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1 Introduction
All calculations in this document are based on the statistics package R version 4.1.2 (2021-11-01). For improved
reproducibility we provide the document source “ff_validation_nlme.Rnw” as supplement. When placed together
with the files “Simulation_data.csv”, “Reference_data.csv” and “pdb_id_lengths.csv” in the same directory, the
document source can be processed by R and the package knitr [Xie, 2014, Xie, 2015], as long as all additional
dependencies (availability of the R packages “kableExtra”, “lme4”, “emmeans”, “car”, “lattice”, “nlme” and “dplyr”)
are met. To reproduce the pdf version of this supplement, interested readers have to use the following commands:

## in R:
library(knitr)
knit("ff_validation.Rnw")
## on the command line:
## > pdflatex ff_validation.tex

It should be kept in mind that optimization control in the scripts below were set to assure that a suitably small
error tolerance is reached. In case you wish to replicate the analysis, you have to consider that as a result of these
settings the knitr phase in R takes a considerable amount of time.

2 Characterization of simulated proteins
A detailed discussion of all metrics that were calculated from simulation outcome is provided in the main paper.
From a data analysis perspective it is however important to describe the nature of the metrics as this is important
for further statistical consideration.

Variable name Term in paper Type of metric
B_Strand: β-strand count metric
A_Helix: α-helix count metric
B_Bridge: bridges between two β-strands in a β-sheet count metric
ThreeTen_Helix: 310-helix count metric
Pi_Helix: π-helix count metric
Hbond_bb_0.25_120: Hydrogen bonds count metric
SASA_polar: solvent accessible surface area for polar residues positive quantity
SASA_nonpolar: solvent accessible surface area for non polar residues positive quantity
Rgyr: Radius of gyration positive quantity
RMSD.ADJ: Length adjusted positional RMSD positive quantity
phi_rmsd: Angular RMSD positive quantity
psi_rmsd: Angular RMSD positive quantity
NOE_repl_merged: NOE intensities positive quantity
Jvalue: J-coupling constants positive quantity

∗The responsibility for the analyses reported in this supplement lies with P. Sykacek email: peter.sykacek@boku.ac.at
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3 Data preprocessing
Our approach for assessing protein characteristics follows [Villa et al., 2007], who proposed analyzing the effects of
force fields on molecular-simulation derived protein characteristics with a MANOVA. MANOVA type analyses have
the advantage of increased power of detecting significance in case of correlated multivariate responses. MANOVA
or multivariate linear models assume that the residuals are multivariate Gaussian distributions.

The metrics which characterize proteins are however either counts or positive quantities. Analysis of such data
will likely result in residuals which deviate from Gaussian distributions, thus violating assumptions which are inher-
ent to MANOVA and linear models. To improve compliance with Gaussian distributed residuals, we apply Box-Cox
power transformations [Box and Cox, 1964] on all individual metrics before subjecting the data to a multivariate
multilevel analysis. We used to this end the functions provided in the R package car [Fox and Weisberg, 2019]. To
fulfill the constraint of the Box-Cox power transformation in the car package that values must be larger zero we
set all zero or negative values before transformation to a value which equals 10% of the smallest non zero value.
This preprocessing was motivated to allow for a multivariate analysis of all protein characteristics in combination.

An additional complication arises in this particular situation with RMSD values which are known to depend
on protein size. In combination with the unbalanced nature of the simulation experiment a protein length could
confound the algorithm effect which we wish to assess. To avoid any chances of being mislead, we apply therefore
the normalization procedure of RMSD values that was proposed in [Carugo and Pongor, 2001], before subjecting
the adjusted RMSD values to a Box-Cox transformation as well.

A significance analysis for pair wise differences of metric values between force fields is supplemented by analyses
which assess differences between simulation derived and measured protein characteristics. With measured protein
characteristics we refer to characteristics whcih are derived from experimentally determined crystal structure.
The latter result allows for judgements of the influence of force fileds on the agreement between simulation and
measurement.

4 MANOVA and multivariate multilevel analysis
The analysis in this work is inspired by [Villa et al., 2007], who proposed an analysis of the effects of force fields on
molecular-simulation derived protein characteristics. Their original approach is based on MANOVA type analyses
which have the advantage of increased power of detecting significance in case of correlated multivariate responses.
Albeit straightforward to apply, a conventional MANOVA has in our situation several shortcomings.

1. MANOVA is only applicable to complete multivariate vectors of protein characteristics. Including missing
information requires in such analyses additional steps like multiple imputations.

2. Using linear model terminology, our assessment of force fields require to consider three effects: a) the force
field, b) the simulated protein and c) technical replication of simulation runs. Technical drop outs (e.g.
problems of the compute infrastructure) or a deliberate reduction of the number of lengthy simulations runs
will in general cause unbalanced designs. This renders fixed effects analyses as in [Villa et al., 2007] poorly
specified, as unbalanced multi-effects models will in general lead to a dependency of p-values on the chosen
type of sums of squares calculation (type I, II and III ANOVA).

3. An even more profound implication on our assessments of force fields results from the fact that the replication
of simulation runs and the variation of simulated proteins must be considered as independent random effects.
Fixed effects analyses have in such situations a general tendency to overestimate significance. Such situations
should thus preferably be assessed with mixed effects models [Pinheiro and Bates, 2000].

