Supplementary Table 1 | Histological to *in vivo* conversion of layer widths derived from Lein et al., 2007 (Ref. 79)

Related to Figs. 7,8 and Extended Data Figs. 7,9,10

Cortical Layer	Z-depth through PPC (Allen Brain Atlas) - Τορ (μm)	Z-depth through PPC (Allen Brain Atlas) - Bottom (μm)	Layer Widths (µm)	Multiplication Factor (Layer Width / 871 μm)
1	0	130	130	0.149
2-3	130	378	248	0.285
4	378	492	114	0.131
5-6	492	871	379	0.435

Supple	Supplementary Table 2 Antibody specifications							
SS	Antigen	Host	Time of L.A.B. Treatment	Source	Antibody #	Dilution		
	Anti-Enhanced Green Fluorescent Protein (EGFP)	Chicken	NA	Aves	GFP1020	1:1000		
	Anti-Enhanced Green Fluorescent Protein (EGFP)	Goat	NA	SciGen	AB0066	1:2000		
	Anti-Glial Fibrillary Acidic Protein (GFAP)	Mouse IgG1	NA	Sigma	G3893-GA5	1:1000		
	Anti-Heat Shock Proteins 70/72 (HSP70/72)	Mouse IgG1	7 min.	Enzo	ADI-SPA-810-D	1:400		
ipo	Anti-Ionized Calcium-Binding Adapter Molecule 1 (Iba-1)	Rabbit	NA	Wako	019-19741	1:1000		
ntib	Anti-H2A Histone Family Member X (γ-H2AX)	Rabbit	NA	Cell Signaling	S139-20E3	1:500		
۲γ	Anti-8-hydroxyguanosine (8-OHG)	Mouse IgG2b	NA	Fisher	MA110602-15A3	1:1500		
ima	Anti-Platelet-Derived Growth Factor Receptor - Alpha (Pdgfr-a)	Goat	NA	R&D Biosystems	AF1062	1:2000		
P	Anti-aspartoacyclase (ASPA)	Rabbit	5 min.	Genetex	ABN1698	1:1000		
	Anti-neuronal nuclear protein (NeuN)	Chicken	NA	Millipore	ABN91	1:500		
	Anti pan-Neurofilament (SMI-312)	Mouse IgG1	NA	BioLegend	NC1239357	1:250		
	Anti-vesicular glutamate transporter 2 (Vglut2)	Guinea Pig	NA	EMD Millipore	AB2251-I	1:1000		
	Antigen	Host	Time of L.A.B. Treatment	Source	Antibody #	Dilution		
	anti-Rabbit 405	Donkey	see above for antibody pairings	Invitrogen	A48258	1:500		
s	anti-Chicken 405	Donkey		Jackson	703-475-155	1:300		
odi	anti-Chicken 488	Donkey		Jackson	703-545-155	1:500		
ntib	anti-Goat 488	Donkey		Jackson	705-545-003	1:500		
₹	anti-Goat 546	Donkey		Jackson	A11056	1:500		
nda	anti-Rabbit Cy3	Donkey		Jackson	711-165-152	1:500		
eco	anti-Mouse IgG2b 570	Goat		Jackson	115-297-187	1:500		
Ś	anti-Guinea Pig 568	Goat		Invitrogen	A11075	1:500		
	anti-Mouse IgG1 647	Goat		Jackson	115-607-185	1:500		

Supplementary -	Supplementary Table 3 Statistics results table						
Statistics results Statistically sig	are sorted by figure, and both main fig nificant comparisons are bolded	gures and supplementary figure	es are listed in the order they appea	r in the text.			
Table 3.1 Stati	stics for Figure 1 and associated exter	ided data (Extended Data Figs	s. 2,3)				
Fig. 1	Measure			Statistical test	Significance		
Fig. 1c	Signal to background ratio with two- photon vs. three-photon imaging at different brain depths	501-600 µm: 4.602 ± 1.580 (two-photon) vs. 19.662 ± 2.775 (three-photon) 601-700 µm: 3.667± 0.353 (two-photon) vs. 17.876 ± 3.206 (three-photon)	n=4 two-photon mice, 50 - 74 oligodendrocytes analyzed per mouse, n=4 three-photon mice, 101 - 123 analyzed oligodendrocytes per mouse.	Shapiro-Wilk W Test on distributions of imaging modality and depth not significant. Two-Way ANOVA followed by pairwise comparisons with Bonferroni correction.	F(7) = 5.78, Prob >F <0.0001 (imaging x depth) 501-600 μm: t(6) = 4.716, p=.003; 601-700 μm: t(3.072) = 4.406, p = 0.021 Bonferroni corrected alpha = 0.025*. 0.0125**		
⊢ıg. 1d	Number of oligodendrocyte cell bodies > 2 SBR per imaging volume with two-photon vs. three-photon, single comparison at layer 5	Layer 5: 41.362 ± 10.650 vs. 78.753 ± 10.153.	n=4 two-photon mice, n=8 three- photon mice.	Shapiro-Wilk W Test for normality by imaging modality and depth not significant. Single comparison at layer 5 using F-Test followed by unpaired two-tailed student's t-Test for equal	t(10) = 2.286, p=0.045		
				•			
Fig. 1f	Orientation of THG-positive fibers in the corpus callosum vs. alveus.	15.27 ± 4.942 (corpus callosum) vs0.403 ± 1.041 (alveus) degrees	n=41 cells from 3 mice pre- learning, and n=29 cells from 3 mice post-learning	Shapiro-Wilk W Test not significant. F-Test followed by unpaired two- tailed student's t-Test for unequal variance.	t(5.573) = -3.244, p=0.026		
Ext. Data Fig. 2	Measure	Values	N	Statistical test	Significance		
Fig. 2d	Percentage of MOBP+ cells that also express ASPA	95.6 ± 0.75% (cortex) vs. 86.5 ± 2.63% (white matter)	n=4 mice, 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by unpaired two- tailed student's t-Test for equal variance.	t(6) = -3.32, p = 0.016		
Fig. 3f	Lateral intensity of oligodendrocyte cell bodies with and without Adaptive Optics	631.77 ± 68.15 vs. 983.34 ± 100.95 a.u.	n = 2 mice, 11 oligodenrocytes at >800 µm depth	Shapiro-Wilk W Test not significant. Paired one-sample t-Test, two- tailed.	p = 0.0002		
Fig. 3g	Axial intensity of oligodendrocyte cell bodies with and without Adaptive Optics	12.96 ± 0.97 vs. 9.59 ± 1.03 μm	n = 2 mice, 11 oligodenrocytes at >800 μm depth	Shapiro-Wilk W Test not significant. Paired one-sample t-Test, two- tailed.	p = 0.014		

Supplementar	Supplementary Table 3 Statistics results table							
Statistics resul	ts are sorted by figure, and both	main figures and supplementary figure	s are listed in the order they appea	r in the text.				
