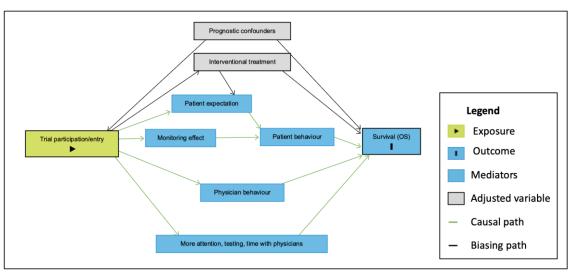
SUPPLEMENTARY MATERIALS TABLE OF CONTENTS


Section	Page Number
(1) DEFINING THE "TRIAL EFFECT"	
• eFigure 1. Directed Acyclic Graph (DAG) showing our definition of the participation effect (based on blue mediators) that	
excludes the experimental treatment or prognostic confounders.	3
• eTable 1. Term definitions to describe the different reasons why trial participant and routine care patient outcomes may	5
differ. These could be attributed to a participation effect, trial effect, or observed differences in general.	
 eTable 2. Prognostic confounders relevant to observing trial effects with definitions and examples. 	
(2) SEARCH STRATEGY AND SCREENING INFORMATION	7
eTable 3. Search strategy for Embase and PubMed databases.	
(3) FULL-TEXT ARTICLES EXCLUDED	9
 eTable 4. Full-text articles excluded with reasons (n=135). 	5
(4) ADJUSTMENT FACTORS, QUALITY SCORING SYSTEM, AND LEAVE-ONE-OUT ANALYSIS	
• eTable 5. Quality score system and adjustment factor descriptions. For categories where the data are missing, 1 point was	
subtracted (score = -1). The quality scores were categorized as low (≤6 points), medium (7 points), and high (≥8 points).	
• eTable 6. Pooled hazard ratio by quality grouping (low-quality, medium-quality, and high-quality). The first row shows the	21
pooled hazard ratios when including all causal effects that make up the quality score. Subsequent rows show the pooled	21
hazard ratios when one of the adjustment factors are omitted from the quality score calculation. For example, the "Age" row	
shows the quality subgroups without consideration of adjustment for age. For each row, the quality score cut-offs were the	
same (low = ≤ 6 points; medium = 7 points; high = ≥ 8 points) and not changed to have similarly sized subgroups.	
(5) PRISMA 2020 CHECKLIST	24
eTable 7. PRISMA 2020 Checklist.	24
(6) COMPARISON CHARACTERISTICS	
 • eTable 8. Comparison characteristics (39 studies, 85 comparisons). 	28
• eTable 9. Quality scoring for adjustment in individual studies. Adjusted = 1 point; not adjusted = 0 points; not reported or	20
unclear = -1 point. The quality scores were categorized as low (≤6 points), medium (7 points), and high (≥8 points).	
(7) SUBGROUP ANALYSES BY COMPARISON CHARACTERISTICS	
• eTable 10. Results of subgroup analyses of comparisons by various characteristics. The significance p-value shows	41
whether there is a significant difference between items in each subgroup.	
(8) POST-HOC AND EXPLORATORY ANALYSES	
• eFigure 2. Forest plot of pooled overall survival hazard ratios in five adjustment score groups: lowest-quality (<4 points),	
low-quality (5-6 points), medium-quality (7 points), high-quality (8 points), and highest-quality (≥9 points).	43
• eFigure 3. Forest plot of pooled overall survival hazard ratios focusing on comparisons that stated their aim as estimating	-10
the trial effect (n=32) and grouped by low-quality (≤7 points), medium-quality (8 points), and high-quality (≥9 points)	
adjustment scores.	
(9) FUNNEL PLOT	47
• eFigure 4. Funnel plot showing asymmetry and suggesting possible publication bias with original studies (dark circles) and	וד

30 imputed missing s	udies (white circles) using the trim-and-fill method. The original pooled hazard ratio for overall survival	
is 0.76 (95% CI, 0.69	0.82). The pooled hazard ratio for overall survival with imputed missing studies is 0.94 (95% CI, 0.86-	
1.03).		

6 (1) DEFINING THE "TRIAL EFFECT"

While the magnitude of the treatment effect depends on the efficacy of the experimental drug (and determining this is the 7 focus of all drug trials), it is not clear what factors might contribute to the "participation effect." Based on a review of the 8 literature and our own discussions, we assumed several mechanisms might cause participation effects (eFigure 1). First, 9 there are protocol effects, which can be represented by the "monitoring effect" node (i.e. extra monitoring of adverse 10 effects in trials for patients leads to better outcomes) and the "physician behaviour" node (i.e. physicians are more 11 attentive to patients on trials), which are the differences in delivery of interventions because of trial protocol adherence 12 (e.g. improved physician adherence to guidelines and standards of care). Second, there are placebo/nocebo effects, 13 represented by the "patient expectation" and "patient behaviour" nodes. These include psychological benefits/harms to 14 patients from awareness of trial participation, possible changes in mental outlook, better adherence to medication on trial, 15 better self-care on trial, and other health behaviours. Third, there are care effects ("more attention, testing, time with 16 physicians"), which are incidental differences in care of groups that may be related to increased access to healthcare 17 services, including clinicians and nursing staff, better screening, and access to diagnostic services. eTable 1 defines the 18 trial effect and the participation effect and separates it into different components. 19

20

21

- 22 eFigure 1. Directed Acyclic Graph (DAG) showing our definition of the participation effect (based on blue
- 23 mediators) that excludes the experimental treatment or prognostic confounders.¹

eTable 1. Term definitions to describe the different reasons why trial participant and routine care patient outcomes may differ. These could be attributed to a participation effect, trial effect, or observed differences in general.

Term	Definition	Components
Participation effect	Benefit (indirect/collateral) from trial participation due to differences in outcomes that are unrelated to receiving an investigational drug, unrelated to confounding differences between groups, and	Protocol effect: differences in delivery of interventions because of trial protocol adherence (related to mediator— <i>physician compliance</i>)
	unrelated to differences in measurement. The effect can include the protocol effect, the placebo effect, the care effect, and the Hawthorne effect.	Placebo effect: psychological benefits for patients from awareness of trial participation (related to mediators— <i>patient expectation</i> and <i>patient compliance</i>)
		Care effect: incidental differences in care of trial and routine care groups (related to mediator— <i>more attention, testing, time with physicians</i>)
		Hawthorne effect: changes in patient or clinical behaviour because patients know they are being observed in a trial (related to mediators— <i>monitoring effect, patient expectation,</i> and <i>patient compliance</i>). Patient compliance includes better self-care, protocol compliance, and overall improved behaviours.
Trial effect	Benefit from participating in drug trials because of a) more time with physicians or medical testing and attention (i.e. participation effect) and b) access to experimental treatments (i.e. treatment effect).	Participation effect: defined above
		Treatment effect: benefit resulting from access to experimental treatments, which could influence patient expectation (mediator) as well as overall survival time (outcome).
Observed differences	Overall differences in outcomes between trial participants and routine care patients. Differences can be attributed to: a) access to experimental treatments (i.e. treatment effect), b) more time with physicians or medical testing and attention	Trial effect (i.e. participation effect and treatment effect): defined above

(i.e. participant effect), c) confounding of baseline characteristics (e.g. sampling bias where recruited trial participants are healthier compared to routine care patient populations), and d) differences in outcome measurement (e.g. differences in tumour assessment frequencies or patient reporting	Confounding: confounding or sampling biases (e.g. recruited trial participants are healthier compared to routine care patients) result from differences in the distribution of important prognostic factors between the trial participants and the control groups, often because of strict trial eligibility criteria or access to clinical trial sites
practices). ²	Differences in outcome measurement (d)

26 Beyond the trial effects, differences between trial participants and routine care patients could be artifactual, the result of

27 confounding or sampling biases (e.g. recruited trial participants are healthier compared to routine care patients) and

28 measurement errors that inevitably bedevil observational research. Confounding results from differences in the distribution

of important prognostic factors between the trial participants and the control groups, often because of strict trial eligibility

30 criteria or access to clinical trial sites.

31

32 **eTable 2. Prognostic confounders relevant to observing trial effects with definitions and examples.**

Prognostic confounder category	Definition	Examples
Demographic factors	Characteristics relevant to patients.	 Age, sex, race/ethnicity For example, an older patient may be less likely to be eligible for a trial and their age would also impact their overall survival time.
Pre-existing illnesses	Measures or characteristics that indicate multiple diseases.	 Comorbidities For example, a patient with severe cardiovascular disease may not be eligible to participate in trials and the presence of more diseases would also impact their overall survival time.
Cancer-specific variables	Characteristics related to a patient's cancer that can affect both their trial eligibility and survival.	 Performance status, histology, stage For example, a patient's cancer stage impacts both their trial eligibility and their overall survival.
Pre-trial treatment factors	Variables that relate to previously used treatment regimens.	 Adjuvant therapies, surgical status For example, whether a patient previously had surgery to remove a tumour may impact both trial eligibility and overall survival time.

34 Measurement errors include the Hawthorne effect (represented by "monitoring effect", "patient expectation", and "patient

- 35 behaviour" nodes in eFigure 1), which are changes in patient or clinician behaviours in response to being observed (e.g.
- trial participants might be motivated to please those who monitor them). However, since we are focused on overall
- 37 survival, measurement errors are less applicable as they would be for progression-free survival or quality of life outcomes.
- 38 We set out to understand how trial participation may influence outcomes like quality of life, but studies did not measure
- these outcomes, so we decided to focus on differences in overall survival time because it is the outcome most found in
 the reviewed literature and because it is less susceptible to measurement errors.
- 41

42

43 References

- Textor J, Hardt J, Knüppel S. DAGitty: A Graphical Tool for Analyzing Causal Diagrams. *Epidemiology*. 2011;22(5):745.
 doi:10.1097/EDE.0b013e318225c2be
- Peppercorn JM, Weeks JC, Cook EF, Joffe S. Comparison of outcomes in cancer patients treated within and outside clinical trials: conceptual framework and structured review. *The Lancet*. 2004;363(9405):263-270. doi:10.1016/S0140-6736(03)15383-4
- 49
- 50
- 51

Database	Search Strategy						
Embase	"trial effect*".tw						
	OR						
	(((neoplasm.sh OR neoplastic.tw OR carcinoma.tw OR tumo?r*.tw OR cancer*.tw OR oncolog*.tw)						
	AND						
	("clinical trials".sh OR randomized.tw OR randomised.tw OR nonrandomized.tw OR nonrandomised.tw OF						
	controlled.tw))						
	AND						
	(cohort.tw OR case-control.tw OR "patient registry".tw OR quasiexperiment*.tw OR quasi-experiment*.tw						
	OR "natural experiment*".tw OR matching.tw OR "historical control*".tw OR "wait list control".tw OR						
	"waitlist control".tw OR "retrospective cohort*".tw OR "three arm".tw)						
	AND						
	("trial participa*".tw OR nonparticipa*.tw OR non-participa*.tw OR non-trial.tw OR nontrial.tw OR "not						
	enrolled".tw OR "non enrol*".tw OR "enrol*".tw OR "non-treatment*".tw OR "standard care".tw OR "usual						
	care".tw OR off-protocol.tw OR "participation bias".tw OR hawthorne.tw OR "care effect*".tw OR						
	"enrollment effect".tw OR "trial benefit*".tw OR "inclusion benefit*".tw))						
PubMed	"trial effect*"[tw]						
	OR						
	((("neoplasms"[mesh] OR neoplastic[tw] OR carcinoma[tw] OR tumour*[tw] OR tumor*[tw] OR cancer*[tw]						
	OR oncolog*[tw])						
	AND						
	("clinical trials as topic"[mesh] OR randomized[tw] OR randomised[tw] OR nonrandomized[tw] OR						
	nonrandomised[tw] OR controlled[tw]))						
	AND						
	(cohort[tw] OR case-control[tw] OR "patient registry"[tw] OR quasiexperiment*[tw] OR quasi-						
	experiment*[tw] OR "natural experiment*"[tw] OR matched[tw] OR matching[tw] OR "historical control*"[tw]						

52 (2) SEARCH STRATEGY AND SCREENING INFORMATION eTable 3. Search strategy for Embase and PubMed databases.

OR "wait list control"[tw] OR "waitlist control"[tw] OR "retrospective cohort*"[tw] OR "three arm"[tw] OR
"medical record*"[tw] OR "intervention study"[tw])
AND
("trial participa*"[tw] OR nonparticipa*[tw] OR non-participa*[tw] OR non-trial[tw] OR nontrial[tw] OR
refuse*[tw] OR "not enrolled"[tw] OR "non enrol*"[tw] OR "enrol*"[tw] OR eligibility[tw] OR "non-
treatment*"[tw] OR "standard care"[tw] OR "usual care"[tw] OR off-protocol[tw] OR "participation bias"[tw]
OR hawthorne[tw] OR "care effect*"[tw] OR "enrollment effect"[tw] OR "trial benefit*"[tw] OR "inclusion
benefit*"[tw]))

55 (3) FULL-TEXT ARTICLES EXCLUDED

56

eTable 4. Full-text articles excluded with reasons (n = 135).

