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Supplementary Material 1 MRI Technique 

Magnetic resonance imaging (MRI) with hepatobiliary contrast agent (HCA) was 

conducted using four 3.0-T systems (GE SIGNA™ Architect; GE SIGNA™ Premier; 

GE Discovery MR 750; Siemens MAGNETOM Skyra) and one 1.5-T system 

(uMR588). Additionally, MRI with extracellular contrast agent (ECA) was performed 

with five 3.0-T systems (Siemens MAGNETOM Skyra; Siemens TrioTim; GE 

SIGNA™ Architect; GE Discovery MR 750; Philips Ingenia Elition X) and two 1.5-T 

systems (Siemens Avanto; uMR588). The liver MRI protocols consisted of T2-

weighted imaging, diffusion-weighted imaging (b values: 0-1200 s/mm2) with 

apparent diffusion coefficient (ADC) maps, T1-weighted in- and opposed-phase 

imaging, and dynamic T1- weighted imaging before and after injection of contrast 

agent in the late arterial phase, portal venous phase (60 s), delayed phase (ECA 

MRI; 180s) or transitional phase (HCA MRI; 180 s), and hepatobiliary phase (HCA 

MRI; 20 minutes). The arterial phase images were obtained either by the acquisition 

triggered 7 s after arrival of the contrast bolus in the celiac trunk or a multiple arterial 

phase (MAP) imaging technique. In specific, the MAP images were obtained with an 

18 s breath hold 20 s after the contrast agent injection, and further reconstructed with 

a temporal resolution of 3 s. For HCA MRI, gadoxetate disodium (Primovist®; Bayer 

Schering Pharma AG) was administered intravenously at 1.0-2.0 ml/s (0.025 

mmol/kg of body weight), followed immediately by a 20-30 ml saline flush. For ECA 

MRI, gadopentetate dimeglumine (Magnevist®; Bayer Schering Pharma AG) or 

gadoterate meglumine (Dotarem®; Guerbet) or gadobenate dimeglumine 

(MultiHance®; Bracco) was intravenously administered at 2.5 ml/s (0.1 mmol/kg of 

body weight). MRI sequences and parameters are detailed in Table S1. 
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Supplementary Material 2 Deep Learning Algorithms for Automated Segmentation on 

MRI 

Dataset for the Development of Automated Segmentation Models 

To develop automated deep learning (DL) segmentation models, a total of 1889 

patients with focal liver lesions (i.e., hepatocellular carcinoma, hemangioma, and 

hepatic cyst) from six tertiary hospital in China between December 2013 and 

February 2021 were included. Patients were allocated into the training set (n=1511), 

validation set (n=189), and test set (n=189) at a ratio of 8:1:1. Magnetic resonance 

(MR) images in DICOM format were exported from the picture archiving and 

communication system. Two abdominal radiologists, both with 5 years of experience 

in liver MRI, performed manual segmentation of FLLs on T2-weighted imaging, 

diffusion-weighted imaging (b value of 800 s/mm2), in and opposed phase imaging, 

pre- and post-contrast enhanced T1-weighted imaging during late arterial phase, 

portal venous phase, delayed phase (MRI with extracellular contrast agent), 

transitional phase and hepatobiliary phase (MRI with hepatobiliary contrast agent), 

avoiding intrahepatic vasculatures. Each radiologist segmented 944 and 945 

patients, respectively. To facilitate quality control for manual segmentation, all regions 

of interest (ROIs) were inspected by a senior radiologist with 30 years of experience 

in liver MRI. In cases where segmentations were deemed unqualified, manual 

adjustments were carried out by two junior radiologists. The resulting sketched 

images were used as input data for training the automated segmentation models. 

Automated Segmentation Model Training, Validation and Test 

The automated segmentation models were trained using a sequential modular 

approach. Initially, a three-dimensional convolutional neural network (3D-CNN) model 

[1] was employed to generate a liver segmentation mask. During this phase, the 

algorithm defined the liver region on MR images, isolating it from adjacent abdominal 

organs to enable a focused analysis. This algorithm involved an encoder-decoder 

architecture with 3D convolutions and pooling layers, complemented by the Rectified 

Linear Unit (RLU) activation and batch normalization. Skip connections were built 

between corresponding layers of the encoder and decoder. The output layer included 
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two branches for liver boundary segmentation and pixel-level liver region segmentation, 

respectively. Following precise liver segmentation and anatomical delineation, rigorous 

image registration was implemented by aligning multiple MRI sequences with a 

standardized spatial reference framework, thereby enhancing spatial coherence 

between the liver segmentation masks across diverse MRI sequences. 

To improve FLL detection accuracy, segmented liver images were transformed into 

input data for a lesion detection algorithm. Subsequently, an advanced deep learning 

algorithm was developed for automated FLL detection in each sequence of contrast-

enhanced MR images. The core algorithm is the use of a 3D-CNN model known as the 

Unified Multi-Sequence Lesion Detector (MSLD), which comprised two primary 

elements: (a) a series of Single Lesion Detectors (SLD) for independent lesion 

detection in each sequence, and (b) a False Positive Reduction (FPR) module to 

mitigate false alarms in identified lesions. Utilizing the MSLD model, each detected 

lesion was annotated by a bounding box in each sequence. 

To address MRI sequence diversity, we devised Single Lesion Detectors (SLDs) 

tailored for each sequence, extending the Mask region-based convolutional neural 

network (R-CNN) [2] framework to process 3D input images. Four SLDs, sharing the 

same architecture, effectively accommodated variations in tissue appearances across 

various sequence groups, including pre-contrast T1WI, post-contrast T1WI, T2WI, and 

DWI. The SLD framework incorporated the Region Proposal Network (RPN), ROI 

alignment, lesion identification, and segmentation modules. The introduction of an 

adaptive receptive field enabled global feature extraction within slices, and the Feature 

Pyramid Network (FPN) [3] captured multi-scale information for robust perceptual 

capabilities. Training involved the normalization of preprocessed images (2×2×2 mm³ 

spacing), cropping into 160×160×160 patches, and employing the Adam optimizer for 

200 epochs with a batch size of eight. The initial learning rate was 0.001, decaying 

every 50 epochs. 

