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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The authors should make an effort to appropriately position their research, as they mix different 

concepts and techniques without fully referencing the background of their contribution. For 

instance, on line 12 of page 3, they state that there are two challenges in SOH estimation: "the 

generality of degradation features and the stability of data-driven models." This claim is quite 

broad and should either be justified or supported by a citation. The given explanation of both 

challenges is not persuasive, thus not adequately justifying the use of PINN for SOH modeling in 

that paragraph; they only include general references about the technique and don't cite recent 

works on using PINN for battery SOH modeling (the latest reference provided by the authors, 

unless I'm mistaken, is [36] from 2021). For instance, in reference [14] provided by the authors, 

more recent studies are mentioned, such as: 

Nascimento, R.G., Viana, F.A.C., Corbetta, M. et al. A framework for Li-ion battery prognosis based 

on hybrid Bayesian physics-informed neural networks. Sci Rep 13, 13856 (2023). 

https://doi.org/10.1038/s41598-023-33018-0 

It's challenging to pinpoint the exact contribution of the paper: it isn't the first to use PINNs for 

battery SOH modeling, and the SOH model used is simpler than others previously employed. They 

also don't specify which of the open topics in SOH estimation mentioned in [14] are addressed 

(e.g., transferring the model across different chemistries and charge profiles or capacity recovery 

after resting). The introduction needs revision, and the authors should clearly state their paper's 

unique contribution to the field and cite the latest related works. 

Section 2 outlines their method implementation. It begins with the network architecture and data 

generation. In section 2.3, an essential aspect is discussed: the authors have chosen a 0.2 V range 

between the maximum charge voltage (or minimum discharge), but they don't clearly detail the 

conditions under which this measurement should occur (I miss specifications on the resting period 

required after full charge or discharge and its relation to the charging rate). This section needs 

more details and a better justification. In section 2.4, there's a brief comparison with a 

convolutional network. This could be enhanced by incorporating SOH estimation methods from 

other authors in the literature. Currently, they've shown that a neural architecture using physical 

knowledge outperforms a convolutional one, but this finding isn't very informative. When 

comparing network errors, it seems they are using features they've defined, essentially contrasting 

two algorithms they've developed, not benchmarking against the state-of-the-art in SOH data 

estimation. Moreover, they don't define the function {\cal F} incorporating the physical knowledge 

until section 4, making it necessary to skip forward and then backtrack to understand these 

results. The document's organization could be improved. 

In section 4, the authors introduce a function modeling physical knowledge about SOH's temporal 

evolution. This section is somewhat challenging to follow. Equation (1) defines a SOH value 

sequence indexed by cycle. Equation 2 references a continuous variable u(t); I gather u_k is a 

discretization of u(t). The function {\cal F} is the derivative of u(t) and depends on time, health, 

and a parameter. Equation 5 expands u to depend on a parameter x (though u is already defined 

as F's integral, thus depending on the previously introduced parameter \Theta). Equation 6 

redefines F to depend on two parameters and also states u as a partial derivative of F, deviating 

from equation (2). By equation (7), the explanation becomes muddled: it defines a function 

subtracting u_t (that was defined in equation (1) as a SOH sequence) from its partial derivative 

concerning time, indicating that u_t becomes a derivative. Yet, this implies that, per definition (7), 

f := 0. Equation (8) redefines u_t to include u's gradient concerning the parameter vector x; by 

the same logic, I assume u_xx is this function's Hessian, though it doesn't seem to be used later. 

There are other issues of varying significance and other technical quality aspects, but at this point, 

the authors should revise this section and address these concerns before the manuscript can be 

considered. 



Reviewer #2 (Remarks to the Author):

There are three issues to address. 

1) The first, the plot in figure 4 did not properly convert to pdf. I can't see the plot. I tried different 

pdf viewers and all with the same results. 

2) I am not convinced that the good model performance is not simply due to information leakage. 

https://www.sciencedirect.com/science/article/abs/pii/S2542435123003197 

The current article doesn't ever really explain what the task of prediction is. Since SOH depends on 

both the battery internal quality as well as the us conditions, the linked article above argues that it 

is critical to be careful in defining the task you are trying to actually do ( beyond the simple reply 

of "predict SOH"). What are you really trying to predict? Since the datasets were all created with 

different hypothesis in mind, it is hard to determine whether leakage is happening by using the 

same features across the data. The authors should more clearly define their task and clarify how 

they have ensured leakage is not the reason for good performance. Leakage can fool even careful 

practitioners. 

3) What the physics are that are being included is not really clear from the writing. It kind of exists 

in section 4, but it is hard to really figure out at a high level what physics are being accounted for. 

In an early section, a clearer description of the physical model(s) would be helpful. 

Reviewer #3 (Remarks to the Author):

In this manuscript, neural networks are used to estimate the SOH from statistical parameters 

during a period of (full) charge. This first neural network is then used as the input of a second 

PINN to estimate the progression of the SOH over time. The application to different, 

comprehensive datasets of cells with different chemistry, make the work interesting, especially the 

application of transfer learning. 

We suggest accepting the manuscript after major revisions, as some work needs to be done to 

make the manuscript more readable and to provide additional information on parameterization and 

selection of hyperparameters to make this a valuable contribution to the community. We would 

recommend adapting the structure of the manuscript so that the method is explained first, then 

the results are presented and discussed and finally there should be a conclusion section. Special 

attention should be paid to avoid jumping between the manuscript and supplementary material. 

Thus, all relevant information, especially on the features, should also be included in the 

manuscript. 

Please consider the following remarks: 

- In the abstract, please name the error metric (MAE, RMSE) you refer your final validation results 

to. 

- In the Introduction, please give more details about your chosen PINN architecture with reference 

to other works, i.e. , Aykol et al. (10.1149/1945-7111/abec55) or Hofmann et al. (10.1149/1945-

7111/acf0ef). With the current introduction, it does not get directly clear where the physics-based 

modelling takes place. It more looks like it’s a sequential NN with a novel feature extraction 

method. 

- Please include the paper by Hofmann et al. (10.1149/1945-7111/acf0ef) into your reference list 

as they have also introduced a sequential PINN for SOH estimation. 

- In Figure 2 please provide the units in your axis-labels, i.e., “Capacity / Ah”. Please include a 

legend to allow mapping every batch to the specific degradation curves. Further, make the Figure 

bw-readable by using different linestyles. 

- We understand that the statistical features are all connected to the end of the charge process 

and this approach is possible for all applications, where a full charge is performed frequently. 

However, it is not true that for all or even most applications a full charge is performed frequently. 

In contrary users are directed to stop charging at 80% by special apps to avoid increased aging. 



- It is claimed, that “An important finding is that the magnitude of the correlation coefficient 

between each feature and SOH is related to the chemical composition of a battery and is less 

affected by the charge/discharge protocols.” However, there is no evidence given. Please refrain 

from that claim or provide evidence. 

- Please extend Figure 3 to also show which time-series data is additionally used for SOH 

estimation. From the text and Figures it gets very clear which data is used for feature extraction, 

but it is hard to grasp which time-series data is additionally used for SOH estimation together with 

the extracted features. 

- In Figure 5 please make clear which feature number refers to which feature. If the order is 

consistent with Figure 4, please mention that again. In the text, also include that you have used 

the Pearson correlation coefficient. 

- In figure 7 the y-axis should be scaled equal for all subplots for better comparability of the 

performance with respect to different datasets. Again, errors given in % are more readable than 

fractions (i.e. 1% instead 0.01). 

- Please comment on the different correlations of the statistical features with respect to chemistry. 

It is not obvious why there should be a difference between NMC and LFP cells. 

- As some features seem to be highly correlated, could you please comment on the selection of the 

features? How did you decide to incorporate all 16 features? 

- In Section 2.4 please include more information about the data split. How did you make sure that 

batteries from the same batch are not too similar and hence the test datasets is too similar to the 

training dataset? How much percentage is training and how much is test data? 

- Please provide information about the hyperparameter tuning for the proposed PINN. Which 

architectures were explored and which approach (e.g. Bayes, Random Search, Grid Search) was 

used for optimizing the hyperparameters. 

- Please provide an updated benchmark to create a fair comparison of the PINN to the MLP and 

CNN. This means, that the hyperparameters of the MLP and CNN should be tuned to their 

respective optima. In this matter, also include the computational complexity of all three models. 

- Please expand the explanations on the PINN: which aspects in this model are to be understood 

as physical boundary conditions and which are not? In particular, since the partial derivatives of 

the SOH with respect to the statistical features are included, it is not obvious which physical, 

chemical boundary conditions are to be considered here. 

Reviewer #4 (Remarks to the Author):

I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is 

part of the Nature Communications initiative to facilitate training in peer review and to provide 

appropriate recognition for Early Career Researchers who co-review manuscripts



Response Letter

Journal Title: Nature Communications

Manuscript ID: NCOMMS-23-46244

Title of Paper: Physics-informed neural network for lithium-ion battery degradation stable

modeling and prognosis

Note: In this Response Letter, the contents in blue are the responses and discus-

sions to the comments of editors and reviewers; the contents in red indicate that

these contents have been added to the revised manuscript.

First of all, the authors would like to express their sincere thanks to the anony-

mous reviewers for their helpful comments and suggestions. The explanation of

the modifications as well as corrections in this revision can be arranged as follows

(comment numbers are in 1:1 correspondence with the reviewers’ comments).
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1 Response to Reviewer #1

Comment: The authors should make an effort to appropriately position their research, as

they mix different concepts and techniques without fully referencing the background of their

contribution. For instance, on line 12 of page 3, they state that there are two challenges in

SOH estimation: “the generality of degradation features and the stability of data-driven mod-

els.” This claim is quite broad and should either be justified or supported by a citation. The

given explanation of both challenges is not persuasive, thus not adequately justifying the use

of PINN for SOH modeling in that paragraph; they only include general references about the

technique and don’t cite recent works on using PINN for battery SOH modeling (the latest

reference provided by the authors, unless I’m mistaken, is [36] from 2021). For instance, in

reference [14] provided by the authors, more recent studies are mentioned, such as:

Nascimento, R.G., Viana, F.A.C., Corbetta, M. et al. A framework for Li-ion battery prog-

nosis based on hybrid Bayesian physics-informed neural networks. Sci Rep 13, 13856 (2023).

https://doi.org/10.1038/s41598-023-33018-0

It’s challenging to pinpoint the exact contribution of the paper: it isn’t the first to use PINNs

for battery SOH modeling, and the SOH model used is simpler than others previously em-

ployed. They also don’t specify which of the open topics in SOH estimation mentioned in

[14] are addressed (e.g., transferring the model across different chemistries and charge profiles

or capacity recovery after resting). The introduction needs revision, and the authors should

clearly state their paper’s unique contribution to the field and cite the latest related works.

RESPONSE: Thank you for your valuable comment. we appreciate the opportunity to clar-

ify and enhance the positioning of our research within the context of the SOH estimation for

batteries. Regarding the statement on page 3, line 12, noted by the reviewer, we realize that

it is indeed too broad and does not go far enough to elicit the justification for using PINN

for SOH modeling. We are grateful to the reviewer for pointing this out. In this revised

manuscript, we have modified it to make it more reasonable and naturally lead to the ratio-

nality of our modeling using PINN. The specific modifications are as follows:

“ However, challenges still stand in the way of developing reliable, accurate, and general SOH

estimation methods [1; 2]. Physics-based models are stable and accurate, but batteries with

different chemical compositions require different model parameters, and the models have high

computational costs [3]. The data-driven models have high accuracy and efficiency, but its

generalizability depends on the extracted features and have poor stability [2; 4]. ...”

“ The promising prospect of physics-informed neural network (PINN) [5; 6] lies in amalga-

mating the strengths of physics-based and data-driven approaches, potentially addressing the

aforementioned challenges. ...”
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In the original manuscript, our reference [36], named Perspective—combining physics and

machine learning to predict battery lifetime, primarily encapsulates methods integrating physics

knowledge and machine learning for battery modeling and prognosis. In response to the re-

viewer’s comment about our paper didn’t cite recent works on using PINN for battery SOH

modeling, we have reviewed and cited some related papers in this revised manuscript. The

addition is outlined below:

“... It is a promising approach in the field of battery prognosis and diagnostics. Aykol et

al. [7] presented 5 approaches that combine physical knowledge and machine learning for

battery modeling. Within this framework, some work has been published [8; 9; 10; 11; 12].