Reason	References				
Wrong outcome (n = 37)	1–37				
Published before 2000 (n = 31)	38–68				
Wrong study design (n = 26)	69–94				
Conference abstract (n = 21)	95–115				
Wrong intervention (n = 9)	116–124				
Wrong patient population (n = 7)	125–131				
Systematic/literature review (n = 4)	132–135				

57

58 References

- Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. *The Lancet Oncology*. 2012;13(5):518-527. doi:10.1016/S1470-2045(12)70112-2
- Andersson Y, Bergkvist L, Frisell J, de Boniface J. Do clinical trials truly mirror their target population? An external validity analysis of national register versus trial data from the Swedish prospective SENOMIC trial on sentinel node micrometastases in breast cancer. *Breast Cancer Res Treat*. 2019;177(2):469-475. doi:10.1007/s10549-019-05328-3
- Augustin A, Le Gouill S, Gressin R, et al. Survival benefit of mantle cell lymphoma patients enrolled in clinical trials; a joint study from the LYSA group and French cancer registries. *J Cancer Res Clin Oncol*. 2018;144(4):629-635. doi:10.1007/s00432-017-2529-9
- Bertelli G, Drews F, Lutchman-Singh K. Bevacizumab for Ovarian Cancer at High Risk of Progression: Reproducibility of Trial Results in 'Realworld' Patients. *Anticancer Research*. 2016;36(9):4947-4950. doi:10.21873/anticanres.11061
- Brennan M, Gass P, Häberle L, et al. The effect of participation in neoadjuvant clinical trials on outcomes in patients with early breast cancer.
 Breast Cancer Research and Treatment. 2018;171(3):747-758. doi:10.1007/s10549-018-4829-4
- Burgers JA, Arance A, Ashcroft L, Hodgetts J, Lomax L, Thatcher N. Identical chemotherapy schedules given on and off trial protocol in small cell lung cancer: response and survival results. *British Journal of Cancer*. 2002;87(5):562-566. doi:10.1038/sj.bjc.6600433
- 72 7. Chen CI, Skingley P, Meyer RM. A comparison of elderly patients with aggressive histology lymphoma who were entered or not entered on to 73 a randomized phase II trial. *Leukemia & Lymphoma*. 2000;38(3-4):327-334. doi:10.3109/10428190009087023
- de Boniface J, Ahlgren J, Andersson Y, et al. The generalisability of randomised clinical trials: an interim external validity analysis of the ongoing SENOMAC trial in sentinel lymph node-positive breast cancer. *Breast Cancer Res Treat*. 2020;180(1):167-176. doi:10.1007/s10549-020-05537-1

- 9. De Placido S, Giuliano M, Schettini F, et al. Human epidermal growth factor receptor 2 dual blockade with trastuzumab and pertuzumab in real
 life: Italian clinical practice versus the CLEOPATRA trial results. *Breast.* 2018;38:86-91. doi:10.1016/j.breast.2017.12.012
- 10. Dix D, Aplenc R, Bowes L, et al. Impact of registration on clinical trials on infection risk in pediatric acute myeloid leukemia. *Int J Cancer*. 2016;138(7):1785-1791. doi:10.1002/ijc.29905
- Dowling AJ, Czaykowski PM, Krahn MD, Moore MJ, Tannock IF. Prostate specific antigen response to mitoxantrone and prednisone in patients with refractory prostate cancer: prognostic factors and generalizability of a multicenter trial to clinical practice. *Journal of Urology*.
 2000;163(5):1481-1485.
- 84 12. Enzinger AC, Zhang B, Weeks JC, Prigerson HG. Clinical trial participation as part of end-of-life cancer care: associations with medical care
 85 and quality of life near death. *J Pain Symptom Manage*. 2014;47(6):1078-1090. doi:10.1016/j.jpainsymman.2013.07.004
- 86 13. Estey EH, Thall PF, Giles FJ, et al. Gemtuzumab ozogamicin with or without interleukin 11 in patients 65 years of age or older with untreated acute myeloid leukemia and high-risk myelodysplastic syndrome: Comparison with idarubicin plus continuous-infusion, high-dose cytosine arabinoside. *Blood*. 2002;99(12):4343-4349. doi:10.1182/blood.V99.12.4343
- Fraser J, Steele N, Al Zaman A, Yule A. Are patients in clinical trials representative of the general population? Dose intensity and toxicities associated with FE100C-D chemotherapy in a non-trial population of node positive breast cancer patients compared with PACS-01 trial group. *Eur J Cancer*. 2011;47(2):215-220. doi:10.1016/j.ejca.2010.10.001
- Fujiya K, Tokunaga M, Nishiwaki N, et al. Feasibility of Laparoscopic Distal Gastrectomy for Stage I Gastric Cancer in Patients Outside of Clinical Trials. J Gastrointest Surg. 2018;22(10):1665-1671. doi:10.1007/s11605-018-3842-6
- 94 16. Gross CP, Filardo G, Mayne ST, Krumholz HM. The impact of socioeconomic status and race on trial participation for older women with breast cancer. *Cancer*. 2005;103(3):483-491. doi:10.1002/cncr.20792
- Harter P, du Bois A, Schade-Brittinger C, et al. Non-enrollment of ovarian cancer patients in clinical trials: reasons and background. *Ann Oncol*. 2005;16(11):1801-1805. doi:10.1093/annonc/mdi367
- Hehr T, Classen J, Schreck U, Glocker S, Bamberg M, Budach W. Hyperfractionated accelerated radiotherapy alone and with concomitant chemotherapy to the head and neck: treated within and outside of randomized clinical trials. *International Journal of Radiation Oncology*Biology*Physics*. 2004;58(5):1424-1430. doi:10.1016/j.ijrobp.2003.08.036
- 101 19. Janson M, Edlund G, Kressner U, et al. Analysis of patient selection and external validity in the Swedish contribution to the COLOR trial. Surg 102 Endosc. 2009;23(8):1764-1769. doi:10.1007/s00464-008-0203-7
- 20. Julian-Reynier C, Genève J, Dalenc F, et al. Assessment of Care by Breast Cancer Patients Participating or Not Participating in a Randomized
 Controlled Trial: A Report With the Patients' Committee for Clinical Trials of the Ligue Nationale Contre le Cancer. *Journal of Clinical*
- 105 *Oncology*. 2007;25(21):3038-3044. doi:10.1200/JCO.2006.08.9367

- 106 21. Koo KC, Lee JS, Kim JW, et al. Impact of clinical trial participation on survival in patients with castration-resistant prostate cancer: a multicenter analysis. *BMC Cancer*. 2018;18(1):468. doi:10.1186/s12885-018-4390-x
- 108
 22. Koschmann C, Thomson B, Hawkins DS. No evidence of a trial effect in newly diagnosed pediatric acute lymphoblastic leukemia. *Archives of Pediatrics and Adolescent Medicine*. 2010;164(3):214-217. doi:10.1001/archpediatrics.2009.282
- 110 23. Kuo SH, Yang CH, Yu CJ, Hsu C, Cheng AL, Yang PC. Survival of stage IIIB/IV non-small cell lung cancer patients who received 111 chemotherapy but did not participate in clinical trials. *Lung Cancer*. 2005;48(2):275-280. doi:10.1016/j.lungcan.2004.10.004
- Mandelblatt JS, Makgoeng SB, Luta G, et al. A planned, prospective comparison of short-term quality of life outcomes among older patients
 with breast cancer treated with standard chemotherapy in a randomized clinical trial vs. an observational study: CALGB #49907 and #369901.
 Journal of Geriatric Oncology. 2013;4(4):353-361. doi:10.1016/j.jgo.2013.05.004
- McGrath-Lone L, Ward H, Schoenborn C, Day S. The effects of cancer research participation on patient experience: a mixed-methods
 analysis. *European Journal of Cancer Care*. 2016;25(6):1056-1064. doi:10.1111/ecc.12336
- Mengis C, Aebi S, Tobler A, Dähler W, Fey MF. Assessment of differences in patient populations selected for excluded from participation in clinical phase III acute myelogenous leukemia trials. *J Clin Oncol.* 2003;21(21):3933-3939. doi:10.1200/jco.2003.03.186
- Mitchell AP, Harrison MR, Walker MS, George DJ, Abernethy AP, Hirsch BR. Clinical Trial Participants With Metastatic Renal Cell Carcinoma
 Differ From Patients Treated in Real-World Practice. *J Oncol Pract.* 2015;11(6):491-497. doi:10.1200/jop.2015.004929
- 121 28. Moke DJ, Oberley MJ, Bhojwani D, Parekh C, Orgel E. Association of clinical trial enrollment and survival using contemporary therapy for
 122 pediatric acute lymphoblastic leukemia. *Pediatr Blood Cancer*. 2018;65(2). doi:10.1002/pbc.26788
- 29. Østgård LS, Nørgaard M, Sengeløv H, et al. Improved outcome in acute myeloid leukemia patients enrolled in clinical trials: A national population-based cohort study of Danish intensive chemotherapy patients. *Oncotarget*. 2016;7(44):72044-72056.
 doi:10.18632/oncotarget.12495
- 30. Rajappa S, Gundeti S, Uppalapati S, et al. Is there a positive effect of participation on a clinical trial for patients with advanced non-small cell
 lung cancer. *Indian journal of cancer*. 2008;45(4):158-163. doi:10.4103/0019-509X.44664
- Robinson WR, Ritter J, Rogers AS, Tedjarati S, Lieberenz C. Clinical Trial Participation Is Associated With Improved Outcome in Women With
 Ovarian Cancer. International Journal of Gynecologic Cancer. 2009;19(1):124-128. doi:10.1111/IGJ.0b013e31819a1ce8
- 130 32. Roy P, Vaughan Hudson G, Vaughan Hudson B, Esteve J, Swerdlow AJ. Long-term survival in Hodgkin's disease patients. *European Journal* 131 of Cancer. 2000;36(3):384-389. doi:10.1016/S0959-8049(99)00267-1
- 33. Sorbye H, Pfeiffer P, Cavalli-Björkman N, et al. Clinical trial enrollment, patient characteristics, and survival differences in prospectively
 registered metastatic colorectal cancer patients. *Cancer*. 2009;115(20):4679-4687. doi:10.1002/cncr.24527

- 34. Svensson J, Andersson E, Persson U, Edekling T, Ovanfors A, Ahlgren G. Value of treatment in clinical trials versus the real world: the case of abiraterone acetate (Zytiga) for postchemotherapy metastatic castration-resistant prostate cancer patients in Sweden. *Scandinavian Journal* of Urology. 2016;50(4):286-291. doi:10.3109/21681805.2016.1172254
- 137 35. Thompson CA, Hugo SE, Swetz KM, et al. End-of-life care in a population-based cohort of cancer patients: clinical trial participation versus standard of care. *BMJ Support Palliat Care*. 2013;3(2):181-187. doi:10.1136/bmjspcare-2012-000295
- van der Biessen DA, Oldenmenger WH, van der Helm PG, et al. Self-reported quality of life and hope in phase-I trial participants: An observational prospective cohort study. *Eur J Cancer Care (Engl)*. 2018;27(6):e12908. doi:10.1111/ecc.12908
- 37. Yennurajalingam S, Kang JH, Cheng HY, et al. Characteristics of Advanced Cancer Patients With Cancer-Related Fatigue Enrolled in Clinical Trials and Patients Referred to Outpatient Palliative Care Clinics. *Journal of Pain and Symptom Management*. 2013;45(3):534-541.
 doi:10.1016/j.jpainsymman.2012.02.013
- 38. Akaza H, Hinotsu S, Aso Y, Kakizoe T, Koiso K. Bacillus Calmette-Guérin treatment of existing papillary bladder cancer and carcinoma in situ of the bladder. Four-year results. The Bladder Cancer BCG Study Group. *Cancer*. 1995;75(2):552-559. doi:10.1002/1097-0142(19950115)75:2<552::aid-cncr2820750219>3.0.co;2-h
- 147 39. Antman K, Amato D, Wood W, et al. Selection bias in clinical trials. *J Clin Oncol*. 1985;3(8):1142-1147. doi:10.1200/JCO.1985.3.8.1142
- 40. Balmukhanov SB, Beisebaev AA, Aitkoolova ZI, et al. Intratumoral and parametrial infusion of metronidazole in the radiotherapy of uterine
 cervix cancer: Preliminary report. *International Journal of Radiation Oncology*Biology*Physics*. 1989;16(4):1061-1063. doi:10.1016/0360 3016(89)90916-4
- 41. Berglund G, Bolund C, Gustafsson UL, Sjödén PO. Is the wish to participate in a cancer rehabilitation program an indicator of the need?
 Comparisons of participants and non-participants in a randomized study. *Psycho-Oncology*. 1997;6(1):35-46. doi:10.1002/(SICI)1099-1611(199703)6:1<35::AID-PON241>3.0.CO;2-J
- 42. Bergmann JF, Chassany O, Gandiol J, et al. A randomised clinical trial of the effect of informed consent on the analgesic activity of placebo
 and naproxen in cancer pain. *Clinical Trials and Meta-Analysis*. 1994;29(1):41-47.
- 43. Bertelsen K. Protocol allocation and exclusion in two Danish randomised trials in ovarian cancer. *British Journal of Cancer*. 1991;64(6):1172 1176. doi:10.1038/bjc.1991.485
- 44. Blichert-Toft M, Brincker H, Andersen JA, et al. A Danish Randomized Trial Comparing Breast-Preserving Therapy with Mastectomy in Mammary Carcinoma: Preliminary results. *Acta Oncologica*. 1988;27(6):671-677. doi:10.3109/02841868809091767
- 45. Cottin V, Arpin D, Lasset C, et al. Small-cell lung cancer: Patients included in clinical trials are not representative of the patient population as a
 whole. *Annals of Oncology*. 1999;10(7):809-816. doi:10.1023/A:1008399831512

- 46. Creutzig U, Ritter J, Zimmermann M, Schellong G. Does cranial irradiation reduce the risk for bone marrow relapse in acute myelogenous leukemia? Unexpected results of the Childhood Acute Myelogenous Leukemia Study BFM-87. *Journal of Clinical Oncology*. 1993;11(2):279-286. doi:10.1200/JCO.1993.11.2.279
- 165
 47. Dahlberg M, Glimelius B, Påhlman L. Improved survival and reduction in local failure rates after preoperative radiotherapy: evidence for the generalizability of the results of Swedish Rectal Cancer Trial. *Annals of Surgery*. 1999;229(4):493-497. doi:10.1097/00000658-199904000-00007
- 48. Davis S, Wright PW, Schulman SF. Participants in prospective, randomized clinical trials for resected non-small cell lung cancer have improved survival compared with nonparticipants in such trials. *Cancer*. 1985;56(7):1710-1718. doi:10.1002/1097-0142%2819851001%2956:7%3C1710::AID-CNCR2820560741%3E3.0.CO;2-T
- 49. Diehl LF, Perry DJ. A comparison of randomized concurrent control groups with matched historical control groups: are historical controls valid?
 Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1986;4(7):1114-1120.
 doi:10.1200/JCO.1986.4.7.1114
- 50. Edsmyr F, Esposti PL, Johansson B, Strindberg B. Clinical experimental randomized study of 2.6-cis-diphenylhexamethylcyclotetrasiloxane
 and estramustine-17-phosphate in the treatment of prostatic carcinoma. *The Journal of Urology*. 1978;120(6):705-707. doi:10.1016/s0022 5347(17)57336-x
- 51. Feuer EJ, Frey CM, Brawley OW, et al. After a treatment breakthrough: a comparison of trial and population-based data for advanced testicular cancer. *Journal of Clinical Oncology*. 1994;12(2):368-377. doi:10.1200/JCO.1994.12.2.368
- Section 179
 Section 180
 Section 1969 to 1994. European Journal of Cancer. 1999;35(5):698-706. doi:10.1016/S0959-8049%2899%2900025-8
- 181 53. Helsing M, Bergman B, Thaning L, Hero U. Quality of life and survival in patients with advanced non-small cell lung cancer receiving
 182 supportive care plus chemotherapy with carboplatin and etoposide or supportive care only. A multicentre randomised phase III trial. *European* 183 *Journal of Cancer*. 1998;34(7):1036-1044. doi:10.1016/S0959-8049(97)10122-8
- 184 54. Hjorth M, Holmberg E, Röder S, Westin J, for the Myeloma Group of Western Sweden. Impact of active and passive exclusions on the 185 results of a clinical trial in multiple myeloma. *British Journal of Haematology*. 1992;80(1):55-61. doi:10.1111/j.1365-2141.1992.tb06400.x
- 186 55. Karjalainen S, Palva I. Do treatment protocols improve end results? A study of survival of patients with multiple myeloma in Finland. *BMJ* 187 (*Clinical research ed*). 1989;299(6707):1069-1072. doi:10.1136/bmj.299.6707.1069
- 188 56. Lennox EL, Stiller CA, Jones PH, Wilson LM. Nephroblastoma: treatment during 1970-3 and the effect on survival of inclusion in the first MRC
 189 trial. *BMJ*. 1979;2(6190):567-569. doi:10.1136/bmj.2.6190.567