For considering the multivariate multilevel aspect of the data, we suggest following [Snijders and Boskers, 2012]
pages 282 ff. To implement their proposition in our setting, we rely on the R-nlme package [Pinheiro and Bates, 2000].
In the context of multivariate multilevel analysis, we can use a likelihood ratio test [Mood et al., 1984] to assess all
metrics in combination for significant dependencies on different force fields. Using the notion in [Snijders and Boskers, 2012],
chapter 16, we have to compare an “empty” model which expresses the derived values of all metrics by a metric
effect and attributes all further variation to the random effects “protein” and “simulation run”. The more complex
alternative hypothesis considers “force field” and interactions between “force field” and “metric” as additional fixed
effects. A subsequent assessment of the likelihood ratio of these two models provides the required p-value for
assessing the molecular simulation derived protein characteristics for significant dependencies on “force field”.
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4.1 Multivariate multilevel analysis
After data preprocessing the proposed assessment of whether predicted protein characteristics depend significantly
on “force field” may be obtained by a step by step translation of the R and nlme based implementation of the
example in [Snijders and Boskers, 2012] chapter 16. The authors provide a respective sample script at http:
//www.stats.ox.ac.uk/~snijders/ch16.r for download.

4.1.1 Rearranging the multivariate input data

1. The first step in applying a multivariate multilevel analysis requires us to rearrange the multivariate data
to obtain a univariate response variable “all.y” which holds the preprocessed metric values. To allow the
identification of the metric which corresponds to the value we need to add a factor variable “quant.fact” which
denotes the corresponding type of metric. To complete the description of the data, additional factors are
required to identify the applied force field (“all.alg”), the simulated protein (“all.comp”) and the simulation
run (“all.rep”). All variables are constructed from the preprocessed protein characteristics and bound to an
R data frame.

2. Missing protein characterizations which appear as missing values in the multivariate input vectors are sub-
sequently removed by reducing the data to all complete cases.

3. To allow calculating the correlation structure by the nlme package, the final step in rearranging the data is
to reorder the data by metric type “quant.fact”, protein id “all.comp” and simulation run “all.rep”.

4.1.2 The “empty” multivariate multilevel model

Using the mixed effects linear model lme from the R nlme package for a multivariate multilevel analysis requires
us to specify four parts.

1. Function lme requires to specify the fixed effects term of the model equation separately. For the “empty”
model we assume that metric values are independent of the force field. Hence only depending on “quant.fact”
the fixed effects model equation is:

all.y~-1+quant.fact

2. The second specification concerns the random effects contribution. Irrespective of how we structure the fixed
effects formula, we have to identify the metric value as conditional on the random effect “protein”. The
second random effect “simulation run” which is nested within “protein” determines the residual variance of
the model and requires no separate specification. The required random effect model formula is thus:

~ -1+quant.fact|all.comp

3. An important characteristic of MANOVA analyses is their ability to model multivariate residuals. In order
to unlock this ability for the essentially univariate lme model, we need to use its “weights” parameter. By
an appropriate parametrization we allow for heteroscedasticity thus obtaining relations similar to MANOVA
analyses where each sequence characteristic gets its own variance component. In the context of lme, we
achieve this by using the “VarIdent” variance function (see [Pinheiro and Bates, 2000], page 209) which
allows for residual variances to differ across levels of a stratification variable. In our case we have to use
“quant.fact” as stratification variable and parameterize the weights parameter of lme as:

weights=varIdent(form=~1|quant.fact)

4. To arrive at a noise model which mimics the multivariate residuals of a MANOVA we have finally also got
to consider the correlation structure between different “quant.fact” levels. This is achieved by using the
“corr” parameter of lme and a parametrization by one of the “corStruct” classes in nlme. In order to obtain a
MANOVA compatible correlation structure, we use the generic corSym class (see [Pinheiro and Bates, 2000],
page 234) and parameterize it by a formula which regards the numeric representation of the factor variable
“quant.fact” as conditional on the random effects “simulation run” which is nested within “protein”. The
respective corr parametrization is thus:
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corr=corSymm(form=~as.numeric(quant.fact)|all.comp/all.rep)

4.1.3 Adding force field as regressor

Our assessment of whether different force fields lead to statistically significant variations of sequence characteristics
rely on a likelihood ratio test. This is achieved by comparing the “empty” model with a more complex multivariate
multilevel model, which uses the factor “all.alg” representing different force fields as additional regressor. The only
difference between the “empty” model and this alternative explanation of sequence characteristics is a different
fixed effects formula which in our case is:

all.y~quant.fact*all.alg

4.1.4 Likelihood ratio test

The likelihood ratio test (see [Pinheiro and Bates, 2000], page 83) which allows us to infer whether the sequence
characteristics we predict from simulation runs depend significantly on chosen force fields requires two model fits
which are passed as parameters to function anova. The latter function calculates the p-value of the likelihood ratio
test and provides a textual summary of the model comparison. Note that for reasons of clarity, details like the
necessary adjustments of optimization control have been left out in this code chunk.

