
Methods 

Nup expression and DNA-conjuga�on 

Genes encoding H. sapiens Nup62FL (aa 1–522) and Nup153CTD (aa 896–1475), both with MBP and SNAP-
tag, were cloned into a pET-28a-derived vector (Novagen). To express the nups, BL21DE3 cells (New 
England Biolabs) were cultured at 37°C in shaking incubator un�l OD600 reaches 0.5 to 1. IPTG (1 mM) was 
added to induce expression of target genes; the culture was kept on shaker at 20 °C overnight. The bacteria 
cells were then pelleted at 4,500 RPM using a Beckman Coulter JS-5.0 rotor for 15 min. Cell homogenizer 
(EmulsiFlex-C3, Aves�n) was used to break the bacteria in a lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 
0.1 mM PMSF and 1×RochecOmplete protease inhibitor cocktail). Cell Lysate was then centrifuge at 38,000 
RPM using Beckman Coulter SW 45 Ti for 30 min to remove cell debris. The lysate containing Nup153 was 
then loaded to a 5 mL HisTrap column (Cy�va) on an ÄKTA system (Cy�va) and eluted using 0 to 400 mM 
imidazole gradient. The lysate containing Nup62 was loaded to 5 mL MBPTrap HP columns (Cy�va) and 
eluted by 10 mM maltose. The eluted proteins were loaded to a Superdex 200 pg 16/600 column (Cy�va) 
to further purify target proteins by size exclusion chromatography. The protein purity is confirmed by SDS-
PAGE and Coomassie stain (Thermo Fisher). 

To prepare O6-benzylguanine (BG) modified oligonucleo�des (an�-handles), BG-GLA-NHS (New England 
Biolabs) was dissolved in DMSO for a final concentra�on of 20 mM. Dried 5’-amine labeled an�-handles 
(Integrated DNA Technologies) were resuspended in Milli-Q ultrapure water at the stock concentra�on of 
2 mM. The amine-DNA (0.33 mM) and the NHS ester crosslinker (10 mM) were allowed to react in in HEPES 
(67 mM, pH 8.5) buffer for 30 min in room temperature (RT). The BG-DNA was purified by ethanol 
precipita�on to remove unreacted crosslinkers and resuspended in Milli-Q ultrapure water. Purified BG-
DNA (10 µM) was mixed with nups with a SNAP-tag protein (5 µM) in 50 mM Tris (pH 8.0) buffer and 
incubated at RT for 2 h. The reac�on mixture was then loaded to a Superdex 200 pg 16/600 column (Cy�va) 
to purify the an�-handle conjugated nups from unreacted BG-DNA.  

Impor�n β1 prepara�on 

Impor�n β was expressed and purified according to established protocols [55], with the addi�on that the 
impor�n-β1-containing frac�on was dialyzed against the TEV protease cleavage buffer: 10 mM Tris-HCl, 
pH 8, 100 mM NaCl, 1 mM DTT and 1 mM EDTA. A�er the His6-tag cleavage by TEV protease (expressed in 
our lab) impor�n β1 was purified again using the Ni-NTA column (Roche). This was followed by addi�onal 
purifica�on using a Superdex 200 size exclusion column. The collected frac�on was validated using a 12% 
SDS gel and flash-frozen at -80°C.   

DNA origami design and prepara�on 

DNA structures were designed using caDNAno [56]. DNA nanopores with handles extended from the 3’ 
end of staple strands were shown in Supplementary Figure 1. The handle sequences for ataching Nup62 
and Nup153 are 5′-CTACCATCTCTCCTAAACTCA-3′ and 5′-AAATTATCTACCACAACTCAC-3′, respec�vely. DNA 
origami 3D models were rendered using Maya (Autodesk). To fold a monomeric DNA-origami structure, a 
mixture of the M13mp18-derived bacteriophage circular ssDNA (8064 nt, 20 nM) and staple 
oligonucleo�des (120 nM each) in 1×TE buffer (5 mM Tris and 1 mM EDTA, pH 8.0) with 14 mM MgCl2 was 
annealed using a 36-h, 85–25°C protocol. The folding products were characterized by agarose gel 
electrophoresis (Supplementary Figure 2). The desired combina�ons of unpurified monomers were then 



