Materials and methods

Patient and Specimens

We used 314 pairs of HCC tissues (pairs refer to tumor tissue and adjacent tissue form the same patients) from patients who underwent liver biopsy at the Hepatic Surgery Center of Tongji Hospital of University of Science and Technology (HUST, Wuhan, China) between February 2015 and March 2018. All samples were pathologically diagnosed with HCC and followed up for prognostic assessment. All samples were used for Sequencing of the CTNNB1 exons 3. 196 pairs of HCC tissues form this cohort were utilized to construct microarrays for immunohistochemistry (IHC) experiments. 99 pairs of HCC tissues form this cohort were used for the Quantitative real time polymerase chain reaction (q-PCR). All patients provided signed informed consent forms. The study was approved by the Ethics Committee of Tongji Hospital (HUST, Wuhan, China), and sample tissues were utilized in accordance with the appropriate regulations.

Cell Lines and Cell Culture

HEK 293T cell line and Hepa1-6 cell line were purchased from China Center for Type Culture Collection (CCTCC, Wuhan, China). HEK 293T and Hepa1-6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM, HyClone, #SH30022.01) containing 10% FBS (Gibco, #10099) at 37°C and 5% CO₂ in an incubator. Both of the cell lines were routinely authenticated and were free of *Mycoplasma* contamination. CD8⁺T cells were cultured in RPMI 1640 medium (HyClone; #SH30809.01) supplemented with 10% FBS (Gibco, #10099), 1% penicillin/streptomycin (Kerui; #KR151400), 5µg/mL CD3ε (Biolend; #100340), 1µg/mL CD28 (Biolend; #302934) and 20 ng/mL mIL2 (R&D Systems; #402-ML) at 37°C and 5% CO₂.

Animal Studies

All animal care and experimental protocols were performed according to the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and approved by the Ethics Committee of Tongji Hospital (HUST, Wuhan, China). MMP9^{F/F} and MMP9^{Δ hep} mice were purchased from Cyagen Biosciences Inc. For HCC induced by hydrodynamic tail vein injection (HTVi), 6-week-old male C57BL/6J mice (Gempharmatech Co., Ltd) (n = 6) were used. For each mouse, *pT3-ΔN90-CTNNB1* (10µg)/*pT3-vector* (10µg)/*pT3-EF1aH-myr-AKT* (20µg)/*pT3-EF1a-MYC-IRES-Luciferase* (15µg)/*SB100* transposase-encoding plasmid (1/4 of the total plasmid mass) were dissolved in 2 mL 0.9% Nacl solution and injected 10% of the weight of each mouse in volume in 5-8 seconds. Equivalent DNA concentration between different batches of DNA was confirmed to ensure reproducibility among experiments. Mice were monitored and euthanized when they developed large abdominal masses and become moribund. At the end of the experiment, solid tumors were collected and analyzed by IHC, flow cytometry and/or mIF.

In the subcutaneous tumor formation assay, 2×10^6 logarithmic growth-phase Hepa1-6 cells in 100µL of DMEM (HyClone, #SH30022.01) were injected into the axillary regions of 4-week-old BALB/C male nude mice (n = 7) and 6-week-old male C57BL/6J mice (Gempharmatech Co., Ltd) (n = 6). For orthotopic HCC models, 6-week-old male C57BL/6J mice (Gempharmatech Co., Ltd) (n = 6-15) were injected in the largest liver lobe with 8×10^6 Hepa1-6 cells in 30μ L of DMEM (HyClone, #SH30022.01). After 3 weeks, all the mice were sacrificed. Livers were harvested to assess the tumor burden. At the end of the experiment, solid tumors were collected and analyzed by IHC, flow cytometry and/or mIF.

For the T cell depletion experiments, mice were injected intraperitoneally with anti-CD8 (200µg, clone 53-6.7, BioXcell), anti-CD4 (200µg, clone GK1.5, Sellect), IgG2a (200µg, clone 2A3, BioXcell) or IgG2b (200µg, clone LTF-2, Sellect) twice a week. For the Macrophage depletion experiments, mice were injected intraperitoneally with Clophosome (1.4mg first day, 0.7mg every 6 days, FormuMax, #F70101C-N). For the experiments with amti-PD-1 mAbs, mice were intravenously injected with anti-PD-1 (200µg, Junmeng Jiangsu, #GC42) every three days via the tail vein. For blocking the function of MMP9, mice were injected intraperitoneally with MMP9-in-1 (20mg/kg, MedChemExpress) every two days.

All experiments were randomized according to numbers. The personnel who treated the mice were aware of the group allocation at the different stages of the experiment.

Flow Cytometry Sample Preparation and Cytokine/Surface Staining

Fresh harvest tumors were cut into small pieces (~1 mm³) with scissors and digested with collagenase IV (1mg/mL in 10% FBS DMEM, Biosharp, #BS165) and DNaseI (0.1mg/mL in 10% FBS DMEM, Biosharp, #BS137) for 30 minutes at 37°C. Dissociated tumor samples were homogenized and filtered through a 200-mesh screen and then filtered through a 70- μ m strainer. ACK Lysis Buffer (Servicebio, #G2015) was utilized to lyse erythrocytes. Single cells were resuspended in 100 μ L pre-cooled living cells staining mix (0.5 μ L/sample FVS in PBS) and incubated for 10 minutes on ice. Then cells were blocked and stained for 30 minutes with surface antibody mix (1 μ L/sample in PBS). For intracellular cytokine staining, cells were stimulated for 3-6 hours and treated with Phosflow Perm Buffer III (BD Pharmingen, #558050) according to the manufacturer's instructions. Finally, cells were washed, resuspended, and stored at 4°C before acquisition on a flow cytometry instrument (CytoFLEX). Flow cytometry data were analyzed using Flowjo (BD Pharmingen, v10.3.5) software. Antibody and suppliers are listed in Supplementary Table S5.

T-Distributed Stochastic Neighbor Embedding (tSNE) analysis in FlowJo

Raw data were cleaned up to exclude doublets, debris and dead cells. In addition, cells of interest were incorporated for further analysis. Appropriate fluorescence compensated parameters were selected in each fluorescence channel. Then, the plugin "downsample" was used to down sample the events to ensure an equal number of cells per sample. All samples were concatenated together and run tSNE on this single large file for comparing multiple samples. After running tSNE, FlowJo will automatically add to separate the files using the variable "Sample ID".

Immunoblot and Coimmunoprecipitation

Suspension cells harvested by centrifugation or cultured adherent cells proteins were dispersed in RIPA Lysis Buffer (Meilunbio, #MA0151) supplemented with 1/100 Protease Inhibitor Cocktail (MedChemExpress, #HY-K0010), 1/100 Phosphatase Inhibitor Cocktail I (MedChemExpress, #HY-K0021) and 1/100 Phosphatase Inhibitor Cocktail II (MedChemExpress, #HY-K0022) for 15 minutes on ice. For mouse tissue samples, the tissues were first homogenized using the tissue homogenizers (Servicebio, #KZ-III-F) in ice-cold above RIPA Lysis Buffer for 120 seconds (60Hz). Cell or tissue lysates were centrifuged at 12,000 rpm for 15 minutes at 4°C. Supernatants were collected and measured concentration by UV–Visible Spectrophotometer (BeckMan, #DU730). Then, the protein supernatants were adjusted to the same concentration by adding 5× SDS-PAGE loading buffer (Servicebio, #G2075) and RIPA Lysis Buffer, and the samples were boiled at 95°C for 10 minutes. Prepared protein samples were loaded onto 10% SDS-PAGE gels, separated by electrophoresis, and then transferred onto polyvinylidene fluoride membranes (Millipore). After transfer, membranes were blocked with TBST containing 5% skim milk for 1 hour at room temperature. After washed with TBST 3 times at room temperature (each for 5 minutes), membranes were incubated with the indicated primary antibody at 4°C overnight. On the second day, membranes were washed with TBST 3 times (each for 10 minutes) and then incubated with secondary antibody (Horseradish Peroxidase-conjugated) for 1 hour at room temperature. Finally, membranes were washed with TBST 3 times (each for 10 minutes), and reactive bands were visualized and exposured using ECL substrate (Bio-Rad, #1705060/1705061). Antibodies and suppliers are listed in Supplementary Table S5.

For co-IP, transfected cells were lysed with IP cell lysates (Servicebio, #G2038) supplemented with 1/100 Protease Inhibitor Cocktail (MedChemExpress, #HY-K0010). Cell lysates were centrifuged at 12,000 rpm for 15 minutes at 4°C. Supernatants were incubated with co-IP-grade antibodies with rotation at 4°C overnight. On the second day, antibodies were pull down with Protein G Magnetic Beads (MedChemExpress, #HY-K0204) with rotation for 3-4 hours at room temperature. After washing with wash buffer 6 times, samples were added 2×SDS-PAGE loading buffer (Servicebio, #G2075) and boiled at 95°C for 10 minutes, followed by immunoblot analysis. Antibodies and suppliers are listed in Supplementary Table S5.

RT-PCR

Total RNA was extracted from cultured cells and tissues using the RNA-easy Isolation Reagent (Vazyme, #R701-01) and used as a template to generate cDNA with the HiScript III RT SuperMix for qPCR (Vazyme, #R323-01). Q-PCR was performed using the ChamQ Universal SYBR qPCR Master mix (Vazyme, #Q711-02) on a Real-Time System (Bio-Rad, #CFX Connect) and analyzed using BioRadCFX Manager (Bio-Rad, v3.0) software. Relative RNA expression levels were determined by comparative threshold cycle ($2-\Delta\Delta$ CT). Primers used are given in Supplementary Table S6.

Dual-luciferase reported assay

Luciferase activity was detected with the Dual Luciferase Reporter Assay Kit (Vazyme, #DL101-01) according to the manufacturer's instructions. The relative luciferase activity was determined by a GloMax 20/20 Luminometer (Promega). Luciferase activity was normalized to Renilla activity.

Immunohistochemistry and Analysis

Tissue specimens used for IHC were fixed in 4% paraformaldehyd and embedded in paraffin, and paraffin-embedded tissue sections that had been cut to 4 µm thickness. The paraffin sections were then deparaffinized, and antigen retrieval with 0.01 M sodium citrate buffer (pH6.0, Servicebio, #G1219) or Tris-EDTA buffer (pH8.0, Servicebio, #G1207), followed with 3% hydrogen peroxide incubated for 15 minutes at room temperature to block endogenous peroxidase. Next, the sections were blocked by 5% bovine serum albumin (BSA) blocking for 60 minutes at room temperature. Primary antibodies were incubated overnight at 4°C in a humidified chamber, followed by HRP conjugated secondary antibody incubation for 45 minutes at 37°C. The binding of antibodies was detected by DAB (Servicebio, #G1212) and the reaction was stopped by immersion in distilled water

after brown color was observed under the microscope. Tissue sections were counterstained by hematoxylin (Servicebio, #G1004), dehydrated in graded ethanol, sealed with neutral balsam, photos were taken and analyzed. Antibodies and suppliers are listed in Supplementary Table S5.

Positive and negative control groups were included for each batch of immunohistochemically stained sections. The IHC staining score was calculated according to the staining intensity and the percentage of positive cells. The rules of the staining intensity scoring were as follows: 0 points (Negative); 1 points (Light brown); 2 points (Brown); 3 points (Dark brown). The rules of stained positive cells scoring were as follows: score 0 denotes less than 10%, score 1 denotes 10-25%, score 2 denotes 26-50%, score 3 denotes 51-75% and score 4 denotes more than 75% of positive stained cells. The staining intensity and extent were multiplied to generate IHC staining score. Overall scores of <6 and \geq 6 were defined as low expression and high expression, respectively. IHC analyses were scored by two independent pathologists blind to the clinical data and grouping information.