## fit of the empty model
lme.fit.n <- lme(all.y~-1+quant.fact, random = rnd.frm,

weights=varIdent(form=~1|quant.fact),
corr=corSymm(form=~as.numeric(quant.fact)|all.comp/all.rep),
data=univ.analyse.data,
control=alg.ctrl, method='ML')

## fit of the alternative model
lme.fit.a <- lme(all.y~quant.fact*all.alg, random = rnd.frm,

weights=varIdent(form=~1|quant.fact),
corr=corSymm(form=~as.numeric(quant.fact)|all.comp/all.rep),
data=univ.analyse.data,
control=alg.ctrl, method='ML')

## likelihood ratio test and summary of fit
anova(lme.fit.n, lme.fit.a)

4.2 Metric and force field specific analyses
Having shown by multivariate analysis that force fields lead to significant variation in the assessment metrics we
will now prepare a more detailed assessment. To gain insight about interactions between force fields and assessment
metrics we will now switch to analyses of univariate metrics which were previously transformed to approximate
Gaussian residuals. As mentioned above the nesting of replicate simulation runs within compounds require this
analysis to be carried out with linear mixed effects models. By keeping the metrics separate, adjustments for metric
dependent residual variances and correlations between metrics are not required. To considerably simplify analysis
we switch to a univariate mixed effects analysis with the lme4 package [Bates et al., 2015] for modeling and the
emsmeans package [Lenth et al., 2019] for assessing the binary comparisons between force fields. The planned
univariate assessments consist of several significance tests. The p-values are thus adjusted for multiple testing
using the R p.adjust function and the Benjamini & Yekutieli FDR approach [Benjamini and Yekutieli, 2001]. The
code fragments below illustrate analysis of RMSDs. The result tables are obtained by looping such code over all
metrics (not shown but available in the accompanying source file ff_validation.Rnw).

4.2.1 Metric specific null model with lme4

The null model considers only the random effects all.comp (proteins) and replicate simulation run which determines
the within compound residuals.
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## the lme4 package for linear mixed modeling
library(lme4)
library(emmeans)
## we illustrate RMSD as an example
rw.sel <- univ.analyse.data$quant.fact=="RMSD.ADJ"
fit.n <- lmer(all.y~(1|all.comp), data=univ.analyse.data[rw.sel,])

4.2.2 Metric specific alternative model and ANOVA

The alternative more complex model considers force field as fixed effect. Applying the anova function to both fits
contrasts the goodness of fit with the increased complexity by a likelihood ratio test. To allow us to correct for
multiple testing, we have to extract the p-value from the returned object.

fit.a <- lmer(all.y~all.alg+(1|all.comp), data= univ.analyse.data[rw.sel,])
res <- anova(fit.n, fit.a)
p.value <- res[["Pr(>Chisq)"]][2]

If we may assess the improvement by the alternative model as statistically significant, a more detailed inspection
of force field induced differences with pairwise comparisons makes sense.

4.2.3 Pairwise contrasts with the emmeans package

The emmeans package is the preferred package for assessments whether contrasts deviate significantly from zero.
Since we are interested in assessing all pairwise contrasts between algorithms for significance, we may use the
standard emmeans workflow. To control the overall false positive rate for multiple testing, the p-values of all
comparisons are finally adjusted using the Benjamini & Yekutieli FDR approach as implemented in the standard
R p.adjust function.

## next step: analysis of pairwise comparisons we do not adjust
## as we do that for all pairwise comparisons together.
res <- emmeans(fit.a, list(pairwise ~ all.alg), adjust = "none")
## convert the emmeans result to a dataframe
pdtab <- as.data.frame(res$"pairwise differences of all.alg")
## extract comparisons between force fields as strings
all.pairs <- levels(pdtab$contrast)[pdtab$contrast]
## and the corresponding p-values
all.pmp <- pdtab$p.value
BY.adj <- p.adjust(all.pmp, method="BY")

5 Results

5.1 Summary statistics of raw data

## Hbond_bb_0.25_120 Hbond_native_bb_0.25_120 SASA_polar SASA_nonpolar
## Min. : 4.00 Min. : 1.00 Min. : 9.316 Min. : 4.584
## 1st Qu.: 29.00 1st Qu.: 22.75 1st Qu.:25.584 1st Qu.: 7.588
## Median : 45.00 Median : 34.50 Median :32.255 Median : 9.604
## Mean : 51.33 Mean : 40.17 Mean :36.121 Mean :10.183
## 3rd Qu.: 67.00 3rd Qu.: 51.00 3rd Qu.:44.090 3rd Qu.:11.431
## Max. :169.00 Max. :141.00 Max. :96.359 Max. :22.722
##
## Rgyr A_Helix B_Strand ThreeTen_Helix
## Min. :0.723 Min. : 0.00 Min. : 0.0 Min. : 0.000
## 1st Qu.:1.102 1st Qu.: 5.00 1st Qu.: 8.0 1st Qu.: 2.000
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## Median :1.278 Median : 12.00 Median : 22.0 Median : 3.000
## Mean :1.297 Mean : 23.68 Mean : 25.9 Mean : 3.107
## 3rd Qu.:1.434 3rd Qu.: 32.25 3rd Qu.: 37.5 3rd Qu.: 3.000
## Max. :2.077 Max. :113.00 Max. :123.0 Max. :12.000
##
## Jvalue NOE_repl_merged RMSD.ADJ B_Bridge
## Min. :1.20 Min. :0.0020 Min. :0.07371 Min. : 0.000
## 1st Qu.:1.70 1st Qu.:0.0090 1st Qu.:0.12072 1st Qu.: 1.000
## Median :1.70 Median :0.0120 Median :0.16293 Median : 2.000
## Mean :1.83 Mean :0.0253 Mean :0.18371 Mean : 2.761
## 3rd Qu.:2.00 3rd Qu.:0.0328 3rd Qu.:0.21013 3rd Qu.: 4.000
## Max. :3.00 Max. :0.0860 Max. :0.88296 Max. :13.000
## NA's :506 NA's :506
## Pi_Helix
## Min. : 0.000
## 1st Qu.: 0.000
## Median : 1.000
## Mean : 1.245
## 3rd Qu.: 2.000
## Max. :10.000
##