Nascimento et al. [8] directly implemented the numerical integration of principle-based gov-

erning equations through recurrent neural networks to simulate the dynamic response of the

battery. Wang et al. [11] proposed a battery neural network (BattNN) for discharge voltage

prediction based on the equivalent circuit model (ECM). Hofmann et al. [12] used the pseudo-

two-dimensional (P2D) Newman model to generate data at different health status points and

combined it with experimental data and field data to train the neural network model, which

takes advantage of the correlation between internal states and measurable SOH. ”

The reviewer pointed out: “It’s challenging to pinpoint the exact contribution of the

paper: it isn’t the first to use PINNs for battery SOH modeling, and the SOH model used is

simpler than others previously employed.” We make a clear clarification here. There are two

types of tasks in the field of battery modeling and health management. One is a task within

one charging/discharging cycle, including state-of-charge (SOC) estimation, end-of-discharge

(EOD) prediction and other tasks. The other is the task in the entire life cycle, including

SOH estimation, remaining-useful-life (RUL) prediction, degradation trajectory prediction.

The dynamics of the battery in one cycle can be accurately described by physical models such

as electrochemical models (pseudo-two-dimensional (P2D) model, single particle (SP) mode,

etc.) and equivalent circuit models (ECM). However, there are only some experience models

in the entire life cycle for battery degradation process. Most of the existing PINN methods

are for SOC estimation or EOD prediction tasks. For example, the work mentioned by the

reviewer: Nascimento, R.G., et al. A framework for Li-ion battery prognosis based on hybrid

Bayesian physics-informed neural networks, and other papers [13; 14]. These methods can be

combined with physical models such as P2D or ECM, thus appear to be more complex than

our method.

Of course, there is also a small amount of work using PINN for SOH estimation, such

as [9; 10; 15]. According to the classification in reference [36], our method is different from

existing methods. The classification given in literature [36] is shown in Figure 1. Most of

the existing methods belong to the A1 and A2 category, which mainly use physical models to
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pre-process data. Aykol et al. has said in the paper that “Sequential integration of standalone

PB and ML modeling tools (type A architectures) is a well-defined challenge focused primarily

on software development and integration. Sequential architectures are solvable today,

through integration, improvement, and repurposing of existing scientific software. On the other

hand, the hybrid architectures (type B) for electrochemical modeling remains

an open research question. Type A is a practical near-term strategy for battery health

forecasting, whereas type B will become dominant in the long term. The class of

hybrid approaches have potential to fuse the causative and extrapolative capabilities of physics-

based models with the speed, flexibility, and higher-dimensional capability of datadriven models,

such as deep neural networks. ” In our opinion, the type B method is more essential, and it

can truly integrate physical models and machine learning models. Our method belongs to

category B2. By modeling the degradation dynamics model of the battery, the idea of PINN

is introduced to solve the model. Moreover, we verified the feasibility and effectiveness of this

method in transfer learning and small sample learning. To clarify how our proposed method

differs from existing methods, and to naturally lead to our approach, we added the following

statement to the revised manuscript:

”Although existing PINNs have shown promising results in battery modeling and prognosis,

most of them focus on modeling within one cycle (such as state-of-charge (SOC) estimation and

end-of-discharge (EOD) prediction). There are few publication that implement battery degra-

dation modeling or use machine learning methods to solve the battery degradation equation

to achieve SOH estimation. In this work, we proposed a PINN for battery SOH estimation. ...”
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Figure 1: A screenshot of Fig. 1 from Aykol et al. [7].

Comment: Section 2 outlines their method implementation. It begins with the network

architecture and data generation. In section 2.3, an essential aspect is discussed: the authors

have chosen a 0.2 V range between the maximum charge voltage (or minimum discharge), but

they don’t clearly detail the conditions under which this measurement should occur (I miss

specifications on the resting period required after full charge or discharge and its relation to

the charging rate). This section needs more details and a better justification. In section 2.4,

there’s a brief comparison with a convolutional network. This could be enhanced by incor-

porating SOH estimation methods from other authors in the literature. Currently, they’ve

shown that a neural architecture using physical knowledge outperforms a convolutional one,

but this finding isn’t very informative. When comparing network errors, it seems they are

using features they’ve defined, essentially contrasting two algorithms they’ve developed, not

benchmarking against the state-of-the-art in SOH data estimation. Moreover, they don’t de-

fine the function F incorporating the physical knowledge until section 4, making it necessary
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to skip forward and then backtrack to understand these results. The document’s organization

could be improved.

RESPONSE: Thanks for reviewer’s comment. We chosen a 0.2 V range between the max-

imum charge voltage for feature extraction. The default charging strategy is the charging

process includes constant current and constant voltage (CC-CV) mode. The resting period af-

ter full charge or discharge is not necessary because our feature extraction process has nothing

to do with the resting period. The charging rate has little impact on our feature extraction

method, as long as the same battery is charged with the same strategy in all cycles. The four

datasets we used all contain CC-CV charging mode, but the charging rate varies from dataset

to dataset. The XJTU dataset and TJU dataset are charged in CC-CV mode throughout the

entire process, while the HUST dataset and MIT dataset are first charged to 80% SOC and

then charged in CC-CV mode. In this revised version, we have added statements to Section

2.3. Feature extraction in this revised manuscript.

“... We found that most datasets contain constant current and constant voltage (CC-CV)

charging modes. No matter what strategy the battery is discharged with or whether it is fully

discharged, it will eventually be fully charged in the CC-CV mode when charging.

Therefore, ... ”

The reviewer suggested that we compare the proposed method with other methods in

the literature. Here, we make a discussion and clarification: In the field of computer vision

(CV) or natural language processing (NLP), they have many benchmarks for comparison,

and their comparison is fair (fixed database, unified data loading code, unified preprocessing

code, similar model backbone). However, the field of battery health management lacks such

benchmarks, and few authors make their code publicly available, which creates barriers to fair

comparisons. While there are publicly available datasets for researchers to validate proposed

methods, variations in the selection of training and test batteries, data preprocessing tech-

niques, and the number of cycles after preprocessing introduce variability in model inputs.

Consequently, achieving a fair comparison becomes challenging. This is also a pain point in

the field of battery health management. In fact, we found that many methods proposed in

some high-level articles are not compared with other methods [16; 17; 18; 19; 20] because it

is impossible to create fair comparison conditions. Even though some articles compare their

method with some other methods, these methods are also implemented by themselves [21; 22]

based on their own data characteristics.

In addition, the main contribution of our manuscript is to provide a new perspective on

battery modeling and prognosis that combines physical knowledge and machine learning, indi-

cating the prospects of combining physical knowledge and machine learning for battery health

management. What’s more, to ensure that the extracted features and the proposed PINN
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have wider applicability, we extract features from the common parts contained in hundreds

of charging and discharging protocols across 4 large-scale datasets. In contrast, many current

studies only use a small amount of data to verify the proposed model. They extract specific

features for specific datasets and are not very general. These methods may fail when changing

other datasets.

In response to the reviewer’s comment, we still looked for test results of the other method

proposed the other articles (albeit with different model inputs and numbers of training

and test batteries). However, it seems that no method in any article has been validated on

all datasets we used, especially our developed new dataset. Therefore, we can only look for

different methods from different papers for each dataset, as shown in Table 1. For the above

reasons, our method in our manuscript only compares MLP with the same backbone structure

and CNNs with similar parameter amounts. They have the same data splitting method and

preprocessing method, and the same input, ensuring relatively fair results.

Table 1: The Comparison between our proposed method and other methods.

Reference Method

TJU MIT HUST

batch 1 batch 2 batch 3 —— ——

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Our paper

Our PINN 0.0164 0.0158 0.0119 0.0132 0.0080 0.0079 0.0065 0.0074 0.0078 0.0087

MLP 0.0206 0.0197 0.0149 0.0157 0.0150 0.0144 0.0079 0.0087 0.0080 0.0090

CNN 0.0198 0.0208 0.0143 0.0149 0.0124 0.0125 0.0065 0.0075 0.0074 0.0087

[21]1
ICA-based Linear model [23] 0.0130

RV-based Linear Model [24] 0.0250

[25]2

Proposed GPR 0.0216

LR [26] 0.0328

SVM [27] 0.0214

RFR [28] 0.0214

KNN [29] 0.0198

[30]

LSTM [31] 0.0486

DCNN [32] 0.0413

Proposed method 0.0147

[33] MFL model 0.0104

[34]3 BTCN 0.0045

[35]

SVR 0.0075 0.0102

MLP 0.0082 0.0109

RF 0.0072 0.0104

Note: [1] The ICA refers to Incremental Capacity Analysis and the RV refers to Rest Voltage. ”ICA-based Linear model [23]”

means that this method was proposed in article [23] and cited and implemented in article [21] as a comparison method.

[2] In [25], only batteries cycled in the 25 degree and 45 degree are used.

[3] In [34], only 4 batteries were selected to validate the proposed method, and the results in the table are the average of 4

batteries.

Important: The training and test batteries used in these papers may be different from those in our manuscript, and the

inputs to the models may also be different. Therefore, the above comparison is unfair and can only be used as a reference.

Finally, we apologize the issue of document’s organization with the manuscript that result

in reviewer to skip forward and then backtrack to understand these results. This document’s

organization is suggested by the journal template. A screenshot of the template is given in

7



Figure 2. If the modeling part is placed in an early Section, the Methods Section will ap-

pear abrupt and incomplete. Therefore, we cannot make major changes to the overall layout.

In response to the reviewer’s suggestion and enable readers to see our description about the

model earlier, we have made brief changes in Section 2.1. Framework overview and added a

hyperlink to Section 4. Method in this Section:

”... The attributes that affect the battery degradation process are modeled from the perspec-

tive of empirical degradation and state space. Specifically, the proposed PINN consists of two

parts: a solution function u(·) that maps the features to SOH and a dynamical function F(·)
that models battery degradation dynamic behaviors. We integrate the model with the neural

network, and use the automatic differentiation mechanism of the neural network to solve our

model (more details can be found in Section 4). ...”

Figure 2: A screenshot of the template provided by Nature Communications.

Comment: In section 4, the authors introduce a function modeling physical knowledge

about SOH’s temporal evolution. This section is somewhat challenging to follow. Equation

(1) defines a SOH value sequence indexed by cycle. Equation 2 references a continuous variable

u(t); I gather uk is a discretization of u(t). The function F is the derivative of u(t) and depends

on time, health, and a parameter. Equation 5 expands u to depend on a parameter x (though

u is already defined as F’s integral, thus depending on the previously introduced parameter Θ).

Equation 6 redefines F to depend on two parameters and also states u as a partial derivative

of F , deviating from equation (2). By equation (7), the explanation becomes muddled: it

defines a function subtracting ut (that was defined in equation (1) as a SOH sequence) from

its partial derivative concerning time, indicating that ut becomes a derivative. Yet, this implies
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that, per definition (7), f := 0. Equation (8) redefines ut to include u’s gradient concerning

the parameter vector x; by the same logic, I assume uxx is this function’s Hessian, though

it doesn’t seem to be used later. There are other issues of varying significance and other

technical quality aspects, but at this point, the authors should revise this section and address

these concerns before the manuscript can be considered.

RESPONSE: Thank you for your detailed observations and feedback on Section 4 of the

manuscript. I appreciate your efforts in thoroughly examining the modeling section regarding

the evolution of SOH over time. I am sorry that carelessness on our part has led to repeated

use of symbols and lack of clarity in this section, causing you concerns about the clarity and

consistency of the equations presented. Please allow me to address your points and provide

clarification.

In the original version, we define uk = Qk/Q0 as the SOH of a battery in the cycle k.

Equation 2 references a continuous variable u(t), and the reviewer is right that uk is the dis-

cretization of u(t). However, we use ut in the following to represent the first partial derivative

of u with respect to t, which causes it to be mixed with uk. In this revised version, we use

u(k) to represent the SOH of the battery in cycle k to avoid duplication of its form with ut,

as show in Equation (1) (Equation (1) in Manuscript).

u(k) =
Qk

Q0

. (1)

The discretized SOH sequence is defined as u = [u(1), u(2), · · · , u(n)] (the original version is

u = [u1, u2, · · · , un]), where n denotes the life cycles of a battery.

Equation (2) in the manuscript models the SOH degradation process as a time series, which

is only the most basic form. However, this simple form is not sufficient to cover the dynamics

during battery degradation. Therefore, Equation (2) needs to be extended (Equations (3) and

(4) in the Manuscript) to take into account more factors. In this revised version, we added a

introduction when presenting Equation (4) (Equation (2) in this Response Letter):

“ The Eq. 2 is reformulated as a form of partial differential equation (PDE) to incorporating

more factors: ”
∂u (t,x)

∂t
= F (t,x, u; Θ) . (2)

The explanation of Equation (7) (Equation (5) in revised manuscript) becomes muddled

because we define ut as the partial derivative of u with respect to t (ut = ∂u(t,x)
∂t

in the

Manuscript), which is formally the same as the SOH sequence defined in the original Equation

(1). In this revised version, we redefine the SOH sequence, as shown in Equation (1).

