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This paper is not acceptable for publication in its present form but a future version may be
acceptable if the manuscript is revised substantially in accord with the comments below.

The goal of this paper is to argue, based on novel data collected and analyzed by the
authors, that a broadly applicable theoretical mechanism related to spontaneous pattern
formation of physical systems—the so-called Turing instability by which an initially uni-
form unpatterned medium can become unstable to the formation of a cellular pattern
with a characteristic length scale—is key to understanding how a particular kind of cellu-
lar neural activity (already well known through the efforts of previous researchers) arises
during brain development in a variety of animals that include primates and some other
animals like ferrets. That is, the authors use their data to argue that certain similar
cellular activity patterns observed in a variety of animal brains can be explained as a neu-
robiological example of a well-known pattern formation mechanism. If true, this result
would connect certain questions and details in brain development to a broad and advanced
theoretical and experimental literature of Turing instabilities and pattern formation (de-
veloped mainly outside of biology by physicists, chemists, and mathematicians), which
would stimulate new insights and new questions to be investigated.

While the data are state-of-the-art, new, and interesting, and the questions of how and
why similar cellular activity patterns arise during development in the cortices of different
animals are important and interesting, this referee feels the paper fails in several sub-
stantial ways to make a convincing argument that a Turing instability is relevant. The
following are key weaknesses of the paper that I feel have to be addressed in any revised
paper:

1. The paper has serious conceptual flaws. One is that the authors never clearly state
what they mean by a Turing mechanism so it is difficult to determine what they are
claiming in their paper.

The problem is that Turing’s original calculation in 1953 has been now discussed
and somewhat reinterpreted by such a big community of researchers (physicists,
mathematicians, chemists, biologists, engineers, and others) that the concept of a
“Turing mechanism” has become so broad as to be useless unless authors state
exactly what they are talking about, which the authors do not in this paper.

Turing’s original calculation was rather narrow and dealt only with the linear insta-
bility (growth of infinitesimal perturbations of all different wavelengths) associated
with an infinitely wide continuous medium that had no boundary conditions im-
posed. (Turing discussed mainly two reacting and diffusing chemicals, although he
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did discuss briefly a discrete medium consisting of a periodic ring of cells whose
sizes were tiny compared to the wavelength of the instability). Turing showed by
his pioneering theoretical calculations that, under certain circumstances (such as
varying the ratio of the diffusion constants of two chemicals), a spatially uniform
medium could become unstable to exponentially growing spatially sinusoidal modes
with a narrow distribution of wavelengths centered on the mode with the fastest
growing rate (the so-called critical wavelength of the linear instability).

But a key point is that Turing only discussed the onset of a linear instability and did
not discuss (because the mathematics was too hard at the time) what the linearly
growing modes would evolve into when the nonlinearities of the evolution equations
eventually cause the amplitudes of the growing modes to saturate to have finite
values. This saturated nonlinear regime is a new and different problem in pattern
formation that Turing did not address and many researchers, including the authors,
unfortunately and incorrectly, call the nonlinear saturated pattern a Turing pattern
or the result of a Turing mechanism (words used in the current paper).

This is an extremely important point for the authors to clarify in their paper. The
authors at no time discuss the linear instability of an initially approximately-uniform
patternless piece of cortex and so they never are in a position to observe a classical
Turing instability. Instead they are using optogenetics to optically perturb a portion
of the visual cortex of a still developing ferret after the cortex already has developed
an intricate inhomogeneous spatial structure that is not well characterized. (Local
excitation and longer-range lateral inhibition indeed exist but this is an extremely
crude qualitative observation since the anatomical and physiological details have
not been measured of the developing cortex and so are poorly characterized.) That
is, the authors are reporting results for a medium (visual cortex) whose spatial
symmetry is already broken (is nonuniform). While the results are still interesting,
the results lie outside of what Turing has discussed and, in fact, lies outside most
pattern formation theory since the nonlinear saturation of unstable modes in a
finite disordered inhomogeneous medium or the effects of order-one perturbations of
a nonlinear saturated medium is a difficult and only partially understood problem.

So Figure 1 of the paper is greatly misleading. Fig. 1b shows, but fails to explain
adequately, the growth rates σ(λ) for infinitely-wide sinusoidal modes of infinitesi-
mal magnitude in a spatially uniform domain. This figure is not applicable to the
experimental regime of the paper (or at least the authors have failed to show that
this is the case).

Figure 1c is an interesting and worthwhile experiment (uniformly activate by opto-
genetics all excitatory neurons in a region of visual cortex) but is especially unclear
how this is connected to a Turing or other pattern-forming instability: what is the
nature of the cortex just before the uniform optical stimulus is turned on? The
authors seem to be assuming that they are perturbing a uniform medium and so are
trying to influence the infinitesimal exponentially growing modes of a traditional
Turing instability. But the ferret’s cortex already has undergone some pattern for-
mation so panels c, d, and e of Figure 1 correspond to some difficult nonlinear
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already saturated regime that has no obvious relation to a Turing instability.

The only way I can make sense of this, which is consistent with Figures 2 and 3,
is that the authors are optogenetically stimulating an already existing nonlinear
pattern of cortex. This is, again, interesting to explore but is an entirely different
problem than what the paper claims to be interested in, which is to explain why a
cellular pattern forms in the first place in visual cortex.