Table 3.2 Sta	able 3.2 Statistics for Figure 3 and associated extended data (Extended Data Fig. 6)							
Fig. 3	Measure	Values	Ν	Statistical test	Significance			
Fig. 3e	# of HSP70/72-positive oligodendrocytes per mm ² (healthv long-term imaging)	20.952±12.67 (contralateral) vs. 27.73±11.72 (ipsilateral)	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	p = 0.551			
Fig. 3f	# of HSP70/72-positive oligodendrocytes per mm ² (laser-induced iniurv)	39.2±18.6 (contralateral) vs. 71.7±22.6 (ipsilateral)	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	p = 0.041			
Fig. 3g	Ratio of the ipsilateral : contralateral normalized HSP70/72 fluorescence intensity	Mean intensity (imaged) / Mean intensity (contralateral). 0.91±0.08 (Healthy) vs. 5.26±2.46 (laser-injury)	n = 5 mice (healthy), n= 5 mice (laser-injury) 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	z = 2.089, p = 0.037			
Fig. 3h	# of γ-H2A.X-positive oligodendrocytes per mm ² (healthy long-term imaging)	21.94±7.59 (contralateral) vs. 36.45±12.39 (ipsilateral) γ-H2A.X- positive oligodendrocytes per mm2	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = 1.36, p = 0.244			
Fig. 3i	# of γ-H2A.X-positive oligodendrocytes per mm ² (laser-induced iniurv)	19.69±9.98 (contralateral) vs. 35.306±13.28 (ipsilateral) γ-H2A.X- positive oligodendrocytes per mm2	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = 1.41, p = 0.231			
Fig. 3j	Ratio of the ipsilateral : contralateral normalized γ- H2A.X- fluorescence intensity	Mean intensity (imaged) / Mean intensity (contralateral). 0.94±0.04 / (Healthy) vs. 2.39±0.68 (laser-injury)	n = 5 mice (healthy), n= 5 mice (laser-injury) 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	z = 1.462, p = 0.144			
	-							
Fig. 3l	Mean rate of healthy oligodendrocyte gain per week (Two-photon vs. Three- photon)	Two-photon = 1.7 ± 0.2 vs. Three- photon = $1.4\pm0.3\%$ gained per week	n=5 mice, 477 oligodendrocytes (Two-photon); n=4 mice, 340 oligodendrocytes (Three-photon)	Shapiro-Wilk W Test not significant. F-Test followed by one way, two-tailed unpaired Student's t-Test	t(6) = 0.819, p = 0.440 -			

Table 3.2 (cont'o	d) Statistics for Extended Data	ı Fig. 6			
Ext. Data Fig. 6 Fig. 6d	Measure # of MOBP-EGFP-positive oligodendrocytes per mm ² (healthy long-term imaging)	Values 765.02±83.00 (contralateral) vs. 703.67±38.55 (ipsilateral)	N n = 5 mice, 2 sections / 4 hemispheres per mouse	Statistical test Shapiro-Wilk W Test significant. Wilcoxon signed rank test.	Significance Prob > S = 1.00
Fig. 6e	# of MOBP-EGFP-positive oligodendrocytes per mm ² (laser-induced injury)	610.60±119.3 (contralateral) vs. 488.03±75.64 (ipsilateral)	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = -1.16, p = 0.311
Fig. 6f	Ratio of the ipsilateral : contralateral normalized MOBP-EGFP fluorescence intensity	Mean intensity (imaged) / Mean intensity (contralateral). 0.92±0.09 (Healthy) vs. 1.14±0.06 (laser-injury)	n = 5 mice (healthy), n= 5 mice (laser-injury) 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. F-Test followed by unpaired two-tailed student's t- Test for equal variance.	t(4) = 2.04, p = 0.076
Fig. 6g	# of Iba-1-positive microglia per mm ² (healthy long-term imaging)	312.19±22.16 (contralateral) vs. 325.	3 n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = 0.48, p = 0.658
Fig. 6h	# of Iba-1-positive microglia per mm ² (laser-induced injury)	262.2±18.3 (contralateral) vs. 440.7±	4 n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = 3.99, p = 0.016
Fig. 6i	Ratio of the ipsilateral : contralateral normalized Iba- 1 fluorescence intensity	Mean intensity (imaged) / Mean intensity (contralateral). 0.98±0.03 (Healthy) vs. 1.11±0.04 (laser-injury)	n = 5 mice (healthy), n= 5 mice (laser-injury) 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. F-Test followed by unpaired two-tailed student's t- Test for equal variance.	t(8) = 2.73, p = 0.026
Fig. 6j	# of GFAP-positive astrocytes per mm ² (healthy long-term imaging)	148.08±52.70 (contralateral) vs. 126.	4 n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = -0.73, p = 0.504
Fig. 6k	# of GFAP-positive astrocytes per mm ² (laser- induced injury)	142.4±49.7 (contralateral) vs. 290.8±	7 n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test significant. Wilcoxon signed rank test.	t(4) = 3.94, p = 0.017
