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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This an interesting paper describing an AI model termed “Capacity controlled Cβ-Variational 

Auto Encoder (VAE) orC-VAE in short. The authors developed and configured this C-VAE 

model to transform the physicochemical features of CDR2-CDR3 amino acid sequences into 

16-dimension (16D) latent representations. This 16D representations allows them to do de 

novo TCR sequence generation. Through different matrices, the author believed that the 

16D representations of CDR2-CDR3 sequences are low-dimensional, continuous, 

disentangled and sufficient informative. To demonstrate the usage of 16D representations, 

the authors used DBSCAN (a clustering algorithm) to generate clusters of TCRs on top of the 

16D representations. To benchmark their model, the author compared their results with 

iSMART, and tcr-dist two sequence-based methods, TCR-BERT and ESM-1b two AI-based 

methods. 

Overall, it is a very innovative approach. However, I am not sure how good the 16D 

representations for CDR2-CDR3 sequences are. Figure 4 show the comparison of results for 

TCR-VALID, iSMART and tcr-dist, which is not very impressive since the difference between 

TCR-VALID and iSMART is quite trivial. In a published report (Huang et al. Nat. Biotech 2020) 

iSMART gave very poor results, especially compared to GLIPH2, one of the most commonly 

used (and published) TCR clustering methods. At a minimum the authors should compare 

their method with GLIPH2, and with different levels of noise spiking-in, a key test of an 

algorithm is how it deals with noisy data. 

A minor point, line 344 says that a CDR3 ends with the amino acid F. This claim is wrong. 

CDR3s coded by TRBJ2-7*02 end with the amino acid V. CDR3s coded by TRAJ33*01 end 

with the amino acid W, coded by TRAJ35*01 end with the amino acid C. 

Reviewer #2 (Remarks to the Author):

The authors propose an interesting encoding of TCRs beta chains to real vectors, with a few 

neat tricks, such as the representation of V genes by their CDR2 region unifying the 



representation of CDR3 and V (instead of a one hot used in most previous publications). 

They also a C-beta AE, which may be smarter than many of the existing models that use VAE 

or similar models. 

The authors also provide some interesting tests, and the capacity to generate new TCRs. The 

manuscript is well written and very easy to understand. This paper is TCRdist, DeepTCR, 

GIANA, iSMART, GLIPH, ELATE, as well as the Pan-Peptide Meta Learning of Gao et al 

recently in Nat. ML, and all the language models recently developed such as TCR-Bert, using 

the roberta framework. All these models and a few mores that I may have missed produce 

similar encoding, many with much more extensive testing than the one presented here. 

While some comparison with previous models is performed (e.g. idist and tcr-bert), the 

comparison is very limited, not presented in the main text, and does not contain most of the 

standard tests proposed by other models. 

Beyond that, practically all the TCR-peptide prediction algorithms contain an embedding of 

the TCR, and as such are similar work. Especially pan-peptide binders (some of which are 

cited here, but others are not). Thus, at least for the peptide bidning profiles, those could be 

compared. 

In short, this is a really interesting paper, but it is not convincing at all that it adds anything 

significant to the current results. It may actually well be the case, but this is neither shown 

nor explained by a proper comparison to exisitng tools, and given the resemblence of the 

current model to many existing ones, it is not clear if there is any novelty. 

Reviewer #3 (Remarks to the Author):

The authors propose a capacity constrained autoencoder to project TCR sequences into a 

low-dimensional latent space. 

1. The authors need to clearly articulate what their method does better than other methods 

and provide statistically validated evidence of these improvements 

2. As far as I can tell there are no statistical tests in this paper. While general statements are 

useful, specific benchmarks with other methods need to be performed to help the reader 

understand the superior aspects of the present approach. 



3. Certain of the choices the authors made such as the representation of amino acids as 7 

physicochemical features is not compared to the alternative of one-hot encodings. It would 

be helpful to the reader to understand the marginal benefit of such choices. 

4. Please provide a biologically relevant benchmark for latent space smoothness and show 

that your method is better than DeepTCR or other methods. 

5. Once again, please provide a statistical test of your claim of superior clustering, and 

compare with another autoencoder baseline such as DeepTCR. 