For Equation 8 (Equation (6) in revised manuscript), we redefine ut because the explicit

form of battery degradation dynamics is not known, i.e., F (t,x, u; Θ) defined in Equation
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(4) (Equation (2) in this Response Letter) is unknowable. Inspired by previous work [36; 37],

since F is not known anyway, we define a more general nonlinear dynamic form so that it

can cover various situations [37], and use a neural network to model F . Therefore, we get

Equation (6) (Equation (3) in this Response Letter).

“... Inspired by [36; 37], we redefine a more general nonlinear dynamics F of battery degra-

dation, due to the fact that the explicit form of battery degradation is unknown:

ut = F (t,x, u, ut, ux, uxx, · · · ; Θ) , (3)

The reviewer is right that uxx is a Hessian matrix. Considering the computational complex-

ity, we discarded the high-order derivatives and only retained the influence of the first-order

derivatives. Therefore, the final equation we modeled is:

ut = F (t,x, u, ut, ux; Θ) . (4)

We also explain in our manuscript:

“... Finally, to balance the accuracy and computational complexity, we only consider the

influence of the first-order partial derivative and discard the high-order derivative. ...”

I acknowledge that these equations require further clarification and refinement to accu-

rately represent the battery degradation model. I am committed to revising this section

comprehensively to enhance its clarity and coherence, ensuring a more precise description of

the battery aging dynamics. Thank you for pointing out these important aspects that need

improvement.
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2 Response to Reviewer #2

There are three issues to address.

Thanks to reviewer for taking the time on our manuscript. We have read your comments in

detail, thought deeply about them, and responded accordingly.

Comment: 1) The first, the plot in figure 4 did not properly convert to pdf. I can’t see the

plot. I tried different pdf viewers and all with the same results.

RESPONSE: Thanks for reviewer’s comment. In our original manuscript, Figure 4 consists

of sub-figures (a) and (b), and each sub-figure actually contains 16 sub-figures. We think the

reason it cannot be converted to PDF correctly is that the dpi of the two figures is large.

To ensure that the figure has a high enough resolution, we directly generate a PDF version

with our code and save it. When we open sub-figure (a) or (b) alone on our computer, the

computer takes a short time to load and freezes.

To answer the reviewer’s question, we re-saved the two figures into “png” format and used

them to generate this Response Letter. The Figure 4 in original manuscript (Figure 3a in

revised manuscript. Since the Nature Communications limits the number of display items to

10, we have adjusted the figures and tables) is shown in Figure 3 (the revised manuscript still

uses figures in PDF format).

Figure 3: An illustration of extracted features from the XJTU dataset batch 1. Different color
represents different battery.
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Comment: 2) I am not convinced that the good model performance is not simply due to infor-

mation leakage. https://www.sciencedirect.com/science/article/abs/pii/S2542435123003197.

The current article doesn’t ever really explain what the task of prediction is. Since SOH

depends on both the battery internal quality as well as the us conditions, the linked article

above argues that it is critical to be careful in defining the task you are trying to actually do (

beyond the simple reply of “predict SOH”). What are you really trying to predict? Since the

datasets were all created with different hypothesis in mind, it is hard to determine whether

leakage is happening by using the same features across the data. The authors should more

clearly define their task and clarify how they have ensured leakage is not the reason for good

performance. Leakage can fool even careful practitioners.

RESPONSE: Thanks for reviewer’s comment. Upon reviewing the link provided by the

reviewer, we read in detail the article by Geslin et al. [38] titled Selecting the appropriate

features in battery lifetime predictions, as well as the source article detailing the feature ex-

traction methods employed in that study: Greenbank et al. [39] Automated feature extraction

and selection for data-driven models of rapid battery capacity fade and end of life.

Let’s start by answering the reviewer’s first question: The current article doesn’t really

explain what the task of prediction is? The difference from the previous two articles is that

our work focuses on state of health (SOH) estimation rather than remaining useful life (RUL)

prediction. We give Figure 4 here to explain the difference between them. The SOH is defined

as the ratio of the capacity of the current cycle to the initial capacity, and the RUL is typically

defined as the remaining cycles that a lithium-ion battery is estimated to be functional [40].

Fundamentally, the SOH estimation task is a point-to-point regression problem, differing from

the task addressed in Geslin’s work.

Moreover, after a detailed review of Geslin’s and Greenbank’s articles, I found significant

differences between our feature extraction method and theirs, if I understood correctly. In their

studies, features derived from any one cycle are influenced by other cycles. Here, we present

two screenshots from Greenbank’s article, depicted as Figure 5 and Figure 6. They initially

aggregate data across multiple cycles (Greenbank considers 9-19 cycles, Geslin mentions 10

cycles), as depicted in Figure 5(c) . Subsequently, percentiles as shown in Figure 6 are derived,

which are then utilized to compute features.

I suspect that the process of computing percentiles might lead to information leakage, as

different charging strategies may result in disparate data distributions. Moreover, this process

involves multiple cycles, potentially leading to the leakage of information from other cycles to

the current one.

Additionally, the task of RUL prediction aims to answer the question: “Given historical

observational data, how many cycles can the battery sustain under current charge-discharge
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[40].

protocols?” Hence, Geslin et al. argue that inconsistent charging protocols contribute to

information leakage. Furthermore, they state in their article “the CCCV at the end of

charge is kept constant across all cells and mitigates explicit data leakage to the

discharge data.” This indicates that a fixed CCCV mode can reduce information leakage.

Returning to our study, our task involves SOH estimation on a cycle-to-point basis. In

our feature extraction process, features from any given cycle are entirely independent of other

cycles. Moreover, our feature extraction occurs during the CCCV stage before the battery

reaches full charge, as shown in Figure 2b in the Manuscript File. Therefore, we believe our

method should not encounter issues related to information leakage.

Finally, we genuinely appreciate the reviewer highlighting this potential concern. In future

research, we will be more vigilant about this aspect.

Comment: 3) What the physics are that are being included is not really clear from the writ-

ing. It kind of exists in section 4, but it is hard to really figure out at a high level what physics

are being accounted for. In an early section, a clearer description of the physical model(s)

would be helpful.

RESPONSE: Thanks for reviewer’s comment. There are two types of tasks in the field of

battery modeling and health management. One is a task within one charging/discharging cy-

cle, including state-of-charge (SOC) estimation, end-of-discharge (EOD) prediction and other
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Figure 5: A screenshot of Fig. 3 in Greenbank’s paper [39].

Figure 6: A screenshot of Table 2 in Greenbank’s paper [39].

tasks. The other is the task in the entire life cycle, including SOH estimation, remaining-

useful-life (RUL) prediction, degradation trajectory prediction. The dynamics of the battery

in one cycle can be accurately described by physical models such as electrochemical models

(pseudo-two-dimensional (P2D) model, single particle (SP) mode, etc.) and equivalent circuit

models (ECM). However, it is very difficult to use electrochemical models to describe battery

degradation over the life cycle because it involves many uncontrollable factors. Therefore,

the current mainstream approach is to use empirical models to describe battery degradation

process.

Some previous work proposed models, such as calendar and cycle aging model [10; 41],

exponential degradation models [42; 43], failure forecast models (FFM) [44], etc., all of which

14



describe battery degradation from an empirical perspective. In fact, they also have difficulty

explaining the physics at a high level. In this manuscript, we also model the attributes that

affect the battery degradation process from the perspective of empirical degradation and state

space, and use the idea of PINN to solve our model.

Regarding the reviewer’s suggestion that we describe the physical model in the early sec-

tion, our manuscript’s layout is suggested by the journal template. A screenshot of the tem-

plate is given in Figure 7. If the modeling part is placed in an early Section, the Methods

Section will appear abrupt and incomplete. Therefore, we cannot make major changes to the

overall layout. In response to the reviewer’s suggestion and enable readers to see our descrip-

tion about the model earlier, we have made brief changes in Section 2.1. Framework overview

and added a hyperlink to Section 4. Method in this Section.

“... The attributes that affect the battery degradation process are modeled from the perspec-

tive of empirical degradation and state space. Specifically, the proposed PINN consists of two

parts: a solution function u(·) that maps the features to SOH and a dynamical function F(·)
that models battery degradation dynamic behaviors. We integrate the model with the neural

network, and use the automatic differentiation mechanism of the neural network to solve our

model (more details can be found in Section 4). ...”

Figure 7: A screenshot of the template provided by Nature Communications.
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3 Response to Reviewer #3

Comment: In this manuscript, neural networks are used to estimate the SOH from statisti-

cal parameters during a period of (full) charge. This first neural network is then used as the

input of a second PINN to estimate the progression of the SOH over time. The application to

different, comprehensive datasets of cells with different chemistry, make the work interesting,

especially the application of transfer learning. We suggest accepting the manuscript after

major revisions, as some work needs to be done to make the manuscript more readable and to

provide additional information on parameterization and selection of hyperparameters to make

this a valuable contribution to the community. We would recommend adapting the structure

of the manuscript so that the method is explained first, then the results are presented and

discussed and finally there should be a conclusion section. Special attention should be paid to

avoid jumping between the manuscript and supplementary material. Thus, all relevant infor-

mation, especially on the features, should also be included in the manuscript. Please consider

the following remarks:

RESPONSE: Thank you for your thoughtful review and constructive feedback on our manuscript.

We appreciate your positive comments on the significance of our work and your valuable sug-

gestions on the need to further improve the readability of the manuscript and provide addi-

tional information on parameterization and hyperparameter selection. Regarding the struc-

ture of the manuscript, we understand the importance of presenting our methods, results,

and conclusions clearly and organically. We will reorganize the manuscript to first provide

a comprehensive explanation of our methods, followed by presentation and discussion of the

results, ensuring that information is coherent and not spread between the main text and the

supplementary material. Specifically, we will work to incorporate these suggestions into the

revised manuscript and provide a point-by-point response below, outlining the changes made

in response to your comments.

Comment: 1. In the abstract, please name the error metric (MAE, RMSE) you refer your

final validation results to.

RESPONSE: Thanks to reviewer’s comment. The error in Abstract refers to MAPE (Mean

Absolute Percentage Error), which is calculated based on the 4 values (0.85%, 1.21%, 0.65%,

and 0.78%) in Section 2.4 SOH estimation. In this revised manuscript, we point out the error

metric in the Abstract.

“... The mean absolute percentage error (MAPE) is 0.87%. ...”

Comment: 2. In the Introduction, please give more details about your chosen PINN ar-
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chitecture with reference to other works, i.e. , Aykol et al. (10.1149/1945-7111/abec55) or

Hofmann et al. (10.1149/1945-7111/acf0ef). With the current introduction, it does not get

directly clear where the physics-based modelling takes place. It more looks like it’s a sequen-

tial NN with a novel feature extraction method.

RESPONSE: Thanks for reviewer’s comment. When we were conducting the literature re-

view, we had read in detail the article by Aykol et al., as cited in the reference [36] in the

original manuscript. The article by Aykol et al. gives five approaches that combine physi-

cal knowledge and machine learning for battery modeling, as shown in Figure 1. They are:

A1. Sequential Integration: Residual or Delta Learning; A2. Sequential Integration: Transfer

Learning; A3. Sequential Integration: Parameter Learning; B1.Hybrid: Physics-constrained

MLM; B2.Hybrid: ML-accelerated PBM.

In the article by Hofmann et al., they used the P2D model to generate simulation data and

combined it with laboratory data and vehicle field data to train the neural network model. The

model they finally obtained is shown in Figure 8. According to our understanding, the model

they proposed belongs to a type of Sequential PINN (A1 or A2). The physical knowledge is

reflected in the use of immeasurable internal states, such as concentrations and potentials.

Figure 8: A screenshot of Fig. 8 in Hofmann’s article [12].

Aykol et al. said in the paper that the architecture of type B2 relies on physics-informed

ML. This hidden physics models have been pioneered by Raissi and co-workers, leading to

the design of physics-informed neural networks (PINNs) [36]. PINNs exploit the automatic
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differentiation and universal function approximator aspects of neural networks to train on,

solve and/or discover the nonlinear PDEs of the observed system, with small amounts of data,

in effect obeying the underlying physical laws and boundary conditions.