Fig. 61	Ratio of the ipsilateral : contralateral normalized GFAP fluorescence intensity	Mean intensity (imaged) / Mean intensity (contralateral). 1.04±0.05 (contralateral) vs. 1.24±0.27 (ipsilateral)	n = 5 mice (healthy), n= 5 mice (laser-injury) 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	z = 2.09, p = 0.037
Fig. 6m	# of 8-OHG-positive neurons greater than 90% pixel threshold per mm ² (healthy long-term imaging)	303.72±77.31 (contralateral) vs. 342.39±69.71 (ipsilateral)	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = 0.62, p = 0.572
Fig. 6n	# of 8-OHG-positive neurons greater than 90% pixel threshold per mm ² (laser- induced injury)	137.14±61.38 (contralateral) vs. 187.	6 n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test significant. Wilcoxon signed rank test.	t(4) = 0.59, p = 0.589
Fig. 6o	Ratio of the ipsilateral : contralateral normalized 8- OHG fluorescence intensity	Mean intensity (imaged) / Mean intensity (contralateral), 0.93±0.04 (contralateral) vs. 1.63±0.30 (ipsilateral)	n = 5 mice (healthy), n= 5 mice (laser-injury) 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. F-Test followed by unpaired two-tailed student's t- Test for equal variance.	t(8) = 1.57, p = 0.154
Fig. 6p	Percentage of vascular coverage (segmented Lectin- 649 positive area, healthy lona-term imaging)	14.22±1.43 (contralateral) vs. 13.30±1.30% (ipsilateral) of image area	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = -1.91, p = 0.13
Fig. 6q	Percentage of vascular coverage (segmented Lectin- 649 positive area, laser- induced injury)	16.8±2.3 (contralateral) vs. 22.8±3.4% (ipsilateral) of image area	n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = 3.65, p = 0.022
Fig. 6r	# of CD13-positive pericytes per mm ² (healthy long-term imaging)	320.94±53.36 (contralateral) vs. 272.	2 n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t- Test, two-tailed.	t(4) = -2.02, p = 0.114
Fig. 6s	# of CD13-positive pericytes per mm ² (laser-induced injury)	218.60±23.67 (contralateral) vs. 300.	7 n = 5 mice, 2 sections / 4 hemispheres per mouse	Shapiro-Wilk W Test not significant. Paired one-sample t-	t(4) = 2.24, p = 0.088

Supplementary T Statistics results	able 3 Statistics results table are sorted by figures and	supplementary figures are list	ted in the order they appe	ar in the text.	
Statistically sign Table 3.3 Statis	nificant comparisons are bolded tics for Figure 4 and associated extended data	(Extended Data Fig. 7)			
Fig. 4 Fig. 4e	Measure Total # new oligodendrocytes / 350 x 350 x 60 µm volume at 66 day time point (Gray Matter vs. White Matter)	Values 33.8±5.5 vs. 10.9±1.3 OLs / imaging volume	N / n = 5 mice	Statistical test Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	Significance t(4.45) = 4.03, p = 0.013
51- 4-	Rate of new oligodendrocytes gained / Week / 350 x 350 x 60 μm volume (Gray Matter vs. White Matter)	3.9±0.6 vs. 1.2±0.1 OLs / volume / week	n = 6 mice	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(5.44) = 4.74, p = 0.005
Fig. 4g	Total % Oligodendrocyte Gain at 66 day time point (Gray Matter vs. White Matter)	19.1±2.1% vs. 12.1±1.3%	n = 5 mice	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(8) = -2.83, p = 0.022
Fig. 4h	% Rate of Oligodendrocyte Gain (Gray Matter vs. White Matter) at 5 week time point calculated from Mechanistic Growth Curves	2.3±0.3 vs. 1.3±0.2% per week	n = 6 mice	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(10) = -2.756, p = 0.020
Fig. 4i	Time at 50% OL gain (days) calculated from Mechanistic Growth Curves (Gray Matter vs. White Matter)	26.8±2.2 vs. 24.3±4.4 days post-P70	n = 6 mice	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(10) = -0.52, p = 0.615
Fig. 4j	Two-week binned rates of oligodendrocyte gain (not modeled, % per week, GM vs. WM)	1.0±0.4 vs. 2.5±0.5, WM, Weeks 5-6 vs. Weeks 1-2; 0.8±0.2 vs. 2.5±0.5, WM, Weeks 9-10 vs. Weeks 1-2	n = 6 mice	Shapiro-Wilk W Test not significant. One- way ANOVA followed by Dunnett's test with control.	p = 0.037 for Weeks 5-6 vs. Weeks 1-2; p = 0.022 for Weeks 9-10 vs. Weeks 1-2
Fig. 4n	Change in percentage of MOL1-positive oligodendrocytes with aging in GM (%P140 - %P60)	-4.94±3.45% vs. normalized % at P60	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(12) = -0.81, p = 0.434
	Change in percentage of MOL2/3-positive oligodendrocytes with aging in GM (%P140 - %P60)	0.07±0.51% vs. normalized % at P60	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(12) = 0.10, p = 0.919
