then purified using the Qiagen

MinElute PCR Purification kit and eluted in 10.5 mL elution buffer. 10 mL of each purified tagmented DNA sample was amplified

with PCR using the Nextera DNA CD Indexes kit and NEBNext High-Fidelity PCR Master Mix for 12 cycles to generate each library.

The libraries were purified using AMPure XP beads at a 1.8X concentration. Library concentrations weremeasured with Qubit dsDNA

High Sensitivity Assays. The completed libraries were assessed with the Agilent Bioanalyzer DNA 1000 kit and 2100 Bioanalyzer

Expert software (RRID: SCR_019715). Completed libraries were pooled and sequenced on the Illumina NovaSeq 6000 platform using

paired-end 51 bp reads.

Hi-C library preparation
Hi-C libraries were prepared from primary astrocytes with two technical replicates using the Arima-HiC kit, following manufacturer’s

instructions and as previously described.43 In brief, cells were crosslinked with formaldehyde and then chromatin was digested with

multiple restriction enzymes. The purified proximally-ligated DNA was then sheared and 200–600 bp DNA fragments were selected

with AMPure XP beads. The size-selected fragments were then enriched using Enrichment Beads and then converted to Illumina-

compatible sequencing libraries using the Swift Accel-NGS 2S Plus DNA Library kit and Swift 2S Indexing kit. The libraries were as-

sessed using the Agilent Bioanalyzer DNA 1000 kit and 2100 Bioanalyzer Expert software (RRID: SCR_019715) and the KAPA Library

Quantification kit. Completed libraries were pooled and sequenced on the Illumina NovaSeq 6000 platform using paired-end 101 bp

reads.

RNA extraction from cells
To extract RNA from cultured cells for RNA-seq or real-time qPCR, cells were lifted and resuspended in TRIzol. RNA was extracted

from each TRIzol sample with the Zymo Direct-zol RNA Miniprep kit, following manufacturer’s instructions, with recommended

DNase I treatment.

DNA and RNA extraction from tissue
DNA and RNAwere extracted from frozen human pediatric hypothalamus tissue samples in parallel. Each tissue sample was homog-

enized in DNA/RNAShield in 2mmZRBashingBead Lysis Tubeswith a FastPrep-24 5G high-speed benchtop homogenizer at 10m/s

at room temperature for 45 s. DNA and RNA were then extracted using the Zymo Quick-DNA/RNA Miniprep Plus kit, following man-

ufacturer’s instructions.
Cell Genomics 4, 100556, May 8, 2024 e9



Article
ll

OPEN ACCESS
Bulk RNA-seq library preparation
RNA extracted from each cell line and tissue sample was quantified and assessed with the Agilent Bioanalyzer RNA 6000 Nano kit

and 2100 Bioanalyzer Expert software (RRID: SCR_019715). Cell line samples with an RNA integrity number (RIN) greater than 7 and

tissue samples with a RIN greater than 5 were used for RNA-seq library preparation. RNA-seq libraries were prepared from each tis-

sue sample with 3 technical replicates, primary astrocytes with 3 technical replicates, the rs7132908 non-risk G allele ESCs with 2

technical replicates, the rs7132908 risk A allele ESCs with 3 biological replicates, and hypothalamic neural progenitors with either

allele from two independent differentiations (biological replicates) with 3 technical replicates. 40 ng to 1 mg of each RNA sample

was used as input, depending on RNA extraction yield. Ribosomal RNA was depleted using the QIAseq FastSelect RNA Removal

kit, followingmanufacturer’s instructions. Libraries were prepared using the NEBNext Ultra II Directional RNA Library Prep for Illumina

kit, NEBNext Oligos for Illumina (Dual Index Primers Set 1), and AMPure XP beads, followingmanufacturer’s instructions. Library con-

centrations were quantified with Qubit dsDNA High Sensitivity Assays. 5 ng of each library was used for assessment with the Agilent

Bioanalyzer DNA 1000 kit and 2100 Bioanalyzer Expert software (RRID: SCR_019715). If the electropherogram did not display a nar-

row sample distribution around 300 bp, an additional bead cleanup or column purification was used to remove any contaminating

primers, adapter-dimers, or large fragments generated by over-amplification. Completed libraries were pooled and sequenced on

the Illumina NovaSeq 6000 platform using paired-end 51 bp reads.

Primary astrocyte transfection optimization
To optimize transfection of the primary astrocytes, we transfected with varying amounts of LentiCRISPRv2-mCherry vector DNA,

which was a gift from Agata Smogorzewska (Addgene Cat# 99154; http://n2t.net/addgene:99154; RRID: Addgene_99154), Lipofect-

amine LTX, and PLUS Reagent and then quantified transfection efficiency and cell viability with flow cytometry in two separate ex-

periments. Primary astrocytes were seeded at 50,000 cells/well in a 24-well plate and maintained until they reached 70–80% conflu-

ence. Lipofectamine LTX-DNA complexes with PLUS Reagent were prepared following manufacturer’s instructions in Opti-MEM so

that each well would receive either 0 ng, 250 ng, 500 ng, or 750 ng vector DNA, 1 mL PLUS Reagent/1 mg of vector DNA, and either a

1:1, 1:2, 1:2.5, 1:3, 1:4, or 1:5 vector DNA (mg):Lipofectamine LTX (mL) ratio.

Approximately 22 h post-transfection, the cells were lifted, resuspended in PBS, fixed in 2% paraformaldehyde for 10 min at room

temperature, resuspended in PBS, strained using a 35 mm strainer, and then counted using a CytoFLEX S N2-V3-B5-R3 Flow Cy-

tometer. 10,000 events were collected for each condition and gating was set using the non-transfected control condition. Percent

single cell events was calculated by dividing the number of single cell events by all events (10,000). Percent cell viability was then

calculated by dividing the percent single cell events for each condition by the average percent single cell events for 2 replicates

of non-transfected controls. Transfection efficiency was calculated by dividing the number of mCherry+ single cell events by the

number of single cell events in each condition. This optimization experiment determined that ideal conditions for transfecting primary

astrocytes at 70–80% confluence in a 24-well plate for 22 h are 750 ng vector DNA, 0.75 mL PLUS Reagent, and 1.875 mL Lipofect-

amine LTX (1:2.5 ratio) diluted in Opti-MEM for a total volume of 50 mL/well, which was used for all future primary astrocyte trans-

fection experiments. These transfection conditions yielded high transfection efficiency (11.26%) when considering that the expected

efficiency is 5–12%123 and high cell viability (85.69%) (Figures S7A and S7B).

