nature medicine

Article

https://doi.org/10.1038/s41591-024-02971-2

Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging

In the format provided by the authors and unedited

Supplementary Information

Table of Contents

1. Supplementary Table 1. PPV and NPV of the diagnostic model derived from cine and LGE as combined inputs in the primary dataset (n=6650)
2. Supplementary Table 2. Performance of the screening model in the consecutive testing set (n=961) 2
3. Supplementary Table 3. The 48 patients from the consecutive testing set, excluded from the reported diagnostic model performance metrics
4. Supplementary Table 4. Performance of the diagnostic model in the consecutive testing set (n=532)
5. Supplementary Table 5. Distribution of demographics and LVEF in the primary dataset
6. Supplementary Table 6. Distribution of demographics and cardiac function in the consecutive testing set
7. Supplementary Table 7. The typical CMR scan protocol and scanner parameters for the primary and external sets. 9
8. Supplementary Figure 1. The distribution of LVEF across the 11 CVD classes and the normal control class in the primary dataset
9. Supplementary Figure 2. The clinical prevalence of CVD classes11
10. Supplementary Figure 3. The impact of learning rate modification on the VST backbone11

1. Supplementary Table **1.** PPV and NPV of the diagnostic model derived from cine and LGE as combined inputs in the primary dataset (n=6650).

in the primary dataset (n=6650).											
		I	PPV	NPV							
		Internal	External	Internal	External						
1	HCM	0.956 (0.947-0.963)	0.932 (0.907-0.955)	0.997 (0.996-0.999)	0.983 (0.975-0.991)						
2	DCM	0.875 (0.858-0.892)	0.754 (0.702-0.803)	0.977 (0.973-0.981)	0.998 (0.996-1.000)						
3	CAD	0.940 (0.924-0.954)	0.952 (0.928-0.977)	0.984 (0.981-0.987)	0.966 (0.954-0.976)						
4	LVNC	0.805 (0.757-0.848)	1.000 (1.000-1.000)	0.989 (0.986-0.991)	0.994 (0.989-0.998)						
5	RCM	0.877 (0.843-0.912)	0.600 (0.433-0.767)	0.993 (0.990-0.995)	0.999 (0.998-1.000)						
6	CAM	0.951 (0.921-0.979)	0.983 (0.955-1.000)	0.996 (0.995-0.998)	0.985 (0.978-0.991)						
7	HHD	0.746 (0.704-0.789)	0.735 (0.644-0.823)	0.981 (0.977-0.984)	0.976 (0.967-0.983)						
8	Myocarditis	0.776 (0.676-0.862)	0.810 (0.686-0.921)	0.996 (0.994-0.997)	0.977 (0.969-0.984)						
9	ARVC	0.864 (0.825-0.899)	0.904 (0.816-0.977)	0.987 (0.984-0.989)	0.995 (0.991-0.999)						
10	PAH	0.992 (0.974-1.000)	1.000 (1.000-1.000)	0.999 (0.998-0.999)	0.997 (0.994-0.999)						
11	Ebstein's Anomaly	0.937 (0.875-0.986)	0.977 (0.918-1.000)	0.998 (0.997-0.999)	1.000 (1.000-1.000)						

Supplementary Table 1 | PPV and NPV of the diagnostic model derived from cine and LGE as combined inputs in the primary dataset (n=6650).

*95% confidence interval in the brackets. PPV: positive predictive value; NPV: negative predictive value.

a 1

.

2. Supplementary Table 2. Performance of the screening model in the consecutive testing set (n=961).

Supplementary Table 2 Performance of the screening model in the consecutive testing set (n=961).										
Performance	Screening Model (SAX + 4CH cine)									
AUROC	0.984 (0.977-0.990)									
PPV	0.971 (0.957-0.982)									
Specificity with sensitivity at 90%	0.994 (0.965-1.000)									
Sensitivity with specificity at 90%	0.946 (0.930-0.964)									
F1-score	0.962 (0.953-0.972)									

AUROC=area under the receiver operating characteristic curve; PPV=positive predictive value (precision); CI=confidence intervals; SAX=short axis; 4CH=four chamber.

0(1)

3. Supplementary Table 3. The 48 patients from the consecutive testing set, excluded from the reported diagnostic model performance metrics.