	Change in percentage of MOL5/6-positive oligodendrocytes with aging in GM (%P140 - %P60)	-3.99±3.42% vs. normalized % at P60	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(12) = 0.80, p = 0.440
	Change in percentage of MOL1-positive oligodendrocytes with aging in WM (%P140 - %P60)	0.19±0.17% vs. normalized % at P60	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(12) = -0.67, p = 0.514
	Change in percentage of MOL2/3-positive oligodendrocytes with aging in WM (%P140 - %P60)	0.80±0.82% vs. normalized % at P60	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	z = 1.36, p = 0.175
	Change in percentage of MOL5/6-positive oligodendrocytes with aging in WM (%P140 - %P60)	2.30±4.69% vs. normalized % at P60	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(12) = 0.25, p = 0.805
Fig. 4o	Percentage of MOBP-EGFP oligodendrocytes that are MOL1-positive at P140	17.2 ± 3.4 (GM) vs. 0.6 ± 0.2% (WM)	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(7.033) = -4.804, p = 0.002
	Percentage of MOBP-EGFP oligodendrocytes that are MOL2/3-positive at P140	1.8 ± 0.5 (GM) vs. 3.8 ± 0.8% (WM)	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	z = 2.363, p = 0.018
	Percentage of MOBP-EGFP oligodendrocytes that are MOL5/6-positive at P140	27.4 ± 3.4 (GM) vs. 46.4 ± 4.7% (WM)	n = 6 mice (P60), n = 8 mice (P140), 2 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(14) = 3.283, p = 0.005
Ext. Data Fig. 7	Measure	Values	Ν	Statistical test	Significance
Fig. 7c	Density of OPCs in posterior parietal cortex (GM) vs. white matter (WM)	181.2 ± 7.7 (GM) vs. 248.6 ± 23.8 (WM) mm ²	n = 4 mice, 3 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(6) = 2.69, p = 0.036
Fig. 7d	Density of EdU-positive OPCs in posterior parietal cortex (GM) vs. white matter (WM)	14.6 ± 2.5 (GM) vs. 51.6 ± 6	i. n = 4 mice, 3 sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(6) = 5.29, p = 0.002
Fig. 7f	% MOBP-EGFP oligodendrocytes positive for Egr2 (MOL1) in the spinal cord GM vs. WM	18.61 ± 3.9 (GM) vs. 0.05 ±	(n = 3 mice, 2 spinal cord sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(2.00) = -4.68, p = 0.043
	% MOBP-EGFP oligodendrocytes positive for Klk6 (MOL2/3) in the spinal cord GM vs. WM	1.28 ± 0.26 (GM) vs. 37.23 :	± n = 3 mice, 2 spinal cord sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(2.02) = 8.86, p = 0.012
	% MOBP-EGFP oligodendrocytes positive for Ptgds (MOL5/6) in the spinal cord GM vs. WM	32.27 ± 5.31 (GM) vs. 0.90 :	± n = 3 mice, 2 spinal cord sections per mouse	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(2.03) = -5.88, p = 0.027

Supplem Statistics Statistics	entary Table 3 Statistics results table results are sorted by figure, and both main figu ally significant comparisons are bolded	res and supplementary figures are	listed in the order they appe	ar in the text.	
Table 3.4	Statistics for Figure 5				
Fig. 5 Fig. 5c	Measure % depth of corpus callosum analyzed longitudinally (Healthy vs. Cuprizone)	Values 84±8.0% (healthy) vs. 86.8±3.5%	N n=6 mice (Healthy), n = 6 mi	Statistical test (Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Significance Z = 0.48, p = 0.629
Fig. 5h	Total # lost oligodendrocytes / 350 x 350 x 60 μm volume at 66 day time point (Gray Matter vs. White Matter)	36.8±6.0 vs. 157.4±37.8 OLs / imaging volume	n = 6 mice (Cuprizone)	Shapiro-Wilk W Test not significant. F- Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(5.25) = 3.15, p = 0.024
Fig. 5j	Total % lost oligodendrocytes (Gray Matter vs. White Matter) at 66 day time point.	75.3±6.3% (GM) vs. 75.6±7.4% (WM)	n = 6 mice (Cuprizone)	Shapiro-Wilk W Test not significant. F- Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(10) = 0.04, p = 0.970
Fig. 5k	% Rate of Oligodendrocyte Loss during demyelination (Gray Matter vs. White Matter) calculated from Gompertz 3-parameter growth curves	9.0±0.7% vs. 9.2±1.0% lost per week calculated from Gompertz 3-parameter modeling (Gray Matter vs. White Matter)	n = 6 mice (Cuprizone)	Shapiro-Wilk W Test not significant. F- Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(10) = 0.16, p = 0.876
Fig. 5l	Inflection point of loss (days from end of cuprizone) calculated from Gompertz 3- parameter modeling (Gray Matter vs. White	0.4±1.4 (GM) vs. 2.5±2.0 (WM) days post cuprizone	n = 6 mice (Cuprizone)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 1.04, p = 0.298
