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Computational modeling details 

To model behavior on the task, we adopted a Markov decision process (MDP) model under the 

active inference framework (see main text Figure 1); for more details about the structure and 

mathematics of this class of models, see (Friston et al., 2017; Friston et al., 2017; Parr and 

Friston, 2017; Smith et al., 2022). This approach requires creating a model with specific sets of 

possible observations (𝑜𝑡
𝑚), hidden states (𝑠𝑡) that cause those observations, and available actions 

(policies; 𝜋).  In our model, there were two types of observations (modalities; 𝑚) that could be 

made at each time point (𝑡). In the first modality (𝑜𝑡
𝑟𝑒𝑤𝑎𝑟𝑑), the participant could make a 

“starting” observation, and then observe either a win or a loss. In the second modality (𝑜𝑡
𝑐ℎ𝑜𝑖𝑐𝑒), 

the participant could observe the action that was chosen. Hidden states in the model included a 

“starting” state as well as the state of having chosen each of the three options. Policies included 

the three available choices on each trial.  

The dependencies between these variables are described by sets of matrices. One set of matrices 

A encodes the way hidden states generate observations, 𝑝(𝑜𝑡
𝑚|𝑠𝑡). In our model, A defines the 

probability of observing a win vs. a loss given the state of having chosen each option:  

𝐀(𝑟𝑒𝑤𝑎𝑟𝑑) =  𝑝(𝑜𝑡
𝑟𝑒𝑤𝑎𝑟𝑑|𝑠𝑡

𝑐ℎ𝑜𝑖𝑐𝑒) =   [
1 0 0 0
0 𝑟1 𝑟2 𝑟3

0 1 − 𝑟1 1 − 𝑟2 1 − 𝑟3

] 

Here, columns indicate (from left to right) the starting state and choices 1, 2, and 3; the rows 

(from top to bottom) indicate the starting observation, observing a win, or observing a loss. The 

values of 𝑟1, 𝑟2, 𝑟3 are the true reward probabilities for each choice. There was also a second A-

matrix mapping each choice state to the observation of that choice, which was set as an identity 

matrix (i.e., there was no uncertainty in the choice a participant made). 

A set of matrices 𝐁𝜋 encode state transition probabilities under each policy, 𝑝(𝑠𝑡+1|𝑠𝑡, 𝜋). In our 

model, these defined the transition from the “starting state” to the state of having chosen each 

possible option under each respective policy. Here, the transition probabilities were simply a 

deterministic mapping based on participants’ choices, such that, for example, 

𝑝(𝑠𝑐ℎ𝑜𝑖𝑐𝑒 1|𝑠𝑠𝑡𝑎𝑟𝑡, 𝜋𝑐ℎ𝑜𝑖𝑐𝑒 1) = 1 and 0 for all other transitions. 

 

A set of vectors C encode the subjective reward value of each observation in each modality at 

each time point. In our model, a value of 0 was fixed for all observations except for observing a 

win. The value for observing a win was estimated based on participant behavior as an index of 

reward sensitivity (𝑐𝑟):  

𝐶 (𝑟𝑒𝑤𝑎𝑟𝑑) = [0 𝑐𝑟 0]T  

ln𝑝(𝑜) = ln(𝜎(𝐶)) 



The subjective reward values for different observations are formally specified in terms of a 

participant’s log-expectations. The symbol 𝜎 indicates a softmax (normalized exponential) 

function that first transforms the values in 𝐶 into a proper probability distribution, such that 

higher values for 𝑐𝑟 are formally assigned higher prior probabilities (corresponding to greater 

subjective rewardingness of a win). This distribution is then converted into log probabilities. 

Higher values of 𝑐𝑟 reduce information-seeking (by effectively increasing the weight of the 

reward-seeking term in the expected free energy; shown below). 

A vector 𝐷 =  [1 0 0 0]Tspecified a prior over initial states, such that the participant always 

started in an undecided starting state at the beginning of each trial.  

Action policies (𝜋) are assigned values based on a quantity called expected free energy (𝐺). 