Note: it's noteworthy that the AI screening model demonstrated robust performance by correctly classifying all 48 patients into the abnormal class, with a high average confidence score of 0.918. This successful classification, along with the high confidence score, highlights the screening model's robustness in handling a diverse range of cardiovascular diseases, including suspected phenocopies, such as genetic metabolic cardiomyopathy, which extend beyond the commonly recognized 11 CVD classes.

In contrast, the diagnostic model classified these cases with an average extremely low confidence score of 0.585, emphasizing the model's cautious approach when dealing with instances that deviate from the specified 11 CVD classes. Future direction includes the introduction of an additional AI deferral system that could defer cases with low confidence scores, falling below a predefined threshold, for expert human assessment. This collaborative synergy between human clinicians and AI models holds promise for further improving diagnostic accuracy, especially in scenarios beyond the commonly specified 11 CVD classes.

Supplementary Table 3 | The 48 patients from the consecutive testing set, excluded from the reported diagnostic model performance metrics.

Patient ID	ID Summary		AI Screening Confidence Score	AI Diagnostic Model Prediction	AI Diagnostic Confidence Score	Diagnosis by Human Experts
Average (Confidence Score		0.918		0.585	
1	Post-operative imaging	Abnormal	0.771	RCM	0.469	Following cardiac transplant surgery, there is observed enlargement of the left atrium.
2	Post-operative imaging	Abnormal	1.000	HHD	0.648	Following surgical intervention for Hypertrophic Cardiomyopathy (HCM) utilizing the Morrow procedure.
3	Post-operative imaging	Abnormal	1.000	DCM	0.649	Patient with a history of congenital heart disease undergoing postoperative repair of a ventricular septal defect.
4	Post-operative imaging	Abnormal	0.999	ARVC	0.521	Following surgical intervention for Tetralogy of Fallot, there is observed right heart enlargement.
5	Post-operative imaging	Abnormal	1.000	РАН	0.773	Following surgical correction of atrial septal defect and pulmonary valve stenosis, there is secondary right ventricular enlargement.
6	Post-operative imaging	Abnormal	1.000	РАН	0.680	After balloon pulmonary valvuloplasty and modified Blalock-Taussig shunt procedures, there is secondary enlargement of the right atrium and ventricle.
7	Post-operative imaging	Abnormal	1.000	ARVC	0.513	Following corrective surgery for Tetralogy of Fallot, there is observed enlargement of the right ventricle.
8	Inadequate imaging quality	Abnormal	0.519	CAD	0.378	Suspected subendocardial enhancement in the left ventricular lateral wall. Unclear diagnosis
9	Inadequate imaging quality	Abnormal	1.000	RCM	0.425	Enlargement of the entire heart, reduced cardiac function, considering a correlation with atrial fibrillation.
10	Inadequate imaging quality	Abnormal	1.000	CAD	0.713	Left ventricular enlargement with impaired systolic function, demonstrating subendocardial enhancement and interventricular septal wall enhancement; a substantial likelihood of concurrent hypertension.
11	Borderline/mil d cases	Abnormal	0.667	Myocarditis	0.610	Mild left ventricular enlargement is observed without evidence of fibrosis.

12	Borderline/mil d cases	Abnormal	1.000	HHD	0.370	There is mild both ventricle thickening of interventricula thickness appr
13	Borderline/mil d cases	Abnormal	1.000	НСМ	0.667	Left ventricul preserved syst an association being conside
14	Borderline/mil d cases	Abnormal	0.824	Myocarditis	0.389	Mild left atria enlargement of fibrosis; co with arrhythm
15	Borderline/mil d cases	Abnormal	0.906	RCM	0.400	Enlargement of observed, alor fatty signals in myocardium, pathological of
16	Borderline/mil d cases	Abnormal	1.000	Myocarditis	0.704	Borderline/mi
17	Borderline/mil d cases	Abnormal	0.972	RCM	0.718	Bilateral atria with no other
18	Borderline/mil d cases	Abnormal	0.620	Myocarditis	0.455	Left ventricul normal systoli
19	Borderline/mil d cases	Abnormal	0.667	НСМ	0.289	There is a mil interventricula 12mm.
20	Dual condition	Abnormal	1.000	CAD	0.677	Diagnosis inc CMR reveals enhancement subendocardia mid-anterior s ventricle. Add ventricular en measuring 600
21	Unclear diagnosis from human experts	Abnormal	1.000	CAD	0.673	Unclear Diag
22	Unclear diagnosis from human experts	Abnormal	1.000	HHD	0.757	Interventricular ventricular en systolic functi in the septum wall are noted cardiomyopat necessitating
23	Unclear diagnosis from human experts	Abnormal	1.000	HHD	0.753	There is left v accompanied function, inter thickening, an enhancement Genetic metal under conside further investi
24	Unclear diagnosis from human experts	Abnormal	1.000	DCM	0.619	There is left v with systolic f of normal, acc degree of fibr from human e
25	Unclear diagnosis from human experts	Abnormal	1.000	DCM	0.713	Left ventricula accompanied function and t