mixed at equimolar ra�o (10 nM each) and incubated at RT with adjusted magnesium concentra�ons for 
overnight to obtain dimers (14 mM MgCl2), trimers (14 mM MgCl2) or tetramers (24 mM MgCl2). The 
oligomers (open-ended and capped nanopores) were purified by rate-zonal centrifuga�on purifica�on as 
previously reported [57]. Briefly, to make the glycerol gradient, two layers of glycerol solu�ons (15% and 
45%) containing 1×TE buffer, 14 mM Mg2+ were load to a 13×51 mm centrifuge tube (Beckman Coulter). 
The quasi-linear glycerol gradient was built using a gradient sta�on (BioComp Instruments). The unpurified 
DNA nanopores were loaded to the top of the gradient media and centrifuged at 45,000 RPM for 1.5 h 
followed by frac�on collec�on. Frac�ons containing the correctly assembled nanopores (determined by 
agarose gel electrophoresis) were combined. Glycerol was subsequently removed by buffer exchange to 
1×TE, 15 mM MgCl2, pH 8.0 buffer using Amicon Ultra centrifugal filters with NMWL of 10 kDa 
(MilliporeSigma). 

Assembly of NuPODs 

The NuPODs were assembled from purified DNA nanopores and nup-DNA conjugates as previously 
described [29]. An�-handle conjugated nups (50 mM Tris pH 8.0, 300 mM NaCl, 0.2 mM TCEP) were added 
to nanopores (1×TE, 15 mM MgCl2) at 2:1 (an�-handle:handle) ra�o. For example, the mixture for 
assembling 60-nm Nup62 NuPODs contained 5 nM 60-nm DNA nanopore carrying 32× handles and 320 
nM an�-handle conjugated Nup62. The mixtures were incubated for 0.5–2 h at 37°C. The forma�on of 
NuPODs was validated by the retarda�on of NuPOD bands compared with the corresponding empty 
nanopores in SDS-agarose gels (Supplementary Figure 3H–3J). The same protocol was used for assembling 
NuPODs for the HS-AFM study with two excep�ons: (1) MgCl2 was adjusted to 20 mM, and (2) immediately 
before HS-AFM analyses, MBP was cleaved from NuPODs by incuba�ng with TEV protease (1:50 ra�o to 
the substrate) and DTT (1 mM) for 1.5 h at 30°C.  

 

Determining the nup copy number in NuPODs 

The copy number of Nup62 in NuPODs was determined using a protocol described in [25] with the results 
summarized in Supplementary Figure 4. 

First, The Nup62 NuPODs were purified by rate-zonal centrifuga�on. Glycerol gradients were built in 5×41 
mm centrifuge tubes by sequen�ally layering 45%, 40%, 35%, 30%, 25%, 20%, 15% glycerol solu�ons in 
1×TE buffer containing 14 mM MgCl2 (90 µL each). The Nup62 NuPODs were loaded to the top of the 
glycerol gradient and centrifuged at 45,000 RPM for 1.5 h. A�er centrifuga�on, nine consecu�ve 75 µL 
solu�on frac�ons were collected from top to botom; the last frac�on (<75 µL) contained aggregates. All 
9 frac�ons were analyzed by western blot (see below). The first 8 frac�ons were loaded into separate lanes 
of an SDS-agarose gel alongside the empty nanopore as a control. The amount of NuPOD was es�mated 
by comparing band intensi�es (stained by ethidium bromide) with the control sample (empty nanopore), 
the concentra�on of which was measured by OD260. Frac�ons 6, 7 and 8, which contained NuPODs, were 
combined. 