When there is no uncertainty about choice states (i.e., no uncertainty about one’s choice on a 

trial), as is true in our task, the expected free energy can be written as: 

𝐺𝜋 = −𝛦𝑞(𝑜,𝑠,𝐀|𝜋)[ln𝑞(𝐀|𝑠, 𝑜, 𝜋) − ln𝑞(𝐀)] − 𝛦𝑞(𝑜,𝑠,𝐀|𝜋)[ln𝑝(𝑜)] 

This quantity assigns higher values to actions that are expected to simultaneously maximize 

information gain and reward. The first term on the right corresponds to information gain. Note 

that the variable 𝑞() is used to denote the participant’s approximate posterior beliefs. Large 

values for this first term indicate the expectation that beliefs about reward probabilities will 

undergo a large change (i.e., that a lot will be learned about these probabilities) given a choice of 

policy. The second term on the right motivates reward-seeking, by maximizing ln𝑝(𝑜). Because 

these terms are subtracted, policies associated with high expected reward and high expected 

information gain will be assigned a lower expected free energy. This can also be seen more 

explicitly when expected free energy is shown in the following equivalent form that is cast in 

terms of model variables (for a full derivation, see (Da Costa et al., 2020)): 

𝐺𝜋 = ∑(𝑜𝜋,𝑡 ⋅ (𝑙𝑛 𝑜𝜋,𝑡 − 𝑙𝑛 𝐶) − 𝐀𝑠𝜋,𝑡 ⋅ 𝐖𝑠𝜋,𝑡)

𝑡

 

𝐖 ∶=
1

2
(𝐚⨀(−1) − 𝐚𝑠𝑢𝑚𝑠

⨀(−1)
) 

In the first equation, it can be seen that policies will have higher value if 1) they minimize the 

divergence between predicted and preferred outcomes –  𝑜𝜋,𝑡 ⋅ (𝑙𝑛 𝑜𝜋,𝑡 − 𝑙𝑛 𝐶) – which can be 

thought of as maximizing reward probability; and if 2) they seek out states expected to provide 

the most informative observations about the reward probabilities – 𝐀s𝜋,𝑡 ⋅ 𝐖sπ,t – which can be 

thought of as goal-directed information-seeking. In the second equation, the variable 𝐚 within 𝐖 

denotes the current concentration parameters of Dirichlet priors over reward probabilities 

associated with the A matrix. The ∶= symbol indicates that two things are defined to be 

equivalent, and the ⨀ symbol indicates the element-wise power (i.e., separately raising each 

element in a matrix to the power of some number). The term 𝐚𝑠𝑢𝑚𝑠 is a matrix of the same size 

as 𝐚 where each entry within a column corresponds to the sum of the values of the associated 

column in 𝐚. At the start of each game, 𝐚 is as follows: 

: 



𝑃(𝐀) = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝐚) 

𝐚 (𝑟𝑒𝑤𝑎𝑟𝑑) =  𝑃(𝑜𝑟𝑒𝑤𝑎𝑟𝑑|𝑠𝑐ℎ𝑜𝑖𝑐𝑒) =   [
1 0 0 0
0 𝑎0 𝑎0 𝑎0

0 𝑎0 𝑎0 𝑎0

] 

The value of 𝑎0 – the insensitivity to information parameter – is the starting value for beliefs 

about these reward probabilities. These beliefs always start by making up an uninformative (flat) 

distribution, but higher starting values (e.g., 5 vs. 0.5) effectively down-weight the information-

gain term in the expected free energy – leading to an insensitivity to the need for information. 

Put another way, when information insensitivity (𝑎0) is high, the need for information-seeking is 

low a priori. This parameter was estimated for each participant.  

The values within 𝐚 (𝑟𝑒𝑤𝑎𝑟𝑑) are then updated as follows: 

𝐚𝑡𝑟𝑖𝑎𝑙 =  𝐚𝑡𝑟𝑖𝑎𝑙−1 +  𝜂 × ∑ 𝑜𝑡  ⊗ 𝒔𝑡

𝜏

 

Here ⊗ indicates the cross-product and 𝒔 is the posterior belief over choice states (i.e., the belief 

about which option was chosen). The variable 𝜂 is the learning rate, which controls the 

magnitude of updates in 𝐚 after each observation. This rate can also differ for different 

observations. Here there were separate learning rates for observing wins vs. losses. A higher 

learning rate will tend to promote a faster switch to reward-seeking behavior.  