There is mild enlargement observed in es, accompanied by a slight f the mid-segment of the lar septum (maximum proximately 13mm). lar enlargement with stolic function is noted, and on with sinus bradycardia is ered. al and ventricular observed, with no evidence onsideration of a correlation mia. of the left atrium is ong with a subtle presence of in the left ventricular , suggestive of a mild condition. nild case al enlargement observed, r discernible abnormalities. lar enlargement with lic function. ild thickening of the lar septum, measuring cludes both CAD and DCM. s patchy myocardial and fibrosis in ial areas of the basal and segments of the left lditionally, an enlarged left nd-diastolic cavity Omm is observed. gnosis from human experts lar septal thickening, left nlargement with reduced tion, and multifocal fibrosis n and left ventricular lateral ed. Genetic metabolic thy is under consideration, further investigation. ventricular enlargement by reduced systolic erventricular septal ind widespread myocardial t in the left ventricle. abolic cardiomyopathy is eration, necessitating tigation. ventricular enlargement function at the lower limit ccompanied by a minor rosis. Unclear diagnosis experts lar enlargement is by a decrease in systolic the presence of multiple

26	Unclear diagnosis from human experts	Abnormal	1.000	CAD	0.691
27	Unclear diagnosis from human experts	Abnormal	1.000	HHD	0.754
28	Unclear diagnosis from human experts	Abnormal	1.000	DCM	0.741
29	Unclear diagnosis from human experts	Abnormal	0.676	Myocarditis	0.424
30	Beyond the 11 CVD Classes	Abnormal	1.000	RCM	0.471
31	Beyond the 11 CVD Classes	Abnormal	1.000	CHD	0.424
32	Beyond the 11 CVD Classes	Abnormal	1.000	Myocarditis	0.393
33	Beyond the 11 CVD Classes	Abnormal	1.000	DCM	0.564
34	Beyond the 11 CVD Classes	Abnormal	0.668	НСМ	0.705
35	Beyond the 11 CVD Classes	Abnormal	0.998	DCM	0.774
36	Beyond the 11 CVD Classes	Abnormal	1.000	HHD	0.646
37	Beyond the 11 CVD Classes	Abnormal	1.000	CAD	0.626

areas of myocardial fibrosis. Unclear diagnosis from human experts There is left ventricular enlargement accompanied by a decrease in systolic function, along with extensive subendocardial enhancement. Unclear diagnosis from human experts Noticeable thickening of both left and right ventricular walls, coupled with widespread abnormal enhancement of the left ventricular myocardium; genetic metabolic cardiomyopathy remains within diagnostic consideration. Left ventricular enlargement is observed with diminished systolic function and widespread fibrosis within the left ventricular wall. Unclear diagnosis from human experts. Observation of left ventricular

enlargement is noted, with preserved systolic function; however, a minor degree of fibrosis in the lateral wall is observed, which does not align with the diagnostic criteria for dilated cardiomyopathy (DCM). Mild left atrial enlargement is noted, accompanied by a mildly thickened left ventricular wall with multifocal fibrotic changes. This presentation is indicative of a cardiomyopathy related to a DES

gene mutation. Presence of an occupying lesion in the right ventricular cavity, indicative of a tumor-like pathology, representing a rare condition.

