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S1 Choosing Training Data

When fitting a shapeGMM, we split our data into a training set and a cross validation set. The Gaussian

mixture components are fit on the training data and their ability to model the cross validation set is assessed

by comparing the log likelihood per frame on both sets. Overfitting will lead to a lower log likelihood on

the cross validation set than on the training set. Both training and prediction routines now have built in

frame weight arguments.

Training sets were chosen uniformly randomly for the original implementation of shapeGMM. For non-

uniform frame weights, however, there are a variety of other methods one could consider to best choose a

training set. We assessed a number of these including simple ranking, Poisson sampling, and a Metropolis

Monte Carlo method using log frame weights as energies. It was found the the uniform sampling of frame

weights worked as well as other methods especially when training sets are sufficiently large.

A uniform sampling of the training set performs at least as well as importance sampling of the training

set for the beaded helix example. To assess this we compared shapeGMM objects fit using various training

set sampling schemes. These include: a uniform sampling, a Monte Carlo sampling in which frames are

replaced based on the Metropolis criteria using frame weights, and a Poisson sampling scheme in which
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frames are sampled from the frame weight distribution. The Poisson sampling method differs from the other

two in that frames are equally weighted in the training set but can appear multiple times depending on their

relative weights. The Jensen-Shannon divergence (JSD) between distributions fit using these methods to

an ϵ = 6 trajectory with ϵ = 8 weights and distributions fit to an ϵ = 8 simulation directly (the ground-

truth; GT) as a function of training set size are depicted in Fig. S1. The JSD between the GT and all fitted

distributions is large (∼ 0.3) for small training set sizes and tends to zero as training sets increase. This

indicates that all methods are accurately reproducing the GT distribution for large enough training set. We

find that the uniform sampling approach does as well or better than either importance sampling approach

for all training set sizes. We note that this result will depend on the specific distribution of weights. We

expect this behavior to hold for relatively uniform distributions of weights which occur in reweighting to

Hamiltonians that don’t deviate much from the original. It may be important, especially for small training

set sizes, in cases in which the Hamiltonians are significantly different to consider choosing training sets

using an importance sampling approach. We use a uniform sampling approach for all other applications in

this paper.

Figure S1: Accuracy of beaded helix reweighted cluster as a function of training set size. The Jensen-Shannon divergence
(JSD) between shapeGMM distribution fit using reweighting to ϵ = 8 and the ground-truth fit to a simulation run at ϵ = 8 as a
function of training set size. Three taining set selection schemes are compared: a uniform sampling of frames, a three-step
Monte Carlo importance sampling method, and a Poisson sampling method.
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S2 Clustering untempered metadynamics

Figure S2: Untemepered MetaD simulation of ADP. (A) Cluster scans obtained with 50K frames, 4 training
sets and 10 attempts using rbias frame weights or with uniform weights (labeled ’u’). Training ln(L) curve is
substantially higher with rbias weights, and matches CV curve. (B) Clusterings performed for K = 2 − 4 shown
by coloring each of 100K sampled points by their cluster assignment. Contour lines indicate the underlying
free energy surface as computed from the MetaD simulation via reweighting with rbias frame weights. Contours
indicate free energy levels above the minimum from 1 to 11 kcal/mol with a spacing of 2 kcal/mol.

S3 ADP FES computed by evaluating GMM on WT-MetaD samples

In Fig. S3 we assess an alternative approach to estimate an unbiased FES from a GMM object. In this case,

we presume that the WT-MetaD simulation produced physically reasonable configurations spanning the

configurational landscape of the molecule of interest. To estimate the FES for ADP, we compute a weighted

histogram of (ϕ and ψ) where we give as weights the probability of each frame predicted by the GMM,

P(xi) given by Eq. 2. In practice, P(xi) is computed from exponentiating the log-likelihood of frames

within the GMM . We normalize the resulting histogram by samples in each bin, which accounts for the

fact that frames were not generated uniformly by WT-MetaD, resulting in a new distribution P̃(ϕ, ψ). The