- 190 57. Lidbrink E, Frisell J, Brandberg Y, Rosendahl I, Rutqvist LE. Nonattendance in the Stockholm mammography screening trial: Relative Mortality
 191 and reasons for nonattendance. *Breast Cancer Research and Treatment*. 1995;35(3):267-275. doi:10.1007/BF00665978
- 192 58. Link MP, Goorin AM, Horowitz M, et al. Adjuvant Chemotherapy of High-Grade Osteosarcoma of the Extremity: Updated Results of the Multi-Institutional Osteosarcoma Study. *Clinical Orthopaedics and Related Research*. 1991;NA;(270):8???14. doi:10.1097/00003086-199109000-00003
- 195 59. Marubini E, Mariani L, Salvadori B, et al. Results of a breast-cancer-surgery trial compared with observational data from routine practice. *The Lancet*. 1996;347(9007):1000-1003. doi:10.1016/S0140-6736(96)90145-2
- Moertel CG, Childs DS, O'Fallon JR, Holbrook MA, Schutt AJ, Reitemeier RJ. Combined 5-fluorouracil and radiation therapy as a surgical adjuvant for poor prognosis gastric carcinoma. *Journal of Clinical Oncology*. 1984;2(11):1249-1254. doi:10.1200/JCO.1984.2.11.1249
- 199 61. Quoix E, Finkelstein H, Wolkove N, Kreisman H. Treatment of small-cell lung cancer on protocol: potential bias of results. *Journal of Clinical* 200 *Oncology*. 1986;4(9):1314-1320. doi:10.1200/JCO.1986.4.9.1314
- Schea RA, Perkins P, Allen PK, Komaki R, Cox JD. Limited-stage small-cell lung cancer: patient survival after combined chemotherapy and radiation therapy with and without treatment protocols. *Radiology*. 1995;197(3):859-862. doi:10.1148/radiology.197.3.7480770
- Schmoor C, Olschewski M, Schumacher M. Randomised and non-randomised patients in clinical trials: experiences with comprehensive cohort studies. *Statistics in medicine*. 1996;15(3):263-271.
- Stiller CA, Draper GJ. Treatment centre size, entry to trials, and survival in acute lymphoblastic leukaemia. *Archives of Disease in Childhood*.
 1989;64(5):657-661. doi:10.1136/adc.64.5.657
- Sullivan MP, Fuller LM, Chen T, et al. Intergroup Hodgkin's disease in children study of stages I and II: a preliminary report. *Cancer Treatment Reports*. 1982;66(4):937-947.
- Kerdonck LF, van Putten WLJ, Hagenbeek A, et al. Comparison of CHOP Chemotherapy with Autologous Bone Marrow Transplantation for
 Slowly Responding Patients with Aggressive Non-Hodgkin's Lymphoma. *New England Journal of Medicine*. 1995;332(16):1045-1051.
 doi:10.1056/NEJM199504203321601
- Wagner HP, Dingeldein-Bettler I, Berchthold W, et al. Childhood NHL in Switzerland: Incidence and Survival of 120 Study and 42 Non-Study
 Patients. *Medical and Pediatric Oncology*. 1995;24(5):281-286. doi:10.1002/mpo.2950240503
- 88. Ward LC, Fielding JW, Dunn JA, Kelly KA. The selection of cases for randomised trials: a registry survey of concurrent trial and non-trial patients. The British Stomach Cancer Group. *Br J Cancer*. 1992;66(5):943-950. doi:10.1038/bjc.1992.390
- Aboda A, Taha W, Elkady A, Kanwar JR. A pilot study for randomized controlled trial of the benefits of a physical exercise program for cancer
 cachexia patients. *Journal of cachexia, sarcopenia and muscle*. 2018;9(1):211-. doi:10.1002/jcsm.12284

- Abou-Alfa GK, Blanc JF, Miles S, et al. Phase II study of first-line trebananib plus sorafenib in patients with advanced hepatocellular carcinoma. *Oncologist.* 2017;22(7):780-e65. doi:10.1634/theoncologist.2017-0058
- Apolone G, Bertetto O, Caraceni A, et al. Pain in cancer. An outcome research project to evaluate the epidemiology, the quality and the effects of pain treatment in cancer patients. *Health and Quality of Life Outcomes*. 2006;4. doi:10.1186/1477-7525-4-7
- Petersen A, Olsen CK, Djurhuus SS, et al. The "Interval Walking in Colorectal Cancer" (I-WALK-CRC) study: design, methods and recruitment results of a randomized controlled feasibility trial. *Contemporary clinical trials communications*. 2018;9:143-150.
 doi:10.1016/j.conctc.2018.01.008
- 73. Biasoli I, Franchi-Rezgui P, Sibon D, et al. Analysis of factors influencing inclusion of 102 patients with stage III/IV Hodgkin's lymphoma in a randomized trial for first-line chemotherapy. *Annals of Oncology*. 2008;19(11):1915-1920. doi:10.1093/annonc/mdn391
- 74. Decensi A, Robertson C, Viale G, et al. A Randomized Trial of Low-Dose Tamoxifen on Breast Cancer Proliferation and Blood Estrogenic
 Biomarkers. *JNCI Journal of the National Cancer Institute*. 2003;95(11):779-790. doi:10.1093/jnci/95.11.779
- 75. Du Bois A, Rochon J, Lamparter C, Pfisterer J. Pattern of care and impact of participation in clinical studies on the outcome in ovarian cancer.
 International Journal of Gynecologic Cancer. 2005;15(2):183-191. doi:10.1136/ijgc-00009577-200503000-00001
- 76. Goebell PJ, Staehler M, Muller L, et al. Changes in Treatment Reality and Survival of Patients With Advanced Clear Cell Renal Cell
 Carcinoma Analyses From the German Clinical RCC-Registry. *Clin Genitourin Cancer*. 2018;(no pagination). doi:10.1016/j.clgc.2018.06.006
- 77. Guerra CE, Kelly S, Redlinger C, Hernández P, Glanz K. Pancreatic Cancer Clinical Treatment Trials Accrual: A Closer Look at Participation Rates. *Am J Clin Oncol.* 2021;44(6):227-231. doi:10.1097/COC.000000000000000000
- 78. Harrison MR, Hirsch BR, George DJ, et al. Real-World Outcomes in Metastatic Renal Cell Carcinoma: Insights From a Joint Community Academic Registry. *Journal of Oncology Practice*. 2014;10(2):e63-e72. doi:10.1200/JOP.2013.001180
- 79. Heng DYC, Choueiri TK, Rini BI, et al. Outcomes of patients with metastatic renal cell carcinoma that do not meet eligibility criteria for clinical trials. *Annals of Oncology*. 2014;25(1):149-154. doi:10.1093/annonc/mdt492
- 80. Janni W, Kiechle M, Sommer H, et al. Study participation improves treatment strategies and individual patient care in participating centers.
 Anticancer Research. 2006;26(5B):3661-3667.
- 81. Kwekkeboom KL, Abbott-Anderson K, Cherwin C, Roiland R, Serlin RC, Ward SE. Pilot randomized controlled trial of a patient-controlled cognitive-behavioral intervention for the pain, fatigue, and sleep disturbance symptom cluster in cancer. *Journal of pain and symptom management*. 2012;44(6):810-822. doi:10.1016/j.jpainsymman.2011.12.281

- 82. Marschner N, Staehler M, Müller L, et al. Survival of Patients With Advanced or Metastatic Renal Cell Carcinoma in Routine Practice Differs
 From That in Clinical Trials-Analyses From the German Clinical RCC Registry. *Clin Genitourin Cancer*. 2017;15(2):e209-e215.
 doi:10.1016/j.clgc.2016.08.022
- 83. Mascarenhas J, Hoffman R. A comprehensive review and analysis of the effect of ruxolitinib therapy on the survival of patients with myelofibrosis. *Blood*. 2013;121(24):4832-4837. doi:10.1182/blood-2013-02-482232
- 84. Meadows AT, Kramer S, Hopson R, Lustbader E, Jarrett P, Evans AE. Survival in Childhood Acute Lymphocytic Leukemia: Effect of Protocol and Place of Treatment. *Cancer Investigation*. 1983;1(1):49-55. doi:10.3109/07357908309040932
- 85. Nct. Understanding the Post-Surgical Non-Small Cell Lung Cancer Patient's Symptom Experience.
 https://clinicaltrials.gov/show/NCT03724331. Published online 2018. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01918268/full
- 86. Noronha V, Patil VM, Joshi A, et al. Epidermal growth factor receptor positive lung cancer: The nontrial scenario. *Indian J Cancer*.
 2017;54(1):132-135. doi:10.4103/0019-509x.219583
- 87. Rock K, McArdle O, Forde P, et al. A clinical review of treatment outcomes in glioblastoma multiforme--the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival? *British Journal of Radiology*.
 258 2012;85(1017):e729-33. doi:10.1259/bjr/83796755
- 88. Shmuel S, Yang JY, Thai S, Webster-Clark M, Lund JL. Assessing clinical trial effects on outcomes among pediatric and adolescent and young adult (AYA) patients with cancer. *Cancer*. 2021;127(4):648-649. doi:10.1002/cncr.33252
- 89. Shukuya T, Takamochi K, Sakurai H, et al. Efficacy of Adjuvant Chemotherapy With Tegafur-Uracil in Patients With Completely Resected, Node-Negative NSCLC-Real-World Data in the Era of Molecularly Targeted Agents and Immunotherapy. *JTO Clin Res Rep*.
 2022;3(5):100320. doi:10.1016/j.jtocrr.2022.100320
- 90. Socinski MA, Manikhas GM, Stroyakovsky DL, et al. A dose finding study of weekly and every-3-week nab-paclitaxel followed by carboplatin as first-line therapy in patients with advanced non-small cell lung cancer. *J Thorac Oncol*. 2010;5(6):852-861.
 doi:10.1097/JTO.0b013e3181d5e39e
- Stein A, Petersen V, Schulze M, et al. Bevacizumab plus chemotherapy as first-line treatment for patients with metastatic colorectal cancer:
 Results from a large German community-based observational cohort study. *Acta Oncologica*. 2015;54(2):171-178.
 doi:10.3109/0284186X.2014.961649
- P2. Treweek S, Dryden R, McCowan C, Harrow A, Thompson AM. Do participants in adjuvant breast cancer trials reflect the breast cancer patient population? *Eur J Cancer*. 2015;51(8):907-914. doi:10.1016/j.ejca.2015.01.064

- 93. Unger JM, Blanke CD, Leblanc M, et al. Association of Patient Demographic Characteristics and Insurance Status with Survival in Cancer
 Randomized Clinical Trials with Positive Findings. *JAMA Netw Open*. 2020;3(4):e203842. doi:10.1001/jamanetworkopen.2020.3842
- Wright AA, Cronin A, Milne DE, et al. Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer. *J Clin Oncol.* 2015;33(26):2841-2847. doi:10.1200/JCO.2015.61.4776
- 95. Ascierto PA, Chiarion Sileni V, Del Vecchio M, et al. The european ipilimumab expanded access programme (EAP): Efficacy and safety data from the Italian cohort of patients with pretreated, advanced melanoma. *Ann Oncol.* 2012;23(SUPPL. 9). doi:10.1093/annonc/mds404
- Baba S, Sawaki M, Uemura Y, et al. A cohort study to evaluate the efficacy and safety of postoperative adjuvant therapy in HER2-positive elderly breast cancer patients (RESPECT-cohort study). *Cancer Res.* 2020;80(4). doi:10.1158/1538-7445.SABCS19-P3-14-02
- 97. Berger R, Ish-Shalom M, Maimon N, et al. Comparison between the outcome of metastatic RCC patients treated with sunitinib as part of clinical trials and matched nonparticipants receiving sutent as standard therapy. *J Clin Oncol.* 2013;31(15 SUPPL. 1).
- http://meeting.ascopubs.org/cgi/content/abstract/31/15_suppl/e15597?sid=66f76291-44a4-4eb7-9975-45d04a25a720
- 283 98. Cassidy RJ, Liu Y, Zhong J, Gillespie TW, Landry JC. Survival impact of neoadjuvant chemotherapy alone versus neoadjuvant chemoradiation
 284 therapy for patients with T2N1, T3N0, and T3N1 rectal adenocarcinomas. *International journal of radiation oncology biology physics*285 *Conference: 58th annual meeting of the american society for radiation oncology, ASTRO 2016 United states*. 2016;96(2 Supplement 1):E148.
- 286 99. Cathcart P, Van Der Meulen J, Emberton M. Can the findings of randomised clinical trials concerning the efficacy of prostate cancer therapy in
 287 men with early disease be replicated in national cancer registries? *European urology, supplements*. 2013;12(1):e181-.
- 288 100. Eduafo A., Metheny L., Driscoll J., et al. Patient selection bias limits the real world efficacy of randomized clinical trials in multiple myeloma.
 289 Blood. 2020;136(SUPPL 1):1-2. doi:10.1182/blood-2020-139856
- 101. Grande Pulido E, Castelo B, Fonseca PJ, et al. Efficacy and tolerability of sunitinib in patients with advanced thyroid cancer out of a trial: A
 Spanish multicenter cohort. *J Clin Oncol*. 2011;29(15 SUPPL. 1). http://meeting.ascopubs.org/cgi/content/abstract/29/15 suppl/e16024?sid=404fb8ff-8950-43f5-bcfd-2c47c08062d8
- 102. Harrison MR, George DJ, Walker MS, et al. Outcomes of "real world" treatment for metastatic renal cell carcinoma (mRCC). *J Clin Oncol*.
 2012;30(5 SUPPL. 1). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed13&NEWS=N&AN=71008688
- 103. Introini C, Naselli A, Puppo P, Germinale F. Feasibility, safety and 1 year follow up of en bloc transurethral resection of bladder tumor
 compared to a matched cohort of patients submitted to standard tur. *Anticancer Research*. 2012;32(5):1906.
- 104. Joseph RW, Liu FX, Macahilig C, et al. Real-world utilization and patient outcomes associated with pembrolizumab in advanced melanoma in US academic centers and affiliated satellite clinics. *J Clin Oncol*. 2018;36(15 Supplement 1). doi:10.1200/JCO.2018.36.15-suppl.e21500