According to the above description, our model should belong to category B2. One fact

is that the process of a battery during a charge and discharge cycle can be described by

the electrochemical PDE equation (such as the P2D model); however, during the entire life

cycle, as far as we know, there does not seem to be an equation that can accurately describe

the battery degradation. Some previous work proposed models, such as calendar and cycle

aging model [10; 41], exponential degradation models [42; 43], failure forecast models (FFM)

[44], etc., all of which describe battery degradation from an empirical perspective. In this

manuscript, we also refer to the idea of PINN from the perspective of empirical degradation

and state space, model the attributes that affect the battery degradation process. We utilized

the automatic differentiation and universal function approximators of deep learning to design a

simple neural network structure to solve the degradation model we established. In the process

of designing and solving the our model, we have referred to the ideas of Raissi et al. [36; 37],

as described in Section 4.2 Physics-informed neural network of the Manuscript File. In this

revised manuscript, we adopted the reviewer’s suggestion and added an description to the

proposed PINN in the Introduction.

“... Aykol et al. [7] presented 5 approaches that combine physical knowledge and machine

learning for battery modeling. ...”

“ Although existing PINNs have shown promising results in battery modeling and prog-

nosis, most of them focus on modeling within one cycle (such as state-of-charge estimation

and end-of-discharge prediction). There are few publication that implement battery degra-

dation modeling or use machine learning methods to solve the battery degradation equation

to achieve SOH estimation. In this work, we proposed a PINN for battery SOH estimation. ...”

Comment: 3. Please include the paper by Hofmann et al. (10.1149/1945-7111/acf0ef) into

your reference list as they have also introduced a sequential PINN for SOH estimation.

RESPONSE: Thanks for reviewer’s comment. In this revised version, we have cited the

article by Hofmann et al. (10.1149/1945-7111/acf0ef).

“... Hofmann et al. [12] used the pseudo-two-dimensional (P2D) Newman model to generate

data at different health status points and combined it with experimental data and field data

to train the neural network model, which takes advantage of the correlation between internal

states and measurable SOH. ”

Comment: 4. In Figure 2 please provide the units in your axis-labels, i.e., “Capacity /
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Ah”. Please include a legend to allow mapping every batch to the specific degradation curves.

Further, make the Figure bw-readable by using different linestyles.

RESPONSE: Thanks to the reviewer for pointing out this issue. In this revised manuscript,

we have added units and legends, and marked different batches with different markers, as

shown in Figure 9 (Figure 2a in revised manuscript).
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Figure 9: The degradation trajectories of the XJTU battery dataset. We use different colors
to represent different batches.

Comment: 5. We understand that the statistical features are all connected to the end of

the charge process and this approach is possible for all applications, where a full charge is

performed frequently. However, it is not true that for all or even most applications a full

charge is performed frequently. In contrary users are directed to stop charging at 80% by

special apps to avoid increased aging.

RESPONSE: Thanks for reviewer’s comment. As far as we know, many devices we are

familiar with are often fully charged during their charging stages, such as electric vehicles [45;

46], unmanned aerial vehicles [47], mobile phones, and satellites [48]. Full charging provides

extended range for electric vehicles and unmanned aerial vehicles, and longer use time for

phones. In the case of satellites, batteries are often operated at shallow discharge depths for

safety and reliability reasons, and remain fully charged most of time [49]. Additionally, many

published works [21; 50; 45; 22; 48] have proposed their methods based on batteries being fully

charged.

However, we agree that the reviewer’s concern is valid. Some device designers and manu-

facturers may offer users the option to set battery levels at 80%, allowing users to customize

based on preference. Our method indeed does not cover this particular scenario. For this

scenario, new feature extraction rules need to be designed, but the PINN model framework

we proposed can still be used. We greatly appreciate the reviewer highlighting this point, and

we will pay more attention to such situations in our future research.
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Comment: 6. It is claimed, that “An important finding is that the magnitude of the corre-

lation coefficient between each feature and SOH is related to the chemical composition of a

battery and is less affected by the charge/discharge protocols.” However, there is no evidence

given. Please refrain from that claim or provide evidence.

RESPONSE: Thank you for your comment. We acknowledge that the reviewer is very rig-

orous and I apologize for our lack of rigor. The statement in the manuscript is a description

or conjecture given by us based on our experimental observations. It cannot be called a ”find-

ing” due to the lack of sufficient evidence. In this revised manuscript, to be more rigorous, we

changed it to a conjecture:

“Based on experimental phenomena and analysis of Figure 3b, we give a natural conjecture:

the magnitude of the correlation coefficient between each feature and SOH is related to the

chemical composition of a battery and is less affected by the charge/discharge protocols. ...”

Comment: 7. Please extend Figure 3 to also show which time-series data is additionally

used for SOH estimation. From the text and Figures it gets very clear which data is used for

feature extraction, but it is hard to grasp which time-series data is additionally used for SOH

estimation together with the extracted features.

RESPONSE: Thank you for your comment. In Figure 3 of original (Figure 2b in revised

manuscript. Since the Nature Communications limits the number of display items to 10, we

have adjusted the figures and tables), we have shown the data used to feature extraction.

A total of 16 features were extracted from voltage and current curves. When modeling, the

extracted 16 features and cycle number were used to estimate SOH (a 17-dimensional vector).

Since the cycle is not easily shown clearly in the figure, we explained it in Section 2.4 SOH

estimation.

2.4. SOH estimation

The extracted 16 features and time (cycle) are used as inputs of the proposed PINN to

estimate SOH. ...

Comment: 8. In Figure 5 please make clear which feature number refers to which feature.

If the order is consistent with Figure 4, please mention that again. In the text, also include

that you have used the Pearson correlation coefficient.

RESPONSE: Thanks to the reviewer for pointing out this issue. The order of features in

Figure 5 (Figure 3b in revised manuscript) is consistent with that in Figure 4 (Figure 3a

in revised manuscript), please forgive us for forgetting to mention it again. In this revised

manuscript, we mention it in the caption of Figure 3b (Figure 10 in this Response Letter). At
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the same time, we also indicate that we have used the Pearson correlation coefficient in the

article.

2.3. Feature extraction

”... Further, we extracted features from 387 batteries in 4 datasets respectively, and calculated

the Pearson correlation coefficient between features and SOH within each dataset, ...”

(a)

XJTU

TJU

MIT

HUST

Feature Number

(b)

Figure 10: An illustration of extracted features and correlation coefficients. (a). Features from
the XJTU dataset batch 1. Different colors represent different batteries. (b). Correlation
heatmap between extracted features and SOH in 4 datasets. The numbers 1 to 16 represent
16 features, and the order of features is consistent with that in (a).

Comment: 9. In figure 7 the y-axis should be scaled equal for all subplots for better com-

parability of the performance with respect to different datasets. Again, errors given in % are

more readable than fractions (i.e. 1% instead 0.01).

RESPONSE: Thanks for reviewer’s comment. In this revised manuscript, we set the y-axis

of each subplot in % format to make it more readable. However, we think that different

datasets have varying estimation complexities. It is unnecessary to forcibly set the y-axis of

each subplot to be equal, as it can be unfriendly to the presentation In addition, by setting

the y-axis to the % format, it is easier to see the y-axis range of each subplot, and it is rela-

tively easy to compare the performance with respect to different datasets. Therefore, we still

retained the original y-axis in the revised manuscript. In this Response Letter, we presented

two situations to support our above statement, as shown in Figure 11.

However, we do not think this is a controversial issue. If the reviewer still insists that the

y-axis should be scaled equal, we can also put Figure 11b into the manuscript.
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Figure 11: An illustration of test error distributions for 3 models on 4 datasets. (a): the raw
version. (b): the version that all y-axes are set equal.
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Comment: 10. Please comment on the different correlations of the statistical features with

respect to chemistry. It is not obvious why there should be a difference between NMC and

LFP cells.

RESPONSE: Thanks for reviewer’s comment. For this problem, we conducted some analysis

from the perspective of data, as shown in Figure 12. In the figure, we draw the current

and voltage curve segments used for feature extraction in 4 datasets. Among them, the

electrochemical composition of the XJTU batteries is LiNi0.5Co0.2Mn0.3O2, the TJU batteries

is Li0.84Ni0.83Co0.11Mn0.07O2. We will call them NCM battery in the following. The the

electrochemical composition of MIT batteries and HUST batteries are both LiFePO4 (LFP).

Some interesting phenomena can be observed from the figure. For NCM batteries, as

the battery ages, the constant voltage (CV) charging time gradually increases (that is, the

time it takes for the current to drop from 0.5 A to 0.1 A becomes longer) (Figure 12(b) and

Figure 12(d)). However, for LFP batteries, the phenomenon is opposite: as the battery ages,

the CV charging time gradually becomes shorter (Figure 12(f) and Figure 12(h)). Among

the extracted features, the time it takes for the current to drop from 0.5 A to 0.1 A is

one of the features ("CV charge time" in Figure 3a of the Manuscript (Figure 10a in this

Response Letter), feature numbered 14 in Figure 3b of the Manuscript (Figure 10b in this

Response Letter)). For NCM batteries, the charging time becomes longer, so "CV charge

time" shows a negative correlation with SOH, and the correlation is strong. For LFP batteries,

the charging time shorter, and "CV charge time" shows a positive correlation with SOH.

They are consistent with the results in Figure 10b. Other features derived from current curves

can presumably be interpreted similarly.

For the voltage curves in the constant current (CC) charging stage (the voltage range is

[Vend−0.2, Vend]), the charging time of LFP batteries (Figure 12(e) and Figure 12(g)) obviously

gradually becomes shorter as the battery ages, so the "CC charge time" shows a high positive

correlation with SOH (feature numbered 6 in Figure 10b). The voltage change trend of

the NCM batteries does not seem to be as obvious as that of the LFP batteries from the

Figure 12(a) and Figure 12(c). Therefore, LFP batteries are superior to NCM batteries in

terms of consistency of all features derived from voltage curves.

The above are some phenomena we observed and some conjectures we got from the changes

in the voltage and current curve. There should be deeper reasons behind these phenomena,

such as the chemical composition of the battery and other factors. However, exploring the

above reasons from the perspective of battery chemical composition is beyond our ability in

this paper. The deeper reasons may require further research by more scholars. For the sake of

rigor, and based on the reviewer’s Comment 6, we have revised the sentence in this revised

manuscript that describes the correlation coefficient between the features and SOH with the
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connection to battery chemical components.

“Based on experimental phenomena and analysis of Figure 5, we give a natural conjecture:

the magnitude of the correlation coefficient between each feature and SOH is related to the

chemical composition of a battery and is less affected by the charge/discharge protocols. ...”

(a) (b)

(c)

(e)

(g)

(d)

(f)

(h)

Figure 12: Schematic diagram of current and voltage curves used to extract features in 4
datasets. Among them, XJTU battery dataset and TJU dataset come from NCM batteries,
and MIT dataset and HUST dataset come from LFP batteries.
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Comment: 11. As some features seem to be highly correlated, could you please comment on

the selection of the features? How did you decide to incorporate all 16 features?

RESPONSE: Thanks for reviewer’s comment. The reviewer raises a pertinent point regard-

ing the high correlation among some features. However, our decision to incorporate all 16

features is informed by several considerations.

Primarily, previous studies [21; 51; 52; 53] in the field of battery health management often

employ multiple features. Given the adaptability of neural network models to handle higher-

dimensional inputs, the inclusion of 16 features is within a reasonable range. Hence, we

refrained from conducting feature selection.

Moreover, aiming for a more generalized SOH estimation model led us to retain all features.

While certain features might demonstrate high correlation, each feature potentially encapsu-

lates unique aspects of SOH variation. Considering the potential diversity across datasets, a

smaller feature set might excel in one dataset but falter in others, hence compromising the

model’s generalizability.

Additionally, noise in the dataset is a crucial concern. A reduced feature set might ex-

acerbate susceptibility to noise interference. By incorporating all 16 features, we aimed to

fortify the model against potential noise impacts without sacrificing predictive performance

significantly.

Furthermore, the possibility of interaction effects among features is crucial. Even corre-

lated features might contribute to the prediction through their combined or interactive effects,

and eliminating them might undermine the model’s capability to capture these complex rela-

tionships.

In summary, our decision to include all 16 features stems from precedents set by similar

studies, the adaptability of neural networks to higher dimensions, the pursuit of a universally

applicable model across diverse datasets, the need for robustness against noise, and the con-

sideration of potential interaction effects among features.

Comment: 12. In Section 2.4 please include more information about the data split. How

did you make sure that batteries from the same batch are not too similar and hence the test

datasets is too similar to the training dataset? How much percentage is training and how

much is test data?

RESPONSE: Thanks for reviewer’s feedback. In the initial version of the Supplementary

file, we provided the number of batteries used for testing in each dataset in Table S.2. Within

each dataset, the ratio of training, validation, and testing sets is approximately divided in a

ratio close to 6:2:2, although it is not strictly adhered to. For instance, the XJTU batch 1

dataset comprising 8 batteries, we selected 2 batteries as the test set (the test battery ratio
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is 25% ). From the remaining 6 batteries, we first shuffled all cycle data for each battery,

then allocated 20% of the data as validation sets, and the rest as training sets. To ensure

equitable data allocation, we selected data from batteries numbered 4 and 8; this methodol-

ogy was maintained across other batches (as shown in Table S.3). Similarly, the MIT dataset

comprising 125 batteries, we selected batteries with IDs as multiples of 5 for the test set (23

batteries), aiming to ensure a more even distribution of test batteries across the entire dataset.