Multiple sequences were utilized to minimize the impact of image artifacts on lesion 

detection. In automated FLL detection within the SLD section, bounding boxes for 

various sequences were cross-referenced to identify candidate lesions. To reduce 
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false alarms from artifacts, a dedicated FPR module integrated a 3D-CNN for feature 

extraction from each ROI, followed by feature integration from multiple sequences for 

binary predictions. Standardizing ROI dimensions to 32×32×32 ensured uniformity for 

typical lesion sizes. Model training spanned 200 epochs with an initial learning rate of 

0.001, decayed by 0.1 every 30 epochs, and a batch size of 64 for optimized training. 

Lesion segmentation was achieved using a 3D-UNet framework, characterized by 

an encoder-decoder architecture with 3D convolutions and pooling layers. This 

framework was incorporated Rectified Linear Unit (RLU) activation and batch 

normalization. The encoder and decoder, each comprising four layers of 3Dconv-bn-

RLU, were interconnected. After the final decoder layer, a 3D conv-bn-RLU layer was 

integrated for the ultimate lesion segmentation prediction. The model employed the 

Adam optimizer with an initial learning rate of 0.001, gradually reduced by a factor of 

0.1 every 30 epochs, culminating after 60 training epochs. 

Validation set was utilized to fine-tune the hyperparameters, such as adjusting the 

learning rate and batch size. This iterative process enabled the identification of optimal 

hyperparameters that led to best results on a new data set, which played a crucial role 

in enhancing the model's generalizability. 

The accuracy of the automated liver and lesion segmentation models was evaluated 

on the test set. The mean Dice similarity coefficient (DSC) between the automated and 

manual liver segmentations was 0.95±0.11, with a range of 0.79 to 0.99 across all 

sequences. In addition, the mean DSC between the automated and manual lesion 

segmentations was 0.78±0.16, with a range of 0.59 to 0.96 across all sequences. 
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Supplementary Material 3 Detailed Methods of Radiomic Analysis 

Image Acquisition, Preprocessing and Automated Segmentation 

De-identified magnetic resonance (MR) images were uploaded to a commercial 

visualization and analysis software (LiverMRDoc; version 2.10.0; Shukun Technology 

Co., Ltd). 

Before automated segmentation, one radiologist (HW) inspected all MR images in 

terms of the sequence names, HCC lesions, and corresponding 3D bounding boxes 

(i.e., the automated lesion detection annotation) on the AI software platform. To ensure 

accurate localization of tumors, manual adjustment was conducted for 16 patients with 

inaccurate 3D bounding boxes (e.g., failing to detect HCC lesions or delineate the 

whole tumors). 

Using 3D U-net-based DL algorithms as detailed in Supplementary Material 2 and 

Fig. S1, automated segmentation of liver and HCC lesions was conducted on each 

transverse section of T2-weighted imaging (T2WI), in phase (IP), opposed phase (OP), 

arterial phase (AP), portal venous phase (PVP), and delayed phase (DP; for MRI with 

extracellular contrast agent [ECA]) or translational phase (TP; for MRI with 

hepatobiliary contrast agent [HCA]) images. 

To implement the quality control, one radiologist (HW) visually inspected each 

segmented tumor and liver, and those (n=40) with inaccurate tumor or liver 

segmentations on any above sequences were excluded from radiomic analyses. The 

exclusion criteria for inaccurate segmentation were (a) tumor region of interest (ROI) 

covered nontumoral areas (e.g., liver parenchyma, benign cysts, adjacent organs or 

tissues) (n=18); (b) tumor ROI failed to cover the whole tumor areas (n=8); (c) liver 

ROI failed to cover the whole tumor or liver areas (n=6); and (d) liver ROI covered 

areas beyond the liver (n=8). Examples of inaccurate image segmentations are 

presented in Fig. 2. Manual adjustment was not considered because the study aimed 

to examine the prognostic utility of this automated technique. 

To assess the accuracy of automated DL segmentation, one radiologist (TYZ) who 

was unknown to the automated segmentation results manually segmented 30 

randomly chosen HCC lesions using ITK-SNAP (version 3.8.0; www.itksnap.org). 
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To extract radiomic features of peritumoral areas, the tumor’s 3D mask was 

expanded radially outwards by 5 mm, 10 mm, and 20 mm on each sequence using a 

medical research platform (UltraScholar, Version 2.0, Shukun Technology Co., Ltd, 

https://medresearch.shukun.net/). Accordingly, five types of volumes of interest (VOIs) 

were created: (a) tumor VOI, defined as the VOI covering HCC lesion; (b) three 

extended tumor VOIs, defined as the tumor VOI with automated extension of tumor 

boundaries by 5 mm, 10 mm, and 20 mm, respectively; and (c) liver VOI, defined as 

the VOI covering nontumoral liver parenchyma (Fig. 3). 

Radiomic Feature Extraction 

MR image preprocessing and radiomic feature extraction were performed with the 

PyRadiomic package (version 3.0.1; https://pyradiomic.readthedocs.io/en/v3.0.1/). 

Before extracting radiomic features, voxels in each MR image volume were resampled 

to an isotropic voxel size of 1.0 × 1.0 × 1.0 mm3. This standardization helped minimize 

the impact of various MR imaging conditions, like pixel spacings and slice thicknesses. 

For gray value discretization, a bin width of 25 was applied to volume images. A 

normalization of image intensity values was performed to enhance comparability and 

interpretability of the radiomic features. The normalization scale parameter was set to 

1 to retain the original scale of normalized images and ensure the data integrity. To 

address geometric differences in liver MRI images, a geometry tolerance parameter of 

1e-5 was employed during extracting radiomic features. 

Extracted feature classes included the shape features, first-order features, second-

order features, and higher-order features. The shape-based features described the 

area, volume, perimeter, contours irregularity and compactness (perimeter²/area) of 

tumor or liver. The first-order statistics depicted the distribution of individual voxel-

values within the MR image without emphasizing their spatial relationships. The 

second-order features (i.e., Gray Level Co-occurrence Matrix [GLCM] features) 

conveyed additional information about texture by considering relationships between 

intensities of neighboring voxel pairs. The higher-order features (e.g., Gray Level Run 

Length Matrix [GLRLM] features, Gray Level Dependence Matrix [GLDM] features, 

Neighboring Gray Tone Difference Matrix [NGTDM] features, Gray Level Size Zone 
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Matrix [GLSZM] features, and Gray Level Distance Zone Matrix [GLDZM] features) 

provided sophisticated patterns and textural information, highlighting the relationships 

among multiple voxels [1]. 

