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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This paper presents a novel implementafion of photoacousfic tomography (PAT) that relies on temporal 

encoding instead of spectral encoding to achieve molecular imaging using exogenous chromophores 

(fluorophores). The basic instrumentafion of using a half-circle sensor array for 3D imaging is not all that 

novel, and rotafing and translafing the array with spafial compounding to improve image quality and 

resolufion is an incremental improvement. However, the idea of temporal encoding aided by deliberate 

photobleaching of fluorophores is elegantly simple and can aid in molecular and funcfion photoacousfic 

(PA) imaging of a variety of readily available fluorophores provided that produce a strong enough PA 

signal and that the photobleaching is fast enough. The authors have prepared a high-quality manuscript 

with extensive data using mulfiple animal models to demonstrate the strengths of their new approach 

including imaging with genefically encoded probes. As such, I think that this submission is appropriate 

for this journal. However, several clarifying quesfions need to be addressed prior to publicafion. 

Therefore, I recommend relafively major revisions prior to considerafion for publicafion.

• The main premise here is that photobleaching of fluorophores produces a fime-dependent 

(exponenfial) decay in the PA signal whereas endogenous chromophores like blood (background) signal 

remains unchanged over fime. However, this is a funcfion of how much incident opfical energy is 

reaching different locafions within the biological sample. There appears to some simple correcfion for 

local light fluence using a Monte Carlo (MC) simulafion. These details are lacking. Furthermore, it is not 

clear if this MC simulafion adequately corrects for opfical heterogeneity in real biological samples.

• There is also no analysis of opfimal bleaching rates (and its relafion to this imaging approach and 

acquisifion rates) as well as how the bleaching varies as a funcfion of distance from surface in real 

biological materials or what is the minimum PA SNR needed at the onset for the PATTERN approach.

• Exponenfial fifting for PATTERN – was this the same for all biological models (different length scales) or 

was this done separately for each animal model?

• PATTERN is not going to provide cell-level resolufion, and that may be ok as this approach is 

complimentary to other destrucfive techniques. Authors speculate that increasing the center frequency 

and bandwidth of the transducers may improve resolufion. This while true, may not always be good 

approach for PAT, as low frequencies are equally important for accurate representafion of features and 

shapes. Really, bandwidth is the most important factor and then perhaps PA SNR.

• Please provide a table that compares the acquisifion speed, resolufion, max depth, and FOV for 

PATTERN, fMOST, and LSFM (also destrucfive vs non-desctrucfive, fixed vs fresh) for each biological 

model for comparison. This might be a nice addifion for readers to see the pros and cons at glance.

• Please clearly arficulate why the this approach for acquiring PAT data is befter than other 

implementafions that use for instance an array of sensors arranged in a hemispherical bowl.



• Mulfi-angle filter appears to be implemented in K-space as part of the image reconstrucfion workflow, 

but this is not clearly explained. This seems to be an important component. Please provide a detailed 

explanafion on how this is implemented.

• How does the current approach compare to filtered backprojecfion reconstrucfion in process and 

results?

• Why use delay-and-sum for the inifial reconstrucfion? This is known to produce low-quality images. 

Befter performing methods might allow 3D volumes with fewer angles and faster acquisifion fimes?

• Fig. 2E, please change the x-axis to units of fime.

• P11: “Compared to using intensity alone…a gain of 12 was achieved in sensifivity (Fig. 2f)” this is not 

clear, nor do I see how the figure shows a factor of 12 improvement in sensifivity. Please clarify.

• P33:” …aCSF was used to minimize biological acfivity loss” – what acfivity is being referred to here, 

does this mean that the whole excised brain remains viable in aCSF?

• For DnCNN, please provide perfinent details on number of training and tesfing data, number of 

hyperparameters, what strategies were used for data augmentafion, etc.

Reviewer #2 (Remarks to the Author):

I am highly impressed by the innovafive work of Dr. Ma’s team in developing the PATTERN photoacousfic 

imaging technology. Their manuscript presents a significant advancement in the field, demonstrafing the 

capability of PATTERN for high-resolufion, non-destrucfive, and high-speed imaging of fluorescent 

proteins in fresh ex vivo brains. The paper is well-wriften and effecfively communicates the technical 

details and results. I offer several major and minor comments that I believe will further enhance the 

quality and impact of this excellent study.

Major Comments:

1. Sensifivity Limit of PATTERN:

The authors successfully highlight the substanfial enhancement in detecfion sensifivity achieved through 

the photobleaching approach in PATTERN. To gain a deeper understanding of PATTERN's performance, I 

suggest exploring the sensifivity enhancement across different fluorescent proteins. Addifionally, 

invesfigafing its performance in the presence of strong background signals, such as blood, would provide 

insights into its potenfial for in vivo applicafions. A comparison of PATTERN's sensifivity with that of 

photoswitching-based techniques, which offer reversible sensifivity enhancement, would strengthen the 

manuscript. Furthermore, an invesfigafion into the extent of photobleaching required to achieve the 

desired sensifivity, through phantom studies with purified fluorescent proteins in scaftering media, 

would add valuable informafion.



2. Signal Non-linearity of PATTERN:

The authors' creafive use of photobleaching to enhance detecfion sensifivity in PATTERN raises quesfions 

about the non-linear relafionship between its signals and local opfical fluence. Photobleaching was 

explored before for PAM as a non-linear approach to enhance the spafial resolufion (Physical review 

lefters 112, no. 1 (2014): 014302.). It is innovafive to turn photobleaching, an otherwise unwanted side 

effect, into a useful tool for improving detecfion sensifivity. Because the photoacousfic rate (or the signal 

deducfion speed) usually has a power dependence on the opfical fluence (may be larger than 1 for some 

strong opfical absorbers), the PATTERN signals should have a non-linear dependence on the local opfical 

fluence. To address this, I recommend a quanfitafive invesfigafion into the non-linear behavior of 

PATTERN signals such as the signal decay with increasing depth, parficularly in deep brain targets with 

reduced opfical fluence. Comparing the non-linear behavior of PATTERN signals to tradifional PA and 

fluorescence signals would shed light on its implicafions for cross-model validafion and analysis.

Minor Comments:

1. Clarificafion Needed:

- Page 4, line 10: The term "a large missing cone" should be explained more comprehensively for readers 

who are not experts in imaging, specifically in relafion to spafial frequencies (k space).

- Page 27: Further clarificafion is required regarding how the translafion and rotafion effecfively address 

the limited view problem in PATTERN, especially concerning the detecfion of verfical structures along the 

acousfic axis.

2. Figure and Terminology:

- Page 8, Figure 1a: Consider whether PATTERN should follow the "brain retrieval".

- Background Signals: Please provide addifional details about the PA contrast of background signals, 

including their composifion (somas) and potenfial sources (lipids, cell plasma, water).

3. Reconstrucfion and Processing:

- Posifive PA Signals: Elaborate on the specific technique used for image reconstrucfion (e.g., DAS) and 

whether the Hilbert transform is applied to eliminate negafive signals, along with its potenfial impact on 

spafial resolufion.

4. Jumping Sequence and Quanfitafive Analysis:

- The innovafive jumping sequence for reducing k-space non-uniformity warrants further discussion, 

parficularly regarding its potenfial implicafions on the quanfitafive analysis of PATTERN signals.

5. Deep Learning and Elevafional Resolufion:

- The use of DnCNN for enhancing PATTERN signals raises an interesfing possibility of leveraging mulfi-

angled scanning results as the ‘ground truth’ to improve the elevafional resolufion of single-angled 

scanning results. Exploring this idea further could potenfially lead to enhanced elevafional resolufion 

without extensive scanning or improved results with reduced scanning angles.



In conclusion, I want to commend the authors on their outstanding work in developing PATTERN, a novel 

photoacousfic imaging technology with promising implicafions. I believe addressing the major and minor 

comments menfioned above will not only refine the manuscript but also contribute to its scienfific rigor 

and potenfial impact. I highly recommend considering these revisions to further elevate the clarity and 

comprehensiveness of this remarkable study, posifioning it as an excellent fit for publicafion in Nature 

Communicafions.

Reviewer #3 (Remarks to the Author):

In the work with the fitle ‘Photoacousfic Tomography with Temporal Encoding Reconstrucfion (PATTERN) 

for Cross-Modal Individual Analysis of the Whole Brain’, Yang et al. introduce an imaging plafform 

(PATTERN) for the non-invasive, fast, three-dimensional ex-vivo imaging of small animal brains. The 

manuscript is generally well-wriften with high quality figures but I think some more clarificafions and 

addifional work (major revision) would be needed:

Introducfion

- The authors present their method as an improvement compared to opfical imaging methods without 

explaining why opfical imaging would be accepted as the gold-standard small animal imaging method. In 

other words, a brief overview (with main pros and cons of each one) regarding other imaging 

technologies (e.g., magnefic resonance imaging, MRI) available for whole-brain small animal imaging is 

needed.

- Line 24: I suppose that the word ‘metabonomic’ should be changed into ‘metabolomic’.

- Indeed, the method provides high quality morphological brain imaging. However, based on the fact that 

several studies focusing not only on morphological but also funcfional brain imaging with photoacousfics 

have been already published (DOI: 10.1038/s41551-019-0372-9, DOI: hftps://doi.org/10.1038/s41377-

022-01026-w, DOI: 10.1016/j.celrep.2019.02.020), I would like to ask the authors whether the system 

could be also used for funcfional brain imaging. If yes, could you please provide us with some data? If 

not, could you please explain more clearly what is the exact novelty of the work? Lower cost? Faster 

scanning fimes? Isotropic resolufion? Higher resolufion? A thorough comparison with other 

photoacousfic brain studies would be required.



Results

- Near isotropic photoacousfic imaging of PATTERN: The authors provide resolufions of approximately 

100-150um. Based on the fact that several even clinical photoacousfic systems, which would definitely 

have (or even need) lower resolufions to image human fissues, almost achieve these resolufions (also in 

real-fime), I would like to ask whether the authors believe that the spafial resolufions achieved are 

enough to image the fine small animal brain structures. What do the other preclinical photoacousfic 

plafforms achieve? For example, what is the smallest biologically- (or disease-) relevant small animal 

brain structure that could be resolved with the developed system?

- Temporal encoding and unmixing of fluorescent tags by PATTERN: The authors characterize the spectral 

unmixing ‘extremely complex’. I find it absolutely useful to provide more objecfified data on the 

superiority of the temporal unmixing approach followed. Which are exactly the weaknesses of the 

spectral unmixing approaches?

- Temporal encoding and unmixing of fluorescent tags by PATTERN: I would be grateful to have some 

more informafion on how the ‘artefacts’ were idenfified? Could you provide extra clarificafions on the 

usual artefacts observed with the technology presented?

- PATTERN-based whole-brain opfical imaging: I believe that the best way to characterize the technology 

developed is photoacousfic and not opfical (2nd line). This is why the main comparisons should be done 

against other photoacousfic (and not opfical) imaging plafforms.

- PATTERN for visualizing neural connecfivity of the brain: Since explorafion of neural connecfivity is 

indeed important, the reader should be provided with more informafion about its importance.

Discussion

- Comparison and combinafion of PATTERN with other whole-brain opfical imaging technologies: As 

already menfioned, based on the fact that several other photoacousfic brain imaging studies have been 

already published, I believe that a comparison to them (and not opfical imaging techniques) would be 

needed. Taking into account the findings of the study and the claims of the authors, the comparison 

(apart from general features) would also focus on informafion about: ‘injecfion sites of vectors, 

fluorescence expression intensity or signal loss during sample preparafion’.



Methods

- PATTERN: Why did you select a transducer with central frequency of 5.5 MHz? And not a higher-

frequency one?

- PATTERN: Which are the opfical/absorpfion properfies of the body fluid used in the perfusion module? 

Would its presence affect the signals measured in the brain? And how?

- Data reconstrucfion and postprocessing: Could you provide some more informafion on the light fluence 

simulafion and its compensafion scheme, please?

- DnCNN Method: How did you train the neural network regarding the artefacts? Did you manually 

delineate them? How did you ensure that no informafion was taken as an artefact?
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Response to the Editor 

 

Dear Editor, 

  

We sincerely appreciate the efforts of the editorial team and the constructive 

comments from the reviewers. We believe that all raised concerns have been 

addressed through the performance of additional experiments, the 

incorporation of new data and figures, and the implementation of improvements 

based on the comments provided in the reviews. Our point-by-point responses 

to the reviewer's comments are provided below. The original reviewers' 

comments are indicated in blue, our responses are provided in black, and the 

revisions are highlighted in red.  
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Point-by-point response to the reviewers’ comments 

1Reviewer #1 : 

(RC: Reviewer’s Comment, AR: Author's Response) 

RC1.0:  

This paper presents a novel implementation of photoacoustic tomography (PAT) that relies 

on temporal encoding instead of spectral encoding to achieve molecular imaging using 

exogenous chromophores (fluorophores). The basic instrumentation of using a half-circle 

sensor array for 3D imaging is not all that novel, and rotating and translating the array with 

spatial compounding to improve image quality and resolution is an incremental 

improvement. However, the idea of temporal encoding aided by deliberate photobleaching 

of fluorophores is elegantly simple and can aid in molecular and function photoacoustic 

(PA) imaging of a variety of readily available fluorophores provided that produce a strong 

enough PA signal and that the photobleaching is fast enough. The authors have prepared 

a high-quality manuscript with extensive data using multiple animal models to demonstrate 

the strengths of their new approach including imaging with genetically encoded probes. As 

such, I think that this submission is appropriate for this journal. However, several clarifying 

questions need to be addressed prior to publication. Therefore, I recommend relatively 

major revisions prior to consideration for publication. 

AR1.0:  

Thank you for your invaluable feedback. We deeply appreciate your thoughtful comments, 

and we have taken each of them into account. Consequently, we have made corrections 

and supplemented new experimental data to enhance the overall quality of our manuscript. 

Your insights have been instrumental in refining our work, and we are grateful for the 

opportunity to improve based on your guidance. 

RC1.1:  

• The main premise here is that photobleaching of fluorophores produces a time-dependent 

(exponential) decay in the PA signal whereas endogenous chromophores like blood 

(background) signal remains unchanged over time. However, this is a function of how much 

incident optical energy is reaching different locations within the biological sample. There 

appears to some simple correction for local light fluence using a Monte Carlo (MC) 

simulation. These details are lacking. Furthermore, it is not clear if this MC simulation 

adequately corrects for optical heterogeneity in real biological samples. 
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AR1.1:  

During the process of photobleaching, the PA signal decay rate is dependent on the 

excitation light intensity. The PA amplitude A as a function of the scanning time t has the 

following relationship (for the derivation of the following equation, please refer to our 

response to Reviewer 2 on page 35): 

𝐴(𝑡) ∝
𝛤𝜂th𝐶0𝐼

𝑘𝐼𝛽
(1 − exp(−𝑘𝐼𝛽𝑇)) exp(−𝑘𝐼𝛽𝑡), (R1.1) 

where 𝛤 is the Grueneisen coefficient, and 𝜂th is the percentage of the absorbed photon 

energy that is converted into heat. 𝐶0  is the concentration of the molecules, 𝐼  is the 

incident light intensity, and 𝑇  is the scanning time of a single cycle. The factor 𝑘𝐼𝛽 

represents the bleaching rate in which 𝑘 is a constant factor and 𝛽 ≥ 0 accounts for a 

generally nonlinear dependence on the incident light intensity. The underlying assumption 

is that the light intensity 𝐼 remains constant or changes insignificantly during the bleaching 

process, indicating the absorption of fluorescent proteins is relatively weak compared to 

the absorption and scattering of the background, which was discussed in the original 

manuscript (page 27 lines 17–23, “Currently, temporal encoding schemes typically require 

a relatively weak bleached signal so that the light fluence distribution inside the sample is 

not significantly affected…”).  