Generation of luciferase assay vectors
The ENCODE consortium’s ‘Registry of candidate cis-Regulatory Elements’ (version 1) (RRID: SCR_006793) annotated a cell type-

agnostic regulatory element with a distal enhancer-like signature surrounding rs7132908 at chr12:50,262,620–50,263,581

(GRCh37).48 To generate a DNA fragment containing this sequence with an additional 50 bp flanking each side for cloning, we de-

signed PCR primers (Table S13) to amplify this region of interest and used a FAIM2 30 UTR miRNA target clone (purchased from

GeneCopoeia) as the PCR template and NEBNext High-Fidelity PCR Master Mix. Candidate effector genes were selected using

the criteria that the promoters of these genes interacted with rs7132908, the promoters of these genes and rs7132908 were both

in open chromatin, and that these genes were expressed (TPM >1) in primary astrocytes. To generate DNA fragments containing

the FAIM2, LIMA1, and RACGAP1 promoter sequences, we also designed PCR primers (Table S13) to amplify these regions and

used promoter clones (purchased from GeneCopoeia) as PCR templates. The promoterless pGL4.10[luc2] firefly luciferase reporter

vector (purchased from Promega) was linearized at themultiple cloning site upstream of the luc2 reporter gene using the XhoI restric-

tion enzyme. Each PCR product and the linearized plasmid were extracted after visualization with gel electrophoresis with the NEB

Monarch DNA Gel Extraction kit to ensure that a fragment of correct length was purified. The putative enhancer region containing

rs7132908 and each promoter were inserted at the multiple cloning site of pGL4.10[luc2] using the Codex Gibson Assembly

HiFi HC 1-Step kit to generate pGL4.10[luc2]-rs7132908G-FAIM2, pGL4.10[luc2]-rs7132908G-LIMA1, and pGL4.10[luc2]-

rs7132908G-RACGAP1 vectors. Each promoter alone was also inserted at the multiple cloning site to generate pGL4.10[luc2]-

FAIM2, pGL4.10[luc2]-LIMA1, and pGL4.10[luc2]-RACGAP1 control vectors. Each Gibson Assembly product was used to transform

NEBStable Competent E. coliwhich were then plated on LB agarose plates with 100 mg/mL ampicillin to select for successfully trans-

formed colonies. Bacterial plates were incubated overnight at 37�C and then individual colonies were selected for overnight growth in

LB broth with 100 mg/mL ampicillin at 30�Cwith shaking at 250 rpm. Vector DNAwas extracted from each overnight culture using the

Qiagen QIAprep SpinMiniprep kit and then Sanger sequenced (Table S13) on both strands throughout themodified region to confirm

successful insertion and sequence. Electropherograms and sequence files produced from Sanger sequencing were analyzed using
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SnapGene software (RRID: SCR_015052). Once vectors with perfect sequences were identified, we used the NEB Q5 Site-Directed

Mutagenesis kit and primers (Table S13) to introduce the childhood obesity risk A allele at rs7132908 and generate pGL4.10[luc2]-

rs7132908A-FAIM2, pGL4.10[luc2]-rs7132908A-LIMA1, and pGL4.10[luc2]-rs7132908A-RACGAP1 vectors. We used Sanger

sequencing (Table S13) on both strands throughout the modified region to confirm successful mutagenesis and lack of polymerase

errors. Bacteria glycerol stocks were prepared to store each transformed strain with verified sequences long-term. Each experi-

mental vector, the unmodified pGL4.10[luc2] control vector, and pRL-TK (purchased from Promega) co-transfection control vector

were then purified for transfection using the Qiagen EndoFree PlasmidMaxi kit. Each purified vector was used for three transfections

and purification from glycerol stock was repeated, as needed.

Transfection of primary astrocytes
Primary astrocytes were seeded in three 24-well plates at varying densities so that they would reach 70–80% confluence on three

different days for independent transfections. Once each plate reached 70–80% confluence, the cells were transfected in triplicate

using optimized conditions to deliver 750 ng pGL4.10[luc2] firefly luciferase reporter vector DNA (unmodified, modified with promoter

only, or modified with putative enhancer region and promoter) and 75 ng pRL-TK renilla luciferase reporter vector DNA. Three wells

were also treated with only Opti-MEM and transfection reagents to serve as a mock transfected control. The cells were then cultured

for approximately 22 h in a humidified incubator at 37�C with 5% CO2. This transfection process was repeated two more times with

freshly thawed primary astrocytes with matched passage numbers and freshly purified vectors so that 9 independent transfections

were completed.

Transfection of HEK293Ts
HEK293Ts were seeded in three 24-well plates at varying densities so that they would reach 70–90% confluence on three different

days for independent transfections. Once each plate reached 70–90% confluence, the cells were transfected in triplicate with 500 ng

pGL4.10[luc2] firefly luciferase reporter vector DNA (unmodified, modified with promoter only, or modified with putative enhancer

region and promoter) and 50 ng pRL-TK renilla luciferase reporter vector DNA with 1 mL P3000 Reagent and 0.75 mL Lipofectamine

3000 diluted in Opti-MEM for a total volume of 50 mL/well. Three wells were also treated with only Opti-MEM and transfection re-

agents to serve as a mock transfected control. The cells were then cultured for approximately 24 h in a humidified incubator at

37�C with 5% CO2. This transfection process was repeated two more times with freshly thawed HEK293Ts with matched passage

numbers and freshly purified vectors so that 9 independent transfections were completed.

Luciferase assay
Luciferase assay reagents were prepared using the Promega Dual-Luciferase Reporter Assay System, according to manufacturer’s

instructions. After transfection with luciferase reporter vectors, primary astrocytes were washed with PBS, incubated in 500 mL Pas-

sive Lysis Buffer/well with rocking at room temperature for 15 min, and then gently pipetted to aid lysis with mechanical force. After

transfection with luciferase reporter vectors, HEK293Ts were washed with PBS and lysed in 500 mL Passive Lysis Buffer/well with

rocking at room temperature for 10 min. Each lysate was then collected and vortexed for 10 s. 20 mL of each lysate was added to

a white, flat-bottom 96-well plate in triplicate for a total of 9 wells/condition. 20 mL Passive Lysis Buffer was also added to 9 wells

to serve as a negative control. Each well was assayed using a SpectraMax iD5 Multi-Mode Microplate Reader by injecting 100 mL

Luciferase Assay Reagent II, waiting 2 s, measuring firefly luciferase fluorescence for 10 s, injecting 100 mL Stop &Glo Reagent, wait-

ing 2 s, and measuring renilla luciferase fluorescence for 10 s.