A total of 1688 features were extracted from each VOI in one sequence: 324 first-

order statistics, 14 shape features, 432 second-order features (i.e., GLCM features), 

and 918 higher-order features (i.e., 252 GLDM features, 288 GLRLM features, 288 

GLSZM features, 90 NGTDM features). This led to 10,128 features for each VOI on all 

six sequences. Radiomic features were extracted for VOI of tumor, tumor border 

extensions (5 mm, 10 mm, and 20 mm), and liver, respectively. 

Radiomic Feature Normalization and Abnormal Feature Exclusion 

Radiomic feature normalization, abnormal feature exclusion, feature selection, and 

radiomic signature construction were performed with R software (version 4.3.1; The R 

Foundation for Statistical Computing). 

Values of extracted radiomic features on the training set were normalized with z 

scores; the means and standard deviations derived from the training set were applied 

to the feature normalization of the test set. Abnormal features with a variance of 0 were 

excluded from further analyses. Variance measured the degree of dispersion of values; 

a variance of 0 suggested that feature values were same in all patients. The number 

of abnormal features ranged from 1552 to 3142 for all radiomic signatures. 

Feature Selection 

After normalization and excluding abnormal features, we followed a four-step 

procedure to reduce dimensions and select robust radiomic features on the training 

set. 

First, intervariable collinearity was estimated by Spearman correlation analysis. For 

radiomic features with a Spearman's rank correlation coefficient >0.8, hierarchical 

feature clustering was performed to remove redundancy. These features were 

clustered into 1 to N (defined as the number of features divided by 3) classes, 

respectively. To determine the optimal number of clusters, the mean Silhouette 

Coefficient (mSC) was used whereby a higher value denoted a better quality of 

clustering. The resulting cluster was represented by one feature with largest range of 
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values among the clustered features. As such, representative features in all clusters 

plus features with a Spearman's rank correlation coefficient ≤0.8 were entered into 

further analyses. The cluster configurations and representative features generated 

from the training set were applied to the test set, because all parameters of the 

radiomic signatures must be remembered with the model building and applied to the 

test set with the same threshold. 

Subsequently, univariable Cox regression analysis was performed to identify 

significant radiomic features associated with early recurrence. Features with P<0.01 

were kept for further analyses. 

Next, random survival forest (RSF) was applied to select the top 20 features. The 

measure of variable importance (VIMP) was used to rank the importance of variables 

[2], with a higher value indicating a greater importance. 

Finally, based on top 20 features derived from the RSF, radiomic signatures were 

constructed by the multivariable Cox regression analysis using backward elimination 

approach with five-fold cross-validation. 

Radiomic Signature Development and Validation 

Eight groups of radiomic signatures were built for predicting early recurrence based on 

different combinations of radiomic features extracted from tumor, tumor border 

extensions (5mm, 10mm, and 20mm), and liver parenchyma, including: (a) HCC, (b) 

HCC with 5 mm tumor border extension, (c) HCC with 10 mm tumor border extension, 

(d) HCC with 20 mm tumor border extension, (e) HCC and liver, (f) HCC with 5 mm 

tumor border extension and liver, (g) HCC with 10 mm tumor border extension and 

liver, and (h) HCC with 20 mm tumor border extension and liver. The optimal radiomic 

signature that exhibited highest performance was selected for building the hybrid 

model. 
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Table S1 MRI Sequences and Parameters 

Sequence T1-weighted IP and 

OP imaging 

Dynamic T1-weighted 

3D GRE 

T2-weighted 

2D FSE 

Diffusion-weighted 

imaging† 

GE Discovery MR 750 3.0 Tesla (16-channel phased-array torsor coil) 

Repetition time (ms) 150 4.1 6315 9230 

Echo time (ms) 2.5/1.3 1.9 78 Minimum 

Flip angle (°) 70 15 111 90 

Section thickness (mm) 6 2 6 6 

Spacing (mm) 2 - 2 2 

Matrix size 288×192 512×512 288×244 128×128 

Field of view (mm2) 420×420 380×300 360×280 360×380 

Acquisition time (s) 31 15 RG RG 

Fat suppression No Yes Yes Yes 

GE SIGNA™ Architect 3.0 Tesla (30-channel body anterior coil) 

Repetition time (ms) 233.8 3.9 2400 5000 

Echo time (ms) 2.3/1.1 1.7 85 Minimum 

Flip angle (°) 55 15 111 90 

Section thickness (mm) 7 3 7 7 

Spacing (mm) 2 - 2 2 

Matrix size 160×288 320×240 320×192 160×128 

Field of view (mm2) 380×323 380×380 380×304 380×342 

Acquisition time (s) 18 15 34 RG 

Fat suppression No Yes Yes Yes 

GE SIGNA™ Premier 3.0 Tesla (30-channel body anterior coil) 

Repetition time (ms) 146.8 3.2 2200 5000 

Echo time (ms) 2.3/1.1 1.4 85 Minimum 

Flip angle (°) 55 15 111 90 

Section thickness (mm) 7 2.4 7 7 

Spacing (mm) 2 - 2 2 

Matrix size 320×192 320×240 320×224 120×240 

Field of view (mm2) 342×380 380×380 304×380 380×380 

Acquisition time (s) 16 15 47 RG 

Fat suppression No Yes Yes Yes 

Siemens MAGNETOM Skyra 3.0 Tesla (18-channel body array coil)  

Repetition time (ms) 81 3.95 2160 5600 

Echo time (ms) 2.72/1.4 1.92 100 68 

Flip angle (°) 70 9 160 90 

Section thickness (mm) 6 2.5 6 6 

Spacing (mm) 1.8 - 1.8 1.8 

Matrix size 352×286 352×256 320×288 100×76 

Field of view (mm2) 400×325 400×296 433×433 380×289 

Acquisition time (s) 24 14 36 233 

Fat suppression No Yes Yes Yes 
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Siemens TrioTim 3.0 Tesla (8-channel body anterior coil)  