Next, the purified 60-nm Nup62 NuPOD and a series of Nup62 solu�ons with known concentra�ons (16.6–
498 nM) were loaded into separate lanes of a 4–12% acrylamide gel (Thermo Fisher). Proteins were 
separated by SDS-PAGE, and then transferred to a nitrocellulose (Bio-Rad). Immunoblo�ng was 
performed using Nup62 polyclonal an�body (Bethyl Laboratories, Inc., A304-942A-T). Goat an�-Ribbit 
HRP-conjugated secondary an�body (Jackson Immunoreserach, Cat. #111-035-003) was used for 



detec�on. Band intensi�es on the western blot were measured using ImageJ, from which a calibra�on 
curve of band intensity vs Nup62 concentra�on was generated. The band intensity of the purified NuPOD 
in the western blot was compared to the calibra�on curve to determine the Nup62 concentra�on. The 
average Nup62 copy number was calculated as [Nup62]/[NuPOD]. 

Nega�ve-stain TEM and data analyses  

TEM specimens were prepared by deposi�ng samples onto glow discharged formvar/carbon-coated 
copper grids (Electron Microscopy Sciences) followed by staining with 2% (w/v) uranyl formate solu�ons. 
A�er wicking away the staining solu�on, the airdried grids were imaged using a JEOL JEM-1400Plus 
microscope with a botom-mount 4k×3k CCD camera (Advanced Microscopy Technologies). Par�cles 
(nanopores and NuPODs) were manually picked from TEM images (Supplementary Figure 5). Class 
averages were generated by RELION [58]. The intensity profiles were measured using Fiji [59].  

Sample prepara�on for HS-AFM measurements 

Supported lipid bilayers were prepared as previously described [25]. Dipalmitoylphospha�dylcholine 
(DPPC, Avan� Polar Lipids) and Didodecyldimethylammonium bromide (DDAB, Avan� Polar Lipids) lipids 
were dissolved in chloroform and mixed in a 3:1 molar ra�o. The solvent was ini�ally allowed to evaporate 
under a gentle nitrogen stream within a fume hood for 1 hour and then placed in a desiccator for at least 
4 h. MilliQ water was added to the dry lipids to reach a final concentra�on of approximately 1 mg/mL. The 
Lipid suspension was then treated in an ultrasonic bath (Elmasonic p30H, Elma Schmidbauer GmbH) at 
~65°C, using a pulse se�ng at 80 kHz for 15 min. The lipid solu�on was then loaded into syringes of an 
Avan� mini-extruder kit (Avan� Polar Lipids), maintaining a temperature of ~65°C, and passed through a 
Nuclepore Track-Etched Membrane (100 nm pore size) that is supported by a PE drain disc on both sides 
(Global Lifesciences Solu�ons UK Ltd, Buckinghamshire, UK). The process was repeated at least 20 �mes, 
resul�ng in the forma�on of small unilamellar vesicles (SUVs). 

A 2.7 μL droplet of vesicle buffer (1 μL of 1 M MgCl2, 1 μL of 1 M CaCl2, and 16 μL of Milli-Q water) was 
deposited onto an HS-AFM sample stage, which consisted of a freshly cleaved mica sheet glued to a glass 
cylinder. SUVs (0.3 μL, described above) were then added to the droplet. The sample stage was then 
exposed to a temperature of ~65°C for 20 min inside a humid petri dish, followed by a gradual reduc�on 
to RT over 20 min. This thermal treatment induced vesicle rupture, leading to the forma�on of a posi�vely 
charged supported lipid bilayer (SLB). Any excess vesicles in solu�on were removed by rinsing with water, 
followed by exchange with PB-Mg buffer (10 mM sodium phosphate, 40 mM MgCl2, pH 7.0). This washing 
step was repeated 4 �mes before introducing 3 μL of TEV-treated NuPODs (2 nM). Free Nup62 and MBP 
in solu�on were removed by gently washing the stage with 1×TE buffer, 40 mM MgCl2 and buffer exchange 
with PB-Mg buffer before HS-AFM imaging. 