Generation of rs7132908 risk allele ESCs
A guide RNA and homology-directed repair template (Table S13) were designed to change the rs7132908 non-risk G allele to the

obesity risk A allele with CRISPR-Cas9 in the ESC model. These methods were adapted from a previously published protocol for

highly efficient CRISPR-Cas9 editing in human stem cells.124 The guide RNA was designed with the help of the CRISPOR program

(RRID: SCR_015935).85 The guide RNA was prepared by incorporating the 20 bp target sequence into two 60-mer oligos (Table S13)

purchased as 25 nmol DNA oligos from IDT which were then annealed, amplified with PCR using Phusion High-Fidelity DNA poly-

merase, and purified with extraction with the Takara NucleoSpin Gel and PCR Clean-Up kit after visualization with gel electropho-

resis. The guide RNA was then cloned into the gRNA_Cloning vector,83 which was a gift from George Church (Addgene Cat#

41824; http://n2t.net/addgene:41824; RRID: Addgene_41824), at the AflII restriction site with the NEB Gibson Assembly kit to

generate the gRNA_Cloning-rs7132908gRNA vector. The homology-directed repair template (Table S13) was prepared by designing

a 100 bp single-stranded oligonucleotide centered around the gRNA sequence and with the desired base change, which was then

purchased as a 4 nmol Ultramer DNA oligo from IDT. 0.5 mg gRNA_Cloning-rs7132908gRNA vector, 0.5 mg pCas9_GFP vector,84

which was a gift from Kiran Musunuru (Addgene Cat# 44719; http://n2t.net/addgene:44719; RRID: Addgene_44719), and 1 mg ho-

mology-directed repair template/well were transfected into 70–80% confluent ESCs on irradiated MEFs in a 6-well plate with

3 mL/well Lipofectamine Stem in 50 mL DMEM/F12. The cells were cultured in a humidified incubator at 37�C with 5% CO2 for 48

h. After transfection, single cells were lifted and 5,000–15,000 GFP+ cells were sorted into a 10 cm dish coated with Matrigel Growth

Factor Reduced BasementMembraneMatrix diluted in IMDMandMEFswith fluorescence-activated cell sorting. After 10–15 days of

maintenance, individual clones were manually picked and used for both screening and expansion. Some cells from each clone were
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used for Proteinase K DNA extraction. This DNA was used as a template for PCR across the edited region using the Phusion High-

Fidelity DNA polymerase and the PCR products were then used for both restriction digestion screening and Sanger sequencing to

confirm the base change (Figure S6C and S6D). Restriction digestion was a possible screening method because the change from the

rs7132908 non-risk G allele to obesity risk A allele generated a unique BfaI restriction site. Electropherograms and sequence files

produced from Sanger sequencing were analyzed using SnapGene software (RRID: SCR_015052). Clones confirmed to be homo-

zygous for the rs7132908 obesity risk A allele underwent further validation with karyotyping (Figure S6B), de novo CNV analysis

(Table S11), mycoplasma contamination testing (Figure S6A), and Sanger sequencing at the top 10 most likely off-target sites

(Table S12).

Karyotyping
ESCswere passaged into a T25 flask and cultured under normal conditions until the cells reached 60–70%confluence. The flask was

then packaged and shipped to Cell Line Genetics for G-band karyotyping of live cultures. Karyotyping reports indicated that all ESC

lines had a normal human female karyotype (Figure S6B).

DNA extraction from cells
To extract DNA from cultured cells for genotyping, PCR, or Sanger sequencing, cells were lifted and then DNAwas extracted with the

Zymo Quick-DNA Miniprep Plus kit, following manufacturer’s instructions.

SNP genotyping
Genome-wide genotyping of DNA from ESC lines for de novo CNV analysis was performed using the Illumina Infinium Global

Screening Array v3.0 BeadChip genotyping array. Genome-wide genotyping of DNA from human pediatric hypothalamus tissue

was performed using the Illumina OmniExpressExome v1.6 BeadChip genotyping array. Genotyping arrays consist of many thou-

sands of short invariant 50mer oligonucleotide probes conjugated to silica beads. Sample DNA is hybridized to the probes and a sin-

gle-base, hybridization-dependent extension reaction is performed at each target SNP. Arrays are loaded onto an iScan System and

scanned to extract data. DMAP files enable identification of bead locations on the BeadChip and quantification of the signal asso-

ciated with each bead. Alternate alleles (herein denoted A and B) are labeled with different fluorophores. Raw fluorescence intensity

from the two-color channels is processed into a discrete genotype call (normalized to continuous value 0-1 B-Allele Frequency (BAF))

and the total intensity from both channels (normalized to continuous value with median = 0 Log R Ratio (LRR)) at each SNP which are

informative for copy number.

Screening for CRISPR off-target effects
The CRISPOR program (RRID: SCR_015935)85 was used to identify potential off-target sites for the guide RNA designed to change

the rs7132908 non-risk G allele to the obesity risk A allele. Each potential off-target site was ranked by Cutting Frequency Determi-

nation score which is used tomeasure guide RNA specificity. Primers were designed to PCR amplify and Sanger sequence the top 10

potential off-target sites. Six potential off-target sites were excluded from screening because primers could not be designed in these

regions with a melting temperature between 56�C and 70�C, likely because these regions were too repetitive. Each potential off-

target site was amplified using the Phusion High-Fidelity DNA polymerase. Each PCR product was extracted after visualization

with gel electrophoresis with the NEB Monarch DNA Gel Extraction kit to ensure that a fragment of correct length was purified.

Each purified PCR product was then Sanger sequenced on both strands. Electropherograms and sequence files produced from

Sanger sequencing were analyzed using SnapGene software (RRID: SCR_015052). Sequences from each CRISPR clone were

compared to sequences from the parent H9 ESC line to determine that there were no off-target effects in all clones at the top 10

most likely off-target sites (Table S12).

Preparation of differentiation medium
Differentiation medium was prepared as previously published6 with some modifications. This medium is an optimized, serum-free

reformulation of B27 which supports high quality neuronal cultures and overcomes quality variability of B27 due to different sources

of bovine serum albumin. A 50X differentiation supplement was prepared containing DMEM/F12 with 1 mg/mL corticosterone,

50 mg/mL linoleic acid, 50 mg/mL linolenic acid, 2.35 mg/mL (±)-a-lipoic acid, 0.32 mg/mL progesterone, 5 mg/mL retinyl acetate,

50 mg/mL (±)-a-tocopherol, 50 mg/mL DL-a-tocopherol acetate, 125 mg/mL bovine serum albumin, 27.15 mg/mL sodium bicarbon-

ate, 3.2 mg/mL L-ascorbic acid, 805 mg/mL putrescine dihydrochloride, 750 mg/mL D(+)-galactose, 250 mg/mL holo-transferrin,

125 mg/mL catalase, 100 mg/mL L-carnitine hydrochloride, 50 mg/mL glutathione, 0.7 mg/mL sodium selenite, 50 mg/mL ethanolamine,

0.1 mg/mL triiodo-L-thyronine sodium salt, and 200 mg/mL insulin. Differentiation medium was then prepared containing DMEM/F12

with 1X differentiation supplement, 1X Antibiotic-Antimycotic, 1X GlutaMAX, and 2.5 mg/mL superoxide dismutase.