Repetition time (ms) 181 3.47 2700 5900 

Echo time (ms) 2.2/3.67 1.25 95 76 

Flip angle (°) 65 9 140 90 

Section thickness (mm) 6 2.4 6 6 

Spacing (mm) 7.8 - 7.8 7.8 

Matrix size 256×131 320×133 320×147 192×154 

Field of view (mm2) 410×269 434×257 442×254 393×393 

Acquisition time (s) 18 17 RG 245 

Fat suppression No Yes Yes Yes 

Siemens Avanto 1.5 Tesla (30-channel body anterior coil) 

Repetition time (ms) 72 5.41 2530 3600 

Echo time (ms) 4.92/2.22 2.39 84 88 

Flip angle (°) 70 10 150 90 

Section thickness (mm) 6 2.5 6 6 

Spacing (mm) 7.8 - 7.8 7.8 

Matrix size 256×158 320×138 256×187 192×115 

Field of view (mm2) 328×225 382×238 293×251 310×232 

Acquisition time (s) 16 15 47 92 

Fat suppression No Yes Yes Yes 

Siemens Avanto 1.5 Tesla (8-channel body anterior coil) 

Repetition time (ms) 87 5.4 2710 2000 

Echo time (ms) 4.92/2.22 2.38 84 72 

Flip angle (°) 70 10 150 90 

Section thickness (mm) 7.5 2 7.5 7.5 

Spacing (mm) 9.75 - 9.75 9.75 

Matrix size 256×187 320×131 256×177 192×125 

Field of view (mm2) 308×380 241×407 308×380 308×379 

Acquisition time (s) 33 15 27 20 

Fat suppression No Yes Yes Yes 

Philips Ingenia Elition X 3.0 Tesla (16-channel body anterior coil) 

Repetition time (ms) 164.53 4.20 1883.51 1653.65 

Echo time (ms) 2.30/1.15 0.00 90 60.29 

Flip angle (°) 50 10 90 90 

Section thickness (mm) 6 3 6.8 7 

Spacing (mm) 7.5 1.5 8.5 8.5 

Matrix size 256×201 344×252 272×78 142×140 

Field of view (mm2) 360×360 380×380 380×380 380×380 

Acquisition time (s) 11 13 46 52 

Fat suppression No Yes Yes Yes 

uMR588 1.5 Tesla (6-channel body anterior coil) 

Repetition time (ms) 117.6 4.2 2600 3350 

Echo time (ms) 4.7/2.27 1.88 99.2 77 

Flip angle (°) 60 10 90 90 



Insights Imaging (2024) Wei H, Zheng T, Zhang X, et al. 

 

Section thickness (mm) 6.5 2.5 6.5 6.5 

Spacing (mm) 1.3 - 1.5 10 

Matrix size 256×174 256×154 256×168 128×92 

Field of view (mm2) 320×400 255×400 427×320 320×400 

Acquisition time (s) 29 13 39 RG 

Fat suppression No Yes Yes Yes 

FSE, fast spin-echo; GRE, gradient recall echo; IP, in-phase; MRI, magnetic resonance imaging; 

NA, not available; OP, opposed-phase; RG, respiratory gating; 3D, three-dimensional; 2D, two-

dimensional. 

†Images were acquired under free breath. 
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Table S2 Dice Similarity Coefficients between the Automated and Manual Tumor 

Segmentations in 30 randomly selected HCC lesions 

Sequence 
Dice similarity coefficient 

Mean ± SD Median (IQR) Range 

T2WI 0.89 ± 0.07 0.91 (0.89-0.94) 0.69-0.96 

IP 0.86 ± 0.08 0.89 (0.83-0.92) 0.71-0.94 

OP 0.76 ± 0.21 0.84 (0.67-0.91) 0.16-0.94 

AP 0.87 ± 0.07 0.89 (0.86-0.92) 0.71-0.94 

PVP 0.84 ± 0.10 0.87 (0.82-0.89) 0.46-0.94 

DP (ECA MRI) 0.84 ± 0.08 0.86 (0.82-0.91) 0.63-0.92 

TP (HCA MRI) 0.83 ± 0.24 0.93 (0.83-0.94) 0.17-0.94 

All 0.84 ± 0.13 0.88 (0.82-0.92) 0.16-0.96 

AP, arterial phase; DP, delayed phase; ECA, extracellular contrast agent; HCA, hepatobiliary 

contrast agent; HCC, hepatocellular carcinoma; IP, in phase; IQR, interquartile range; MRI, 

magnetic resonance imaging; OP, opposed phase; PVP, portal venous phase; SD, standard 

deviation; TP, transitional phase; T2WI, T2-weighted imaging. 
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Table S3 Number of Radiomic Features in Each Step of Feature Selection on the Training Set 

Dataset and Group No. of Original 

Radiomic Features 

No. of Excluded 

Abnormal Radiomic 

Features 

No. of Radiomic 

Features Entered into 

Hierarchical Feature 

Clustering 

No. of Radiomic 

Features Excluded 

by Hierarchical 

Feature Clustering 

No. of Radiomic 

Features Entered into 

Univariable Cox 

Regression Analysis  

No. of Radiomic 

Features Excluded 

by Univariable Cox 

Regression Analysis 

No. of Radiomic 

Features Entered into 

Random Survival 

Forest 

Training Set (n=305) 
     

 
 

HCC 10128 1552 3946 2644 5932 4187 1745 

HCC with 5 mm tumor border extension 10128 1553 3858 2764 5811 4271 1540 

HCC with 10 mm tumor border extension 10128 1562 3820 2750 5816 4395 1421 

HCC with 20 mm tumor border extension 10128 1573 3596 2692 5863 4583 1280 

HCC + liver 20256 3121 7657 5105 12030 9726 2304 

HCC with 5 mm tumor border extension + liver 20256 3122 7569 5342 11792 9707 2085 

HCC with 10 mm tumor border extension + liver 20256 3131 7531 5429 11696 9747 1949 

HCC with 20 mm tumor border extension + liver 20256 3142 7307 4881 12233 10347 1886 

HCC, hepatocellular carcinoma. 
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Table S4 Eight Groups of Radiomic Signatures for Prediction of Early Recurrence according to Multivariable Cox Regression Analyses 

 

Data in parentheses are 95% confidence intervals. 