In response to the reviewer’s suggestion, we have included additional clarification in Section

2.4. SOH estimation in this revised manuscript.

“... For each dataset, we divide the training battery, validation battery, and test battery ap-

proximately in a ratio of 6:2:2. The number of test batteries in each dataset can be found in

Table S2. To ensure fairness, the numbers of test batteries are evenly distributed throughout

the dataset, as shown in Tables S.3 to S.6. ...”

Comment: 13. Please provide information about the hyperparameter tuning for the pro-

posed PINN. Which architectures were explored and which approach (e.g. Bayes, Random

Search, Grid Search) was used for optimizing the hyperparameters.

RESPONSE: Thanks to reviewer’s comment. In the process of hyperparameter tuning, we

used Grid Search method to optimize the hyperparameters, including the number of PINN

layers, the number of neurons in each layer, and the trade-off parameters α and β. Other

parameters, such as batch size, have relatively little impact on model performance, so they

are designed based on experience, computer performance, data volume, and other information.

For the learnable parameters in PINN, the Adam optimizer is used to optimize. In this revised

version, we have added relevant information in Supplementary Note 3.

“... The proposed PINN was learned by minimizing the loss defined in Eq. 13 of the Manuscript

File, and the Adam optimizer was used in the training phase. In the process of hyperparame-

ter tuning, the Grid Search strategy was adopted to optimize the hypterparameter, including

the number of PINN layers, the number of neurons in each layer, and α and β. The trade-off

parameters α and β are set to 0.7 and 20 for XJTU battery dataset, 1 and 50 for TJU and

MIT datasets, and 0.5 and 80 for HUST dataset. ...”

Comment: 14. Please provide an updated benchmark to create a fair comparison of the

PINN to the MLP and CNN. This means, that the hyperparameters of the MLP and CNN

should be tuned to their respective optima. In this matter, also include the computational

complexity of all three models.

RESPONSE: Thanks for reviewer’s comment. In this revised manuscript, we have optimized

the parameters of MLP and CNN again so that they can be adjusted to optimal values. We
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use the Adam optimizer and use the cosine annealing algorithm to control the learning rate.

The optimized results were used to update Table 2 in the Manuscript (Table 2 in this Response

Letter) and Tables S.3, S.4, S.5, and S.6 in the Supplementary material.

Table 2: The results of proposed PINN (Ours), MLP, and CNN on 4 datasets. MAPE is the
mean absolute percentage error, and RMSE is the root mean square error. The best results
are shown in bold. All values are averaged from 10 experiments.

Dataset Batch

Ours MLP CNN

MAPE RMSE MAPE RMSE MAPE RMSE

XJTU

1 0.0070 0.0094 0.0260 0.0277 0.0270 0.0330

2 0.0113 0.0122 0.0275 0.0304 0.0298 0.0352

3 0.0086 0.0100 0.0211 0.0237 0.0177 0.0212

4 0.0071 0.0105 0.0200 0.0235 0.0150 0.0189

5 0.0105 0.0135 0.0183 0.0217 0.0350 0.0453

6 0.0063 0.0097 0.0204 0.0242 0.0149 0.0194

TJU

1 0.0164 0.0158 0.0206 0.0197 0.0198 0.0208

2 0.0119 0.0132 0.0149 0.0157 0.0143 0.0149

3 0.0080 0.0079 0.0150 0.0144 0.0124 0.0125

MIT —— 0.0065 0.0074 0.0079 0.0087 0.0065 0.0075

HUST —— 0.0078 0.0087 0.0080 0.0090 0.0074 0.0087

In addition, we also calculated the inference time of all three models, as shown in Table

S.8 in the Supplementary material (Table 3 in this Response Letter). Since the number of

parameters of all three models is small, we did not use GPU for acceleration. Three models

were implemented in Pytorch 1.7.1 on Intel Core i5-10400F CPU @ 2.90 GHz. It can be seen

from the Table 3, the inference speed of all three models is very fast. The solution u(·) of

our PINN is the same as MLP. During the forward inference process, dynamics F(·) does not

need to be calculated, so the inference time of our PINN is similar to MLP.
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Table 3: The details of proposed PINN, MLP, and CNN. Sin refers to the sine function.
BasicBlack is similar to that in ResNet [54], which consists of Conv1d, BatchNorm1d, ReLU,
Conv1d, and BatchNorm1d.

Model Module Layer Input size Output size Inference Param. Num. Inference time/1000 sample

PINN

u(·)

Linear+Sin 17 60

7781 5.81e-04

Linear+Sin 60 60

Linear 60 32

Linear+Sin 32 32

Linear 32 1

F(·)
Linear+Sin 35 60

Linear+Sin 60 60

Linear 60 1

MLP

Linear+Sin 17 60

7781 5.64e-04

Linear+Sin 60 60

Linear 60 32

Linear+Sin 32 32

Linear 32 1

CNN

BasicBlock (1,17) (8,17)

8465 1.29e-02

BasicBlock (8,17) (16,9)

BasicBlock (16,9) (24,5)

BasicBlock (24,5) (16,5)

BasicBlock (16,5) (8,5)

Linear 8*5 1

Note: The values in the ”Inference time/1000 sample” column represents the the time, in seconds, spent in inference per

1000 samples. Specifically, we set the batch size to 1000, count the time spent on 1000 forward inferences, and then take the

average. Since the number of parameters of three model is small, we do not use GPU for acceleration. Three models were

implemented in Pytorch 1.7.1 on Intel Core i5-10400F CPU @ 2.90 GHz.

Comment: 15. Please expand the explanations on the PINN: which aspects in this model

are to be understood as physical boundary conditions and which are not? In particular, since

the partial derivatives of the SOH with respect to the statistical features are included, it is

not obvious which physical, chemical boundary conditions are to be considered here.

RESPONSE: Thanks to reviewer’s comment. PINN was originally proposed in the paper

[36] and is used to solve partial differential equations (PDE), such as Schrödinger equation

and Navier-Stokes equation. In these equations, they have obvious boundary conditions in

mathematical formulas and have physical meanings. However, in the field of battery SOH

estimation, as the reviewer said, the boundary conditions are not obvious. We model the

battery from the perspective of degradation dynamics, which essentially does not involve the

physical and chemical changes inside the battery. Therefore, we do not consider chemical

boundary conditions, but only the initial boundary condition and the monotonicity of the

battery degradation process.

Ideally, u(0) = 1. In fact, u(0) is not equal to 1 in many cases, and it can be calculated as

u(0) = Qinitial/Q0, where Qinitial represents initial capacity, and Q0 denotes nominal capacity.
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In addition, the battery degradation process should be monotonic, that is, the SOH of the

next cycle should be less than or equal to the previous cycle, unless capacity regeneration

occurs. Therefore, we design a monotonicity loss to constrain the model during the training

stage:

L = Ldata + αLPDE + βLmono, (5)

If capacity regeneration occurs, the trade-off parameter β can be adjusted to change the im-

pact of Lmono on model performance.
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4 Response to Reviewer #4

Comment: I co-reviewed this manuscript with one of the reviewers who provided the listed

reports. This is part of the Nature Communications initiative to facilitate training in peer

review and to provide appropriate recognition for Early Career Researchers who co-review

manuscripts.

RESPONSE: Thank you for your valuable contribution as a co-reviewer in evaluating our

manuscript. We highly value the insights and perspectives shared by both you and the other re-

viewers. Your comments have significantly contributed to the enhancement of our manuscript.

Once again, we extend our gratitude for your contribution and constructive feedback, which

will undoubtedly help us in refining our manuscript to meet the required standards for publi-

cation.

Finally, we also found some annotations on our manuscript, which we suspect

may have been annotated by you or other reviewers. We have modified every

annotation. Thanks again!
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have added recent references that were not considered in the previous draft. 

However, after including references [39,40,41,42,43], they state, "There are few publications that 

implement battery degradation modeling or use machine learning methods to solve the battery 

degradation equation to achieve State of Health (SOH) estimation," which seems contradictory. 

The new paragraph added by the authors to justify the novelty of their study consists of three 

sentences: 

"Although existing Physics-Informed Neural Networks (PINNs) have shown promising results in 

battery modeling and prognosis, most focus on modeling within one cycle (such as state-of-charge 

(SOC) estimation and end-of-discharge (EOD) prediction)." 

I cannot agree with this statement, at least regarding the references where PINNs are used to 

model degradation, as this is not measured in a single cycle. Following this, it is stated that 

"There are few publications that implement battery degradation modeling or use machine learning 

methods to solve the battery degradation equation to achieve SOH estimation." 

Again, I consider this statement debatable, as there are numerous studies where machine learning 

is applied to estimate battery SOH, including a number of works with an electrochemical approach 

to degradation. Lastly, the authors indicate 

"In this work, we propose a PINN for battery SOH estimation." 

In the response letter to the reviewers, a categorization of methods defined in [36] is referenced, 

and a figure from reference [7] is included. On one hand, this explanation is not included in the 

paper. On the other, the justification in the letter still does not fully address my initial comment, 

which was, "It’s challenging to pinpoint the exact contribution of the paper: it isn’t the first to use 

PINNs for battery SOH modeling, and the SOH model used is simpler than others previously 

employed." 

In the second comment, the authors state that the rest time after a CC-CV charge is not relevant 

since "whether it is fully discharged, it will eventually be fully charged." Whether a battery is 

considered "fully charged" or "fully discharged" depends on the experimental conditions and the 

procedure followed to interrupt the charge or discharge. 

In the third comment, the authors are told that their paper is difficult to follow from start to finish 

and requires jumping back and forth several times. Their response is that the journal's outline 

forces them to organise their paper in this way. Given that other papers published in this same 

journal with the same outline do not suffer from this problem, I remain dissatisfied with the 

organisation of the paper. 

Finally, the authors were informed that there were significant errors in the notation of the 

functions in section 4. The authors have redefined their variable u(t) in equation 1, which is now a 

sequence u(k), but as a result, their equation (2) now refers to du(t)/dt, which makes no sense if 

u is a discrete variable. I understand that they have a variable u(t) and that in equation (1) they 

intended to define a sequence of values u_k=u(t_k) for some temporal values t_k. The equation 

(2) in the revised version is now different from the one indicated in the initial draft; in the initial 

draft, it was a partial differential equation referring to a state variable x, which has been 

eliminated from the definition of the function {\cal F} in the revised draft. Subsequently, the 

authors "redefine" the variables as if they were writing a computer program; this is not an 

acceptable practice. The same equation is defined in various ways, making it difficult to ascertain 

whether {\cal F} depends on the variable x or not, whether u is a sequence or a continuous 

function. I also cannot make sense of the new equation 5, where a function is defined that, 



according to equation (4), is f:= u_t - {\cal F}(etc) = \frac{\partial{u(t,x)}}{\partial{t}} - {\cal 

F}(etc) = {\cal F}(etc) - {\cal F}(etc) = 0. The rest of the section contains errors of similar 

importance. 

Reviewer #2 (Remarks to the Author):

I thank the authors for their reply and update. 

I am still a bit concerned about the information leakage issue, as I think my question was not clear 

enough. Also, information leakage can fool experienced people, and I am not really qualified 

enough to spot these things from the manuscript. 

My question about "what the prediction task really is" - does not refer to whether they are 

predicting SOH or RUL. What I meant was - are you trying to predict the variation in outcomes due 

to manufacturing variability? Are you trying to understand the outcomes based on design 

variability? Are you trying to predict outcomes, based on differences in charging time? Are you 

trying to predict the outcomes, based on different driving conditions? Leakage can occur, when 

using data/experiment that was designed to answer one of the above questions - but then that 

data is used to create a model to answer a different question. 

The paper I referred to makes the point that if your data and prediction tasks don't align - you can 

trivially introduce the "answer" to the prediction task in the form of information leakage. 

Again, leakage issues can be very subtle and I don't know that the authors have an issue. My 

concern lies in that the same features are being used across different datasets that were designed 

to test different scientific hypothesis - therefore my concern about leakage is from that simple 

observation alone. 

I think the final version of the paper should include some text to acknowledge the problem and 

explain what steps the authors took to make sure the results are not "leaked". Again, I don't know 

of any test to claim there is no leakage - so I will have to trust that the authors have done this 

carefully. 