Differentiation to neural progenitors
ESCs were plated as single cells at 1 million cells/well in a matrigel-coated 6-well plate or 200,000 cells/well in a matrigel-coated

24-well plate and cultured in mTeSR1 medium with 10 mM ROCK Inhibitor Y-27632 for 24 h in a humidified incubator at 37�C with

5% CO2. After 24 h, on day 0, the medium was changed to differentiation medium with 1 mM LDN-193189 and 10 mM SB-431542
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for dual SMAD inhibition. On days 2, 4, 6, and 8, the medium was changed to differentiation medium with 1 mM LDN-193189, 10 mM

SB-431542, 1 mMSAG, 1 mMPurmorphamine, and 10 mM IWR-1-endo for dual SMAD andWnt signaling inhibition and Shh activation.

This method directed the ESCs toward ventral diencephalon forebrain cell identity. On days 9, 11, and 13, the medium was changed

to differentiation medium with 10 mM DAPT and 0.01 mM retinoic acid to direct the cells to exit cell cycle. Hypothalamic neural pro-

genitors were collected for downstream experiments on day 14 (Figure 3A). These methods were previously optimized and vali-

dated.6 To confirm hypothalamic neural progenitor identity, we performed immunohistochemistry and observed expected expres-

sion of NKX2-1, which is a marker for the developing hypothalamus125 (Figure S1F), and NeuN, which is a marker for post-mitotic

neurons (Figure S1G).

Differentiation to neurons
On day 14, hypothalamic neural progenitors were washed with DPBS, incubated at 37�Cwith Accutase for up to 7min, treated with 2

volumes of medium to neutralize the Accutase, pelleted by centrifugation at 200 rcf for 3 min at 25�C, resuspended in differentiation

medium with 10 ng/mL BDNF, and seeded at 1 million cells/well in a laminin-coated 6-well plate or 200,000 cells/well in a laminin-

coated 24-well plate. Laminin-coated plates were prepared by diluting laminin to 0.05 mg/mL in cold Hanks’ Balanced Salt Solution,

distributing 10mL laminin solution across each plate, incubating overnight at 4�C, incubating at 37�C for 2 h before use, and washing

with PBS 3 times before use. The medium was replaced with fresh differentiation medium with 10 ng/mL BDNF every 2–3 days until

day 40 to promote hypothalamic neuron maturation. These methods were previously optimized and validated.6

Fluorescent immunohistochemistry
Cells for immunohistochemistry were cultured on acid-treated #1.5 glass coverslips. The cells were washed with PBS, fixed with 4%

paraformaldehyde for 10 min at room temperature, and then incubated with PBS for 5 min at room temperature three times to wash.

The cells were incubated in blocking solution (PBS with 5% (w/v) bovine serum albumin and 0.3% Triton X-100) for 1 h at room tem-

perature. After blocking, primary antibodies (Anti-MAP2 (Abcam Cat# ab5392; RRID: AB_2138153), Anti-NKX2-1 (Cell Marque Cat#

343M-95; RRID: AB_1158934), and Anti-NeuN (Millipore Sigma Cat# MAB377; RRID: AB_2298772)) diluted in blocking solution

(1:500) were added to the cells, then incubated overnight at 4�C with gentle rocking. After the primary antibody incubation, the cells

were incubated with PBST for 10min at room temperature three times to wash. Appropriate secondary antibodies (Anti-Chicken (Ab-

camCat# ab150169; RRID: AB_2636803) and Anti-Mouse (Invitrogen Cat# A-11001; RRID: AB_2534069)) diluted in blocking solution

(1:500) were added to the cells, then incubated for 1 h at room temperature, protected from light. After the secondary antibody in-

cubation, the cells were incubated with PBST for 5 min at room temperature three times to wash. The cells were then washed with

PBS for 3 min at room temperature and incubated with 300 nM DAPI for 5 min at room temperature to stain nuclei. After DAPI incu-

bation, the cells were washed with PBS three times. The glass coverslips were mounted on glass slides with ProLong Gold Antifade

Mountant. The cells were visualized with an Olympus DP74 camera using appropriate fluorescent filters and Olympus cellSens Stan-

dard software. Images for each fluorescent channel were merged using ImageJ (RRID: SCR_003070).90

Nuclei isolation
After hypothalamic neuron differentiation, the cells were washed with PBS, incubated at 37�C with Accutase for up to 7 min, treated

with 2 volumes of medium to neutralize the Accutase, and pelleted by centrifugation at 300 rcf for 5 min at 4�C. The cell pellet was

resuspended in PBS with 0.04% bovine serum albumin. 1 million cells or less were pelleted by centrifugation at 300 rcf for 5 min at

4�C and then resuspended in 100 mL chilled lysis buffer (water with 10mMTrizma hydrochloride, 10mM sodium chloride, 3mMmag-

nesium chloride, 1% bovine serum albumin, 0.1% Tween 20, 1 mM DTT, 1 U/mL RNase inhibitor, and 0.1% IGEPAL CA-630). The

cells were incubated in lysis buffer on ice for 1 min and then 500 mL chilled wash buffer (water with 10 mM Trizma hydrochloride,

10 mM sodium chloride, 3 mM magnesium chloride, 1% bovine serum albumin, 0.1% Tween 20, 1 mM DTT, and 1 U/mL RNase in-

hibitor) was added. The nuclei were pelleted by centrifugation at 500 rcf for 5 min at 4�C. Addition of chilled wash buffer and pelleting

were repeated twomore times. The nuclei were then resuspended in chilled nuclei buffer (water with 1X Nuclei Buffer, 1mMDTT, and

1 U/mL RNase inhibitor) to a concentration of 8,000 nuclei/mL in at least 25 mL and strained using a 35 mm strainer.

Single-nucleus library preparation
Single-nucleus RNA-seq and ATAC-seq libraries were prepared using the 10X Genomics Chromium Single Cell Multiome ATAC +

Gene Expression workflow. Libraries were prepared from the rs7132908 non-risk G allele cells from two independent differentiations

(biological replicates) for a total of 4 technical replicates and from the rs7132908 risk A allele cells from twoCRISPR clones (biological

replicates) and three independent differentiations (biological replicates) for a total of 4 technical replicates. In brief, isolated nuclei in

chilled nuclei buffer were transposed in bulk which simultaneously fragmented DNA in regions of open chromatin and added adapter

sequences to the ends of the DNA fragments. The transposed nuclei were then loaded onto a microfluidic chip which was run in the

ChromiumController instrument. In the instrument, nuclei were individually partitioned with Gel Beads-in-emulsion (GEMs). Each Gel

Bead contains oligonucleotides with a unique 16 bp 10X Barcode sequence, a poly(dT) sequenced to capture mRNA, and a Spacer

sequence that enables barcode attachment to transposed DNA fragments. The GEMs were then incubated to attach unique 10X

Barcodes to mRNA and transposed DNA fragments which served to associate mRNA and transposed DNA fragments back to

the same nucleus. Unique molecular identifiers (UMIs) were also used to distinguish individual, captured mRNA molecules for
Cell Genomics 4, 100556, May 8, 2024 e13