In our algorithm, we fit the PA amplitude decay curve using  

𝐴(𝑡) = 𝑎 ⋅ exp(−𝑏𝑡) + 𝑐, (R1. 2) 

where the parameter 𝑏 represents the bleaching rate, 𝑎 is the PA signal strength of the 

fluorescent tag which contributes to the useful signals, referred to as “PATTERN signals” 

in the current work, and 𝑐  is the PA signal strength of any unbleached background 

chromophores, referred to as “PA signals” in the current work (page 12 line 23–page 14 

line 1, “To prevent any ambiguity, we utilize the term "PA signal/image" in the current work 

to refer to signals and image features that correspond to the intrinsic tissue background… 

Conversely, we employ the term "PATTERN signal/image" to refer specifically to signals 

and image features that are derived from temporal encoding…”). By comparing Eq. R1.1 

and Eq. R1.2, the strength of fluorescent tag 𝑎 can be rewritten as: 

𝑎 =
𝛤𝜂th𝐶0𝐼

𝑘𝐼𝛽
(1 − exp(−𝑘𝐼𝛽𝑇)). 

In biological samples, 𝐼 is spatially-varying and typically known, thus it is difficult to derive 

𝐶0 (which represents the real object) directly from the measured PA signal 𝑎. 

The PATTERN technology provides a viable means to reconstruct the distribution of 𝐶0. 

The location-dependent light intensity can be evaluated by the bleaching rate 𝑏 = 𝑘𝐼𝛽 

(Figure R 1). Moreover, the nonlinear factor 𝛽  is a fluorophore-dependent parameter 

which can be experimentally measured. For example, we have tested that 𝛽 = 2.64 for 
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iRFP713 (Figure R2). Once these parameters are known, the influence of inhomogeneous 

𝐼 distribution can be compensated for. The detailed methodology was illustrated in the 

Methods Section (pages 38–42) and Supplementary Fig. 5d. 

As for the Monte Carlo (MC) simulation, it was not utilized for quantitative calculations but 

rather for a post-processing procedure aimed at suppressing the excessively bright 

pixels/voxels on the sample surface. Applying a linear colormap subsequent to the Monte 

Carlo-based fluence compensation provides a reconstruction result that is more realistic 

and imbued with physical significance. The simulation procedure has been reported in the 

Methods Section (page 40 lines 14–22). Additionally, the code for the simulation has been 

listed at page 67.  

 

Figure R 1 | Bleaching rates of a sample. a, Bleaching rate distribution of a cross-

section of a brain. b, histogram of the bleaching rate 𝑏.  

 

 

Figure R 2 | Photobleaching rate of iRFP713 shows a power-law dependence on 

intensity with an exponent of 2.64 (β = 2.64). 

Revisions: 

(1) The approach to compensate for the excitation intensity was added in the Methods 

Section (page 40 line 26–page 42 line 21). 

Due to the extensive nature of the revisions, please refer to the manuscript for details. 
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(2) The MC simulation procedure was further clarified in the Methods Section (page 40 

lines 14–22): 

“Subsequently, a 3D Monte Carlo simulation, conducted using MCXLAB64 (Supplementary 

Methods), was employed to simulate the light fluence distribution, considering μa = 0.005 

and g = 0.9 for the brain, and μa = 0.002 and g = 0.98 for the sample holder (agarose). We 

utilized a uniform light source covering the inner surface of the sample holder to replicate 

the experimental conditions. The resulting light fluence distribution was then applied to 

compensate for the optical attenuation within both the PA image (background) and the 

PATTERN image (fluorescent signal).” 

(3) The methods of image visualization, including the Monte Carlo simulation procedure, 

are segregated into a distinct paragraph for enhanced clarity (page 40 lines 12–22). 

Due to the extensive nature of the revisions, please refer to the manuscript for details. 

(4) The codes for MC simulation were added to supplementary methods. 

RC1.2:  

• There is also no analysis of optimal bleaching rates (and its relation to this imaging 

approach and acquisition rates) as well as how the bleaching varies as a function of 

distance from surface in real biological materials or what is the minimum PA SNR needed 

at the onset for the PATTERN approach. 

AR1.2:  

Thanks for the reviewer’s comments related to the critical information about minimal 

detectable bleaching rate (signal reduction speed) and bleaching extent (signal reduction 

magnitude). In practice, there was no singular 'optimal' bleaching rate; instead, there 

existed a range of bleaching rates that yielded satisfactory performance. The lower bound 

of this range was defined by the minimal detectable bleaching rate, constrained by the 

system noise. 

During imaging, the excitation light generates PA waves while simultaneously inducing 

bleaching in the sample. Consequently, there exists a correlation between the bleaching 

rates and PA signal-to-noise ratio (SNR), underscoring that the bleaching rate cannot be 

regarded as an independent parameter. In practice, the bleaching process cannot be 

excessively slow, as achieving a large reduction of the signal is essential for high detection 

sensitivity (Figure R 4). However, the bleaching rate cannot be excessively high either, as 

this would result in non-uniform k-space filling after a scan cycle, leading to a poorly shaped 

point spread function (Figure R 3, copied from Supplementary Fig. 7). 

It is noteworthy that within a given sample, the bleaching rate varies due to the non-uniform 

distribution of light intensity (Figure R 1), posing a challenge in precisely controlling the 

bleaching rate to a single "optimal" value. Fortunately, based on the aforementioned 
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analysis, achieving an optimal bleaching rate is not imperative, as long as the rates within 

the sample fall within an acceptable range. The primary objective was to ensure that 

features with a minimal bleaching rate still exhibited a detectable bleaching extent. We 

have demonstrated that our method performs well across a wide range of bleaching rates 

encountered in all tested samples. 

 

Figure R 3 | Optimization of rotation order for image quality. a, Diagram of the 

sequential scan of a point source which is exponentially bleached during the scan cycle. b, 

Reconstruction results from the scan and related FFT graph. c, d, The same as (a) and (b) 

but with jump scan. e, Reconstruction results with different bleaching rates. f, Cosine 

similarity between the point source image and the reconstructed image using sequential 

and jump scan.  

 

To address the last two questions, we conducted a phantom experiment. The phantom 

provided a more controlled environment to study how the bleaching rate varied with depth. 

The optical properties of the phantom were designed to mimic those of brain tissue1. In our 

experiment, we used a suspension of intralipid-30% with a v/v ratio of 3.6% to imitate brain 

tissue. We placed a PTFE tube filled with purified iRFP713, which had an inner diameter 

of 0.3 mm, in the intralipid suspension. Due to surface tension, the surface of the 

suspension exhibited a slight curvature. To calculate the distance, we selected a relatively 
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flat portion of the surface. In the image, the tube was manually segmented and served as 

the reference standard in our evaluation (Figure R 4a). 

The measured bleaching curve exhibited slower rates with increasing distance from the 

surface (Figure R 4b), exhibiting an almost linear relationship between bleaching rate and 

depth (Figure R 4c). This phenomenon is likely due to the uneven distribution of the 

excitation laser beam. We also studied quantitatively how the bleaching rates varied as a 

function of incident intensity (𝑏 = 𝑘𝐼𝛽 ). We were able to fit the parameter 𝛽  using the 

experimental data (Figure R 2).  

 

Figure R 4 | Optimization of bleaching rates. a, Imaging of a PTFE tube fulfilled with 

purified iRFP713, the inset shows the experimental schematic. b, Bleaching curves 

corresponding to different depths are indicated by the arrows in (a). c, Bleaching rate 

plotted against depth. d, Receiver operating characteristic (ROC) curve of three depths 

indicated by the arrows in (a). e, Area under the curve (AUC) of voxels with different 

bleaching extent. 

Concerning the "minimum PA SNR needed at the onset for the PATTERN approach," what 

matters is the bleaching extent-to-noise ratio (BNR) rather than the absolute PA SNR. In 

this context, "bleaching extent" is defined as the magnitude of signal reduction: 
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𝐵𝑁𝑅 = 20 lg (
𝑚𝑎𝑥

𝑡
(𝑃𝐴 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) − 𝑚𝑖𝑛

𝑡
(𝑃𝐴 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒)  

𝑠𝑡𝑑(𝑛𝑜𝑖𝑠𝑒)
) . (R1.3) 

The standard deviation was estimated using a manually selected region that did not contain 

fluorescent proteins. 

To evaluate the precision of PATTERN, the receiver operating characteristic (ROC) curve 

at different depths was calculated. Remarkably, even at a penetration depth of 15.6 mm 

(indicated by the yellow curve) and with minimal bleaching (~10%), the ROC curve 

consistently outperformed random prediction (black dashed line), validating the efficacy of 

the PATTERN approach (Figure R 4d). The fitting analysis revealed that a minimum BNR 

of 25 dB is essential to surpass random prediction in terms of precision. For a detection 

rate of approaching 100%, a BNR higher than 47 dB is recommended. The area under the 

curve (AUC) approached 1 within this BNR range (Figure R 4e). It should also be noted 

that the intensity threshold-based segmentation method employed here can be further 

refined using our DnCNN algorithm, which integrates pre-trained morphological 

information from actual brain samples.  

Revisions: 

(1) The optimization for the bleaching extent was clarified in the Results Section (page 12 

lines 9–12): 

“Based on the rotation-translation scan strategy and the temporal unmixing method, we 

performed two optimization steps: (1) for a single sample, we applied multiple scan cycles 

(typically 8 cycles) to effectively bleach the fluorescent tags, ensuring a sufficient extent of 

bleaching (Fig. 1c)…” 

(2) The details of experimentally controlling the bleaching extent were added in the 

Methods Section (page 37 lines 9–18): 

“During imaging, the laser fluence at the sample surface was 3.2 mJ/cm² at 690 nm for 

iRFP713, 3.4 mJ/cm² at 697 nm for SNIFP, 2.0 mJ/cm² at 532 nm for mScarlet, and 3.4 

mJ/cm² at 800 nm for cross-modal registration. These fluence values were empirically 

determined to ensure both sufficient bleaching extent of fluorescent proteins (favor high 

fluence, Supplementary Fig. 10) and high image quality of the bleached features (favor low 

fluence, Supplementary Fig. 7). To conveniently adjust the light spot size on the sample, a 

customized expander comprising three lenses (GCL-010112A, GCL-010166A, and GCL-

010329, Daheng Optics) was used to expand the beam. ” 

(3) Supplementary Fig. 7 has been revised to include the quantification results of the 

impact on image quality induced by jump scan. 
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(4) Figure R4 was added to the manuscript as Supplementary Fig. 10 and was referred 

in the Results Section (page 13 lines 8–15): 

“We compared the histograms of the PATTERN signals before and after confocal-imaging-

guided corrections, which shows that PATTERN is accurate (Fig. 2f). Additional 

experiments indicated that for best performance, a “bleaching extent to noise ratio” (BNR) 

(see Methods) exceeding 47 dB was required, whereas the minimum BNR for the 

PATTERN approach was approximately 25 dB (Supplementary Fig. 10). The weak 

PATTERN signal slightly above the noise floor exhibits some false positives because of 

artefacts in the raw PA images42.” 

(5) Details of the above experiment were added to the Methods Section (pages 43-44). 

Due to the extensive nature of the revisions, please refer to the manuscript for details. 

RC1.3:  

• Exponential fitting for PATTERN – was this the same for all biological models (different 

length scales) or was this done separately for each animal model? 

AR1.3:  

The bleaching rate exhibited variation not only among different samples but also within 

different regions of a single sample, as discussed in response to the previous query (AR1.1, 

Figure R 1). Accordingly, during the exponential fitting process, our methodology 

incorporates the automatic fitting of both amplitude and bleaching rates (Figure R 5; 

Supplementary Fig. 5d). This approach ensures adaptability to the diverse samples studied 

in the current work. 

 

Figure R 5 | Unmixing process for PATTERN. (Copied from Supplementary Fig. 5d) 
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Revisions: 

(1) The calculation of bleaching rates is highlighted in the Methods section (page 39 lines 

11–27): 

“…In our algorithm, we fit the PA amplitude decay curve using 

𝐴(𝑡) = 𝑎 ⋅ exp(−𝑏𝑡) + 𝑐,  

where the parameter 𝑏 represents the bleaching rate, 𝑎 is the PA signal strength of the 

fluorescent tag which contributes to the useful signals, referred to as “PATTERN signals” 

in the current work, and 𝑐  is the PA signal strength of any unbleached background 

chromophores, referred to as “PA signals” in the current work. To optimize computational 

speed, the process of curve fitting is divided into the following steps: Initially, an exhaustive 

search for the bleaching rate 𝑏 was conducted in parallel using GPU. The searching interval, 

0 ≤ 𝑏 ≤ 0.09 per translational scan, was confirmed to fully cover the bleaching rates of 

different brain samples. A set of bleaching rates, typically comprising 12 rates to achieve a 

balance between accuracy and calculation speed, was employed to generate an equal 

number of corresponding bleaching curves. Subsequently, the correlation coefficient 

between the experimental data and each preset curve followed by its absolute value was 

calculated to estimate the confidence of the corresponding bleaching rate.” 

(2) Supplementary Fig. 5d has been revised for clarity.  

RC1.4:  

• PATTERN is not going to provide cell-level resolution, and that may be ok as this 

approach is complimentary to other destructive techniques. Authors speculate that 

increasing the center frequency and bandwidth of the transducers may improve resolution. 

This while true, may not always be good approach for PAT, as low frequencies are equally 

important for accurate representation of features and shapes. Really, bandwidth is the most 

important factor and then perhaps PA SNR. 

AR1.4:  

We appreciate the reviewer's insights and concur with the assessment. We cited a paper 

which featured an optically interrogated ultrasound transducer with a cutoff frequency of 

22 MHz, demonstrated wideband ultrasound detection across a frequency range from DC 

to 22 MHz2. This underscores the reviewer's emphasis on the significance of low 

frequencies in such measurements.  

Revisions: 

Bandwidths has been emphasized in the Discussion section (page 26 lines 20–28): 
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“Additionally, several measures can be implemented to enhance PATTERN’s performance 

and impact. Firstly, faster lasers or potentially, some deep-learning-based image fusion 

approaches58 can be employed to accelerate the imaging process, while the imaging 

resolution can be improved by using ultrasound transducers with larger bandwidths. 

Specifically, the utilization of transducers with a frequency response ranging from direct 

current (DC) to 22 MHz has demonstrated the ability to achieve a resolution of 

approximately 50 μm57, which is comparable to the resolution achieved in all-optical, large-

FOV brain imaging52..” 

RC1.5:  

• Please provide a table that compares the acquisition speed, resolution, max depth, and 

FOV for PATTERN, fMOST, and LSFM (also destructive vs non-desctructive, fixed vs fresh) 

for each biological model for comparison. This might be a nice addition for readers to see 

the pros and cons at glance. 

AR1.5:  

We appreciate the reviewer's suggestion to provide a comparison table to help readers 

assess the advantages and limitations of each technology and our system. As suggested, 

we have conducted a comparison of our system, PATTERN, with the mentioned 

technologies as a table (Table R1) to provide an overview of the acquisition speed, 

resolution, maximum depth, field of view (FOV), as well as other relevant parameters. The 

table is also included in the revised manuscript as Supplementary Table 1. 
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Table R1 Performance comparison of different methods of whole-brain optical 

imaging 
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Revisions: 

Table R1 has been added to the revised manuscript as supplementary table 1 and referred 

in the Discussion section (page 28 lines 3–12): 

“Due to the limitations of optical microscopy imaging depth, serial sectioning and tissue 

clearing methods are used to achieve complete whole-brain imaging with high spatial 

resolution (Supplementary Table 1)2,3,6,9. However, both strategies require a sample 

preparation process that involves morphological and biological changes, significantly 

influencing accurate geometric measurement, precise fluorescence signal analysis, and 

automatic registration of brain samples.” 

RC1.6:  

• Please clearly articulate why this approach for acquiring PAT data is better than other 

implementations that use for instance an array of sensors arranged in a hemispherical bowl. 

AR1.6:  

Indeed, we abstained from asserting the superiority of the current system over other PAT 

schemes. Specifically, we favored an array with point-like transducers (page 26 lines 7–8, 

“…a system with point-like ultrasound transducers is preferred for the best imaging quality 

(isotropic resolution) …”). However, we maintain that the imaging pipeline we describe is 

adaptable to various PAT platforms. The choice of the current system was made after 

comparing the available systems in our laboratory. It's worth noting that, although we have 

access to a commercial hemispherical array, budgetary constraints prevented us from 

customizing one ourselves.  

The experimentally compared systems included a full ring array system10, a hemisphere 

array system (the Endra NEXUS 128 system), and an optical-fiber-sensor-based PA 

mesoscope11. Below we summarize what we found in the tests.  