- 105. Marschner N, Potthoff K, Schnell R, et al. Overall survival of 4865 patients with metastatic solid tumours treated in German routine practice Combined results from four prospective, multicentre cohort studies. *Oncology research and treatment*. 2016;39:43-. doi:10.1159/000449050
- 301 106. Merkhofer C, Eaton KD, Martins RG, Ramsey SD, Goulart BHL. Potential impact of clinical trial (CT) participation on survival of patients with
 302 metastatic non-small cell lung cancer (NSCLC). *J Clin Oncol.* 2019;37. doi:10.1200/JCO.2019.37.27-suppl.137
- 303 107. Narui K, Ohno S, Mukai H, et al. Overall survival of participants compared to non-participants in a randomized-controlled trial (SELECT BC):
 304 a prospective cohort study. *J Clin Oncol*. 2016;34. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01780537/full
- 108. Rousey S, Lassi KK, Wieczorek J, et al. Early use of home health care on health care utilization for patients with advanced lung cancer. *J Clin Oncol*. 2013;31(15 SUPPL. 1). http://meeting.ascopubs.org/cgi/content/abstract/31/15_suppl/e19015?sid=ddb5fb2e-7dfe-43c6-8e9f d189bd78548f
- 308 109. Ryan S, Jamieson C, Shabaik A, et al. B cell concentration in high risk prostate cancer specimens after neoadjuvant rituximab. *Journal of* 309 *Urology*. 2018;199(4 Supplement 1):e942.
- 110.Saito T, Sawaki M, Hozumi Y, et al. A randomized controlled trial of postoperative adjuvant therapy for elderly breast cancer patients:
 Comparison of health-related quality of life between clinical trial participants and decliners. *Cancer Res.* 2016;76(4 SUPPL. 1).
 doi:10.1158/1538-7445.SABCS15-P4-11-09
- 313 111. Sakurai H, Goto Y, Yoh K, et al. P1.17-04 Multicenter Observational Study of Node-Negative Non-Small Cell Lung Cancer Patients Who Are
 314 Excluded from a Clinical Trial. *J Thorac Oncol.* 2019;14(10 Supplement):S608-S609. doi:10.1016/j.jtho.2019.08.1278
- 315 112.Shacham Abulafia A, Shemesh S, Pasvolsky O, Vaxman J, Raanani P, Rozovski U. The impact of enrollment in clinical trials of patients with
 316 multiple myeloma. *Hemasphere*. 2019;3:982-.
- 113. Tini G, Sarocchi M, Sirello D, et al. Cardiovascular profile of oncologic patients scheduled to receive anti VEGF therapy and implications for
 the risk of cardiotoxicity. *Giornale Italiano di Cardiologia*. 2019;20(12 Supplement 1):101S.
- 114. Wagner LI, Toomey K, Ailawadhi S, et al. Clinical outcomes and health-related quality of life (HRQoL) among randomized clinical trial (RCT) eligible and RCT-ineligible patients: results from the Connect® MM registry. *Hemasphere*. 2020;4:460-461.
 doi:10.1097/HS9.00000000000404
- 115.Yin X., Davi R., Lamont E.B., et al. Phase lb trial single-arm efficacy estimates via comparison to a historical clinical trial synthetic control arm.
 Cancer Research. 2022;82(12 Supplement). doi:10.1158/1538-7445.AM2022-1025
- 116.Bijker N, Peterse JL, Fentiman IS, et al. Effects of patient selection on the applicability of results from a randomised clinical trial (EORTC 10853) investigating breast-conserving therapy for DCIS. *British Journal of Cancer*. 2002;87(6):615-620. doi:10.1038/sj.bjc.6600514

- 117.Boesen, Boesen SH, Frederiksen K, et al. Survival after a psychoeducational intervention for patients with cutaneous malignant melanoma: a
 replication study. *J Clin Oncol.* 2007;25(36):5698-5703. doi:10.1200/JCO.2007.10.8894
- 118.Boesen E, Boesen S, Christensen S, Johansen C. Comparison of participants and non-participants in a randomized psychosocial intervention
 study among patients with malignant melanoma. *Psychosomatics*. 2007;48(6):510-516. doi:10.1176/appi.psy.48.6.510
- 119. Dussel V, Orellana L, Soto N, et al. Feasibility of Conducting a Palliative Care Randomized Controlled Trial in Children With Advanced Cancer:
 assessment of the PediQUEST Study. *Journal of pain and symptom management*. 2015;49(6):1059-1069.
- doi:10.1016/j.jpainsymman.2014.12.010
- 333 120. Gilson MM, Diener-West M, Hawkins BS. Comparison of survival among eligible patients not enrolled versus enrolled in the Collaborative
 334 Ocular Melanoma Study (COMS) randomized trial of pre-enucleation radiation of large choroidal melanoma. *Ophthalmic Epidemiol*.
 335 2007;14(4):251-257. doi:10.1080/01658100701473275
- 121. Khera N, Majhail NS, Brazauskas R, et al. Comparison of Characteristics and Outcomes of Trial Participants and Nonparticipants: Example of Blood and Marrow Transplant Clinical Trials Network 0201 Trial. *Biology of Blood and Marrow Transplantation*. 2015;21(10):1815-1822.
 doi:10.1016/j.bbmt.2015.06.004
- Martelli G, Boracchi P, Orenti A, et al. Axillary dissection versus no axillary dissection in older T1N0 breast cancer patients: 15-year results of
 trial and out-trial patients. *European Journal of Surgical Oncology*. 2014;40(7):805-812. doi:10.1016/j.ejso.2014.03.029
- 341 123. Morris EJA, Jordan C, Thomas JD, et al. Comparison of treatment and outcome information between a clinical trial and the National Cancer
 342 Data Repository. *British Journal of Surgery*. 2011;98(2):299-307. doi:10.1002/bjs.7295
- 124. Vis AN, Roemeling S, Reedijk AMJ, Otto SJ, Schröder FH. Overall Survival in the Intervention Arm of a Randomized Controlled Screening
 Trial for Prostate Cancer Compared with a Clinically Diagnosed Cohort. *European Urology*. 2008;53(1):91-98.
 doi:10.1016/j.eururo.2007.06.001
- Aaltonen KJ, Ylikylä S, Tuulikki Joensuu J, et al. Efficacy and effectiveness of tumour necrosis factor inhibitors in the treatment of rheumatoid arthritis in randomized controlled trials and routine clinical practice. *Rheumatology (Oxford)*. 2017;56(5):725-735.
 doi:10.1093/rheumatology/kew467
- 349 126. Anveden A, Taube M, Peltonen M, et al. Long-term incidence of female-specific cancer after bariatric surgery or usual care in the Swedish
 350 Obese Subjects Study. *Gynecol Oncol.* 2017;145(2):224-229. doi:10.1016/j.ygyno.2017.02.036
- 127. Dallal CM, Brinton LA, Bauer DC, et al. Obesity-related hormones and endometrial cancer among postmenopausal women: a nested case control study within the B~FIT cohort. *Endocr Relat Cancer*. 2013;20(1):151-160. doi:10.1530/erc-12-0229
- 128. Flasinski M, Scheibke K, Zimmermann M, et al. Low-dose cytarabine to prevent myeloid leukemia in children with Down syndrome: TMD
 Prevention 2007 study. *Blood Adv.* 2018;2(13):1532-1540. doi:10.1182/bloodadvances.2018018945

- 129. Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. *The Lancet*. 2007;369(9573):1603-1613. doi:10.1016/S0140-6736(07)60747-8
- 130. Taube M, Peltonen M, Sjöholm K, et al. Association of Bariatric Surgery With Skin Cancer Incidence in Adults With Obesity: A Nonrandomized
 Controlled Trial. JAMA Dermatol. 2020;156(1):38-43. doi:10.1001/jamadermatol.2019.3240
- 359 131. Wang A, Aragaki AK, Tang JY, et al. Statin use and all-cancer survival: prospective results from the Women's Health Initiative. *Br J Cancer*.
 360 2016;115(1):129-135. doi:10.1038/bjc.2016.149
- 361 132. Braunholtz DA, Edwards SJL, Lilford RJ. Are randomized clinical trials good for us (in the short term)? Evidence for a "trial effect." *Journal of Clinical Epidemiology*. 2001;54(3):217-224. doi:10.1016/S0895-4356(00)00305-X
- 363 133. Mantarro S, Rossi M, Bonifazi M, et al. Risk of severe cardiotoxicity following treatment with trastuzumab: a meta-analysis of randomized and cohort studies of 29,000 women with breast cancer. *Internal and Emergency Medicine*. 2016;11(1):123-140. doi:10.1007/s11739-015-1362-x
- 365 134. Peppercorn JM, Weeks JC, Cook EF, Joffe S. Comparison of outcomes in cancer patients treated within and outside clinical trials:
 366 Conceptual framework and structured review. *Lancet*. 2004;363(9405):263-270. doi:10.1016/S0140-6736%2803%2915383-4
- 367 135. Vist GE, Bryant D, Somerville L, Birminghem T, Oxman AD. Outcomes of patients who participate in randomized controlled trials compared to 368 similar patients receiving similar interventions who do not participate. *Cochrane Database of Systematic Reviews*. 2008;(3):MR000009.
 369 doi:10.1002/14651858.MR000009.pub4
- 370

372 (4) ADJUSTMENT FACTORS, QUALITY SCORING SYSTEM, AND LEAVE-ONE-OUT ANALYSIS

373

374 Our quality scoring system was built inductively after extraction was initiated, using the aforementioned directed acyclic graph (DAG) as a

framework. In particular, during extraction, we identified items that various primary reports used to adjust in comparisons of trial participant and

376 routine care patient outcomes. From this, we created a list of recurring adjustment factors. We added other factors to this list, based on biases or

377 confounders captured in our DAG above.

378

eTable 5. Quality score system and adjustment factor descriptions. For categories where the data are missing, 1 point was subtracted (score = -1). The quality scores were categorized as low (\leq 6 points), medium (7 points), and high (\geq 8 points).

Adjustment Factor Description	Score
Studies that account for age	1
Studies that do not account for age	0
Studies that account for sex	1
Studies that do not account for sex	0
Studies that account for race/ethnicity	1
Studies that do not account for race/ethnicity	0
Studies that account for comorbidities	1
Studies that do not account for comorbidities	0
Studies that account for stage	1
Studies that do not account for stage	0
Studies that account for histology	1
Studies that do not account for histology	0
Studies that account for performance status	1
Studies that do not account for performance status	0
Studies that account for line of treatment	1
Studies that do not account for line of treatment	0
Studies that accounted for trial eligibility	1
Studies that did not account for trial eligibility	0
Studies in which the routine care group do not include trial refusers	1
Studies in which the routine care group includes trial refusers ^a	0
Studies that accounted for treatment effect (same treatments)	1

Studies that did not account for treatment effect (different treatments)	0
Studies that are conducted in a similar time period for comparison groups	1
Studies that are not conducted in a similar time period for comparison groups	0
Studies that compare the routine care group to the same trial	1
Studies that compare the routine care group to multiple trials	0
Studies that use registries for the source of routine care group data	1
Studies that use medical records for the source of routine care group data	0
Studies that account for the same trial and routine care group sources	1
Studies that do not account for the same trial and routine care group sources	0
Studies with a large trial sample size (≥200) ^ь	1
Studies with a small trial sample size (<200)	0

Cancer site was not included as an adjustment factor because all studies in our sample adjusted for same cancer type. However, this is an important adjustment factor to consider for a sample that does not all adjust for the same cancer site. ^a We examined whether studies included trial refusers in their routine care patient groups. The justification for this point allocation is that we might expect that including trial refusers in the routine care group would lead to increased differences between the groups because trial refusers might be less motivated to adhere to treatment schedules or medications. ^b Only the trial participant group sample size was considered, not the routine care group sample size. This could have led to more points for studies with small sample sizes in the routine care group and large sample sizes in the trial participant group but large sample sizes in the routine care group.

eTable 6. Pooled hazard ratio by quality grouping (low-quality, medium-quality, and high-quality). The first row shows the pooled hazard ratios when including all causal effects that make up the quality score. Subsequent rows show the pooled hazard ratios when one of the adjustment factors are omitted from the quality score calculation. For example, the "Age" row shows the quality subgroups without consideration of adjustment for age. For each row, the quality score cut-offs were the same (low = ≤ 6 points; medium = 7 points; high = ≥ 8 points) and not changed to have similarly sized subgroups.