Once expected free energy is evaluated, the probability of selecting a policy is: 

𝑝(𝜋) = 𝜎(−𝐺𝜋) 

Here, a softmax function (𝜎) transforms the negative expected free energies into a proper 

probability distribution, such that policies with lower expected free energies are assigned higher 

probabilities.  

A final parameter pertains to choice stochasticity. Active inference naturally distinguishes 

between uncertainty reduction due to goal-directed, strategic information-seeking (driven by the 

information gain term in expected free energy) and that due to stochastic choice. The latter 

approach to gaining information through stochastic choice can be accounted for with an action 

precision parameter (𝛼): 

𝑝(𝐴𝑐𝑡𝑖𝑜𝑛|𝛼) =   𝜎(𝛼 × ln 𝑝(𝐴𝑐𝑡𝑖𝑜𝑛|𝜋) 

Lower values of 𝛼 increase the probability of selecting actions that disagree with beliefs about 

the optimal policy.  

Based on our model, there are therefore several free parameters that could influence participant 

behavior: action precision (𝛼), reward sensitivity (𝑐𝑟), learning rate (𝜂), and the starting value for 

concentration parameters at the beginning of each game (𝑎0; henceforth referred to as 

insensitivity to information). Lower values of 𝛼 produce more randomness in behavior, which 



could be associated with random exploration (primarily if on early trials). Lower values for 

𝑐𝑟and 𝑎0 produce greater directed exploration in different ways. Higher learning rates promote 

faster switches from exploration to exploitation. To arbitrate between different model choices, 

we estimated 10 different nested models – each with different choices in what model variables 

were included (or fixed at default values) and which to estimate. Table 4 in the main text shows 

each model, as well as the default values used for each parameter if not estimated. Note that, 

based on our primary interest in goal-directed exploration vs. exploitation, 𝑐𝑟 was always 

estimated. We then performed Bayesian model comparison (based on (Rigoux et al., 2014; 

Stephan et al., 2009)) to determine the best model.  

For a tutorial introduction to this general modelling approach, see (Smith et al., 2022); for its 

implementation within our model, see the spm_MDP_VB_X MATLAB routine, freely available 

within the DEM (dynamic expectation maximization) toolbox of the most recent versions of 

SPM academic software (http://www.fil.ion.ucl.ac.uk/spm/). We have also included the modified 

version of this implementation for models assuming separate learning rates for wins and losses 

within our Supplementary Code. To illustrate the effect of the information value term in 𝐺𝜋, in 

Supplementary Figure S1 we show example simulations comparing full model performance to 

a model where the information value term has been removed. Example simulations under 

different parameter settings are also shown in Supplementary Figure S1. 

Parametric empirical Bayes (PEB) analysis details 

The design matrix for PEB analyses (coded using sum coding for categorical variables) utilized 

columns for: age, sex (male = 1, female = -1), pre-morbid IQ (WRAT), group (HC = 1, SUD = -

1), time (baseline = -1, follow-up = 1), and the interaction between group and time (HC/baseline 

= -1, HC/follow-up = 1, SUD/baseline = 1, SUD/follow-up = -1). Coding for all variables was 

detrended. For longitudinal analyses, columns for each subject were also included, and were 

coded using sum coding as well. 

Further modeling diagnostics 

In the main text, we provided results of parameter recoverability analyses in which synthetic data 

was generated from the winning (5 parameter) model under the range of parameter estimates 

found for our participants. Parameters were then estimated for this synthetic data, and it was 

shown that the generative and estimated parameters were strongly correlated, supporting 

recoverability. Here we report further supplementary diagnostic checks. 

First, we assessed model identifiability within Bayesian model comparison. To do so, we 

generated simulated behavioral data from 131 synthetic participants (i.e., matching the number 

of study participants) using each of the 10 plausible models we considered. This simulated 

behavior was generated using the range of parameter values observed in our participants (and 

their default values for any parameters not included for the model in question). Each of the 10 

models was then fit to each of the 10 sets of simulated data. Model comparison was then 

performed for each of the 10 sets of data to confirm whether the winning models corresponded to 

the models used to generate the data. Results are summarized in Table S3. As can be seen there, 

some but not all possible models were correctly identified. Of most importance, when the 

winning 5-parameter model (Model 9) generated the data, it was correctly identified in model 

comparison. However, Model 10 (the only other model that included separate learning rates for 

http://www.fil.ion.ucl.ac.uk/spm/


wins and losses, but that did not include the “insensitivity to information” parameter) was also 

misidentified as Model 9. Thus, we cannot rule out the possibility that Model 10 offers a 

competitive account of participant behavior. Models with separate learning rates for wins and 

losses do appear identifiable more generally, however, which lends confidence to our results 

showing distinct effects of learning rates for losses. 