5.2 Box Cox transformed data
The panel of box plots below provides a visualization of the preprocessed sequence characteristics. Every panel
shows five boxes which illustrate the distribution of a particular sequence characteristic for the force fields “45A4”,
“53A6”, “54A7”, and “54A8”.
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Figure S1. Distribution of structural properties for each protein force field.  
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5.3 MANOVA and multivariate multilevel analysis

## Model df AIC BIC logLik Test L.Ratio p-value
## lme.fit.n 1 195 5768.429 7080.093 -2689.215
## lme.fit.a 2 234 5206.833 6780.830 -2369.417 1 vs 2 639.5958 <.0001

The ANOVA output compares the empty model against the more complex model which uses “all.alg” (repre-
senting force field) as regressor. A strongly increased likelihood and far superior AIC and BIC of the more complex
model provide evidence that “force field” has a considerable effect on predicted sequence characteristics. Leading
for the likelihood ratio test to a p-value of < 0.0001, the differences are of very high statistical significance. The
p-value reported by the anova function follows common practice in statistics, where small p-values are usually only
reported as “smaller than a threshold”. The actual p-value from the likelihood ratio test is p− val = 1.088e− 109.

6 Property and algorithm specific mixed model analysis
After having concluded by a mixed effects regression analysis that the multivariate metric vector depends signifi-
cantly on force field, we will now perform a more detailed analysis. We will to this end rely on two analyses which
assess within metric.

1. by a likelihood ratio test whether adding force field as regressor leads to significant improvements over the
empty (null) model.

2. by formulating all ten pairwise contrasts, subsequent significance analysis and multiple testing correction
whether differences between two force fields are statistically significant.

The first stage of this fine grained analysis provides us thus with twelve p-values which result from the per metric
likelihood ratio tests 1). The second stage of this analysis in 2) provides us across all metrics and pairwise
contrasts with 80 p-values which assess whether the respective pair of force fields leads for a particular metric
to significantly different expectations. To control the overall false positive rate, we adjust the p-values with the
Benjamini & Yekutieli FDR (BY) for multiple testing.

## nr pairs: 78
## Order in all.pairs and all.rw.pairs match in: 0 % cases.
## Order in all.pairs and all.dyt.pairs match in: 100 % cases.
## Properties : A_Helix B_Bridge B_Strand Hbond_bb_0.25_120 Hbond_native_bb_0.25_120 Jvalue NOE_repl_merged Pi_Helix Rgyr RMSD.ADJ SASA_nonpolar SASA_polar ThreeTen_Helix
## Raw p-values : 1.900596e-06 0.00622542 9.639084e-15 2.188943e-31 5.113798e-29 0.4009499 0.287061 0.2349878 1.117707e-25 5.460412e-11 9.341772e-13 1.120728e-40 0.004307733
## BH adjusted : 3.088469e-06 0.008093046 2.506162e-14 1.422813e-30 2.215979e-28 0.4009499 0.3109828 0.2777128 3.632549e-25 1.014076e-10 2.024051e-12 1.456947e-39 0.006222282
## BY adjusted : 9.821744e-06 0.02573697 7.96993e-14 4.524735e-30 7.04711e-28 1 0.9889668 0.8831639 1.155199e-24 3.224899e-10 6.436751e-12 4.633285e-39 0.01978769

6.1 Significance of metric specific likelihood ratio tests

By analyzing the results table we conclude that except for the Pi_Helix counts, Jvalue and NOE, all other
metrics depend significantly on force field. The adjustment changes significance levels but does not change our
assessment regarding significance.

6.2 Pairwise comparisons of force fields within metric
The rows in the subsequent table denote certain binary contrasts. The table columns contain information about
the expected value of the contrast and the standard error (a 95% confidence interval). The Benjamini & Yekutieli
adjusted significance levels assess whether the respective metric (transformed values as illustrated in the box plots)
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Table S1: Significance of dependency of univariate metric values on force field

metric raw.pval BY.adj
A_Helix 1.90e-06 (***) 9.82e-06 (***)
B_Bridge 6.23e-03 (**) 2.57e-02 (*)
B_Strand 9.64e-15 (***) 7.97e-14 (***)
Hbond_bb_0.25_120 2.19e-31 (***) 4.52e-30 (***)
Hbond_native_bb_0.25_120 5.11e-29 (***) 7.05e-28 (***)
Jvalue 4.01e-01 ( ) 1.00e+00 ( )
NOE_repl_merged 2.87e-01 ( ) 9.89e-01 ( )
Pi_Helix 2.35e-01 ( ) 8.83e-01 ( )
Rgyr 1.12e-25 (***) 1.16e-24 (***)
RMSD.ADJ 5.46e-11 (***) 3.22e-10 (***)
SASA_nonpolar 9.34e-13 (***) 6.44e-12 (***)
SASA_polar 1.12e-40 (***) 4.63e-39 (***)
ThreeTen_Helix 4.31e-03 (**) 1.98e-02 (*)
a metric: name of analysed metric; raw.pval: raw p-vale assessing dependencies of metric values on force field for significance; BY.adj: Benjamini &
Yekutieli adjusted raw p-values.