Thank you. 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This an interesfing paper describing an AI model termed “Capacity controlled Cβ-Variafional 

Auto Encoder (VAE) orC-VAE in short. The authors developed and configured this C-VAE 
model to transform the physicochemical features of CDR2-CDR3 amino acid sequences into 16-
dimension (16D) latent representafions. This 16D representafions allows them to do de novo 
TCR sequence generafion. Through different matrices, the author believed that the 16D 
representafions of CDR2-CDR3 sequences are low-dimensional, confinuous, disentangled and 
sufficient informafive. To demonstrate the usage of 16D representafions, the authors used 
DBSCAN (a clustering algorithm) to generate clusters of TCRs on top of the 16D representafions. 
To benchmark their model, the author compared their results with iSMART, and tcr-dist two 
sequence-based methods, TCR-BERT and ESM-1b two AI-based methods. 

Overall, it is a very innovafive approach. 

We thank the reviewer for their thoughfful considerafion of our work and are glad that they 
found the approach innovafive. 

Before addressing the concerns below, we would like to address the reviewer’s note that we use 
various metrics to quanfify the smoothness and disentanglement of this low dimensional space. 
We have slightly adjusted the manuscript to further highlight the importance of this element of 
our work. Namely, while other autoencoding and VAE approaches have been developed for 
TCRs, none had to our knowledge explored the extent which the dimensionality and informafion 
in the latent space could be limited while retaining desirable properfies of a latent space. The 
in-depth invesfigafion of these properfies, together with benchmarking of downstream tasks of 
clustering and classificafion, contributes to the overall value and innovafion of TCR-VALID in 
comparison with previous approaches.

We discuss updates to TCR clustering within the manuscript below, and here we wanted to note 
we have also extended our analysis of TCR classificafion and out-of-distribufion (OOD) 
detecfion, including a comparison to the deepTCR classifier. Notably, the deepTCR classifier uses 
a much larger internal representafion than the TCR-VALID model and is not informafionally 
constrained. TCR-VALID performs very similarly in classificafion despite these constraints. We 
further show that is possible to improve OOD detecfion using human repertoire TCRs, using a 
true OOD set by splifting TCRs into those associated with HLA-A*02 or not.

However, I am not sure how good the 16D representafions for CDR2-CDR3 sequences are. 
Figure 4 show the comparison of results for TCR-VALID, iSMART and tcr-dist, which is not very 
impressive since the difference between TCR-VALID and iSMART is quite trivial. In a published 
report (Huang et al. Nat. Biotech 2020) iSMART gave very poor results, especially compared to 
GLIPH2, one of the most commonly used (and published) TCR clustering methods. At a 



minimum the authors should compare their method with GLIPH2, and with different levels of 
noise spiking-in, a key test of an algorithm is how it deals with noisy data. 

We thank the reviewer for suggesfing we undertake a spike-in analysis. We have conducted a 
spike-in analysis mirroring that of GLIPH2 and extended our benchmarking to include the 
GLIPH2 tool in addifion to other tools: clusTCR and deepTCR (Fig 4). We have performed spike-in 
analysis using the background CD4 TCRs used in the GLIPH2 analysis together with both the 
labeled dataset used in our manuscript, and the labeled GLIPH2 dataset (Supp Figs. 3-6). We 
addifionally performed clustering on a subset of the GLIPH2 dataset limited to those TCR-Ag 
relafionships with quality score of 1 or more according to VDJdb (the original source of the 
dataset). We find that all clustering tools perform worse on the GLIPH2 dataset, and once 
limifing more stringently on quality the performance across methods is closer to that in our 
dataset. This interesfingly suggests that confinued measurement and assessment of high quality 
TCR-anfigen associafions are of great importance for the community in developing clustering 
methods.

One important aspect of our clustering, and spike-in, analysis lies in the way we assess the 
performance of the clustering tools. We do not use tools only using the out-of-the-box 
parameters (unless we were unable to adjust the key distance threshold for some reason, as 
explained in methods for GLIPH2 and clusTCR). This is very important to properly benchmark 
tools against one another and drove our selecfion of this method of comparison in the originally 
submifted manuscript. In parficular, consider comparing two classifiers with output predicfion 
on [0,1]. One might typically assess the AUROC rather than the specificity or sensifivity alone, 
since assessing only the specificity at one threshold for each model would not allow one to 
thoroughly compare the models’ relafive performance.