Article
ll

OPEN ACCESS
quantification. A reverse transcription reaction converted the mRNA into full-length cDNA. The GEMs were then broken and pooled

fractions were recovered and purified. The products were taken through a pre-amplification PCR step to fill gaps and ensure

maximum recovery of barcoded ATAC and cDNA fragments. The pre-amplified products were then used as input for both ATAC-

seq library preparation and cDNA amplification for RNA-seq library preparation. Completed RNA-seq libraries were quantified

and assessed with Agilent High Sensitivity D1000 ScreenTape assays and ATAC-seq libraries were quantified and assessed with

Agilent High Sensitivity D5000 ScreenTape assays. RNA-seq libraries were then pooled and sequenced on the Illumina NovaSeq

6000 platform to reach a minimum of 20,000 paired-end reads/nucleus. ATAC-seq libraries were then pooled and sequenced on

the Illumina NovaSeq 6000 platform to reach a minimum of 25,000 paired-end reads/nucleus.

cDNA generation
RNA samples were quantified with Qubit RNA High Sensitivity Assays. 30 ng of each RNA sample was used for cDNA generation

using SuperScript IV VILO Master Mix after treatment with ezDNase to remove any DNA contamination. No reverse transcriptase

controls were also generated using SuperScript IV VILO ‘No RT’ Control Master Mix.

Real-time qPCR
TaqMan Gene Expression Assays for FAIM2 and human 18S ribosomal RNAwere validated with standard curves generated by pool-

ing all cDNA samples quantified in an experiment to represent average conditions of all samples. The FAIM2 standard curve con-

sisted of 5 points generated by a 1:5 serial dilution ranging from 0.0024 to 1.5 ng in triplicate. The 18S standard curve consisted

of 8 points generated by a 1:5 serial dilution ranging from 0.0000192 to 1.5 ng in triplicate. Each sample was quantified with

TaqMan Fast Advanced Master Mix and the Agilent AriaMX Real-Time PCR System. After assay validation, 0.5 ng of each experi-

mental cDNA sample and no reverse transcriptase control were assayed in duplicate. Additionally, no template controls were as-

sayed in triplicate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Effect size comparison
Effect size (b) values and standard errors for the chr12q13 locus were obtained from the most recent childhood50 and adult20 BMI

GWAS. A two-tailed two-sample z-test was used to determine if the b values were significantly different. A p value <0.05 was consid-

ered significant.

GWAS-eQTL colocalization
Childhood obesity GWAS summary statistics from the European ancestry population in the EGG consortium were used. Common

variants (minor allele frequency R0.01) from the 1000 Genomes Project (v3)126 were used as a reference panel. SNP-gene sets

from our variant-to-gene mapping efforts were used as leads. We used ColoQuiaL120 to test genome-wide colocalization of each

lead against GTEx eQTLs (v8) (RRID: SCR_013042)49 from all 49 available tissues. Evidence of colocalization between a given child-

hood obesity GWAS signal and eQTL signal was identified by a conditional posterior probability of colocalization R0.8.

Gene burden testing
The Penn Medicine BioBank includes 18,573 European and 7,950 African ancestry adult individuals with recorded measurements of

BMI that could be used for gene burden testing. Cases of obesity were defined as BMIR30 and controls were defined as BMI%25.

There were 9,748 cases of obesity in the European population and 6,045 in the African population. We used the R package SKAT

(RRID: SCR_009396)127 to detect associations between rare variants in each candidate effector gene and obesity as a dichotomous

trait while adjusting for covariates such as age, sex, and the first 5 genome-wide principal components.

Luciferase assay data analysis
All fluorescence values were reduced by the average signal in the 9 negative control wells to correct for background fluorescence in

the Passive Lysis Buffer and 96-well plate. The firefly luciferase fluorescence signal was then divided by the renilla luciferase fluores-

cence signal in each well to adjust for sample-to-sample variability due to differences in cell numbers, transfection efficiency, and

pipetting. Normalized firefly luciferase fluorescence values were averaged for each condition (n = 9). Normalized fold change was

calculated by dividing the average normalized firefly luciferase fluorescence values for each condition by this value produced by

the promoter only vector (pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-LIMA1, or pGL4.10[luc2]-RACGAP1).

Assays were excluded from statistical analysis if there was fluorescence detected (normalized fold change >0.1) in the negative

control condition or if at least one normalized fold change value was greater than 2 standard deviations away from the mean of all

other assays performed. Multiple independent transfections and assays were performed and are stated in the figure legend. All

data are represented as mean ± standard deviation. Statistical analyses and visualization were performed using GraphPad Prism

(RRID: SCR_002798) and ordinary one-way ANOVA tests with Tukey’s correction for multiple comparisons. p-values <0.05 were

considered significant. *p-value <0.05, **p-value <0.01, ***p-value <0.001.
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Transcription factor binding prediction
The genomic position and alternative allele of rs7132908 (determined using SNPlocs.Hsapiens.dbSNP155.GRCh38 and BSgenome

R packages) were used to scan through all position frequency matrix databases using the R package MotifDb to identify potential

transcription factor binding disruption effects. The motifbreakR function119 was used with parameters filter = TRUE, threshold =

0.0005, method = ’ic’, bkg = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25), and BPPARAM = BiocParallelSerialParam().

CNV detection
Samplesmustmeet minimumquality control standards of call rate >98%and LRR standard deviation <0.3 to be used for CNV detec-

tion. We used PennCNV (RRID: SCR_002518) as our main CNV detection algorithm of the Illumina Infinium Global Screening Array

v3.0 data due to its widespread usage. We filtered PennCNV calls to include CNVs with number of SNPs supporting R20, length

R100,000, and Segmental Duplication track coverage <0.5. Related cell line clone CNV calls were compared to ensure consistency

in CNV calling. All genomic coordinates are in human genome build version GRCh37.

De novo CNV detection
The related cell line clones annotated for each sample were verified by pairwise comparison of genome-wide SNP genotyping con-

tent using PLINK (RRID: SCR_001757). The "child" cell line CNVswere compared to their corresponding "parent" cell line CNVs using

bedtools and if at least 50% reciprocal overlap is not observed, annotated as de novo. Such putative de novo calls were BAF LRR

plotted for each pair of "child" and "parent" to allow for side-by-side comparison to ensure the de novo was not an erroneous call.

Bulk RNA-seq analysis
Sequencing data was demultiplexed to generate FASTQ files using Illumina bcl2fastq2 Conversion Software (RRID: SCR_015058).