Multiplex Immunofluorescence Staining

For multiplex staining, we followed the tyramide signal amplification (TSA) protocol staining method. The methods of antigen retrievaling, blocking endogenous peroxidase and BSA blocking were consistent with the IHC described above. The first primary antibody was incubated overnight at 4°C in a humidified chamber, followed by secondary antibody incubation for 45 minutes at 37°C. Tyramide working solution was incubated for 10 minutes at room temperature and protected from light. After washing with wash buffer for 20 minutes at 42°C and BSA blocking for 30 minutes at 37°C, the second primary antibody was incubated overnight at 4°C in a humidified chamber. The operations were then repeated as described above until meet the desired number of primary antibodies. The sections were sealed by anti-fluorescence quenching sealed tablets (Southern Biotech, #0100-01) after cell nuclei counterstained with DAPI (Solarbio, #C0060) for 5 min. Each of the stained sections was scanned using a slide scanner (3D HISTECH, # Pannoramic SCAN II) under fluorescence conditions and analyzed using Zen Microscope (ZEISS, v2.6) software. Antibodies, suppliers and fluorescence channel are listed in Supplementary Table S5.

Plasmids and constructions

MMP9 2.0 kb promoter sequence and SBE sites truncations were cloned into the pGL4.17 vector. Mammalian expression plasmids for Flag-, HA- or Myc-tagged SIRT2, β-catenin and KDM4D and the truncated proteins were constructed by standard molecular cloning method from cDNA templates. MMP9 promoter SBE site mutation plasmid was constructed by site-directed mutagenesis. All constructs were confirmed by DNA sequencing.

Lentivirus-transduced stable cell lines

To generate stable gene over-expression or knockdown cells lines, Flag-tagged CDS of SIRT2 andSSH1 were cloned into the BamHI/SalI sites of pLenti-CMV-Puro plasmid (Addgene, #17448), or the short hairpin targeting sequences for MMP9, KDM4D and SSH1 were cloned into the pLKO.1-TRC vector (Addgene, #10879). Vectors contain Flag tag or scramble shRNA (Addgene #1864) were used as negative controls, respectively. HEK293 cells were co-transfected with pMD2.G (Addgene #12259), psPAX2 (Addgene #12260), and pLenti-CMV-Puro or pLKO.1-shRNA plasmids (ratio 1:3:4) to produce lentiviruses. Virus supernatant were collected at 48 hours post transfection, and were concentrated over 100-fold using a Lentivirus Concentration Solution

(Yeasen Biotechnology, #41101ES50), aliquots were stored at -80°C. To establish stable murine HCC cell lines, forty-eight hours post lentivirus infection, cells were selected by puromycin addition (3 μ g/mL). The target sequences for specific genes were as follows are listed in Supplementary Table S6.

T cell Cytotoxicity assays

CD8⁺CTLs were sorted form 6-week-old male C57BL/6J mice splenocytes using a Mouse CD8+ T-Cell Isolation Kit (Sellect, #B90011) and incubated with 5µg/mL CD3ε (Biolend; #100340), 1µg/mL CD28 (Biolend; #302934) and 20 ng/mL mIL2 (R&D Systems; #402-ML) for 3 days. Prepared CTLs co-cultured with Hepa1-6 HCC cell line (Target ratio of 10:1) at 37°C for 12 hours. Next, all cells were collected for CD45, PI and Annexin V staining and immediate flow cytometry analysis. Percentage of CD45⁻annexin V⁺PI⁻ (early phase) and CD45⁻annexin V⁺PI⁺ (late phase) cells constituted the entire percentage of killed target cells.

Transwell chemotaxis assays

 $CD8^+T$ cells with the indicated treatments were allowed to migrate through 5-µm transwell filters (Corning) to the medium in the bottom chamber for 12h, with PBS or tumor CM, were counted by flow cytometry. The following formula was used: chemotaxis index = percentage of migrated cells induced by the indicated chemokine ÷ percentage of migrated cells induced by PBS.

F-actin staining

CD8⁺ T cells treated with CXCL10 (ABclonal, #RP01642, 100ng/mL) for 15 minutes successively underwent a 15-minute fixation with fresh 4% paraformaldehyde, a 10-minute permeabilization om 0.1% Triton X-100, a 1-hour block with 5% normal goat serum, 15-minute staining with phalloidin FITC (YEASEN, #40735ES75) and DAPI counterstaining before confocal microscopy with a confocal laser-scanning microscope (Leica, #TCS SP8 STED). The Zen Microscope (ZEISS, v2.6) and ImageJ software were used to analyze and quantify F actin staining. All presented images are representative of three independent experiments with at least 30 cells per group. The line-fluorescence-intensity profile of cells was used to define cell polarization. The average fluorescence signal on one side of the polarized cells was more than 1.5 times stronger than that of the opposite side. The frequency of polarized or unpolarized distribution in CD8⁺T cells was presented.

Library Preparation and RNA-seq Analysis

Total RNA was extracted from tissues using the RNA-easy Isolation Reagent (Vazyme, #R701-01). A NanoDrop 2000 spectrophotometer (Thermo Scientific) was applied for RNA purity measurement and quantification, and an Agilent 2100 bioanalyzer (Agilent Technologies) was applied for RNA integrity assessment. Sequencing libraries were generated using the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina) following the manufacturer's recommendations. Prepared libraries were sequenced on an Illumina HiSeq X Ten platform. The abundances of transcripts (including mRNAs, pseudogenes, noncoding RNAs, and other predicted RNAs) were calculated and normalized in fragments per kilobase of transcript per million mapped reads. Differential gene expression evaluation was analyzed using R software (v4.2.2).

Single cell RNA-Sequencing and Data analysis Tissue dissociation and preparation

The fresh tissue was stored in the tissue preservation solution (Singleron Biotechnologies, sCelLiveTM) on ice after the surgery within 30 minutes. The specimens were washed with hanks balanced salt solution (HBSS) for three times, minced into small pieces, and then digested with 3 mL tissue dissociation solution (Singleron, sCelLiveTM) by tissue dissociation system (Singleron, PythoNTM) at 37 °C for 15 min. The cell suspension was collected and filtered through a 40-micron sterile strainer. Afterwards, the red blood cell lysis buffer (RCLB, Singleron, GEXSCOPE®) was added, and the mixture (Cell: RCLB=1:2 (volume ratio)) was incubated at room temperature for 5-8 minutes to remove red blood cells. The mixture was then centrifuged at $300 \times g 4$ °C for 5 minutes to remove supernatant and suspended softly with PBS. Finally, the samples were stained with Trypan Blue and the cell viability was evaluated microscopically.

Library Construction and Single Cell RNA-seq Analysis

Single-cell suspensions (2×10⁵ cells/mL) with PBS (HyClone) were loaded onto microwell chip using the single cell processing system (Singleron Matrix®). Barcoding Beads are subsequently collected from the microwell chip, followed by reverse transcription of the mRNA captured by the barcoding beads and to obtain cDNA, and PCR amplification. The amplified cDNA is then fragmented and ligated with sequencing adapters. The scRNA-seq libraries were constructed according to the protocol of the Single Cell RNA Library Kits (Singleron, GEXSCOPE®). Individual libraries were diluted to 4 nM, pooled, and sequenced on Illumina novaseq 6000 with 150 bp paired end reads.

Tandem mass tag (TMT)-labeled proteomics

PCT based protein digestion

Cell sample was transferred into a PCT tube. Then 30 μ L 6 M Urea/2 M thiourea/100 mM triethylammonium bicarbonate (TEAB), 5 μ L 200 mM Tris (2-carboxyethyl) phosphine (TCEP) and 2.5 μ L 800 mM iodoacetamide (IAA) was added for reduction and alkylation under 45000 psi, with 30 s high pressure and 10 s ambient pressure per cycle, 30 °C for 90 cycles. 75 μ L 100Mm TEAB was added into PCT tube to decrease the concentration of Urea to lower than 1.5 M. Then 10 ul Trypsin (0.5 ug/ul), 2.5 ul Lys-C (0.5 ug/ul) were added for protein digestion under 20000 psi, with 50 s high pressure and 10 s ambient pressure per cycle, 30 °C for 120 cycles. Tryptic peptides were transferred into 1.5 mL tubes and digestion was then terminated by 15 μ L 10% TFA.

Desalting and TMT labeling

Confirm that pH of the samples was between 2 and 3. SOLAµ (Thermo Fisher Scientific[™], San Jose, USA) was applied for desalting and TMTpro 16plex Isobaric Label Reagent Set was applied for TMT labeling according to their user guide.

High pH Fractionation

Fractionation was performed with a Waters XBridge Peptide BEH C18 column (300 Å, 5 μ m × 4.6 mm × 250 mm) under a DIONEX UltiMate 3000 Liquid Chromatogram. Mobile phase A was 10 mM ammonium hydroxide (pH=10), and mobile phase B was 98% ACN, 10 mM ammonium hydroxide (pH=10). Peptides were collected every one minute from 5% ACN to 35% ACN with a flowrate of 0.5 ml/min in 60 min, and then combined into 30 fractions. After SpeedVac dried, the 30 fraction samples were resuspended with 2% ACN, 0.1% Formic Acid and then sent for LC-MS analysis.

MS analysis

LC-MS/MS with the nanoflow DIONEX UltiMate 3000 RSLCnano System coupled to an Orbitrap Exploris 480 mass spectrometer (Thermo ScientificTM, San Jose, USA), which equipped with a FAIMS ProTM (Thermo ScientificTM, San Jose, USA), in data dependent acquisition (DDA) mode. Buffer A. 2% ACN, 98% H2O containing 0.1% FA; Buffer B. 98% ACN in water containing 0.1% FA. All reagents were MS grade for each acquisition, peptides were loaded onto a precolumn (3 μ m, 100 Å, 20 mm*75 μ m i.d.) at a flowrate of 6 μ L/min for 4 min and then injected using a 30 min LC gradient (from 7% to 30% buffer B) at a flowrate of 300 nL/min (analytical column, 1.9 μ m, 120 Å, 150 mm*75 μ m i.d.). Buffer A was 2% ACN, 98% H2O containing 0.1% FA, and buffer B was 98% ACN in water containing 0.1% FA. All reagents were MS grade. The m/z range of MS1 was 375-1800 with the resolution at 60,000, normalized AGC target of 300% with the intensity threshold of 2e4, and maximum ion injection time (max IT) of 50 ms. MS/MS experiment were performed with a resolution at30000, normalized AGC target of 200%, and max IT of 86 ms. isolation window was set to 0.7 m/z and first mass was set to 110 m/z.

Supplementary Figure S1 Three groups of CTNNB1^{GOF} HCC models were constructed in mice (A) Three groups of CTNNB1^{GOF} HCC models were constructed via HTVi of activated AKT (myr-AKT)/β-catenin (ΔN90-β-catenin), c-Met/β-catenin and c-Myc (MYC-IRES-Luc)/β-catenin plasmids. (B) Gross images, H&E staining, and IHC staining of β-catenin and CD8 in the three groups of CTNNB1^{GOF} HCC models and statistical analyses. The number of CD8-positive cells per HPF was counted in HCC sections from each group. Three random HPFs were selected for analysis on each slide. (C) The liver to body weight ratio of the three groups of CTNNB1^{GOF} HCC models(n=6). (D) Representative images of immunofluorescence costaining for CD8 (green) with granzyme B (pink) in the three groups of CTNNB1^{GOF} HCC models and statistical analyses. The number of cells positive for both CD8 and granzyme B per HPF was counted in HCC sections from each group. Three random HPFs were selected for analysis on each slide. (E) Survival curves of mice in each group(n=6). (F) The IHC staining score analyses of MMP9 in each group. Three random HPFs were selected for analysis on each slide. **P*<0.05, ***P*<0.01, ****P*<0.001. Mean±SEM. Unpaired Student's t-test(B,C,D,F), log-rank test(E). CTNNB1^{GOF}, gain of function mutations in CTNNB1; IHC, immunohistochemistry; HPF, high-power field.

Supplementary Figure S2 Flow cytometry analysis of liver immune microenvironment in the three groups of CTNNB1^{GOF} HCC models

(A, B) The gate method of live hepatic $CD45^+$ cells.

Supplementary Figure S3 Bioinformatics analyses of public database data

(A)The heatmap and Venn diagram of DEGs screened by ImmuneScore and StromalScore analysis in TCGA dataset. (B) The PPI network diagram of genes associated with immune regulation. (C) The mRNA expression of MMP9 in normal liver and HCC tissue in GEO datasets. (D) Analysis of MMP9 gene expression in various cells using Lu's single cell expression data. TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; PPI, Protein–protein interaction.