		Low			Mediun	n		High	1
Leave out	Ν	HR	95% CI	Ν	HR	95% CI	Ν	HR	95% CI
None	35	0.64	0.58-0.72	24	0.85	0.73-0.98	26	0.91	0.80-1.05
Age	57	0.68	0.62-0.75	17	0.97	0.80-1.17	11	0.98	0.89-1.09
Sex	58	0.69	0.63-0.77	17	0.92	0.76-1.12	10	0.98	0.87-1.09
Race/ethnicity	57	0.69	0.63-0.76	15	0.97	0.79-1.20	13	0.92	0.81-1.03
Comorbidities	38	0.64	0.58-0.72	27	0.90	0.77-1.06	20	0.92	0.83-1.03
Stage	55	0.69	0.63-0.77	17	0.88	0.73-1.06	13	0.97	0.88-1.07
Histology	53	0.69	0.62-0.77	17	0.88	0.73-1.06	15	0.91	0.81-1.04
Performance status	37	0.64	0.58-0.72	27	0.91	0.77-1.06	21	0.89	0.79-1.01
Line of treatment	38	0.65	0.59-0.72	28	0.91	0.79-1.07	19	0.89	0.78-1.00
Eligibility	37	0.65	0.59-0.73	21	0.96	0.84-1.09	27	0.86	0.75-0.98
Trial refusers	36	0.65	0.59-0.73	3	0.82	0.60-1.12	46	0.88	0.79-0.99
Treatment	40	0.65	0.58-0.72	19	1.00	0.92-1.08	26	0.89	0.77-1.02
Same timeframe	57	0.69	0.63-0.76	17	0.93	0.77-1.12	11	0.98	0.89-1.09
Same trial	51	0.68	0.61-0.76	15	0.84	0.74-0.97	19	0.90	0.77-1.05
Data source	55	0.70	0.63-0.77	17	0.83	0.68-1.01	13	0.99	0.92-1.08
Group sources	42	0.66	0.60-0.73	24	0.90	0.78-1.03	19	0.94	0.79-1.12
Sample size	45	0.68	0.61-0.75	28	0.90	0.76-1.07	12	1.00	0.92-1.09

(5) eTable 7. PRISMA 2020 CHECKLIST

Section/topic	#	Checklist item	Reported on page #	
TITLE				
Title	1	Identify the report as a systematic review.	1	
ABSTRACT				
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	3	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	4	
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	4-5	
METHODS				
Eligibility criteria	Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.			
Information sources	6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.		5-6	
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	eTable 3	
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	5-6 (and Supplement on Open Science Framework)	
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	6-7	
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	6-7 (and Supplement on Open Science Framework)	

	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	6-7 (and Supplement on Open Science Framework)
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	7
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	7
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	N/A
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	N/A
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	N/A
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	8
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	8
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	8
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	8
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	N/A
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	8 Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	eTable 4
Study characteristics	17	Cite each included study and present its characteristics.	Table 1 eTable 8

Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Figure 2 Table 2
			eTable 9
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Figure 2 Table 2
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies	9-10 Table 2
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Figure 2 Table 2
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	9-10 Table 2
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	9-10 Table 2 eTable 6
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	9-10 Table 2 eFigure 4
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/A
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	10-11
	23b	Discuss any limitations of the evidence included in the review.	11-12
	23c	Discuss any limitations of the review processes used.	12
	23d	Discuss implications of the results for practice, policy, and future research.	11-12
OTHER INFORMATION	١		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	8
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Supplement on Open Science Framework

	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Supplement on Open Science Framework
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	1
Competing interests	26	Declare any competing interests of review authors.	1
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	N/A

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

BMJ 2021;372:n71. doi: 10.1136/bmj.n71 For more information, visit: <u>www.prisma-statement.org</u>.

03 (6) COMPARISON CHARACTERISTICS

404 eTable 8. Comparison characteristics (39 studies, 85 comparisons).

Study	Country	cancer site ^a	Sample size (Trial Routine care) ^b	Median age (Trial Routine care) ^c	Males (%) (Trial Routine care) ^c	Females (%) (Trial Routine care) ^c	Median OS follow-up (years) (Trial Routine care)	Advanced/Metastatic	Routine care group source	Timeframe
Abdel- Rahman 2019 ¹	Canada	Prostate	397 1718	65.3 ^d 68.4 ^d	100 100	0 0	13.3 ^e 10.8 ^e	No	Multi-centre Academic and community centres	January 2000 - April 2010 2004-2010 (diagnosis)
Abu-Hejleh 2016 ²	US	NSCLC	38 759	NR NR	55 56	45 44	4.8 ^e 6.3 ^e	Yes	Multi-centre Did not enroll in a trial	September 2003 - June 2005 (diagnosis)
Arrieta 2016 ³	Mexico	NSCLC	295 747	60.9 ^d 60.3 ^d	47.5 54.8	52.5 45.2	2.8 2.8	Yes	Single-centre Instituto Nacional de Cancerología	January 2007 - December 2014 (when patients presented themselves to the institution)
Aung 2021 ⁴	US	Multiple myeloma	205 205	59.7 ^d 63.1 ^d	44.5 41.4	55.5 58.6	2.4 2.4	No	Single-centre Mount Sinai Health System	2012-2018 (diagnosis)
Balyasny 2021a⁵	US	CNS (intermediate- risk)	1231 710	NR NR	NR NR	NR NR	8.5 8.4	No	Multi-centre Cooperative biology study (POG 9047 or COG ANBL00B1)	1991-2011, excluding 2006 Prior to January 1, 2017 (diagnosis)
Balyasny 2021b⁵	US	CNS (high-risk)	922 807	NR NR	NR NR	NR NR	11 10.2	No	Multi-centre Cooperative biology study (POG 9047 or COG ANBL00B1)	1991-2011, excluding 2006 Prior to January 1, 2017 (diagnosis)
Chow 2013 ⁶	US	Solid tumours	1846 551842	NR NR	26.8 35.8	73.2 64.2	NR NR	No	Multi-centre (inferred) Retrospective cohort study	2002-2008 (cancer registry and diagnosis)
Ejlertsen 2008 ⁷	Europe	Breast	493 970	NR NR	0 0	100 100	12.1 12.1	No	Multi-centre (inferred) Not enrolled but trial- eligible and treated with the same protocol	January 1990 - May 1998 (registration)
Elting 2006a ⁸	US	Solid tumours (localized)	2788 9053	NR NR	53.6 50	46.3 49.7	7 ^e 7 ^e	No	Single-centre MD Anderson Cancer Center	January 1990 - December 1997 (diagnosis)
Elting 2006b ⁸	US	Solid tumours (metastatic)	1502 3297	NR NR	NR NR	NR NR	7º 7º	No	Single-centre MD Anderson Cancer Center	January 1990 - December 1997 (diagnosis)
Elumalai 2022 ⁹	UK	Prostate	2070 178	NR NR	100 100	0 0	4º 4º	Yes	Single-centre Tertiary cancer centre	August 2007 - April 2012; January 2006 - November 2007; November 2009 -

Study	Country	Cancer site ^a	Sample size (Trial Routine care) ^b	Median age (Trial Routine care) ^c	Males (%) (Trial Routine care) ^c	Females (%) (Trial Routine care) ^c	Median OS follow-up (years) (Trial Routine care)	Advanced/Metastatic	Routine care group source	Timeframe
										November 2016; January 2008 - May 2011 February 2005 - April 2015
Esteban 2015 ¹⁰	Europe	Leukemia	68 184	63 63	59 63	41 37	15º 15º	No	Single-centre Not recruited	2000-2014 (treatment)
Field 2013 ¹¹	Australia	CNS	61 481	62 62	NR NR	NR NR	6.3 ^e 10.4 ^e	No	Multi-centre Two co- located hospitals (one public, one private)	1998-2010 (diagnosis)
Filion 2014 ¹²	Canada	Breast	1137 5657	NR NR	NR NR	NR NR	6.1 6.1	No	Single-centre Largest tertiary breast cancer centre in Canada	January 1982 - April 2008 (diagnosis)
Goldman 2017 ¹³	US	Melanoma	115 203	60.2 64.1	64.3 69	35.7 31	7.5 ^e 5 ^e	Yes	Single-centre Perlmutter Cancer Center	July 2006 - December 2013 (diagnosis)
Goyal 2012 ¹⁴	US	Prostate	142 105	67 ^d 68 ^d	100 100	0 0	6.8 ^e 6.8 ^e	Yes	Single-centre Not offered clinical trials, declined to participate, or trial-ineligible	January 1998 - December 2010 (treatment)
Han 2019 ¹⁵	Asia	Gastric	78 78	NR NR	73.1 66.7	26.9 33.3	1.1 1.1	Yes	Single-centre Seoul National University Bundang Hospital	January 2010 - December 2012 (treatment)
Hébert- Croteau 2005 ¹⁶	Canada	Breast	207 569	NR NR	NR NR	NR NR	6.8 6.8	No	Multi-centre Five health regions	1988-1994 (diagnosis)
Kalata 2009a ¹⁷	Europe	Colorectal (neoadjuvant CRT before resection)	379 106	61.6 62.3	71.5 67	28.5 33	3.4 3.4	Yes	Multi-centre Large urban and rural areas	February 1995 - September 2002 1997- 2003
Kalata 2009b ¹⁷	Europe	Colorectal (resection with or without postoperative CRT)	278 265	61.4 65.1	66.9 56.2	33.1 43.8	3.4 3.4	Yes	Multi-centre Large urban and rural areas	February 1995 - September 2002 1997- 2003
Keizman 2016 ¹⁸	Asia	Kidney	49 49	64 64	67 67	33 33	7.5 ^e 5.8 ^e	Yes	Multi-centre Six centres across the US and Israel	February 2004 - December 2013 (treatment)
Khoja 2016 ¹⁹	UK	Ovarian	30 30	NR NR	0 0	100 100	12.5 ^e 12.5 ^e	No	Single-centre The Christie NHS Foundation Trust	2002-2008 NR

Study	Country	Cancer site ^a	Sample size (Trial Routine care) ^b	Median age (Trial Routine care) ^c	Males (%) (Trial Routine care) ^c	Females (%) (Trial Routine care) ^c	Median OS follow-up (years) (Trial Routine care)	Advanced/Metastatic	Routine care group source	Timeframe information ^f
Kostos 2021a ²⁰	Australia	Pancreatic	431 139	62 68	57 49.3	43 50.6	0.8 2	Yes	Multi-centre 13 sites	May 2009 - April 2012 January 2014 - June 2019
Kostos 2021b ²⁰	Australia	Breast	402 167	54 58	0 0.5	100 99.5	8.3 1.9	Yes	Multi-centre 22 sites	February 2008 - July 2010 January 2014 - June 2019
Le Du 2016 ²¹	US	Breast	285 367	NR NR	NR NR	NR NR	7.2 7.2	Yes	Single-centre MD Anderson Cancer Center	January 2000 - December 2010 (treatment)
Mayers 2001 ²²	Canada	Breast	160 519	45 45	0 0	100 100	9.6 9.6	No	Single-centre Princess Margaret Hospital	1980-1990 (treatment)
Melnick 2022 ²³	US	CNS	89 276	56.5 ^d 58.7 ^d	NR NR	NR NR	6 ^e 6 ^e	No	Single-centre University of Florida Health	2011-2020 (treatment)
Merkhofer 2021 ²⁴	US	NSCLC	40 175	62 ^d 62 ^d	35 49	65 51	4 ^e 10 ^e	Yes	Single-centre Seattle Cancer Care Alliance	January 2007 - December 2015 (diagnosis)
Mol 2013 ²⁵	Europe	Colorectal	394 224	61 61	65 59	35 41	8 ^e 5.5 ^e	Yes	Multi-centre 29 hospitals	January 2003 - December 2004
Ohno 2019 ²⁶	Asia	Breast	227 34	58 58	0 0	100 100	4 ^e 4 ^e	Yes	Multi-centre Declined to participate	August 2009 - July 2010
Phillips 2020a ²⁷	Canada	Myelodysplastic syndromes (azacitidine)	179 1183	69 75	73.7 NR	26.3 NR	3 ^e 7 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	February 2004 - August 2006 2008-2016
Phillips 2020b ²⁷	Canada	Leukemia (azacitidine)	55 376	70 72	67.3 NR	32.7 NR	3 ^e 5.5 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	November 2003 - July 2007 2008-2016
Phillips 2020c ²⁷	Canada	Non-Hodgkin lymphoma (bendamustine)	114 530	69 69	NR NR	NR NR	10 ^e 4 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	October 2003 - August 2010 2008-2016
Phillips 2020d ²⁷	Canada	Multiple myeloma (bortezomib)	584 4193	NR NR	NR NR	NR NR	6 ^e 8 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	December 2004 - September 2006; August 2005 - January 2008 2008-2016
Phillips 2020e ²⁷	Canada	Hodgkin lymphoma (brentuximab)	102 58	31 37	47 NR	53 NR	2 ^e 3.3 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	February 2009 - August 2009 2008-2016
Phillips 2020f ²⁷	Canada	T-cell lymphoma (brentuximab)	58 24	52 65	56.9 NR	43.1 NR	1.5 ^e 2.8 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	June 2009 - May 2010 2008-2016

Study	Country	Cancer site ^a	Sample size (Trial Routine care) ^b	Median age (Trial Routine care) ^c	Males (%) (Trial Routine care) ^c	Females (%) (Trial Routine care) ^c	Median OS follow-up (years) (Trial Routine care)	Advanced/Metastatic	Routine care group source	Timeframe information ^f
Phillips 2020g ²⁷	Canada	Leukemia (obinutuzumab)	333 249	74 76	61 NR	39 NR	3.8 ^e 1.8 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	February 2014 - September 2018 2008- 2016
Phillips 2020h ²⁷	Canada	Leukemia (rituximab)	408 1523	61 64	74 NR	26 NR	5.5 ^e 7 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	July 2003 - July 2007 2008-2016
Phillips 2020i ²⁷	Canada	Pancreatic (gemcitabine/na b-paclitaxel)	431 602	62 69	56.8 NR	43.2 NR	3 ^e 2 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	May 2009 - April 2012 2008-2016
Phillips 2020j ²⁷	Canada	Pancreatic (folforinox)	171 1056	61 70	62 NR	38 NR	4 ^e 5.5 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	December 2005 - October 2009 2008- 2016
Phillips 2020k ²⁷	Canada	Gastric (trastuzumab)	298 409	59 64	77 NR	23 NR	3º 5.5º	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	September 2005 - December 2008 2008- 2016
Phillips 2020l ²⁷	Canada	Breast (eribulin)	508 733	55 57	0 NR	100 NR	2.3 ^e 3.8 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	November 2006 - November 2008 2008- 2016
Phillips 2020m ²⁷	Canada	Breast (pertuzumab)	402 827	54 56	0 NR	100 NR	6 ^e 3.5 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	February 2008 - July 2010 2008-2016
Phillips 2020n ²⁷	Canada	Breast (second- line trastuzumab emtansine)	495 320	53 56	0.2 NR	99.8 NR	5.5 ^e 3 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	February 2009 - October 2011 2008-2016
Phillips 2020o ²⁷	Canada	Breast (third- or subsequent-line trastuzumab emtansine)	404 52	53 58	0.7 NR	99.3 NR	3.3 ^e 2.8 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	September 2011 - November 2012 2008- 2016
Phillips 2020p ²⁷	Canada	Cervical (bevacizumab)	227 54	48 46	0 0	100 100	3 ^e 1.3 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	April 2009 - January 2012 2008-2016
Phillips 2020q ²⁷	Canada	Ovarian (bevacizumab)	764 53	57 62	0 0	100 100	5 ^e 1.5 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	December 2006 - February 2009 2008- 2016
Phillips 2020r ²⁷	Canada	Malignant pleural mesothelioma (pemetrexed)	226 204	61 71	81.4 NR	18.6 NR	2.5 ^e 3 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	April 1999 - March 2001 2008-2016
Phillips 2020s ²⁷	Canada	NSCLC (second-line pemetrexed)	265 459	59 65	NR NR	NR NR	2 ^e 8 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	March 2001 - February 2002 2008-2016