Fig. 5m	Rates of oligodendrocyte loss binned by 1-3 weeks relative to cuprizone administration (not modeled, % per week, GM vs. WM)	9.6±1.8 vs. 2.49±0.93 % per week, GM, Weeks -2 to 0 vs. Week -3; 18.9±1.9 vs. 2.49±0.93% per week, GM, Weeks 0 to 2 vs. Week -3; 22.6±3.1 vs. 2.74±1.8% per week, WM, Weeks 1 to 2 vs. Week -3	n = 6 mice (Cuprizone)	Shapiro-Wilk W Test significant. Kruskal-Wallis followed by Steel Method for nonparametric multiple comparisons with control.	p = 0.018 for Weeks -2-0 vs. Weeks -3, GM; p = 0.018 for Weeks 1 to 2 vs. Week -3, GM; p = 0.018 for Weeks 1 to 2 vs. Week -3, WM
Fig. 5q	Change in percentage of MOL1-positive oligodendrocytes with cuprizone demyelination in GM (%Cup. + 4d %P140)	-15.44±0.65% vs. normalized % at P140	n = 8 mice (P140), n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 2.71, p = 0.007
	Change in percentage of MOL2/3-positive oligodendrocytes with cuprizone demyelination in GM (%Cup. + 4d %P140)	-1.76±0.05% vs. normalized % at P140	n = 8 mice (P140), n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 2.90, p = 0.004
	Change in percentage of MOL5/6-positive oligodendrocytes with cuprizone demyelination in GM (%Cup. + 4d %P140)	-24.24 \pm 1.11% vs. normalized % at P140	n = 8 mice (P140), n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test not significant. F- Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(8.39) = -6.75, p =0.0001
	Change in percentage of MOL1-positive oligodendrocytes with cuprizone demyelination in WM (%Cup. + 4d %P140)	-0.57±0.06% vs. normalized % at P140	n = 8 mice (P140), n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 2.07, p = 0.038
	Change in percentage of MOL2/3-positive oligodendrocytes with cuprizone demyelination in WM (%Cup. + 4d %P140)	-2.58±0.52% vs. normalized % at P140	n = 8 mice (P140), n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 2.86, p = 0.004
	Change in percentage of MOL5/6-positive oligodendrocytes with cuprizone demyelination in WM (%Cup. + 4d %P140)	-41.56±1.58% vs. normalized % at P140	n = 8 mice (P140), n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test not significant. F- Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(8.50) = -8.40, p <0.0001
Fig. 5r	Percentage of MOBP-EGFP oligodendrocytes that are MOL1-positive 4 days post-cuprizone removal	1.81 ± 0.65 (GM) vs. 0.09% ± 0.06% (WM)	n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 2.54, p = 0.011
	Percentage of MOBP-EGFP oligodendrocytes that are MOL2/3-positive 4 days post- cuprizone removal	0.05 ± 0.04 (GM) vs. 1.2 ± 0.23% (WM)	n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 2.59, p = 0.0097
	Percentage of MOBP-EGFP oligodendrocytes that are MOL5/6-positive 4 days post-cuprizone removal	3.13 ± 1.11 (GM) vs. 4.9 ± 1.6% (WM)	n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test not significant. F- Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(8) = 0.89, p = 0.398

Supplem	entary Table 3 Statistics results table			·	
Statistics Statistic	: results are sorted by figure, and both main figures and s ally significant comparisons are bolded	supplementary figures are lis	ted in the order the	y appear in the text.	
Table 3.8	5 Statistics for Figure 6				
Fig. 6 Fig. 6e	Measure Total # new oligodendrocytes / 350 x 350 x 60 µm volume after Cuprizone at 66 day time point (Gray Matter vs. White Matter)	Values 13.3±2.0 (GM) vs. 123±47.3 (WM) OLs/imaging volume	N n = 6 mice (cuprizone)	Statistical test Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Significance Z = 2.80, p = 0.005
Fig. 6g	Total % Replacement after Cuprizone (% Gain normalized to % Lost) at 66 day time point (Gray Matter vs. White Matter)	37.6±3.6% (GM) vs. 68.0±11.3% (WM)	n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(5.97) = 2.57, p = 0.043
Fig. 6h	% Replacement Rate during remyelination (Gray Matter vs. White Matter) calculated from Gompertz 3-parameter growth curves	5.6±0.6% (GM) vs. 11.1±1.9% (WM)	n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(5.72) = 2.59 p = 0.043
Fig. 6i	Inflection point of Cumulative % Replacement (days from end of cuprizone) calculated from Gompertz 3- parameter modeling (Gray Matter vs. White Matter)	15.352±0.77 (GM) vs. 15.358±1.56 Days post- cuprizone (WM)	n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(10) = 0.0037, p = 0.997