Supplementary Figure S4 Spectrum of CTNNB1 exon3 mutations in HCC

(A) Mutations in CTNNB1 exon3 identified in HCC Tongji cohort. Amino acid substitutions and small in-frame deletions identified in the tumors are shown above the human β -catenin amino acid sequence.

Supplementary Figure S5 Wnt/β-catenin signal regulates MMP9 transcription in HCC in *vitro***(A)** Hepa1-6 cells were treated with Wnt/β-catenin signature inhibitor XAV939 (10/20/40 ng/mL) or DMSO. The mRNA expression of CD44, CyclinD1, c-myc and MMP9 were measured by qRT-PCR. **(B)** Hepa1-6 cells were treated with XAV939(10/20 ng/mL) or DMSO followed by western blotting to detect the expression of CD44, CyclinD1, c-myc and MMP9. **(C)** Hepa1-6 cells were treated with XAV939(10/20/40 ng/mL) or DMSO followed by Elisa to detect the MMP9 secretion level from culture medium supernatant. **(D)** Hepa1-6 cells were treated with Wnt/β-catenin activator laduviglusib (10 ng/mL). The mRNA expression of MMP9 were measured by qRT-PCR. **(E)** Hepa1-6 cells were treated with laduviglusib (10 ng/mL) followed by western blotting to detect the expression of MMP9 were measured by qRT-PCR. **(E)** Hepa1-6 cells were treated with laduviglusib (10 ng/mL) followed by western blotting to detect the expression of MMP9 were measured by qRT-PCR. **(E)** Hepa1-6 cells were treated with laduviglusib (10 ng/mL) followed by western blotting to detect the expression of MMP9. **(F)** Time course of MMP9 mRNA levels in Hepa1-6 cells treated with laduviglusib (10 ng/mL), together with XAV939 (20 ng/mL) or actinomycin D (1 mg/mL). **(G)** Activities of MMP9 promoter truncations or mutations in laduviglusib-β-treated Hepa1-6 cells were measured by dual-luciferase assays. **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001. Mean±SEM. Unpaired Student's t-test(A,C,D,F,G). qRT-PCR, quantitative real-time PCR.

Supplementary Figure S6 MMP9 had little impact on HCC proliferation in vitro

(A) GESA analysis in MMP9 low and high expression HCC obtained from the TCGA dataset. (B, C) qRT-PCR and western blotting analyses of MMP9 knockdown efficiency in Hepa1-6 cell line. (D, E) EdU and CCK-8 experiments were used to verify the effect of MMP9 on proliferation capability. ns, no significance, **P<0.01, ***P<0.001. Mean±SEM. Unpaired Student's t-test(B,E). GSEA, Gene Set Enrichment Analysis; qRT-PCR, quantitative real-time PCR; CCK8, Cell Counting Kit-8.

Supplementary Figure S7 Knockdown of MMP9 significantly suppressed HCC progression in C57BL/6J mice but not in BALB/c nude mice

(A, B) Gross images of Hepa1-6 (scramble/sh MMP9) subcutaneous tumors in BALB/c nude mice and C57BL/6J mice. (C) Representative flow cytometry data showing the proportion of T cells in spleens from C57BL/6J mice and BALB/c nude mice. The statistics results are shown below(n=5). ns, no significance, *P<0.05, **P<0.01, ****P<0.0001. Mean±SEM. Unpaired Student's t-test(C).

Supplementary Figure S8 Flow cytometry analysis of liver immune microenvironment in orthotopic tumor tissue from C57BL/6 mouse models

(A) The gate method of live hepatic CD45⁺ cells. (B, C) The gate method of ICB (PD-1, TIM-3, CTLA-4 and LAG-3) positive T cells and immune memory (CD44^{lo} CD62L^{hi}, CD44^{hi} CD62L^{lo} and CD44^{hi} CD62L^{hi}) T cells. ICB, immune checkpoint blockade; PD-1, programmed death-1; TIM-3, t cell immunoglobulin and mucin domain-3.

Supplementary Figure S9 Knockdown of MMP9 enhances cytotoxicity of CTLs

(A) H&E staining and IHC staining of MMP9 and CD8 in orthotopic tumor tissue from C57BL/6 mouse models and statistical analyses. The number of CD8-positive cells per HPF was counted in HCC sections from each group. Three random HPFs were selected for analysis on each slide. (B) Representative images of immunofluorescence costaining for CD8 (green) with granzyme B (violet) or IFN- γ (orange) in orthotopic tumor tissue from C57BL/6 mouse models and statistical analyses. The number of cells positive for both CD8 and granzyme B or IFN- γ per HPF was counted in HCC sections from each group. Three random HPFs were selected for analysis on each slide. **P*<0.05, ***P*<0.01. Mean±SEM. Unpaired Student's t-test(A,B). IFN- γ , interferon γ .

Supplementary Figure S10 MMP9 promotes HCC progression through CD8⁺ T celldependent rather than CD4⁺ T cell or macrophage-dependent mechanisms

(A) Representative flow cytometry data showing the proportion of CD8⁺ T cells from peripheral blood and spleen tissue. (B) Gross images of Hepa1-6 tumors in C57BL/6J mice (CD8-neutralizing antibodies, 200 μ g/mice; IgG2a, 200 μ g/mice). (C) Schematic representation of the treatment schedule for CD4-neutralizing antibodies or IgG2b. (D) Representative flow cytometry data

showing the proportion of CD4⁺ T cells from peripheral blood and spleen tissue. (**E**) Flow cytometry analysis of depletion efficiency of CD4⁺ T cells from peripheral blood and spleen tissue. (**F**) Gross images of Hepa1-6 tumors in C57BL/6J mice (CD4-neutralizing antibodies, 200 μ g/mice; IgG2b, 200 μ g/mice). (**G**) The tumor weight of C57BL/6J mouse models (CD4-neutralizing antibodies, 200 μ g/mice; IgG2b, 200 μ g/mice, n=6). (**H**) Survival curves of mice in each group of C57BL/6J mouse models (n=8). (**I**) Schematic representation of the treatment schedule for clophosome (macrophage scavenger). (**J**) Flow cytometry analysis of depletion efficiency of macrophages from spleen and liver tissue. (**K**) Gross images of Hepa1-6 tumors in C57BL/6J mice (1.4mg first day, 0.7mg every 6 days). (**L**) The tumor weight of C57BL/6J mouse models (clophosome, 100 μ L/mice, n=5). (**M**) Survival curves of mice in each group of C57BL/6J mouse models (n=8). ns, no significance, ***P*<0.01, ****P*<0.001, ****P*<0.001. Mean±SEM. One-way ANOVA with Tukey's multiple comparisons test(E, G, J, L), log-rank test(H, M). FACs, Fluorescence-activated cell staining.

MMP9^{4/tep} +anti-PD-1 MMP9^{5/F} +anti-PD-1 В A MMP9^{##}+laG MMP94 ∞+laG HE(100×) • MMP9^{5/} anti-PD-1 MMP MMP9F/F+anti-PD-MMPG 1200 BUN (ma/dL) 40-Serum ALT (IU/L) UNL CD8(200×) B-catenin(100×) 800 40 35-AST 30-200 25 300 blood cells (10⁹/L) phocytes (10⁹/L) Serum CK (U/L) 2000 Lung(40×) 100 White Spleen(40×) Red blood cells (10¹²/L) Hemoglobin (g/L) 140 T 120 Heart(40×) 20 10 Kidney(40×) Vehicle +anti-PD-1 MMP9-in-1 +anti-PD-1 D С Vehicle+lgG MMP9-in-1+lgG 9-in-1+lgG Vehicle+anti-PD-1 HE(100×) 200 Im BUN (mg/dL AST (IU/L) Serum ALT (IU/L) 1500 CD8(200×) β-catenin(100×) 200 30 1000 erum 1000 20 50 White blood cells (10⁹/L) -ymphocytes (10⁹/L) Serum CK (U/L) 300 15 20 Lung(40×) 10 Spleen(40×) Red blood cells (10¹²/L) (d/L) 130 noglobin Heart(40×) Kidney(40×)

(A) H&E staining and IHC staining of β -catenin and CD8 in the four groups of spontaneous HCC models driven by c-Myc/ β -catenin (MMP9^{*F*/*F*} + IgG; MMP9^{*dhep*} + IgG; MMP9^{*F*/*F*} + anti-PD-1; MMP9^{*dhep*} + anti-PD-1, anti-PD-1, 200 µg/mice; IgG, 200 µg/mice). (B) Blood routine and blood biochemistry test analyses of four groups of spontaneous HCC models driven by c-Myc/ β -catenin

(MMP9^{*F*/*F*} + IgG; MMP9^{*Δhep*} + IgG; MMP9^{*F*/*F*} + anti-PD-1; MMP9^{*Δhep*} + anti-PD-1, n=5). (C) H&E staining and IHC staining of β -catenin and CD8 in the four groups of spontaneous HCC models driven by c-Myc/ β -catenin (Vehicle+ IgG; MMP9-in-1 + IgG; Vehicle + anti-PD-1; MMP9-in-1*p* + anti-PD-1, MMP9-in-1, 20mg/kg; anti-PD-1, 200 µg/mice; IgG, 200 µg/mice). (D) Blood routine and blood biochemistry test analyses of four groups of spontaneous HCC models driven by c-Myc/ β -catenin (Vehicle+ IgG; MMP9-in-1 + IgG; Vehicle + anti-PD-1; MMP9-in-1*p* + anti-PD-1, n=5). ns, no significance, **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001. Mean±SEM. One-way ANOVA with Tukey's multiple comparisons test(B,D).

Supplementary Figure S12 MMP-9-in-1 sensitizes the efficacy of the anti-PD-1 antibody in spontaneous HCC models driven by Akt/β-catenin

(A) Schematic representation of the therapy schedule for MMP9-in-1, anti–PD-1 or combination therapy. (B) Representative images and the statistical results from spontaneous HCC models driven by Akt/ β -catenin that received the indicated treatments (MMP9-in-1, 20mg/kg; anti-PD-1, 200 µg/mice; IgG, 200 µg/mice, n=5). (C) Representative flow cytometry data showing the proportion of T cells in tumor tissue from spontaneous HCC models. The statistics results are shown on the right. (D) The statistics results of MFI of granzyme B and IFN- γ on CD8⁺ T cells in tumor tissue from spontaneous HCC models. (E) Survival curves of mice in each group of spontaneous HCC models (n=6). ns, no significance, **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001. Mean±SEM. One-way ANOVA with Tukey's multiple comparisons test(B, C, D), log-rank test(E).

Supplementary Figure S13 KDM4D knockdown and SIRT2 overexpression suppressed MMP9 expression and infiltration of CD8⁺T cells

(A, B) Gross images of Hepa1-6 (scramble/sh KDM4D or vector/SIRT2) tumors in C57BL/6J mice. (C) H&E staining and IHC staining of MMP9 and CD8 in orthotopic tumor tissue from C57BL/6J mouse models and statistical analyses. The number of CD8-positive cells per HPF was counted in HCC sections from each group. Three random HPFs were selected for analysis on each slide. *P<0.05, **P<0.01, ***P<0.001. Mean±SEM. Unpaired Student's t-test(C).

Supplementary Figure S14 Sample preparation and sorting strategy for single-cell sequencing (A) Schematic representation of the experimental strategy. (B) Two-dimensional scatterplot, showing the gating strategy used to sort live CD45⁺ immune cells (P2-Q3 in the right panel). Sorted cells were used as the template for single-cell RNA preparations.

Supplementary Figure S15 Single-cell sequencing profiling of the ecosystem in MMP9^{F/F} and MMP9^{Δ hep} mice HCC samples

(A) Heatmap showing the expression of marker genes in the indicated cell types. (B) UMAP plot showing the expression levels of marker genes, defined for all cell types. (C) Tortadiagram indicating the proportion of myeloid immune cells. (D) Heatmap showing the expression of marker genes in the indicated CD8⁺ cell types. (E) UMAP plot showing the expression levels of marker genes, defined for all CD8⁺ cell types.