Study	Country	Cancer site ^a	Sample size (Trial Routine care) ^b	Median age (Trial Routine care) ^c	Males (%) (Trial Routine care) ^c	Females (%) (Trial Routine care) ^c	Median OS follow-up (years) (Trial Routine care)	Advanced/Metastatic	Routine care group source	Timeframe information ^f
Phillips 2020t ²⁷	Canada	NSCLC (first- line/maintenanc e pemetrexed)	359 1424	61 66	56 NR	44 NR	3 ^e 4.5 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	February 2009 - July 2010 2008-2016
Phillips 2020u ²⁷	Canada	Melanoma (ipilimumab)	137 103	57 63	59.1 NR	40.9 NR	4.5 ^e 4.5 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	September 2004 - August 2008 2008-2016
Phillips 2020v ²⁷	Canada	Melanoma (pembrolizumab)	279 274	63 69	57.7 NR	42.3 NR	1.5 ^e 1 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	September 2013 - March 2014 2008-2016
Phillips 2020w ²⁷	Canada	Prostate (cabazitaxel)	378 188	68 70	100 100	0 0	2.5 ^e 2.8 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	January 2007 - October 2008 2008-2016
Phillips 2020x ²⁷	Canada	Prostate (docetaxel)	397 495	64 67	100 100	0 0	6 ^e 2 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	July 2006 - December 2012 2008-2016
Phillips 2020y ²⁷	Canada	Kidney (temsirolimus)	209 64	58 63	66.5 NR	33.5 NR	2 ^e 5 ^e	No	Multi-centre Cancer Care Ontario's New Drug Funding Program	July 2003 - April 2005 2008-2016
Schapira 2020 ²⁸	US	Leukemia	214 214	6.5 ^d 6.9 ^d	43.9 43	56.1 57	9.4 9.4	No	Single-centre Children's Hospital of Philadelphia	2000-2010 (diagnosis)
Schwentner 2013 ²⁹	Europe	Breast	1255 4888	55.8 ^d 62.1 ^d	0 0	100 100	15º 15º	No	Multi-centre Department of Gynaecology and Obstetrics at the University of Ulm and 16 partner clinics	1992-2008 (diagnosis or treatment)
Shahar 2012 ³⁰	Asia	CNS	60 36	55.5 ^d 54.6 ^d	NR NR	NR NR	2.5 ^e 3.3 ^e	No	Single-centre Tel Aviv Medical Center	March 1995 - May 2008 (treatment)
Strahlendorf 2018 ³¹	Canada	Leukemia	1408 1161	NR NR	57.5 55.2	42.5 44.8	13 ^e 13 ^e	No	Multi-centre 17 tertiary pediatric oncology centres in Canada	January 2001 - December 2012 (diagnosis)
Tanai 2009 ³²	Asia	NSCLC	196 76	NR NR	60.7 60.5	39.3 39.5	1.1 1.1	Yes	Single-centre Declined participation in trials	October 2000 - June 2002; June 2003 - October 2005 October 2000 - October 2005 (invitation to participate in trials)
Tanai 2011 ³³	Asia	Gastric	190 96	NR NR	77 67	23 33	0.9 0.8	Yes	Single-centre Declined participation in trials	November 2000 - January 2006 (treatment)

Study	Country	Cancer site ^a	Sample size (Trial Routine care) ^b	Median age (Trial Routine care) ^c	Males (%) (Trial Routine care) ^c	Females (%) (Trial Routine care) ^c	Median OS follow-up (years) (Trial Routine care)	Advanced/Metastatic	Routine care group source	Timeframe information ^f
Templeton 2013 ³⁴	Canada	Prostate	43 314	68 71	100 100	0 0	6 ^e 6 ^e	Yes	Single-centre Princess Margaret Cancer Centre	February 2001 - December 2011 (treatment)
Toxopeus 2018 ³⁵	Europe	Esophageal	208 173	60 ^d 62 ^d	78 79	22 21	5º 5º	No	Single-centre Post- CROSS cohort	February 2001 - January 2004; March 2004 - December 2008 July 2008 - December 2013 (treatment)
Truong 2018 ³⁶	Canada	Leukemia	94 303	NR NR	52.1 47.9	47.9 52.1	11 ^e 13 ^e	No	Multi-centre 17 tertiary pediatric oncology centres in Canada	January 2001 - December 2012 (diagnosis)
Unger 2014a ³⁷	US	CNS (SWOG- 0001)	89 2264	56 NR	62 NR	38 NR	5 ^e 5 ^e	No	Multi-centre SEER	2001-2005
Unger 2014b ³⁷	US	Breast (SWOG- 9313)	1423 9941	NR NR	0 0	100 100	5º 5º	No	Multi-centre SEER	1994-1997
Unger 2014c ³⁷	US	Breast (SWOG- 0012)	391 2855	NR NR	0 0	100 100	5 ^e 5 ^e	No	Multi-centre SEER	2001-2005
Unger 2014d ³⁷	US	Pancreatic (SWOG-0205)	82 1943	NR NR	NR NR	NR NR	5 ^e 5 ^e	Yes	Multi-centre SEER	2004-2006
Unger 2014e ³⁷	US	Bladder (SWOG-8795)	191 5059	NR NR	NR NR	NR NR	5 ^e 5 ^e	No	Multi-centre SEER	1988-1992
Unger 2014f ³⁷	US	Kidney (SWOG- 8949)	95 1569	NR NR	NR NR	NR NR	5 ^e 5 ^e	Yes	Multi-centre SEER	1991-1998
Unger 2014g ³⁷	US	Leukemia (SWOG-9031)	85 1672	NR NR	NR NR	NR NR	5 ^e 5 ^e	No	Multi-centre SEER	1991-1994
Unger 2014h ³⁷	US	Leukemia (SWOG-9333)	129 2320	NR NR	NR NR	NR NR	5 ^e 5 ^e	No	Multi-centre SEER	1995-1998
Unger 2014i ³⁷	US	NSCLC (SWOG-8738)	94 4084	NR NR	NR NR	NR NR	5 ^e 5 ^e	Yes	Multi-centre SEER	1988-1990
Unger 2014j ³⁷	US	NSCLC (SWOG-9308)	178 4755	NR NR	NR NR	NR NR	5 ^e 5 ^e	Yes	Multi-centre SEER	1993-1995
Unger 2014k ³⁷	US	NSCLC (SWOG-9509)	205 4817	NR NR	NR NR	NR NR	5 ^e 5 ^e	Yes	Multi-centre SEER	1996-1997
Unger 2014l ³⁷	US	NSCLC (SWOG-0003)	165 7727	NR NR	NR NR	NR NR	5 ^e 5 ^e	Yes	Multi-centre SEER	2000-2002
Unger 2014m ³⁷	US	SCLC (SWOG- 0124)	266 2790	NR NR	NR NR	NR NR	5 ^e 5 ^e	Yes	Multi-centre SEER	2002-2007
Unger 2014n ³⁷	US	Melanoma (SWOG-8642)	96 738	NR NR	NR NR	NR NR	5 ^e 5 ^e	No	Multi-centre SEER	1987-1990
Unger 2014o ³⁷	US	Melanoma (SWOG-9035)	299 1347	NR NR	NR NR	NR NR	5 ^e 5 ^e	No	Multi-centre SEER	1992-1996

Study	Country	Cancer site ^a	Sample size (Trial Routine care) ^b	Median age (Trial Routine care) ^c	Males (%) (Trial Routine care) ^c	Females (%) (Trial Routine care) ^c	Median OS follow-up (years) (Trial Routine care)	Advanced/Metastatic	Routine care group source	Timeframe
Unger 2014p ³⁷	US	Multiple myeloma (SWOG-8624)	139 3515	NR NR	NR NR	NR NR	5° 5°	No	Multi-centre SEER	1987-1990
Verstovsek 2012a ³⁸	US	Leukemia (intermediate-2- risk)	34 140	NR NR	NR NR	NR NR	2.7 4.6	No	Multi-centre MDACC, University of Pavia, and Hospital Niguarda cà Granda	June 2007 - December 2007 1978-2010
Verstovsek 2012b ³⁸	US	Leukemia (high- risk)	63 160	NR NR	NR NR	NR NR	2.7 4.6	No	Multi-centre MDACC, University of Pavia, and Hospital Niguarda cà Granda	June 2007 - December 2007 1978-2010
Xu 2020a ³⁹	Asia	Head and neck (NCT00677118)	96 167	44 ^d 45 ^d	74 74.9	26 25.1	3.2 5 ^e	Yes	Multi-centre NCT04108338	June 2006 - March 2010 April 2009 - December 2016 (treatment)
Xu 2020b ³⁹	Asia	Head and neck (NCT01245959)	209 367	44 ^d 44 ^d	71.8 73.6	28.2 26.4	3.8 5º	Yes	Multi-centre NCT04108338	March 2011 - August 2013 April 2009 - December 2016 (treatment)
Xu 2020c ³⁹	Asia	Head and neck (NCT01872962)	215 351	45 ^d 45 ^d	70.2 69.2	29.8 30.8	3.6 3 ^e	Yes	Multi-centre NCT04108338	December 2013 - September 2016 April 2009 - December 2016 (treatment)

CNS: central nervous system; CRT: chemoradiotherapy; NR: not reported; NSCLC: non-small cell lung cancer; OS: overall survival; SCLC: small cell lung cancer. ^aAdditional information was provided to distinguish comparisons in multi-comparison studies.

^bSample sizes used to calculate the overall survival hazard ratios.

^cAge or sex was only reported if the same sample size was used to calculate the overall survival hazard ratios, otherwise we wrote "NR". ^dMean.

^eIf the median was not reported, follow-up time was taken from other reported follow-up times or derived from the endpoint of survival curves. ^fIf timeframes were different, they were presented as "Trial | Routine care".

References

- 1. Abdel-Rahman, O. Comparison of outcomes of radiotherapy-treated localized prostate cancer patients within a clinical trial setting versus real-life setting. *Future Oncol* **15**, 1269–1277 (2019).
- 412 2. Abu-Hejleh, T. *et al.* The Effect of Receiving Treatment Within a Clinical Trial Setting on Survival and Quality of Care Perception in Advanced Stage Non–Small Cell Lung Cancer: *American Journal of Clinical Oncology* **39**, 126–131 (2016).
- 414 3. Arrieta, O. *et al.* Survival of Patients with Advanced Non-Small Cell Lung Cancer Enrolled in Clinical Trials. *Oncology* 91, 185–193 (2016).
- 4. Aung, T. N. et al. Do Patients With Multiple Myeloma Enrolled in Clinical Trials Live Longer? American Journal of Clinical Oncology 44, 603–612 (2021).

- 416 5. Balyasny, S. *et al.* Association Between Participation in Clinical Trials and Overall Survival Among Children With Intermediate- or High-risk Neuroblastoma. *JAMA Network Open* 4, e2116248 (2021).
- 418 6. Chow, C. J. et al. Does enrollment in cancer trials improve survival? Journal of the American College of Surgeons 216, 774–781 (2013).
- 419 7. Ejlertsen, B. *et al.* DBCG trial 89B comparing adjuvant CMF and ovarian ablation: Similar outcome for eligible but non-enrolled and randomized breast cancer patients. *Acta Oncologica* 47, 709–717 (2008).
- 421 8. Elting, L. S. et al. Generalizability of cancer clinical trial results: prognostic differences between participants and nonparticipants. Cancer 106, 2452–8 (2006).
- 422 9. Elumalai T. *et al.* Translation of Prognostic and Pharmacodynamic Biomarkers from Trial to Non-trial Patients with Metastatic Castration-resistant Prostate Cancer Treated with Docetaxel. *Clinical Oncology* 34, e291–e297 (2022).
- 424 10. Esteban, D. *et al.* Patients with relapsed/refractory chronic lymphocytic leukaemia may benefit from inclusion in clinical trials irrespective of the therapy received: a case-control retrospective analysis. *Blood Cancer Journal* **5**, e356–e356 (2015).
- 426 427 11. Field, K. M. *et al.* Clinical trial participation and outcome for patients with glioblastoma: Multivariate analysis from a comprehensive dataset. *Journal of Clinical Neuroscience* 20, 783–789 (2013).
- 428 12. Provencher L, F. M. Survival Rate of Breast Cancer Patients who Participated in Clinicals Trials Versus those who did not. Journal of Clinical Trials 04, (2014).
- 429 430
 13. Goldman, C. *et al.* Outcomes in Melanoma Patients Treated with BRAF/MEK-Directed Therapy or Immune Checkpoint Inhibition Stratified by Clinical Trial versus Standard of Care. Oncology 93, 164–176 (2017).
- 431 14. Goyal, J. *et al.* The effect of clinical trial participation versus non-participation on overall survival in men receiving first-line docetaxel-containing chemotherapy for metastatic castration-resistant prostate cancer: CLINICAL TRIAL PARTICIPATION AND SURVIVAL IN MEN WITH CRPC. *BJU International* **110**, E575–E582 (2012).
- 433 15. Han, J. J. *et al.* Clinical characteristics and outcomes of patients enrolled in clinical trials compared with those of patients outside clinical trials in advanced gastric cancer. *Asia-Pacific journal of clinical oncology* **15**, 158–165 (2019).
- 435 16. Hébert-Croteau, N., Brisson, J., Lemaire, J. & Latreille, J. The benefit of participating to clinical research. Breast Cancer Research and Treatment 91, 279–281 (2005).
- 436 437 17. Kalata, P. *et al.* Differences Between Clinical Trial Participants and Patients in a Population-Based Registry: the German Rectal Cancer Study vs. the Rostock Cancer Registry. *Diseases of the Colon & Rectum* 52, 425–437 (2009).
- 438 18. Keizman, D. et al. Is there a 'trial effect' on outcome of patients with metastatic renal cell carcinoma treated with sunitinib? Cancer research and treatment 48, 281–287 (2016).
- 439 19. Khoja, L. et al. Does clinical trial participation improve outcomes in patients with ovarian cancer? ESMO Open 1, e000057 (2016).
- 440 20. Kostos L et al. Cancer clinical trial vs real-world outcomes for standard of care first-line treatment in the advanced disease setting. Int J Cancer 149, 409–419 (2021).
- 441 21. Le Du, F. et al. Impact of clinical trial on survival outcomes. Breast Cancer Res Treat 159, 273–81 (2016).
- 442 22. Mayers, C., Panzarella, T. & Tannock, I. F. Analysis of the prognostic effects of inclusion in a clinical trial and of myelosuppression on survival after adjuvant chemotherapy for breast carcinoma. *Cancer* 91, 2246–2257 (2001).
- 444 23. Melnick KF et al. The trial effect in patients with glioblastoma: effect of clinical trial enrollment on overall survival. J Neurooncol 159, 479–484 (2022).

