
 

Page 1 of 11 

Data supplement for Cao et al., A Functional Connectome-Based Neural Signature for 
Individualized Prediction of Antipsychotic Response in First-Episode Psychosis. Am J 
Psychiatry (doi: 10.1176/appi.ajp.20220719) 
 
 
 
 
Supplementary Methods 
 
Sample details 
Patients in the discovery and validation samples were recruited based on the DSM-IV diagnosis of a 

psychosis spectrum disorder. The discovery sample is a completely new dataset that has not been 

reported anywhere before, while the validation sample partly overlaps with the one used in Sarpal 

et al. (1). For both samples, the inclusion criteria were: 1) age between 15 and 40 years; 2) a score  

4 (moderate) for any of the psychosis items in the BPRS-A; and 3) with minimal exposure to 

antipsychotic drugs for a cumulative lifetime period of less than two weeks. The exclusion criteria 

included: 1) serious neurological or endocrine disorders; 2) any medical conditions requiring 

medication with psychotropic effects; 3) significant risk of suicidal or homicidal behavior; 4) drug 

abuse or dependence; 5) cognitive or language limitations unable to sign an informed consent; and 

6) contraindications to antipsychotic monotherapy or MRI scans. In the discovery sample, patients 

were randomized to receive open-label, naturalistic treatment with either risperidone or 

aripiprazole for 12 weeks (ClinicalTrials.gov ID: NCT02822092). In the validation sample, patients 

were randomized for double-blinded, single antipsychotic treatment (either risperidone or 

aripiprazole) for 12 weeks (ClinicalTrials.gov ID: NCT00320671). Patients started at low dosage and 

gradually increased to the target dosage at day 7 (3 mg risperidone or 15 mg aripiprazole daily). 

Depending on the relief of psychotic symptoms, subjects either stayed on the target dosage or 

continued to increase dosage after week 4 until reaching the maximal dosage of 6 mg risperidone or 

30 mg aripiprazole daily. Except for these two drugs, no other antipsychotics, mood stabilizers, or 

antidepressants were allowed during the study. However, in case of need, benztropine and 

lorazepam were allowed to alleviate extrapyramidal symptoms, akathisia, and anxiety. The BPRS-A 

was performed at baseline, weeks 1, 2, 3, 4, 6, 8, 10, and 12. The SCID was conducted at baseline and 

the diagnosis was further confirmed at a diagnostic consensus meeting where cases were presented 

after participants completed the 12 weeks of the study. The fMRI scans were conducted at baseline 

before medication. In the discovery sample, 36 out of 49 participants completed 12-week follow-ups, 

with the rest having at least one follow-up assessment. In the validation sample, 18 out of 24 patients 

completed 12-week follow-ups, with the rest having at least one follow-up assessment. The missing 

data were automatically handled by the linear mixed model in calculation of symptom change rate, 

as described in the manuscript.  

 

Healthy subjects were recruited via advertisement from the nearby communities. The healthy 

participants received BPRS-A rating at baseline and at the 12th week. The fMRI scans were also 

performed at baseline. The exclusion criteria included: 1) lifetime history of any mood or psychotic 
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disorders as determined by SCID, non-patient version; 2) lifetime history of neurological disorders; 

3) any serious non-psychiatric disorder that could affect brain functioning; 4) mental retardation; 

and 5) MR imaging contraindications. 

 

Patients in the discovery sample and healthy individuals completed four fMRI paradigms during the 

scans: an eyes-closed resting state scan, a reward gambling task (2), an oddball task (3), and a multi-

source interference task (MSIT) (4). Patients in the validation sample completed four fMRI paradigms 

as well, with two of the tasks different from the discovery sample (resting state, MSIT, finger tapping 

task, and competing response task). 

 

Scan protocols 

The discovery sample and the healthy subject sample were scanned with a 3T SIEMENS Prisma 

scanner using the Human Connectome Project (HCP) protocol (5). Specifically, the BOLD images were 

acquired with multi-band echo-planar imaging (EPI) sequence: TR = 720 ms, TE = 33 ms, FA = 52 

degree, slice thickness = 2 mm, 72 continuous slices, FOV = 231*231 mm, voxel size = 2.2*2.2*2 mm, 

multi-band factor = 8. The high-resolution T1 structural images were acquired with the 

magnetization-prepared rapid gradient-echo (MP-RAGE) sequence: TR = 2400 ms, TE = 2.22 ms, FA 

= 8 degree, slice thickness = 0.8 mm, 208 continuous slices, FOV = 256*256 mm, voxel size = 

0.8*0.8*0.8 mm. The resting-state scan was conducted with 2 runs of 7.2 min each, while the task 

scans varied between 5.8 and 15.6 min (MSIT: 4 runs of 3.9 min each; reward task: 2 runs of 2.9 min 

each; oddball task: 4 runs of 2.6 min each). 