Supplementary Figure S16 MMP9 stimulation was associated with a variety of membrane transport processes of CD8⁺ T cells

(A) Schematic representation of the experimental strategy. (B) GSEA of proteomics data revealed that MMP9 inhibits various of transporter activities on the cell membrane of CD8⁺ T cells.

Supplementary Figure S17 SSH1 upregulation abrogated the suppression of migration and activation of CD8⁺ T cells induced by MMP9

(A) Apoptosis of Hepa1-6 cells caused by CD8⁺ T cells (vector/vector+MMP9/SSH1+MMP9) was measured using Annexin V - PI staining. (B) CD8⁺ T cells (vector/vector+MMP9/SSH1+MMP9) followed by Elisa to detect the granzyme B, IFN- γ and TNF α secretion level from culture medium supernatant. (C) CD8⁺ T cells (vector/vector+MMP9/SSH1+MMP9) were determined by the transwell assay, and the chemotaxis index is shown. ns, no significance, ***P*<0.01, ****P*<0.001. Mean±SD. One-way ANOVA with Tukey's multiple comparisons test(A,B,C).

Supplementary Figure S18 The anti-MMP9 antibody sensitizes the efficacy of the anti-PD-1 antibody

(A) Schematic representation of the anti-MMP9 rabbit monoclonal antibody development strategy. (B) Schematic representation of the therapy schedule for anti-MMP9, anti–PD-1 or combination therapy. (C) Representative images of Hepa1-6 orthotopic models that received the indicated treatments (anti-MMP9, 200 µg/mice; anti-PD-1, 200 µg/mice; IgG, 200 µg/mice, n=6). (D) H&E staining and IHC staining of CD8 in the four treatment groups of Hepa1-6 orthotopic models. (E) Blood routine and blood biochemistry test analyses in the four treatment groups of Hepa1-6 orthotopic models. *P<0.05, **P<0.01, ***P<0.001, ***P<0.0001. Mean±SEM. One-way ANOVA with Tukey's multiple comparisons test(E).

Supplementary Figure S19 Flow cytometry analysis of primary HCC surgical samples
(A) The gate method of CD8⁺ CXCR3⁺ T cells. (B) The gate method of CD8⁺ Granzyme B⁺ T cells.

Supplementary Figure S20 Relapse-free survival rate of patients after surgery.

(A) Patients received anti-PD-1 adjuvant therapy after hepatectomy (n=38). Patients were reexamined every 3 months and evaluated within two years.

Supplementary	Table S	51	Up-regulated	genes	in	the	three	groups	of	spontaneous	tumor
compared with	the corre	esp	onding contro	l group	S						

	AKT/β-cate	enin	C-Met/β-ca	tenin	C-Myc/β-catenin		
gene	logFC	P value	logFC	P value	logFC	P value	
MMP9	1.569675	0.004823	2.936847	4.86E-06	4.238257	0.002186	
PROCR	1.323703	0.02475	1.651422	0.0359	1.521154	0.041868	
ZFP287	2.708681	0.009018	2.477729	0.020458	2.487976	0.019315	

Supplementary	y Table S2 DEGs	s screened by	ImmuneScore and	StromalScore
---------------	-----------------	---------------	-----------------	--------------

Gene	logF	Gene	logF	Gene	logF	Gene	logF	Gene	logF	Gene	logF
	С		С		С		С		С		С
AL13	1.44	ZEB2	1.52	LAP	1.56	IGLC	3.71	IGHV	3.32	TME	1.12
3371.2	190		246	TM5	525	7	795	1-69	853	M154	608
	1		1		4		2		1		5
NTRK	1.81	ADA	2.11	IGK	2.47	CCL2	2.04	FPR1	2.23	IGKV	2.59
2	613	M28	929	V1-	282	2	756		156	2-24	857
	4			17	1		8				2
FCRL	1.56	VCAN	1.45	IGFB	1.64	CD20	1.50	AC11	1.68	GPR1	1.56
А	318		213	P5	370	0R1	280	9044.	193	83	834
	8				4		7	1			
PTPR	1.18	TRGV	1.73	PLE	1.65	TRAV	1.96	L1CA	1.52	TRB	2.48
0	131	4	422	Κ	229	8-2	924	М	323	V4-1	585
	3		7		4		7		4		7
CRIP1	1.39	TRAV	1.93	GBP	2.95	ITGA	1.33	SLA	2.07	RGS1	1.63
	363	41	395	5	448	Х	736	MF6	626		560
	8		4		2		3		5		1
CXCR	1.36	AXL	1.48	GPR	1.75	MAP1	2.27	JAK3	1.68	CCD	2.78
4	323		801	132	521	LC3C	088		554	C80	944
	5		1				1		5		7
CXorf	1.54	TNC	1.99	COL	1.68	ITGB	1.57	MXR	2.33	STX1	1.34
21	172		943	6A3	526	2-AS1	250	A5	682	1	931
	1		2		3		1				7
IGHA	2.73	RPLP0	1.22	MMP	2.36	IGKV	3.29	TME	1.72	PARV	1.61
2	232	P2	730	2	764	1D-13	664	M132	510	G	097
	9		9		5		9	Е	7		
PODN	1.79	CXCR	1.68	RUN	1.74	HSPB	1.70	AC01	1.89	AP00	1.29
L1	780	2	471	X2	353	7	565	0457.	347	0812.	304
	7				3		4	1	8	1	3
TRBV	1.79	TRAR	7.66	ADA	1.84	CD69	1.75	SIGL	1.71	FOSL	1.40
14	661	G1	605	MTS	530		819	EC7	331	1	013
	4		5	2	1		8		7		2
MYO	1.39	C16orf	1.83	FMO	1.60	BOC	1.47	IGHD	3.02	BMP	1.85
1F	178	54	449	D	135		407		500	ER	977
	8		1		1		3		1		6

SSPN	1.34	INPP5	1.14	UNC	1.53	DCST	1.39	CD74	1.42	ALO	1.12
2211	208	D	635	5C	120	AMP	428	0271	205	X5	646
	5	D	9	50	2	1 11/11	3		9	110	1
IL2R	2.11	SLAM	1.77	CCL	1.99	KLRB	1.59	PDC	2.06	MIR1	1.72
A	947	F1	330	5	519	1	885	DILG	250	55HG	515
11	9		7	5	2	1	1	2	7	55110	8
IPH2	1.92	GLIPR	1 59	ртр	1 79	CSF3	1 44	CTS	1 70	DPT	2 64
JI 112	018	$\frac{0}{2}$	758	N22	227	D D	205	w	877	DII	178
	710	2	8	1122	1	K	4	**	3		6
WED	1.74	AC002	1.65	нк з	1 67	CIOT	1 57	IGIV	3 61	SLC7	1 31
C1	621	AC002	607	IIKJ	1.07	NE2	252	10LV 4.60	052		012
CI	7	091.1	2		43	1112	0	4-09	5	Ao	6
ECDI	2 25	S100A	2 1.40	I CP1	1.28	ТРСА	1.82	MS4	1 55	MT1	1 21
rukl	2.55	5100A	1.49	LUPI	022	D1	1.02	M34	1.55	M	0.25
3	091	4	105		925	DI	524 2	A4A	570	111	925
DOC	1.22		5	ICIN	2.07	DCED	2	DCS	J 1 41	ICHN	2.15
DOC V10	1.22	ADA MTG1	1.03	1GLV	2.97	PCED	1.80	RCS	1.41	10HV	3.13
K10	54Z	M151	854	3-19	39	IB-	929	DI	93	3-74	493
	2	2 HCDD	8	1.00	1 40	ASI	9	G 4 G 1	2.00	CDV	6
INFK	2.58	нѕрв	1.31	APO	1.40	ICNI	1.94	GASI	2.08	CRY DD1	3.54
SF17	694	6	098	BEC	348		844		523	BRI	308
I.B.I.G.	8	DIN	5	3H	2	D GL	4	a) 1 a	3	DOD	6
	2.00	PLN	2.97	GIM	1.29	RCA	1.62	SNC	1.23	PCD	1.68
02273	044		168	AP4	307	N2	889	А	866	HGA	947
	4		8		4		5		6	12	7
MS4A	3.22	TRAV	2.05	RIPK	1.20	UCP2	1.31	CXC	1.56	CD96	1.74
1	386	39	567	3	511		990	L8	439		874
	6		1		2		3		8		4
MEO	1.91	BMP5	2.01	AL35	1.12	FCN1	1.59	PTGE	1.26	PDE1	1.58
X1	868		017	7054.	111		515	R4	051	А	769
	5		9	4	7		3		6		8
COL1	2.12	DAPP	1.96	CXC	1.55	CD4	1.07	IGHG	2.38	CSF1	1.59
4A1	555	1	635	L1	435		991	4	557	R	070
	4				4		8		7		5
HLA-	1.80	LSP1	1.50	AC1	1.79	DCLK	2.43	GBP4	1.25	HAN	2.64
DQB2	001		578	0947	808	1	098		352	D2-	553
	3		8	9.1	1		8		6	AS1	
PDPN	2.82	LINC0	1.86	ADC	1.12	TRBV	2.17	HLA-	1.74	ITGB	1.72
	973	0861	820	Y7	586	7-3	124	DPA1	626	2	244
	7		6		5		2		8		3
FGL2	1.62	SLAM	2.00	FOL	1.39	RASA	1.40	C7	2.42	LGA	1.09
	873	F8	059	R2	723	L3	969		048	LS9	221
	2		5		8						4
GZM	1.48	HLA-	1.62	APO	1.61	MAR	2.96	GAP	2.08	MFA	2.59
11		1			1					1	1

	5		4	3C	5		4		4		
ABI3	1.28	LYVE	1.07	IGH	2.61	COL1	2.58	LPAR	1.43	CCL2	3.10
_	883	1	531	G1	784	0A1	162	1	679	1	261
	5	-	9	01	8	0111	6	-	5	-	5
SLC8	1.49	IGHV	2.58	IGH	3.45	KCN	1.21	IGSF	1.41	CDH	1.95
Al	010	3-30	540	V3-	118	K6	092	6	501	11	100
	1	0.00	9	64	7		7	Ũ	8		1
RNAS	1.48	CD53	1.85	CXC	1.87	SMPD	1.26	S100	1.07	PDZ	1.47
E6	789		157	R2P1	984	3	672	A12	402	RN3	071
-	2		6		4	-	7		9	_	6
AREG	1.31	TRBV	2.20	CD6	1.94	CAR	1.49	CYP4	1.74	UBA	1.98
	359	15	489		865	MIL2	065	F29P	480	SH3A	224
			4		7		8		6		1
MMP	1.35	LCP2	1.58	GSD	1.63	SLA	1.79	OMG	3.97	VAV1	1.72
25	936		633	MA	703		963		756		281
	9				8		7		2		9
LST1	1.41	TRAV	1.85	ITG	1.59	FNDC	2.32	AP00	1.24	COL	2.00
	309	13-2	421	A4	846	1	335	2358.	807	EC10	392
	3		2		8		6	2	7		7
C5AR	1.15	SFRP4	2.02	IL34	1.22	GPR1	1.82	CPNE	1.32	LINC	1.18
1	039		104		356	8	653	5	883	01914	924
	1		3		4		5		5		6
IGHV	2.67	PTGD	1.37	HRH	1.31	MS4A	1.27	ICOS	2.00	BCL2	1.57
1-45	679	R	483	1	072	14	256		068	A1	516
	9		6		3				9		6
NAPS	1.72	IGLV2	2.51	KLK	3.00	STAP	1.86	LILR	1.42	PLCB	1.46
В	578	-28	568	10	374	1	636	A2	892	2	135
	2						3		7		1
IGKV	3.23	ST8SI	1.28	IGLC	2.50	ADR	2.10	TRAV	2.01	HLA-	1.71
3D-11	963	A4	636	2	039	A2A	754	12-3	250	DRB	946
	6		4				1		5	1	1
CD20	1.33	HLA-	1.31	AC1	3.41	TRBV	2.13	SLA2	1.74	HTR	1.98
9	551	DPA3	476	3506	711	19	605		637	A4	645
	7		6	8.2	1		2		1		5
PTGI	1.63	DOK3	1.20	NTF	1.40	EFNB	1.49	ACA	1.38	C1QT	2.08
R	432		519	3	778	3	002	P1	640	NF7	803
	3		2		5		8		2		7
PIK3C	1.64	IGKV	3.19	LCK	1.94	MS4A	1.57	TRB	2.18	AOA	1.69
D	376	2-30	128		162	7	266	V9	013	Н	710
	1		5		7		8		8		3
COX7	2.03	CLEC	2.67	IGHJ	2.49	IL13R	2.30	IL11	4.00	KCN	2.11
A1	673	4G	448	2	797	A2	563		937	A3	511
	8		7		8		5		8		1
GZM	2.55	IGKV	2.17	SLC6	1.13	CD30	1.41	LILR	1.54	CD1E	1.66