Second, we assessed whether parameter estimates within the winning model showed any 

problematic dependence on choice of estimation priors. This is because variational methods can 

be vulnerable to local extrema within parameter space when assessing model fit, and we wished 

to confirm that results would not show meaningful differences under a different choice of 

starting parameter values. To assess this, we chose a different set of prior means and then re-

estimated parameters under the winning model. We chose this alternative set of prior means to be 

equidistant and on the opposite side of (relative to our initial choice of prior means) the posterior 

group means in our primary results (𝛼 = 1.08, 𝑐𝑟 =  5.26, 𝜂𝑤𝑖𝑛 =  0.51, 𝜂𝑙𝑜𝑠𝑠 =  0.23, 𝑎0 =
 1.35). Despite starting on the other side of the posterior means reported in the main text, we 

found that parameter estimates during this alternative round of estimation approached the same 

values found in our primary analyses (although they did not move all the way to those values due 

to the expected complexity cost). The correlations between posterior means under the original 

and alternate set of priors were as follows: 𝛼 (r = 0.92, p < 0.001), 𝑐𝑟 (r = 0.90, p < 0.001), 𝜂𝑤𝑖𝑛 

(r = 0.96, p < 0.001), 𝜂𝑙𝑜𝑠𝑠 (r = 0.96, p < 0.001), 𝑎0 (r = 0.71, p < 0.001). 

Correlations between model parameters and symptom severity at follow-up 

Model parameters at follow-up did not show significant relationships with DAST scores at 

follow-up, although a suggestive trend was present for the action precision parameter: 𝛼 (r = -.2, 

p = .09), 𝑐𝑟 (r = -.17, p = .15), 𝜂𝑤𝑖𝑛 (r = -.07, p = .52), 𝜂𝑙𝑜𝑠𝑠 (r = .18, p = .11), 𝑎0 (r = -.12, p = 

.30). Relationships showed the same (non-significant) directional pattern when restricting to 

stimulant users or to opioid users, with notable trends in stimulant users for 𝑎0 (r = -.25, p = .06) 

and 𝛼 (r = -.24, p = .07). 

 

Supplemental Tables and Figures 

Table S1: Model-Free Task Measures in Full Dataset by Group and Session (Means and 

Standard Deviations) split by early (choices 2-7 per block) and late (choices 8-16) trials 

  

First/Second 

Half 

Total Baseline Follow-up 
Usable 

Data (N) 

Effect of 

Clinical Status 
Effect of Session 

Effect of 

Clinical 

Status/Session 

Interaction 

  HCs SUDs HCs SUDs 

131 48 83 48 83 

Wins 

First 

Half 

87.79 

(7.39) 

89.21 

(6.75) 

87.13 

(7.61) 

88.31 

(6.97) 

87.34 

(7.75) 

HC: 45 

SUD+: 77 
Total: 122 

F(1, 117) = 2.83 

p = 0.1 
η2=0.02 

F(1, 120) = 0.24 

p = 0.62 
η2=0 

F(1, 120) = 0.08 

p = 0.78 
η2=0 

Second 
Half 

93.31 
(8.11) 

93.62 
(8.12) 

91.61 
(8.25) 

93.96 
(7.41) 

94.45 
(8.21) 

HC: 45 

SUD +: 77 
Total: 122 

F(1, 117) = 0.53 

p = 0.47 
η2=0 

F(1, 120) = 5.62 

p = 0.02 

η2=0.04 

F(1, 120) = 1.21 

p = 0.27 
η2=0.01 



Win/Stay 

First 
Half 

58.61 
(17.46) 

57.98 
(18.2) 

58.34 
(17.67) 

55.48 
(17.76) 