Takotsubo syndrome / Stress cardiomyopathy. Constrictive pericarditis, with enlargement of both atria. The mid-segment of the interventricular septum exhibits slight thickening, while maintaining normal left ventricular systolic function. Additionally, there is a suspicion of minor subendocardial fibrosis in the left ventricular inferior wall.

Mild left ventricular enlargement is observed alongside normal but reduced systolic function, indicating asynchronous left ventricular contraction. The possibility of an association with left bundle branch block (LBBB) is under consideration. Aortic valve stenosis accompanied by regurgitation, leading to secondary left ventricular enlargement and interventricular septal thickening. Bicuspid aortic valve malformation leading to secondary left ventricular enlargement, interventricular septal

						thickening, and subendocardial enhancement.
38	Beyond the 11 CVD Classes	Abnormal	0.665	DCM	0.466	Mild left ventricular enlargement is noted, with systolic function at the lower limit of normal; the presentation does not align with dilated cardiomyopathy (DCM).
39	Beyond the 11 CVD Classes	Abnormal	0.869	LVNC	0.594	Mitral valve prolapse is noted, along with left ventricular enlargement and excessive trabeculation.
40	Beyond the 11 CVD Classes	Abnormal	0.523	RCM	0.419	Bilateral atrial enlargement is noted, with consideration given to its association with atrial fibrillation.
41	Beyond the 11 CVD Classes	Abnormal	1.000	DCM	0.556	Mitral valve prolapse associated with severe regurgitation, concurrent with left ventricular enlargement.
42	Beyond the 11 CVD Classes	Abnormal	1.000	RCM	0.646	There is marked enlargement of both atria, prompting consideration of an association with atrial fibrillation.
43	Beyond the 11 CVD Classes	Abnormal	1.000	DCM	0.577	Severe aortic valve regurgitation, resulting in marked secondary enlargement of the left ventricle accompanied by reduced systolic function.
44	Beyond the 11 CVD Classes	Abnormal	1.000	DCM	0.481	Significant intrapericardial mass occupying a considerable volume within the pericardial cavity.
45	Beyond the 11 CVD Classes	Abnormal	1.000	DCM	0.618	Left ventricular enlargement with preserved function; consideration given to its association with arrhythmia (frequent premature beats).
46	Beyond the 11 CVD Classes	Abnormal	0.709	RCM	0.728	Evidence of pericardial thickening is noted, accompanied by bilateral atrial enlargement, raising suspicion for constrictive pericarditis.
47	Beyond the 11 CVD Classes	Abnormal	1.000	HHD	0.587	A quadricuspid aortic valve is observed, leading to secondary left ventricular enlargement and hypertrophy.
48	Beyond the 11 CVD Classes	Abnormal	1.000	DCM	0.634	Severe aortic valve regurgitation has led to secondary left ventricular enlargement; however, systolic function remains within an acceptable range.

4. Supplementary	Table 4.	Performance	of the	diagnostic	model in	n the	consecutive	testing	set
(n=532).									

Supple	Supplementary Table 4 Performance of the diagnostic model in the fresh consecutive testing set (n=532).										
C	VD alogg	No of Subjects	Diagnostic N	Model (cine + LGE)							
C	VD class	No. of Subjects –	AUROC (95%CI)	F1 score (95%CI)							
1	HCM	239	0.993 (0.988-0.997)	0.958 (0.940-0.975)							
2	DCM	107	0.991 (0.983-0.996)	0.922 (0.883-0.958)							
3	CAD	58	0.997 (0.994-0.999)	0.915 (0.855-0.966)							
4	LVNC	10	0.992	0.727							
5	RCM	8	0.997	0.762							
6	CAM	10	1.000	0.947							
7	HHD	72	0.942 (0.904-0.970)	0.742 (0.656-1.000)							
8	Myocarditis	10	0.991	0.706							
9	ARVC	15	0.993	0.889							
10	PAH	0	-	-							
11	Ebstein's Anoma	lly 3	1.000	1.000							
Class fr	equency-weighted a	verage	0.986	0.903							

Supplementary Table 4 | Performance of the diagnostic model in the fresh consecutive testing set (n=532).