К	242	1-8	412	A6	348	0E	530	B2	806		155
	6	10	5		3	01	1		1		4
CCR4	1.93	MXR	1.84	IL21	2.29	F13A	1.81	BIRC	1.41	PRK	1.70
	912	A8	780	R	670	1	126	3	309	CB	616
	7	-	5		7		1	-	5		
TBXA	1.38	CRHB	2.00	KCN	1.52	IGKV	2.66	FLT3	1.62	TRG	1.80
S1	527	Р	058	E4	463	1-39	795		806	C2	803
	2				3		3		4		5
SMIM	1.70	EBI3	1.47	IGH	1.63	IGHV	2.75	TNFS	1.73	CXC	1.93
25	881		255	V5-	961	3-7	899	F8	925	R3	649
	1			78			6		6		
MZB1	2.45	LRRC	2.66	BTL	2.11	GAL	1.38	SAA2	1.68	WIPF	1.29
	848	15	467	А	593	NT17	102	-	350	1	936
	8				3		9	SAA4	3		8
EGFL	1.38	LRRK	1.27	TRB	1.73	RHO	1.46	SELP	1.76	HAC	1.38
6	72	1	713	V12-	350	Н	961	LG	345	D4	018
				3	6		6		7		2
LY75	1.33	ECM1	1.42	SELP	1.71	LRRN	1.82	GIM	1.26	TNFA	1.42
	355		300		208	3	098	AP1	586	IP8L2	868
	1		8		5		8		2		
AC01	1.71	TRAV	2.25	ATP2	1.44	EMIL	2.04	GEM	1.86	TRB	2.08
8755.4	836	26-1	332	A3	153	IN1	711		235	V20-	990
	2		6		2		6		8	1	2
IGKV	3.64	TME	2.47	FBL	2.28	AC01	1.69	IGKV	2.77	TRA	2.09
3D-15	296	M119	988	N2	579	8529.1	605	4-1	677	V21	758
	3		8		3		3		1		8
SRGN	1.52	SYNP	1.54	LOX	1.21	FZD2	1.27	SLC9	1.47	TME	1.45
	376	O2	388	L1-	685		577	A9	437	M26	550
			9	AS1	5		6		9		1
TIMP	1.32	SPIC	1.42	HLA	1.63	SH2D	2.09	СМК	1.61	TRB	2.23
1	668		336	-	325	1A	634	LR1	315	V7-9	941
	5		9	DRB	4		3		7		3
				9							
PRKC	1.77	RPL29	1.80	TRBJ	1.88	IL7R	2.50	OMD	2.60	ITGA	1.42
Q	699	P19	064	2-3	282		812		142	9	560
CEN (I	1.00	DIALI	2	010	8	C A D 2	9	TD 417	4	ICHIN	4
CEMI	1.20	PLAU	1.52	CIQ	1.68	GAB3	1.41	TRAV	2.41	IGHV	2.82
Р	492	R	900	А	391		236	13-1	986	1-18	845
	1 00	WIGD1	0	OFM	2	NUDD	0	DOUT	4	OVC	9
	1.82	WISPI	1.47	SEM	1.25		1.59	DCN	2.60		1.98
AI	570		908	A4A	42/	3	140		1//	ко	485
DIN	4	OSM	2	CAT	2.07	TNED	/	<u>ס</u> ת ס	1	DD F1	1 40
KUN V2	1.70	USIVI	1.72		2.07	SE12	1.08		1.10 615	rKf l	1.49
ЛЭ	80/		112	HIVIO	20/	5115	009	LQ-	013		093

			0		2	C	1	4.51	1		5
	1.00	CDED	0	IGUI	2		1	ASI	1	TD 4	5
KLHL	1.36	CREB	1.43	IGLV	4.51	EMP3	1.40	ITGB	1.63	TRA	2.02
4	292	3L1	328	5-45	214		233	L1	987	V17	135
	7		6		7		3		6		5
TRAV	2.03	NCF1	1.88	RRA	1.31	GGTA	1.20	ADA	2.97	PLA2	3.22
8-6	425		739	D	610	1P	483	MDE	267	G2D	519
	3		2		5		8	C1	9		6
EGR2	1.63	SYTL	1.49	IGLV	3.18	CALB	1.85	TNFS	1.72	POD	2.31
	589	3	723	6-57	776	2	348	F13B	314	Ν	040
	6		2		9		8		5		5
IGHV	2.41	IGHA	3.17	ABR	1.15	KCTD	1.59	PLA2	1.23	HEP	1.60
3-35	752	1	010		67	12	548	R1	117	Н	056
	1		4				6		3		5
TRAV	2.18	PLB1	1.30	PLC	1.33	SMO	1.68	CHI3	2.27	CIIT	1.43
9-2	235		138	XD3	822	C2	482	1.2	361	A	634
> -	3		7	ni bu	3	02	8		8		9
MCO	1.96	TRAV	1 73	C160	4 86	TIMD	2 12	CD16	1.65	VSIG	2.01
I N2	880	29DV	707	rf89	587	4	026	3	910	1	480
1.112	0	5	/0/	1107	2	7	5	5	1	1	107
SI IT2	9	J	2.75		3 2.02	II 19D	1 42	WDE	1 1 79	СОТ	1.50
SLI12	1.94	101.09	2.75	TKA C	2.03		1.42	WDF V4	1.70		070
	4/9	-49	028	C	221	AP	228	14	447	LI	0/9
	4	DI LO	/	ava	8		3	GIDD	2	IGHU	0
TRAV	2.00	PLAC	2.01	GNG	1.33	AL58	1.10	SIPR	1.79	IGHV	2.81
5	111	9	707	T2	785	3785.1	242	4	430	1-	211
	5		2		8		4		7	69D	5
DES	3.42	CYBB	1.97	GPR	2.14	SOCS	1.39	AC00	1.11	CCB	2.16
	396		049	C5A	629	3	610	8759.	997	E1	114
	5		8				3	3	4		2
VSIG	1.81	FGR	1.38	ICA	1.81	PLAC	1.96	MAM	2.03	IGFN	5.26
4	430		787	M3	923	8	144	DC2	333	1	501
	1		1		6		7		1		6
TPSB	2.06	TRBV	1.96	AP00	1.44	LINC	1.53	MPE	1.47	CCN	1.15
2	326	12-4	400	0892.	789	01094	732	G1	301	D2	734
	9		1	3	3		4		9		
PNM	1.55	C1QT	1.45	CD1	1.67	APOB	1.45	IGHV	2.38	CD70	2.57
A2	659	NF1	971	80	288	EC3A	643	1-67	966		142
	6		6		2		8		6		2
			1	T 4 3 4	1.85	CFD	1.36	GNG	1.23	TRB	1.90
SELL	1.67	DPEP	1.35	LAM	1.05						1
SELL	1.67 116	DPEP 2	1.35 292	LAM A2	213		974	2	843	C2	371
SELL	1.67 116 4	DPEP 2	1.35 292	LAM A2	213 2		974 2	2	843	C2	371 5
SELL NRRO	1.67 116 4 1.21	DPEP 2 LINC0	1.35 292 1.35	A2 CD4	213 2 1.70	P2RY	974 2 1.95	2 TRIM	843	C2 DUO	371 5 2.77
SELL NRRO S	1.67 116 4 1.21 281	DPEP 2 LINC0 1943	1.35 292 1.35 269	A2 CD4 0LG	213 2 1.70 637	P2RY 12	974 2 1.95 793	2 TRIM 22	843 1.08 535	C2 DUO X2	371 5 2.77 990
SELL NRRO S	1.67 116 4 1.21 281 1	DPEP 2 LINC0 1943	1.35 292 1.35 269 3	LAM A2 CD4 0LG	1.00 213 2 1.70 637	P2RY 12	974 2 1.95 793 4	2 TRIM 22	843 1.08 535 6	C2 DUO X2	371 5 2.77 990 9
SELL NRRO S	1.67 116 4 1.21 281 1 1	DPEP 2 LINC0 1943	1.35 292 1.35 269 3 1.52	LAM A2 CD4 0LG	1.00 213 2 1.70 637	P2RY 12	974 2 1.95 793 4 1.57	2 TRIM 22 GIM	843 1.08 535 6 1.14	C2 DUO X2	371 5 2.77 990 9

MIS2	788		564	33A	819	0C	234	AP6	725	3	431
	8		4		1		2		8	-	9
FPR3	1.75	IGHV	2.72	ELN	1.46	APOB	1.35	IGLV	2.70	CD3E	2.04
	422	4-61	033		457	EC3G	703	1-44	124		789
	3				7				7		7
PROC	1.08	LY86	1.57	TRB	2.11	SIRP	1.81	DGK	1.11	SIGL	1.89
R	441		045	V13	592	B2	961	А	497	EC14	016
			3		6		7		7		
GPRI	1.09	CXCL	1.42	TRB	1.13	XCR1	2.56	TRAV	2.26	IGHV	4.44
N3	409	11	142	V30	693		054	8-3	123	1-58	123
	2		5		9		8		9		2
ZBP1	2.00	AC109	1.51	C1Q	1.80	TMIG	1.44	TRB	2.10	WDR	1.70
	200	446.3	624	В	293	D2	566	V11-2	925	86	162
	2		2		6				1		3
TNFR	1.78	GCSA	1.44	PTGI	2.24	IGLV	3.19	SIGL	1.49	KLH	1.71
SF8	264	М	234	S	150	2-11	938	EC1	217	L6	809
	4		8		5				2		3
AIF1	1.44	CDH3	2.20	IGH	2.29	COL1	1.97	FCM	1.78	TME	1.85
	482		962	V4-	869	A2	046	R	579	M158	198
	6		1	34	3		7		8		7
SPOC	1.32	AC012	1.48	EOM	1.95	IL16	1.41	IL24	1.55	IGHV	2.97
D1	968	645.3	459	ES	774		759		528	3-48	411
	4		7		7		4		6		9
NFA	1.77	CDX1	1.26	TRG-	1.61	EVI2	1.66	VILL	1.07	GFR	1.34
M1	990		114	AS1	705	А	154		443	A2	512
	9		8		6		6		6		
CD84	1.78	TRAV	2.48	CLE	1.56	CD86	1.60	CCL1	1.52	ARL1	1.38
	784	20	927	C5A	222		701	8	371	1	688
	5		5		2		4		5		6
IGHV	2.98	TRAV	2.13	OLF	1.58	TRAV	2.08	IGKV	4.43	CD52	1.91
3OR1	914	12-2	515	ML2	330	8-4	648	2D-40	225		45
6-9	2		7	В	6						
COL1	1.61	AC004	1.65	TCL	2.63	LINC	1.78	HAM	1.90	CELF	1.85
6A1	321	847.1	247	1A	752	02084	799	Р	044	2	301
	1		6								3
CORO	1.76	IGKV	2.69	LPA	1.53	MAP4	1.59	KLH	1.37	AC02	1.70
1A	505	5-2	090	R5	76	K1	359	DC7B	340	7031.	231
	9		1				2		2	2	1
SAM	1.05	CRISP	1.53	LTF	1.48	AC01	1.28	IGKV	3.08	EPH	2.13
D9	568	LD1	257		310	1899.2	196	3-15	325	A3	734
	5		2		6		4		1		3
CXCL	2.21	FMN1	1.27	ADG	2.13	POST	2.08	CSF2	1.77	IGKV	4.43
9	533		751	RE1	501	N	238	RB	534	6-21	168
	5		1		8		4		3		7