Table S2: Binary contrasts between force fieldsa
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45A4 - 53A6 0.36 (***) 0.09 ( ) -0.13 ( ) 0.03 ( ) -0.31 (**) 0.02 ( ) -0.05 ( ) -0.06 ( ) -0.03 (***) -0.07 ( ) -0.07 (***) -0.19 (***) 0.08 ( )
45A4 - 54A7 0.00 ( ) 0.16 (*) 0.46 (***) -0.50 (***) -0.75 (***) 0.11 ( ) -0.02 ( ) 0.12 ( ) -0.02 (***) 0.32 (**) -0.08 (***) -0.16 (***) -0.20 ( )
45A4 - 54A8 -0.07 ( ) 0.18 (*) 0.45 (***) -0.56 (***) -0.89 (***) 0.13 ( ) 0.03 ( ) 0.16 ( ) -0.02 (***) 0.45 (***) -0.07 (***) -0.10 (***) -0.10 ( )
53A6 - 54A7 -0.36 (***) 0.07 ( ) 0.59 (***) -0.53 (***) -0.44 (***) 0.09 ( ) 0.03 ( ) 0.17 ( ) 0.00 ( ) 0.39 (***) -0.00 ( ) 0.02 ( ) -0.28 (**)
53A6 - 54A8 -0.43 (***) 0.09 ( ) 0.58 (***) -0.59 (***) -0.58 (***) 0.11 ( ) 0.08 ( ) 0.21 ( ) 0.00 ( ) 0.52 (***) 0.00 ( ) 0.09 (***) -0.18 ( )

54A7 - 54A8 -0.07 ( ) 0.02 ( ) -0.01 ( ) -0.07 ( ) -0.14 ( ) 0.02 ( ) 0.05 ( ) 0.04 ( ) 0.00 ( ) 0.13 ( ) 0.00 ( ) 0.07 (***) 0.10 ( )
a Metrics are represented as expected value of the contrast ± standard error (95% confidence) and an indication of significance with (***) → p-value <0.001, (**) → p-value <0.01, (*) → p-value <0.05 and (.) → p-value <0.1. The p-values are adjusted for multiple testing using the Benjamini & Yekutieli FDR correction.
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6.3 Pairwise assessments of simulation derived values
Table S3: Pairwise differences of protein characteristics between force fields. Metrics are repre-
sented as expected value of the contrast ± standard error (95% confidence) and an indication of 
significance with (***) → p-value < 0.001, (**) → p-value < 0.01, (*) → p-value < 0.05 and (.) → 
p-value < 0.1. Combinations of contrasts between force fields and metrics which we find significant 
are highlighted in blue.