AUROC=area under the receiver operating characteristic curve; CI=confidence intervals. The calculation of the 95% CI was not performed for sample sizes below 50 due to potential limitations in the precision of estimates associated with small sample sizes.

primary	y dataset.		C -				VEE	
		No. of	Se	ex	Age		LVEF	
		Subjects	Male	Female	(Range)	Mean (STD)	Median (Q1, Q3)	
	Normal Controls	1250	700 (56%)	550 (44%)	37 ± 14 (10-78)	60.1 (5.9)	60.0 (56.0, 64.0)	
1	HCM	2327	1513 (65%)	814 (35%)	48 ± 14 (7-86)	65.2 (5.8)	66.0 (62.0, 69.0)	
2	DCM	1435	1076 (75%)	359 (25%)	44 ± 15 (4-82)	25.9 (9.1)	25.0 (19.0, 32.0)	
3	CAD 942 829 (88%)	113 (12%)	56 ± 11 (8-83)	34.8 (16.2)	33.0 (24.0, 43.0)			
4	LVNC	291	192 (66%)	99 (34%)	39 ± 16 (6-77)	38.1 (14.8)	36.0 (25.9, 52.0)	
5	RCM	355	170 (48%)	185 (52%)	50 ± 20 (7-85)	53.6 (8.6)	53.0 (48.0, 60.0)	
6	CAM	220	156 (71%)	64 (29%)	$56 \pm 11 \; (18-83)$	45.7 (11.4)	47.0 (38.1, 54.0)	
7	HHD	402	366 (91%)	36 (9%)	42 ± 13 (12-75)	41.9 (15.2)	40.9 (30.1, 54.0)	
8	Myocarditis	87	64 (74%)	23 (26%)	$28 \pm 11 \; (14-69)$	55.3 (10.5)	57.0 (53.5, 61.0)	
9	ARVC	370	245 (66%)	125 (34%)	$39 \pm 14 \ (9-74)$	45.8 (13.9)	48.0 (36.0, 56.7)	
10	РАН	134	36 (27%)	98 (73%)	32 ± 12 (10-72)	56.3 (7.2)	56.0 (51.9, 60.1)	
11	Ebstein's Anomaly	87	33 (38%)	54 (62%)	34 ± 16 (2-63)	53.1 (9.9)	54.0 (47.8, 60.0)	

5. Supplementary Table 5. Distribution of demographics and LVEF in the primary dataset.

Supplementary Table 5 | Distribution of demographics and LVEF across 11 CVD classes and the normal control class in the primary dataset.

*Q1: the first quartile; Q3: the third quartile; STD: standard deviation; LVEF: left ventricular ejection fraction.

6. Supplementary Table 6. Distribution of demographics and cardiac function in the consecutive testing set.

Supplementary To	hlo (Distribution of domographics	and condice function courses 11 condi	avaganlan diggaga alaggag and the new	rmal control class in the independent co	maganting testing ast
Supplementary ra	Die o Distribution of demographics	and cardiac function across 11 cardi	lovascular disease classes and the not	rmai control class in the independent co	insecutive testing set.