A�er deposi�ng the NuPODs on the lipid bilayer, impor�n β1 was added to the sample in the imaging 
buffer at specified concentra�ons (10 nM, 100 nM, or 1 µM) and incubated for 30 min prior to the 
measurements. 

HS-AFM measurements on NuPODs 

High-speed atomic force microscopy (HS-AFM) measurements and data processing were performed as 
described elsewhere [35]. The acquisi�on of all HS-AFM data was conducted using the HS-AFM 1.0 system 
(RIBM, Japan). The system employed a standard scanner opera�ng in tapping mode. Throughout the 



experiments, pris�ne QUANTUM-AC10-SuperSharp and QUANTUM-AC10-SuperSharp-enhanced 
can�levers (nanotools GmbH) were u�lized, featuring a �p radius of ≤ 2 nm, a nominal spring constant of 
0.1 N/m, a resonant frequency of approximately 0.5 MHz, and a quality factor of around 2 in water. The 
typical set point amplitude (Aset) was maintained at 80–90% of the free can�lever oscilla�on amplitude 
(Afree), set within the range of 2–3 nm [60, 61]. 

HS-AFM line scanning measurements on NuPODs 

In high-speed atomic force microscopy line scanning (HS-AFM-LS), the slow-scan axis was deac�vated, and 
solely the fast-scan axis was engaged [62]. A NuPOD was first imaged and centered within a region of 
interest prior to commencing line scanning. This ensures that the NuPOD's center is scanned repe��vely, 
genera�ng a kymograph as a func�on of the distance from the pore center. Line scans were captured over 
80 pixels in the fast-scan axis at a rate of 1.875 ms per line. 

HS-AFM data processing 

All 2D images acquired through HS-AFM were dri� corrected using an in-house Python-based so�ware, 
which concurrently transformed the files into TIFF format [34, 35]. Subsequent analysis of HS-AFM images 
was done using ImageJ along with custom analysis rou�nes writen in Python. Various image processing 
tasks, such as filtering, contrast adjustment, and height/diameter measurements, were also performed 
using ImageJ. Ini�ally, all HS-AFM images underwent correc�on for XY-�l�ng through the applica�on of a 
flatening filter u�lizing a first-order polynomial plane. Following this, the heights of the HS-AFM images 
were normalized in rela�on to the scaffold by subtrac�ng the average scaffold height. Zoomed-in HS-AFM 
images were treated using a 2D Gaussian filter with a 1-pixel standard devia�on. 

HS-AFM-LS data was processed using custom analysis rou�nes writen in Python as follows. Full 
kymographs were spliced into 600 ms segments. Correc�ons for dri� in the Z-axis and �lt in the fast-scan 
axis were applied, and the heights were adjusted rela�ve to the NuPOD scaffold, provided the top surface 
of the scaffold was discernible within the same kymograph. Furthermore, a Fast Fourier transform filter 
was applied to eliminate periodic noise at frequencies of 50 Hz and 150 Hz, with root mean square (RMS) 
amplitudes of approximately 0.09 nm and 0.08 nm, respec�vely. Given their negligible size, these 
amplitudes had no discernible impact on the dynamic analysis of HS-AFM-LS. The height values obtained 
from kymographs were averaged along the �me axis at corresponding radii and then overlaid over the 
average profile of the scaffold (Figure 3E and 3J). 

Par�cle-tracking and posi�onal distribu�on 

A custom Python rou�ne tracked the displacement of the central plug-like feature in HS-AFM kymographs 
on a line-by-line basis along the fast-scan (X) axis [35]. Ini�ally, a low-pass filter was applied to the 
kymographs along this axis to enhance the signal-to-noise ra�o. Detec�on was specifically limited to the 
central region, excluding the NuPOD scaffold. If displacement of the CP-like cluster was detected within a 
line, the algorithm selected the posi�on of the highest local maximum; otherwise, the line was skipped. 
Trajectories from all lines containing the cluster were then compiled into a histogram to display the 
distribu�on of the cluster rela�ve to the center of a NuPOD (referenced in Figure 3D and 3I). 