(a) The homemade full ring array system, as reported elsewhere10, exhibits limited 

resolution in the elevational direction, resulting in unsatisfactory imaging outcomes 

(Figure R 6a, b).  

(b) The NEXUS 128 system employs a hemispherical sensor array but demonstrates 

lower sensitivity compared to the PATTERN system. We illuminated the sample using 

a 700 nm laser and performed the angular scan in 120 steps with 30 averages per step, 

the entire scanning process took 3.9 minutes, in comparison to a scan time of 2.2 

minutes for PATTERN. However, the brain sample remained almost undetectable. A 

horse tail mane was inserted into the sample for localization purposes (Figure R 6c, d). 

It is important to acknowledge that the NEXUS 128 system was acquired in 2017 and 

has undergone extensive use. Consequently, its current performance may not 

accurately reflect that of a typical hemispherical array system. Unfortunately, at present, 
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we lack the necessary funding to customize a hemispherical system for a more 

comprehensive comparison with the half-ring array system employed in the study.  

(c) The optical-fiber-sensor-based PA mesoscope, equipped with a custom-made 

ultrasound sensor at the fiber tip and a detection bandwidth ranging from DC to 23 

MHz11, could potentially achieve a spatial resolution of approximately 50 µm. This 

sensor underwent raster scanning, effectively representing a planar array. However, 

the signal-to-noise ratio appeared insufficient for imaging the perfused brain (Figure R 

6e, f). 

 

(d) Figure R 6 | Brain imaging using other systems.a, b, Imaging results using a full 

ring array system. c, Photos of the brain sample imaged by the NEXUS-128 system. 

d, Imaging result of the NEXUS-128 system. Dashed white circle delineates the 

position of the brain sample. e, Brain sample inside the fiber sensor-based 

photoacoustic mesoscope. f, Imaging results of the fiber-optic mesoscope, the profile 

of the brain was delineated with white dashed lines. 

 

The imaging results clearly demonstrate that the alternatives were inadequate for the 

application in this study.  



15 

 

In principle, regardless of the array type, if the channel number is fixed, the required 

number of scanning steps will be approximately the same, whether employing a half-ring 

or hemispherical arrangement. The hemispherical array entails a slightly lower number of 

scanning steps due to the relatively more uniform filling of the k-space. In contrast, the half-

ring array densely samples the center of k-space, necessitating the application of a filter to 

homogenize the transfer function.  

However, the hemispherical arrangement may introduce additional complications, such as 

reduced sensor size, leading to larger electrical noise. Consequently, this increase in noise 

levels may necessitate more averaging to achieve satisfactory results. In contrast, the 

approach we reported benefits from a broader dynamic range. The elevationally focused 

design inherently enjoys higher signal amplitude, thereby enabling the detection of weaker 

signals that might fall below the quantization noise level of an unfocused design, such as 

a hemispherical arrangement. In such scenarios, our design exhibits superiority, as signals 

below the quantization noise threshold cannot be effectively recovered through mere 

averaging.  

We recognize the existence of higher-performance systems based on hemispherical 

arrangements, such as the configuration with 1024 channels at a 40 MHz sampling rate 

and a 12-bit dynamic range12, or 3072 channels at the same sampling frequency and 

dynamic range13. These systems potentially offer alternatives for the pipeline of PATTERN. 

We emphasize that the primary innovation of this paper lies in introducing the concept of 

bleaching-based temporal encoding and demonstrating its advantages in imaging 

genetically encoded fluorescent tags, rather than focusing on the design of a specific 

ultrasound array.  

Revisions: 

(1) The imaging results obtained using other PACT systems are added to the manuscript 

as Supplementary Fig. 19 and referred in the Discussion section (page 26 lines 8–16): 

“…However, the reported PA systems of this kind, to our knowledge, are not suitable for 

the tasks reported in the current work. Difficulties include low resolution or sensitivity to 

clearly distinguish brain regions, limited FOV for large brains, and excessive laser 

exposure for fluorescent proteins (Supplementary Fig. 19). Such challenges arise because 

manufacturing sensitive, broadband and small-footprint ultrasound transducers are difficult. 

In this study, we employed a relatively simple and cost-effective imaging configuration to 

achieve both good image quality and high sensitivity to molecular probes.” 

(2) The relationship between the PATTERN pipeline and the imaging platform was 

explained in the Discussion section (page 26 line 24–page 27 line 2): 

“Specifically, the utilization of transducers with a frequency response ranging from direct 

current (DC) to 22 MHz has demonstrated the ability to achieve a resolution of 
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approximately 50 μm57, which is comparable to the resolution achieved in all-optical, large-

FOV brain imaging52. Secondly, regardless of the detailed implementations, the PATTERN 

concept is adaptable to PAT platforms involving various scan strategies and could 

potentially enhance their sensitivity to fluorescent proteins.” 

RC1.7:  

• Multi-angle filter appears to be implemented in K-space as part of the image 

reconstruction workflow, but this is not clearly explained. This seems to be an important 

component. Please provide a detailed explanation on how this is implemented. 

AR1.7:  

In response to the reviewer's request, the details regarding the k-space filter are provided 

below. The filter was designed to normalize the uneven sampling density in k-space. 

Specifically, at each scanning angle, a thin disk oriented along that angle is accessed within 

k-space. After completing a full scanning cycle, the disk undergoes a full rotation. When 

these disks are superimposed, the central portion is weighted more heavily. As a result, we 

attenuated the amplitude of each frequency component by its overall weight, while 

preserving the original phase. To prevent the introduction of extraneous noise, amplitudes 

beyond the frequency support of the filter were set to zero. In essence, the filter 𝐻(𝜃) 

bears resemblance to a three-dimensional Ram-Lak Filter:  

𝐻(𝜃) = 𝑆(𝜃) ⋅
1

∑ 𝑆(𝜃)𝜃
, 

in which 𝑆(𝜃) represents a transfer function corresponding to a translationally scanned 

tomogram at angle 𝜃: 

𝑆(𝜃) = 𝑠𝑡𝑒𝑝(𝑘𝑥 cos(𝜃) − 𝑘𝑦 sin(𝜃) + 𝑊𝑒) − 𝑠𝑡𝑒𝑝(𝑘𝑥cos(𝜃) − 𝑘𝑦 sin(𝜃) − 𝑊𝑒). 

𝑊𝑒 is the cut-off spatial frequency in the elevational direction, and 𝑠𝑡𝑒𝑝( ) denotes the 

step function. 

The designed multi-angle filter was employed to reconstruct a single-angle image through 

the following steps: first, transforming the image to k-space using fast Fourier transform 

(FFT), then multiplying its spectrum by the filter, and finally transforming it back to the 

spatial domain using inverse FFT. 

Revisions: 

The detail of the filter was added in the Methods section (page 38 lines 10–28): 

“To improve the elevational resolution, a multiangle fusion procedure was applied 

consisting of the following steps: (1) Rotating and registering 3D images of 32 different 

angles into the same coordinates. (2) Transforming the images into the frequency domain, 
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followed by filtering and summing. (3) Inversely transforming the uniformly-filled spatial 

frequency signal back into the spatial domain, resulting in a near isotropic 3D volume 

(Supplementary Fig. 2). The filter in (2) was designed to normalize the uneven sampling 

density in k-space. Specifically, at each scanning angle, a thin disk oriented along that 

angle is accessed within k-space. After completing a full scanning cycle, the disk 

undergoes a full rotation. When these disks are superimposed, the central portion is 

weighted more heavily. As a result, we attenuated the amplitude of each frequency 

component by its overall weight, while preserving the original phase. To prevent the 

introduction of extraneous noise, amplitudes beyond the frequency support of the filter 

were set to zero:  

𝐻(𝜃) = 𝑆(𝜃) ⋅
1

∑ 𝑆(𝜃)𝜃
, 

where 𝑆(𝜃)  represents a transfer function corresponding to a translationally-scanned 

tomogram at angle 𝜃: 

𝑆(𝜃) = 𝑠𝑡𝑒𝑝(𝑘𝑥 cos(𝜃) − 𝑘𝑦 sin(𝜃) + 𝑊𝑒) − 𝑠𝑡𝑒𝑝(𝑘𝑥cos(𝜃) − 𝑘𝑦 sin(𝜃) − 𝑊𝑒). 

𝑊𝑒 is the cutoff spatial frequency in the elevational direction, and step(∙) denotes the step 

function.” 

RC1.8:  

• How does the current approach compare to filtered back-projection reconstruction in 

process and results? 

AR1.8:  

We tested the filtered back projection (FBP) reconstruction as the reviewer suggested and 

the outcome seemed to be worse (Figure R 7a). We found that the transducer's response 

in the elevational direction, which diverges from the physical model of the FBP method, 

requires consideration of the spatial impulse response (SIR). However, implementing SIR 

correction within the FBP framework poses technical challenges, with only a few methods 

documented14-16. We adopted a published method known as the "focal-line" technology15 

for the correction, serving as an example to illustrate the modified FBP reconstruction 

results (Figure R 7b). Our proposed approach is superior due to the incorporation of a 

modified back-projection filter, which goes beyond merely correcting the projection line (in 

this case, the projection surface) as the modified FBP method does. For illustrative 

purposes, a comparison with the results of our approach is presented (Figure R 7c). In this 

respect, our approach was an enhanced FBP designed for the translation-rotational 

scanning strategy.  
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Figure R 7 | Comparison with filtered back-projection reconstruction. 

Revisions: 

A comparison with the FBP approach was added to Supplementary Fig. 20 and referred in 

the Discussion section (page 26 lines 12–19): 

“Challenges arise due to the difficulty in manufacturing sensitive, broadband, and small-

footprint ultrasound transducers. In this study, we employed a relatively simple and cost-

effective imaging configuration to achieve both good image quality and high sensitivity to 

molecular probes. The filtered multi-angle reconstruction procedure, designed specifically 

for the translation-rotational scanning strategy (Supplementary Fig. 20), can be better 

understood by visualizing it in the spatial frequency domain, which allows for the 

optimization of scanning parameters38.” 

RC1.9:  

• Why use delay-and-sum for the initial reconstruction? This is known to produce low-

quality images. Better performing methods might allow 3D volumes with fewer angles and 

faster acquisition times? 

AR1.9:  

While delay-and-sum (DAS) may generate suboptimal images under specific conditions, 

its performance is notably influenced by the system configuration. In the case of most ring 

or half-ring array systems, DAS and FBP produce comparable reconstruction results due 

to two factors: 1) The linear dimension of the field of view is relatively small in comparison 

to the distance from the sensing element, minimizing the impact of the solid angle factor; 

2) The piezoelectric (PZT) transducers together with the interfacing electronics exhibit a 

Gaussian-shaped frequency response, effectively implementing a ramp filter on the PA 

waveforms in the low-frequency range; while the ramp filter equivalently applies the 

differentiation operation required for FBP. In addition, image reconstruction and acquisition 

times are equally crucial for high-throughput imaging. Conventional model-based (iterative) 
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and time-reversal-based (finite-element analysis) methods are excessively slow. While the 

FBP reconstruction combined with deconvolution is fast, it relies on precise measurement 

of the electrical impulse response and inadvertently increases the noise level17, thereby 

impacting the sensitivity of the PATTERN signal. Consequently, we chose to employ the 

DAS method. 

 

Figure R 8 | Maximum allowed rotation step, determining the minimum number of angles 

(copied from Supplementary Fig. 2d). 

 

For the last question, as we depict in Supplementary Fig. 2d (Figure R 8), the minimum 

number of scanning angles is independent of the initial reconstruction technique employed. 

However, this reviewer's comment has prompted an alternative solution for accelerating 

image acquisition: harnessing fully sampled imaging results as the 'ground truth' to train a 

deep neural network. This approach aims to generate images with exceptional quality even 

when the number of scanning angles is significantly reduced. Exploration of such advanced 

approaches will be a focus of future research. 

Revisions: 

(1) The reason for applying DAS has been added in the Methods section (page 38 lines 

4–8): 

“The recorded data underwent reconstruction using the delay and sum (DAS) algorithm, 

resulting in the production of 2D PA image stacks. DAS was used because of the fast 

reconstruction speed without sacrificing image SNR for high throughput imaging. 

Subsequently, these stacks were interpolated using an FFT method to generate 3D images 

with relatively poor elevational resolution…” 

(2) The idea of applying neural networks to accelerate image acquisition was added to the 

Discussion section (page 26 lines 20–24): 

“Additionally, several measures can be implemented to enhance PATTERN’s performance 

and impact. Firstly, faster lasers or potentially, some deep-learning-based image fusion 

approaches58 can be employed to accelerate the imaging process, while the imaging 

resolution can be improved by using ultrasound transducers with larger bandwidths.…” 
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RC1.10:  

• Fig. 2E, please change the x-axis to units of time. 

AR1.10:  

Thanks for the suggestion. We agree that the arbitrary unit could potentially confuse 

readers. Consequently, we have revised the unit to minutes. We'd like to note that the first 

temporal sampling point was regarded as the end of the first scan cycle (1024 pulse / 10 

Hz ≈ 1.7 min), providing readers with a more accurate understanding of the actual 

bleaching time.  

 

Figure R 9 | Temporal profile of the signal from an image voxel revealing the 

simultaneous presence of a diminishing PATTERN signal and a constant PA background 

signal (from Fig. 2e).  

Revisions: 

The unit of the x-axis was changed to minutes in the revised Figure 2. 

RC1.11:  

• P11: “Compared to using intensity alone…a gain of 12 was achieved in sensitivity (Fig. 

2f)” this is not clear, nor do I see how the figure shows a factor of 12 improvement in 

sensitivity. Please clarify. 

AR1.11:  

We apologize for the confusion and we have modified the manuscript and the notions of 

the figure for improved clarity. If the PA signals from the contrast agent are strong, applying 

a threshold to distinguish these signals from the background is a common practice, as 

documented in references18,19. In this context, the appropriate threshold should be set at 

the maximum value of the intrinsic background PA signal, as indicated by the dark red 

dashed line of Fig. 2f, failure to do so may result in false positives in the detection of the 

fluorescent tags, leading to erroneous identification of background tissue components as 

fluorescent proteins. In contrast, PATTERN not only relies on signal amplitude but also 
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computes the bleaching rates. This approach effectively suppresses background signals 

whose bleaching rates approach zero. Consequently, this procedure enhances the 

success rate of fluorescent-tag detection, as evidenced by the very low noise floor depicted 

by the green dashed line in Fig. 2f. This baseline was established as three times the 

standard deviation (STD) of the noise in the PATTERN signals. This noise is commonly 

assumed to adhere to a Gaussian distribution, and a threshold of three times its STD 

effectively eliminates 99.7% of the noise. We ensured that the small region chosen to 

compute the STD of the noise contained no signal by cross-referencing it with the confocal 

imaging results, considered as the ground truth. After normalization, this noise floor has an 

amplitude of unity. This stands in stark contrast to traditional methods, where the signal 

detection threshold is twelve, as illustrated by the red dashed line. Consequently, we assert 

a twelvefold increase in sensitivity through the application of the PATTERN method. 

 

Figure R 10 | Updates in Fig. 2f: Texts in this figure were modified: “maximum of 

background signal” was modified to “Background roof”, and the baseline defined as three 

times the noise standard deviation was labelled as “PATTERN noise floor”. 

Revisions: 

(1) Labels in Fig. 2f were modified and the legend was revised (page 10 lines 10–14): 

“f, Histograms of both PA signals (gray) and PATTERN signals (orange) in Fig. 1g; the 

corrected PATTERN signals guided by confocal are marked individually in green. Green 

dashed line, the noise floor estimated as three times the standard deviation of PATTERN 

signals’ noise. Red dashed line, the roof of PA signals (maximum of background).” 

(2) The description was modified for improved clarity (page 11 line 14–page 12 line 7): 

“Compared to using intensity alone without employing temporal encoding, PATTERN’s 

detection sensitivity of fluorescent proteins is significantly enhanced (Fig. 2f). To clarify how 
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we quantified this sensitivity improvement, we examine a thin slice (Fig. 1g). The 

conventional approach for distinguishing fluorescent labels from intrinsic background 

involves applying a threshold set at the maximum value of the intrinsic background signal. 