FASTQ files were assessedwith FastQC (RRID: SCR_014583)86,87 to verify that there was high sequence quality, expected sequence

length, and no adapter contamination. Paired-end FASTQ files for each replicate of primary astrocytes were mapped to the human

reference genome (GRCh38) using STAR (RRID: SCR_004463).121 Genes were annotated using GENCODE human release 40 (RRID:

SCR_014966).128 Raw read counts were calculated using HTSeq-count (RRID: SCR_011867).122 Paired-end FASTQ files for each

replicate of all other cell types and tissue were mapped to the Ensembl human reference transcriptome (GRCh38)129 using Kallisto

(RRID: SCR_016582).88,89 Abundance data generated with Kallisto was read into R (RRID: SCR_001905) using the package tximport

(RRID: SCR_016752),99 annotated with Ensembl human gene annotation data (version 86)129 using ensembldb (RRID:

SCR_019103)101 and EnsDb.Hsapiens.v86, and summarized as counts per million (cpm) at the gene level using edgeR (RRID:

SCR_012802).100 Genes with less than 1 cpm in 2 or 3 samples, depending on the smallest set of replicates in the analysis, were

removed to increase statistical power to detect differentially expressed genes. Samples within each analysis were normalized

with the trimmedmean of M values (TMM)method.130 If batch effects were detected by principal component analysis, removeBatch-

Effects from the Rpackage limma (RRID: SCR_010943)102 was used to correct count values to adjust for batch effects. Pre- and post-

adjustment matrices were used for principal component analysis and principal variance component analysis using the R package

PVCA (RRID: SCR_001356) to visualize the effects of batch correction. The R package limma (RRID: SCR_010943)102 was used

to identify differentially expressed genes by first applying precision weights to each gene based on its mean-variance relationship

using the voom function and then linear modeling and Bayesian statistics were employed to detect genes that were up- or down-

regulated in each condition. If batch effects were detected by principal component analysis, batch information was included as a

covariate in the linear model to adjust for batch effects. Genes with an adjusted p-value <0.05 and |log2 fold change| > 0.58 were

considered significantly differentially expressed. Throughout the study, this fold change threshold was used for all differential expres-

sion analyses to detect genes that increased by approximately 50% or decreased by approximately 33%. Coordinates for the

rs7132908 TAD were determined using the TADKB database51 and considering the most conservative region documented in all re-

ported human cell lines (GRCh37). A list of genes in the rs7132908 TAD region were exporting using the UCSC Genome Browser

(GRCh37) (RRID: SCR_005780).131,132 Significantly differentially expressed genes were clustered using Pearson correlation and

the R function hclust. The clustered genes were cut into 2modules in ESCs and 5modules in hypothalamic neural progenitors. Signif-

icantly enriched Gene Ontology terms52,53 in each module were identified using gprofiler2 (RRID: SCR_018190).97,98 Results were

visualized using ggplot2 (RRID: SCR_014601),107 gplots, and plotly.

Bulk ATAC-seq analysis
Sequencing data was demultiplexed to generate FASTQ files using Illumina bcl2fastq2 Conversion Software (RRID: SCR_015058).

ATAC-seq peaks were called following the ENCODE ATAC-seq pipeline (https://www.encodeproject.org/atac-seq/). Briefly, paired-

end reads from three replicates for each cell type were aligned to the human reference genome (GRCh38) using bowtie2 (RRID:

SCR_016368),103 and duplicate reads were removed from the alignment using Picard (RRID: SCR_006525) MarkDuplicates and

SAMtools (RRID: SCR_002105).104 Narrow peaks were called independently for each replicate using MACS2105 with parameters

-p 0.01 –nomodel –shift �75 –extsize 150 -B –SPMR –keep-dup all –call-summits. Reproducible peaks, peaks called in at least 2

replicates (with at least 1 bp overlap), were used to generate a consensus set of peaks. Signal peaks were normalized using

csaw106 in 10 kilobase (kb) bin background regions. A threshold of cpm >1 was used to exclude peaks with low abundance from

the analysis. Tests for differential accessibility between rs7132908 genotypes were conducted with the glmQLFit approach
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implemented in edgeR (RRID: SCR_012802)100 using the normalization factors calculated by csaw. Open chromatin regions with

adjusted p-value <0.05 and |log2 fold change| > 1 were considered differentially accessible. Results were visualized using ggplot2

(RRID: SCR_014601).107

Hi-C analysis
Hi-C analysis was performed as previously described.43 In brief, sequencing data was demultiplexed to generate FASTQ files using

Illumina bcl2fastq2 Conversion Software (RRID: SCR_015058). Paired-end reads from each replicate were pre-processed using the

HiCUP pipeline (RRID: SCR_005569)113 and aligned to the human reference genome (GRCh38) with bowtie2 (RRID: SCR_016368).103

The alignments fileswere parsed to pairtools (RRID: SCR_023038)114 to process and pairix115 to index and compress, then converted

to Hi-C matrix binary format (.cool) by cooler116 at multiple resolutions (500 bp, 1, 2, 4, 10, 40, 500 kb and 1 megabase (Mb)) and

normalized with the ICE method.133 The matrices from different replicates were merged at each resolution using cooler.116

Mustache117 and Fit-Hi-C2118 were used to call significant intra-chromosomal interaction loops from merged replicates matrices

at three resolutions (1 kb, 2 kb, and 4 kb), with significance thresholds of q-value <0.1 and p-value < 1 3 10�6. The identified inter-

action loops weremerged between both tools at each resolution. Lastly, interaction loops from all three resolutions weremergedwith

preference for smaller resolution if there was overlap.

Single-nucleus pre-processing
Cell Ranger ARC analysis pipelines were used to process sequencing data generated with the 10X Genomics Chromium Single Cell

Multiome ATAC + Gene Expression workflow. Sequencing data was demultiplexed to generate FASTQ files using mkfastq. The

FASTQ files were aligned to the GRCh38 human reference genomewith the Cell Ranger ARC package (RRID: SCR_023897) and cells

were called using parameters -count –min-atac-count = 2000 –min-gex-count = 1000.

66,120 cells homozygous for the rs7132908 non-risk G allele representing two separate differentiations were sequenced. 45,916

cells homozygous for the rs7132908 obesity risk A allele representing two different clonal lines and three different differentiations

were also sequenced. All 112,036 cells then underwent quality control to remove ambient RNA using SoupX (RRID:

SCR_019193)92 with the contamination fraction automatically estimated for each sample and the count matrices were re-adjusted

after removal. Doublets were detected and removed using the Python package Scrublet (RRID: SCR_018098),91 and cells with

>10% mitochondrial reads were filtered out using Seurat (RRID: SCR_016341).94 After quality control, we retained 71,818 cells for

downstream analyses.

RNA-seq data from all samples was SCTransformed (RRID: SCR_022146),95,96 integrated using the IntegrateData function, and

then batch corrected using Harmony (RRID: SCR_022206)93 for differentiation, biological, and technical replicates. PCA and

UMAP reduction were performed using the first 30 empirically selected principal components with standard pipelines

(Figures S2F‒S2H).
We ran peak calling using MACS3 (https://macs3-project.github.io/MACS/) for each sample with their corresponding ATAC-seq

fragments files. Peaks from all samples were pooled and reduced to a final set of 383,029 peaks accessible in at least one sample.