In the case of the comparison between iSMART, tcr-dist, and GLIPH2 in the supplementary 
material of the GLIPH2 paper: it is shown that GLIPH2 clusters a higher percentage (~19% vs 
~9%) of unique CDR3s into clusters of high purity than iSMART with the default distance 
threshold choice. At this threshold, it is true that iSMART has lower CSI, but it also has higher 
precision. If we track both precision and CSI as one tunes the distance threshold and compare to 
the precision of GLIPH2 we see that GLIPH2 performance lies close to the locus of iSMART 
performance. That is, at a different threshold (7.0 instead of default 7.5) iSMART performance is 
more similar to GLIPH2 in terms of both CSI (19.3% (GLIPH2) vs 17.5%) (as measured by the 
GLIPH2 authors) and precision (70.9% vs 80.4%). As noted above, for GLIPH2 we were unable to 
scan the effecfive distance threshold, as discussed in methods. 

For GLIPH2 (as well as the original tcr-dist clustering algorithm and clusTCR) TCR clones can be 
clustered into mulfiple clusters. This makes comparison of the models challenging. As described 
in the methods, we evaluate clustering with clones only retained in the largest cluster to which 
they belong in these cases. For GLIPH2 we include performance with and without this 
correcfion (Supp.Figs2-6) for the benefit of the reader who may want to understand 
performance in the two cases. Notably, when we apply this correcfion to GLIPH2 when 
clustering the GLIPH2 reference dataset the CSI, precision fall further to (15.6%, 66.3%).



In addifion, and equal importance, to the clustering performance, we have profiled the runfime 
of clustering (and distance matrix) calculafion. The fastest method we profiled was clusTCR 
which uses the FAISS tool to perform fast neighbor search using approximate nearest neighbor 
(ANN) algorithm(s). However, clusTCR’s clustering performance is based on Hamming Distance, 
and performs poorly in our benchmarking. We find that TCRVALID is much faster than iSMART 
and the latest, opfimized tcrdist3 algorithm. The majority of clustering fime for TCRVALID occurs 
in the DBSCAN clustering step, not in the embedding of the TCRs, and is driven by the distance 
calculafions (Supp Fig 8). It is therefore possible that the use of ANN algorithms would provide a 
speed boost for TCRVALID as in the case of clusTCR.

In summary for TCR clustering, we included a spike-in analysis, extending the clustering tools 
benchmarked against, and profiled the fime complexity these tools. We have shown that TCR-
VALID performs clustering similarly to state-of-the-art tools on high quality TCR datasets. The 
TCR-VALID clustering is faster than distance-based tools tcr-dist3 and iSMART, and while slower 
than clusTCR the clustering performance is befter. Our method for evaluafing TCR clustering 
takes into account the importance of distance thresholds and both precision and CSI which is 
essenfial for a thorough comparison. The TCR-VALID clustering occurs in a low dimensional 
space that we carefully constructed, and thoroughly profiled, and as such allows for 
interrogafion and de novo generafion of TCRs with or without clustering.

A minor point, line 344 says that a CDR3 ends with the amino acid F. This claim is wrong. CDR3s 
coded by TRBJ2-7*02 end with the amino acid V. CDR3s coded by TRAJ33*01 end with the 
amino acid W, coded by TRAJ35*01 end with the amino acid C. 

We thank the reviewer for this important note, we have changed the text in the manuscript 
accordingly.



Reviewer #2 (Remarks to the Author):

The authors propose an interesfing encoding of TCRs beta chains to real vectors, with a few neat 
tricks, such as the representafion of V genes by their CDR2 region unifying the representafion of 
CDR3 and V (instead of a one hot used in most previous publicafions). They also a C-beta AE, 
which may be smarter than many of the exisfing models that use VAE or similar models. 
The authors also provide some interesfing tests, and the capacity to generate new TCRs. The 
manuscript is well wriften and very easy to understand.

We thank the reviewer for their careful considerafion of our manuscript, and we are glad to 
hear they found it well-wriften and found that we had interesfing methodologies and tests.

This paper is TCRdist, DeepTCR, GIANA, iSMART, GLIPH, ELATE, as well as the Pan-Pepfide Meta 
Learning of Gao et al recently in Nat. ML, and all the language models recently developed such 
as TCR-Bert, using the roberta framework. All these models and a few mores that I may have 
missed produce similar encoding, many with much more extensive tesfing than the one 
presented here.
While some comparison with previous models is performed (e.g. idist and tcr-bert), the 
comparison is very limited, not presented in the main text, and does not contain most of the 
standard tests proposed by other models. 