Fig. 6j	Rates of oligodendrocyte gain binned by 1-3 weeks relative to cuprizone administration (not modeled, % per week, GM vs. WM)	8.2±1.1 vs. 3.0±0.5% per week, GM, Weeks 3-4 vs. Week 7; 18.1±5.1 vs. 4.5±1.3% per week, WM, Weeks 3-4 vs. Week 7	n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. One- way ANOVA followed by Dunnett's method for comparison with control	p = 0.002 for Weeks 3-4 vs. Week 7 in the GM; $p = 0.0052$ for Weeks 3-4 vs. Week 7 in the WM
	Peak oligodendrocyte gain rate (3-4 weeks post- cuprizone)	8.2±1.1% (GM) vs. 18.1±5.1 (WM)		Two-way ANOVA followed by piecewise Student's t comparison with Bonferroni correction for multiple comparisons	p = 0.0009; Bonferroni-corrected alpha = 0.0125
Fig. 6n	Change in percentage of MOL1-positive oligodendrocytes with cuprizone demyelination in GM (%Cup. + 7w %P140)	-1.50±3.36% vs. normalized % at P140	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(13) = -0.31, p = 0.763
	Change in percentage of MOL2/3-positive oligodendrocytes with cuprizone demyelination in GM (%Cup. + 7w %P140)	-0.58±0.44% vs. normalized % at P140	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(13) = -0.86, p = 0.407
	Change in percentage of MOL5/6-positive oligodendrocytes with cuprizone demyelination in GM (%Cup. + 7w %P140)	-14.9±2.0% vs. normalized % at P140	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(13) = -3.712, p = 0.003
	Change in percentage of MOL1-positive oligodendrocytes with cuprizone demyelination in WM (%Cup. + 7w %P140)	0.80±0.33% vs. normalized % at P140	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 1.85, p = 0.064
	Change in percentage of MOL2/3-positive oligodendrocytes with cuprizone demyelination in WM (%Cup. + 7w %P140)	0.31±1.22% vs. normalized % at P140	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(13) = 0.22, p = 0.833
	Change in percentage of MOL5/6-positive oligodendrocytes with cuprizone demyelination in WM (%Cup. + 7w %P140)	-22.6±4.2% vs. normalized % at P140	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test significant. Wilcoxon rank sum test.	Z = 2.720, p = 0.007
Fig. 6o	Percentage of MOBP-EGFP oligodendrocytes that are MOL1-positive 7 weeks post-cuprizone removal	15.8±3.3 (GM) vs. 1.5±0.3% (WM)	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(6.118) = -4.234, p = 0.005
	Percentage of MOBP-EGFP oligodendrocytes that are MOL2/3-positive 7 weeks post-cuprizone removal	1.2±0.4 (GM) vs. 4.1±1.2% (WM)	n = 8 mice (P140), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for unequal variance	t(7.560) = 2.187, p = 0.063
	Percentage of MOBP-EGFP oligodendrocytes that are MOL5/6-positive 7 weeks post-cuprizone removal	12.6±2.0 (GM) vs. 24.0±4.2% (WM)	n = 8 mice (P140), n = 7 mice (Cup. +	Shapiro-Wilk W Test not significant. F-Test followed by one-way, two-tailed unpaired Student's t-Test for equal variance	t(12) = 2.432, p = 0.032

Supplen	nentary Table 3 Statistics results table				
Statistics	s results are sorted by figure, and both main figures and s	supplementary figures are listed	in the order they	appear in the text.	
Statistic	ally significant comparisons are bolded				
Table 3.	6: Statistics for Fig. 7		N	0 i - i	01-00-15-0-0-0-0
Fig. /	Measure	Values	N n = C healthu	Statistical test	Significance
Fig. 7a	% new oligodendrocyte gain in the nealthy brain per week by layer	2.6±0.2 (L4) VS. 1.4±0.2% (CC)	n = 6 healthy mice	significant. One-way ANOVA followed by Tukey's HSD	p = 0.012
Fig. 7e	Percentage of MOBP-EGFP oligodendrocytes that are	23.44±3.54% (L1-3) vs.	n = 8 mice	Shapiro-Wilk W Test not	p = 0.0004, L1-3 vs. CC; p =
	MOL1-positive at P140 by layer	18.27±4.50% (L4) vs. 13.84±3.88% (L5-6) vs. 0.66±0.16% (CC)	(P140)	significant. One-way ANOVA followed by Tukey's HSD	0.006, L4 vs. CC
Fig. 7f	Percentage of MORP ECEP eligedendrocutes that are	0% (113) 16 0% (14) 16	n = 8 mico	Shanira Wilk W Tast significant	p = 0.0034 (1.4 vc + 5.6); p =
Fig. /1	MOL2/3-positive at P140 by layer	0% (L1-3) vs. 0% (L4) vs. 2.98±0.78% (L5-6) vs. 3.75±0.0.82% (CC)	(P140)	Kruskal-Wallis test followed by Dunn's test for multiple comparisons	p = 0.0034 (L4 vs. L5-6); p = 0.0034 (L1-3 vs. L5-6); p = 0.0009 (L4 vs. CC); p = 0.0009 (L5-6 vs. CC)