Reviewer #3 (Remarks to the Author):

The manuscript was revised based on the comments and most questions were clarified in detail. 

In view of its low novelty value, the paper could nevertheless make an important contribution by 

explaining the implementation and application of a PINN in a clear manner and also discussing its 

limitations. However, the structure of the paper makes it difficult to understand and impedes 

readability. Unfortunately, this point of criticism was not addressed further. 

I therefore do not recommend publication in the present form. 

Reviewer #3 (Remarks on code availability):

The code is well structured and readability is also good. However, it would be greatly appreciated if 

the comments in the code could be expanded and translated into English. Currently they are in 

Chinese. 



Reviewer #4 (Remarks to the Author): 

I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is 

part of the Nature Communications initiative to facilitate training in peer review and to provide 

appropriate recognition for Early Career Researchers who co-review manuscripts 

Reviewer #4 (Remarks on code availability): 

The attached code with it's description is comprehensive and understandable.



Response Letter

Journal Title: Nature Communications

Manuscript ID: NCOMMS-23-46244A

Title of Paper: Physics-informed neural network for lithium-ion battery degradation stable

modeling and prognosis

Note: In this Response Letter, the contents in blue are the responses and discus-

sions to the comments of editors and reviewers; the contents in red indicate that

these contents have been added to the revised manuscript.

First of all, the authors would like to express their sincere thanks to the anony-

mous reviewers for their helpful comments and suggestions. The explanation of

the modifications as well as corrections in this revision can be arranged as follows

(comment numbers are in 1:1 correspondence with the reviewers’ comments).
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1 Response to Reviewer #1

Comment: The authors have added recent references that were not considered in the pre-

vious draft. However, after including references [39,40,41,42,43], they state, ”There are few

publications that implement battery degradation modeling or use machine learning methods

to solve the battery degradation equation to achieve State of Health (SOH) estimation,” which

seems contradictory. The new paragraph added by the authors to justify the novelty of their

study consists of three sentences:

“Although existing Physics-Informed Neural Networks (PINNs) have shown promising results

in battery modeling and prognosis, most focus on modeling within one cycle (such as state-

of-charge (SOC) estimation and end-of-discharge (EOD) prediction).”

I cannot agree with this statement, at least regarding the references where PINNs are used to

model degradation, as this is not measured in a single cycle. Following this, it is stated that

“There are few publications that implement battery degradation modeling or use machine

learning methods to solve the battery degradation equation to achieve SOH estimation.”

Again, I consider this statement debatable, as there are numerous studies where machine

learning is applied to estimate battery SOH, including a number of works with an electro-

chemical approach to degradation. Lastly, the authors indicate

“In this work, we propose a PINN for battery SOH estimation.”

In the response letter to the reviewers, a categorization of methods defined in [36] is referenced,

and a figure from reference [7] is included. On one hand, this explanation is not included in

the paper. On the other, the justification in the letter still does not fully address my initial

comment, which was, “It’s challenging to pinpoint the exact contribution of the paper: it isn’t

the first to use PINNs for battery SOH modeling, and the SOH model used is simpler than

others previously employed.”

RESPONSE: Thank you again for reviewing our revised manuscript v1 and providing your

valuable comments. We sincerely appreciate your feedback. We will respond to your questions

and comments in points.

1. We are aware of the contradictions in our statements pointed out by the reviewer and

apologize for them. First, we still give here the figure in reference [1] that appears in response

letter v1, as shown in Figure 1. In this figure, Aykol et al. classified battery modeling methods

that combine physical knowledge and machine learning into five categories, including three

Sequential Integration methods, A1-A3, and two Hybrid methods, B1-B2. Among them, an

obvious feature of the Sequential Integration method is that the physical model and the ma-

chine learning model are standalone, while the Hybrid method fuses the two together. The

Sequential Integration method is relatively straightforward to implement because the physical

2



Figure 1: A screenshot of Fig. 1 from Aykol et al. [1].
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model and the machine learning model are standalone, making it a practical near-term strat-

egy for battery modeling. The Hybrid methods, on the other hand, are more fundamental as

they truly integrate the primary governing equations for battery modeling with data-driven

methods. However, due to the complex physical model (such as P2D model) contain numerous

parameters and are difficult to solve, the Hybrid architectures for electrochemical modeling

remains an open research question. In revised manuscript v1, what we want to state is that

“there are not many publications using PINN (specifically the Hybrid approach, i.e. using

physical equations to explicitly constrain the neural network or integrate physical equations

into neural networks) to model the battery degradation process and estimate its SOH.” How-

ever, the lack of rigorous expression led to contradictions. To avoid such a contradiction, we

have deleted this sentence in this revised manuscript and expressed it in a more appropriate

sentence.

“ There are few publications that implement battery degradation modeling or use machine

learning methods to solve the battery degradation equation to achieve SOH estimation.”

2. For the reviewer’s comment: The new paragraph added by the authors to justify the nov-

elty of their study consists of three sentences: “Although existing ...” I cannot agree with this

statement, at least regarding the references where PINNs are used to model degradation, as

this is not measured in a single cycle. In our revised manuscript v1, we state: “Although

existing PINNs have shown promising results in battery modeling and prognosis, most focus

on modeling within one cycle (such as state-of-charge (SOC) estimation and end-of-discharge

(EOD) prediction).” We understand your skepticism about this view, as there does exist some

literature using PINNs to model battery degradation that is not limited to a single cycle. We

sincerely appreciate you pointing this out. To avoid unnecessary misunderstandings and am-

biguities, we have deleted this sentence in this revised manuscript.

“ Although existing PINNs have shown promising results in battery modeling and prognosis,

most of them focus on modeling within one cycle (such as state-of-charge (SOC) estimation

and end-of-discharge (EOD) prediction). ”

3. For the reviewer’s comment: Following this, it is stated that “There are few ... ” Again,

I consider this statement debatable, as there are numerous studies where machine learning

is applied to estimate battery SOH, including a number of works with an electrochemical

approach to degradation. Lastly, the authors indicate “In this work, we propose a PINN

for battery SOH estimation.” We apologize for the loose statement in revised manuscript v1.

We understand your doubts about this point of view and thank you again for your valuable

comments. This is caused by our improper expression. What we want to express is that there

are not many publications using PINN (specifically the Hybrid approach, i.e. using

physical equations to explicitly constrain the neural network or integrate physical

4



equations into neural networks), rather than machine learning, to model the battery

degradation process and estimate its SOH. As the reviewer said, there is a large amount of

research applying machine learning methods to estimate the SOH of batteries, including a

number of works with an electrochemical methods. In contrast, there are few works using

PINN (specifically the Hybrid approach in [1]) to model battery SOH, and it is worthy of fur-

ther exploration by scholars. In our revised manuscript v1, we wanted to use this sentence to

introduce the contribution of our work, but it caused ambiguity due to improper expression. In

this revised manuscript, we have deleted this sentence and modified it to include other words

to express the difference between our work and existing publications and our contributions.

4. For the reviewer’s comment: In the response letter to the reviewers, a categorization of

methods defined in [1] is referenced, and a figure from reference [1] is included. On one hand,

this explanation is not included in the paper. On the other, the justification in the letter

still does not fully address my initial comment, which was, ”It’s challenging to pinpoint the

exact contribution of the paper: it isn’t the first to use PINNs for battery SOH modeling,

and the SOH model used is simpler than others previously employed .” We further clarify

our statement in response to reviewer comment. However, PINN is a broad definition and

it can have multiple architectures types and implementations, as classified in [1] (Figure 1).

According to our literature survey and understanding, most existing PINNs for battery SOH

modeling belong to the Sequential Integration method in [1], and we have also classified the

methods reviewed in this revised manuscript. These methods utilize physics-based models

(such as P2D, SPM, ECM, etc.) for data argumentation, or use ML to learn the parameters

of the physics-based model, so their physical model part is more complex. However, more

complex models do not necessarily mean better. Our method belongs to category B2, and the

implementation of the method is different from existing methods. At the same time, we also

demonstrate the superiority of the proposed method in small sample learning and transfer

learning among batteries with different chemistries and charging/discharging profiles. These

are the ways in which our method differs from existing methods, and the contributions of our

work. In this revised manuscript, we have added the classification and explanations in refer-

ence [36] to the article based on the reviewer’ comments, and stated the differences between

our method and those in other publications in detailed. To summarize, we’ve listed all

the changes made to this comment below.

“Aykol et al. [1] classified battery modeling methods that combine physical knowledge and

machine learning into five categories, including three Sequential Integration methods, A1-A3,

and two Hybrid methods, B1-B2. Among them, an obvious feature of the Sequential Integra-

tion method is that the physical model and the machine learning model are standalone, while

the Hybrid method fuses the two together.

5



According to the architectures proposed by Aykol et al. [1], these methods belong to the A2

[2; 3; 4] and A3 [5; 6] categories. ”

“In fact, the Sequential Integration method is relatively straightforward to implement be-

cause the physical model and the machine learning model are standalone, making it a practical

near-term strategy for battery modeling. Essentially, machine learning models in Sequential

Integration method are not subject to physical constraints. The Hybrid methods, on the

other hand, are more fundamental as they truly integrate the primary governing equations

for battery modeling with data-driven methods. However, due to the complex physical equa-

tions contain numerous parameters and are difficult to solve, there are few publications that

implement Hybrid methods for SOH estimation. Recent review [1] pointed out that Hybrid

methods will become the dominant method in the long term, but it is still an open research

question.”

“In this work, we proposed a PINN for battery SOH estimation, which belong to the B2

architecture. This approach achieves true integration of governing equations and neural net-

works, resulting in stable and precise SOH estimation. Unlike existing PINN approaches, we

also validated its advancements in small sample learning and transfer learning among batter-

ies with different chemistries and charge/discharge profiles. Specifically, first, considering the

complexity of the electrochemical equations, it hinders the development of B2-type PINNs.

Therefore, we model battery degradation dynamics from the perspective of empirical degra-

dation and state space equations, and utilize neural networks to capture battery degradation

dynamics. ...”

Comment: In the second comment, the authors state that the rest time after a CC-CV

charge is not relevant since “whether it is fully discharged, it will eventually be fully charged.”

Whether a battery is considered ”fully charged” or ”fully discharged” depends on the experi-

mental conditions and the procedure followed to interrupt the charge or discharge.

RESPONSE: Thanks for reviewer’s comment. We agree with the reviewer that whether a

battery is considered “fully charged” or “fully discharged” depends on the experimental con-

ditions and the procedures followed to interrupt the charge or discharge. We apologize for the

misunderstanding caused by the unclear reply in revised manuscript v1. In Revision 1, what

we want to state is that the rest time after CC-CV charging is not important for our proposed

SOH estimation method because our method does not use the data during the rest period. In

addition, our statement “whether it is fully discharged, it will eventually be fully charged” is

for the four datasets we used, and it is a description of the datasets we used. We understand

the doubts raised by the reviewer. In this revision, we have modified the relevant statements

to avoid misunderstanding and confusion.
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“... For the four public datasets we used, no matter what strategy the battery is discharged

with or whether it is fully discharged, it will eventually be fully charged when charging.”

Comment: In the third comment, the authors are told that their paper is difficult to follow

from start to finish and requires jumping back and forth several times. Their response is that

the journal’s outline forces them to organise their paper in this way. Given that other papers

published in this same journal with the same outline do not suffer from this problem, I remain

dissatisfied with the organisation of the paper.

RESPONSE: We sincerely appreciate your comments and would like to explain further. We

take your questions about the organization of the article very seriously. In our response letter

v1, we mentioned that the journal’s outline requirements require us to organize the content

of the article in a certain order, and this point of view does exist. However, we understand

your concerns and are aware that similar issues have not arisen in other articles published

in the same journal. To solve this problem, we have reorganized the content of Section

2.1 Framework overview and flowchart and also redrawn Figure 1 to make it more coherent

and easier to understand. Specifically, in Figure 1, we draw the complete flowchart of the

proposed PINN for SOH estimation. We also refine the architecture of PINN and add some

formulas in Figure 1(c). Combined with the text description in Section 2.1, readers can first

have a preliminary understanding of our method. On this basis, they can smoothly read

and understand the paper from the beginning to the end, avoiding the need for readers to

jump back and forth. When the reader reads the Method section, he/she can learn in more

detail about our ideas when proposing the PINN and the analysis and implementation of the

PINN, so as to achieve a deeper understanding of the process of the PINN after knowing the

results of that. The revised content of 2.1 Framework overview and flowchart and Figure 1

are as follows. We also hope that these revisions can effectively resolve your concerns and help

improve your reading experience.

2.1 Framework overview and flowchart

We developed a PINN for lithium-ion battery SOH estimation, and its flowchart is shown

in Figure 2. Our method is designed for more general, reliable, stable, and high-precision

SOH estimation by considering the dynamic behavior of battery degradation as well as the

degradation trend.