61.05 
(16.59) 

HC: 45 

SUD +: 77 
Total: 122 

F(1, 117) = 0.32 

p = 0.57 
η2=0 

F(1, 120) = 0.79 

p = 0.38 
η2=0.01 

F(1, 120) = 1.54 

p = 0.22 
η2=0.01 

Second 
Half 

75.68 
(18.75) 

75.52 
(17.41) 

73.29 
(20.55) 

75.73 
(18.15) 

78.12 
(17.93) 

HC: 45 

SUD +: 77 

Total: 122 

F(1, 117) = 0.19 

p = 0.67 

η2=0 

F(1, 120) = 4.02 

p = 0.05 

η2=0.03 

F(1, 120) = 1.7 

p = 0.2 

η2=0.01 

Win/Shift 

First 
Half 

17.56 
(15.25) 

19.46 
(16.07) 

17.25 
(15.31) 

21.17 
(15.17) 

14.7 
(14.41) 

HC: 45 
SUD +: 77 

Total: 122 

F(1, 117) = 1.98 
p = 0.16 

η2=0.02 

F(1, 120) = 1.77 
p = 0.19 

η2=0.01 

F(1, 120) = 1.96 
p = 0.16 

η2=0.02 

Second 

Half 

17.52 

(14.73) 

18.42 

(14.28) 

18.2 

(15.53) 

17.9 

(14.62) 

16.1 

(14.38) 

HC: 45 
SUD +: 77 

Total: 122 

F(1, 117) = 0.74 
p = 0.39 

η2=0.01 

F(1, 120) = 1.78 
p = 0.18 

η2=0.01 

F(1, 120) = 0.35 
p = 0.55 

η2=0 

Lose/Stay 

First 

Half 

20.69 

(14.54) 

16.54 

(11.91) 

21.05 

(14.9) 

18.12 

(12.39) 

24.2 

(15.97) 

HC: 45 
SUD +: 77 

Total: 122 

F(1, 117) = 9.83 

p = 0.002 

η2=0.08 

F(1, 120) = 5.57 

p = 0.02 

η2=0.04 

F(1, 120) = 0.52 
p = 0.47 

η2=0 

Second 

Half 

26.43 

(16.18) 

22.79 

(14.98) 

25.37 

(16.12) 

27.85 

(14.43) 

28.76 

(17.59) 

HC: 45 

SUD +: 77 
Total: 122 

F(1, 117) = 4.43 

p = 0.04 

η2=0.04 

F(1, 120) = 11.26 

p = 0.001 

η2=0.09 

F(1, 120) = 0.05 

p = 0.82 
η2=0 

Lose/Shift 

First 
Half 

43.14 
(14.56) 

46.02 
(12.41) 

43.36 
(14.71) 

45.23 
(13.17) 

40.05 
(15.91) 

HC: 45 

SUD +: 77 
Total: 122 

F(1, 117) = 5.66 

p = 0.02 

η2=0.05 

F(1, 120) = 3.96 

p = 0.05 

η2=0.03 

F(1, 120) = 0.6 

p = 0.44 
η2=0 

Second 
Half 

40.38 
(18.33) 

43.27 
(17.35) 

43.13 
(18.86) 

38.52 
(16.98) 

37.02 
(18.71) 

HC: 45 

SUD +: 77 

Total: 122 

F(1, 117) = 2.53 

p = 0.11 

η2=0.02 

F(1, 120) = 18.6 

p < 0.001 

η2=0.13 

F(1, 120) = 0.66 

p = 0.42 

η2=0.01 

* Significant effects are bolded. 

 

 

Table S2: Model-Free Task Measures in Matched Dataset by Group and Session (Means 

and Standard Deviations) split by early (choices 2-7 per block) and late (choices 8-16) trials 

  

First/Second 

Half 

Total Baseline Follow-up 
Usable 

Data (N) 

Effect of 

Clinical Status 

Effect of 

Session 

Effect of Clinical 

Status/Session 

Interaction 
  HCs SUDs HCs SUDs 

70 45 25 45 25 

Wins 

First 

Half 

88.07 

(7.29) 

89.31 

(6.96) 

88.24 

(6.02) 

88.49 

(6.81) 

84.92 

(9.15) 