Fig. /g	MOL5/6-positive at P140 by layer	21.674±4.12% (L1-3) vs. 26.38±3.1% (L4) vs. 31.26±3.09% (L5-6) vs. 46.42±4.69% (CC)	n = 8 mice (P140)	shapiro-Wilk W Test not significant. One-way ANOVA followed by Tukey's HSD	p = 0.042 (L5-6 vs. CC); p = 0.005 (L4 vs. CC); p = 0.0005 (L1-3 vs. CC)
Fig. 7i	% cuprizone-induced oligodendrocyte loss per week by layer	1.12±0.26 (L1-3) vs. 1.52±0.32(L4) vs. 2.106±0.12% (L5-6) vs. 1.88±0.23 (CC)	n = 6 cuprizone mice	Shapiro-Wilk W Test not significant. One-way ANOVA.	Prob > F = 0.0504
Fig. 7	Percenters of MORR FOFR all reduced to that are	7 56 12 889/ // 1 2) 10	n – E miss	Chaping Mills M/Test significant	n = 0.046 4.2 via CC
rig. /j	MOL1-positive at 4 days post-cuprizone by layer	1.23±0.67% (L1-3) vs. 1.23±0.67% (L4) vs. 0.31±0.17% (L5-6) vs. 0.09±0.06% (CC)	(Cuprizone + 4 days)	Kruskal-Wallis test followed by Dunn's test for multiple comparisons	p = 0.010, L1-3 vs. CC
Fig. 7k	Percentage of MOBP-EGFP oligodendrocytes that are MOL2/3-positive at 4 days post-cuprizone by layer	0% (L1-3) vs. 0% (L4) vs. 0.09±0.09% (L5-6) vs. 01.18±0.23% (CC)	n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test significant. Kruskal-Wallis test followed by Dunn's test for multiple	p = 0.022 L5-6 vs. CC; p = 0.004 L4 vs. CC; p = 0.004 L1 3 vs. CC
Fig. 7I	Percentage of MOBP-EGFP oligodendrocytes that are MOL5/6-positive at 4 days post-cuprizone by layer	6.65±2.28% (L1-3) vs. 4.41±01.33% (L4) vs. 1.90±0.82% (L5-6) vs. 4.85±1.59% (CC)	n = 5 mice (Cuprizone + 4 days)	Shapiro-Wilk W Test not significant. One-way ANOVA.	Prob > F = 0.250
Fig. 7n	Oligodendrocyte replacement rate during remyelination (% of lost cells replaced per week) by layer	6.34±0.97% (L1-3) vs. 7.88±1.60% (L4) vs. 5.98±0.59% (L5-6) vs. 12 01+2 26% (CC)	n = 6 cuprizone mice	Shapiro-Wilk W Test not significant. One-way ANOVA followed by Tukey's HSD	Prob > F = 0.034, p = 0.042 (L5-6 vs. CC)
Fig. 7o	Percentage of MOBP-EGFP oligodendrocytes that are MOL1-positive at 7 weeks post-cuprizone by layer	16.34±4.63% (L1-3) vs. 20.60±5.47% (L4) vs. 13.66±2.91% (L5-6) vs. 1.46±0.33% (CC)	n = 7 mice (Cuprizone + 7 weeks)	Shapiro-Wilk W Test not significant. One-way ANOVA followed by Tukey's HSD	p = 0.012 (L4 vs. CC)
			_		
Fig. 7p	Percentage of MOBP-EGFP oligodendrocytes that are MOL2/3-positive at 7 weeks post-cuprizone by layer	0% (L1-3) vs. 0% (L4) vs. 2.33±0.97% (L5-6) vs. 4.06±1.22% (CC)	n = 7 mice (Cuprizone + 7 weeks)	Shapiro-Wilk W Test significant. Kruskal-Wallis test followed by Dunn's test for multiple comparisons	p = 0.025 (L1-3 vs. L5-6); p = 0.025 (L4 vs. L5-6); p = 0.003 (L1-3 vs. CC); p = 0.003 (L4 vs. CC)
Fig. 7c	Percentage of MORP-EGEP aligndand moutos that an	13 87+1 86% (1 1 3) vc	n = 7 mico	Shapiro-Wilk W Test pet	p = 0.015 (1.5 - 6.4 c - 0.0)
r ig. 7 q	MOL5/6-positive at 7 weeks post-cuprizone by layer	19.67±2.57% (L4) vs. 10.58±2.17% (L5-6) vs. 23.98±4.24% (CC)	(Cuprizone + 7 weeks)	significant. One-way ANOVA followed by Tukey's HSD	μ = 0.013 (L3-0 VS. CC)

Supplementary Ta	ble 3 Statistics results table				
Statistics results an	re sorted by figure, and both main figu	ires and supplementary figures	s are listed in the orde	er they appear in the text.	
Table 3.7: Statistic	is for Fig. 8 and associated extended	data (Extended Data Fig. 10)			
Fig. 8	Measure	Values	N	Statistical test	Significance
Fig. 8b	Scaled Total % Population Gain (Cuprizone vs. Healthy)	0.33±0.08 (cuprizone) vs. 0.57±0.14 (healthy)	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. Two-way ANOVA followed by piecewise Student's t comparison with Bonferroni correction for multiple comparisons	p = 0.006, Bonferroni-corrected alpha = 0.0125
Fig. 8c	Scaled % Gain Rate (Cuprizone vs. Healthy)	0.30±0.03 (cuprizone) vs. 0.57±0.06 (healthy)	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. Two-way ANOVA followed by piecewise Student's t comparison with Bonferroni correction for multiple comparisons	p = 0.0025, Bonferroni-corrected alpha = 0.0125
Fig. 8d	Scaled Inflection point of % Cumulative Gain or Replacement (days from end of cuprizone) calculated from Gompertz 3- parameter modeling (Cuprizone vs. Healthu)	Scaled inflection points across treatment and layers = 0.67±0.02	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. Two-way ANOVA no significant interaction.	Prob > F = 0.284