FES is then computed as F(ϕ, ψ) = −kB ln P̃(ϕ, ψ).
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Figure S3: FE profiles obtained from GMM objects trained on BF=10 WT-MetaD data using Monte Carlo proce-
dure. Each column corresponds to a different choice of bias and each row corresponds to a different number
of clusters (K) used. Black circles placed on the FEs are the centers calculated from the reference structures
corresponding to different clusters, with the size indicating their relative population. Contour lines indicate the
underlying free energy surface as computed from the WT-MetaD simulation, positioned at 1.0 to 11.0 kcal/mol
with a spacing of 2 kcal/mol above the global minimum.
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S4 Error analysis for GMM Free energies
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Figure S4: (A) Root mean-squared error for the free energy of ADP GMMs computed for different number
of clusters and four different weighting schemes. Error bars are computed from five independent simulations
which are fit to separate GMM objects, which are then used to compute free energy surfaces. The reference
free energy surface is that computed by summing the Gaussian hills from the WT-MetaD simulation. (B) Same
as A, except the Jenson-Shannon distance is computed between the distributions corresponding to P(ϕ, ψ) ∝
exp(−F(ϕ, ψ)/(kBT )), where F(ϕ, ψ) corresponds to either the reference free energy or that computed from the
GMM objects.
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S5 FEs from GMM for cluster size 5 and 6
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Figure S5: FE profiles obtained from GMM objects trained on BF=10 WT-MetaD data. Each column corresponds
to a different choice of bias and each row corresponds to a different number of clusters used. These are com-
puted as unweighted histograms from 1M samples obtained from each GMM object. Black circles placed on
the FEs are the centers calculated from the reference structures corresponding to different clusters, with the
size indicating their relative population. Contour lines indicate the underlying free energy surface as computed
from the WT-MetaD simulation, positioned at 1.0 to 11.0 kcal/mol with a spacing of 2 kcal/mol above the global
minimum.
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S6 OPES-MetaD simulation of Actin (∼ 1us)
A B

Figure S6: A. The 2D FES obtained from ∼1us OPES-MetaD simulation. Colored circles are the locations for
cluster centers weighted according to their relative population. B. Time series of LD1 and Dihedral CVs from the
same data.

S7 Cluster Scans
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Figure S7: Log likelihood as a function of number of clusters K for the original ∼ 1µs OPES-MetaD trajectory
(∼21K frames), and using a new set of frames generated by restarting as described in Sec. A1 (∼ 153K frames).
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S8 Variance of D-loop
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Figure S8: (A) RMSF for residues 35 to 55 within Actin’s subdomain 2 including the D-loop. These are extracted
from the diagonal of ΣN for each of five clusters shown in Fig. 4. (B) The same quantity for residues 40 to 52
which represent the core of the D-loop.

S9 Configurational Entropies from GMMs

Table S1: Difference in two configurational entropies computed from probability distributions in dihedral space,
comparing all shapeGMM objects with metadynamics taken as ground truth (GT). ∆S K,C

config = S K,C
config − S GT

config,

where K= # Clusters, C= choice of weight. To compute S K,C
config, 1M samples are generated from the shapeGMM

object and a 2D normalized probability distribution is calculated in dihedral space with generated data. All S config
values are calculated using Eq.10. uniformmod f represents uniform weight shapeGMM objects where the cluster
populations are reweighted using final bias weights after the shapeGMM fit. To reweigh, we update the weights
for each cluster in a given shapeGMM object with the sum of normalized fbias weights for all frames assigned to
that cluster in the uniform scheme. ∆S config is always less for the weighted objects compared to uniform weights
irrespective of cluster sizes.

∆S config/k

# Clusters, K
choice of weight, C

uniform bias rbias fbias uniformmod f

2 2.42 -0.34 -0.31 -0.34 2.42
3 2.18 -0.80 -0.79 -0.80 2.18
4 1.48 -0.82 -0.82 -0.82 1.48
5 2.23 -0.80 -0.78 -0.69 2.24
6 1.52 -0.74 -0.83 -0.80 1.52
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