AP, arterial phase; DP, delayed phase; HCC; hepatocellular carcinoma; IP, in phase; OP, opposed phase; PVP, portal venous phase; TP, transitional phase; T2WI, T2-

weighted imaging. 

 

 

Feature Hazard Ratio P Value

HCC

[1] T2WI_HCC_logarithm_glszm_Large Area Low Gray Level Emphasis

[2] T2WI_HCC_logarithm_glrlm_Long Run Low Gray Level Emphasis

[3] T2WI_HCC_squareroot_glrlm_Long Run Low Gray Level Emphasis

[4] T2WI_HCC_original_glrlm_Long Run Low Gray Level Emphasis

[5] IP_HCC_lbp.2D_glszm_Zone Variance

[6] OP_HCC_ logarithm_glszm_Large Area Low Gray Level Emphasis

[7] AP_HCC_lbp.3D.k_glcm_Cluster Shade

[8] T2WI_HCC_logarithm_glszm_Large Area Emphasis

[9] AP_HCC_wavelet.HHL_glszm_Zone Entropy

[10] IP_HCC_lbp.3D.m2_glszm_Zone Variance

[11] IP_HCC_lbp.3D.m1_glszm_Size Zone Nonuniformity Normalized

[12] OP_HCC_lbp.3D.k_glszm_Zone Variance

[13] IP_HCC_exponential_glszm_Zone Entropy

[14] OP_HCC_square_glszm_Zone Entropy

[15] IP_HCC_lbp.2D_glszm_Size Zone Nonuniformity Normalized

[16] TP/DP_HCC_wavelet.HLL_glszm_Small Area Low Gray Level Emphasis

[17] T2WI_HCC_original_first order_Energy

[18] AP_HCC_lbp.3D.k_first order_Range

[19] OP_HCC_squareroot_glrlm_Long Run Low Gray Level Emphasis

[20] AP_HCC_lbp.3D.k_ngtdm_Contrast

[1] T2WI_HCC_logarithm_glrlm_Long Run Low Gray Level Emphasis

[2] IP_HCC_lbp.2D_glszm_Zone Variance

[3] AP_HCC_lbp.3D.k_ngtdm_Contrast

1.504 (1.320, 1.712)

1.348 (1.175, 1.547)

1.400 (1.223, 1.603)

<0.001

<0.001

<0.001

HCC with 5 mm tumor border extension

[1] OP_HCC.peri5mm_lbp.3D.m1_glszm_Gray Level Nonuniformity

[2] OP_HCC.peri5mm_square_glszm_Gray Level Nonuniformity

[3] T2WI_HCC.peri5mm_wavelet.LLL_glszm_Large Area Low Gray Level Emphasis

[4] PVP_HCC.peri5mm_wavelet.HLL_glrlm_Long Run High Gray Level Emphasis

[5] IP_HCC.peri5mm_lbp.3D.m1_glszm_Size Zone Nonuniformity Normalized

[6] PVP_HCC.peri5mm_wavelet.HHH_glszm_Zone Entropy

[7] OP_HCC.peri5mm_lbp.2D_glszm_Gray Level Nonuniformity

[8] OP_HCC.peri5mm_square_glszm_Zone Entropy

[9] TP/DP_HCC.peri5mm_logarithm_glszm_Zone Percentage

[10] OP_HCC.peri5mm_wavelet.HHH_glszm_Size Zone Nonuniformity Normalized

[11] AP_HCC.peri5mm_lbp.3D.k_ngtdm_Contrast

[12] OP_HCC.peri5mm_lbp.3D.m2_glszm_Zone Entropy

[13] OP_HCC.peri5mm_gradient_glszm_Gray Level Nonuniformity

[14] OP_HCC.peri5mm_gradient_glszm_Zone Entropy

[15] OP_HCC.peri5mm_lbp.3D.m2_glszm_Size Zone Nonuniformity Normalized

[16] OP_HCC.peri5mm_lbp.2D_glszm_Zone Entropy

[17] IP_HCC.peri5mm_exponential_glszm_Zone Entropy

[18] IP_HCC.peri5mm_wavelet.HHL_glszm_Size Zone Nonuniformity Normalized

[19] OP_HCC.peri5mm_square_glszm_Size Zone Nonuniformity

[20] IP_HCC.peri5mm_wavelet.HHL_glszm_Gray Level Nonuniformity

[1] OP_HCC.peri5mm_lbp.3D.m1_glszm_Gray Level Nonuniformity

[2] T2WI_HCC.peri5mm_wavelet.LLL_glszm_Large Area Low Gray Level Emphasis

[3] PVP_HCC.peri5mm_wavelet.HLL_glrlm_Long Run High Gray Level Emphasis

[4] IP_HCC.peri5mm_lbp.3D.m1_glszm_Size Zone Nonuniformity Normalized

[5] OP_HCC.peri5mm_square_glszm_Zone Entropy

[6] TP/DP_HCC.peri5mm_logarithm_glszm_Zone Percentage

[7] AP_HCC.peri5mm_lbp.3D.k_ngtdm_Contrast

[8] OP_HCC.peri5mm_square_glszm_Size Zone Nonuniformity

0.479 (0.225, 1.019)

1.170 (1.045, 1.309)

1.582 (1.287, 1.944)

0.768 (0.653, 0.903)

2.146 (1.036, 4.442)

0.476 (0.192, 1.180)

1.495 (1.236, 1.808)

1.328 (1.116, 1.580)