Table S3: Binary contrasts of protein characteristics

contrast metric value rawval significance

1 45A4 - 53A6 A_Helix 0.36 ± 0.09 1.26 ± 0.30 (***)
7 45A4 - 53A6 B_Bridge 0.09 ± 0.06 0.18 ± 0.09 ( )
13 45A4 - 53A6 B_Strand -0.13 ± 0.09 -0.43 ± 0.21 ( )
19 45A4 - 53A6 Hbond_bb_0.25_120 0.03 ± 0.06 0.13 ± 0.29 ( )
25 45A4 - 53A6 Hbond_native_bb_0.25_120 -0.31 ± 0.08 -1.26 ± 0.35 (**)
31 45A4 - 53A6 Jvalue 0.02 ± 0.09 0.03 ± 0.07 ( )
37 45A4 - 53A6 NOE_repl_merged -0.05 ± 0.05 -0.01 ± 0.00 ( )
43 45A4 - 53A6 Pi_Helix -0.06 ± 0.12 -0.09 ± 0.13 ( )
49 45A4 - 53A6 Rgyr -0.03 ± 0.00 -0.03 ± 0.00 (***)
55 45A4 - 53A6 RMSD.ADJ -0.07 ± 0.09 -0.02 ± 0.01 ( )
61 45A4 - 53A6 SASA_nonpolar -0.07 ± 0.01 -0.54 ± 0.09 (***)
67 45A4 - 53A6 SASA_polar -0.19 ± 0.01 -1.56 ± 0.12 (***)
73 45A4 - 53A6 ThreeTen_Helix 0.08 ± 0.08 0.10 ± 0.11 ( )
2 45A4 - 54A7 A_Helix 0.00 ± 0.08 -0.42 ± 0.29 ( )
8 45A4 - 54A7 B_Bridge 0.16 ± 0.06 0.20 ± 0.08 (*)
14 45A4 - 54A7 B_Strand 0.46 ± 0.08 0.94 ± 0.20 (***)
20 45A4 - 54A7 Hbond_bb_0.25_120 -0.50 ± 0.06 -2.46 ± 0.28 (***)
26 45A4 - 54A7 Hbond_native_bb_0.25_120 -0.75 ± 0.08 -3.12 ± 0.34 (***)
32 45A4 - 54A7 Jvalue 0.11 ± 0.09 0.09 ± 0.07 ( )
38 45A4 - 54A7 NOE_repl_merged -0.02 ± 0.05 -0.00 ± 0.00 ( )
44 45A4 - 54A7 Pi_Helix 0.12 ± 0.11 0.13 ± 0.13 ( )
50 45A4 - 54A7 Rgyr -0.02 ± 0.00 -0.03 ± 0.00 (***)
56 45A4 - 54A7 RMSD.ADJ 0.32 ± 0.08 0.01 ± 0.01 (**)
62 45A4 - 54A7 SASA_nonpolar -0.08 ± 0.01 -0.53 ± 0.09 (***)
68 45A4 - 54A7 SASA_polar -0.16 ± 0.01 -1.35 ± 0.12 (***)
74 45A4 - 54A7 ThreeTen_Helix -0.20 ± 0.08 -0.29 ± 0.11 ( )
3 45A4 - 54A8 A_Helix -0.07 ± 0.08 -0.67 ± 0.29 ( )
9 45A4 - 54A8 B_Bridge 0.18 ± 0.06 0.22 ± 0.08 (*)
15 45A4 - 54A8 B_Strand 0.45 ± 0.08 0.88 ± 0.20 (***)
21 45A4 - 54A8 Hbond_bb_0.25_120 -0.56 ± 0.06 -2.75 ± 0.28 (***)
27 45A4 - 54A8 Hbond_native_bb_0.25_120 -0.89 ± 0.08 -3.66 ± 0.34 (***)
33 45A4 - 54A8 Jvalue 0.13 ± 0.09 0.11 ± 0.07 ( )
39 45A4 - 54A8 NOE_repl_merged 0.03 ± 0.05 -0.00 ± 0.00 ( )
45 45A4 - 54A8 Pi_Helix 0.16 ± 0.11 0.21 ± 0.13 ( )
51 45A4 - 54A8 Rgyr -0.02 ± 0.00 -0.02 ± 0.00 (***)
57 45A4 - 54A8 RMSD.ADJ 0.45 ± 0.08 0.02 ± 0.01 (***)
63 45A4 - 54A8 SASA_nonpolar -0.07 ± 0.01 -0.50 ± 0.09 (***)
69 45A4 - 54A8 SASA_polar -0.10 ± 0.01 -0.79 ± 0.12 (***)
75 45A4 - 54A8 ThreeTen_Helix -0.10 ± 0.08 -0.17 ± 0.11 ( )
4 53A6 - 54A7 A_Helix -0.36 ± 0.08 -1.68 ± 0.29 (***)
10 53A6 - 54A7 B_Bridge 0.07 ± 0.06 0.01 ± 0.08 ( )
16 53A6 - 54A7 B_Strand 0.59 ± 0.08 1.38 ± 0.20 (***)
22 53A6 - 54A7 Hbond_bb_0.25_120 -0.53 ± 0.06 -2.58 ± 0.28 (***)
28 53A6 - 54A7 Hbond_native_bb_0.25_120 -0.44 ± 0.08 -1.86 ± 0.34 (***)
34 53A6 - 54A7 Jvalue 0.09 ± 0.09 0.06 ± 0.07 ( )
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40 53A6 - 54A7 NOE_repl_merged 0.03 ± 0.04 0.00 ± 0.00 ( )
46 53A6 - 54A7 Pi_Helix 0.17 ± 0.11 0.22 ± 0.13 ( )
52 53A6 - 54A7 Rgyr 0.00 ± 0.00 0.00 ± 0.00 ( )
58 53A6 - 54A7 RMSD.ADJ 0.39 ± 0.08 0.03 ± 0.01 (***)
64 53A6 - 54A7 SASA_nonpolar -0.00 ± 0.01 0.01 ± 0.09 ( )
70 53A6 - 54A7 SASA_polar 0.02 ± 0.01 0.22 ± 0.12 ( )
76 53A6 - 54A7 ThreeTen_Helix -0.28 ± 0.08 -0.39 ± 0.11 (**)
5 53A6 - 54A8 A_Helix -0.43 ± 0.08 -1.94 ± 0.29 (***)
11 53A6 - 54A8 B_Bridge 0.09 ± 0.06 0.04 ± 0.08 ( )
17 53A6 - 54A8 B_Strand 0.58 ± 0.08 1.31 ± 0.20 (***)
23 53A6 - 54A8 Hbond_bb_0.25_120 -0.59 ± 0.06 -2.88 ± 0.28 (***)
29 53A6 - 54A8 Hbond_native_bb_0.25_120 -0.58 ± 0.08 -2.40 ± 0.34 (***)
35 53A6 - 54A8 Jvalue 0.11 ± 0.09 0.08 ± 0.07 ( )
41 53A6 - 54A8 NOE_repl_merged 0.08 ± 0.04 0.00 ± 0.00 ( )
47 53A6 - 54A8 Pi_Helix 0.21 ± 0.11 0.30 ± 0.13 ( )
53 53A6 - 54A8 Rgyr 0.00 ± 0.00 0.01 ± 0.00 ( )
59 53A6 - 54A8 RMSD.ADJ 0.52 ± 0.08 0.04 ± 0.01 (***)
65 53A6 - 54A8 SASA_nonpolar 0.00 ± 0.01 0.04 ± 0.09 ( )
71 53A6 - 54A8 SASA_polar 0.09 ± 0.01 0.78 ± 0.12 (***)
77 53A6 - 54A8 ThreeTen_Helix -0.18 ± 0.08 -0.27 ± 0.11 ( )
6 54A7 - 54A8 A_Helix -0.07 ± 0.08 -0.26 ± 0.26 ( )
12 54A7 - 54A8 B_Bridge 0.02 ± 0.05 0.02 ± 0.08 ( )
18 54A7 - 54A8 B_Strand -0.01 ± 0.08 -0.06 ± 0.18 ( )
24 54A7 - 54A8 Hbond_bb_0.25_120 -0.07 ± 0.05 -0.29 ± 0.26 ( )
30 54A7 - 54A8 Hbond_native_bb_0.25_120 -0.14 ± 0.07 -0.54 ± 0.30 ( )
36 54A7 - 54A8 Jvalue 0.02 ± 0.09 0.03 ± 0.07 ( )
42 54A7 - 54A8 NOE_repl_merged 0.05 ± 0.04 0.00 ± 0.00 ( )
48 54A7 - 54A8 Pi_Helix 0.04 ± 0.10 0.08 ± 0.11 ( )
54 54A7 - 54A8 Rgyr 0.00 ± 0.00 0.00 ± 0.00 ( )
60 54A7 - 54A8 RMSD.ADJ 0.13 ± 0.07 0.01 ± 0.01 ( )
66 54A7 - 54A8 SASA_nonpolar 0.00 ± 0.01 0.03 ± 0.08 ( )
72 54A7 - 54A8 SASA_polar 0.07 ± 0.01 0.56 ± 0.10 (***)
78 54A7 - 54A8 ThreeTen_Helix 0.10 ± 0.07 0.12 ± 0.10 ( )