 

The validation sample was scanned with a 3T GE Signa scanner. The BOLD images were scanned with 

the following EPI sequence: TR = 2000 ms (with the exception of the MSIT task, TR = 1500 ms), TE = 

30 ms, FOV = 240*240 mm, slice thickness = 3mm, 40 continuous slices, voxel size = 3.75*3.75*3 mm. 

T1 structural images were acquired with an inversion-recovery prepared 3D fast spoiled gradient 

(IR-FSPGR) sequence: TR = 7.5 ms, TE = 3 ms, TI = 650 ms, FOV = 240*240 mm, slice thickness = 1 

mm, 216 continuous slices. The acquisition time was 5 min for resting state, 4.6 min for finger tapping 

task, 8.5 min for competing response task, and 13.4 min for MSIT (2 runs of 6.7 min each). 

 
Image preprocessing 

The discovery sample and the healthy subject sample were preprocessed with the Human 

Connectome Project (HCP) pipeline (6), including a total of five major steps (PreFreeSurfer, 

FreeSurfer, PostFreeSurfer, fMRI Volume, fMRI Surface). Briefly, images were corrected for gradient 

nonlinearity induced distortion, head motion, and phase-encoding related distortion, and then 

registered to individual T1 images and normalized to the Montreal Neurological Institute (MNI) 

space. The validation sample was preprocessed with the standard pipeline implemented in the 

SPM12 software (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), including slice timing 

correction, realignment for head motion, structural and functional image coregistration, and 

normalization to the MNI space. Finally, a 4-mm FWHM kernel was applied to the normalized images 

for spatial smoothing. 

 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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The preprocessed images were further scrutinized for head motion using the measure of frame-wise 

displacement (FD) as defined by Power et al. (7). Here, to mitigate motion-related effects and 

meanwhile maximize the sample size, we excluded subjects with an average FD larger than the group 

mean plus three times the standard deviation in the discovery sample. This led to the rejection of one 

patient, leaving a total of 48 patients for further analysis. 

 

Construction of connectivity matrices 

The construction of connectivity matrices followed our prior publications (8-10). After preprocessing, 

mean time series from each of the 300 nodes defined in the Seitzman atlas (11) were extracted. The 

extracted time series were further corrected for the effects of task-evoked coactivations (for task 

data), white matter, cerebrospinal, and global signals, 24 head motion parameters (i.e. 6 translational 

and rotational parameters, their first derivatives, and the squares of these 12 parameters), and FD. 

These noise-corrected time series were then temporally filtered with either band pass (rest data, 

0.01-0.1 Hz) or high pass (task data, 0.01 Hz). Since each paradigm was scanned with multiple runs, 

we concatenated the time series from different runs for each paradigm, and subsequently used the 

concatenated time series to construct whole-brain connectome matrices. Specifically, a 300*300 

connectivity matrix was computed by pairwise Pearson correlations for each subject during each 

fMRI paradigm. These matrices were further used for the cross-paradigm connectivity (CPC) analysis. 

 

Estimation of subject-specific change rates 

For the estimation of subject-specific change rates, all subjects’ psychosis scores at all time points 

were entered into a linear mixed model in R as dependent variable, where time point was modelled 

as fixed variable and subject as random variable. In particular, the following model was fitted by 

maximizing the restricted log-likelihood, and individualized slopes were estimated and extracted 

from the model: 

Score ~ time point + (1 + time point | subject) 

 

Further explanation of the CPC approach 

In this study, we used an approach termed “Cross-Paradigm Connectivity (CPC)” to combine fMRI 

data from multiple paradigms (8, 12), which essentially extracts shared components from 

connectivity matrices derived from different fMRI paradigms. The rationale of this approach is based 

on the previous findings that the human brain connectome constitutes an individual-unique, trait-

like structure that is ubiquitously present across different fMRI paradigms, and the connectome 

architecture derived from a single paradigm is a mixture of such trait and state-related measures (13, 

14). Therefore, the CPC approach was used with the aim of extracting such trait-like connectomic 

architecture for each subject. 

 

It has increasingly been recognized in the literature that prediction with state-dependent, single-

paradigm data will not achieve a comparable performance as the combined multi-paradigm data in 

which more trait-like variations are examined (12, 15, 16). In our prior study (12), we have shown 

the improvement of predictability as a function of paradigm quantity. Therefore, we have included 
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all of the four available paradigms in the dataset and used the CPC approach to conduct the prediction 

analysis, aiming to boost the prediction performance as much as possible. 