0.056

0.006

<0.001

0.001

0.040

0.109

<0.001

0.001

HCC with 10 mm tumor border extension

[1] OP_HCC.peri10mm_wavelet.HHL_glszm_Zone Entropy

[2] AP_HCC.peri10mm_wavelet.LHL_glszm_Zone Entropy

[3] IP_HCC.peri10mm_square_glszm_Zone Entropy

[4] OP_HCC.peri10mm_wavelet.HHL_glszm_Gray Level Nonuniformity

[5] IP_HCC.peri10mm_wavelet.HHL_glszm_Size Zone Nonuniformity Normalized

[6] OP_HCC.peri10mm_square_glszm_Zone Variance

[7] OP_HCC.peri10mm_lbp.2D_glszm_Zone Variance

[8] IP_HCC.peri10mm_exponential_glszm_Size Zone Nonuniformity Normalized

[9] OP_HCC.peri10mm_wavelet.HHL_glszm_Size Zone Nonuniformity Normalized

[10] IP_HCC.peri10mm_lbp.3D.m1_glszm_Size Zone Nonuniformity Normalized

[11] AP_HCC.peri10mm_wavelet.LHH_glcm_Sum Entropy

[12] TP/DP_HCC.peri10mm_wavelet.LHH_glcm_Sum Entropy

[13] OP_HCC.peri10mm_lbp.3D.m1_glszm_Zone Variance

[14] IP_HCC.peri10mm_lbp.3D.m1_glszm_Zone Entropy

[15] OP_HCC.peri10mm_lbp.3D.m2_glszm_Zone Variance

[16] PVP_HCC.peri10mm_wavelet.HLL_first order_Median

[17] OP_HCC.peri10mm_wavelet.LLH_glszm_Zone Entropy

[18] T2WI_HCC.peri10mm_wavelet.HHH_glszm_Small Area Low Gray Level Emphasis

[19] IP_HCC.peri10mm_wavelet.LHH_glszm_Size Zone Nonuniformity

[20] AP_HCC.peri10mm_exponential_first order_Kurtosis

[1] OP_HCC.peri10mm_wavelet.HHL_glszm_Zone Entropy

[2] AP_HCC.peri10mm_wavelet.LHL_glszm_Zone Entropy

[3] OP_HCC.peri10mm_square_glszm_Zone Variance

[4] AP_HCC.peri10mm_wavelet.LHH_glcm_Sum Entropy

[5] TP/DP_HCC.peri10mm_wavelet.LHH_glcm_Sum Entropy

[6] PVP_HCC.peri10mm_wavelet.HLL_first order_Median

[7] OP_HCC.peri10mm_wavelet.LLH_glszm_Zone Entropy

[8] T2WI_HCC.peri10mm_wavelet.HHH_glszm_Small Area Low Gray Level Emphasis

[9] IP_HCC.peri10mm_wavelet.LHH_glszm_Size Zone Nonuniformity

[10] AP_HCC.peri10mm_exponential_first order_Kurtosis

1.347 (1.017, 1.783)

1.296 (1.005, 1.670)

1.188 (1.041, 1.355)

0.766 (0.622, 0.944)

0.793 (0.636, 0.988)

2.235 (1.500, 3.328)

1.350 (1.001, 1.821)

1.246 (1.006, 1.542)

0.849 (0.682, 1.056)

1.213 (1.065, 1.382)

0.038

0.045

0.010

0.012

0.039

<0.001

0.049

0.043

0.141

0.004

HCC with 20 mm tumor border extension

[1] T2WI_HCC.peri20mm_wavelet.HHL_glszm_Size Zone Nonuniformity

[2] PVP_HCC.peri20mm_wavelet.HHH_gldm_Dependence Entropy

[3] PVP_HCC.peri20mm_wavelet.LHH_glcm_Autocorrelation

[4] PVP_HCC.peri20mm_wavelet.HHL_first order_Minimum

[5] T2WI_HCC.peri20mm_wavelet.LHL_glrlm_Short Run Emphasis

[6] PVP_HCC.peri20mm_lbp.3D.k_glrlm_Low Gray Level Run Emphasis

[7] PVP_HCC.peri20mm_lbp.3D.k_glrlm_Run Length Nonuniformity

[8] AP_HCC.peri20mm_wavelet.HHL_glrlm_Long Run High Gray Level Emphasis

[9] PVP_HCC.peri20mm_wavelet.HLL_gldm_Gray Level Variance

[10] T2WI_HCC.peri20mm_lbp.2D_first order_90 Percentile

[11] PVP_HCC.peri20mm_wavelet.HLL_first order_Entropy

[12] AP_HCC.peri20mm_wavelet.LHH_glcm_Sum Entropy

[13] PVP_HCC.peri20mm_wavelet.LHH_gldm_Dependence Variance

[14] T2WI_HCC.peri20mm_wavelet.HLL_glrlm_Run Variance

[15] PVP_HCC.peri20mm_wavelet.HHH_gldm_Dependence Nonuniformity Normalized

[16] T2WI_HCC.peri20mm_wavelet.LHH_glrlm_Short Run Low Gray Level Emphasis

[17] AP_HCC.peri20mm_lbp.3D.k_ngtdm_Strength

[18] T2WI_HCC.peri20mm_wavelet.LHH_glrlm_Run Entropy

[19] OP_HCC.peri20mm_wavelet.LLH_glszm_Size Zone Nonuniformity Normalized

[20] AP_HCC.peri20mm_wavelet.LHH_glcm_Autocorrelation

[1] T2WI_HCC.peri20mm_wavelet.HHL_glszm_Size Zone Nonuniformity

[2] PVP_HCC.peri20mm_wavelet.HHH_gldm_Dependence Entropy

[3] PVP_HCC.peri20mm_wavelet.LHH_glcm_Autocorrelation

[4] PVP_HCC.peri20mm_wavelet.HHL_first order_Minimum

[5] PVP_HCC.peri20mm_lbp.3D.k_glrlm_Run Length Nonuniformity

[6] AP_HCC.peri20mm_wavelet.HHL_glrlm_Long Run High Gray Level Emphasis

[7] PVP_HCC.peri20mm_wavelet.HLL_gldm_Gray Level Variance

[8] T2WI_HCC.peri20mm_lbp.2D_first order_90 Percentile

[9] AP_HCC.peri20mm_wavelet.LHH_glcm_Sum Entropy

[10] PVP_HCC.peri20mm_wavelet.HHH_gldm_Dependence Nonuniformity Normalized

[11] OP_HCC.peri20mm_wavelet.LLH_glszm_Size Zone Nonuniformity Normalized

1.328 (1.059, 1.666)

49.810 (3.959, 626.597)

0.706 (0.535, 0.932)

0.771 (0.588, 1.012)

0.776 (0.594, 1.014)

1.392 (1.108, 1.748)

3.086 (1.229, 7.748)

0.705 (0.572, 0.870)

0.746 (0.586, 0.949)

43.592 (3.528, 538.630)

0.738 (0.548, 0.992)