6.4 Pairwise assessments of simulation derived differences from crystal structure
derived truth

Table S4: Pairwise assessments of the discrepancies of simulation derived and experimentally vali-
dated protein characteristics. Differences between simulation derived and structure based protein
characteristics are represented as expected value of the contrast ± standard error (95% confidence)
and an indication of significance with (***) → p-value < 0.001, (**) → p-value < 0.01, (*) → p-value
< 0.05 and (.) → p-value < 0.1. Combinations of contrasts between force fields and metrics which
we find significant are highlighted in blue. To put these results into relation with table S1, we note
that the results reported in table S2 will in general differ in p-vale and sign and absolute value of
the expected contrast value from those in table S1. The exact same result will however be observed
if the crystal derived “truth” is smaller than the simulation derived characteristics obtained with
both force fields considered. The same p-value and an expected contrast with identical absolute
value and alternating sign will be observed if the crystal derived “truth” is larger than the simulation
derived characteristics obtained with both force fields considered.

A positive sign of the expected contrast value indicates that the force field which enters the
contrast positively is closer to the crystal structure derived value. The alternating signs we observe
in dependence of metric for a particular pair of force fields indicate that preference depends on the
metrics considered. Unequivocal preferences for a particular force field can thus in general not be
stated from these analyses.
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Table S4: Binary contrasts of protein characteristic differences in simulation and measurement