In Fig. 2f, this threshold is referred to as the "background roof" and is depicted as the red 

dashed line. Signals exceeding this threshold are identified as originating from fluorescent 

tags, while signals with amplitudes below the threshold are considered background. It is 

evident that this thresholding method is highly insensitive, resulting in the discarding of a 

substantial portion of the actual signal. In contrast, the novel temporal decoding method 

implemented by PATTERN ensures the effective removal of the unbleachable background. 

The background-rejection threshold can be set to three times the noise standard deviation 

(STD), denoted as the "PATTERN noise floor" and illustrated by the green dashed line in 

Fig. 2f. This approach significantly improves sensitivity by preserving a larger portion of the 

real signal. We ensured that the small region chosen to compute the STD of the noise 

contained no signal by cross-referencing it with the confocal imaging results. By comparing 

the two thresholds, a gain of 12 was achieved, indicating the enhancement in detection 

sensitivity (Fig. 2f). Such enhancement was validated across the three different types of 

fluorescent proteins (Supplementary Fig. 6).” 

RC1.12:  

• P33:” …aCSF was used to minimize biological activity loss” – what activity is being 

referred to here, does this mean that the whole excised brain remains viable in aCSF? 

AR1.12:  

We appreciate the reviewer's question and have revised the term 'biological activity loss' 

as 'biological changes at the molecular level within brain tissue'. In this part of the 

manuscript, our primary aim was to utilize aCSF treatment to mitigate potential damage to 

mRNA and protein, facilitating subsequent multi-omics analysis. In our initial submission, 

we conducted Western Blot and RNA quality assessments (Supplementary Fig. 13f, g) to 

demonstrate that PATTERN imaging did not induce significant changes in protein or RNA 

levels. In addition, based on previous studies of ex vivo whole-brain functional imaging and 

molecular analysis20,21, neuronal activity in acutely excised brains can also be preserved 

following a 20-minute imaging process. 

Revisions: 

The corresponding description in the Methods section was revised (page 37 line 24–page 

38 line 2): 

“In addition, a perfusion module was utilized to maintain a liquid environment consistent 

with body fluid. For the PA imaging procedure followed by other imaging modalities, the 

imaging chamber was perfused with PBS; for imaging followed by other biological 
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measurements, aCSF was used to minimize biological changes at the molecular level of 

the brain tissue27 (Supplementary Fig. 18f-h).” 

RC1.13:  

• For DnCNN, please provide pertinent details on number of training and testing data, 

number of hyperparameters, what strategies were used for data augmentation, etc. 

AR1.13:  

As suggested, we have included more detailed information of the DnCNN method in the 

revised manuscript (located on page 46, line 9). Take the hippocampus as an example, our 

training process involved a dataset comprising 156 pairs of images, each with and without 

artefacts, while testing was conducted on a separate set of 60 pairs. Noteworthy 

hyperparameters employed during training included a batch size of 1, 50 training epochs, 

and a learning rate set at 1e-3. At the 30th epoch, we implemented a learning rate reduction 

by a factor of 10. We utilized traditional approaches of data augmentation techniques 

including flipping, rotating, and intensity adjustments. All codes and the pre-trained network 

utilized in this study are available at https://github.com/CaA2318777/PATTERN. 

Revisions: 

Detailed information of the DnCNN method has been included in the revised Methods 

section, (page 46 lines 9–20). 

“The neural network implicitly learned the artefacts of each image to achieve the 

distribution of the artefacts across the entire dataset. The Mean Squared Error (MSE) loss 

function was employed as the training criterion over 50 epochs, during which the network 

effectively filtered out pure artefacts to generate the output. For each brain region, a 

dataset consisting of more than 100 pairs of images with and without artefacts were used 

for training and more than 50 pairs for testing. Some of the representative hyperparameters 

used during training are provided below: batch size = 1, training epochs = 50, and learning 

rate = 1e-3. When the epoch reached 30, the learning rate was reduced by a factor of 10. 

To make the network more generalized, traditional data augmentation strategies were also 

applied, including flipping, rotating, and intensity changes.” 
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2Reviewer #2 : 

(RC: Reviewer’s Comment, AR: Author's Response) 

RC2.0:  

I am highly impressed by the innovative work of Dr. Ma’s team in developing the PATTERN 

photoacoustic imaging technology. Their manuscript presents a significant advancement 

in the field, demonstrating the capability of PATTERN for high-resolution, non-destructive, 

and high-speed imaging of fluorescent proteins in fresh ex vivo brains. The paper is well-

written and effectively communicates the technical details and results. I offer several major 

and minor comments that I believe will further enhance the quality and impact of this 

excellent study. 

AR2.0:  

Thank you for your invaluable feedback. We deeply appreciate your thoughtful comments, 

and we carefully considered each of them. Accordingly, we have made corrections and 

supplemented new experimental data. Your insights have been instrumental in refining our 

work, and we are grateful for the opportunity to improve based on your guidance. 

RC2.1:  

Major Comments: 

1. Sensitivity Limit of PATTERN: 

The authors successfully highlight the substantial enhancement in detection sensitivity 

achieved through the photobleaching approach in PATTERN. To gain a deeper 

understanding of PATTERN's performance, I suggest exploring the sensitivity 

enhancement across different fluorescent proteins.  

AR2.1:  

Thank you for this valuable suggestion, we conducted a series of phantom experiments to 

evaluate various fluorescent proteins. We utilized a v/v 3.6% intralipid-30% suspension, to 

simulate brain tissue. Within this suspension, a PTFE tube with an inner diameter of 0.3 

mm, containing purified proteins, was placed. We tested three types of fluorescent proteins: 

iRFP713, mScarlet, and SNIFP, excited at wavelengths of 690 nm, 532 nm, and 697 nm, 

respectively (Figure R 11a, c, e). Each protein had a molar concentration of 30 µmol/L. For 

each depth assessed, we manually selected the pixels within the tube as the region of 

interest (ROI) for calculating the Signal-to-Noise Ratio (SNR) for both the initial PA images 

and the PATTERN images (derived from temporal encoding, refer to manuscript page 12 

lines 26–28).  
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Before delving into the calculation of the SNR, we first provide an explanation of how the 

signal was defined for the data acquired in PATTERN. The photobleaching process 

contributes to an exponentially decaying signal, which can be characterized as follows: 

𝐴(𝑡) = 𝑎 ⋅ exp(−𝑏𝑡) + 𝑐,  

where 𝐴(𝑡) is the PA amplitude and the parameter 𝑏 represents the bleaching rate, 𝑎 is 

the PA signal strength of the fluorescent tag, referred to as “PATTERN signals”. It’s worth 

noting that if the calculated bleaching rate 𝑏 was very small, the corresponding PATTERN 

signal 𝑎 was directly set to zero to avoid any unstable inverse operation. 

 

Figure R 11 | Sensitivity enhancement of different fluorescent proteins. a, Imaging 

results of iRFP713. b, SNR enhancement by PATTERN for iRFP713. c, Imaging results of 

mScarlet. d, SNR enhancement by PATTERN for mScarlet. e, Imaging results of SNIFP. f, 

SNR enhancement by PATTERN for SNIFP. 
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For both the traditional method and the PATTERN method, we characterized the sensitivity 

using SNR. Signals outside the ROI were confirmed to be generated from the system noise, 

and inside was the superposition of protein signals and system noise. We computed SNR 

according to the following equation: 

𝑆𝑁𝑅 =
𝑃𝑖𝑛 𝑅𝑂𝐼 − 𝑃𝑜𝑢𝑡 𝑅𝑂𝐼

𝑃𝑜𝑢𝑡 𝑅𝑂𝐼
, (R2.1) 

where 𝑃 is the power of the corresponding signal, calculated by: 

𝑃𝑟𝑒𝑔𝑖𝑜𝑛 =
∑ 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒2

𝑟𝑒𝑔𝑖𝑜𝑛

𝑝𝑖𝑥𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
. (R2.2) 

According to the experimental results, iRFP713 was the brightest, followed by SNIFP, with 

mScarlet being the least bright. Notably, the SNR varied across different ROIs, so a direct 

comparison was made between a pair of SNRs—one from the initial PA image and the 

other from the PATTERN image—pertaining to the same ROI, each represented as a 

scatter point (Figure R 11b, d, f). The results indicate that the PATTERN method can 

enhance SNR by at least 2-fold and up to 20-fold. The most significant enhancement was 

observed with mScarlet, potentially due to its lower initial PA image SNR. This suggests 

that the PATTERN method’s sensitivity enhancement is more pronounced for darker 

fluorescent proteins in PA imaging. 

 

Figure R 12 | Copied from Fig. 2f. Histograms of both PA signals (gray) and PATTERN 

signals (orange) in Fig. 1g; the PATTERN signals corrected using the confocal images are 

marked individually in green. The standard deviation (STD) of the noise was calculated 

using signals identified as true negatives. Three times the noise STD was then designated 

as the noise floor, denoted by the green dashed line. The maximum value of the 

background signal was labeled as the "background roof," identified by the red dashed line.  
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Regarding the real brain sample, the signals arising from fluorescent proteins and intrinsic 

tissue background were superimposed, making it challenging to assess their respective 

amplitudes without a definitive gold standard. Consequently, quantifying the SNR 

corresponding to the fluorescent proteins proved unfeasible. Instead, for the real brain 

samples, we characterized the noise-suppressing capability of the PATTERN approach by 

the threshold value we used for rejecting the intrinsic tissue background, as illustrated in 

Figure 2f (copied in Figure R 12 below). It's noteworthy that the estimation of SNR 

enhancement (Figure R 11) was influenced by the detection rate, a factor dependent on 

the extent of bleaching. A detailed analysis of this aspect is presented in another response 

(AR2.4) on page 33. 

Revisions: 

(1) Additional details regarding the calculation of the PATTERN signal have been 

incorporated into the Methods section (page 39 line 27–page 40 line 7): 

“Ultimately, the preset curve associated with the rate with the highest confidence was used 

to determine both the amplitude of the decreasing part (PATTERN signal) and the 

amplitude of the constant part (PA signal) through linear unmixing. To guarantee the 

stability of the calculation, when the bleaching rate was determined to be exceptionally 

small (e.g., b = 0.0001), the PATTERN signal was set to zero. This precaution was taken 

to prevent the inversion of a low-rank matrix. Physically, setting the PATTERN signal to 

zero signifies classifying the voxel as unbleachable.” 

(2) The data above was added in Supplementary Fig. 6 and referred in the Results section 

(page 12 lines 4–7): 

“By comparing the two thresholds, a gain of 12 was achieved, indicating the enhancement 

in detection sensitivity (Fig. 2f). Such enhancement was validated across the three different 

types of fluorescent proteins (Supplementary Fig. 6).” 

(3) Fig. 2f was revised for clarity. 

(4) The experiment detail was added to the Methods section (pages 43–44). 

Due to the extensive nature of the revisions, please refer to the manuscript for details. 

RC2.2:  

Additionally, investigating its performance in the presence of strong background signals, 

such as blood, would provide insights into its potential for in vivo applications.  

AR2.2:  

We have validated the efficacy of the PATTERN approach in suppressing strong 

background signals, as evidenced in Supplementary Fig. 13, where melanin was detected 
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in the brain sample. Despite being five times more intense than the fluorescent protein in 

photoacoustic amplitude (Figure R 13b), melanin did not impede the algorithm's 

performance. Another example is shown in Figure R 11, where the red arrows highlight the 

successful rejection of the intense signals from dusts by the PATTERN approach.  

 

Figure R 13 | Brain sample with strong background signals. a, Three-dimensional 

image showing the PATTERN signal in green color and background PA signals in gray 

scale. (Copied from Supplementary Fig. 13a) b, The maxima of the PATTERN signal 

(orange) and the PA background signal (blue), indicated by the arrows in (a).  

 

PATTERN can resolve the signals of fluorescent proteins even when co-located with strong 

background signals, as demonstrated in Fig. 2e of the manuscript (copied below).  

 

Figure R 14 | Temporal profile of the signal from an image voxel revealing the simultaneous 

presence of a diminishing PATTERN signal and a constant PA background signal (copied 

from Fig. 2e).  

 

The background-suppression capacity of PATTERN is further validated by a phantom 

experiment, in which a tube was filled with 30 µmol/L purified iRFP713 and bovine blood 

in a 1:1 ratio. Another tube filled with 15 µmol/L purified iRFP713 was placed in the same 

holder for comparison (Figure R 15a). The bleaching curves of the two tubes exhibited 

similar decay rates and noise levels, suggesting that the noise observed was additive 
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rather than multiplicative (Figure R 15c). Hence, we have demonstrated that PATTERN is 

capable of isolating the signal from fluorescent tags even in the presence of a strongly co-

located background (Figure R 15 b, d). 

 

Figure R 15 | Performance of PATTERN in the presence of blood. a, Photoacoustic 

image depicting two tubes, one filled with purified iRFP713 (upper left) and the other with 

a mixture of iRFP713 and bovine blood (lower right). Inset: experimental schematic. b, 

PATTERN image corresponding to (a). c, Bleaching curves of the two points indicated by 

the arrows in (a). d. Profiles along the dashed lines in (a) and (b). 

Revisions: 

The above analysis and figure were added to supplementary Fig. 23 and referred in the 

Discussion section (page 27 lines 3–7): 

“Thirdly, with the bleaching non-linearity of the fluorescent proteins calibrated, their 

molecular concentrations can potentially be quantified by PATTERN (Methods and 

Supplementary Figs. 21 and 22). Lastly, the background rejection capability of PATTERN 

can be further explored for in vivo applications (Fig. 2e and Supplementary Fig. 23).” 

RC2.3:  

A comparison of PATTERN's sensitivity with that of photoswitching-based techniques, 

which offer reversible sensitivity enhancement, would strengthen the manuscript.  
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AR2.3:  

Thank you for highlighting this promising alternative tagging strategy. The rapid switching 

rate and potential for multiple cycles in the time domain translate into a narrower 

modulation bandwidth in the time-frequency domain. The narrow bandwidth facilitates the 

suppression of noise, thereby enhancing both sensitivity and specificity in distinguishing 

between fluctuating objects compared to the methods presented in the current work. 

Nevertheless, achieving this reversible capability necessitates more stringent experimental 

conditions, and it may be less compatible with the downstream fluorescence imaging 

workflow. On the contrary, the bleaching-based method, employing routine labeling 

strategies, can be applied with nearly all currently available fluorescent proteins.  

Our experiments indicate that the switching rate of photoswitchable proteins far exceeds 

the bleaching rate of conventional proteins. Consequently, our current demodulation 

scheme lacks the capability to detect these photo-switchable proteins with sufficient quality 

(Figure R 20). We attempted to implement photoswitching with an alternative demodulation 

scheme but have not achieved success, and unfortunately, we are currently unable to 

furnish a comprehensive quantitative comparison between the two strategies.  

Revisions: 

(1) The discussion of photoswitching-based techniques was added to the Discussion 

section (page 27 lines 8–14): 

“It has been shown that the use of photoswitchable proteins significantly improves intrinsic 

tissue background rejection, thus enhancing sensitivity to molecular labels22. However, 

compared to traditional fluorescent proteins40, further development of photoswitchable 

proteins is required to address the diverse needs in various neuroscience studies. Thus, 

in PATTERN, we employed the photobleaching process instead of the photoswitching 

process, to ensure compatibility with routine labeling strategies (Supplementary note 2).” 

(2) The discussion of photoswitching was added as Supplementary note 2: 

“The photoswitching-based technique is another promising alternative for fluorescent 

tagging. The rapid switching rate and potential for multiple cycles in the time domain 

translate into a narrower modulation bandwidth in the time-frequency domain. The narrow 

bandwidth facilitates the suppression of noise, thereby enhancing both sensitivity and 

specificity in distinguishing between fluctuating objects compared to the methods 

presented in the current work. Nevertheless, achieving this reversible capability relies on 

changes in the protein conformation of specific types of fluorescent tags. On the contrary, 

the bleaching-based method, employing routine labeling strategies, can be applied to 

nearly all currently available fluorescent proteins.” 
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RC2.4:  

Furthermore, an investigation into the extent of photobleaching required to achieve the 

desired sensitivity, through phantom studies with purified fluorescent proteins in scattering 

media, would add valuable information. 