HC: 45 
SUD+: 25 

Total: 70 

F(1, 65) = 3.6 
p = 0.06 

η2=0.05 

F(1, 68) = 2.02 
p = 0.16 

η2=0.03 

F(1, 68) = 0.98 
p = 0.32 

η2=0.01 

Second 

Half 

92.69 

(7.76) 

93.09 

(8.09) 

89.68 

(6.82) 

93.96 

(7.48) 

92.72 

(8.21) 

HC: 45 
SUD +: 25 

Total: 70 

F(1, 65) = 1.89 
p = 0.17 

η2=0.03 

F(1, 68) = 2.28 
p = 0.14 

η2=0.03 

F(1, 68) = 0.92 
p = 0.34 

η2=0.01 

Win/Stay 

First 

Half 

58.13 

(17.32) 

58.2 

(18.06) 

58.56 

(18.44) 

56.96 

(17.35) 

59.68 

(15.54) 

HC: 45 

SUD +: 25 
Total: 70 

F(1, 65) = 0.14 

p = 0.71 
η2=0 

F(1, 68) = 0.02 

p = 0.88 
η2=0 

F(1, 68) = 0.2 

p = 0.66 
η2=0 

Second 

Half 

74.31 

(17.82) 

74.76 

(17.61) 

71.08 

(21.16) 

75.29 

(18.37) 

75 

(13.84) 

HC: 45 

SUD +: 25 
Total: 70 

F(1, 65) = 0.16 

p = 0.69 
η2=0 

F(1, 68) = 0.56 

p = 0.46 
η2=0.01 

F(1, 68) = 0.48 

p = 0.49 
η2=0.01 

Win/Shift 
First 
Half 

18.24 
(15.1) 

19.29 
(15.73) 

17.76 
(16.57) 

20 
(14.79) 

13.64 
(12.69) 

HC: 45 

SUD +: 25 

Total: 70 

F(1, 65) = 1.56 

p = 0.22 

η2=0.02 

F(1, 68) = 0.23 

p = 0.64 

η2=0 

F(1, 68) = 1.17 

p = 0.28 

η2=0.02 



Second 

Half 

18.54 

(15.02) 

18.82 

(14.49) 

19.28 

(17.47) 

18.09 

(15.05) 

18.12 

(14.15) 

HC: 45 
SUD +: 25 

Total: 70 

F(1, 65) = 0 
p = 0.95 

η2=0 

F(1, 68) = 0.23 
p = 0.64 

η2=0 

F(1, 68) = 0.01 
p = 0.91 

η2=0 

Lose/Stay 

First 

Half 

19.91 

(14.54) 

16.29 

(12.13) 

23.2 

(15.34) 

18.18 

(12.4) 

26.28 

(18.8) 

HC: 45 
SUD +: 25 

Total: 70 

F(1, 65) = 6.77 

p = 0.01 

η2=0.09 

F(1, 68) = 1.82 
p = 0.18 

η2=0.03 

F(1, 68) = 0.11 
p = 0.74 

η2=0 

Second 

Half 

26.28 

(16.11) 

22.02 

(15.1) 

27.8 

(15.37) 

27.04 

(14.43) 

31.04 

(20.13) 

HC: 45 

SUD +: 25 
Total: 70 

F(1, 65) = 2.44 

p = 0.12 
η2=0.04 

F(1, 68) = 5.69 

p = 0.02 

η2=0.08 

F(1, 68) = 0.22 

p = 0.64 
η2=0 

Lose/Shift 

First 
Half 

43.72 
(14.15) 

46.22 
(12.71) 

40.48 
(14.91) 

44.87 
(13.41) 

40.4 
(16.57) 

HC: 45 

SUD +: 25 
Total: 70 

F(1, 65) = 3.53 

p = 0.06 
η2=0.05 

F(1, 68) = 0.22 

p = 0.64 
η2=0 

F(1, 68) = 0.1 

p = 0.75 
η2=0 

Second 
Half 

40.86 
(17.63) 

44.4 
(17.3) 

41.84 
(18.09) 

39.58 
(16.93) 

35.84 
(18.58) 

HC: 45 

SUD +: 25 

Total: 70 

F(1, 65) = 0.95 

p = 0.33 

η2=0.01 

F(1, 68) = 7 

p = 0.01 

η2=0.09 

F(1, 68) = 0.08 

p = 0.78 

η2=0 

* Significant effects are bolded. 