 

 
 
Supplementary Results 
 
The CPC matrices captured individualized “trait” connectome 

We have previously published a series of studies showing that the CPC matrices could capture the 

vast majority of shared variance across the connectivity matrices constructed from different fMRI 

paradigms at the individual level (8-10, 12). Here we further confirmed these findings in the present 

data. In particular, the CPC matrices in the discovery sample explained about 70% of shared variance 

across the four paradigms (mean 71.54.6), and the CPC matrices in the validation sample explained 

about 60% of shared variance (mean 58.64.3), suggesting that the derived CPC matrices do reflect 

individualized “trait” organizations of the functional connectome. 

 

The predictive model was not driven by any specific paradigm 

Since the CPC matrices captures the state-independent organizations in the human connectome, the 

derived predictive model should not be driven by any specific fMRI paradigm. To verify this, we 

further extracted the 14 final features from each of the original single-paradigm connectivity 

matrices in the discovery sample and calculated their associations with symptom change rates during 

each paradigm. We found significant correlations for all of the four paradigms (positive features: r > 

0.49, P < 0.001; negative features: r < -0.52, P < 0.001), which suggests that the derived predictive 

model is not driven by any specific paradigm, and the selected features are correlated with treatment 

response in a state-independent way. 

 

The prediction performance was not driven by head motion 

Head motion is an important consideration in imaging studies. While we have carefully controlled 

head motion during data analysis, here we further tested whether the derived prediction results 

would relate to head motion. For this we calculated the Pearson correlations between the predictors 

(i.e. sum of the 5 positive features or 9 negative features) and individual mean FDs in both samples. 

The results did not show any significant associations between predictors and FDs (discovery sample: 

r < 0.14, P > 0.16; validation sample: r < 0.001, P > 0.99). These findings suggest that the reported 

prediction performance is unlikely to be driven by head motion. 

 

The prediction performance was not driven by duration of untreated psychosis (DUP) 

The DUP has been shown to be a strong predictor for treatment response in psychosis (17, 18). In 

this study, only part of the subjects had the DUP data and therefore we did not include DUP as a 

covariate in the predictive model. However, this raises the possibility that the derived predictors may 

simply reflect DUP differences among patients. To rule out this possibility, we calculated the Pearson 

correlations between the predictors and DUP in patients with available data. No significant 

correlations between predictors and DUP were found in both samples (discovery sample: r > -0.11, 
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P > 0.57; validation sample: r > -0.11, P > 0.60), suggesting that the prediction performance is unlikely 

to be driven by DUP. 

 

The model was not predictive of time- and practice-related effects 

To exclude the possibility that the model was simply predictive of time- and practice-related effects 

during the experiment, we additionally estimated the prediction performance in a sample of 28 

healthy subjects (mean age 28.2 y, 13 males). Similar to patients, the healthy subjects received 

baseline fMRI scans and were followed up for 12 weeks. The BPRS-A ratings were conducted for each 

individual at the baseline and at the 12th week. Here, no significant changes were shown for 

psychosis scores over time in healthy subjects (slope = 0.01, P = 0.26). When applying the same model 

to healthy subjects, we did not observe a significant predictive effect on symptom change (r 

[predicted vs observed] = 0.05, P = 0.38), suggesting that our findings are not simply predictive of 

time-related effects. 

 

Prediction performance with different thresholds 

One tuning parameter in the CPM analysis is the initial threshold for feature selection (for the present 

results we used P < 0.0005 as described in the manuscript). To test the prediction performance across 

different thresholds, we repeated the analysis with a range of thresholds from P < 0.001 to P < 0.01. 

We found that the in-sample prediction performance (within the discovery sample) remained stable 

across different thresholds (~0.40, Table S2); however, the out-of-sample performance (validation 

sample) significantly decreased with the increase of P value, suggesting that a more lenient initial 

threshold may introduce noise and therefore reduce generalizability. 

 

Prediction performance with each single fMRI paradigm 

To further verify that the combination of multiple fMRI paradigms would improve the prediction 

performance, we additionally examined the prediction performance with each single fMRI paradigm 

used in the two datasets. The results demonstrated that single paradigm had considerably lower 

performance compared with the combined data, both in the discovery sample and in the validation 

sample. While direct comparison between paradigms needs to be cautious given the differences in 

scan length, these findings nevertheless suggest that inclusion of multiple fMRI paradigms would 

benefit the prediction performance for clinical response studies. 