This peak set was used to create a ChromatinAssay using Signac (RRID: SCR_021158).108 The peaks were filtered through ENCODE

hg38 blacklist regions (https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz) and annotated with

EnsDb.Hsapiens.v86. We performed quality control following metrics recommended by Signac,108 including nucleosome banding

pattern, TSS enrichment score, total number of fragments in peaks, fraction of fragments in peaks, and ratio of reads in genomic

blacklist regions; we removed cells that were outliers by these metrics. We performed term frequency-inverse document frequency

normalization with the RunTFIDF function and feature selection and dimension reduction using singular value decomposition (SVD)

on the TD-IDF matrix with the RunSVD function, which produced latent semantic indexing components (LSI).134 Uniform manifold

approximation and projection embedding was computed based on the first 29 LSI components (second to the 30th) for visualization

in two-dimensional space with the RunUMAP function. The first component, being in strong correlation with total counts, was not

used. Results were visualized using Seurat94 and ggplot2 (RRID: SCR_014601).107

Cell type identification
A previously published human hypothalamic arcuate nucleus single-cell RNA-seq dataset54 was used as a reference dataset to iden-

tify cell types in our single-nucleus RNA-seq dataset. Pairwise correspondences or ‘anchors’ between individual cells in each dataset

were defined using the Seurat (RRID: SCR_016341) function FindTransferAnchors.55 Then each cell in our dataset was classified as

one of the cell types in the reference dataset (neuron, astrocyte, OPC, mature oligodendrocyte, microglia, ependymal, pericyte,

immature oligodendrocyte, fibroblast, choroid, and tanycyte) using the Seurat function TransferData,55 where the reference cell

type with the highest observed classification score was assigned. As a result, neuron, astrocyte, OPC, ependymal, fibroblast, and

tanycyte annotations were added to our dataset (Figure S2A). We then prioritized cells with a classification score R0.8 for down-

stream analyses as this threshold has been previously demonstrated to increase accuracy.55 In summary, we identified 38,044 cells

as neurons, OPCs, or fibroblasts with a classification score above our threshold. PCA and UMAP reduction were performed using the

first 20 empirically selected principal components with standard pipelines (Figure 4A). All cells annotated as neurons were then sub-

set and reclustered with PCA and UMAP reduction using the first 15 empirically selected principal components (Figure 4C). Results

were visualized using Seurat94 and ggplot2 (RRID: SCR_014601).107
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Transcriptome correlation
Pseudobulk TPMs were calculated for each annotated cell type and replicate sample in the single-nucleus RNA-seq dataset by

normalizing SoupX-corrected counts by gene size using gene annotation data from GENCODE human release 38 (GRCh37)

(RRID: SCR_014966)128 and previously published code.135 TPMs from all rs7132908 non-risk allele replicate samples for each an-

notated cell type were then averaged. Similarly, average TPMs were also calculated for the rs7132908 non-risk allele replicate sam-

ples in the bulk RNA-seq datasets generated from the hypothalamic neural progenitors and human pediatric hypothalamus tissue

sequenced inhouse. Median gene-level TPM data by tissue was downloaded from the GTEx Analysis RNA-seq database (v8)

(RRID: SCR_013042).49 Ensembl gene IDs with version suffixes were converted to gene names using gene annotation data from

GENCODE human release 26 (GRCh37) (RRID: SCR_014966).128 Average TPMs for each cell type of interest were merged with

average TPMs from the human pediatric hypothalamus tissue and GTEx data. Then, the spearman rank correlation of genes ex-

pressed at greater than 5 TPMs in at least 2 samples were calculated using the R (RRID: SCR_001905) cor function. p-values for

each correlation were calculated using the R cor.test function. Results were visualized in dot plots using ggplot2 (RRID:

SCR_014601).107

To compare the transcriptome of the cells annotated as neurons in the single-nucleus RNA-seq dataset to human prenatal hy-

pothalamic nuclei, data from the Allen Brain Atlas58–61 was downloaded as upregulated gene sets from the Harmonizome data-

base.136 Left and right hemisphere gene sets for each hypothalamic nucleus were combined and used for downstream analysis.

To infer the average expression of each gene set per single cell in the neuron dataset compared to random control genes, module

scores for each gene set were calculated using the Seurat (RRID: SCR_016341) function AddModuleScore.137 Average module

scores per neuron cluster were plotted as the column Z score for visualization. Results were visualized using ggplot2 (RRID:

SCR_014601).107

Single-nucleus differential expression
Differential expression analysis of single-nucleus RNA-seq data was performed with DESeq2 (RRID: SCR_015687),109 following

the standard workflow. In brief, raw counts and appropriate metadata for cell aggregation and comparison were extracted and

used to create a SingleCellExperiment object using the R package SingleCellExperiment.110,111 Counts were aggregated to the

sample level for each cell type using the Matrix.utils function aggregate.Matrix. DESeq2 objects were created from the raw counts,

appropriate metadata, and design formula to compare the rs7132908 obesity risk allele to the non-risk allele in each cell type using

the DESeq2 function DESeqDataSetFromMatrix.109 Differential expression analysis in each cell type was run using the DESeq2

function results109 and an adjusted p-value threshold of 0.05. The resulting log2 fold changes were shrunk using the apeglm

method.112 Genes with an adjusted p-value <0.05 and |log2 fold change| > 0.58 were considered significantly differentially ex-

pressed. Throughout the study, this fold change threshold was used for all differential expression analyses to detect genes that

increased by approximately 50% or decreased by approximately 33%. Results were visualized in volcano plots using ggplot2

(RRID: SCR_014601).107 Significantly differentially expressed genes were clustered using the R (RRID: SCR_001905) function

hclust and plotted in heatmaps using the R package pheatmap (RRID: SCR_016418). Significantly enriched Gene Ontology

terms52,53 in each set of genes significantly up- or down-regulated in each cell type were identified using gprofiler2 (RRID:

SCR_018190).97,98

Single-nucleus differential accessibility
To find differentially accessible regions due to rs7132908 genotype, we performed differential accessibility tests between cells ho-

mozygous for either rs7132908 allele. We implemented logistic regression using the FindMarkers function from Signac (RRID:

SCR_021158),108 with the total number of fragments in peaks as a latent variable to mitigate the effect of differential sequencing

depth and using a min.pct threshold of 0.01 due to sparse single-nucleus ATAC-seq data. To ensure data correspondence, we

used only the 38,044 annotated cells that had a classification score R0.8 by the RNA-seq analysis for this differential accessibility

analysis. p-value adjustment was performed internally using Bonferroni correction based on the total number of peaks in the dataset.

We repeated this analysis for each annotated cell type: neurons, OPCs, and fibroblasts.

We performed DNA motif analysis to identify potentially important genotype-specific regulatory sequences in different

groups of differentially accessible peaks. We used motif position frequency matrices from the JASPAR 2022 CORE

collection database.138 We detected transcription factor motifs enriched in differentially accessible peaks with an adjusted

p-value <0.005 and |log2 fold change| R 1. The FindMotifs function from Signac108 performed hypergeometric test on

these differentially accessible peaks to test the probability of observing the motif at the given frequency by chance, compared

to a background set of peaks matched for GC content. Motifs with an adjusted p-value <0.05 were considered significantly

enriched.