  

Table S3: Results of Model Identifiability Analyses during Model Comparison 

Parameter: 

𝜶 𝒄𝒓 𝜼 𝒂𝟎 

Model 

Comparison 

Results 

action 

precision 

reward 

sensitivity learning rate 

insensitivity to 

information  
Default value if 

not estimated 4 

always 

estimated 

removed from 

model 0.25  
Prior means 

during 

estimation* 4 4 0.5 0.25  
Model 1 Y Y N N M8: pxp = 1 

Model 2 Y Y Y N M3: pxp = 1 

Model 3 Y Y Y Y M3: pxp = 1* 

Model 4 N Y Y Y M3: pxp = 1 

Model 5 N Y Y N 

M3: pxp = .19 

M4: pxp = .81 

Model 6 N Y N N M6: pxp = 1* 

Model 7 N Y N Y M3: pxp = 1 

Model 8 Y Y N Y M3: pxp = 1 

Model 9** Y Y Wins/Losses Y M9: pxp = 1* 

Model 10 Y Y Wins/Losses N M9: pxp = 1 

Note: pxp = protected exceedance probability. *Indicates that the generative model was correctly 

identified. **Indicates the winning model used within further analyses in the main text. 



 

Figure S1. (A) Example model simulation of one game with and without the information value 

term of the expected free energy included in policy valuation. Reward probabilities for bandits 1-

3 in this game are 0.46, 0.49, and .64 (respectively). Darker shades indicate higher choice 

probabilities; blue circles indicate the action taken; red and green circles indicate losses and wins 

(respectively). While the agent on the left panel is driven by both reward maximization and 

information gain, the agent on the right panel only cares about reward. This induces subtle 

differences in predictions for behavior that are visible, for example, at time step three. Here, after 

having observed one rewarding and one non-rewarding outcome in bandit three, the agent on the 

left now prefers to gain information about the other two bandits, whereas the agent on the right 

equally prefers the three bandits because they all have a reward value of 0.5. Here, action 

precision (𝜶; lower values promoting random exploration) was set to a high value of 16 to 

highlight the effects of goal-directed exploration. Reward sensitivity (𝒄𝒓; lower values promote 

goal-directed exploration) was set to 4, learning rates were set to 0.5, and the prior concentration 

parameters in the observation model, governing insensitivity to information, were defined as 

0.25. (B) Example model simulations under single changes from the above-stated parameter 

values. As can be seen here, reduced 𝒄𝒓 leads to over-exploration, while reduced sensitivity to 

information leads to behavior similar to the reward-only model.  Reduced 𝜶 leads to more 

stochastic behavior, and reduced learning rate leads to less confident choices in later trials.  



 

Figure S2. Spaghetti plots showing individual changes from baseline to follow-up, as well as 

group means and standard errors, for all model parameters in the full and matched samples. 

 

 

Figure S3. Illustration of effect sizes for additional effects found in PEB analyses that were not 

illustrated in the main text. For the group by time interaction, a positive value indicates increases 

over time in HCs and decreases over time in SUDs. 



 

 
Figure S4. Left: Correlation between pre-to-post changes in model parameters and pre-to-post 

changes in symptom severity (DAST) in the full SUD sample and in subsamples restricted to 

only individuals meeting criteria for specific SUDs. DAST change scores account for what could 

already be predicted based on age, sex, and premorbid IQ. Right: Predictive relationships 

between baseline model parameters and symptom severity (DAST) at 1-year follow-up in the full 

SUD sample and in subsamples restricted to only individuals meeting criteria for specific SUDs. 

DAST scores account for what could already be predicted based on age, sex, and premorbid IQ. 

BF indicates the Bayes factor for each correlation. *p < .05, **p < .01, ***p < .001 

(uncorrected). 

 

 

 



 

Figure S5. Correlations between model parameters and model-free behavior. Early trials = trials 

2-7 per game. Late trials = trials 8-15 per game. BF indicates the Bayes factor for each 

correlation. *p < .05, **p < .01, ***p < .001 (uncorrected). 
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