We thank the reviewer for suggesfing broader benchmarking of our method. We have extended 
our comparisons with other methods, namely including DeepTCR, GLIPH2 and clusTCR, as well 
as those originally included: iSMART, tcr-dist, TCR-BERT, and ESM, the lafter two of which are 
trained in BERT/RoBERTa framework. We were unable to include GIANA due to licensing issues. 
We have addifionally extended our comparison to include a spike-in analysis of irrelevant TCRs 
to monitor the performance drop as these TCRs are spiked in. We analyzed the effect of spike-in 
performance degradafion using two labeled TCR datasets (Fig.4 , Supp.Figs.2-6).

One important aspect of our clustering, and spike-in, analysis lies in the way we assess the 
performance of the clustering tools. We do not use tools only using the out-of-the-box 
parameters (unless we were unable to adjust the key distance threshold for some reason, as 
explained in methods for GLIPH2 and clusTCR). This is very important to properly benchmark 
tools against one another and drove our selecfion of this method of comparison in the originally 
submifted manuscript. In parficular, consider comparing two classifiers with output predicfion 
on [0,1] where one might typically assess the AUROC rather than the specificity or sensifivity 
alone since assessing only the specificity at one threshold for each model would not allow one 
to thoroughly compare the models’ relafive performance. 

For TCR clustering an increasingly common way to assess the performance is to assess the 
purity of clusters and track the number of TCRs placed into pure clusters (as analyzed by 
GLIPH2, and clusTCR authors, and with similar analyses in GIANA and in the supplement of 
DeepTCR). Importantly we track both the CSI (the fracfion of TCRs placed in pure clusters) and 



precision of the clustering models and do so across a range of the models’ internal distance 
thresholds. This allows us to track that clustering performance and make a fair comparison of 
the locus of performance aftainable with differing thresholds. Many tools perform similarly 
once we account for this, and TCR-VALID performs similarly to iSMART and tcr-dist while 
outperforming other methods. Given that different TCR clustering use cases might call for a 
greater emphasis precision or CSI we believe our benchmarking curves allow the reader to see 
in which regime each tool excels in to pick the most relevant one. We only make claims about 
TCR-VALID outperforming other tools when its precision vs CSI curve is consistently above that 
of another tool when we scan the relevant “radius” parameter, in this way we are not picking a 
parficular set radius, CSI or precision to benchmark tools which can be misleading.

In addifion to the clustering performance, we have profiled the runfime of clustering (and 
distance matrix) calculafion. The fastest method we profiled was clusTCR which uses the FAISS 
tool to perform fast neighbor search using approximate nearest neighbor (ANN) algorithm(s). 
However, clusTCR’s clustering performance is based on Hamming Distance, and performs poorly 
in our benchmarking. We find that TCRVALID is much faster than iSMART and the latest, 
opfimized tcrdist3 algorithm. The majority of clustering fime for TCRVALID occurs in the DBSCAN 
clustering step, not in the embedding of the TCRs, and is driven by the distance calculafions (see 
Supp Fig 8). It is therefore possible that the use of ANN algorithms would provide a speed boost 
for TCRVALID as in the case of clusTCR.

Beyond that, pracfically all the TCR-pepfide predicfion algorithms contain an embedding of the 
TCR, and as such are similar work. Especially pan-pepfide binders (some of which are cited here, 
but others are not). Thus, at least for the pepfide bidning profiles, those could be compared.

We thank the reviewer for highlighfing an oversight in the referencing of recent pan-pepfide 
binders. We have broadened our discussion of this in the introducfion, and in the classificafion 
secfion, of our manuscript to highlight the importance of this research direcfion. 

We are parficularly interested in the case of applying a classifier to large repertoires of TCRs 
which is a very common use case (an extension of considerafion of clustering to large datasets, 
including with spiked-in random TCRs). In this case a TCR classifier can be trained on some set of 
in-distribufion (ID) TCRs, and a threshold may be chosen under the considerafion of FPR, TPR. 
However, it is important to consider how the model behaves on TCRs that do not bind one of 
the anfigens in the training set (OOD TCRs). When choosing a model threshold, it is therefore 
important to also consider whether you can exclude predicfions based on a model’s confidence, 
namely via OOD detecfion. While the important recent developments in predicfing the cognate 
anfigen of TCRs even for OOD anfigens (and even TCRs) are no doubt important, one would sfill 
want to place some confidence bound on predicfions over large datasets. We therefore decided 
to limit our study to understanding how the TCR-VALID latent space performs in ID classificafion 
and OOD detecfion, as we believe this remains an important use case.