SPTS	1.56	IGHV	2.94	AL07	1.12	IGLV	1.96	MGP	1.75	NLR	1.41
SB	24	6-1	804	8590.	233	2-18	369		187	C3	163
			7	3	1		7		7		1
LSAM	1.27	CLEC	1.32	FAP	2.17	TRBV	2.26	IGKV	2.50	GPR3	1.27
Р	995	10A	439		969	24-1	985	3-20	730	4	549
					6		5		4		9
CTSK	3.05	NCKA	1.75	PAM	1.78	KLHL	1.48	PREL	2.37	P2RY	1.75
	043	P1L	566	R1	593	30	197	Р	444	13	545
	9		5		9		9		5		4
TRBV	2.08	IL10	1.97	EVI2	1.80	CMT	1.19	RYR1	1.55	IGKV	2.99
5-4	554		545	В	142	M2	737		686	3-7	501
	3		8		5		4		5		6
IGHV	3.27	AL034	1.55	EGR	1.52	TME	1.69	IGKV	2.87	MYL	2.07
2-70D	664	397.3	362	3	369	M200	837	1-12	906	9	684
	7		7		8	А	5		3		
LINC	1.38	IKZF1	1.88	SIGL	1.96	PSTPI	1.58	ICA	1.06	AC01	1.76
01150	010		450	EC8	685	P1	811	M1	287	5911.	512
	6		9		8				9	3	6
IGHV	2.82	LXN	1.63	VEN	1.09	SRPX	2.89	AC00	1.58	TRB	2.10
30R1	804		010	ТΧ	823		415	4687.	740	V7-6	225
6-13	1		4		1		1	1	9		4
IGHV	3.27	TRBV	2.01	HLA	2.00	ARH	1.24	SLC7	1.30	LINC	1.50
3-19	747	10-3	902	-	389	GDIB	642	A7	038	00892	146
	1		4	DOA	7		4		1		8
TMPR	2.91	IGHV	2.79	COL	2.00	CCR1	1.54	PTPR	1.97	IPCE	1.56
SS4	290	1-3	720	1A1	724		121	С	765	F1	492
	5		1		1		8		1		4
FDCS	1.35	MMP7	2.33	GST	1.38	NCF1	1.60	JCHA	2.76	IGKV	2.85
Р	044		924	M5	135	С	354	IN	355	2D-	175
	5		2		7		3		8	24	9
FASL	1.82	RTN1	1.19	ADA	1.19	P2RX	1.71	LILR	1.35	IGHG	2.98
G	143		350	2	898	1	291	A1	625	Р	543
	6		6		6		4		7		6
ANK2	1.54	IGKV	2.55	HLA	1.79	AC01	1.72	LINC	1.98	LILR	1.21
	797	1-16	656	-	238	5911.7	659	01615	820	В5	450
	6		5	DQB	3		8		5		7
				1							
CLMP	1.78	SIRPG	1.83	CEA	2.69	LAIR	1.54	RNU	1.42	LILR	1.58
	213		839	CAM	960	1	315	4-62P	850	A5	151
			7	6	4		5		6		
SFRP	2.40	IGKV	1.96	LINC	1.35	AC24	1.70	AC00	2.09	IGHV	3.04
1	455	30R2-	407	0228	524	5128.3	252	4585.	28	3-72	238
	2	268	3	5	5		6	1			5
ARH	1.54	GZM	1.79	AC0	1.37	IGHV	1.80	PLD4	1.49	PTGS	1.89

GAP3	702	А	983	0810	085	7-81	564		720	2	013
0	9			5.3	9		5		4		8
TRDV	2.60	C11orf	1.53	IGK	2.83	PRRX	1.62	C3AR	1.51	CRPP	1.30
1	986	21	182	С	628	1	622	1	278	1	735
	1		2		8		2		8		8
C1QC	1.69	TRBV	1.99	HAN	2.76	LINC	2.17	POU2	1.78	SPIB	1.73
	595	18	411	D2	267	01857	731	AF1	076		941
	4		6				7		8		1
TRBV	2.13	CD27	2.19	FCG	1.33	IGHV	3.40	GPR6	1.75	TLR2	1.14
5-1	239		495	R2A	348	3-15	543	8	152		765
	8		8		4		8				1
IL10R	1.55	DACT	1.27	LTB	1.64	IGHG	3.21	CD30	1.42	CD17	3.01
А	551	1	863	P2	711	2	481	0A	774	7	107
	7		7		9		3		2		6
FCER	2.02	GIMA	1.09	HLA	1.67	ASB2	1.78	SYK	1.41	SEM	1.23
2	11	P7	14	-	416		338		717	A4D	403
				DMB	5		7				8
GLI3	1.52	FGF7	2.49	WIS	2.80	INTS6	1.15	AC01	1.30	GVIN	1.62
	846		979	P2	527	L	433	5819.	733	P1	624
	2		2		5		7	1	9		8
IGKV	2.61	AC090	1.54	TAG	1.89	IGHV	3.34	SIT1	1.97	PRA	1.35
2D-29	855	559.1	069	AP	971	3-33	904		871	M1	491
	9		3		2		9		9		6
ADA	1.83	IGHV	1.48	AL03	1.47	TLR7	1.91	LINC	1.58	MGA	1.39
M33	725	3-63	116	1846.	281		506	01480	007	Т3	553
	2		5	1	3		9		7		4
FSTL	1.10	GAL3	1.82	SIDT	1.22	IGLV	3.71	SPOC	1.34	C14or	1.41
3	736	ST4	566	1	879	2-8	458	K2	394	f180	558
	6		9		2		5		4		6
LRRC	1.26	PTN	1.93	CD4	1.96	NDR	1.77	TRB	1.91	TWIS	2.20
17	724		503	8	846	G4	044	V6-1	314	T1	265
	8		1		9		2		5		4
INPP4	1.35	CHIT1	3.76	GPR	1.75	TME	1.54	SLA	2.25	IL1B	1.51
В	126		440	65	113	M173	733	MF7	537		734
	7		7		5		8		6		9
AC14	3.02	GREM	1.36	STR	1.60	IGLV	3.44	SYN	1.57	IGHV	3.72
2381.1	320	1	327	A6	231	8-61	063	DIG1	755	1-2	402
	4		7		3		4		2		7
POU2	1.59	COL6	1.31	GNA	1.43	GFPT	2.00	HAV	1.56	ARH	1.27
F2	339	A1	379	15	649	2	275	CR2	283	GAP2	136
	7		5		2		3		3	5	4
CXCR	1.58	GLIPR	1.24	FTH	2.01	LINC	1.50	HSPB	1.84	CCR5	2.03
1				1		016-0			· · · ·		000
1 1	190	1	113	1P22	801	01679	717	2	656		800

CD3G	1.92	IGH13	3 01	ZBE	2.22	PTHL	1 28	IGLV	2.77	SPN	1 78
0250	384	101105	744	D2	659	н	035	3-25	269	5111	941
	8		5	102	2	11	6	5 25	1		711
LY9	1.95	PRUN	1 80	GPR	2 33	IGHG	2 59	CST7	1 73	AIM2	2.57
	524	E2	722	174	319	3	2.37	0017	166	7111112	512
	6	112	6	171	517	5	5		6		5
SGCA	2 01	IGLV1	2 73	ACO	1 1 5	PLA2	1 48	FAM1	1 53	ADG	1 77
56671	688	-51	175	2503	467	G4A	360	294	822	RE2	143
	9	-51	8	1 1	5	G + <i>I</i> I	4	2011	8	KL2	9
TRPV	1 37	RAB3	1 36	TRB	2 37	CD72	1.62	11.6	1 47	ΙΔΧ	1 72
6	100	1	648	V3_1	780	CD72	1.02	ILO	580	1	670
0	4	1	1	v 5-1	6		1		507	1	7
BIN2	1 59	ALOX	1 84	SNX	1.85	CLEC	1 00	CD8	2 13	IGKV	1 93
DINZ	1.39	5AP	130	20	756	4F	277		436	2_29	307
	1/2	JAI	5	20	1	ΨL	211	Π	1	2-2)	371
AT 13	1 51	ARHG	1.65	FRN	1 40	GPR 1	1 95	TRAV	2 14	FOX	1.61
5818 1	278		561	1	824	71	875	$\frac{1}{2}$	2.14 415	F1	601
5616.1	6	AI 9	501	1	024	/1	4	2	3	1 1	6
EMILI	1 10	\$100B	1 1 3	GPY	1 20	HND	1 70	TMS	1.04	IGIV	1.84
N2	763	31000	1.13	8	337	NDA 1	636	PAY	804	1.50	316
112	6		5	0	2	D21	2	D4A	2	1-30	510
SI EN	1 77	ICKV	280	COL	2 15		2 76	UCK	1.68		1 26
12I	1.//	1.5	2.09 450	2 A 1	2.13	1 12	2.70	IICK	1.00	ADA M12	0.01
12L	401	1-5	430	JAI	994 1	1-12	407		2	10112	901 o
CDTA	5	DMD2	4	VVI	1	мал	2	MCD	J 1 41	ICI D	0
CRIA C1	2.22	PMP2	1.40	T1	1.49	MIMP 0	1.54		1.41 624	ISLK	2.84
CI	208	2	125	11	449	9	6	1	1		10/
CSE2	J 1 11	CDNM	2 20	ITC	1 1 1 2	IIADI	1.07		1	CND	1 22
	1.11	GPNM D	2.20	110	1.42	HAPL	210		1.30	GNB	1.22
КА	100	D	0	AS	1	183	219	KJ	438	4	402
ITA	1		0	ICIN	1	OSCA	4	CD90	9	SICI	3
LIA	1.84		1.57		5.09	DSCA	1.42	CD80	1.65	SIGL	1.55
	/	1	830	3-21	011	ĸ	/12		331 o	ECH	249
ECDI	1.25	DAGC	/	ICH	4	CD20	0	CLEC	0	ICIN	/
	1.33	KASG	1.80		3.21 510		1.52	1D	5.09		5.18 049
0	434	KP1	200	24	548	ULF	0/9	тв	003	1-40	948 5
MUCI	2 1.02	CD22	4	24 ME11	9	HAGI	0	ADT	/	TECD	3
MUCI	1.83	CD22	1.0/	IVIEII	1.00	HASI	2.45		1.3/		2.03
	145		3/8		910		634	KP	2	AI	547
	4	IVDD	9	ICLO	1	CD 1	0	CD10	3	1010	0
	2.10		1.23	IGLC	2.38	CKI	2.30	CD38	1.//	ACIU	1.65
14DV	2/5	5	828	0	333		405		000	0803.	539
4	5	DI1C	8	CIDD	1 77	COLO) 1 70	IOT I	0		2
CPA3	1.44	P116	2.42	SIRP	1.75	COL8	1.70	IGHV	2.76	MIAT	2.30
Ì	/34		225	RI	785	A2	916	5-51	/03		037