In vitro assembly of HBV capsids of mammalian cell origin 



Expi293 cells were transfected with wt HBV core protein (HBc) cloned in the pcDNA3.4 mammalian vector 
(Thermo Fisher Scien�fic). A�er culturing at 37°C for 72 h, the cells were harvested. The cell pellet was 
resuspended in a lysis buffer (50 mM Tris-HCl pH 8.5; 150 mM NaCl; 1% NP-40; protease inhibitors) and 
chilled at 4°C for approximately 1 h. In cases of incomplete lysis, cells were manually disrupted using a 
Dounce homogenizer un�l complete lysis was observed under a light microscope. 

The cell lysate was then centrifuged at 17,000 g for 45 min at 4°C. The supernatant was collected and 
loaded onto a 20–60% glycerol gradient (20 mM Tris pH 8.0, 150 mM NaCl). This gradient was centrifuged 
at 4°C for approximately 5 h at 153,700 g in a SW 32 Ti rotor. A�er spinning for 5 h, the en�re gradient was 
frac�onated into 1.5 mL aliquots, which were analyzed using 4–12% SDS-PAGE. A�er buffer exchange to 
remove glycerol, the frac�ons with the most abundant full-length HBc were imaged by nega�ve-stain TEM. 
Based on TEM analysis, the frac�ons containing the most intact HBV capsids were concentrated and stored 
at -80°C before being used for binding and penetra�on assays. The absorp�on (220–350 nm, with 1 nm 
increment) spectrum of the capsids was measured using a NanoDrop spectrometer (Thermo Fisher). 

In vitro assembly of HBV capsids of bacterial origin 

Plasmids encoding HBc (wt or ΔC) were transfected to BL21(DE3) cells and expressed as described in Nup 
purifica�on and DNA conjuga�on. A�er lysing the bacteria in a buffer (50 mM Tris, pH 8, 300 mM NaCl), 
bacterial debris were removed by centrifuga�on at 12,000 g for 1 h. HBc proteins were pelleted from the 
supernatant by adding 30% of (NH4)2SO4 and centrifuging for 1 h at 12,000 g. The pellets were resuspended 
in 50 mM Tris-HCl (pH 8.0) before dialyzed overnight against a buffer (50 mM Tris, pH8). A�er 
centrifuga�on at 12,000 g for 1 h to remove aggregates, the dialyzed sample was loaded to a HiPrepTM  Q 
FF 16/10 anion exchange chromatography column (Cy�va) and the flow though from the column, which 
contained HBc, was collected. The flow through was subjected to rate-zonal centrifuga�on at 30,000 rpm 
(SW 32 Ti rotor), 4°C for 3 h in a 20–60% glycerol gradient (20 mM Tris pH 8.0, 150 mM NaCl). Frac�ons 
collected from the gradient were analyzed by SDS-PAGE. Frac�ons containing HBc of the expected M.W. 
were collected and concentrated by Amicon Ultra centrifugal filters with NMWL of 100 kDa. The frac�ons 
with the most abundant HBc were imaged by nega�ve-stain TEM to screen for intact HBV capsids. The 
capsids were stored at -80°C before being used for binding and penetra�on assays. The absorp�on (220–
350 nm, with 1 nm increment) spectra of the capsids were measured using a NanoDrop spectrometer 
(Thermo Fisher). 