Extending our comparisons for classificafion and OOD detecfion, we included a benchmarking 
against DeepTCR in its classificafion mode. This extends the comparison to deepTCR in its VAE 



mode for clustering that we also performed. To assess ID performance and OOD detecfion we 
strictly separated TCRs into two groups (HLA-A*02 associated and not) and trained classifiers 
only on the HLA-A*02 porfion. Comparing DeepTCR and TCR-VALID, we find very similar ID 
classificafion performance despite the more heavily constrained latent space. We further 
suggested and evaluated a method to improve OOD detecfion without affecfing ID classificafion 
performance.

Regarding the embeddings themselves, we are not aware of any combined study of 
informafional constraints, latent space smoothness, and disentanglement of other modelling 
approaches. DeepTCR does not constrain the capacity of the latent embeddings directly but 
does use a parameter to control the weighfing between reconstrucfion and Kullback-Leibler 
loss. This weighfing effecfively controls the informafion in the latent space, though without a 
specific target. In DeepTCR the relafive weight of the KL loss is set to 1e-3, making it very close 
to an autoencoder. As we show in Figs 2-3 autoencoders perform poorly both in landscape 
smoothness and in disentanglement. As such, those models will generate TCRs without realisfic 
germline components with small mofion away from the training data, and the meaning behind 
the dimensions (e.g represent V gene, pseudo-random insert region, etc) are much more 
entangled. We provide a roadmap of how others may quanfifively assess these smoothness and 
disentanglement properfies of the latent spaces of TCRs in other modelling strategies which 
may be parficularly useful for generafive modeling. It is possible that quanfifying the 
disentanglement and smoothness in pan-pepfide models may aid in interrogafion of model 
predicfions and any downstream generafive applicafions from such models, e.g. generafion of 
TCRs binding an anfigen of interest for which no current cognate TCRs are known.

In short, this is a really interesfing paper, but it is not convincing at all that it adds anything 
significant to the current results. It may actually well be the case, but this is neither shown nor 
explained by a proper comparison to  esembla tools, and given the  esemblance of the current 
model to many exisfing ones, it is not clear if there is any novelty.

We are glad the reviewer found our methods interesfing and we believe our updates to the 
manuscript, as described above, further highlight the novelty and importance of this work. To 
briefly summarize some key aspects of our work:

For a generafive model of TCRs to be useful for opfimizafion with limited experimental 
resources, it is desirable that representafions be low-dimensional and ideally smooth. BERT 
based encodings of TCRs are large dimensional and not inherently generafional, and exisfing 
approaches of VAE methodologies have typically used large dimensional spaces and not 
thoroughly evaluated latent space smoothness. It is therefore important to understand whether 
it is possible to build a low dimensional representafion of TCRs that is smooth and understand 
how to quanfify that. We developed methods to quanfify the smoothness of the latent space of 
TCR-VALID and carefully controlled the informafional capacity of the model to tune these 
properfies. We then confirmed that proximity in TCR-VALID space corresponds with funcfion by 
performing TCR clustering. With our extended benchmarking and careful considerafion of how 
to evaluate TCR-clustering we show that TCR-VALID is not limited by its low-dimensional and 



informafionally constrained space. Addifionally, TCR-VALID is faster than other commonly used 
tools tcr-dist3 and iSMART, and outperforms the faster clusTCR in clustering performance. In 
addifion, we show strong classificafion performance and OOD detecfion despite the 
informafional and dimensional constraints. We therefore believe our manuscript is the first to 
show that a low-dimensional and capacity-constrained representafion of TCRs can perform fast 
and accurate TCR-clustering and does so in a confinuous space that allows for interrogafing 
those clusters and for de novo TCR generafion, which may further pave a way for sequence 
opfimizafion due to the construcfion of the space. 



Reviewer #3 (Remarks to the Author):

The authors propose a capacity constrained autoencoder to project TCR sequences into a low-
dimensional latent space. 