	7		3		5		6		9		1
HCLS	1.60	CHST	1.41	ACK	2.27	IRAK	1.25	INMT	2.08	AL59	-
1	809	2	724	R1	706	3	500		016	0483.	1.88
					1		4		7	2	135
TM6S	1.51	ABI3B	1.66	BHL	1.88	SCGB	1.08	FYB1	1.92	ABH	_
F1	489	Р	592	HE22	378	3A1	744		113	D1	1.48
	3		4		3		8		2		554
FAM1	1.30	SIGLE	1.62	DSE	1.35	AP00	1.65	CAM	1.17	CTN	-
67A	494	С9	436		291	2954.1	644	KK1	446	NA2	1.71
	6	-	6		1		1		1		756
HS3S	1.44	CD1B	2.12	STA	1.16	TSHZ	1.48	PLEK	1.10	GRE	-
T2	937		158	B1	756	3	678	HO2	024	B1	1.31
	5		4		9		8		4		633
BLK	1.49	AC145	1.18	PILR	1.29	IKZF3	1.83	THBS	2.18	AC10	-
	616	098.1	801	А	093		050	2	160	4088.	1.75
	1		5		7		1		2	1	
IGHV	2.30	GPSM	1.47	IGK	2.93	CD2	2.01	CCR7	2.25	AC09	-
3-38	708	3	832	V3-	285		792		241	8934.	1.19
	9		7	11			7		8	2	748
HTRA	1.55	IGHM	2.83	HBD	2.29	PYG	1.52	C6orf	1.41	AC01	-
3	798		950		415	М	274	222	972	0501.	1.33
	3		8		6		7		7	1	218
RGS1	1.54	GGT5	1.90	IGFB	1.55	BTK	1.69	CLEC	1.16	AC11	-
8	387		574	P6	310		172	4A	219	4947.	1.33
	7		7		6		7		7	1	123
CAM	1.58	JAKM	1.76	C110	1.46	MAP1	1.97	EPB4	1.63	AC23	-
K4	464	IP1	236	rf96	000	А	533	1L3	632	1981.	1.13
	2		1		9		2		1	1	35
RAC2	1.54	TNXB	1.79	AC0	1.97	LINC	1.63	FOXS	1.39	LGR5	-
	764		084	1591	638	01871	390	1	825		1.55
	6		9	1.8	1		6		1		644
CLEC	1.77	CRISP	1.90	NCF	1.79	TRAV	2.02	AL16	1.23	PAGE	-
7A	848	LD2	808	1B	009	16	321	1935.	588	4	1.77
	5		9		4		5	3	9		836
GPR8	2.14	GNG8	1.44	IGH	2.27	WDR	1.26	LILR	1.87	AOX	-
4	995		628	V4-	014	86-	567	B4	423	3P	1.14
	4		1	59	5	AS1	5		6		283
TOM	1.51	PDE6	1.33	TRB	2.06	CXCL	1.45	NMU	1.29	KCN	-
M20P	614	G	398	V4-2	422	12	904	R1	098	U1	1.69
2			8		3		6		6		174
GZM	1.37	SCIM	1.67	DUO	2.33	EMB	1.92	TNFS	1.13	RHB	-
М	817	Р	526	XA2	724		507	F18	318	DL3	2.18
	8		9		9		8		1		423
CD79	2.71	PI3	2.08	CR2	3.71	LINC	1.28	1-Mar	1.24	RAS	-

А	435		692		985	00426	326		382	L10B	1.79
	4		2		6		9		9		163
CLEC	1.33	ANTX	1.79	CYS	1.29	LINC	2.69	TMC	1.58	DNA	-
2B	265	R1	568	LTR1	817	01133	396	8	935	JB3	1.39
	9		8		5		6		2		467
DOC	1.18	TRAV	2.26	TRB	1.98	SVEP	2.26	MYE	2.97	LINC	-
K8	395	19	379	V28	938	1	877	ov	135	01970	1.48
	9				4				3		494
TBX2	1.46	FGD2	1.41	GPM	1.77	PCDH	2.08	TLR1	1.72	AC01	-
1	133		06	6A	504	7	905	0	654	1747.	1.58
	2				4		8		1	1	52
SASH	1.81	CRTA	2.14	IGH	2.79	IL2R	1.79	TYR	1.41	AC02	-
3	625	М	256	V3-	513	В	115	OBP	624	6765.	1.68
	7		4	21	1		7		2	2	538
CD1C	1.45	LILR	1.69	CYTI	1.69	IGKV	2.63	TRB	2.11	RNF4	-
	514	A4	392	Р	315	1D-43	857	V2	112	3	1.15
	9		5	-	4		9		2	-	277
CLEC	1.83	FAM1	2.15	MT1	1.14	IL18B	1.33	NCR1	-	IOCH	-
12A	745	63B	600	L	337	P	826		119		1 17
1211	1	050	3	L	5	1	020		7		561
IGKV	4 82	MRC2	1 81	NDN	3 20	IGLV	4 4 4	CHR	3 74	AC00	-
1D_42	536	WIRC2	025	F	397	10-54	073	NA1	769	8549	1 30
10-42	3		8	1	9	10-54	075	14711	1	1	317
CCR2	1.62	Clorfl	1 49	CEA	1.62	CD5	2.04	IGHV	2 65	RNU	-
00102	494	62	071		763	CD5	059	4-55	886	6-46P	1 23
	4	02	8	4	8		2	4-55	9	0-401	746
SA A 1	1.68	II 1RI	1.82	HCG	1 40	CXCI	1 42	IDO1	1 27	MIR3	-
5/1/1	003	1	593	11	476	3	782	ibor	037	25HG	1 40
	8	1	5	11	6	5	6		2	25110	529
WNT1	1 84	GPBA	1 90	PLA	1.86	MILR	1 41	CD19	1 72	SP5	-
04	59	R1	108	I LA	425	1	197	CDT	065	515	1 35
011	57	iti	6	U	1	1	177		4		922
CD33	1 48	I INCO	1 49	TIM	2 74	MS4A	1 21	RAS	1 22	LINC	-
	063	0996	343	LUM	670	4E	653	GRP4	781	02587	2 14
	6	0,,0	4		3		5		4	02307	413
FGD3	1 11	FCGR	1 52	CD3	1 70	CCL1	3 85	GDF6	1 54	рну	-
	450	34	951	7	895	9	890	GDIU	642	НЫ	1 13
	4	511	7	,	5	,	8		3		104
IGHV	3 93	AC134	131	IFI44	1 29	NGER	1.87	SAM	1 41	ACT	-
3_73	151	043.2	968	I	017	TOTA	033	D91	346	N2	1 72
5-15	2	073.2	9		9		6		3	112	635
ТСДА	1 20	MMD1	1.00	DOC	1.81	SAMS	1.91	ртси	1 / 9	AC00	
N22	1.29	0	368	K)	1.01 287	N1	30/	2 1 ICH	1.40 472	7077	-
1132	5	2	8	KZ	207	111	3 3 3 4	2	7	1	1.07
	5		0		2		3		/	1	143

FAM7	1.29	TRBJ2	1.89	SPI1	1.52	ZG16	1.24	IGHV	2.84	AC01	-
8A	877	-1	560		328	В	554	2-5	349	0531.	1.19
	9		5		8		6		8	5	432
FCN3	1.95	AC243	1.68	MAL	2.21	TRAF	1.71	AL36	1.97	ACS	-
	266	960.1	898		536	3IP3	939	5361.	595	L6	1.40
	8		5		6		3	1	2		132
CXCL	1.78	THEM	2.11	CD2	1.56	IL12R	1.69	ITGB	1.97	AC11	-
5	797	IS	096	47	993	B1	602	6	240	3404.	1.32
	6		9		1		4		6	1	862
PTGE	1.49	TRBV	2.31	PLE	2.01	FCGR	2.04	IGHV	3.26	AC06	-
R3	287	29-1	192	KHS	322	1A	509	2-26	405	9294.	1.54
	3		1	1	7		5		7	1	166
KCN	2.21	TRGV	1.61	BCL	1.69	AP00	1.72	IGHV	3.57	LINC	-
N4	325	7	328	11B	669	5019.1	829	3-11	489	01124	1.34
	9		8		9		8		3		15
TRAV	2.29	HLA-	1.64	TLR	2.26	TRBC	2.03	MT1F	1.01	AL16	-
12-1	756	DQB1	086	8	887	1	025		945	3953.	1.50
	8	-AS1	8		4		3		7	1	539
SHIS	2.63	IFI16	1.16	GPR	1.85	IL2R	1.70	CDH	1.84	C5orf	-
A3	904		721	182	402	G	778	17	265	66	1.25
	4		5		3		4		5		871
BAN	2.39	RUBC	1.60	WNT	3.28	AC00	2.17	ZAP7	1.55	NOT	-
K1	932	NL	016	2	809	2398.2	532	0	535	UM	1.55
	1		5		1		3		7		725
AC11	1.26	PTAF	1.37	AC1	1.44	TRE	1.28	MIR8	2.50	HLF	-
0995.1	334	R	606	1552	389	M2	234	071-2	469		1.13
	9		7	2.1	2		3		2		434
GATA	1.41	CLEC	1.77	LYL1	1.14	HLA-	1.67	CLEC	1.70	TECT	-
3	308	11A	684		113	DRA	920	9A	670	В	1.21
	4		3		6		8		3		056
AC02	1.27	TRBJ2	1.93	LINC	2.05	CCL1	2.32	HLA-	1.62	AC01	-
2730.4	071	-7	068	0254	254	1	615	DRB6	671	3244.	1.26
	3		6	4	4		3		9	1	814
CHN1	1.20	DNM3	1.59	RAS	1.64	CFP	1.61	DNAJ	1.77	AC00	-
	578	OS	281	SF2	080		747	C5B	227	7406.	1.28
DOOD	3		4	1.000	9		1	Latur	2	2	26
FCGR	2.01	EFEM	1.88	MYO	1.51	PYHI	1.84	IGHV	3.10	ASB4	-
ТСР	136	PI	121	IG	733	NI	230	3-23	913		1.25
0000	6	III/OV	9		3		6	LOUIL	1	GAT	158
SOD3	1.84	HVCN	1.18	HLA	1.73	SFMB	1.08	IGKV	3.36	GAL	-
	255	1	734	-	902	12	371	1-9	173	R3	1.12
	0		0	DDD	_		0		()		22-
	9		9	DPB	7		8		8		335
1000	9	01105	9	DPB 2	7		8	TPE	8		335

478 - 1.25 968 - 1.86
- 1.25 968 - 1.86
1.25 968 - 1.86
968 - 1.86
- 1.86
1.86
1
-
1.14
827
-
1.40
981
-
2.02
394
-
1.44
5
-
1.11
682
-
1.19
896
-
1.15
498
-
1.07
39
-
1.21
733
-
1.22
751
-
2.20
544
-
1.89

G	ut
_	

5	3		7		8	108			5	1	468
NCF4	1.41	HLA-	1.81	IGK	2.57	TACS	1.57	ADA	1.63	MTN	-
	846	DQA2	243	V1-6	514	TD2	241	MTS1	923	D4LP	1.31
	8		4		7		4	5	6	30	629
AL59	1.43	P2RY1	1.77	MMP	2.40	CERK	1.38	FER	1.52	TBX3	-
0648.3	130	0	184	12	222	L	217	MT3	664		1.24
	9		4		6		2		7		349
TRGV	1.64	CLIC6	1.45	ANX	1.43	AC02	1.81	SIGL	1.85	RHB	-
10	277		859	A1	291	6369.3	087	EC10	071	G	1.78
	2				7		2		6		067
AC00	1.29	SIGLE	1.31	NCR	1.64	IGHV	1.90	GAB	2.60	KLK	-
6059.1	736	C12	351	3	258	3-41	893	RP	473	4	2.89
	5		3				7		1		054

DEGS, differentially expressed genes.