HBV penetra�on assay 

Purified HBVs (50 µg/ml HBc) and NuPODs (5 nM) were mixed to achieve approximately 1:1 capsid:NuPOD 
molar ra�o and incubated at RT for 15 min. To test the effect of NTRs on HBV-NuPOD interac�ons, NuPODs 
were pre-incubated with 100 nM impor�n-β1 for 15 min before the addi�on of HBV capsids. The mixtures 
were then imaged by nega�ve-stain TEM. Electron micrographs were analyzed by ImageJ to determine the 
HBV occupancy (number of HBV-bound NuPODs/total number of NuPODs) and penetra�on depth (defined 
as the distance from the NuPOD entrance to the center of the capsid).  Prac�cally, the penetra�on depth 
was calculated by subtrac�ng the average radius of the HBV capsids (15 nm) from the distance measured 
from the NuPOD entrance to the botom of the HBVs. All NuPOD-bound capsids were measured as long 
as the capsid center passed the entrance of the NuPOD. The penetra�on depth data were ploted as 
normalized histograms and fited by mul�ple normal distribu�ons using MATLAB (MathWorks). 

Comigra�on-based binding assays 



HBV wt (3 µM HBc) and HBV ∆C (3 µM HBc) were incubated separately with ~ 1 µM of Nup62, Nup153, or 
impor�n β1 at RT for 15 min. The mixtures were each loaded onto a linear glycerol gradient (15% to 45%, 
in 1×TE, pH 8, 15 mM MgCl2) and spun for 90 min at 48,000 RPM using SW 55 Ti Rotor. The collected 
frac�ons (12–13 frac�ons in total, 50 µL each) were characterized by 4–12% SDS-PAGE to determine the 
co-migra�ng proteins (Supplementary Figure 9). HBV capsids, nups, and impor�n β1 were individually 
subjected to the same procedures as controls. 

Data analysis and sta�s�cs 

Scater plots are presented as mean± SD using the so�ware Prism8.0.0 (Graph-Pad). The two-tailed T-
test were used to compare the diameters of the HBV wt and HBV ∆C assuming normal distribu�on with 
equal variances.  
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Supplementary Figure 1: DNA origami designs shown as caDNAno diagrams. 
The 3’-ends of the green and red staple strands represent handle positions for Nup62 and Nup153, respectively.



Supplementary Figure 2: DNA origami assembly and purifica�on. 
(A) Assembly of the open-ended 60-nm channel at various Mg2+ concentra�ons characterized by agarose
gel electrophoresis. (B) Assembly of the open-ended 79-nm channel at various Mg2+ concentra�ons
characterized by agarose gel electrophoresis. (C) Assembly of the capped 60-nm channel at various Mg2+

concentra�ons characterized by agarose gel electrophoresis. (D) The 79-nm NuPOD components
characterized by agarose gel electrophoresis. (E) Assembly of the capped 79-nm channel characterized by
agarose gel electrophoresis. L: 1kb DNA ladder; P1: top channel; P2: botom channel; Lb: large basket; Sb:
small basket. Parentheses denote pre-assembled components. (F) Open-ended 60-nm channel purified by
rate-zonal centrifuga�on. (G) Open-ended 79-nm channel purified by rate-zonal centrifuga�on. (H)
Capped 60-nm channel purified by rate-zonal centrifuga�on. (I) Capped 79-nm channel purified by rate-
zonal centrifuga�on. For (F)–(I), frac�ons 5–27 are resolved by agarose gel electrophoresis (lighter
frac�ons on the le�), and the collected frac�ons containing the correctly assembled structures are
denoted by red brackets.