1. The authors need to clearly arficulate what their method does befter than other methods 
and provide stafisfically validated evidence of these improvements

Firstly, we would like to thank the reviewer for reading and evaluafing the research presented in 
our manuscript. To briefly summarize some key aspects of our work:

For a generafive model of TCRs to be useful for opfimizafion with limited experimental 
resources, it is desirable that representafions be low-dimensional and ideally smooth. BERT 
based encodings of TCRs are large dimensional and not inherently generafional, and exisfing 
approaches of VAE methodologies have typically used large dimensional spaces and not 
thoroughly evaluated latent space smoothness. It is therefore important to understand whether 
it is possible to build a low dimensional representafion of TCRs that is smooth and understand 
how to quanfify that. We developed methods to quanfify the smoothness of the latent space of 
TCR-VALID and carefully controlled the informafional capacity of the model to tune these 
properfies. We then confirmed that proximity in TCR-VALID space corresponds with funcfion by 
performing TCR clustering. With our extended benchmarking and careful considerafion of how 
to evaluate TCR-clustering we show that TCR-VALID is not limited by its low-dimensional and 
informafionally constrained space. Addifionally, TCR-VALID is faster than other commonly used 
tools tcr-dist3 and iSMART, and outperforms the faster clusTCR in clustering performance. In 
addifion, we show strong classificafion performance and OOD detecfion despite the 
informafional and dimensional constraints. We therefore believe our manuscript shows low-
dimensional representafions of TCRs can perform fast and accurate TCR-clustering and does so 
in a space that allows for interrogafing those clusters and for de novo TCR generafion, which 
may further pave a way for sequence opfimizafion due to the construcfion of the space. 

We will address the validated tests in our response to point 2.

2. As far as I can tell there are no stafisfical tests in this paper. While general statements are 
useful, specific benchmarks with other methods need to be performed to help the reader 
understand the superior aspects of the present approach.

We thank the reviewer for raising this point, and of course in general we strongly agree with 
this. In our study of TCR classificafion and OOD detecfion we have included a comparison with 
DeepTCR. In that instance we do provide stafisfical tests between performance of TCR-VALID 
and DeepTCR in addifion to between parameter choice for balancing OOD-detecfion and ID-
classificafion that is provided in TCR-VALID.



For TCR clustering the problem is more complex.  For TCR clustering an increasingly common 
way to assess the performance is to assess the purity of clusters and track the number of TCRs 
placed into pure clusters (as analyzed by GLIPH2, and clusTCR authors, and with similar analyses 
in GIANA and in the supplement of DeepTCR). Importantly we track both the CSI (the fracfion of 
TCRs placed in pure clusters) and precision of the clustering models and do so across a range of 
the models’ internal distance thresholds. This allows us to track that clustering performance and 
make a fair comparison of the locus of performance aftainable with differing thresholds. Many 
tools perform similarly once we account for this, and TCR-VALID performs similarly to iSMART 
and tcr-dist while outperforming other methods. 

We believe that providing the full curves tracking the CSI and precision over the full range of 
thresholds (where possible, unfortunately we were unable to tune a distance for clusTCR and 
GLIPH2) is the fairest means of comparison. In part, this is because the choice of clustering tool 
will depend somewhat on the use-case: e.g. for a given requirement on precision a different 
tool may be selected that offers the highest CSI at that precision. We only make claims about 
TCR-VALID outperforming other tools when its precision vs CSI curve is consistently above that 
of another tool when we scan the relevant “radius” parameter, in this way we are not picking a 
parficular set radius, CSI or precision to benchmark tools which can be misleading.

Addifionally, speed constraints have to be taken into account for clustering large datasets, and 
this may preclude the most accurate clustering tools. In addifion to the clustering performance, 
we have profiled the runfime of clustering (and distance matrix) calculafion. The fastest method 
we profiled was clusTCR which uses the FAISS tool to perform fast neighbor search using 
approximate nearest neighbor (ANN) algorithm(s). However, clusTCR’s clustering performance is 
based on Hamming Distance, and performs poorly in our benchmarking. We find that TCRVALID 
is much faster than iSMART and the latest, opfimized tcrdist3 algorithm. The majority of 
clustering fime for TCRVALID occurs in the DBSCAN clustering step, not in the embedding of the 
TCRs, and is driven by the distance calculafions (Supp Fig 8). It is therefore possible that the use 
of ANN algorithms would provide a speed boost for TCRVALID as in the case of clusTCR.

We have shown that TCR-VALID performs clustering similarly to state-of-the-art tools on high 
quality TCR datasets. The TCR-VALID clustering is faster than distance-based tools tcr-dist3 and 
iSMART, and while slower than clusTCR the clustering performance is befter. Our method for 
evaluafing TCR-clustering takes into account the importance of distance thresholds and both 
precision and CSI which is essenfial for a thorough comparison.

3. Certain of the choices the authors made such as the representafion of amino acids as 7 
physicochemical features is not compared to the alternafive of one-hot encodings. It would be 
helpful to the reader to understand the marginal benefit of such choices.