Supplementary	Table S3 PPI	network core g	genes from l	DEGs screene	ed by Immune	Score and
StromalScore						

Gene	Co	Gene	Co	Gene	Co	Gene	Co	Gene	Co	Gene	Co
	unt		unt		unt		unt		unt		unt
CXCL	25	CD86	8	ALOX	3	MMP7	2	CFP	1	LCP1	1
8				5							
SYK	25	HCK	8	ANXA	3	NLRP3	2	CHN1	1	LGAL	1
				1						S9	
CXCL	22	HLA-	8	C1QA	3	NTF3	2	CLEC	1	LGR5	1
12		DMB						4E			
CCL5	20	HLA-	8	C1QB	3	NTRK2	2	CLEC	1	LOXL	1
		DQA2						7A		1	
CXCL	20	IL6	8	C3AR	3	P2RY1	2	COL1	1	LTF	1
1				1		0		6A1			
CD4	19	ITK	8	CCR4	3	PLCB2	2	COLE	1	LY86	1
								C10			
LCK	19	CD79	7	CD33	3	PTGIS	2	COTL	1	LYVE	1
		А						1		1	
CXCL	18	COL5	7	CD72	3	RHOH	2	CR2	1	MAP4	1
11		A1								K1	
CCL4	16	COL6	7	CLEC	3	RIPK3	2	CSF2	1	MMP1	1
		A1		1B				RA		2	
CXCL	16	HLA-	7	CLEC	3	S1PR4	2	CTSG	1	NCKA	1
9		DQB2		5A						P1L	
IL10	16	HLA-	7	CSF1	3	SAA1	2	DOC	1	OGN	1
		DRB5		R				K2			
LCP2	16	IL2RG	7	CXCR	3	SELP	2	DOK2	1	OMD	1
				6							
CD3E	15	CD19	6	GNG2	3	SEMA4	2	DUO	1	OMG	1

ut

						D		X2			
CXCL	15	CD8A	6	ITGA3	3	SH2D1	2	DUO	1	PDE6	1
5						А		XA2		G	
CXCR	15	COL6	6	ITGA4	3	SLA	2	EFNB	1	PDPN	1
4		A2						3			
CCL19	14	COL6	6	ITGB6	3	SOCS3	2	EGR2	1	PIK3R	1
		A3								5	
CCL21	14	DCN	6	LUM	3	SPI1	2	EGR3	1	PLAU	1
CCR5	14	FCGR	6	MMP2	3	TBX21	2	ELN	1	PLN	1
		3A									
VAV1	14	FPR1	6	NCF1	3	TBXAS	2	EPHA	1	PRF1	1
						1		3			
CCR2	13	IL1B	6	NCF4	3	TNFRS	2	EVI2	1	PTCH	1
						F13C		А		2	
HLA-	13	ITGA	6	NGFR	3	TREM2	2	EVI2	1	RNF4	1
DRA		Х						В		3	
ZAP70	13	WAS	6	PRKC	3	VSIG4	2	FCGR	1	RUNX	1
				Q				1B		3	
CCR1	12	CCL11	5	SELP	3	WIPF1	2	FCN3	1	SELL	1
				LG							
ITGB2	12	CD80	5	TNFS	3	ABI3	1	FLT3	1	SIGLE	1
			_	F13B	-					C14	
PTPR	12	СҮВВ	5	VCAN	3	ABI3B	1	FPR3	1	SIRPB	1
C	11	CNID 4		ADUG	2	P	1	G ATTA	1		1
BIK	11	GNB4	2	ARHG	2	ACKRI	1	GAIA	1	SLA2	1
CD247	11	DTCS2	5		2	A CTNO	1	J CDD5	1	CI AM	1
CD247	11	P1052	3	CIQC	2	ACTNZ	1	GBP5	1	SLAM F1	1
COL 1	11	PTPN2	5	C5AR	2	ADAM	1	GUB	1	SLAM	1
A1	11	2	5	1	2	28	1	GLIS	1	F6	1
CXCR	11	ADA	4	CCL2	2	AIM2	1	GPR8	1	SOD3	1
2		MTS2		2	2	7 111012	1	4	1	5025	1
CXCR	11	CD2	4	- CD300	2	ALOX5	1	GPS	1	STAB	1
3				A		AP	-	M3	_	2	
HLA-	11	CD22	4	CD40	2	ANK2	1	GPX8	1	TCN1	1
DRB1				LG				-			
TYRO	11	CD53	4	CD5	2	ARHG	1	GZM	1	TLR2	1
BP						AP9		А			
CD74	10	CIITA	4	CLEC	2	ATP2A	1	HAV	1	TLR7	1
				12A		3		CR2			
CXCR	10	CSF2R	4	DAPP	2	BIN2	1	HCLS	1	TLR8	1
1		В		1				1			
HLA-	10	FCGR	4	FBN1	2	BIRC3	1	HLA-	1	TME	1

DQA1		1A						DOA		M173	
RAC2	10	FGR	4	FCGR	2	BLK	1	IFI16	1	TNFR	1
				2A						SF17	
CCR7	9	GNA1	4	FZD2	2	C7	1	IL10R	1	TNFR	1
		5						А		SF8	
COL1	9	GNGT	4	GNG8	2	CAMK	1	IL16	1	TNFS	1
A2		2				4				F8	
COL3	9	HLA-	4	ICAM	2	CAMK	1	IL18B	1	TNNT	1
A1		DPB1		3		K1		Р		3	
CXCL	9	ICAM	4	IL21R	2	CD177	1	IL18R	1	TRIM	1
3		1						AP		22	
HLA-	9	IL2RA	4	IL7R	2	CD180	1	IL34	1	WNT1	1
DPA1										0A	
HLA-	9	LILRB	4	INPP5	2	CD209	1	ITGA	1	WNT2	1
DQB1		2		D				9			
IL2RB	9	MMP9	4	LAIR1	2	CD27	1	KLR	1	ZBP1	1
								D1			
JAK3	9	PLAU	4	LPAR	2	CD300	1	L1CA	1		
		R		1		Е		М			
CD3G	8	TIMP1	4	LPAR	2	CD70	1	LAM	1		
				5				A2			

Supplementary Table S4 Poor prognosis related genes from DEGs screened by ImmuneSco	e
and StromalScore	

gene	KM	HR	HR.95L	HR.95H	pvalue
PTPRO	0.033424	2.238024	1.152786	4.344911	0.017312
SPOCD1	0.015313	1.213828	1.035583	1.422752	0.016781
SPTSSB	0.046119	1.068222	1.011319	1.128328	0.01813
HTRA3	0.011235	1.043528	1.011301	1.076781	0.007765
GPR84	0.031833	1.27537	1.104376	1.472839	0.000927
CXCL5	0.023003	1.009484	1.002221	1.016799	0.010397
PLAUR	0.021906	1.023605	1.003917	1.043679	0.018546
TRBV10-3	0.04285	0.267878	0.11143	0.643977	0.003247
CLEC5A	0.00539	1.780853	1.233664	2.570747	0.002062
STRA6	0.012942	1.297887	1.036369	1.625397	0.023139
KLRB1	0.04135	0.866394	0.785469	0.955656	0.00415
IL7R	0.006566	0.892265	0.800464	0.994594	0.039607
IL18RAP	0.001203	0.302831	0.131081	0.699614	0.005172
LINC01094	0.043624	2.006601	1.392642	2.891228	0.000186
MMP9	0.009448	1.003832	1.000028	1.007651	0.04833
LINC00426	0.003218	0.186921	0.037245	0.938083	0.041588
TREM2	0.021588	1.018437	1.003249	1.033854	0.017166
FLT3	0.048108	0.151001	0.030576	0.745719	0.020339

MSR1	0.040151	1.12339	1.026461	1.229472	0.011496
ITGB6	0.002084	1.293882	1.046206	1.600191	0.017471

HR, Hazard Ratio.

Supplementary Table S5 Antibodies used in this study

Name	Supplier	Cat no.
FITC anti-mouse CD11b antibody	BD	#557396
PE anti-mouse Ly-6G/Ly-6C antibody	BD	#553128
PE-CF594 anti-mouse CD11c antibody	BD	#562454
PERCP anti-mouse CD3 antibody	BD	#551163
PE-CY7 anti-mouse CD86 antibody	BD	#560582
APC anti-mouse CD206 antibody	BD	#565250
AF700 Fixable Viability Stain	BD	#564997
APC-CY7 anti-mouse CD45 antibody	BD	#557659
BV421 anti-mouse F4/80 antibody	BD	#565411
BV480 anti-mouse IA/IE antibody	BD	#566086
BV605 anti-mouse CD19 antibody	BD	#563148
BV650 anti-mouse NK1.1 antibody	BD	#564143
FITC anti-mouse CD8a antibody	BD	#553030
PE anti-mouse CD152(CTLA-4) antibody	BD	#553720
PE-CY7 anti-mouse CD44 antibody	BD	#560569
APC anti-mouse CD62L antibody	BD	#553152
BV421 anti-mouse CD4 antibody	BD	#562891
BV510 anti-mouse CD223(LAG3) antibody	BD	#746508
BV605 anti-mouse CD279(PD-1) antibody	BD	#563059
BV650 anti-mouse CD366(TIM-3) antibody	BD	#747623
PE anti-mouse GranzymeB antibody	BD	#12-8898-82
APC anti-mouse IFNy antibody	BD	#554413
Ms CD16/CD32 Pure 2.4G2 100ug	BD	#553141
BB515 anti-human CD4 antibody	BD	#564419
PE anti-human CD47 antibody	BD	#556046
BB700 anti-human CD8 antibody	BD	#566452
Alexa Fluor647 anti-human GranzymeB antibody	BD	#560212
APC-CY7 anti-human CD45 antibody	BD	#557833
BV421 anti-human CD56 antibody	BD	#562751
BV510 anti-human CD19 antibody	BD	#562947
BV605 anti-human CD3 antibody	BD	#562994
BV786 anti-human IFN γ antibody	BD	#563731
BV421 anti-human CD183(CXCR3) antibody	BD	#562558
MMP9 (N-terminal) Polyclonal antibody	Proteintech	#10375-2-AP
MMP9 antibody	BOSTER	#PB9669
SSH1 Polyclonal antibody	ECM	#SP1711
CXCR3 Polyclonal antibody	Proteintech	#26756-1-AP

^	۲	
	-11	Ŧ.
U	u	ı

CXCR3B-specific Monoclonal antibody	Proteintech	#60065-1-Ig
SIRT2 Monoclonal antibody	Proteintech	#66410-1-Ig
ERK1/2 Polyclonal antibody	Proteintech	#11257-1-D8
Phospho-ERK1/2 (Thr202/Tyr204) Polyclonal	Proteintech	#28733-1-AP
antibody		
Phospho-Akt (Ser473) Rabbit mAb	CST	#4060
Akt (pan) Mouse mAb	CST	#2920
JMJD2D Antibody (F-7)	Santa Cruz	#sc-393750
Granzyme B Rabbit pAb	Abclonal	#A2557
KDM4D Rabbit pAb	Abclonal	#A18138
GAPDH antibody	Proteintech	#15143-1-AP
CD8	Abcam	#ab209775
IFN	Affinity	#DF6045
β-catenin	PTG	#51067-2-AP
Flag antibody	Sigma	#F1804
HA antibody	Sigma	#SAB4300603
MYC antibody	Santa Cruz	#sc-40X
IgG(mouse)	Santa Cruz	#sc-69786
IgG(rabbit)	CST	#3900

Supplementary	Table S6	6 Primers and	shRNA use	ed in this study
---------------	----------	----------------------	-----------	------------------

Primiers	Sequences
homo-MMP9-F	TGTACCGCTATGGTTACACTCG
homo-MMP9-R	GGCAGGGACAGTTGCTTCT
mus-MMP9-F-1	GCAGAGGCATACTTGTACCG
mus-MMP9-R-1	TGATGTTATGATGGTCCCACTTG
mus-MMP9-F-2	CTGGACAGCCAGACACTAAAG
mus-MMP9-R-2	CTCGCGGCAAGTCTTCAGAG
mus-CD44-F	TCGATTTGAATGTAACCTGCCG
mus-CD44-R	CAGTCCGGGAGATACTGTAGC
mus-MYC-F	ATGCCCCTCAACGTGAACTTC
mus-MYC-R	GTCGCAGATGAAATAGGGCTG
mus-CyclinD1-F	GCGTACCCTGACACCAATCTC
mus-CyclinD1-R	ACTTGAAGTAAGATACGGAGGGC
homo-GAPDH-F	CTGGGCTACACTGAGCACC
homo-GAPDH-R	AAGTGGTCGTTGAGGGCAATG
mus-GAPDH-F	AGGTCGGTGTGAACGGATTTG
mus-GAPDH-R	TGTAGACCATGTAGTTGAGGTCA
shRNA target	Sequences
mus-MMP9-sh	CAGTACCAAGACAAAGCCTAT
mus-KDM4D-sh1#	CCACGGTAAGTAACGTTCCTT

mus-KDM4D-sh2#	ACACAGAGACTATGGTGTCTA
mus-SSH1-sh1#	CCCGTTTAGATCACACCAGTA
mus-SSH1-sh2#	GCAGCGATGAAGAACGGAAAT