Cell Reports, Volume 43

Supplemental information

The microbiota and T cells non-genetically

modulate inherited phenotypes transgenerationally

Jordan C. Harris, Natalie A. Trigg, Bruktawit Goshu, Yuichi Yokoyama, Lenka Dohnalová, Ellen K. White, Adele Harman, Sofía M. Murga-Garrido, Jamie Ting-Chun Pan, Preeti Bhanap, Christoph A. Thaiss, Elizabeth A. Grice, Colin C. Conine, and Taku Kambayashi

1 <u>Supplemental Items</u>

2

3 Figure S1. Skin and SG transcriptional profiles are dysregulated in GF mice, Related to Figure 1. (A) mRNA expression of lipid-associated and antimicrobial peptide genes in GF mice 4 5 compared to CR mouse epidermis (n = 8 mice/group). p values are indicated on the y-axis, based 6 on Fisher's exact test and FDR-adjusted. (B) Schematic detailing the thin layer chromatography 7 method for extracting and measuring sebum secretion. (C) Visual representation of SG tissue isolated using LCM. (D) Principal component analysis showing principal component 1 (PC1) and 8 9 PC2 for RNA-seq from the SG of CR or GF mouse skin (n = 3 mice/group). (E) GSEA plot displaying downregulated phospholipid pathway in the GF SG using BH-adjusted P value < 0.05. 10 11 Genes shown in ranked order by running enrichment scores. (F) Skin mRNA expression of Tslp (n = 3 mice/group, qPCR normalized to Gapdh expression). No label, not significant, **p < 0.01, 12

13 ***p < 0.001, ****p < 0.0001, by Fisher's exact test, FDR-adjusted. Data are shown as mean \pm

14 SD.

Figure S2. A similar bacterial burden in GF breeding combinations led to differential *Tslp* 16 expression and T cell number in GF×GF F₁ skin, Related to Figure 2. (A) Schematic 17 representing adult GF conventionalization techniques, whereby 8 week-old adult mice are 18 introduced to a cage containing CR bedding and cage material for 8 weeks. (B) Colony forming 19 unit (CFU) quantification from back swabs of CR, GF and conventionalized adult mice post 8 20 21 weeks of colonization. (C) Schematic representing neonatal GF conventionalization techniques, whereby a pregnant GF mouse is introduced to a cage containing CR bedding and cage material, 22 giving birth to GF-derived neonatally conventionalized mice. All experiments performed 2-3 23 24 times. ns, not significant, ****p < 0.0001 by Student *t* test. Data are shown as mean \pm SD.

Figure S3. GF sebum defect persists to F₃ generation when using an inter-litter breeding
scheme independent of microbial composition and SG defects, Related to Figure 3. (A) CFU
quantification from back swabs of F₁ CR×CR, GF×GF, and GF×CR mice. (B) Alpha diversity
(Shannon Diversity Index) measurement of skin and gut microbial compositions comparing F₂

29	CR×CR, GF×GF, and GF×CR mice ($n = 4$ to 7 mice/group) (C) TLC quantification of hair wax
30	esters comparing WT to $Scd1^{+/-}$ mice ($n = 3$ to 4 mice/group) (D) Breeding scheme for
31	alternative transgenerational experiments using littermates for multigenerational breeding. (E to
32	G) TLC quantification of hair wax esters from combinatorial CR and GF natural breeding in the
33	(E) F_1 ($n = 3$ to 4 mice/group), (F) F_2 ($n = 4$ to 5 mice/group), and (G) F_3 ($n = 4$ to 5 mice/group)
34	generations. ns, not significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$ by Student
35	<i>t</i> test. Data are shown as mean \pm SD.

36

Figure S4. Effect of the absence of the microbiome or T cells on gene expression in multiple 37 tissues in the F₁ or F₂ generations, Related to Figures 4, 5, and 6. (A and B) Gene expression 38 by RNA-seq of F_1 and F_2 CR×CR, GF×GF, and GF×CR back skin (n = 3 to 6 mice/group). Volcano 39 plots representing pairwise group comparisons of DEGs (using Benjamini-Hochberg adjusted p-40 value) across (A) F₁ and (B) F₂ generations, highlighting two common genes. (C) Heatmap 41 42 comparing recovery of sebum secretion or gene expression of *Hist1h4m* and *Erdr1* in F_2 GF×CR 43 and GF×GF mice (**D**) Gene expression by RNA-seq of F_1 CR×CR and GF×CR small intestine (*n* = 3 or 4 mice/group) portraying DEGs (using Benjamini-Hochberg adjusted p-value). (E) Gene 44 expression by RNA-seq of F_1 and CR×CR and GF×CR liver tissue (n = 3 or 4 mice/group) 45

- 46 portraying DEGs (using Benjamini-Hochberg adjusted p-value). (F) Gene expression by RNA-seq
- 47 of CR×CR and GF×CR morulae (n = at least 17 morulae/group, collected over three biological
- 48 replicates of IVF). (G) Gene expression by RNA-seq of WT×WT and RAG×WT morulae (n = at
- 49 least 28 morulae/group, collected over three biological replicates of IVF). Sequencing experiments
- 50 performed once.

51

Figure S5. $Rag2^{-/-}$ female mice crossed with WT male mice also lead to defective $Rag2^{+/-}$ F₁ mice and partially rescued F₂ mice independent of genotype, Related to Figure 6. (A) TLC quantification of hair wax esters from female and male WT and F₁ $Rag2^{+/-}$ mice (n = 3 (WT) or 8-10 ($Rag2^{+/-}$) mice/group). Experiment performed twice. (B) TLC quantification of hair wax esters from female and male WT, F₁ $Rag2^{+/-}$, and F₂ WT, $Rag2^{+/-}$, and $Rag2^{-/-}$ mice (n = 2 to 8 mice/group). Point colors represent physiologic (green) or defective (red) levels of sebum secretion. ***p < 0.001 by Student *t* test. Data are shown as mean ± SD.