One-hot encodings of the sequence could also be used for the encoding of the TCRs, though 
one would sfill have a choice in how much informafion could be retained per latent dimension 
in the latent space. Since encoding TCRs by two dicfionaries that have a one-to-one mapping 



between amino acids and codes, we may not expect a large difference in the clustering 
performance.  We have performed PCA to 16 dimensions based on a one-hot encoding and 
physicochemical encoding of TCRs, and then clustered TCRs and scored the performance. We 
find that the two encodings provide similar performance, though the physicochemical encoding 
does slightly outperform (precision vs CSI curve consistently above) the one-hot encoding on 
the high-quality datasets, as can be seen in Supplementary figure 7. It is possible this difference 
is driven by the extra informafion gained by the physicochemical embeddings (i.e that charged 
residues such as R and K are more similar), or could be due to the addifional dimensional 
reducfion prior to the applicafion of PCA.

4. Please provide a biologically relevant benchmark for latent space smoothness and show that 
your method is befter than DeepTCR or other methods.

We are not aware of any combined study of informafional constraints, latent space smoothness, 
and disentanglement of other modelling approaches. DeepTCR does not constrain the capacity 
of the latent embeddings directly but does use a parameter to control the weighfing between 
reconstrucfion and Kullback-Leibler loss. This weighfing effecfively controls the informafion in 
the latent space, though without a specific target. In DeepTCR the relafive weight of the KL loss 
is set to 1e-3, making it very close to an autoencoder. As we show in Figs 2-3 autoencoders 
perform poorly both in landscape smoothness and in disentanglement. As such, those models 
will generate TCRs without realisfic germline components with small mofion away from the 
training data, and the meaning behind the dimensions (e.g represent V gene, pseudo-random 
insert region, etc) are much more entangled.

Smoothness is evaluated by methods we developed to address this quesfion, wherein we 
specifically applied biologically relevant knowledge to methods developed in the ML community 
to assess the smoothness of latent spaces. Namely, via interpolafing linearly in latent space 
between TCRs with idenfical CDR3 but different CDR2. In this case, for a smooth space that 
could be used for TCR generafion, one would hope that as one moves along such a trajectory: i) 
the CDR2 should never become too far from the CDR2s seen in human populafions, and ii) that 
since the CDR3 is fixed at either end of the trajectory that the CDR3 should not change for 
generated TCRs along such a trajectory. We therefore quanfified these expectafions by 
measuring: i) the proximity of generated TCRs along the interpolafion to the manifold of true 
human TCRs (i.e does the generated TCR have a CDR2 close to a real CDR2, and ii) the distance 
of generated CDR3 from the expected CDR3 along the interpolafion. 

It is worth nofing that DeepTCR, in addifion to behaving like an autoencoder has a much larger 
latent dimension of 256 such that encodings are addifionally much sparser in the latent space. 
We specifically set out to understand whether low dimensional spaces could encode TCRs well; 
for interpretability, potenfial TCR design, and downstream use-cases such as clustering. We 
believe with our extended TCR clustering benchmarking we have shown that such low-
dimensional space can do this, while providing fast performance. Due to our quanfificafion of 
smoothness and disentanglement we further show that this can provide interpretability of 
results, and offers potenfial for smooth generafive capabilifies from the latent space.



5. Once again, please provide a stafisfical test of your claim of superior clustering, and compare 
with another autoencoder baseline such as DeepTCR.

We would like to once again thank the reviewer for their fime reading and providing thoughfful 
feedback on our manuscript. We hope to have addressed to reviewers concerns in our answers 
above, and with the extensions we have made to our manuscript.



REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author):

The authors have addressed all my comments. 

I would have appreciated a standard pypi package instead of a git, but it is also fine as is. 

Reviewer #3 (Remarks to the Author):

I appreciate the clarifications and revisions made by the authors. I recommend the paper for 

publication, subject to the following revisions. 

1. The authors have added the text “Such optimization requires a low dimensional space in 

which a continuous function is optimized”. This statement is not true, as others have 

demonstrated that antibody sequences can be optimized directly in one-hot encoded 

sequence space using gradients of an objective functon(PMID: 31778140). Please correct 

this statement. In fact, this method worked better than using the encoding of CDR3 

sequences by an autoencoder into a low dimensional space that was used for gradient 

optimization. 

2. Please correct to say typically required. There are multiplexed methods that can resolve 

chain pairing without single-cell sequencing. “Although these chains occur in distinct pairs, 

single cell sequencing is required to resolve the pairing and thus the datasets of paired TCR 

chains are much smaller than datasets of independent α and β chains.” 