		Num	S	ex	Age	LV	EF	LV	mass	LV	'Mi	Е	DV	E	DVi
		ber	Male	Female	(Range)	Mean (STD)	Median (Q1, Q3)	Mean (STD)	Median (Q1, Q3)	Mean (STD)	Median (Q1, Q3)	Mean (STD)	Median (Q1, Q3)	Mean (STD)	Median (Q1, Q3)
	Total	691	465(67%)	226(33%)	45 ± 16 (2-86)	53.5(16.3)	60.0 (41.3, 66.0)	126.8(58.6)	114.0 (85.9, 161.0)	68.1(30.6)	61.1 (46.2, 83.2)	187.3(91.9)	160.0 (126.3, 219.7)	100.9(47.4)	86.0 (71.6, 115.5)
	Normal Controls	159	83(52%)	76(48%)	37 ± 16 (11-77)	63.0(5.3)	63.0 (59.7, 66.3)	77.5(25.6)	72.4 (57.6, 94.7)	42.8(11.2)	41.7 (34.3, 50.1)	138.2(33.0)	133.0 (112.3, 158.6)	76.3(13.3)	74.6 (67.4, 84.6)
1	HCM	239	160(67%)	79(33%)	49 ± 15 (7-86)	65.2(7.1)	66.0 (62.0, 70.0)	150.1(62.5)	138.8 (102.9, 179.3)	82.2(32.4)	75.8 (58.8, 100.5)	144.9(40.1)	141.0 (118.7, 164.5)	79.5(20.1)	78.0 (68.6, 89.1)
2	DCM	107	74(69%)	33(31%)	45 ± 15 (2-77)	31.3(10.1)	31.0 (22.9, 40.0)	129.9(46.5)	119.9 (96.3, 158.2)	69.3(22.5)	66.8 (53.8, 81.4)	300.4(113.2)	280.0 (216.9, 363.9)	161.8(62.0)	148.0 (121.0, 191.8)
3	CAD	58	51(88%)	7(12%)	53 ± 12 (29-81)	35.7(13.2)	33.0 (26.5, 44.5)	129.9(44.3)	121.0 (97.5, 155.0)	68.0(21.4)	62.9 (51.5, 81.8)	248.7(83.8)	231.4 (190.9, 312.1)	131.0(43.1)	123.3 (100.5, 162.2)
4	LVNC	10	7(70%)	3(30%)	35 ± 13 (17-57)	45.3(12.6)	47.5 (42.3, 55.5)	104.7(42.7)	100.2 (71.8, 123.3)	57.4(22.5)	54.9 (39.8, 66.1)	219.8(90.3)	181.2 (160.2, 282.0)	120.7(47.6)	102.3 (89.4, 144.3)
5	RCM	8	1(12%)	7(88%)	45 ± 18 (13-69)	56.5(10.3)	56.2 (53.0, 61.4)	58.4(19.3)	57.4 (47.8, 74.7)	38.2(12.6)	38.0 (31.8, 50.0)	99.1(38.9)	95.4 (75.8, 105.7)	64.9(28.6)	57.9 (50.7, 70.8)
6	CAM	10	6(60%)	4(40%)	62 ± 10 (40-73)	49.9(11.2)	49.1 (42.5, 59.5)	134.1(38.3)	124.5 (112.8, 171.5)	88.2(37.1)	75.5 (66.9, 99.5)	118.6(35.4)	121.4 (89.7, 145.6)	74.6(18.1)	82.8 (68.0, 85.3)
7	HHD	72	64(89%)	8(11%)	43 ± 13 (16-71)	44.6(13.7)	42.5 (33.9, 54.3)	168.1(60.5)	158.5 (125.3, 203.2)	84.4(34.0)	77.3 (60.0, 100.1)	236.2(93.5)	225.6 (175.5, 263.4)	117.4(48.5)	108.6 (86.5, 138.3)
8	Myocarditis	10	7(70%)	3(30%)	40 ± 19 (14-70)	54.1(11.7)	56.5 (46.0, 63.4)	99.8(31.1)	91.0 (86.0, 113.4)	54.1(16.7)	53.3 (39.8, 63.3)	160.2(39.0)	157.7 (128.3, 186.2)	84.8(18.7)	87.6 (74.4, 98.9)
9	ARVC	15	10(67%)	5(33%)	52 ± 13 (27-67)	42.3(12.4)	44.7 (35.9, 48.2)	89.6(29.0)	87.2 (64.9, 115.7)	49.2(13.4)	47.6 (37.4, 56.9)	204.6(66.0)	220.3 (162.3, 232.9)	113.3(33.5)	116.6 (88.4, 123.6)
10	PAH	0	-	-	-	-	-	-	-	-	-	-	-	-	-
11	Ebstein's Anomaly	3	2(67%)	1(33%)	33 ± 8 (25-41)	61.1(6.6)	63.6 (58.6, 64.8)	72.6(15.9)	80.7 (67.4, 81.7)	41.7(6.7)	43.6 (39.0, 45.4)	125.0(19.3)	134.7 (118.7, 136.1)	72.8(13.4)	74.3 (66.5, 79.8)
*Q1: fract	1	e; Q3: th	e third quarti	le; STD: stan	dard deviati	ion; LV: left ve	ntricular mass;	LVMi: left ven	tricular mass inde	ex; EDV: end-di	astolic volume; E	DVi: end-diasto	lic volume index;	LVEF: left ver	ntricular ejection