- 445 24. Merkhofer, C. M., Eaton, K. D., Martins, R. G., Ramsey, S. D. & Goulart, B. H. L. Impact of Clinical Trial Participation on Survival of Patients with Metastatic Non-Small Cell Lung Cancer. *Clinical Lung Cancer* 22, 523–530 (2021).
- 447 25. Mol, L., Koopman, M., van Gils, C. W. M., Ottevanger, P. B. & Punt, C. J. A. Comparison of treatment outcome in metastatic colorectal cancer patients included in a clinical trial versus daily practice in The Netherlands. *Acta Oncologica* 52, 950–955 (2013).
- 449 26. Ohno, S. *et al.* Participants in a randomized controlled trial had longer overall survival than non-participants: a prospective cohort study. *Breast Cancer Res Treat* (2019) doi:10.1007/s10549-019-05276-y.
- 451 27. Phillips, C. M. *et al.* Assessing the efficacy-effectiveness gap for cancer therapies: A comparison of overall survival and toxicity between clinical trial and population-based, realworld data for contemporary parenteral cancer therapeutics. *Cancer* **126**, 1717–1726 (2020).
- 453 28. Schapira, M. M. et al. Outcomes among pediatric patients with cancer who are treated on trial versus off trial: A matched cohort study. Cancer 126, 3471–3482 (2020).
- 454 455 29. Schwentner, L. *et al.* Participation in adjuvant clinical breast cancer trials: does study participation improve survival compared to guideline adherent adjuvant treatment? A retrospective multi-centre cohort study of 9,433 patients. *Eur J Cancer* **49**, 553–63 (2013).
- 456 30. Shahar, T. et al. The impact of enrollment in clinical trials on survival of patients with glioblastoma. Journal of Clinical Neuroscience 19, 1530-1534 (2012).
- 457 31. Strahlendorf, C. *et al.* Enrolling children with acute lymphoblastic leukaemia on a clinical trial improves event-free survival: a population-based study. *Br J Cancer* **118**, 744–749 (2018).
- 459 32. Tanai, C. *et al.* Characteristics and outcomes of patients with advanced non-small-cell lung cancer who declined to participate in randomised clinical chemotherapy trials. *British Journal of Cancer* 100, 1037–1042 (2009).
- 461 33. Tanai, C. *et al.* Characteristics and outcomes of patients with advanced gastric cancer who declined to participate in a randomized clinical chemotherapy trial. *Journal of Oncology Practice* **7**, 148–153 (2011).
- 463 34. Templeton, A. J. *et al.* Translating clinical trials to clinical practice: outcomes of men with metastatic castration resistant prostate cancer treated with docetaxel and prednisone in and out of clinical trials. *Annals of Oncology* 24, 2972–2977 (2013).
- 465 466 35. Toxopeus, E. *et al.* Outcome of Patients Treated Within and Outside a Randomized Clinical Trial on Neoadjuvant Chemoradiotherapy Plus Surgery for Esophageal Cancer: Extrapolation of a Randomized Clinical Trial (CROSS). *Annals of Surgical Oncology* **25**, 2441–2448 (2018).
- 467 36. Truong, T. H. et al. Enrollment on clinical trials does not improve survival for children with acute myeloid leukemia: A population-based study. Cancer 124, 4098–4106 (2018).
- 468 37. Unger, J. M. et al. Comparison of Survival Outcomes Among Cancer Patients Treated In and Out of Clinical Trials. JNCI: Journal of the National Cancer Institute 106, (2014).
- 469 38. Verstovsek, S. *et al.* Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. *Blood* 120, 1202–1209 (2012).
- 471 39. Xu, C. *et al.* Association between outcome disparities and pragmatic features related to clinical trial and real-world settings in nasopharyngeal carcinoma: A population-based retrospective cohort study, 2006-2016. *Radiotherapy and oncology* **151**, 306–313 (2020).
- 473
- 474

eTable 9. Quality scoring for adjustment in individual studies. Adjusted = 1 point; not adjusted = 0 points; not reported or unclear = -1 point. The quality scores were categorized as low (≤6 points), medium (7

- points), and high (≥8 points).

Adjustment Study	Age	Sex	Race/ethnicity	Comorbidities	Stage	Histology	Performance status	Line of treatment	Eligibility	Routine care group includes trial refusers	Treatment	Timeframe	Single trial comparison	Routine care group from registries	Similar trial and routine care group source	Sample size	Adjustment score
Abdel-Rahman 2019	1	1	1	1	1	0	1	1	1	-1	1	1	1	1	0	1	12
Abu-Hejleh 2016	1	1	1	1	1	1	1	0	-1	-1	1	1	0	1	1	0	9
Arrieta 2016	1	1	1	1	1	1	1	0	-1	-1	-1	1	0	0	1	1	7
Aung 2021	1	1	1	1	1	0	0	1	0	-1	0	1	0	0	1	1	8
Balyasny 2021a	1	1	1	0	1	1	0	0	-1	-1	0	1	0	1	1	1	7
Balyasny 2021b	1	1	1	0	1	1	0	0	-1	-1	0	1	0	1	1	1	7
Chow 2013	1	1	1	0	1	1	0	0	0	-1	0	1	0	1	1	1	8
Ejlertsen 2008	1	1	1	0	0	1	0	0	1	0	1	1	1	1	1	1	11
Elting 2006a	1	1	1	1	1	1	1	1	-1	-1	-1	1	0	1	0	1	8
Elting 2006b	1	1	1	1	1	1	1	1	-1	-1	-1	1	0	1	0	1	8
Elumalai 2022	0	1	0	0	0	0	1	0	-1	-1	1	1	0	0	0	1	3
Esteban 2015	1	1	1	1	1	0	1	0	1	0	1	1	0	0	1	0	10
Field 2013	1	1	0	0	1	0	1	0	-1	-1	0	1	0	1	1	0	5
Filion 2014	1	1	0	1	1	1	0	0	-1	0	1	1	0	0	1	1	8
Goldman 2017	1	1	0	0	0	0	0	1	-1	-1	1	1	0	1	1	0	5
Goyal 2012	1	1	0	0	1	0	1	0	0	0	0	0	0	0	1	0	5
Han 2019	1	1	1	1	0	1	0	1	-1	-1	1	1	0	0	1	0	7
Hébert-Croteau 2005	1	1	0	1	1	0	0	0	1	-1	0	1	0	1	1	1	8
Kalata 2009a	1	1	1	0	1	0	0	0	-1	-1	1	1	1	1	0	1	7
Kalata 2009b	1	1	1	0	1	0	0	0	-1	-1	1	1	1	1	0	1	7

Adjustment Study	Age	Sex	Race/ethnicity	Comorbidities	Stage	Histology	Performance status	Line of treatment	Eligibility	Routine care group includes trial refusers	Treatment	Timeframe	Single trial comparison	Routine care group from registries	Similar trial and routine care group source	Sample size	Adjustment score
Keizman 2016	1	1	0	0	1	1	1	1	1	-1	1	1	0	0	1	0	9
Khoja 2016	1	1	0	0	1	1	1	1	0	1	1	0	0	0	1	0	9
Kostos 2021a	0	0	0	0	0	0	1	1	1	0	1	0	1	1	0	1	7
Kostos 2021b	0	1	0	0	0	0	1	1	1	0	1	0	1	1	0	1	8
Le Du 2016	1	1	1	1	0	0	0	1	1	-1	-1	1	0	0	1	1	7
Mayers 2001	0	1	0	0	1	0	0	0	-1	-1	1	1	0	0	1	0	3
Melnick 2022	1	0	0	0	0	0	1	0	-1	0	1	1	0	0	1	0	4
Merkhofer 2021	1	1	1	0	0	1	1	1	1	-1	-1	1	0	1	1	0	8
Mol 2013	1	1	0	0	1	0	1	1	1	0	1	1	1	1	0	1	11
Ohno 2019	1	1	1	0	0	0	1	1	1	0	-1	1	1	1	1	1	10
Phillips 2020a	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	0	3
Phillips 2020b	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	0	3
Phillips 2020c	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	0	3
Phillips 2020d	0	0	0	0	0	0	0	1	0	-1	1	0	0	1	0	1	3
Phillips 2020e	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	0	3
Phillips 2020f	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	0	3
Phillips 2020g	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020h	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020i	0	0	0	0	0	0	0	1	0	-1	1	1	1	1	0	1	5
Phillips 2020j	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	0	3
Phillips 2020k	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020l	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020m	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020n	0	0	0	0	0	0	0	1	0	-1	1	1	1	1	0	1	5

Adjustment Study	Age	Sex	Race/ethnicity	Comorbidities	Stage	Histology	Performance status	Line of treatment	Eligibility	Routine care group includes trial refusers	Treatment	Timeframe	Single trial comparison	Routine care group from registries	Similar trial and routine care group source	Sample size	Adjustment score
Phillips 2020o	0	0	0	0	0	0	0	1	0	-1	1	1	1	1	0	1	5
Phillips 2020p	0	0	0	0	0	0	0	1	0	-1	1	1	1	1	0	1	5
Phillips 2020q	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020r	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020s	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020t	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020u	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	0	3
Phillips 2020v	0	0	0	0	0	0	0	1	0	-1	1	1	1	1	0	1	5
Phillips 2020w	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Phillips 2020x	0	0	0	0	0	0	0	1	0	-1	1	1	1	1	0	1	5
Phillips 2020y	0	0	0	0	0	0	0	1	0	-1	1	0	1	1	0	1	4
Schapira 2020	1	1	1	1	0	0	0	1	1	-1	-1	1	0	1	1	1	8
Schwentner 2013	1	1	1	1	1	0	0	0	-1	-1	-1	1	0	0	1	1	5
Shahar 2012	1	0	0	0	0	0	1	0	1	-1	-1	1	0	0	1	0	3
Strahlendorf 2018	1	1	1	0	0	0	0	0	0	0	0	1	0	1	1	1	7
Tanai 2009	1	1	1	0	1	0	1	1	1	0	-1	1	0	0	1	0	8
Tanai 2011	1	1	1	0	1	1	1	1	1	0	1	1	1	0	1	0	12
Templeton 2013	1	1	0	1	1	0	1	1	0	0	1	1	0	0	1	0	9
Toxopeus 2018	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	1	7
Truong 2018	1	1	1	0	1	0	0	0	0	0	0	1	0	1	1	0	7
Unger 2014a	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014b	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	1	8
Unger 2014c	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	1	8

Adjustment Study	Age	Sex	Race/ethnicity	Comorbidities	Stage	Histology	Performance status	Line of treatment	Eligibility	Routine care group includes trial refusers	Treatment	Timeframe	Single trial comparison	Routine care group from registries	Similar trial and routine care group source	Sample size	Adjustment score
Unger 2014d	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014e	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014f	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014g	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014h	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014i	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014j	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014k	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	1	8
Unger 2014l	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014m	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	1	8
Unger 2014n	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Unger 2014o	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	1	8
Unger 2014p	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Verstovsek 2012a	0	1	0	0	1	0	1	0	1	-1	0	0	1	1	0	0	5
Verstovsek 2012b	0	1	0	0	1	0	1	0	1	-1	0	0	1	1	0	0	5
Xu 2020a	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	0	7
Xu 2020b	0	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	1	7
Xu 2020c	1	1	1	0	1	1	0	0	0	-1	0	1	1	1	0	1	8

480 481 (7) SUBGROUP ANALYSES BY COMPARISON CHARACTERISTICS

eTable 10. Results of subgroup analyses of comparisons by various characteristics.

		Pooled HR-rand	om model	Hete	rogeneity	Significance	
Characteristics	No. of comparisons	HR (95% CI)	P-value	Q	Q P-value	P-value ^a	
All comparisons	85	0.76 (0.69-0.82)	<0.001	688.56	<0.001	N/A	
Patient Characteristics							
Focuses on advanced/metastatic cancer patients	28	0.82 (0.70-0.95)	0.0076	84.92	<0.001	0.25	
Does not focus on advanced/metastatic cancer patients	57	0.73 (0.66-0.81)	<0.001	603.61	<0.001	0.25	
Treatment Characteristics							
Comparisons with crossover	11	0.73 (0.59-0.92)	0.0065	90.03	<0.001		
Comparisons without crossover	27	0.70 (0.60-0.80)	<0.001	163.58	<0.001	0.30	
Presence of crossover is unclear	47	0.81 (0.72-0.91)	<0.001	398.02	<0.001		
Intervention type includes drugs	79	0.75 (0.69-0.81)	<0.001	380.66	<0.001	0.43	
Intervention type is unknown	6	0.86 (0.61-1.20)	0.37	185.55	<0.001	0.43	
Setting Characteristics							
Comparison from the United States	31	0.87 (0.75-1.02)	0.079	238.85	<0.001	0.03	
Comparison from other countries	54	0.72 (0.65-0.79)	<0.001	336.40	<0.001	0.03	
Routine care group is from a single institution	21	0.79 (0.67-0.93)	0.0052	263.64	<0.001	0.55	
Routine care group is from multiple institutions	64	0.74 (0.68-0.82)	<0.001	342.99	<0.001	0.55	
Other Characteristics							
Earlier publications (2000-2009)	8	0.81 (0.62-1.06)	0.12	202.88	<0.001	0.60	
Later publications (2010-2022)	77	0.75 (0.69-0.81)	<0.001	362.40	<0.001	0.00	
Includes data on trial phase	72	0.74 (0.68-0.81)	<0.001	358.82	<0.001	0.47	
Missing data on trial phase	13	0.81 (0.66-0.99)	0.042	244.25	<0.001	0.47	
Trials are sponsored by industry	37	0.67 (0.59-0.75)	<0.001	234.39	<0.001		
Trials are not sponsored by industry	28	0.90 (0.78-1.03)	0.13	60.93	<0.001	0.005	
Trial sponsorship is unknown	20	0.81 (0.70-0.95)	0.01	262.27	<0.001		
Studies with overall survival follow-up time of ≥4 years ^b	51	0.84 (0.76-0.94)	0.0013	325.52	<0.001	0.0039	
Studies with overall survival follow-up time of <4 years ^b	33	0.66 (0.58-0.75)	<0.001	195.08	<0.001	0.0039	

^aThe significance p-value shows whether there is a significant difference between items in each subgroup. For example, in the first category, the p-value is 0.25. This shows that there is no statistically significant difference in survival estimates for comparisons of studies focusing on advanced/metastatic patients vs. studies that did not focus on advanced/metastatic patients.