3. FIG 1. Caption - “since the V gene usage can be encoded almost uniquely via CDR2” please 

add “it’s CDR2” 

4. “Our VAE models on the physicochemical representations of TCRs generate a continuous 

space of PWMs.” This is misleading, as the VAE models include complex dependencies 

between residue representations that may not be adequately modeled by a reasonable 

number of PWMs that assume independence. Might you say “Our VAE models on the 

physicochemical representations of TCRs advance beyond what is possible with PWM 



approaches.”? 

5. Since you have not proposed a way to determine if the observed superior performance of 

your model is a result of chance, I would recommend that you change the text in your paper 

as follows - “The TCR-VALID curve is consistently above GLIPH2 [42] and deepTCR [13], a 

deep learning model with larger latent space (Fig.4c, left panel) indicating that it 

outperforms them ON THIS BENCHMARK. Further, we benchmarked TCR-VALID against 

recent general protein transformer-based models 265 [25] and TCR specific transformer 

models [10] (Fig.4c, left panel) that learn high dimensional 266 embeddings of TCR 

sequences (methods) and found THE CURVE OF OUR approach IS ABOVE these approaches.



SUBSEQUENT REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author): 

The authors have addressed all my comments. 
I would have appreciated a standard pypi package instead of a git, but it is also fine as is. 

We thank the reviewer for reading our revised manuscript. 

Reviewer #3 (Remarks to the Author): 

I appreciate the clarifications and revisions made by the authors. I recommend the paper for 
publication, subject to the following revisions. 
We thank the reviewer for reading and recommending our revised manuscript for publication. 

1. The authors have added the text “Such optimization requires a low dimensional space in 
which a continuous function is optimized”. This statement is not true, as others have 
demonstrated that antibody sequences can be optimized directly in one-hot encoded sequence 
space using gradients of an objective functon(PMID: 31778140). Please correct this statement. 
In fact, this method worked better than using the encoding of CDR3 sequences by an 
autoencoder into a low dimensional space that was used for gradient optimization. 

We thank the reviewer for pointing out a small oversight in our language here. We have 
updated the text to be specific to Bayesian optimization rather than “such optimization”. 
Bayesian Optimization it is known to be more likely to be successful with few dimensions 
(typically less than 20), and we included a reference to a well-known and -cited review on the 
subject by Peter Frazier to aid the interested reader. 

2. Please correct to say typically required. There are multiplexed methods that can resolve 
chain pairing without single-cell sequencing. “Although these chains occur in distinct pairs, 
single cell sequencing is required to resolve the pairing and thus the datasets of paired TCR 
chains are much smaller than datasets of independent α and β chains.” 

We have made the suggested change. 

3. FIG 1. Caption - “since the V gene usage can be encoded almost uniquely via CDR2” please 
add “it’s CDR2” 

We have made the suggested change.

4. “Our VAE models on the physicochemical representations of TCRs generate a continuous 



space of PWMs.” This is misleading, as the VAE models include complex dependencies between 
residue representations that may not be adequately modeled by a reasonable number of 
PWMs that assume independence. Might you say “Our VAE models on the physicochemical 
representations of TCRs advance beyond what is possible with PWM approaches.”? 

We thank the reviewer for bringing this potential confusion to our attention. We have clarified 
this statement, to highlight our key point: that the output of the VAE is on a continuous space 
of physicochemical representations, and since these representations can be converted to 
PWMs (methods) they are themselves continuous and not discrete. We have changed this 
sentence to: 

“Our VAE models on the physicochemical representations of TCRs generate a continuous space 
of physicochemical representations, and since these representations can be converted to 
PWMs (methods) these PWMs are themselves continuous and not discrete.” 

5. Since you have not proposed a way to determine if the observed superior performance of 
your model is a result of chance, I would recommend that you change the text in your paper as 
follows - “The TCR-VALID curve is consistently above GLIPH2 [42] and deepTCR [13], a deep 
learning model with larger latent space (Fig.4c, left panel) indicating that it outperforms them 
ON THIS BENCHMARK. Further, we benchmarked TCR-VALID against recent general protein 
transformer-based models 265 [25] and TCR specific transformer models [10] (Fig.4c, left panel) 
that learn high dimensional 266 embeddings of TCR sequences (methods) and found THE 
CURVE OF OUR approach IS ABOVE these approaches.

We have made the suggested change. 