AR2.4:  

We appreciate the reviewer's constructive suggestion and are eager to address this 

question in a more practical context. The degree of photobleaching is influenced by local 

optical fluence and the concentration of fluorescent proteins. In our experiments, we 

modulated photobleaching by varying the light fluence at different positions within the 

scattering media, calibrating it against the noise floor of our system. For ease of reference, 

we quantified this as the “bleaching extent to noise ratio” (BNR), defined as:  

𝐵𝑁𝑅 = 20 lg (
𝑚𝑎𝑥

𝑡
(𝑃𝐴 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) − 𝑚𝑖𝑛

𝑡
(𝑃𝐴 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒)  

𝑠𝑡𝑑(𝑛𝑜𝑖𝑠𝑒)
). 

The standard deviation was estimated using a manually selected region that did not contain 

fluorescent proteins. 

 

Figure R 16 | The relationship between bleaching extent to noise ratio (BNR) and 

PATTERN signal’s SNR.  

 

We used a single tube containing purified iRFP713, whose concentration was maintained 

constant, as the test target. For each position, we computed and plotted the BNR and 

corresponding SNR (refer to Eqs. R1.1 and R1. 2 for definition) of the PATTERN signals 

(Figure R 16 a). The results indicate that the PATTERN approach yields an SNR exceeding 

2 provided the extent of bleaching reaches a minimum of 25 dB, which corresponds to a 

detection accuracy of above 50%. Above a bleaching extent of 45 dB, the SNR in 

PATTERN signals ceases to increase, suggesting that the PATTERN approach does not 

introduce additional noise, thus the SNR was fully decided by the raw PA signals (from 
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fluorescent proteins). At such high BNR, the detection accuracy reaches almost 100%. 

This outcome is indicative of an almost ideal differentiation between fluorescent proteins 

and other background signals. It is also noteworthy that this segmentation efficacy could 

be further augmented through the use of our DnCNN algorithm, which incorporates pre-

trained morphological information from actual brain samples. 

Revisions: 

(1) The illustration of the optimal and suboptimal bleaching extent was added in the 

Results section (page 13 lines 8–15): 

“We compared the histograms of the PATTERN signals before and after confocal-imaging-

guided corrections, which shows that PATTERN is accurate (Fig. 2f). Additional 

experiments indicated that for best performance, a “bleaching extent to noise ratio” (BNR) 

(see Methods) exceeding 47 dB was required, whereas the minimum BNR for the 

PATTERN approach was approximately 25 dB (Supplementary Fig. 10). The weak 

PATTERN signal slightly above the noise floor exhibits some false positives because of 

artefacts in the raw PA images42.” 

(2) The details of the data analysis method were added to the Methods section (page 44 

lines 4–24). 

Due to the extensive nature of the revisions, please refer to the manuscript for details. 

RC2.5:  

2. Signal Non-linearity of PATTERN: 

The authors' creative use of photobleaching to enhance detection sensitivity in PATTERN 

raises questions about the non-linear relationship between its signals and local optical 

fluence. Photobleaching was explored before for PAM as a non-linear approach to enhance 

the spatial resolution (Physical review letters 112, no. 1 (2014): 014302.). It is innovative 

to turn photobleaching, an otherwise unwanted side effect, into a useful tool for improving 

detection sensitivity. Because the photoacoustic rate (or the signal deduction speed) 

usually has a power dependence on the optical fluence (may be larger than 1 for some 

strong optical absorbers), the PATTERN signals should have a non-linear dependence on 

the local optical fluence. To address this, I recommend a quantitative investigation into the 

non-linear behavior of PATTERN signals such as the signal decay with increasing depth, 

particularly in deep brain targets with reduced optical fluence. Comparing the non-linear 

behavior of PATTERN signals to traditional PA and fluorescence signals would shed light 

on its implications for cross-model validation and analysis. 
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AR2.5:  

We are grateful for the reviewer's insightful feedback, which has prompted us to delve 

deeper into quantitative imaging – by calibrating the non-linearity of bleaching, we have 

now developed a methodology for signal quantification. However, our proposed method of 

investigating bleaching non-linearity for image quantification is in its early stages, and 

comprehensive analyses, including noise immunity and system parameter optimization, 

are still ongoing. Consequently, we decided to maintain the original PATTERN signal 

processing method in the paper, while introducing an analysis of PATTERN's non-linearity 

as supplementary material. Further exploration of this aspect is planned for future research.  

Our current analysis of the non-linearity is as follows. According to the paper provided by 

the reviewer (Physical review letters 112, no. 1 (2014): 014302.), the PA amplitude 𝑃(𝑡) 

(as a function of the scanning time t) can be expressed as  

𝑃(𝑡) ∝ 𝛤𝜂th𝐶0𝐼 exp( − 𝑘𝐼𝛽𝑡), 

where 𝛤 is the Grueneisen coefficient, and 𝜂th is the percentage of the absorbed photon 

energy that is converted into heat. 𝐶0  is the concentration of molecules, and 𝐼  is the 

excitation intensity. The factor 𝑘𝐼𝛽 represents the bleaching rate in which 𝑘 is a constant 

factor and 𝛽 is the intensity power dependence with 𝛽 ≥ 0. In PATTERN, a 3D image is 

computed by integrating a number of 2D frames, mathematically: 

𝐴(𝑡) ∝ ∫ 𝑃(𝜏)𝑑𝜏.
𝑡+𝑇

𝑡

 

Here 𝐴(𝑡) is the amplitude of the signal acquired by the multiangle fusion process, and 𝑇 

is the scanning time of a single cycle. Collectively, we get: 

𝐴(𝑡) ∝
𝛤𝜂th𝐶0𝐼

𝑘𝐼𝛽
(1 − exp(−𝑘𝐼𝛽𝑇)) exp(−𝑘𝐼𝛽𝑡). 

This equation represents the exponential decay of raw photoacoustic signals over the 

entire scanning procedure (including many cycles), a relationship that has been 

experimentally validated and applied in our study. Furthermore, the interconnection 

between amplitude and bleaching, mediated by the excitation intensity, offers a 

methodology for calibrating the parameter 𝛽 using the aforementioned data through the 

subsequent steps: 

(1) Fit 𝐴(𝑡) of different positions with exponential function 𝐴(𝑡) = 𝑎 ⋅ exp (−𝑏𝑡), obviously 

we get  

𝑘𝐼𝛽 = 𝑏, (R2.3) 

and  

𝛤𝜂th𝐶0𝐼

𝑘𝐼𝛽
(1 − exp(−𝑘𝐼𝛽𝑇)) = 𝑎. (R2.4) 

(2) Calculate the equivalent excitation intensity 𝐼𝑒𝑞 ∝ 𝐼: 

Substitute Eq. R2.3 into Eq. R2.4, we can calculate the excitation intensity 𝐼 using: 
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𝐼 =
1

𝛤𝜂th𝐶0
⋅

𝑎𝑏

1 − exp(−𝑏𝑇)
. 

Notice that 𝛤 and 𝜂th are constants for the same type of protein, and 𝐶0 was kept as a 

constant for the whole tube, we define the equivalent excitation intensity 𝐼𝑒𝑞 as fellow: 

𝐼𝑒𝑞 =
𝑎𝑏

1 − exp (−𝑏𝑇)
. 

Obviously, we get 𝐼 ∝ 𝐼𝑒𝑞. 

(3) Calculate the intensity power dependence factor 𝛽 using least squares method: 

[
ln(𝑘) − 𝛽ln (𝛤𝜂th𝐶0)

𝛽
] = (𝑿𝑿𝑇)−1𝑿ln (𝒃𝑛×1), 

in which 𝑿 is a matrix of 2 by n: 

𝑿 = [
𝟏1×𝑛

ln (𝑰𝒆𝒒)]
2×𝑛

. 

All three proteins were calibrated and the 𝛽 parameter of iRFP713, mScarlet and SNIFP 

was measured to be 2.64, 1.8 and 1.63, respectively (Figure R 17). 

 

Figure R 17 | The non-linearity of different fluorescent proteins. a-c, Photobleaching 

rates of different proteins have different intensity power dependences. (a), iRFP713, (b), 

mScarlet, (c), SNIFP.  

 

By calibrating the nonlinearity parameter 𝛽, we have now developed a methodology for 

quantifying 𝐶0, as detailed in the following steps: 

(1) Use PATTERN to get the PATTERN signal amplitude 𝑎 , bleaching rate 𝑏  and PA 

signal (background) of a voxel. 

(2) Calculate the equivalent molecule concentration 𝐶𝑒𝑞 ∝ 𝐶0: 
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Eliminate excitation intensity 𝐼 in Eq. R2.3 and Eq. R2.4 and extract 𝐶0: 

𝐶0 =
𝑘

1
𝛽

𝛤𝜂th

⋅
𝑎𝑏

𝛽−1
𝛽

1 − exp(−𝑏𝑇)
. 

Notice that 𝛤 , 𝜂th , 𝑘  and 𝛽  are all constants for the same type of protein, we define 

equivalent molecule concentration 𝐶𝑒𝑞 as follow: 

𝐶𝑒𝑞 =
𝑎𝑏

𝛽−1
𝛽

1 − exp (−𝑏𝑇)
, 

which is related to the real molecule concentration (𝐶𝑒𝑞 ∝ 𝐶0). 

 

Figure R 18 | Comparison of PATTERN reconstruction and quantified PATTERN 

reconstruction. a, PATTERN image of a tube filled with SNIFP. b, Molecule concentration 

image corresponding to (a) reconstructed using the non-linear-based quantification 

method. c, Profiles of the lines in (a) and (b). 

 

An additional experiment was conducted using SNIFP to evaluate the effectiveness of this 

method (Figure R 18). The advantages and disadvantages of this approach are: on one 

hand, the quantified PATTERN signals depend on the relationship between the bleaching 

rates and the initial PA amplitude. Consequently, artefacts or false positive PATTERN 

signals can be effectively reduced, as their bleaching rates are typically too rapid to align 

with their amplitudes. On the other hand, this method demands high precision in fitting 
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since errors or noise are magnified during the additional calculation process. This 

requirement can hinder accurate quantification (Figure R 18c). 

To mitigate noise, the quantified PATTERN approach could be adapted to encompass a 

'super voxel', averaging values across several voxels. However, it is crucial to maintain the 

super voxel size sufficiently small to ensure that the optical fluence is approximately 

constant within these voxels22. This adjustment, while effective in reducing noise, would 

result in a compromise on spatial resolution. Additionally, the actual bleaching rates of the 

sample may vary depending on the microenvironment of the proteins23, indicating that the 

parameters 𝑘 or 𝛽 might not be constant even for the same type of fluorescent protein. 

In light of these considerations, we have chosen to retain the original PATTERN signal 

processing as described in the paper, while incorporating an analysis of PATTERN’s non-

linearity in the Supplementary Materials.  

Revisions: 

(1) The method for calibrating the intensity power dependence was added to the Methods 

section (pages 40–42). 

Due to the extensive nature of the revisions, please refer to the manuscript for details. 

(2) Figure R 17 and Figure R 18 were added to the manuscript as Supplementary Figs. 

21, 22, respectively, and referred in the Discussion section (page 27 lines 3–7). 

“Thirdly, with the bleaching non-linearity of the fluorescent proteins calibrated, their 

molecular concentrations can potentially be quantified by PATTERN (Methods and 

Supplementary Figs. 21 and 22). Lastly, the background rejection capability of PATTERN 

can be further explored for in vivo applications (Fig. 2e and Supplementary Fig. 23).” 

RC2.6:  

Minor Comments: 

1. Clarification Needed: 

- Page 4, line 10: The term "a large missing cone" should be explained more 

comprehensively for readers who are not experts in imaging, specifically in relation to 

spatial frequencies (k space). 

AR2.6:  

Many PACT systems employ ultrasound transducer arrays that are geometrically focused 

in the elevational direction, resulting in a large missing cone in this direction, within which 

all spatial frequency components are lost. The presence of the missing cone in the spatial-

frequency domain is a significant contributor to image artifacts and resolution degradation. 
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Revisions: 

The term “missing cone” was explained in the Introduction section (page 4 lines 20–27): 

“Many PACT systems employ ultrasound transducer arrays that are geometrically focused 

in the elevational direction19,28–30, resulting in a large missing cone in this direction, within 

the missing cone all spatial frequency components are lost. The presence of the missing 

cone in the spatial-frequency domain is a significant contributor to image artifacts and 

resolution degradation. As a result, for three-dimensional (3D) imaging, the elevational 

resolution is usually more than five times larger than the in-plane resolution.” 

RC2.7:  

- Page 27: Further clarification is required regarding how the translation and rotation 

effectively address the limited view problem in PATTERN, especially concerning the 

detection of vertical structures along the acoustic axis. 

AR2.7:  

The adoption of half-ring array ultrasound transducers has alleviated the limited-view 

problem within the imaging plane, i.e., the first two dimensions, as the 180° coverage 

ensures angularly uniform sampling in these dimensions. Introducing translation along the 

elevational direction added a third dimension; however, the small numerical aperture 

corresponding to the elevational direction results in limited-view artifacts. To address this 

problem, rotational scanning employs a multi-view strategy to synthetically create a large 

acceptance angle in the third dimension, effectively achieving nearly omnidirectional 

sampling in the spatial-frequency domain and minimizing the impact of the limited-view 

problem. 

Revisions: 

(1) Clarification on how the translation and rotation effectively address the limited-view 

problem was added to Supplementary note 1: 

“The adoption of half-ring array ultrasound transducers has alleviated the limited-view 

problem within the imaging plane, i.e., within the first two dimensions, all spatial frequency 

components are captured by the 180° coverage of the ultrasound array. Introducing 

translation along the elevational direction added a third dimension; however, the small 

numerical aperture corresponding to the elevational direction results in significant limited-

view artifacts. To address this problem, the rotational scanning employs a multi-view 

strategy to synthetically create a large acceptance angle in the third dimension, effectively 

achieving nearly omnidirectional sampling in the spatial-frequency domain and minimizing 

the impact of the limited-view problem.” 
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(2) The added Supplementary note 1 was referred in the Results section (page 7 lines 5–

10): 

“The original PACT system41 only scans linearly along the elevational direction in 3D 

imaging. The restricted acceptance angle of the transducer array leads to diminished 

resolution along the scanned direction. In PATTERN, we address this issue by rotating the 

system to mitigate the limited-view problem (Supplementary note 1). The 3D images 

acquired at different scan angles are combined to reconstruct a 3D volume with near 

isotropic resolution (Fig. 1c-g).” 

RC2.8:  

2. Figure and Terminology: 

- Page 8, Figure 1a: Consider whether PATTERN should follow the "brain retrieval". 

AR2.8:  

Thanks for the reminder and we agree that such an expression would cause some 

confusion for readers. In the initial submission, we wanted to emphasize that the sample 

(brain tissue) would not be damaged after PATTERN imaging. We have already changed 

it to "Further analysis" in the revised version of Figure 1a (see Figure R 19). 

 

Figure R 19 | The pipeline for PATTERN imaging (Figure 1a). 

Revisions: 

Figure 1a has been revised (page 8 line 1). 

RC2.9:  

- Background Signals: Please provide additional details about the PA contrast of 

background signals, including their composition (somas) and potential sources (lipids, cell 

plasma, water). 

AR2.9:  

The source was physiological structures within the brain, notably in some wild-type mice, 

which possess pigment cells in their brains (Supplementary Fig. 13). The reviewer may be 

particularly interested in those common sources that delineate brain structure. A prior study 

has examined these features, categorizing them as proteins and lipids24. We hypothesize 
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that these signals predominantly arise from lipids, a conclusion supported by the 

observation that lipids do not exhibit a fixed photoacoustic spectrum but vary depending 

on specific components25. This variability aligns with the diverse photoacoustic spectra we 

observed. Additionally, such background signals of the brain were almost invisible after a 

degreasing process, further indicating the contributions of lipids (details will be published 

in a future manuscript). Consequently, we propose that such background signals lack a 

specific composition, with the somas appearing more prominently. 

Revisions: 

The potential sources of the background signals were discussed in the Results section 

(page 12 lines 23–26): 

“To prevent any ambiguity, we utilize the term "PA signal/image" in the current work to refer 

to signals and image features that correspond to the intrinsic tissue background. Such 

background contrast, depicted in grayscale across all subfigures (except Fig. 2g), is 

potentially attributed to lipids19.” 