 

Prediction performance after removal of individuals with mood disorders 

While it is unclear whether the neural signatures of antipsychotic response in mood disorders with 

psychosis would be different from those in schizophrenia spectrum disorders, we additionally tested 

the performance of the same 14 features in the discovery sample after excluding individuals with 

mood disorders (three with bipolar and three with depression). We found very similar associations 

of the positive and negative feature scores with symptom change rates (positive: r = 0.83; negative: 

r = -0.79). Applying the trained model to the validation sample demonstrated very similar prediction 

performance (r [predicted vs observed] = 0.47). These findings suggest that our observed prediction 

performance is transdiagnostically similar among individuals with psychosis. 
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Prediction performance for each single drug 

While the sample size for each treatment group is rather small (see Table 1), we did not train 

predictive models for each drug separately, and therefore the reported findings may reflect a mixed 

effect of both drugs. However, in order to test whether the prediction performance could be similar 

between the two drugs, we additionally examined the effects of our identified predictors separately 

for each drug group. In the discovery sample, there were strong associations between the feature 

scores and symptom change rates in both groups, with the effect slightly larger among individuals 

treated with aripiprazole (risperidone: r = 0.74 for positive features and r = -0.72 for negative 

features; aripiprazole: r = 0.95 for positive features and r = -0.87 for negative features). When 

applying the predictive model to the validation sample, the risperidone group showed a prediction 

performance of r [predicted vs observed] = 0.58 and the aripiprazole group showed a prediction 

performance of r [predicted vs observed] = 0.44. This suggests that our prediction model is suitable 

for both drugs. Since the sample size for single drugs is very small, the results need to be interpreted 

with great caution. Future cohort studies with large patient sample targeting a single drug effect are 

certainly warranted. 

 

Prediction performance in people with and without cannabis use 

Since cannabis use is common among patients with psychosis, we additionally tested the prediction 

performance separately for people with and without cannabis use disorder. Here, 23 out of 48 

patients in the discovery sample and 10 out of 24 patients in the validation sample were 

simultaneously diagnosed with cannabis use disorder. In the discovery sample, slightly higher 

associations were detected between the feature scores and slopes among people without cannabis 

use (positive features: r = 0.89; negative features: r = -0.85) compared with those with cannabis use 

(positive features: r = 0.74; negative features: r = -0.62). Applying the trained model to the validation 

sample revealed a prediction performance of r [predicted vs observed] = 0.56 among those without 

cannabis use and r [predicted vs observed] = 0.39 among those with cannabis use. These 

supplementary findings suggest that the identified predictors may show better performance among 

patients without cannabis use. Notably, this is consistent with our prior work that cannabis use could 

dampen the performance of the previously reported striatal connectivity predictors (19). 

 

Test of the identified predictors in dichotomized response groups as defined by Sarpal et al. (1) 

Notably, in this study the clinical outcome was evaluated by individualized slope coefficients, which 

essentially quantify averaged change rates for each subject across the 12-week follow-up time. This 

is different from a dichotomous outcome measure (responder/non-responder) as used in Sarpal et 

al. (1). In order to test whether our identified features would also distinguish different response 

groups defined in that study, we dichotomized our samples based on the same criteria. Specifically, 

an individual was considered as a responder if he/she had a score of 3 (mild) or less for all psychosis 

items in the BPRS-A on at least two consecutive time points (or on only one time point if total follow-

up time less than 4 weeks). Here, 35 out of 48 patients in the discovery sample and 17 out of 24 

patients in the validation sample were assigned to the responder group, with others assigned to the 

non-responder group. 
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Using two-sample t test to compare the summed feature scores between the two groups, we observed 

significant differences for both positive and negative features in the discovery sample (positive: P = 

0.001, negative: P < 0.001). However, such differences did not generalize to the validation sample (P > 

0.25 for both positive and negative features), suggesting that the identified connectomic predictors 

in the present study may not be a generalizable neural marker for the previously defined 

response/non-response status. 

 

Associations of the present predictors with those reported in Sarpal et al. (1) 

We also tested whether the present predictors were correlated with the previously reported striatal 

connectivity findings. To this end, we calculated the striatal connectivity index (SCI) based on Sarpal 

et al. (1) and correlated the individualized SCI with our positive and negative feature scores in the 

discovery sample. We found non-significant correlations between these two findings (r = 0.16, P = 

0.27 for positive features and r = -0.22, P = 0.13 for negative features), suggesting that these two 

findings may capture different variations in treatment response and therefore may have 

complementary values in clinical response studies (prediction of individualized change rate vs 

prediction of predefined response group). 