0.014

0.002

0.014

0.061

0.063

0.004

0.016

0.001

0.017

0.003

0.044

HCC + liver

[1] T2WI_HCC_original_glrlm_Long Run Low Gray Level Emphasis

[2] T2WI_HCC_logarithm_glrlm_Long Run Low Gray Level Emphasis

[3] T2WI_HCC_squareroot_glrlm_Long Run Low Gray Level Emphasis

[4] PVP_Liver_wavelet.LHH_glrlm_Run Length Nonuniformity Normalized

[5] PVP_Liver_wavelet.LHH_glcm_Sum Entropy

[6] IP_HCC_lbp.3D.m1_glszm_Zone Entropy

[7] TP/DP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[8] OP_HCC_square_glszm_Zone Variance

[9] AP_Liver_wavelet.LHH_glrlm_Run Length Nonuniformity Normalized

[10] OP_HCC_exponential_glszm_Zone Variance

[11] OP_Liver_lbp.2D_glszm_Zone Variance

[12] T2WI_HCC_logarithm_glszm_Large Area Low Gray Level Emphasis

[13] AP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[14] T2WI_HCC_wavelet.LLL_glrlm_Long Run Low Gray Level Emphasis

[15] OP_Liver_square_glszm_ZoneVariance

[16] AP_HCC_lbp.3D.m1_first order_90 Percentile

[17] OP_HCC_exponential_glszm_Size Zone Nonuniformity Normalized

[18] OP_HCC_lbp.3D.k_first order_Minimum

[19] OP_HCC_lbp.3D.m1_glszm_Size Zone Nonuniformity Normalized

[20] T2WI_Liver_wavelet.HLL_gldm_Dependence Nonuniformity Normalized

[1] T2WI_HCC_original_glrlm_Long Run Low Gray Level Emphasis

[2] PVP_Liver_wavelet.LHH_glcm_Sum Entropy

[3] IP_HCC_lbp.3D.m1_glszm_Zone Entropy

[4] TP/DP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[5] OP_Liver_lbp.2D_glszm_Zone Variance

[6] AP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[7] AP_HCC_lbp.3D.m1_first order_90 Percentile

[8] T2WI_Liver_wavelet.HLL_gldm_Dependence Nonuniformity Normalized

1.563 (1.352, 1.807)

0.626 (0.515, 0.761)

1.353 (1.177, 1.554)

1.207 (0.934, 1.56)

1.159 (0.961, 1.398)

0.664 (0.486, 0.906)

1.422 (1.117, 1.81)

0.693 (0.571, 0.841)

<0.001

<0.001

<0.001

0.151

0.123

0.010

0.004

<0.001

HCC with 5 mm tumor border extension + liver

[1] OP_HCC.peri5mm_wavelet.HHL_glszm_Size Zone Nonuniformity Normalized

[2] OP_HCC.peri5mm_lbp.3D.m2_glszm_Gray Level Nonuniformity

[3] PVP_Liver_wavelet.HLH_glcm_Sum Entropy

[4] OP_HCC.peri5mm_square_glszm_Gray Level Nonuniformity

[5] OP_HCC.peri5mm_lbp.2D_glszm_Gray Level Nonuniformity

[6] IP_HCC.peri5mm_square_glszm_Gray Level Nonuniformity

[7] PVP_HCC.peri5mm_wavelet.LHH_glcm_Sum Entropy

[8] PVP_Liver_wavelet.LHH_glrlm_Run Length Nonuniformity Normalized

[9] AP_HCC.peri5mm_wavelet.HLH_glszm_Zone Entropy

[10] IP_HCC.peri5mm_wavelet.HHL_glszm_Zone Entropy

[11] OP_HCC.peri5mm_exponential_glszm_Size Zone Nonuniformity Normalized

[12] OP_HCC.peri5mm_lbp.3D.m1_glszm_Gray Level Nonuniformity

[13] PVP_HCC.peri5mm_wavelet.HHH_glszm_Zone Entropy

[14] AP_Liver_wavelet.LHH_gldm_Small Dependence Emphasis

[15] PVP_Liver_wavelet.LHH_glcm_Sum Entropy

[16] TP/DP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[17] OP_HCC.peri5mm_lbp.2D_glszm_Size Zone Nonuniformity Normalized

[18] OP_HCC.peri5mm_wavelet.HHH_glszm_Size Zone Nonuniformity Normalized

[19] IP_HCC.peri5mm_wavelet.HHL_glszm_Size Zone Nonuniformity Normalized

[20] OP_Liver_lbp.3D.m1_glszm_Zone Variance

[1] OP_HCC.peri5mm_lbp.3D.m2_glszm_Gray Level Nonuniformity

[2] AP_HCC.peri5mm_wavelet.HLH_glszm_Zone Entropy

[3] IP_HCC.peri5mm_wavelet.HHL_glszm_Zone Entropy

[4] PVP_Liver_wavelet.LHH_glcm_Sum Entropy

[5] IP_HCC.peri5mm_wavelet.HHL_glszm_Size Zone Nonuniformity Normalized

1.132 (1.003, 1.278)

1.325 (1.042, 1.686)

1.929 (1.391, 2.675)

0.640 (0.551, 0.744)

1.419 (1.033, 1.950)

0.044

0.022

<0.001

<0.001

0.031

HCC with 10 mm tumor border extension + liver

[1] OP_HCC.peri10mm_lbp.3D.m1_glszm_Zone Variance

[2] AP_Liver_wavelet.LHH_glrlm_Run Length Nonuniformity Normalized

[3] AP_HCC.peri10mm_wavelet.LHL_glszm_Zone Entropy

[4] AP_HCC.peri10mm_wavelet.LHH_glcm_Sum Entropy

[5] OP_Liver_lbp.2D_glszm_Zone Entropy

[6] IP_HCC.peri10mm_lbp.3D.m2_glszm_Zone Entropy

[7] IP_HCC.peri10mm_square_glszm_Size Zone Nonuniformity Normalized

[8] TP/DP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[9] PVP_Liver_wavelet.LHH_glcm_Sum Entropy