RC2.10:  

3. Reconstruction and Processing: 

- Positive PA Signals: Elaborate on the specific technique used for image reconstruction 

(e.g., DAS) and whether the Hilbert transform is applied to eliminate negative signals, along 

with its potential impact on spatial resolution. 

AR2.10:  

Our primary reason for utilizing the Delay-and-Sum (DAS) method is its rapid processing 

speed. Notably, we did not apply a Hilbert transform, which is evident from the presence 

of negative signals in the photoacoustic amplitude images. While the PATTERN approach 

inherently disregards negative PA amplitudes, these negative values in the PATTERN 

signal amplitude are converted into absolute values for the purpose of visualization. Based 

on experience, most of the PATTERN signals were positive, possibly due to the small size 

of the neurons contributing primarily high frequency signals. We believe this procedure 

does not compromise the spatial resolution of the PATTERN images. 

Revisions: 

Detailed discussion about the reconstruction method was added (page 38 lines 4–8): 

“The recorded data underwent reconstruction using the delay and sum (DAS) algorithm, 

resulting in the production of 2D PA image stacks. DAS was used because of the fast 

reconstruction speed without sacrificing image SNR for high throughput imaging. 
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Subsequently, these stacks were interpolated using an FFT method to generate 3D images 

with relatively poor elevational resolution.” 

RC2.11:  

4. Jumping Sequence and Quantitative Analysis: 

- The innovative jumping sequence for reducing k-space non-uniformity warrants further 

discussion, particularly regarding its potential implications on the quantitative analysis of 

PATTERN signals. 

AR2.11:  

In the original version of our paper, we provided a qualitative analysis, concluding that the 

implementation of a jumping sequence notably reduced k-space non-uniformity relative to 

a standard sequential scan, thereby enhancing image quality and minimizing signal 

distortion. Nevertheless, it's important to acknowledge that this non-uniformity was not 

entirely eliminated and continued to affect the system's performance. Consequently, the 

extent of its impact remains somewhat ambiguous. To address this, the updated version of 

our simulation incorporates the precise parameters and processing codes used in the 

actual experimental data for a more quantitative assessment. 

Initially, we assessed the image degradation resulting from photobleaching by comparing 

the point source image with the reconstructed image using cosine similarity. For 

comparison purposes, a commonly used sequential order, -90°, -84.375°…, 0°…, 84.375°, 

was set as the control group. The imaging quality was the primary consideration. Assuming 

that a point source (1 × 1 pixel at the center of a 256 × 256 grid) was bleached during a 

scan cycle. We assessed the image degradation resulting from photobleaching by 

comparing the point source image with the reconstructed image using cosine similarity. As 

the rate of bleaching increased, it was observed that sequential scan yielded progressively 

poorer image quality (Figure R 20e), with a corresponding rapid decrease in cosine 

similarity. Conversely, the jumping scan approach maintained a more stable performance 

(Figure R 20f). 
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Figure R 20 | Optimization of rotation order for image quality. a, Diagram of sequential 

scan of a point source which is exponentially bleached during the scan cycle. b, 

Reconstruction results from the scan and related FFT graph. c, d, The same as (a) and (b) 

but with jump scan. e, Reconstruction results with different bleaching rates. f, Cosine 

similarity between the point source image and the reconstructed image using sequential 

and jump scan.  

 

Subsequently, we conducted simulations to analyze the impact of scan sequence on the 

bleaching curve and its fitting accuracy. A line source (1 × 256 pixels at the middle of a 256 

× 256 grid) was bleached during 8 scan cycles. The center pixels were used to plot the 

‘bleaching curve’. By altering the orientation of the line source, we generated a series of 

distorted bleaching curves. The envelopes of these curves, plotted alongside the actual 

bleaching curve, demonstrate that distortion exacerbates with increasing bleaching rates 

(Figure R 21e, f). Utilizing these distorted bleaching curves, we quantified the estimation 

errors for both the PATTERN signal and the bleaching rate, presenting them as an upper 

limit of the relative error. Notably, the jump scan strategy effectively suppresses the error 

in both the PATTERN signal and the bleaching rate compared to the sequential scan 

(Figure R 21g, h). It is important to highlight that high relative errors predominantly occur 

when the feature size becomes comparable to the field of view. 
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Figure R 21 | Optimization of rotation order for quantification. a, Diagram of the 

sequential scan of a line source which is exponentially bleached during eight scan cycles. 

b, The same as (a) but with jump scan. c, The bleaching curve calculated from the 

reconstruction results. d, The same as (c) but with jump scan. e, f, Measured distortion of 

bleaching curve induced by feature’s directionality: (e) sequential scan, (f) jump scan. g, h, 

Maximum relative error of PATTERN signal amplitude and bleaching rate, induced by 

feature’s directionality: (g) sequential scan, (h) jump scan. 

Revisions: 

(1) The original Extended Data Fig. 6 has been replaced by Figure R 20 (Supplementary 

Fig. 7) and Figure R 21 (Supplementary Fig. 8) and referred in the Results section 

(page 12 lines 18–22): 
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“In contrast, if we were to scan in the angular direction in an incremental manner (0°, 5.625°, 

11.250°, …), uneven filling of k-space in the azimuthal direction occurs due to the gradual 

signal decay from photobleaching, leading to a reduction in both image quality and fidelity 

of the bleaching curve (Fig. 2a and Supplementary Figs. 7, 8).” 

(2) A description of the above simulation process was added to the Methods section 

(pages 44–45): 

“The rotation order of PATTERN was designed and verified via simulation using MATLAB 

(Supplementary Figs. 7, 8). All parameters used in the simulation were consistent with 

those employed for the real samples. For comparison purposes, a sequential scan scheme, 

-90°, -84.375°…, 0°…, 84.375°, was simulated as the control group. During the simulation, 

we assumed that a point source (1 × 1 pixel at the center of a 256 × 256 grid) was bleached 

during a scan cycle. We assessed the image degradation resulting from photobleaching 

by comparing the reconstructed image with the ground truth using cosine similarity. Next, 

a line source (1 × 256 pixels at the middle of a 256 × 256 grid) was bleached during an 

eight-cycle scan. The center pixels were counted to plot the ‘bleaching curve’. By altering 

the orientation of the line source, we generated a series of distorted bleaching curves. The 

envelopes of these curves, plotted alongside the actual bleaching curve, demonstrate that 

distortion exacerbates with increasing bleaching rates. Utilizing these distorted bleaching 

curves, we quantified the estimation errors for both the PATTERN signal and the bleaching 

rate, presenting them as an upper limit of the relative error.” 

RC2.12:  

5. Deep Learning and Elevational Resolution: 

- The use of DnCNN for enhancing PATTERN signals raises an interesting possibility of 

leveraging multi-angled scanning results as the ‘ground truth’ to improve the elevational 

resolution of single-angled scanning results. Exploring this idea further could potentially 

lead to enhanced elevational resolution without extensive scanning or improved results 

with reduced scanning angles. 

AR2.12:  

We appreciate the reviewer's insightful suggestion and agreethat it is indeed a promising 

proposal. In recent literature, several deep-learning-based methods have been developed 

to address the challenges of sparse sampling and limited-view problems in PA imaging. 

These methods align well with the reviewer's idea. We evaluated a UNet-based network26, 

focusing on xz-plane slices as the network inputs. However, the frequency component loss 

was too serious in each translation scan (Supplementary Fig. 2). Moreover, the three-

dimensional PA data exhibit a strong correlation among neighboring slices in the xz-plane. 

Therefore, the dataset needed for training would be much larger than in the traditional two-
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dimensional situation, and advanced network design is necessary. We recognize the 

feasibility of this idea, but definitive conclusions are not available at present. 

Revisions: 

The idea of implementing deep-learning to further improve system performance was added 

to the Discussion section (page 26 lines 20–28): 

“Additionally, several measures can be implemented to enhance PATTERN’s performance 

and impact. Firstly, faster lasers or potentially, some deep-learning-based image fusion 

approaches58 can be employed to accelerate the imaging process, while the imaging 

resolution can be improved by using ultrasound transducers with larger bandwidths. 

Specifically, the utilization of transducers with a frequency response ranging from direct 

current (DC) to 22 MHz has demonstrated the ability to achieve a resolution of 

approximately 50 μm57, which is comparable to the resolution achieved in all-optical, large-

FOV brain imaging52..” 
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3Reviewer #3: 

(RC: Reviewer’s Comment, AR: Author's Response) 

RC3.0:  

In the work with the title ‘Photoacoustic Tomography with Temporal Encoding 

Reconstruction (PATTERN) for Cross-Modal Individual Analysis of the Whole Brain’, Yang 

et al. introduce an imaging platform (PATTERN) for the non-invasive, fast, three-

dimensional ex-vivo imaging of small animal brains. The manuscript is generally well-

written with high quality figures but I think some more clarifications and additional work 

(major revision) would be needed: 

AR3.0:  

Thank you for your invaluable feedback. We deeply appreciate your thoughtful comments, 

and we have taken each of them into account. Consequently, we have made corrections 

and supplemented new experimental data to enhance the overall quality of our manuscript. 

Your insights have been instrumental in refining our work, and we are grateful for the 

opportunity to improve based on your guidance.. 

We recognize that your main questions may arise from a lack of clarity in our initial 

manuscript describing the advantages of the PATTERN system compared to existing PA 

systems. We will now concisely outline the primary novelty of PATTERN here, with detailed 

information provided in the point-to-point response:  

Compared to existing PA systems, the PATTERN system is uniquely designed to improve 

the detection and high-fidelity imaging of fluorescent proteins—an aspect not fully explored 

in previous designs. Notably, the PATTERN technique excels in reconstructing the spatial 

distribution of fluorescent protein markers with unparalleled quality, representing a 

groundbreaking achievement with vast potential for advancing the applications of PA 

imaging.  

By employing a temporal encoding strategy based on photobleaching, our system 

markedly boosts sensitivity in detecting fluorescent proteins, surpassing existing PA 

imaging methods by an order of magnitude, as shown in Figures 1 and 2. In the context of 

circuit-level brain fluorescence analysis, our advancement positions PATTERN on par with 

certain optical methods, which are conventional but destructive approaches for measuring 

fluorescent signals.  

We have revised both the Introduction and Discussion sections of the manuscript to 

improve clarity on the above aspects. Detailed responses addressing your concerns are 

outlined in the point-to-point response below. 
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RC3.1:  

Introduction 

 

- The authors present their method as an improvement compared to optical imaging 

methods without explaining why optical imaging would be accepted as the gold-standard 

small animal imaging method. In other words, a brief overview (with main pros and cons of 

each one) regarding other imaging technologies (e.g., magnetic resonance imaging, MRI) 

available for whole-brain small animal imaging is needed. 

AR3.1:  

We appreciate this suggestion. In our initial submission, we mainly compared our system 

to other optical imaging methods because the distinguishing advantage of our system, 

compared to previous photoacoustic methods, is the ability to detect genetically encoded 

fluorescent tags. Thus, we regarded optical imaging as a suitable reference specifically for 

fluorescent imaging, it was not meant to regard it as a gold standard at other imaging levels. 

However, we agree with the importance of discussing the potential and limitations of other 

non-optical whole-brain imaging technologies, such as MRI-based approaches27. Related 

discussion is helpful to lead readers to the future directions of non-destructive whole-brain 

imaging and we have incorporated discussions in the revised manuscript. 

Revisions: 

Discussion about MRI-based fluorescent imaging has been added (page 29 lines 14–25): 

“Due to its capacity to obtain the whole-brain 3D fluorescence distribution in a fast, 

nondestructive, and high-throughput manner, PATTERN provides a new way of quickly and 

conveniently previewing the fluorescence signal quality of samples. It provides effective 

evaluation and guidance before conducting subsequent high-resolution imaging 

experiments or other high-cost experiments, such as single-cell sequencing and spatial 

transcriptomics. Therefore, incorporating PATTERN into the specimen analysis pipeline 

enhances the success rate and reduces overall costs. Therefore, incorporating PATTERN 

into the specimen analysis pipeline enhances the success rate and reduces overall costs. 

Notably, emerging magnetic resonance (MR)-based reporter gene imaging demonstrates 

the potential for non-destructive, in vivo whole-brain detection of gene-expression 

patterns60. However, the diversity of available labels for this approach is still limited.” 

RC3.2:  

- Line 24: I suppose that the word ‘metabonomic’ should be changed into ‘metabolomic’. 
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AR3.2:  

As suggested, we indeed intended to use a more systematic term that represents a 

category of disciplines. Therefore, we replaced 'metabonomic' with 'metabolomic' in 

revised manuscript (page 3 line 24). 

RC3.3:  

- Indeed, the method provides high quality morphological brain imaging. However, based 

on the fact that several studies focusing not only on morphological but also functional brain 

imaging with photoacoustics have been already published (DOI: 10.1038/s41551-019-

0372-9, DOI: https://doi.org/10.1038/s41377-022-01026-w, DOI: 

10.1016/j.celrep.2019.02.020), I would like to ask the authors whether the system could be 

also used for functional brain imaging. If yes, could you please provide us with some data? 

If not, could you please explain more clearly what is the exact novelty of the work? Lower 

cost? Faster scanning times? Isotropic resolution? Higher resolution? A thorough 

comparison with other photoacoustic brain studies would be required. 

AR3.3:  

The key advancement of PATTERN over the previous system lies in the improved detection 

of weak signals from fluorescent proteins, as depicted in Figs. 1-2. These enhancements 

notably improve both resolution and sensitivity. While preliminary works have reported 

photoacoustic-based functional imaging of activity-dependent fluorescent sensors, critical 

questions persist, including sensitivity to fluorescent tags and fidelity of the reconstructed 

distribution of reporter genes. These challenges represent obstacles to the widespread 

application of PA imaging in neuroscience.  

The major innovation presented in the current work is the utilization of photobleaching-

based temporal encoding for achieving highly sensitive and accurate imaging of genetically 

encoded fluorescent proteins within optically opaque biological tissues. We have 

developed a system alongside a comprehensive imaging protocol to implement temporal 

encoding, resulting in the generation of 3D photoacoustic images of unparalleled quality 

and sensitivity to genetically encoded fluorescent tags. Most of the existing studies have 

not addressed the specific problem explored in the current work, namely, accurately and 

sensitively delineating the whole-brain distributions of genetically encoded fluorescent 

proteins in the rodent model (Table R 2 columns 2, 3).  

To achieve functional brain imaging via activity-dependent fluorescent proteins (commonly 

used in animal models, such as GCaMP and voltage sensors) in a photoacoustic (PA) 

system, enhancing sensitivity to these sensors and improving temporal resolution are two 

key points.  The work mentioned by the reviewer (DOI: 10.1038/s41551-019-0372-9) 

primarily focuses on improving the temporal resolution to detect the GCaMP signal, while 

our research is optimized to increase the sensitivity to a broader range of fluorescent 
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proteins. Such optimization benefits both morphological brain imaging and functional 

imaging, in the context of utilizing fluorescent proteins. While functional imaging is not 

explicitly demonstrated in the current work, the PATTERN technology represents a 

significant stride towards better PA-based functional imaging strategies. 

Although PATTERN focuses on improving the detection of fluorescent proteins, it also 

achieves higher performances in other key features. Table R2 compares the specifications 

and representative images of various recently published PA brain imaging technologies, 

alongside those of PATTERN.  

Table R 2 | Comparison of recent studies on PA brain imaging technologies. 

 Fluorescent 

protein 

imaging 

Contrast 

mechanism 

Representative images Field of view/ 

Resolution 

UZH21 

(Nature 

Biomed. 

Eng. 

2019) 

Yes 

Whole brain 

expressed 

with 

GCaMP6f, 

signal was 

relatively 

strong. 
 

FOV: 0.256 cm3 

Resolution:  

150 μm  

(Brain images 

appear to have 

worse 

resolutions) 

Caltech1

2 

(Nature 

Commu. 