In the data preprocessing stage (shown in Figure 2(b)), statistical features are extracted

from a short period of data before the battery is fully charged as the input of the model,

which ensures that this period of data exists in most battery datasets, and solves the problem

of non-universal features in existing studies. Therefore, our method is applicable to batteries

with different chemistries and charge/discharge protocols.
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Figure 2: The flowchart of the proposed PINN for lithium-ion battery SOH estimation. (a).
The lithium-ion batteries may have different chemistries. Different users have personalized
battery discharge strategies resulting in different degradation trajectories. (b). An illustration
of the selected data for feature extraction. We extracted features from a short period of data
before the battery is fully charged. These features are used as the inputs of the proposed
PINN to estimate SOH. (c). The structure of the proposed PINN (see section 4 for more
details).
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In the SOH estimation stage, due to the complexity of electrochemical equations, there is

currently no good way to integrate them with the neural networks. In this work, we mod-

eled the attributes that affect the battery degradation from the perspective of the empirical

degradation and state space equation, and utilized neural networks to approximate the es-

tablished degradation model, effectively achieving the integration of governing equations and

neural networks. The proposed PINN consists of two parts: a solution function f(·) that

maps features to SOH and a nonlinear function g(·) that models battery degradation dynamic

behaviors, as shown in the Figure 2(c). The solution f(·), modeling the relationship between

features and SOH, is expressed as ui = f(ti,xi), where ti represents time, xi represents the

extracted feature vector, and ui denotes the SOH of the cycle i. The nonlinear function g(·)
models the SOH decay rate of the battery. Since f(·) and g(·) are affected by many factors in

reality and their explicit expressions are unknown, they are replaced by small fully connected

neural networks, denote as F(·) and G(·). During training, we consider data term loss Ldata,

monotonicity loss Lmono, and loss LPDE constrained by the degradation equation described

by partial differential equation. They minimize the errors between the predicted and the

true values, while making the model follow the properties of monotonicity of the degradation

trajectory and satisfy the constraints of the established degradation model.

To validate the superiority of the proposed PINN, we conducted small sample experiments

and transfer experiments. During the transfer experiments, we froze G(·) and fine-tuned F(·)
on datasets with different chemical compositions. The experimental outcomes demonstrate

that the proposed PINN framework can effectively capture the dynamics of battery degrada-

tion. Our study combines knowledge of the battery degradation with neural networks and

achieves promising results. This study highlights the promise of physics-informed neural net-

work for battery degradation modeling and SOH estimation (more methodological details can

be found in Section 4).

Comment: Finally, the authors were informed that there were significant errors in the nota-

tion of the functions in section 4. The authors have redefined their variable u(t) in equation 1,

which is now a sequence u(k), but as a result, their equation (2) now refers to du(t)/dt, which

makes no sense if u is a discrete variable. I understand that they have a variable u(t) and

that in equation (1) they intended to define a sequence of values uk = u(tk) for some temporal

values tk. The equation (2) in the revised version is now different from the one indicated in

the initial draft; in the initial draft, it was a partial differential equation referring to a state

variable x, which has been eliminated from the definition of the function F in the revised draft.

Subsequently, the authors ”redefine” the variables as if they were writing a computer program;

this is not an acceptable practice. The same equation is defined in various ways, making it
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difficult to ascertain whether F depends on the variable x or not, whether u is a sequence or a

continuous function. I also cannot make sense of the new equation 5, where a function is de-

fined that, according to equation (4), is f := ut−F(...) = ∂u(t,x)
∂t
−F(...) = F(...)−F(...) = 0.

The rest of the section contains errors of similar importance.

RESPONSE: Thank you for reviewing our article again and pointing out a errors regarding

function symbols in Section 4. We attach great importance to your questions and will provide

detailed responses and modifications.

We do intend to define a sequence of values uk = u(tk) to represent the variable values at a

series of time points tk. However, we also realize that due to this change in variable definition,

the reference to du(t)/dt in equation (2) is no longer appropriate since u is now a discrete

variable. We are indeed aware of this error and have corrected it in the revised manuscript.

In addition, regarding your doubts about equation 5 (f := ut−F (t,x, u; Θ)), we realize that

we did not express it clearly. Let us explain this: The definition of f := ut−F (t,x, u; Θ) is the

standard definition of PINN, originally from the article Physics- informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear partial

differential equation. If the explicit forms of u(·) and F(·) in the equation are known, then

as to the reviewer’s understands, f defined in equation 5 is strictly equal to 0. However, in

our method, since the internal degradation mechanism of the battery is not known, both u(·)
and F(·) are fitted with neural networks, so f is not strictly equal to 0. The optimization

objective of the model is to make f approach to 0, so that the battery degradation mechanism

learned by the model satisfies the constraints of equation 4 (∂u(t,x)
∂t

= F (t,x, u; Θ)).

In this revised manuscript, we realized the problem of unclear formula description and redefi-

nition, so we reorganized and rewritten the entire Method section. It is worth noting that

the symbols have also been completely replaced. For the sake of uniformity, we use a

single lowercase letter to represent variables, such as u; a lowercase letter followed by paren-

theses to represent a function, such as f(·); and an uppercase “mathcal” font to represent a

neural network, such as F(·).
4.1 Battery degradation modeling

Battery aging is primarily characterized by a decrease in available capacity and an increase

in internal resistance, typically following a declining trajectory. To accurately describe the

battery degradation trajectory, scholars have proposed various empirical models to describe

the loss of battery capacity as a function of time or cycle numbers, including the linear model

[7], exponential model [8; 9], power-law model [10], and failure forecast model (FFM) [11],

etc. These models all describe the battery’s degradation trajectory as a univariate function of

time.

However, representing the degradation trajectory of batteries solely as a univariate function
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of time oversimplifies the process. In fact, battery degradation is not only related to time but

also related to charging rate, discharging rate, calendar time, temperature, depth of discharge

(DOD), etc. For example, Xu et al. [12] divided battery aging into calendar aging and cycle

aging, which considered factors such as state-of-charge (SOC), DOD, cell temperature, and

solid electrolyte interphase (SEI) film growth. They modeled calendar aging and cycle aging

as functions of calendar time, SOC, DOD, and temperature.

Therefore, modeling the degradation trajectory of a battery solely as a function of time is

inadequate. In this study, we propose to model it as a multivariate function:

u = f(t,x), (1)

where t represents time and x represents a vector composed of SOC, DOD, temperature,

charge rate, discharge rate, health indicators (HIs), and all other factors. In our work, x

represents the HIs extracted from the charging data (see 2.3 for more details).

Without loss of generality, to describe the degradation dynamics of the battery, its SOH

decay rate can be described as:
∂u

∂t
= g (t,x, u; θ) . (2)

The above equation is an explicit partial differential equation (PDE) parameterized by θ,

and g(·) represents the nonlinear function of t, x, and u. The function g(·) characterizes the

internal degradation dynamics of the battery, and by altering this nonlinear function, various

forms of degradation can be represented. Models such as linear model, exponential model,

power-law model, and FFM can be viewed as particular cases of Equation (2) when only the

time is considered.

4.2 Physics-informed neural network

An unavoidable problem is that the explicit form of g(·) is unknown and difficult to obtain.

In response to similar problems, Sun et al. [13] proposed a sparse regression physics-informed

neural network that exploits sparsity to learn the parameters θ of g(·) from a given candidate

set. Raissi et al. [14] proposed deep hidden physics models to model g(·). Inspired by

[14; 15], we propose to use a more generalized function approximator g
′
(·) with parameters θ

′

to represent the nonlinear dynamics g(·). Therefore, Equation (2) becomes:

ut ≈ g
′
(
t,x, u, ut, ux, uxx, · · · ; θ

′
)
. (3)

In the equation, ut = ∂u
∂t

, we employ a neural network F (t,x; Φ) with learnable parameters

Φ to model f(t,x) and utilize automatic differentiation mechanisms to compute ut. ux =[
∂u
∂x1
, ∂u
∂x2
, · · ·

]>
represents the first-order partial derivative of u with respect to x, and uxx
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represents the second-order partial derivative. One advantage of this approach is that we

do not need to specify a candidate basis function set for g(·), but instead employ a more

generalized approximators g
′
(·). The function approximator g

′
(·) propose a more flexible

relationship to t, u, x, and their arbitrary order partial derivatives. A neural network G (·)
with learnable parameters Θ is used to model g

′
(·) so that it can learn the aging mechanism

of the battery from the given x, t, and other partial derivatives.. To balance accuracy and

computational complexity, we only consider the influence of first-order partial derivatives,

discarding higher-order derivatives.

Building upon the aforementioned analysis, we define a physics-informed neural network

H [16; 15] for battery aging:

H :=
∂F (t,x; Φ)

∂t
− G (t,x, u, ut, ux; Θ) , (4)

where ∂F(t,x;Φ)
∂t

represents the partial derivation of solution neural network F(·) with respect to

t, and G(·) denotes the battery degradation dynamic equation modeled by the neural network.

The structure of the proposed PINN is shown in Figure 3.

Equation (4) is derived from Equation (2) and Equation (3). However, since it is fitted by

a neural network, its training process is discrete, so it does not strictly satisfy Equation (2).

For battery SOH, the calculation formula is [17]:

uk = f(k,x) =
Qk

Q0
, (5)

where Qk represents the capacity of cycle k and Q0 represents the nominal capacity. The SOH

value uk coincides with the point on the degradation trajectory f(·) when t = k. We need

to make H(ti,xi) = 0 hold at sample point i to approximate Equation (2). Therefore, the

optimization process of the PINN needs to adhere to the PDE loss specified by Equation (2),

i.e.:

LPDE =
N∑
i=1

∣∣H (ti,xi
)∣∣2, (6)

where superscript i denotes the i-th sample and N denotes the number of samples. Also, the

optimization objective includes data item loss and monotonicity loss:

Ldata =
N∑
i=1

∣∣ui − ûi∣∣2, (7)

Lmono =
M∑
j=1

Nj∑
k=1

ReLU
(
ûk+1 − ûk

)
, (8)
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where ûi represents the estimated SOH, M represents the number of batteries, Nj denotes the

number of cycles of battery j, and ReLU(·) is Rectified Linear Unit. The monotonicity loss

Lmono is based on the physical properties of battery degradation, that is, the SOH of the next

cycle should be less than or equal to that of the previous cycle (unless capacity regeneration

occurs). The total function is formulated as:

L = Ldata + αLPDE + βLmono, (9)

where the α and β are trade-off parameters. More details about our model can be found in

Supplementary Note 3.

(a) Training

(b) Fine-tuning

Frozen

Figure 3: An illustration of the proposed physics-informed neural network.

4.3 Transfer learning with physics-informed neural network

Our PINN for battery aging consists of two parts: a solution neural network F(·) that

builds the feature-to-SOH mapping and a neural network G(·) that models battery degrada-

tion dynamics, as shown in Figure 3. We believe that the degradation dynamics G(·) are

independent of charge/discharge protocols and datasets, while the solution F(·) is related to

them. Therefore, when our PINN is applied to transfer learning scenarios, dynamics G(·) is

frozen, and only solution F(·) is fine-tuned, as shown in Figure 3(b).
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2 Response to Reviewer #2

Comment: I thank the authors for their reply and update.

I am still a bit concerned about the information leakage issue, as I think my question was

not clear enough. Also, information leakage can fool experienced people, and I am not really

qualified enough to spot these things from the manuscript.

My question about ”what the prediction task really is” - does not refer to whether they are

predicting SOH or RUL. What I meant was - are you trying to predict the variation in out-

comes due to manufacturing variability? Are you trying to understand the outcomes based on

design variability? Are you trying to predict outcomes, based on differences in charging time?

Are you trying to predict the outcomes, based on different driving conditions? Leakage can

occur, when using data/experiment that was designed to answer one of the above questions -

but then that data is used to create a model to answer a different question.

The paper I referred to makes the point that if your data and prediction tasks don’t align

- you can trivially introduce the ”answer” to the prediction task in the form of information

leakage.

Again, leakage issues can be very subtle and I don’t know that the authors have an issue.

My concern lies in that the same features are being used across different datasets that were

designed to test different scientific hypothesis - therefore my concern about leakage is from

that simple observation alone.

I think the final version of the paper should include some text to acknowledge the problem

and explain what steps the authors took to make sure the results are not ”leaked”. Again, I

don’t know of any test to claim there is no leakage - so I will have to trust that the authors

have done this carefully.

RESPONSE: Thank you for your important comment about our manuscript. We take your

concerns about information leakage very seriously and are open to further discussions and

revisions on this version.