contrast metric value significance

1 45A4 - 53A6 A_Helix 0.36 ± 0.09 (***)
7 45A4 - 53A6 B_Bridge 0.09 ± 0.06 ( )
13 45A4 - 53A6 B_Strand -0.13 ± 0.09 ( )
19 45A4 - 53A6 Hbond_bb_0.25_120 0.03 ± 0.06 ( )
25 45A4 - 53A6 Hbond_native_bb_0.25_120 -0.31 ± 0.08 (**)
31 45A4 - 53A6 Jvalue 0.02 ± 0.09 ( )
37 45A4 - 53A6 NOE_repl_merged -0.05 ± 0.05 ( )
43 45A4 - 53A6 Pi_Helix -0.06 ± 0.12 ( )
49 45A4 - 53A6 Rgyr -0.02 ± 0.00 (***)
55 45A4 - 53A6 RMSD.ADJ -0.07 ± 0.09 ( )
61 45A4 - 53A6 SASA_nonpolar -0.06 ± 0.01 (***)
67 45A4 - 53A6 SASA_polar -0.13 ± 0.02 (***)
73 45A4 - 53A6 ThreeTen_Helix 0.08 ± 0.08 ( )
2 45A4 - 54A7 A_Helix 0.00 ± 0.08 ( )
8 45A4 - 54A7 B_Bridge 0.16 ± 0.06 (*)
14 45A4 - 54A7 B_Strand 0.47 ± 0.08 (***)
20 45A4 - 54A7 Hbond_bb_0.25_120 -0.51 ± 0.06 (***)
26 45A4 - 54A7 Hbond_native_bb_0.25_120 -0.77 ± 0.08 (***)
32 45A4 - 54A7 Jvalue 0.12 ± 0.09 ( )
38 45A4 - 54A7 NOE_repl_merged -0.02 ± 0.05 ( )
44 45A4 - 54A7 Pi_Helix 0.12 ± 0.11 ( )
50 45A4 - 54A7 Rgyr -0.02 ± 0.00 (***)
56 45A4 - 54A7 RMSD.ADJ 0.32 ± 0.08 (**)
62 45A4 - 54A7 SASA_nonpolar -0.06 ± 0.01 (***)
68 45A4 - 54A7 SASA_polar -0.11 ± 0.02 (***)
74 45A4 - 54A7 ThreeTen_Helix -0.20 ± 0.08 ( )
3 45A4 - 54A8 A_Helix -0.07 ± 0.08 ( )
9 45A4 - 54A8 B_Bridge 0.18 ± 0.06 (*)
15 45A4 - 54A8 B_Strand 0.45 ± 0.08 (***)
21 45A4 - 54A8 Hbond_bb_0.25_120 -0.57 ± 0.06 (***)
27 45A4 - 54A8 Hbond_native_bb_0.25_120 -0.90 ± 0.08 (***)
33 45A4 - 54A8 Jvalue 0.14 ± 0.09 ( )
39 45A4 - 54A8 NOE_repl_merged 0.03 ± 0.05 ( )
45 45A4 - 54A8 Pi_Helix 0.16 ± 0.11 ( )
51 45A4 - 54A8 Rgyr -0.02 ± 0.00 (***)
57 45A4 - 54A8 RMSD.ADJ 0.45 ± 0.08 (***)
63 45A4 - 54A8 SASA_nonpolar -0.04 ± 0.01 (**)
69 45A4 - 54A8 SASA_polar -0.08 ± 0.02 (***)
75 45A4 - 54A8 ThreeTen_Helix -0.10 ± 0.08 ( )
4 53A6 - 54A7 A_Helix -0.36 ± 0.08 (***)
10 53A6 - 54A7 B_Bridge 0.07 ± 0.06 ( )
16 53A6 - 54A7 B_Strand 0.60 ± 0.08 (***)
22 53A6 - 54A7 Hbond_bb_0.25_120 -0.54 ± 0.06 (***)
28 53A6 - 54A7 Hbond_native_bb_0.25_120 -0.46 ± 0.08 (***)
34 53A6 - 54A7 Jvalue 0.09 ± 0.09 ( )
40 53A6 - 54A7 NOE_repl_merged 0.03 ± 0.04 ( )
46 53A6 - 54A7 Pi_Helix 0.18 ± 0.11 ( )
52 53A6 - 54A7 Rgyr 0.00 ± 0.00 ( )
58 53A6 - 54A7 RMSD.ADJ 0.39 ± 0.08 (***)
64 53A6 - 54A7 SASA_nonpolar -0.01 ± 0.01 ( )
70 53A6 - 54A7 SASA_polar 0.02 ± 0.02 ( )
76 53A6 - 54A7 ThreeTen_Helix -0.28 ± 0.08 (**)
5 53A6 - 54A8 A_Helix -0.43 ± 0.08 (***)
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11 53A6 - 54A8 B_Bridge 0.09 ± 0.06 ( )
17 53A6 - 54A8 B_Strand 0.58 ± 0.08 (***)
23 53A6 - 54A8 Hbond_bb_0.25_120 -0.60 ± 0.06 (***)
29 53A6 - 54A8 Hbond_native_bb_0.25_120 -0.59 ± 0.08 (***)
35 53A6 - 54A8 Jvalue 0.12 ± 0.09 ( )
41 53A6 - 54A8 NOE_repl_merged 0.08 ± 0.04 ( )
47 53A6 - 54A8 Pi_Helix 0.21 ± 0.11 ( )
53 53A6 - 54A8 Rgyr 0.01 ± 0.00 ( )
59 53A6 - 54A8 RMSD.ADJ 0.52 ± 0.08 (***)
65 53A6 - 54A8 SASA_nonpolar 0.01 ± 0.01 ( )
71 53A6 - 54A8 SASA_polar 0.05 ± 0.02 (*)
77 53A6 - 54A8 ThreeTen_Helix -0.18 ± 0.08 ( )
6 54A7 - 54A8 A_Helix -0.07 ± 0.08 ( )
12 54A7 - 54A8 B_Bridge 0.02 ± 0.05 ( )
18 54A7 - 54A8 B_Strand -0.02 ± 0.08 ( )
24 54A7 - 54A8 Hbond_bb_0.25_120 -0.06 ± 0.05 ( )
30 54A7 - 54A8 Hbond_native_bb_0.25_120 -0.14 ± 0.07 ( )
36 54A7 - 54A8 Jvalue 0.02 ± 0.09 ( )
42 54A7 - 54A8 NOE_repl_merged 0.05 ± 0.04 ( )
48 54A7 - 54A8 Pi_Helix 0.04 ± 0.10 ( )
54 54A7 - 54A8 Rgyr 0.00 ± 0.00 ( )
60 54A7 - 54A8 RMSD.ADJ 0.13 ± 0.07 ( )
66 54A7 - 54A8 SASA_nonpolar 0.02 ± 0.01 ( )
72 54A7 - 54A8 SASA_polar 0.03 ± 0.01 ( )
78 54A7 - 54A8 ThreeTen_Helix 0.10 ± 0.07 ( )
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