2022) 

No 
Blood  

(strong signal) 

 

FOV: 2.2 cm3 

Resolution: 

Lateral:  

390 μm 

Axial:  

370 μm 

 

HZM24 

(Cell 

Reports 

2019) 

No 

Blood (strong 

signal) and 

weak signals 

from lipids 

 

FOV: 3.5 cm3 

Resolution: 

In plane: 150 μm 

Elevational:  800 

μm 

(Blurry in the 

elevational 

direction） 
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UZH28 

(Light: 

Science 

& Appl., 

2022) 

No 
Blood  

(strong signal) 

 

FOV: 0.256 cm3 

Resolution: 

163 μm  

(Brain images 

appear to have 

worse 

resolutions) 

This 

work 
Yes 

Weak signals 

from lipids 

and 

genetically 

encoded 

proteins 

 

FOV: 11 cm3 

Resolution: 

<140 μm 

(isotropic; within 

the entire FOV) 

 

The comparison above indicates that PATTERN outperforms existing technologies in 

almost all key aspects, including overall image quality, FOV, and resolution (Table R2, 

columns 4, 5). More importantly, it demonstrates unprecedented reconstruction quality for 

the spatial distribution of fluorescent labels.  

Furthermore, considering the experimental conditions varied across different studies, we 

have incorporated several new experiments by utilizing several classic photoacoustic 

imaging systems that are similar to the mentioned PA systems. To ensure a fair comparison 

between PATTERN and other photoacoustic imaging platforms, we obtained brain images 

using additional photoacoustic imaging systems available in our lab, striving to maintain 

consistency in experimental conditions. From this series of experiments, we also 

concluded that PATTERN consistently produced superior images (Figure R 22). 

The experimentally compared systems included a full ring array system10, a hemisphere 

array system (the Endra NEXUS 128 system), and an optical-fiber-sensor-based PA 

mesoscope11. Below we summarize what we found in the tests.  
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Figure R 22 | Brain imaging using other systems. a, b, Imaging results using a full ring 

array system. c, Brain sample inside NEXUS-128. d, Imaging results using NEXUS-128, 

the brain should be in the dashed white circle. e, Brain sample inside a fiber sensor based 

photoacoustic mesoscope. f, Imaging results using the mesoscope, the brain contours was 

sketch by white line. 

(a) The homemade full ring array system comprises a circular ultrasound array with 256 

sensing elements (Imasonics Inc.), geometrically focused in the elevational direction 

for acoustic sectioning. The sensing elements have a central frequency of 5.5 MHz and 

a receiving bandwidth of 60%. The system exhibits a limited resolution of ~ 1 mm in 

the elevational direction, resulting in unsatisfactory imaging outcomes (Figure R 22a, 

b).  

(b) The NEXUS 128 system employs a hemispherical sensor array but demonstrates 

lower sensitivity compared to the PATTERN system. We illuminated the sample using 

700 nm laser and performed angular scan in 120 steps with 30 averages per step, the 

entire scanning process took 3.9 minutes, in comparison to a scan time of 2.2 minutes 
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for PATTERN. However, the brain sample remained almost undetectable. A horse tail 

mane was inserted into the sample for localization purposes (Figure R 22c, d). It is 

important to acknowledge that the NEXUS 128 system was acquired in 2017 and has 

undergone extensive use. Consequently, its current performance may not accurately 

reflect that of a typical hemispherical array system.  

(c) The optical-fiber-sensor-based PA mesoscope, equipped with a custom-made 

ultrasound sensor at the fiber tip and a detection bandwidth ranging from direct current 

(DC) to 23 MHz11, could potentially achieve a spatial resolution of approximately 50 

µm. This sensor underwent raster scanning, effectively representing a planar array. 

However, the signal-to-noise ratio appeared insufficient for imaging the perfused brain 

(Figure R 22e, f). 

The imaging results demonstrate that the alternative systems were inadequate for the 

application in this study. 

Based on the additional experimental observations reported above, we summarized the 

advantages of the PATTERN system as below: 

Improved resolution: Using the multiangle image fusion strategy, resolution was 

enhanced dramatically, as indicated in Fig. 2c. (Figure R 23a). This is also highlighted by 

the comparison with published results (Figure R 23b, c). It is essential to note that the 

images obtained using other systems shown in rows 3 and 4 of Table R1, also illustrated 

in Figure R 23d below, appear to have lower image qualities, although the claimed 

resolutions are similar to ours. This is due to the use of different statistical methods for 

resolution estimation. 

High sensitivity: The photoacoustic signals originating from fluorescent proteins and 

perfused brain tissue were notably weaker in comparison to those from blood. In the 

context of this work, the ability to detect signals from the perfused brain is a fundamental 

requirement. Brain samples designated for the PATTERN system underwent imaging using 

other platforms in our lab, including a commercial hemispherical array system (Figure R 

22c, d) and a homemade photoacoustic mesoscope (Figure R 22e, f). However, their 

performances exhibited significantly lower sensitivity. 
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Figure R 23 | Comparison on image resolution. a, A copy of Fig. 2c. b, Imaging results 

of platforms listed in Table R1 row 2 (upper) and our system (lower). c, Imaging results of 

a ring-array-based system (upper) and our system (lower). d, Imaging results of a 

hemisphere system listed in Table R1 rows 3 and 4. 

Revisions: 

(1) The major novelty was further emphasized in the Introduction section (page 5 lines 10 

–19): 

“Taking advantage of the photobleaching of the fluorescent tags39 that exhibit a 

characteristic temporal decay, we designed the scanning sequence to specifically extract 

the signals from the tags, using a single illumination wavelength. We utilized 

photobleaching, which is typically seen as a hindrance, in a new way to suppress the 

intrinsic tissue background, resulting in the generation of 3D photoacoustic images of 

enhanced detection sensitivity specifically for these fluorescent tags (Fig. 1a). We further 

enhanced the detection accuracy by deep learning. Accordingly, we named our new 
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imaging technology Photoacoustic Tomography with Temporal-Encoding Reconstruction 

(PATTERN). ” 

(2) The above imaging results using other systems in our lab are added to the manuscript 

as Supplementary Fig. 19 and referred in the Discussion section (page 26 lines 6–14): 

“To meet the requirement of high-resolution and high-throughput whole-brain PA imaging, 

a system with point-like ultrasound transducers is preferred for the best imaging quality 

(isotropic resolution)14,27,34,57. However, the reported PA systems of this kind, to our 

knowledge, are not suitable for the tasks reported in the current work. Difficulties include 

low resolution or sensitivity to clearly distinguish brain regions, limited FOV for large brains, 

and excessive laser exposure for fluorescent proteins (Supplementary Fig. 19). Challenges 

arise due to the difficulty in manufacturing sensitive, broadband, and small-footprint 

ultrasound transducers.” 

(3) The adaptability of the PATTERN pipeline to various imaging platforms was discussed 

in the Discussion section (page 26 line 24–page 27 line 2): 

“Specifically, the utilization of transducers with a frequency response ranging from direct 

current (DC) to 22 MHz has demonstrated the ability to achieve a resolution of 

approximately 50 μm57, which is comparable to the resolution achieved in all-optical, large-

FOV brain imaging52. Secondly, regardless of the detailed implementations, the PATTERN 

concept is adaptable to PAT platforms involving various scan strategies and could 

potentially enhance their sensitivity to fluorescent proteins.” 

RC3.4:  

Results 

- Near isotropic photoacoustic imaging of PATTERN: The authors provide resolutions of 

approximately 100-150um. Based on the fact that several even clinical photoacoustic 

systems, which would definitely have (or even need) lower resolutions to image human 

tissues, almost achieve these resolutions (also in real-time), I would like to ask whether the 

authors believe that the spatial resolutions achieved are enough to image the fine small 

animal brain structures. What do the other preclinical photoacoustic platforms achieve? 

For example, what is the smallest biologically- (or disease-) relevant small animal brain 

structure that could be resolved with the developed system? 

AR3.4:  

We believe this concern also arises from the unclear expression of the major novelty of our 

system in the initial submission and we mainly aimed to enhance the imaging quality of 

fluorescent proteins in this new PA imaging method. It's important to note that while most 

preclinical PA systems are optimized for imaging blood and vascular structures, or for 

rapidly capturing functional signals, few are specifically designed to detect fluorescent 

protein signals in the brain. Thus, the distinct advantage of our system is its ability to image 
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fluorescent proteins at the whole-brain level. This specialized capability is important and 

unique for brain studies considering fluorescent proteins are widely used in numerous 

biological studies. 

The resolution provided by PATTERN is sufficient for brain studies in small animal models. 

Presently, brain imaging predominantly centers on three distinct scales: synaptic levels, 

neuronal levels, and circuitry levels. A recent review paper introduced multiple techniques 

for imaging the brain at different levels29. It showed that regional methods like OEG 

(resolution: about 100um) and photoacoustic computed tomography (resolution about 150 

μm) are capable of studying the brain at the circuit level in mice (Figure R 23)29. The 

resolution of PATTERN is comparable to these methods. From another perspective, as 

illustrated in Figure 4, the PATTERN-derived projection map for many brain regions closely 

aligns with that obtained from the Allen Brain database. Thus, we believe PATTERN is 

effective in investigating the mouse brain at circuitry levels.  

 

Figure R 24 | Examples of brain imaging technologies with different spatial 

resolution29. 

RC3.5:  

- Temporal encoding and unmixing of fluorescent tags by PATTERN: The authors 

characterize the spectral unmixing ‘extremely complex’. I find it absolutely useful to provide 

more objectified data on the superiority of the temporal unmixing approach followed. Which 

are exactly the weaknesses of the spectral unmixing approaches? 
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AR3.5:  

The term 'extremely complex' in our context refers to the considerable challenges involved 

in applying spectral unmixing to our 3D imaging system. The intricacy of this phenomenon 

is accentuated by the data presented in Supplementary Fig. 5b (copied below as Figure R 

25), illustrating a time-varying spectrum for the same image voxel in consecutive scans. 

The spectral fluctuations observed were attributed to photobleaching. It is noteworthy that 

a time-varying photoacoustic spectrum can pose significant challenges to spectral 

unmixing. Another example is illustrated in Figure R 26, where fluorescent proteins can be 

almost entirely bleached in a single scan cycle (note that exp(−0.09×32) ≈ 0.056≪1, 

where the bleaching rate b = 0.09/translational scan for some image voxels, and a single 

scan cycle took 32 translational scans). 

 

Figure R 25 | Left: a typical coronal slice of a mouse brain with fluorescent protein. Right: 

a time-varying spectrum for the same image voxel in consecutive scans. (from 

Supplementary Fig. 5a, b) 

 

 

Figure R 26 | Bleaching rates of a sample. a, Bleaching rates distribution of a cross-

section of a brain. b, histogram of the bleaching rates 𝑏. 
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Figure R 27 | Spectral distortion occurs during data acquisition 

 

Figure R 27 further illustrates the impracticality of spectral unmixing in the presence of 

photobleaching. Let's assume a sequential brain imaging scenario starting at discrete 

wavelengths, such as 680 nm, 690 nm, 700 nm, and so on. At each wavelength, the sample 

undergoes a complete translation-rotation scan cycle involving hundreds of excitation 

pulses before the mechanical scan restarts with the excitation switched to the next 

wavelength. During this process, due to photobleaching, the measured PA signal 

significantly decreases at the subsequent wavelength of 690 nm (red curve in Figure R 27), 

even though the actual absorption at 690 nm remains high (blue curve in Figure R 27). 

Since accurate spectral measurement is essential for any spectral-unmixing methods, the 

influence of photobleaching inherently renders spectral analysis unreliable. 

The novelty of this work lies in transforming photobleaching, typically considered 

detrimental to optical imaging, into a mechanism for highly accurate detection of 

fluorescent tags through temporal encoding. What's even more intriguing is our capability 

to conduct quantitative analysis of fluorophore concentration by leveraging the nonlinearity 

inherent in the bleaching process (AR2.5). 

Revisions: 

The impracticality of spectral unmixing was emphasized in the Results section (page 11 

lines 3–13): 

“To show the superiority of temporal unmixing over spectral unmixing in the translation-

rotational scan scheme, we tested both methods. During the scan process, repeated laser 

exposure caused signal decay due to photobleaching (Supplementary Fig. 5a, b). The 

change in the signal strength distorts the measured photoacoustic spectrum, making 

spectral unmixing extremely complex. In addition, in our spectral sweeping window (680-

1064 nm), there is a limited variety of usable fluorescent tags (Supplementary Fig. 5c). 

Conversely, the temporal unmixing method involves single-wavelength operation only, thus 

making full use of the pump laser (532 nm) to detect red fluorescent proteins (i.e., mScarlet). 
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These factors prompted us to adopt the temporal unmixing method to improve the 

sensitivity to signals from the labels.” 

RC3.6:  

- Temporal encoding and unmixing of fluorescent tags by PATTERN: I would be grateful to 

have some more information on how the ‘artefacts’ were identified? Could you provide 

extra clarifications on the usual artefacts observed with the technology presented? 

AR3.6:  

In theory, these artefacts (i.e., 'false positive signals') primarily arise from imperfections in 

raw photoacoustic images, particularly due to the suboptimal response of ultrasound 

transducers. Although deconvolution methods can mitigate these issues, they often do so 

at the expense of image SNR17. To clarify, we consider the impulse response of an 

ultrasound transducer: ideally, the transducer has an infinite bandwidth, resulting in a single 

peak in the time domain that precisely matches the input pressure waveform (Figure R 28a, 

b). In practice, however, the response is bandlimited and may exhibit harmonically 

oscillating tails following the excitation (Figure R 28c). These tails are also projected into 

the image during signal reconstruction, as indicated by the blue transducer and its 

projection line. This leads to 'shadows' around the point source (highlighted by the red 

arrow) and 'ripples' (encircled by the white dashed line), which are recognized as artefacts 

in raw PA images (Figure R 28d). While these artefacts are weak in amplitude, they follow 

the same temporal decoding curve as the point source in PATTERN, leading to their 

erroneous interpretation as PATTERN signals. Traditional methods, especially those used 

in spectral unmixing, aim to enhance raw PA image quality by employing reconstruction 

techniques to compensate for the transducers' nonideal response. However, these 

solutions either compromise the SNR or introduce other types of artefacts.  

Based on the knowledge about artefacts, the identification of these artefacts is facilitated 

by the combination of PATTERN imaging with confocal imaging. We conducted sequential 

imaging of the same brain with both the PATTERN system and a confocal microscope, 

utilizing the confocal images as a reliable reference for artefact identification (Figure R 29, 

copied from Supplementary Fig. 9a, b in revised manuscript). More specifically, the 

presence of EGFP (for confocal imaging) and iRFP713 (for PATTERN imaging) signals 

within the same brain regions allows the alignment and registration of each confocal image 

to the PATTERN image. This alignment served as a template for human experts to 

accordingly label artefact regions within the PATTERN data. To ensure accuracy, only 

signals evident in the PATTERN images but absent in the reference were designated as 

artefacts, mitigating potential mislabeling (Figure R 29). 
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Figure R 28 | Illustration on the artefact generation mechanism. a, Response of 

ultrasound transducers of ideal (top) and nonideal (bottom) situations. b, Corresponding 

reconstructed raw photoacoustic images. 

 

 

Figure R 29 | Working flowchart of DnCNN performance and artefact identification. 

a, Illustration of the workflow of DnCNN. Datasets are constructed in the training phase 

based on confocal microscopy as the reference. Network after training are used in the 

evaluation phase to remove the artefacts. b, Pipeline of artefact identification. Images with 

artefacts and the artefacts-removed ones were collected as datasets. 
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Revisions: 

The above illustration shown in Figure R 28 and Figure R 28 was added to Supplementary 

Figs. 11, 9b and was referred in the Results section (page 13 lines 16–23): 

“For further improving our system, we next used confocal microscopy images as a reliable 

reference and employed a denoising convolutional neural network (DnCNN)43 to remove 

the potential false-positive signals (Fig. 2a). Relying on a single-batch learning strategy, 

DnCNN was capable of extracting artefacts in the vicinity of true signals (Fig. 2g, 

Supplementary Fig. 9). The majority of the artefacts caused by the unideal response of the 

ultrasound transducers (Supplementary Fig. 11) were effectively eliminated without 

causing severe false-negative signals compared to traditional deconvolution methods (Fig. 

2h).” 

RC3.7:  

- PATTERN-based whole-brain optical imaging: I believe that the best way to characterize 

the technology developed is photoacoustic and not optical (2nd line). This is why the main 

comparisons should be done against other photoacoustic (and not optical) imaging 

platforms. 

AR3.7:  

We agree that the comparison between our system with other PA systems is clearer to 

show the advancement of the PATTERN system, as we have addressed in our response 

to the Reviewer's comment RC3.3. Our comparison led to the conclusion that utilizing other 

photoacoustic systems as a basis for comparison may not effectively yield the necessary 

fluorescent information. 