7. Supplementary Table 7. The typical CMR scan protocol and scanner parameters for the primary and external sets.

Supplementary Table 7 The typical CMR scan protocol and scanner parameters for the primary and external sets.											
		l	FW		AZ	GD	HEB	LZ	RJ	TJ	ХН
Manufacture		SIEMENS	GE Healthcare	Philips	Philips	Philips	Philips	Philips	Philips	SIEMENS	SIEMENS
Magnetic field strength		3	3	3	3	3	3	3	3	3	3
CINE	Slice thickness (mm)	8	8	8	8	8	8	8	6	8	8
	Slice spacing (mm)	10	8	10	8	10	10	8	6	10	10
	Typical field of view (cm)	35	35	35	27	24	30	35	30	36	35
	Echo time (ms)	1.47	1.69	1.48	1.60	1.50	1.50	1.60	1.60	1.42	1.41
	Temporal resolution (ms)	43.42	53.28	47.4	49.00	44.00	67.00	49.00	80.00	37.68	45.08
	Flip angle (degrees)	52	50	45	45	45	45	45	45	46	50
	Pixel Bandwidth (Hz/pixel)	990	488	1701	2164	1420	2188	1938	1827	965	960
LGE	Slice thickness (mm)	8	8	8	8	8	8	8	10	8	8
	Slice spacing (mm)	9.6	8	9	8	10	10	8	10	10	10
	Typical field of view (cm)	38	35	36	27	25	30	35	30	34	35
	Echo time (ms)	1.96	2.78	3	3.00	3.00	3.00	3.00	3.00	1.20	2.00
	Repetition time (ms)	6	5.98	6	6.06	6.13	6.10	6.10	6.10	6	6
	Inversion Time (ms)	300	300	300	300	300	300	350	375	280	360
	Flip angle (degrees)	20	25	25	25	25	25	25	25	55	20
	Pixel Bandwidth (Hz/pixel)	285	244	250	226	257	258	253	253	770	285

Supplementary Table 7 | The typical CMR scan protocol and scanner parameters for the primary and external sets.

FW: Beijing Fuwai Hospital, Beijing; AZ: Beijing Anzhen Hospital, Beijing; GD: Guangdong Provincial People's Hospital, Guangzhou; HEB: The 2nd Affiliated Hospital of Harbin Medical University, Harbin; LZ: The First Hospital of Lanzhou University, Lanzhou; RJ: Renji Hospital, Shanghai; TJ: Tongji hospital, Wuhan; XH: Peking Union Medical College Hospital, Beijing.

8. Supplementary Figure 1. The distribution of LVEF across the 11 CVD classes and the normal control class in the primary dataset

9. Supplementary Figure 2. The clinical prevalence of CVD classes

derived from SAX cine)												
		AU	ROC		F1 score							
Initialized learning rate	1e-3	1e-4	1e-5	1e-6	1e-3	1e-4	1e-5	1e-6				
HCM	0.992	0.989	0.990	0.987	0.941	0.945	0.937	0.914				
DCM	0.973	0.975	0.972	0.962	0.825	0.849	0.817	0.788				
CAD	0.959	0.962	0.949	0.901	0.747	0.757	0.728	0.589				
LVNC	0.961	0.942	0.971	0.939	0.640	0.690	0.660	0.494				
RCM	0.955	0.977	0.977	0.941	0.701	0.767	0.723	0.492				
CAM	0.975	0.970	0.988	0.975	0.771	0.823	0.750	0.633				
HHD	0.942	0.913	0.931	0.906	0.632	0.595	0.631	0.489				
Myocarditis	0.936	0.967	0.980	0.943	0.367	0.490	0.510	0.432				
ARVC	0.966	0.986	0.974	0.942	0.692	0.778	0.733	0.597				
PAH	0.986	0.994	0.999	0.996	0.932	0.944	0.956	0.850				
Ebstein's Anomaly	0.990	0.986	0.960	0.969	0.698	0.742	0.814	0.657				
Class frequency- weighted	0.974	0.974	0.974	0.956	0.813	0.834	0.815	0.736				

The effect of modifying the initialized learning-rate (testing in one-fold of the primary cohort with the diagnostic model derived from SAX cine)