Supplementary Figure 3: Prepara�on of nups, nup-DNA conjugates, and NuPODs. 
(A) Schema�cs of the Nup62 and Nup153 constructs used in this work. (B) Purifica�on of Nup62 by MBP
affinity chromatography. Elusions in the grey box are collected for further purifica�on by size-exclusion
chromatography (SEC). (C) SEC purifica�on of Nup62. Boxed frac�ons are collected for DNA conjuga�on.
(D) SEC purifica�on of DNA-conjugated Nup62. Boxed frac�ons are collected for NuPOD assembly. (E)
Purifica�on of Nup153 by His affinity chromatography. Elusions in the grey box are collected for further
purifica�on by size-exclusion chromatography (SEC). (F) SEC purifica�on of Nup153. Boxed frac�ons are
collected for DNA conjuga�on. (G) SEC purifica�on of DNA-conjugated Nup153. Boxed frac�ons are
collected for NuPOD assembly. Selected frac�ons in (C), (D), (F), and (G) are characterized by SDS-PAGE.
(H) Agarose gel (0.05% SDS) electrophoresis (SDS-AGE) showing the band shi�s of open-ended 60-nm
Nup62 and Nsp1 NuPODs compared with empty DNA channel dimers. (I) SDS-AGE showing the band shi�s
of open-ended 79-nm NuPODs with different Nup62 copy numbers compared with empty DNA channel
dimers. (J) SDS-AGE gel showing the band shi�s of 79-nm Nup62 NuPODs with different handle lengths
compared with empty DNA channel monomers (P1) and dimers (P1+P2).



Supplementary Figure 4: Measuring the Nup62 copy number inside a NuPOD. 
(A) Rate-zonal centrifuga�on separates free Nup62 from NuPODs. Top: Frac�ons recovered a�er rate-zonal
centrifuga�on of unpurified Nup62 NuPODs, characterized by SDS-PAGE/western blot (detected using
Nup62 an�body); Botom: The first 8 frac�ons characterized by SDS-agarose gel electrophoresis (SAS-AGE)
and stained by ethidium bromide. Lighter frac�ons are shown on the le�. (B) Western blot for measuring
Nup62 concentra�on in the purified NuPOD, a mixture of frac�ons 6–8 shown in (A). Top, SDS-
PAGE/western blot (detected using Nup62 an�body) of purified Nup62 (the first 8 lanes) and Nup62
NuPOD (the right most lane). Botom: A plot showing western blot band intensity (y) against known Nup62
concentra�on (x), with linear regression (solid line) yielding y=1.547x-3.604 (R2=0.99). The red dot
represents the NuPOD band intensity and the corresponding Nup62 concentra�on (94.3 nM). Given the
NuPOD concentra�on (3.05 nM, es�mated by band intensity comparison with empty nanopore in SDS-
AGE), we es�mated ~31 copies of Nup62 in one NuPOD on average.



Supplementary Figure 5: Nega�ve-stain TEM image galleries of empty DNA nanopores and NuPODs.  
The RELION 2D average and a few representa�ve images of each sample are shown in Figure 2 and 
Supplementary Figure 6. 



Supplementary Figure 6: Morphology of Nsp1 inside NuPODs of different widths. 
(A) 60-nm NuPOD with 32 copies of Nsp1. (B) 79-nm NuPOD with 32 copies of Nsp1. (C) 79-nm NuPOD
with 80 copies of Nsp1. For each panel, le�: schema�cs showing an interior face (top, nup-gra�ing handle
posi�ons denoted by black dots) and the top view (botom, handle/an�-handle pairs shown as double
helices) of a DNA channel; middle: class average nega�ve-stain TEM image (top) and intensity profile
across the center of the DNA channel (red line); right: representa�ve TEM images of the DNA channel. All
images are 120×120 nm2.



Supplementary Figure 7: Protein dynamics inside Nup62 NuPODs with impor�n β1. 
(A) 60-nm Nup62 NuPOD with 10 nM impor�n β1 (impβ). (B) 60-nm Nup62 NuPOD with 1 µM impβ. Top
row: representa�ve AFM images, scale bars: 20 nm; middle row: representa�ve kymographs derived from
HS-AFM line scans (1.875 ms/line), with movement tracking of the protein cluster overlaid (black line) for
the 1 µM impβ condi�on. (C) A histogram summarizing the posi�ons of the protein cluster in the 60-nm
Nup62 NuPOD with 1 µM impβ. (D)–(F) are the same as (A)–(C), except for the 79-nm NuPODs.