First of all, we deeply apologize as we may not have clearly understood your initial question

about the prediction task. Before this revision, we have looked for some more information

about “data leakage” to learn, and based on that, we try to answer the questions you have

asked.

In response to your mention of “SOH depends on both battery internal quality and usage

conditions”, as well as the inquiry “are you trying to predict...,” let us provide clarification.

Our model’s inputs do not include internal quality information or usage conditions. In other

words, we do not utilize data such as manufacturing variability, design variability, driving con-

ditions, etc., to predict variation in outcomes. Charging time is indeed included as a feature
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in the inputs to our model. However, it denotes the time span of the data segment we have

intercepted, which can reflect information about the battery degradation process.

The reviewer’s concern lies in that the same features are being used across different datasets

that were designed to test different scientific hypothesis. We endeavor to address this concern.

The selection of these features stems from the fact that variations in the charging curves of

batteries can reflect their aging process, and we have extracted these statistical features from

partial charging curves. As batteries undergo aging, various interface degradation processes

occur, along with the loss of lithium inventory and active materials, leading to increased re-

sistance in ion and electron transfer as well as intercalation reactions, thereby resulting in

changes in their charging curves [18]. Consequently, charging curves harbor rich degradation

process information. The segment of data we chose before the battery was fully charged can

be seen as a measure of the local information (utility) of the charging curve, which varies in

relation to energy dissipation and internal resistance accumulation [19]. In fact, we are not the

only ones who have done this to extract features from charging (or discharging) curves. There

are a number of published articles that have extracted features from charging/discharging

curves as inputs to their models [20; 21; 22].

Based on the concerns raised by the reviewer, we checked some information about “informa-

tion/data leakage” and found some traps of “information/data leakage”:

1. Improper handling of time series data: when handling time series data, the data in the

previous is used to predict the future data, and the future data is accidentally leaked

into the training set, resulting in data leakage. In our approach, we train our model with

data from battery A and test it on battery B; instead of training the model with early

data from battery A and testing it with later data, which avoids information leakage

from the training set to the test set. Therefore, all the features extracted are not leaked

during the training process.

2. The use of features with future information: e.g., labels or metrics generated based on

future events, can lead to leakage. Our method does not involve this issue.

3. Incorrect cross-validation: during cross-validation, if the data in the test set is “seen”

by the model during the training phase, this can also result in data leakage. Our model

does not use the cross-validation method, and the problem of the model having seen the

test data during the training phase does not occur.

4. Model leakage: Leaks can occur when model outputs or predictions are incorrectly used

as new training data or features. There are no such errors in our approach either.

Relevant information shows that if the model performs too perfectly on the test set, it is likely
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that a data leak has occurred. From Table 4 in the manuscript, “Source-only” results are

worse when we conduct transfer experiments between different datasets. Therefore, this also

indicates that there is no data leakage in our operation.

The reviewer would like us to add a paragraph to the manuscript acknowledging the problem

and explaining what steps we took to ensure that the results were not ”leaked”. In this

revision, we added relevant statements in Section 3 Discussion:

“Battery degradation modeling and SOH estimation are research hotspots in the field of

battery health management. As batteries aging, various interface degradation processes occur,

along with the loss of lithium inventory and active materials, leading to increased resistance

in ion and electron transfer as well as intercalation reactions, thereby resulting in changes in

their charging curves [18]. Consequently, the charging curve contains rich information on the

degradation process. However, using charge and discharge curves to estimate battery

SOH may fall into the trap of information leakage. Geslin et al. [23] pointed out

that inconsistent charging and discharging protocols, usage conditions, etc. may

lead to information leakage, which is a serious problem that may be ignored by

scholars. They believe that a fixed CC-CV mode can alleviate the problem of information

leakage. Hence, it is advisable to avoid incorporating factors related to internal battery quality,

manufacturing variability, and usage conditions as much as possible when performing SOH

estimation tasks. In our study, the features are extracted from a small segment of data from

the CC-CV stage before the battery is fully charged, which is independent of the battery

usage conditions. This ensures the usefulness and versatility of the features we extracted,

while avoiding the problem of information leakage caused by inconsistent charging protocols

or battery usage conditions. During the training and test stage, we train the model with data

from battery A and test it on battery B; instead of training the model with early data from

battery A and testing it with later data, which avoids information leakage from the training

set to the test set. ”
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3 Response to Reviewer #3

Comment: The manuscript was revised based on the comments and most questions were

clarified in detail.

In view of its low novelty value, the paper could nevertheless make an important contribution

by explaining the implementation and application of a PINN in a clear manner and also

discussing its limitations. However, the structure of the paper makes it difficult to understand

and impedes readability. Unfortunately, this point of criticism was not addressed further.

I therefore do not recommend publication in the present form.

RESPONSE: Thank you for your review of our revised manuscript v1, and we are sorry

that revision v1 did not address your concerns. We attach great importance to your concerns

about the structure and readability of the article and will provide further explanations and

revisions in this revision.

In response to the issues mentioned by the reviewer that the structure of the paper makes it

difficult to understand and impedes readability, we have reorganized the content of Section

2.1 Framework overview and flowchart and also redrawn Figure 1 to make it more coherent

and easier to understand. Specifically, in Figure 1, we draw the complete flowchart of the

proposed PINN for SOH estimation. We also refine the architecture of PINN and add some

formulas in Figure 1(c). Combined with the text description in Section 2.1, readers can first

have a preliminary understanding of our method. On this basis, they can smoothly read

and understand the paper from the beginning to the end, avoiding the need for readers to

jump back and forth. When the reader reads the Method section , he/she can learn in more

detail about our ideas when proposing the PINN and the analysis and implementation of the

PINN, so as to achieve a deeper understanding of the process of the PINN after knowing the

results of that. The revised content of 2.1 Framework overview and flowchart and Figure 1

are as follows. We also hope that these revisions can effectively resolve your concerns and help

improve your reading experience.

2.1 Framework overview and flowchart

We developed a PINN for lithium-ion battery SOH estimation, and its flowchart is shown

in Figure 2. Our method is designed for more general, reliable, stable, and high-precision

SOH estimation by considering the dynamic behavior of battery degradation as well as the

degradation trend.

In the data preprocessing stage (shown in Figure 2(b)), statistical features are extracted

from a short period of data before the battery is fully charged as the input of the model,

which ensures that this period of data exists in most battery datasets, and solves the problem

of non-universal features in existing studies. Therefore, our method is applicable to batteries

17



Input 
features

Output 
SOH

SOH 
decay rate

True SOH

: maps features to SOH : models battery degradation dynamics

Battery A
NCM

Battery B
NCA

Battery C
NCM+NCA

Scenario A Scenario B Scenario C

Battery N
LFP

…

Scenario N

…

Numerous charge/
discharge protocols

Batteries with 
different 

chemistries  

health failure

(a)

(b)

(c)

Figure 4: The flowchart of the proposed PINN for lithium-ion battery SOH estimation. (a).
The lithium-ion batteries may have different chemistries. Different users have personalized
battery discharge strategies resulting in different degradation trajectories. (b). An illustration
of the selected data for feature extraction. We extracted features from a short period of data
before the battery is fully charged. These features are used as the inputs of the proposed
PINN to estimate SOH. (c). The structure of the proposed PINN (see section 4 for more
details).
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with different chemistries and charge/discharge protocols.

In the SOH estimation stage, due to the complexity of electrochemical equations, there is

currently no good way to integrate them with the neural networks. In this work, we mod-

eled the attributes that affect the battery degradation from the perspective of the empirical

degradation and state space equation, and utilized neural networks to approximate the es-

tablished degradation model, effectively achieving the integration of governing equations and

neural networks. The proposed PINN consists of two parts: a solution function f(·) that

maps features to SOH and a nonlinear function g(·) that models battery degradation dynamic

behaviors, as shown in the Figure 4(c). The solution f(·), modeling the relationship between

features and SOH, is expressed as ui = f(ti,xi), where ti represents time, xi represents the

extracted feature vector, and ui denotes the SOH of the cycle i. The nonlinear function g(·)
models the SOH decay rate of the battery. Since f(·) and g(·) are affected by many factors in

reality and their explicit expressions are unknown, they are replaced by small fully connected

neural networks, denote as F(·) and G(·). During training, we consider data term loss Ldata,

monotonicity loss Lmono, and loss LPDE constrained by the degradation equation described

by partial differential equation. They minimize the errors between the predicted and the

true values, while making the model follow the properties of monotonicity of the degradation

trajectory and satisfy the constraints of the established degradation model.

To validate the superiority of the proposed PINN, we conducted small sample experiments

and transfer experiments. During the transfer experiments, we froze G(·) and fine-tuned F(·)
on datasets with different chemical compositions. The experimental outcomes demonstrate

that the proposed PINN framework can effectively capture the dynamics of battery degrada-

tion. Our study combines knowledge of the battery degradation with neural networks and

achieves promising results. This study highlights the promise of physics-informed neural net-

work for battery degradation modeling and SOH estimation (more methodological details can

be found in Section 4).

In addition, we value the reviewer’s comment that “the paper could nevertheless make an im-

portant contribution by explaining the implementation and application of a PINN in a clear

manner and also discussing its limitations”. Therefore, we have added more discussion of

PINN in Section 3. Discussion.

“When building the SOH estimation model, we proposed a PINN for battery SOH esti-

mation. Physics-informed neural network holds promise as an effective avenue for leveraging

artificial intelligence to address practical engineering problems. By amalgamating traditional

physics models with neural network models, it can more accurately capture the intricate

dynamic behavior of battery systems, thereby facilitating more reliable and precise state esti-

mation. However, this burgeoning field still requires further exploration by scholars. Within
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the framework proposed by Aykol et al. [1], Hybrid methods, which utilize physical equa-

tions to constrain neural networks or integrate physical equations into neural networks, will

become dominant in the long term. This class of hybrid methods have the potential to blend

the causality and extrapolation capabilities of physics-based models with the speed, flexibil-

ity, and high-dimensional capabilities of neural networks. However, the limitation of these

methods lies in the complexity of the battery’s physical model (e.g., the P2D model), which

contains numerous parameters, and the internal parameters of the battery are difficult to

collect. There is currently no satisfactory method to seamlessly integrate physical models

and neural networks. The PINN proposed in this paper is modeled from the perspective of

empirical degradation and state space equations, serving merely as an exploration of such

hybrid methods and acting as a catalyst for further research. Additionally, we only consider

extracting features from easily accessible current and voltage data. As more data and internal

variables become available, more complex electrochemical models can be considered. The op-

timal integration of battery governing equations and neural networks for health management

within the constraints of existing data and computational resources remains ripe for further

exploration. ”

Comment: (Remarks on code availability) The code is well structured and readability is

also good. However, it would be greatly appreciated if the comments in the code could be

expanded and translated into English. Currently they are in Chinese.

RESPONSE: Thanks to the reviewer for your positive comments on our code. In this revi-

sion, we have added English translations after the Chinese comments based on the reviewer’s

suggestions to facilitate reading by scholars from various countries. Please view our source

code for modifications. We will also continue to improve our code for public release.
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4 Response to Reviewer #4

Comment: I co-reviewed this manuscript with one of the reviewers who provided the listed

reports. This is part of the Nature Communications initiative to facilitate training in peer

review and to provide appropriate recognition for Early Career Researchers who co-review

manuscripts

RESPONSE: Thank you for your valuable contribution as a co-reviewer in evaluating our

manuscript. We highly value the insights and perspectives shared by both you and the other re-

viewers. Your comments have significantly contributed to the enhancement of our manuscript.

Once again, we extend our gratitude for your contribution and constructive feedback, which

will undoubtedly help us in refining our manuscript to meet the required standards for publi-

cation.

Comment: (Remarks on code availability) The attached code with it’s description is com-

prehensive and understandable.

RESPONSE: Thanks to the reviewer for your positive comments on our code. We will also

continue to improve our code for public release.
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have satisfactorily answered all my questions. I have no additional comments to 

make. 

Reviewer #2 (Remarks to the Author):

The authors have addressed my questions. I don't have any additional comments 

Reviewer #3 (Remarks to the Author):

All comments were addressed in detail. The explanation of the procedure is now broader, which 

makes the paper easier to understand. Together with the changes with reference to Reviewer 1, 

readability has certainly improved significantly. 

We therefore support the publication of the manuscript. 

Reviewer #3 (Remarks on code availability):

Good readability of the code, comments translated to english. 

Reviewer #4 (Remarks to the Author):

I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is 

part of the Nature Communications initiative to facilitate training in peer review and to provide 

appropriate recognition for Early Career Researchers who co-review manuscripts. 

Reviewer #4 (Remarks on code availability):

Clear and understandable
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