Fig. 8e	# of MOL subtypes present at each layer across healthy, Cup. + 4d., and Cup. + 7 weeks groups	$ \begin{array}{l} L1-3:\ 2.0\pm0.0\ classes\\ (Healthy P140);\ 0.8\pm0.49\\ (Cup. + 4d.);\ 1.71\pm0.18\ (Cup. + 7wk.)\\ L4:\ 1.88\pm0.13\ classes\\ (Healthy P140);\ 0.4\pm0.24\\ (Cup. + 4d.);\ 1.71\pm0.18\ (Cup. + 56:\ 2.0\pm0.0\ classes\\ (Healthy P140);\ 1.4\pm0.25\ (Cup. + 4d.);\ 1.71\pm0.29\ (Cup. + 4d.);\ 1.71\pm0.29\ (Cup. + 7wk.)\\ \end{array}$	n = 8 mice (P140), n = 5 mice (Cup. + 4d.), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test significant. Kruskal-Wallis test followed by Dunn's test for multiple comparisons	L1-3: Prob > ChiSq = 0.036; p = 0.021 (Healthy vs. Cup + 4d.) L4: Prob > ChiSq = 0.002; p = 0.003 (Healthy vs. Cup + 4d.); p = 0.019 (Cup. + 7wks. vs. Cup. + 4d.) L5-6: Prob > ChiSq = 0.002; p = 0.005 (Healthy vs. Cup + 4d.); p = 0.009 (Cup. + 7wks. vs. Cup. + 4d.) CC: Prob > ChiSq = 0.051
Fig. 8f	Percentage of MOBP-EGFP oligodendrocytes that are MOL1- positive across healthy, Cup. + 4d., and Cup. + 7 weeks groups	Percentage MOL1-positive oligodendrocytes across time point, treatment, and layers =	n = 8 mice (P140), n = 5 mice (Cup. + : 4d.), n = 7 mice (Cup. + 7 weeks)	Two-way ANOVA no significant interaction.	Prob > F = 0.1397
Fig. 8g	Percentage of MOBP-EGFP oligodendrocytes that are MOL2/3- positive across healthy, Cup. + 4d., and Cup. + 7 weeks groups	Percentage MOL1-positive oligodendrocytes across time point, treatment, and layers	n = 8 mice (P140), n = 5 mice (Cup. + 4d.), n = 7 mice (Cup. + 7 weeks)	Two-way ANOVA no significant interaction.	Prob > F = 0.105
Fig. 8h	Percentage of MOBP-EGFP oligodendrocytes that are MOL5/6- positive across healthy, Cup. + 4d., and Cup. + 7 weeks groups	L4: <u>26.4±3.11 (Healthy</u> P140) vs. 4.4±1.33 (Cup. + 4d.) L5-6: 31.3±3.09 (Healthy P140) vs. 1.940.82 (Cup. + 4d.); vs. 10.6±2.17 (Cup. + 7w.) CC: 46.4±4.69 (Healthy P140) vs. 4.9±1.58 (Cup. + 4d.) vs. 24.0±4.24 (Cup. + 7w.)	n = 8 mice (P140), n = 5 mice (Cup. + 4d.), n = 7 mice (Cup. + 7 weeks)	Shapiro-Wilk W Test not significant. Two-way ANOVA followed by Tukey's HSD.	$\begin{array}{l} Prob > F = 0.004 \mbox{ (Condition x Layer),} \\ L4: p = 0.001 \mbox{ (Healthy P140 vs. Cup. + 4d.)} \\ L5/6: p < 0.0001 \mbox{ (Healthy P140 vs. Cup. + 4d.);} p < 0.0007 \mbox{ (Healthy P140 vs. Cup. + 4d.);} p < 0.0007 \mbox{ (Healthy P140 vs. Cup. + 4d. Vs. Cup. + 7wk.);} \\ CC: p < 0.0001 \mbox{ (Healthy P140 vs. Cup. + 4d.),} p = 0.0001 \mbox{ (Healthy P140 vs. Cup. + 4d.),} p = 0.0001 \mbox{ (Healthy P140 vs. Cup. + 4d.),} p = 0.012 \mbox{ (Cup. + 4d. Vs. Cup. + 7wk.);} \\ \end{array}$
Ext. Data Fig. 10	Measure	Values	Ν	Statistical test	Significance
Fig. 10a	Oligodendrocyte replacement rate (% per week) across one week time bins (unmodeled)	L1-3: 2.04±0.28 (healthy); 7.59±1.27 (Week 2); 7.69±1.06 (Week 3); 6.91±1.19 (Week 4) L4: 2.62±0.29 (healthy); 10.96±2.24 (Week 3); 9.35±1.70 (Week 4) L5-6: 2.11±0.24 (healthy); 11.13±2.02 (Week 3); 6.56±1.17 (Week 4) CC: 21.42±0.21 (healthy); 18.98±6.17 (Week 2); 25.99±9.04 (Week 3); 10.68±1.13 (Week 4)	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test significant. Kruskal-Wallis followed by Steel Method for nonparametric multiple comparisons with control.	p = 0.034 for L1-3, Weeks 2-4 vs. Healthy; p = 0.034 for L4 Weeks 3-4 vs. Healthy; p = 0.034 for L5-6, Weeks 3-4 vs. Healthy; p = 0.034 for CC Weeks 2-4 vs. Healthy
Fig. 10c	Full-width at half-maximum of the oligodendrocyte replacement response curve in (10b) by layer (days)	19.89±2.14 (L1-3) vs. 11.70±2.37 (CC)	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. One-way ANOVA followed by Tukey's HSD	p = 0.048
Fig. 10d	Area under the curve (after subtraction of the healthy gain curve) of the oligodendrocyte replacement response in (10b) by laver	22.8±2.9 (L5-6) vs. 56.2±12.1% (CC)	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. One-way ANOVA followed by Tukey's HSD	p = 0.037
Fig. 10e	Full-width at half-maximum of the oligodendrocyte loss response by layer	15.10±2.23 (L1-3) vs. 13.04±2.08 (L4) vs. 12.06±1.13 (L5-6) vs. 10.64±1.91 (CC)	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test significant. Kruskal-Wallis test.	Prob > ChiSq = 0.515
Fig. 10f	Area under the curve (after subtraction of the healthy gain curve) of the oligodendrocyte loss response by layer	51.32±12.07 (L1-3) vs. 60.31±12.31 (L4) vs. 85.49±4.39 (L5-6) vs. 73.86±6.51 (CC)	n = 6 mice (healthy), n = 6 mice (cuprizone)	Shapiro-Wilk W Test not significant. One-way ANOVA	Prob > F = 0.087