More importantly, in this part of the manuscript, we mainly aimed to demonstrate the ability 

of the PATTERN to visualize the fluorescent proteins in the brain, as well as its potential to 

measure the expression of viral vectors and the long-range projection from specific brain 

regions. Therefore, we employed optical imaging for validation but not for comparison, 

considering that confocal imaging is a widely utilized technique for these analyses. Notably, 

a recent study has also used optical imaging methods to validate the effectiveness of a 

non-optical (MRI-based) imaging technology (Figure R 30)26. 

Furthermore, PATTERN imaging, along with photoacoustic imaging in general, exhibits 

image contrast that closely aligns with that of fluorescence imaging. Both photoacoustic 

imaging and fluorescence imaging derive their image contrast from light absorption. While 

photoacoustic imaging detects light absorption through nonradiative relaxation (i.e., 

photoacoustic emission), fluorescence imaging captures the absorption signal through 

radiative relaxation (i.e., fluorescence emission). Therefore, employing optical imaging as 

the basis for validation is physically accurate.  
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Figure R 30 | Comparison of MRI and confocal imaging. Left: Pseudo-color images of 

MRI reporter genes overlayed on anatomical MRI images; Right: corresponding 

fluorescent images of brain sections of the same mice26. 

Revisions: 

Descriptions have been modified in the Results section (page14 lines 3–13). 

“Utilizing photobleaching-based temporal encoding, the PATTERN system has been 

enhanced to detect fluorescent proteins within brain tissue effectively. To further validate 

the accuracy of our system for fluorescent protein detection, we employed confocal data 

from the same brain samples, which contained both AAV-expressed iRFP713 (for 

PATTERN imaging) and EGFP (for confocal imaging). Using confocal images as the 

references, PATTERN images showed consistent fluorescent signals (Fig. 3d). This 

consistency encouraged us to explore more neuroscience applications. Firstly, PATTERN 

exhibited the ability to visualize the implants in the brain such as the optical fibers used in 

optogenetics and the electrodes used in electrophysiology (Supplementary Fig. 12a-d)...” 

RC3.8:  

- PATTERN for visualizing neural connectivity of the brain: Since exploration of neural 

connectivity is indeed important, the reader should be provided with more information 

about its importance. 
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AR3.8:  

We appreciate this constructive suggestion. We revised the expression and added some 

citations30,31 to help readers understand the significance of investigating neural connectivity. 

Revisions: 

More descriptions and citations have been added in the main text (page 16 lines 16–17): 

“Revealing the connectivity of the brain is crucial for understanding its functions and 

dysfunctions44,45. Since PATTERN can achieve reliable 3D whole-brain optical imaging, we 

sought to explore its potential to visualize neural circuits. For that purpose, we injected an 

AAV vector to express iRFP713 fused with EGFP in the brain area of interest, allowing us 

to validate the PATTERN-traced projections by subsequent other optical imaging methods 

(Fig. 4a).” 

RC3.9:  

Discussion 

- Comparison and combination of PATTERN with other whole-brain optical imaging 

technologies: As already mentioned, based on the fact that several other photoacoustic 

brain imaging studies have been already published, I believe that a comparison to them 

(and not optical imaging techniques) would be needed. Taking into account the findings of 

the study and the claims of the authors, the comparison (apart from general features) would 

also focus on information about: ‘injection sites of vectors, fluorescence expression 

intensity or signal loss during sample preparation’. 

AR3.9:  

We agree that comparing our system with existing photoacoustic systems in the discussion 

will enhance the clarity of our manuscript. Following the suggestion, we have incorporated 

the distinctions and novelty of our system compared to the published PA systems 

mentioned by the reviewer in the revised Discussion section. Notably, since not all 

referenced works imaged fluorescent proteins and none employed viral vectors, we did not 

compare all suggested features and conducted respective comparisons with each method 

in the revision, taking into account their specific characteristics. 

Revisions: 

The comparison of the PATTERN system with existing photoacoustic systems was added 

in the Discussion section (page 25 line 16–page 26 line 5): 

"Comparison of PATTERN with other PA brain imaging studies 



66 

 

Given its capacity to identify optical absorption contrasts in deep tissue with high resolution, 

PA imaging has gained much attention in brain research. Recently, various PA imaging 

systems have been developed to meet the specific needs of different neuroscience studies. 

Contrasts between oxyhemoglobin and deoxyhemoglobin have rendered PA imaging an 

effective tool for visualizing the distribution of oxygen saturation14,19, especially when 

combined with functional magnetic resonance imaging (fMRI)56. Using exogenous 

fluorescent probes, PA imaging has been also explored for visualizing enhanced molecular 

details deep within the brain19. With the enhancement of temporal resolution, PA imaging 

has also demonstrated its capability to detect GCaMP signals 27. However, the ability and 

sensitivity of detecting fluorescent proteins, which are prominent requirements for 

neuroscience studies, are still not further optimized in most photoacoustic imaging 

techniques. Thus, the primary focus of the PATTERN system was to improve sensitivity 

and image fidelity across a broader range of fluorescent proteins, thereby extending the 

potential applications of photoacoustic imaging in neuroscience studies." 

RC3.10:  

Methods 

 

- PATTERN: Why did you select a transducer with central frequency of 5.5 MHz? And not 

a higher-frequency one? 

AR3.10:  

Firstly, we agree with the reviewer that 5.5 MHz was not optimal for imaging resolutions, 

but the choice of the current transducer was based on a compromise among image 

resolution, detection sensitivity, field of view, scanning time, and system cost. During 

system design, these parameters exhibit a trade-off, with each influencing the other.  

Secondly, as discussed in our response to RC3.4 of the Reviewer, PATTERN provides 

circuitry-level resolution for brain imaging. However, achieving resolution down to the 

cellular level is currently constrained by the limitations of commercially available transducer 

arrays, as illustrated in Figure R23. Moreover, the attenuation of high-frequency ultrasound 

in brain tissue prevents the attainment of cellular-level resolution, even with the use of 

ultrahigh-frequency transducers. Consequently, additional theoretical breakthroughs are 

necessary to propel photoacoustic computed tomography into higher levels of image 

resolution that hold significance for neuroscience.  

Revisions: 

The possibility of utilizing higher frequency transducers was discussed in the Discussion 

section (page 26 lines 21–28): 
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“Firstly, faster lasers or potentially, some deep-learning-based image fusion approaches58 

can be employed to accelerate the imaging process, while the imaging resolution can be 

improved by using ultrasound transducers with larger bandwidths. Specifically, the 

utilization of transducers with a frequency response ranging from direct current (DC) to 22 

MHz has demonstrated the ability to achieve a resolution of approximately 50 μm57, which 

is comparable to the resolution achieved in all-optical, large-FOV brain imaging52
.” 

RC3.11:  

- PATTERN: Which are the optical/absorption properties of the body fluid used in the 

perfusion module? Would its presence affect the signals measured in the brain? And how? 

AR3.11:  

The fluids utilized in our experiments included Phosphate Buffered Saline (PBS), artificial 

Cerebrospinal Fluid (aCSF), and Paraformaldehyde (PFA). All these fluids are colorless 

and transparent. PBS and aCSF were also employed in the imaging chamber and sample 

holder to facilitate acoustic coupling. Notably, no significant signals attributable to these 

fluids were observed, indicating that they did not interfere with the photoacoustic signals 

of the brain. PFA was used primarily for fixing the brain in experiments involving tissue 

clearing and fMOST techniques (Figs. 1d, 2c, 3a, 3g-j, 3k,4b-d, 3f-g, 5b-f, 5i-j, 5k-m, 

Supplementary Figs. 12, 13, 14, 15, 16, 17, 18a-e). In terms of PA imaging, brains perfused 

with PFA showed no discernible differences compared to those perfused with PBS or aCSF, 

suggesting that PFA also does not impact the PA signal. 

RC3.12:  

- Data reconstruction and postprocessing: Could you provide some more information on 

the light fluence simulation and its compensation scheme, please? 

AR3.12:  

Computer simulation and optical fluence compensation were used for image rendering, 

Initially, the image features, such as a mouse brain along with the agarose-based sample 

holder, were segmented using Amira software. Subsequently, binary masks of the brain 

and holder were modeled using reasonable optical parameters (brain: μa = 0.005 and g = 

0.9; agarose: μa = 0.002 and g = 0.98) in a Monte Carlo simulation for light fluence 

computation. We used a uniform light source covering the inner diameter of the sample 

holder as in real experiments. Such simulation was performed using MCXLAB32. The 

resulting light fluence was then utilized to compensate for the optical attenuation within the 

brain tissue by dividing both the PA image and the PATTERN image. The compensated 

results were rendered using Amira. The codes for the simulation are listed as below: 
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    load([datapath2,'simulate_label_brain.mat']); % load labels of brain and holder 

    vol = uint8(simulate_label_brain); 

 

    cfg.vol = vol; 

    cfg.unitinmm=19.2/256; % set the grid size to be the same with the images 

    cfg.prop=[0.002,1,1,1.37;                              % water 

        0.002,20,0.98,1.37;   % agar 

        0.005,20,0.9,1.37; % brain 

        ];               % standard tissue 

 

    cfg.nphoton=1e9; 

    cfg.issrcfrom0=1; 

    cfg.srcpos=[128 1 128];% center of the beam 

    cfg.tstart=0; 

    cfg.tend=5e-9; 

    cfg.tstep=5e-9; 

 

    % set light source 

    cfg.srcdir=[0 1 0]; 

    cfg.srctype='disk'; 

    cfg.srcparam1=[106 0 0 0]; % beam radius of 7.95 mm 

    cfg.isreflect=0; 

    cfg.autopilot=1; 

    cfg.gpuid=1; 

    cfg.debuglevel='P'; 

 

    cfg.outputtype='energy'; 

    flux=mcxlab(cfg); 

Revisions: 

The code was added to supplementary methods and referred in the Methods section (page 

40 lines 14–22): 

“Subsequently, a 3D Monte Carlo simulation, conducted using MCXLAB64 (Supplementary 

Methods), was employed to simulate the light fluence distribution, considering μa = 0.005 

and g = 0.9 for the brain, and μa = 0.002 and g = 0.98 for the sample holder (agarose). We 

utilized a uniform light source covering the inner surface of the sample holder to replicate 

the experimental conditions. The resulting light fluence distribution was then applied to 

compensate for the optical attenuation within both the PA image (background) and the 

PATTERN image (fluorescent signal).” 
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RC3.13:  

- DnCNN Method: How did you train the neural network regarding the artefacts? Did you 

manually delineate them? How did you ensure that no information was taken as an artefact? 

AR3.13:  

As mentioned by the reviewer, we manually identified artefacts in photoacoustic images to 

build up datasets for DnCNN training. Our approach, as depicted in Figure R 30, mainly 

involved the combination of PA fluorescent signals and confocal fluorescent imaging, as 

well as the human experts’ identification. Specifically, each brain sample subjected to 

PATTERN processing was also imaged by confocal microscopy. The presence of EGFP 

(for confocal imaging) and iRFP713 (for PATTERN imaging) signals within the same brain 

regions allows the alignment and registration of each confocal image to the PATTERN 

image. This alignment served as a template for human experts to accordingly label artefact 

regions within the PATTERN data. To ensure accuracy, only signals evident in the 

PATTERN images but absent in the reference were designated as artefacts, mitigating 

potential mislabeling. In addition, this labeling method is able to avoid the generation of 

false positives, yet there still exists the potential for unlabelled artefacts, which can be 

further improved. Therefore, we performed a method based on DnCNN, utilizing the 

capabilities of artificial neural networks to remove all artefacts as effectively as possible. 

Subsequently, artefact-removed images and their corresponding originals were paired to 

form the dataset used for training the DnCNN. Moreover, we have included information of 

DnCNN training in the revised method. For the sake of transparency and reproducibility, all 

codes and the pre-trained network employed in this study have been made available at  

https://github.com/CaA2318777/PATTERN 

 

Figure R 30 | Working flowchart of DnCNN performance and artefact identification. 

a, Illustration of the workflow of DnCNN. Datasets are constructed in the training phase 

based on confocal microscopy as the reference. Network after training is used in the 

evaluation phase to remove the artefacts. b, Pipeline of artefact identification. Images 

with artefacts and the artefacts-removed ones were collected as datasets. 

https://github.com/CaA2318777/PATTERN
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Revisions: 

The above illustration was included as Supplementary Fig. 9b in the revised manuscript 

(page 70) and the clarification was included in the Methods section (page 45 lines 17–24 

and page 46 lines 9–20): 

Page45: 

"The brain samples were first subjected to PATTERN to collect the iRFP713 signal prior to 

sectioning and confocal microscopy to collect the EGFP signal. The two modalities were 

then equally normalized. Well-trained human experts would subsequently manually 

annotate the artefacts in the PATTERN signals, based on the results of confocal 

microscopy, which serve as the reference. In addition, this labeling method is able to avoid 

the generation of false positives, yet there still exists the potential for unlabelled artefacts, 

which can be further improved." 

Page46: 

“The neural network implicitly learned the artefacts of each image to achieve the 

distribution of the artefacts across the entire dataset. The Mean Squared Error (MSE) loss 

function was employed as the training criterion over 50 epochs, during which the network 

effectively filtered out pure artefacts to generate the output. For each brain region, a 

dataset consisting of more than 100 pairs of images with and without artefacts were used 

for training and more than 50 pairs for testing. Some of the representative hyperparameters 

used during training are provided below: batch size = 1, training epochs = 50, and learning 

rate = 1e-3. When the epoch reached 30, the learning rate was reduced by a factor of 10. 

To make the network more generalized, traditional data augmentation strategies were also 

applied, including flipping, rotating, and intensity changes.” 
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REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

This paper presents a novel implementafion of photoacousfic tomography (PAT) that relies on temporal 

encoding instead of spectral encoding to achieve molecular imaging using exogenous chromophores 

(fluorophores). The idea of temporal encoding aided by deliberate photobleaching of fluorophores is 

elegantly simple and can aid in molecular and funcfion photoacousfic (PA) imaging of a variety of readily 

available fluorophores provided that produce a strong enough PA signal and that the photobleaching is 

fast enough. The authors have prepared a high-quality manuscript with extensive data using mulfiple 

animal models to demonstrate the strengths of their new approach including imaging with genefically 

encoded probes. All of my crifiques and suggesfions have been adequately addressed and I recommend 

this manuscript for publicafion in its current form.

Reviewer #2 (Remarks to the Author):

The authors have adequately addressed all of my comments and suggesfions, with new experimental 

data and comprehensive discussions. I believe the proposed PATTERN method can be broadly applied to 

many neuroscience research, parficularly for molecular imaging. I highly recommend the publicafion of 

this fine work in Nat Communicafions.
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Response to the Editor 

 

Dear Editor, 

  

We sincerely appreciate the efforts of the editorial team and reviewers.  

 

The point-by-point responses to the reviewer's comments are as follows: 
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Point-by-point response to the reviewers’ comments 

Reviewer #1 : 

“This paper presents a novel implementation of photoacoustic tomography (PAT) that 

relies on temporal encoding instead of spectral encoding to achieve molecular imaging 

using exogenous chromophores (fluorophores). The idea of temporal encoding aided 

by deliberate photobleaching of fluorophores is elegantly simple and can aid in 

molecular and function photoacoustic (PA) imaging of a variety of readily available 

fluorophores provided that produce a strong enough PA signal and that the 

photobleaching is fast enough. The authors have prepared a high-quality manuscript 

with extensive data using multiple animal models to demonstrate the strengths of their 

new approach including imaging with genetically encoded probes. All of my critiques 

and suggestions have been adequately addressed and I recommend this manuscript for 

publication in its current form.” 

 

Response to reviewer #1: 

 

We sincerely thank the constructive suggestion and insightful comments from the 

reviewer. 
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Reviewer #2 : 

“The authors have adequately addressed all of my comments and suggestions, with new 

experimental data and comprehensive discussions. I believe the proposed PATTERN 

method can be broadly applied to many neuroscience research, particularly for 

molecular imaging. I highly recommend the publication of this fine work in Nat 

Communications.” 

 

Response to reviewer #2: 

We sincerely thank the constructive suggestion and insightful comments from the 

reviewer. 
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