Real-time qPCR analysis
Cq values for each sample were determined with the Agilent Aria software. To validate each TaqMan Gene Expression Assay using a

standard curve, Cq values from each triplicate of samples were averaged and then plotted against the log of their corresponding

mass of cDNA input (ng) using Microsoft Excel (RRID: SCR_016137). A linear trendline was then added to each graph and the R2

values and linear equations were displayed. Primer efficiency was calculatedwith 10
� 1=slope. Percent primer efficiency was calculated
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by dividing the primer efficiency by 2. TaqMan Gene Expression Assays passed standard curve validation if the R2 value was greater

than 0.99 and the percent primer efficiency was between 90 and 110%. Assayswere used to calculate normalized relative expression

if the no reverse transcriptase and no template control samples did not generate a Cq value. Normalized relative expression was

calculated using
E
ðmean FAIM2 Cq in non� risk cells on day 0Þ � ðmean FAIM2 Cq in experimental sampleÞ
FAIM2

E
ðmean 18S Cq in non� risk cells on day 0Þ � ðmean 18S Cq in experimental sampleÞ
18S

, where E is primer efficiency. Results were visualized using

GraphPad Prism (RRID: SCR_002798). Independent differentiations were performed and are represented by individual points on

each graph. All data are represented as mean ± standard deviation.
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Figure S1 – Hypothalamic neural progenitors, related to Figure 3. A) Dot plot of Spearman’s rank correlation 
coefficients resulting from comparing TPMs of 16,159 genes expressed in rs7132908 non-risk allele homozygous 
hypothalamic neural progenitors, rs7132908 non-risk allele homozygous human pediatric hypothalamus tissue, and 
human tissues or cells in the GTEx RNA-seq database. Red dots indicate significant correlations (P-value < 0.05). 
Tissue names in red indicate brain tissues. B) PCA plots of hypothalamic neural progenitor RNA-seq libraries before 
(left) and after (right) batch correction (GG n = 2 biological replicates with 3 technical replicates each, AA n = 2 
biological replicates with 3 technical replicates each). C) Bar plots representing PCA loadings for PC1 and PC2 from 
hypothalamic neural progenitor RNA-seq libraries before (left) and after (right) batch correction. D) Stacked bar plots 
of weighted average proportion of variance from principal variance component analysis of hypothalamic neural 
progenitor RNA-seq libraries before (left) and after (right) batch correction. E) Heatmap depicting significantly 
differentially expressed genes (adjusted P-value < 0.05, |log2 fold change| > 0.58) due to the rs7132908 obesity risk 
allele in hypothalamic neural progenitors. Genes were clustered into 5 modules using hierarchical clustering (green, 
orange, light blue, dark blue, pink). F-G) Representative images of hypothalamic neural progenitors on day 14, with 
immunostaining for a marker of the developing hypothalamus, NKX2-1 (red) (F) and a marker of post-mitotic neurons, 
NeuN (red) (G) (scale bar = 20 µm). Nuclei were stained with DAPI (blue). Cells were homozygous for either the 
rs7132908 non-risk allele (left) or obesity risk allele (right). 



 

Figure S2 – Hypothalamic single-nucleus RNA-seq analysis, related to Figure 4. A, F-H) UMAP depicting all 
cells clustered by single-nucleus RNA-seq profile and annotated by predicted cell type annotation before cells with 
classification scores below the 0.8 threshold were removed (A), replicate sample (F), rs7132908 genotype (G), and 
cluster identity (H). B) Dot plot depicting average expression (scaled and log2 normalized counts) and percent of cells 
that expressed canonical OPC marker genes (PDGFRA, CSPG4, OLIG1, OLIG2, and SOX10), split by cell type. C-E) 
Dot plots of Spearman’s rank correlation coefficients resulting from comparing TPMs of genes expressed in 
rs7132908 non-risk allele homozygous hypothalamic neurons (C), OPCs (D), and fibroblasts (E) to human pediatric 
hypothalamus tissue from donors homozygous for the rs7132908 non-risk allele and human tissues or cells in the 
GTEx RNA-seq database. Red dots indicate significant correlations (P-value < 0.05). Tissue names in red indicate 
brain tissues. 



 

Figure S3 – MAP2 expression, related to Figure 6. Representative composite images of hypothalamic neurons 
post-differentiation on day 40, with immunostaining for a mature neuron marker, MAP2 (green) (scale bar = 100 µm). 
Nuclei were stained with DAPI (blue). Cells were homozygous for either the rs7132908 non-risk allele (left) or obesity 
risk allele (right). 

 

 

 

Figure S4 – Hypothalamic single-nucleus RNA-seq differential expression analysis, related to Figure 7. A-D) 
PCA plots of single-nucleus RNA-seq libraries (GG n = 4, AA n = 4) when considering all cells (A), neurons (B), 
OPCs (C), and fibroblasts (D). 
 

 



 

Figure S5 – FAIM2 expression, related to Figure 7. A-B) Relative normalized FAIM2 mRNA expression in cells 
homozygous for the rs7132908 non-risk allele (A) and obesity risk allele (B) measured by RT-qPCR throughout ESC 
differentiation to hypothalamic neurons. FAIM2 expression was normalized to 18S ribosomal RNA expression. 
Relative FAIM2 expression was calculated relative to non-risk allele cells on day 0. Data are represented as mean ± 
SD when n > 1. C) FAIM2 expression (TPM) in primary human pediatric hypothalamus tissue. Black horizontal line 
indicates median expression (n=4). Blue bars indicate donors homozygous for the rs7132908 non-risk G allele and 
the indigo bar indicates a donor heterozygous at rs7132908. 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S6 – Validation of experimental models, related to STAR Methods. A) Mycoplasma PCR detection results 
for all experimental models. Cell lines with bands matching the size of the negative control are not contaminated with 
mycoplasma. Irrelevant lanes were removed from the farthest left gel image. B) G-band karyotyping reports for ESC 
lines. C) Electropherograms produced by Sanger sequencing around rs7132908 in ESC lines. D) BfaI restriction 
enzyme digestion screening in ESC lines. H9 ESCs have one BfaI restriction site in the PCR product around 
rs7132908, where digestion should produce two bands of 320 bp and 248 bp. After CRISPR to introduce the 
rs7132908 obesity risk A allele, a second BfaI restriction site is introduced, where digestion should produce three 
bands of 294 bp, 248 bp, and 26 bp (not pictured).  
 

 



 

Figure S7 – Primary astrocyte transfection optimization, related to STAR Methods. A) Transfection efficiency 
resulting from transfecting with 250, 500, or 700 ng DNA per well and varying DNA to Lipofectamine LTX ratios (n = 2 
biological replicates). B) Cell viability resulting from transfecting with 250, 500, or 700 ng DNA per well and varying 
DNA to Lipofectamine LTX ratios (n = 2 biological replicates). Data are represented as mean ± SD. 
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