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Committor analysis

Here we report the details of the committor analysis performed to estimate the quality of

different collective variables (CVs) for the Wolfe-Quapp potential. Our procedure is based

on that described by Peters.S1 We defined two states, A at x > 1.4nm, y < −1.0nm

and B at x < −1.4nm, y > 1.0nm. For each examined CV s(x, y), we first performed

a 10ns long simulation initiated at (x = 0, y = 0)nm, restricted to s ≈ 0nm by a bias

potential V (s) = 80s2, with V (s) in units of 1 kBT and s in nm. A thousand uncorrelated

configurations were randomly sampled from the restricted trajectory, to serve as new initial

configurations. Next, we sampled 100 trajectories for each initial configuration and obtained

the fraction of trajectories that reached the target state B before state A, pB.
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Finally, we examined the histogram of pB for all tested CVs. The CV showing the nar-

rowest distribution around pB = 0.5 best approximates the true committor and is regarded in

the main text as the good CV. It is given by s(x, y) = cos
(
π
9

)
x− sin

(
π
9

)
y. Figure S1 shows

the histograms of pB for this CV and for s(x, y) = x, which is a poor CV, for comparison.

Figure S1: Histograms of pB for (a) the good CV and (b) a poor CV.

Mean first-passage time estimation

Here we explain how the unbiased mean first-passage time (MFPT) values of the different

processes were evaluated. For all systems, we first performed standard molecular dynamics

simulations, that were stopped when the first-passage criterion was fulfilled. For the Wolfe-

Quapp potential, all trajectories exhibited a first-passage. The MFPT was simply taken

as the average first-passage time (FPT) of all trajectories. However, for both molecular

systems, ∼ 7% of the simulations did not show a first-passage event. Therefore, taking the

MFPT of all trajectories would underestimate the true value.

Instead, we used the assumption that the FPT distribution is exponential. We made a

linear fit to the logarithm of the survival function, and evaluated the true MFPT as −k−1,
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with k being the slope of the fit. For both systems, we obtained high coefficient of determi-

nation values, R2 > 0.995, confirming that the underlying distributions are exponential.

Sensitivity of t∗ to batch size

Here, we plot the values of t∗ as a function of the bootstrapping batch size, for the systems

shown in Figure 3 of the manuscript.

Figure S2: t∗ as a function of the number of samples in each bootstrapping batch for sim-
ulations using (a) a good CV and bias deposition rate of 10ns−1, (b) a good CV and bias
deposition rate of 1000ns−1, and (c) a suboptimal CV and bias deposition rate of 200ns−1.
The boxes show the range between the first and third quartiles (interquartile range, IQR)
and the whiskers show extreme values within 1.5 IQR below and above these quartiles.

Sensitivity of estimated MFPT to batch size

Here, we provide plots equivalent to Figure 2, Figure 4(a), Figure 4(b), and Figure 5(b) of

the manuscript, with smaller bootstrapping batch sizes N .
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Figure S3: Results for the Wolfe-Quapp potential with sets of 10 (upper row), 20 (middle
row), or 50 (bottom row) trajectories in each bootstrapping batch, using standard iMetaD
(orange) or ST-iMetaD (pink). Left: Estimated MFPT as a function of speedup for sim-
ulations using a good CV and different bias deposition rates from 10 to 1000ns−1. Right:
Estimated MFPTs for a bias deposition rate of 200ns−1, and different choices of CV. The
boxes show the range between the first and third quartiles and the whiskers show extreme
values within 1.5 IQR below and above these quartiles. The blue lines show the unbiased
MFPT.
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Figure S4: Results for alanine dipeptide with sets of 10 (upper row), 20 (middle row), or 50
(bottom row) trajectories in each bootstrapping batch, using the ϕ angle (left) or ψ angle
(right) as CV. The blue lines show the unbiased MFPT while the boxes give estimations
through standard iMetaD (orange) or ST-iMetaD (pink). The boxes show the range between
the first and third quartiles and the whiskers show extreme values within 1.5 IQR below and
above these quartiles.
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Figure S5: Results for chignolin unfolding with sets of 10 (upper row), 20 (middle row),
or 50 (bottom row) trajectories in each bootstrapping batch, using CVs based on either
HLDA (left column), Rg (center column), or RMSD (right column). The blue lines show
the unbiased MFPT and the boxes give estimations through standard iMetaD (orange) or
ST-iMetaD (pink). The boxes show the range between the first and third quartiles and the
whiskers show extreme values within 1.5 IQR below and above these quartiles.

Comparison with Kramers Time-Dependent Rate

Here, we compare between ST-iMetaD and Kramers Time-Dependent Rate (KTR) for the

three systems presented in the manuscript.

KTR is a recently developed kinetics inference scheme from biased simulations.S2 Relying

on Kramers theory,S3,S4 it assumes that the kinetic rate of the biased process at time t is given

by k(t) = k0e
βγVMB(t), with k0 being the unbiased kinetic rate, β the inverse temperature,
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and VMB(t) the average maximum height of the biasing potential. k0 and γ ∈ [0, 1] are

obtained from a maximum likelihood fitting to the empirical survival function.

We reproduce Figure 2, Figure 4(a), Figure 4(b), and Figure 5(b) of the manuscript,

adding the MFPT estimations through KTR in red. We used open-source code provided by

the authors of the method.S5 We find that KTR underestimates the MFPT for simulations

with high bias deposition rates or suboptimal CVs, as opposed to iMetaD which overestimates

it. ST-iMetaD provides better predictions than KTR for the Wolfe-Quapp potential and

alanine dipeptide. For Chignolin, in most CVs and bias deposition rates, ST-iMetaD provides

similar accuracy to KTR, expect for the RMSD-based CV. This case suffers the most from

bias over-deposition, that overestimates the MFPT, which possibly results in a fortuitous

cancellation of errors for KTR.

Figure S6: Results for the Wolfe-Quapp potential. (a) Estimated MFPT as a function
of speedup for simulations using a good CV and different bias deposition rates from 10 to
1000ns−1. (b) Estimated MFPTs for a bias deposition rate of 200ns−1, and different choices
of CV. We used either standard iMetaD (orange), KTR (red), or ST-iMetaD (pink). The
boxes show the range between the first and third quartiles and the whiskers show extreme
values within 1.5 IQR below and above these quartiles. The blue lines show the unbiased
MFPT.
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Figure S7: Results for alanine dipeptide using (a) the ϕ angle or (b) the ψ angle as CV. We
used either standard iMetaD (orange), KTR (red), or ST-iMetaD (pink). The boxes show
the range between the first and third quartiles and the whiskers show extreme values within
1.5 IQR below and above these quartiles. The blue lines show the unbiased MFPT.

Figure S8: Results for chignolin using (a) the HLDA, (b) the Rg, or (c) the RMSD-based
CVs. We used either standard iMetaD (orange), KTR (red), or ST-iMetaD (pink). The
boxes show the range between the first and third quartiles and the whiskers show extreme
values within 1.5 IQR below and above these quartiles. The blue lines show the unbiased
MFPT.
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