[10] OP_HCC.peri10mm_wavelet.HHL_glszm_Zone Entropy

[11] TP/DP_Liver_wavelet.LHH_gldm_Small Dependence Emphasis

[12] AP_Liver_wavelet.HLH_first order_Minimum

[13] OP_HCC.peri10mm_wavelet.HHL_glszm_Size Zone Nonuniformity Normalized

[14] TP/DP_Liver_wavelet.LHH_glcm_Sum Entropy

[15] T2WI_HCC.peri10mm_wavelet.LHL_glrlm_Short Run High Gray Level Emphasis

[16] OP_Liver_lbp.3D.m1_glszm_Zone Variance

[17] OP_Liver_exponential_glszm_Zone Variance

[18] PVP_HCC.peri10mm_wavelet.HLL_glrlm_Long Run Emphasis

[19] OP_HCC.peri10mm_lbp.2D_glszm_Zone Variance

[20] OP_Liver_gradient_glszm_Zone Entropy

[1] OP_HCC.peri10mm_lbp.3D.m1_glszm_Zone Variance

[2] IP_HCC.peri10mm_lbp.3D.m2_glszm_Zone Entropy

[3] IP_HCC.peri10mm_square_glszm_Size Zone Nonuniformity Normalized

[4] PVP_Liver_wavelet.LHH_glcm_Sum Entropy

[5] OP_HCC.peri10mm_wavelet.HHL_glszm_Zone Entropy

[6] AP_Liver_wavelet.HLH_first order_Minimum

[7] T2WI_HCC.peri10mm_wavelet.LHL_glrlm_Short Run High Gray Level Emphasis

1.160 (1.009, 1.335)

0.276 (0.078, 0.972)

0.260 (0.075, 0.902)

0.614 (0.521, 0.723)

1.478 (1.191, 1.834)

1.490 (1.131, 1.961)

0.685 (0.543, 0.865)

0.038

0.045

0.034

<0.001

<0.001

0.005

0.001

HCC with 20 mm tumor border extension + liver

[1] AP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[2] PVP_Liver_wavelet.LHH_glrlm_Run Length Nonuniformity Normalized

[3] PVP_Liver_wavelet.LHH_gldm_Small Dependence Emphasis

[4] PVP_Liver_wavelet.LHH_gldm_Small Dependence High Gray Level Emphasis

[5] OP_Liver_lbp.2D_glszm_Zone Variance

[6] TP/DP_Liver_wavelet.LHH_gldm_Small Dependence Emphasis

[7] TP/DP_Liver_wavelet.LHH_glcm_Sum Entropy

[8] PVP_Liver_wavelet.LHH_glcm_Sum Entropy

[9] T2WI_HCC.peri20mm_wavelet.HLL_glrlm_Short Run Low Gray Level Emphasis

[10] OP_Liver_exponential_glszm_Zone Variance

[11] AP_Liver_wavelet.LHH_glcm_Sum Entropy

[12] T2WI_HCC.peri20mm_wavelet.HLH_glszm_Size Zone Nonuniformity

[13] AP_Liver_wavelet.HLH_first order_Range

[14] T2WI_Liver_wavelet.HLL_gldm_Dependence Nonuniformity Normalized

[15] OP_Liver_gradient_glszm_Zone Variance

[16] TP/DP_HCC.peri20mm_wavelet.HLL_glcm_Sum Squares

[17] AP_Liver_wavelet.LHH_glrlm_Run Length Nonuniformity Normalized

[18] PVP_HCC.peri20mm_wavelet.HLL_first order_Uniformity

[19] TP/DP_Liver_square_glszm_Size Zone Nonuniformity

[20] PVP_HCC.peri20mm_wavelet.HLL_gldm_Gray Level Variance

[1] PVP_Liver_wavelet.LHH_glrlm_Run Length Nonuniformity Normalized

[2] PVP_Liver_wavelet.LHH_gldm_Small Dependence Emphasis

[3] OP_Liver_lbp.2D_glszm_Zone Variance

[4] T2WI_HCC.peri20mm_wavelet.HLL_glrlm_Short Run Low Gray Level Emphasis

[5] AP_Liver_wavelet.LHH_glcm_Sum Entropy (AP)

[6] AP_Liver_wavelet.HLH_first order_Range (AP)

[7] T2WI_Liver_wavelet.HLL_gldm_Dependence Nonuniformity Normalized

[8] PVP_HCC.peri20mm_wavelet.HLL_first order_Uniformity

[9] TP/DP_Liver_square_glszm_Size Zone Nonuniformity

1.877 (1.149, 3.065)

0.661 (0.438, 0.996)

1.173 (0.974, 1.414)

0.606 (0.471, 0.778)

0.789 (0.602, 1.035)

0.631 (0.460, 0.864)

0.837 (0.682, 1.026)

0.326 (0.136, 0.782)

1.311 (1.114, 1.543)

0.012

0.048

0.093

<0.001

0.087

0.004

0.087

0.012

0.001

Group

Training Set (n=305)

Top 20 Features Entered into Multivariable Cox Regression Analysis
Radiomic Signature



Insights Imaging (2024) Wei H, Zheng T, Zhang X, et al. 

 

 

Figure S1 3D-Unet Architectures of Liver and Tumor Segmentation Models. RLU = rectified linear unit, ROI = region of interest. 
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Figure S2 Representative Images of A Patient with HCC at High Risk of Early Recurrence Determined by the Hybrid Model. Pathologically confirmed moderately 

differentiated HCC in a 50-year-old man without microvascular invasion. MRI with extracellular contrast agent demonstrated a 5.2 cm HCC in liver segment VII. 

The tumor (*) showed mild to moderate hyperintensity on (A) T2-weighted image, diffusion restriction on (B) diffusion-weighted image (b = 1500 s/mm2), 

hypointensity on (C) in phase image, rim APHE on (D) late arterial phase image, non-smooth tumor margin on (E) portal venous phase image, and incomplete 

tumor “capsule” (arrowhead) on (F) delayed phase image. This patient had two risk factors (rim APHE and incomplete tumor “capsule”) for early recurrence, 

with the radiomic score of -0.11 points. The final calculated score according to the hybrid model was 1.67 points, corresponding to the high-risk group (≥1.25 

points). Early recurrence occurred after a follow-up period of 8.7 months. APHE, arterial phase hyperenhancement; HCC, hepatocellular carcinoma; MRI, 

magnetic resonance imaging. 