^bIf the median was not reported, follow-up time was taken from other reported follow-up times or derived from the endpoint of survival curves. This subgroup analysis combines follow-up times from medians and curves.

483 (8) POST-HOC AND EXPLORATORY ANALYSES

Source	HR (95% CI)	Favours trial participation	Favours routine care
Lowest			
Elumalai 2022	0.57 [0.48; 0.68]		
Mayers 2001	0.77 [0.57; 1.05]	-	ł
Melnick 2022	0.49 [0.04; 6.12]		
Phillips 2020a	0.54 [0.43; 0.69]		
Phillips 2020b	0.38 [0.25; 0.58]		
Phillips 2020c	0.82 [0.58; 1.16]	-	-
Phillips 2020d	0.69 [0.59; 0.81]		
Phillips 2020e	1.75 [0.86; 3.57]	-	- -
Phillips 2020f	0.42 [0.20; 0.87]		
Phillips 2020g	0.61 [0.35; 1.08]		+
Phillips 2020h	0.87 [0.70; 1.09]	<u> </u>	
Phillips 2020j	0.85 [0.70; 1.02]		
Phillips 2020k	0.68 [0.57; 0.83]		
Phillips 2020l	0.52 [0.45; 0.60]		
Phillips 2020m	0.56 [0.46; 0.70]		
Phillips 2020q	0.60 [0.15; 2.50]		
Phillips 2020r	0.72 [0.57; 0.93]		
Phillips 2020s	0.94 [0.82; 1.09]		
Phillips 2020t	1.03 [0.89; 1.19]		
Phillips 2020u	0.81 [0.65; 1.00]		
Phillips 2020w	0.40 [0.32; 0.49]		
Phillips 2020y	0.36 [0.26; 0.49]	H	
Shahar 2012	0.67 [0.50; 0.90]		
Total	0.66 [0.58; 0.76]	A	
Heterogeneity: $c_{22}^2 = 1$ Low	45.86 ($P < .001$), $I^2 = 8$	5%	
Field 2013	0.67 [0.46; 0.98]		
Goldman 2017	0.58 [0.38; 0.87]		
Goyal 2012	0.57 [0.34; 0.94]		
Phillips 2020i	0.61 [0.51; 0.71]		
Phillips 2020n	0.43 [0.35; 0.52]		
Phillips 2020o	0.42 [0.29; 0.59]		
Phillips 2020p	0.78 [0.46; 1.32]		_
Phillips 2020v	0.53 [0.38; 0.73]		
Phillips 2020x	0.65 [0.44; 0.95]		
Schwentner 2013	1.11 [0.89; 1.38]		
Verstovsek 2012a	0.85 [0.43; 1.70]		_
Verstovsek 2012b	0.50 [0.31; 0.81]		
Total	0.61 [0.50; 0.74]		
	$(P < .001), I^2 = 77$	%	

Medium			1
Arrieta 2016	0.47 [0.28; 0.7	81	
Balyasny 2021a	0.68 [0.45; 1.0		
Balyasny 2021b	1.01 [0.88; 1.1	-	
Han 2019	0.53 [0.37; 0.7		T
Kalata 2009a	0.72 [0.44; 1.1		
		-	
Kalata 2009b	0.45 [0.30; 0.6	-	
Kostos 2021a	0.97 [0.40; 2.3	-	
Le Du 2016	0.89 [0.72; 1.1		
Strahlendorf 2018	0.69 [0.44; 1.0		
Toxopeus 2018	0.98 [0.72; 1.3	-	
Truong 2018	0.96 [0.59; 1.5	7]	
Unger 2014a	1.11 [0.91; 1.3	5]	
Unger 2014d	0.52 [0.01; 19.9	- [00	• :
Unger 2014e	0.94 [0.59; 1.4	9]	
Unger 2014f	0.72 [0.04; 11.5	57]	
Unger 2014g	0.68 [0.03; 13.3	82]	
Unger 2014h	0.78 [0.07; 8.2	7]	
Unger 2014i	0.73 [0.05; 10.7	-	
Unger 2014j	0.75 [0.04; 15.5		
Unger 2014l	0.74 [0.03; 21.3	-	
Unger 2014n	0.98 [0.23; 4.1	-	
Unger 2014p	0.98 [0.41; 2.3		
Xu 2020a	1.09 [0.51; 2.3		<u> </u>
	-	-	Г.
Xu 2020b	1.80 [1.20; 2.7		
Total	0.85 [0.73; 0.9	0]	Ĭ
Heterogeneity: $c_{23}^2 = 49.2$	25 (P = .001), T =	= 53%	
High		~ 1	
Aung 2021	1.36 [0.83; 2.2		<u>:</u> +
Chow 2013	0.74 [0.67; 0.8		
Elting 2006a	1.37 [1.29; 1.4	•	<u>:</u> •
Elting 2006b	0.80 [0.76; 0.8	•	
Filion 2014	0.95 [0.80; 1.1	3]	
Hébert-Croteau 2005	0.45 [0.27; 0.7	4]	
Kostos 2021b	0.93 [0.59; 1.4	6]	-#-
Merkhofer 2021	1.05 [0.72; 1.5	3]	
Schapira 2020	0.69 [0.42; 1.1	3]	
Tanai 2009	0.96 0.73; 1.2	81	#
Unger 2014b	0.90 [0.41; 1.9	-	
Unger 2014c	0.95 [0.67; 1.3		
Unger 2014k	0.61 [0.02; 23.3	-	•
Unger 2014m	0.81 [0.05; 13.6	-	
Unger 2014o	0.97 [0.37; 2.5		
Xu 2020c	1.24 [0.69; 2.2		<u>: T</u>
	0.92 [0.76; 1.1]		
Total			Ĩ
Heterogeneity: $c_{15}^2 = 224$.46 (P < .001), I	= 93%	
Highest	0 70 10 15 1 0	01	<u>:</u>
Abdel-Rahman 2019	0.79 [0.45; 1.3	-	— <u>•</u>
Abu-Hejleh 2016	0.99 [0.62; 1.5		
Ejlertsen 2008	1.08 [0.90; 1.3	-	
Esteban 2015	0.38 [0.17; 0.8	8]	
Keizman 2016	0.97 [0.77; 1.2	2]	—
Khoja 2016	0.87 [0.46; 1.6		— <u>—</u> —
Mol 2013	1.10 [0.97; 1.2	4]	
Ohno 2019	0.49 [0.04; 5.7	8]	
Tanai 2011	0.83 [0.62; 1.1		
Templeton 2013	0.82 [0.51; 1.3		
Total	0.98 [0.87; 1.0		I∳
Heterogeneity: $c_9^2 = 11.7$			
Total	0.76 [0.69; 0.8		<u>ا</u> ه
Prediction interval	[0.40; 1.43]		
	[0.10, 110]		
			01 051 0

0.5 1 2

HR (95% CI)

0.1

10

Heterogeneity: $c_{84}^2 = 688.56 \ (P < .001), \ l^2 = 88\%$ Test for subgroup differences: $c_4^2 = 28.76 \ (P < .001)$

eFigure 2. Forest plot of pooled overall survival hazard ratios in five adjustment score groups: lowestquality (≤4 points), low-quality (5-6 points), medium-quality (7 points), high-quality (8 points), and highestquality (≥9 points).

When comparisons were divided into high-quality (\geq 8 points) and not high-quality (<8 points), the high-quality subgroup (n=26) had an HR of 0.91 (95% CI, 0.80-1.05) and the not high-quality subgroup (n=59) had an HR of 0.70 (95% CI, 0.63-0.77). There was a significant difference between the groups (p=0.0016).

490 491 When comparisons were divided into low-quality (≤ 6 points) and not low-quality (>6 points), the low-quality subgroup 492 (n=35) had an HR of 0.64 (95% CI, 0.58-0.72) and the not low-quality subgroup (n=50) had an HR of 0.89 (95% CI, 493 0.80 0.02) There was a significant difference between the groups (n=60,0001)

493 0.80-0.98). There was a significant difference between the groups (p<0.0001).

- 494 495 We also performed a linear regression comparing effect size and quality adjustment score, which showed a
- significant correlation (p = 0.0005). Therefore, quality adjustment score(predictor) influences the studies' effect size.
- 497 For every increase in quality adjustment score, the effect size is expected to increase by 0.06.
- 498

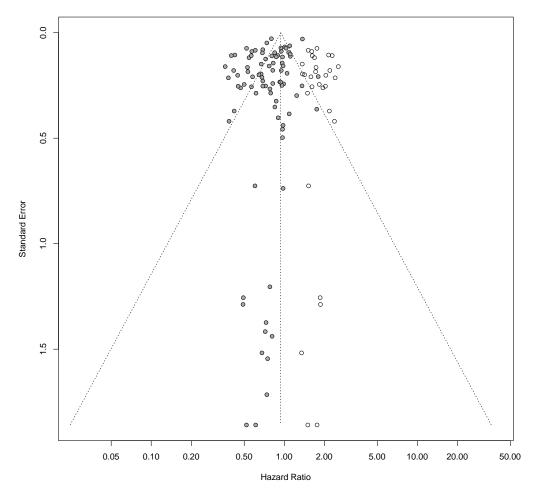
Some studies were not expressly aimed at measuring the trial effect. For example, some studies were focused on

500 comparing characteristics of trial participants and routine care patients to understand their differences (i.e. the

501 efficacy-effectiveness gap). These studies did not try to control for different factors to make the groups more similar.

502 They were interested in understanding the crude and unadjusted differences. When we filter our sample for

503 comparisons that had a stated objective of estimating the trial effect (n=32), the HR was 0.85 (95% CI, 0.76-0.95).


504 The mean quality score for this subset was 7.9. For the other comparisons that did not expressly set out to measure

the trial effect or had unclear objectives (n=53), the HR was 0.70 (95% CI, 0.63-0.78). The mean quality score for

this subset was 5.4. There was a significant difference between HRs for these two groups (p=0.015).

Source	HR (95% CI)	Favours trial participation	Favours routine care
Low		_	
Arrieta 2016	0.47 [0.28; 0.78]		
Balyasny 2021a	0.68 [0.45; 1.03]		<u>+</u>
Balyasny 2021b	1.01 [0.88; 1.15]		+-
Field 2013	0.67 [0.46; 0.98]		
Goyal 2012	0.57 [0.34; 0.94]		
Han 2019	0.53 [0.37; 0.77]		
Le Du 2016	0.89 [0.72; 1.10]	-	
Melnick 2022	0.49 [0.04; 6.12]	•	
Schwentner 2013	1.11 [0.89; 1.38]		
Shahar 2012	0.67 [0.50; 0.90]		
Strahlendorf 2018	0.69 [0.44; 1.08]		_
Toxopeus 2018	0.98 [0.72; 1.33]		
Truong 2018	0.96 [0.59; 1.57]		
Total	0.78 [0.67; 0.91]	×	
Heterogeneity: $c_{12}^2 = 33$ Medium	$.18 (P < .001), I^2 = 6$	4%	
Aung 2021	1.36 [0.83; 2.23]	-	
Chow 2013	0.74 [0.67; 0.81]	+	
Elting 2006a	1.37 [1.29; 1.45]		+
Elting 2006b	0.80 [0.76; 0.85]		_
Filion 2014	0.95 [0.80; 1.13]		
Hébert-Croteau 2005			
Merkhofer 2021	1.05 [0.72; 1.53]		-
Schapira 2020	0.69 [0.42; 1.13]		
Tanai 2009	0.96 [0.73; 1.28]		
Total	0.90 [0.71; 1.14]		ſ
Heterogeneity: $c_8^2 = 223$ High	$8.62 (P < .001), I^{-} = 9$	16%	
Abdel-Rahman 2019	0.79 [0.45; 1.39]		<u> </u>
Abu-Hejleh 2016	0.99 [0.62; 1.59]		
Eilertsen 2008	1.08 [0.90; 1.30]		
Esteban 2015	0.38 [0.17; 0.88]		
Keizman 2016	0.97 [0.77; 1.22]	-	
Khoja 2016	0.87 [0.46; 1.64]		
Mol 2013	1.10 [0.97; 1.24]		
Ohno 2019	0.49 [0.04; 5.78]		
Tanai 2011	0.83 [0.62; 1.10]		,
Templeton 2013	0.82 [0.51; 1.31]		
Total	0.98 [0.87; 1.09]	*	
Heterogeneity: $c_9^2 = 11$.		/o	
Total	0.85 [0.76; 0.95]	\diamond	
Prediction interval	[0.48; 1.48]		
		I	
		0.1 0.5	1 2 10
		HR (9	5% CI)
11-1	$a = (D = a = 4) \cdot t^2$	000/	•

Heterogeneity: $c_{31}^2 = 276.65 \ (P < .001), \ l^2 = 89\%$ Test for subgroup differences: $c_2^2 = 5.31 \ (P = .07)$ eFigure 3. Forest plot of pooled overall survival hazard ratios focusing on comparisons that stated their aim as estimating the trial effect (n=32) and grouped by lowquality (≤7 points), medium-quality (8 points), and high-quality (≥9 points) adjustment scores.

eFigure 4. Funnel plot showing asymmetry and suggesting possible publication bias with original studies
 (dark circles) and 30 imputed missing studies (white circles) using the trim-and-fill method. The original
 pooled hazard ratio for overall survival is 0.76 (95% Cl, 0.69-0.82). The pooled hazard ratio for overall
 survival with imputed missing studies is 0.94 (95% Cl, 0.86-1.03).