 

Data reanalysis with a different paradigm-combination approach 

Besides the CPC, there have been other alternative approaches in the literature to combine multiple 

fMRI paradigms, one of which is termed “general functional connectivity” (20). This approach 

combines paradigms by directly concatenating their time series. Here, we additionally tested the 

prediction performance by using this alternative approach. Our findings showed overall lower in-

sample and out-of-sample performance with this approach (discovery sample: median r [predicted 

vs observed] = 0.34; validation sample: r [predicted vs observed] = 0.25, MSE = 0.022), suggesting that 

our CPC approach may show a superiority in the context of treatment prediction. 

 

Predicting slopes calculated by simple linear regression model 

By using linear mixed model, individual slopes were calculated by partial pooling towards the group-

level fixed effect. While this would reduce noise and increase confidence of the estimated slopes, 

especially in small samples, it nevertheless may lead to a potential issue of “data leakage” during 

cross validation (CV). Ideally, when combining CPM and mixed model, one would need to estimate 

slopes separately for the training and testing samples to avoid this problem, and therefore a large 

sample size is required to obtain robust slope measures for both training data and testing data. 

However, given the small sample in this study, only n~5 subjects were assigned to the test sample 

during each CV cycle, rendering the estimated slopes very unstable. To mitigate the potential “data 

leakage” problem, we here conducted a supplementary analysis, where we recalculated each 

individual’s slope with a simple linear regression model in the discovery sample, thereby avoiding 

interdependency of slopes between individuals. We then tested the prediction performance using the 

same predictors and parameters for these new slope estimates. The result showed a prediction 

performance r[predicted vs observed] = 0.43, which was very similar to our original finding in the 

discovery sample (r = 0.41). In addition, since our findings were also tested in a completely 

independent sample (note that in the validation sample, slopes were estimated with a separate LME 
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model and therefore were completely independent of the discovery sample), they together suggest 

that the reported prediction performance is unlikely to be simply driven by data leakage. 

 

 

 

Table S1. List of finally selected features in the discovery sample. The nodes and their belonged 
networks are defined by Seitzman et al. (11) 
 

 Connection Belonged network 
Positive features   
1 L. supplementary motor – R. precuneus CON – DMN 
2 R. cerebellum lobule 4&5 – R. superior temporal SMN – AN 
3 R. cerebellum lobule 7b – R. lingual FPN – VN 
4 R. cerebellum lobule 6 – L. superior frontal VN – DMN 
5 R. inferior occipital – anterior cingulate VN – DMN 
Negative features   
1 R. rolandic operculum – R. postcentral AN – SMN 
2 R. supplementary motor – L. inferior frontal CON – FPN 
3 R. precuneus – L. precuneus DMN – DMN 
4 R. insula – R. putamen AN – SMN 
5 R. superior temporal – R. middle temporal VAN – VAN 
6 L. cerebellum crus 1 – R. cerebellum crus 1 SN – SN 
7 R. precuneus – R. posterior cingulate DMN – DMN 
8 L. inferior temporal – R. orbitofrontal DMN – DMN 
9 R. cerebellum crus 1 – L. anterior cingulate FPN – DMN 

AN = auditory network; VN = visual network; SMN = sensorimotor network; SN = salience network; 
DMN = default-mode network; CON = cingular-opercular network; FPN = fronto-parietal network; 
VAN = ventral attention network. 
 
 
 
 
Table S2. Prediction performance with different feature selection thresholds. 

 

 Discovery sample Validation sample Number of features 

Initial 

threshold 

Median r P r P Positive Negative 

P < 0.0005 0.41 0.01 0.47 0.01 5 9 

P < 0.001 0.42 0.007 0.15 0.26 16 17 

P < 0.005 0.40 0.004 0.28 0.08 117 78 

P < 0.01 0.40 0.002 0.26 0.10 220 158 
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Table S3. Prediction performance with each single fMRI paradigm. Each row represents an fMRI 

paradigm used in the discovery sample, with the columns showing its in-sample median performance 

and out-of-sample validation performance with fMRI paradigms in the validation sample. 

 

Discovery 

sample 

In-sample 

median r 

Validation sample r 

Rest MSIT CompResp FingerTap 

Rest 0.45 0.18 0.19 0 0.19 

MSIT 0.23 0.33 0.18 0 0 

Oddball 0.33 0 0 0.02 0 

Reward 0.35 0 0.05 0.23 0.28 

 

 

 

 
 
Figure S1. Distributions of model performance (r[predicted vs observed]) from 100 repeats of the 

CPM analysis in the discovery sample. The blue histogram presents the distribution calculated from 

the original CPC matrices, and the yellow histogram presents the distribution after removing the 

identified 14 connections. 
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