Supplementary Figure 8: Characteriza�on of HBV capsids. 
(A) TEM images of capsids assembled from wild-type (wt) and C-terminus truncated (∆C) HBc. Scale bar:
100 nm. (B) Measured diameters of HBV capsid wt (30.98 ± 1.73 nm, n=50) and ∆C mutant (29.92 ± 1.11
nm, n=50). P=0.1763 based on a two-tailed t-test; n.s.: not significant. (C) Absorp�on curves of HBV
capsids normalized to OD280. Nucleic acids in capsids assembled from E. coli expressed wt HBc are
indicated by large OD260 (grey line). (D) HBV capsids (wt) mixed with 60-nm Nup62 NuPODs capped at
one end. A schema�c of the binding experiment is shown next to a representa�ve TEM image. Scale bar:
100 nm.



Supplementary Figure 9: Comigra�on assays showing HBV capsid binding with nups and impor�n β1. 
(A) SDS-PAGE characteriza�on of the frac�ons recovered from the comigra�on assay, in which nups or
impor�n (1 µM) were mixed with capsids (~3 µM of HBc), loaded to the top of 15%–45% glycerol gradients,
and spun at 48,000 rpm for 90 min. Lighter frac�ons are shown on the le�. Gels in the top row contain
pure nups and impor�ns. Gels in the le� column contain purified HBV capsids. The rest of gels contain
capsids mixed with nup or impor�n, the contents of which are iden�fied by the row/column headers.
Capsid binding is indicated by the existence of nup or impor�n in the 4–5 heaviest frac�ons where capsids
reside. (B) Band intensi�es measured from gels characterizing nup153 (blue), nup62 (orange) and impor�n
β1 (grey) binding to the wild-type (wt) HBV capsid, normalized to the total band intensity of the respec�ve 
proteins across the whole gradient. (C) Same as (B), except for the HBV capsid with C-terminus dele�on
(∆C).



Supplementary Figure 10: Depths of HBV capsid penetra�on into NuPODs. 
(A) Scater plot of the capsid penetra�on depths (from the center of capsids to the opening of NuPODs).
Blue and red bands denote the anchoring posi�ons of Nup62 and Nup153 in NuPODs, respec�vely. NuPOD
schema�cs are shown on the le� of the scater plot. When presented, impor�n β1 (impβ) concentra�on
is 100 nM. (B) The capsid penetra�on depths ploted as histograms with Gaussian fit. When fited using
mul�ple Gaussian curves, the percentage and a representa�ve TEM image of each popula�on are shown.
Scale bar: 50 nm. Number of NuPODs measured: 79-nm Nup62-Nup153 NuPODs (n=68); 79-nm Nup153
NuPODs (n=104); 60-nm Nup153 NuPODs (n=62); 60-nm Nup62-Nup153 NuPODs with impβ (n=43); 60-
nm nup153 NuPODs with impβ (n=37); 60-nm Nup62 NuPODs with impβ (n=14).



Supplementary Figure 11: HBV capsids with C-terminus dele�on (∆C) interac�ng with NuPODs. 
(A) HBV∆C capsids mixed with capped 60-nm Nup62 NuPODs. (B) HBV∆C capsids mixed with capped 60-nm
Nup153 NuPODs. (C) HBV∆C capsids mixed with capped 60-nm Nup62-Nup153 NuPODs. (D)–(F) are the
same as (A)–(C), but in the presence of 100 nM impor�n β1. For (A)–(F), schema�c diagrams of the binding
experiments are shown next to representa�ve TEM images. Scale bar: 100 nm. (G) Percentages of NuPODs
occupied by the HBV∆C capsids in experiments (A)–(F). NuPODs counted in each experiment are (from le�
to right): 131, 299, 252, 454, 250 and 201.

Supplementary Movie 1: AFM recording of 60-nm Nup62 NuPOD in the presence of 100 nM impor�n 
β1. Scale bar: 10 nm. 

Supplementary Movie 2: AFM recording of 79-nm Nup62 NuPOD in the presence of 100 nM impor�n 
β1. Scale bar: 10 nm. 