In any case, the introduction of the paper and the discussions of Figures 1-3 are
deeply confusing because the authors are not being clear about what they mean by
a Turing mechanism. They are definitely not discussing a Turing instability and
not explaining how or why a cellular pattern arose in the first place in immature
ferret cortex. Instead, they are investigating what happens when they optically
activate just the excitatory neurons in a part of cortex that has already undergone
substantial pattern formation.

2. A next serious weakness of this paper is that the authors do not discuss development
nor self-organization so the title of this paper and much of the introduction and
conclusions need to be rewritten. The authors nowhere present data regarding
how the properties of the visual cortex are changing over time, how the patterns
are self-organizing over time. All that is being studied is how preexisting poorly
characterized neural activity patterns at a certain time during development are
responding to optogenetic perturbations. Again, interesting and worthwhile but
not what the authors claim they are studying.

A future revised version of this paper would be strengthened if the authors could
present results similar to Figures 2-3 over different developmental periods. The au-
thors should also present, as a control, results for an adult ferret (say in a completely
dark chamber so its eyes are not active and with its cortex also optogenetically ac-
tivated in the same way). And maybe another useful control would be to repeat
these experiments in preborn ferrets for which the optic nerves have been cut, so
pattern-formation cues from retinal waves have been turned off.

3. A third serious weakness of the paper is that the authors fail to discuss how opto-
genetic stimulation of just the excitatory neurons in visual cortex is related to the
kind of neural activity that arises in unperturbed ferrets from retinal waves or from
the eyes when the eyes are open. It is not obvious to this referee why a spatially
uniform optogenetic activation, or a spatially patterned activation like Fig 3(a), has
anything to do with the activation that would occur if the ferret were looking at
such a pattern with its eyes. This failure to discuss how optogenetic stimulation
is or is not related to visual stimulation with the eyes weakens the paper since the
optogenetic stimulation could be a highly abnormal way to stimulate visual cortex.

4. A related issue, similar to the previous one, is that, in Figures 2 and 3, the authors
are applying time-dependent optogenetic stimulations. That is, they are looking at
a periodically driven piece of cortex, and the repetition time, once every five seconds
in Figure 3a, is not so long in terms of synaptic time scales (10-30 ms) or possible
times for neurons to habituate or for synapses to undergo plastic changes. Using
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time-dependent perturbations of a nonlinear disordered spatial pattern is interesting
but far from being relevant for Turing instabilities or Turing mechanisms.

I also include the following miscellaneous comments that are less important but hopefully
helpful if the authors revise their paper or decide to submit their paper elsewhere.

1. Several places in the paper, including at the beginning of the abstract, the authors
mention that primates and carnivores (which a ferret is) have cortical activity with
a distributed modular pattern. This is a puzzling statement on two accounts. First,
why do carnivores have modular cortical patterns but not non-carnivores of compa-
rable body and brain size (say wolves versus deer)? Because only carnivores have
foveated eyes and perhaps binocular vision?

And second, why don’t any other larger-brain animals besides primates and car-
nivores have modular structure, say elephants, seals, and cetaceans? Is anything
known about modularity for birds (which can have foveated eyes, like hawks) and
for cephalopods, which can have large foveated eyes (bigger than a human head for
giant squids) and presumably might have evolved to also have modular structures
in the visual parts of their brains. In any case, the mention of just these two cases
is strange and doesn’t sound quite right.

A third point is that there are modular (cellular) patterns in many places in the
brain, e.g., the author do not mention cortical columns (the oldest and most famous
example) or barrel cortices in mice, and even in smaller animals like flies, whose
ommatidia lead to spatially periodic vertical organizations of neurons. So what is
special about visual cortex versus these other regions? The lack of discussion of how
the present paper relates to other cortical modular structures is unfortunate.

Brain development is really a subbranch of biological development and there are lots
of examples of cellular patterns forming outside the brain (stripes and spots on the
skin, fingerprints, the segmented structure of a spinal cord, formation of five fingers
on a hand, etc) and some of these mechanisms are known to be related to Turing
instabilities and some involve non-Turing mechanisms like cells that detect absolute
concentrations of some morphogen forming a spatial gradient and then the cell
undergoes gene activation and specialization when it detects a concentration above
or below some threshold (a so-called French-flag model of embryonic patterning).
So the really interesting question the authors should address and discuss is to what
extent there are pattern formation mechanisms occurring in brains that do not occur
outside the brain. It is remarkable that the authors do not cite any references about
biological pattern formation since the Turing instability is just one of many known
pattern formation mechanisms.

2. The authors mention way too briefly that “scaffolding” is an alternative theoretical
exploration to a Turing instability for explaining modular activity patterns. In a
revised paper, the authors should not assume that the readers know what scaffolding
is and should add a few sentences of explanation and context.
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influenced by lateral boundary conditions that define the boundary of the domain,
e.g, boundary conditions can suppress patterns, favor a unique pattern, cause time-
dependent patterns, etc. The authors completely ignore any consequences of the
finiteness of the cortex and any possible influence of boundaries (say caused by
changes in the properties of the neurons as one goes from one part of cortex to
another). Experiments at some point will be needed to determine if boundaries are
having any influence.

3. The discussion of noise in the paper is too brief and unsatisfying. It would be useful
to state briefly what are some sources of noise and try to estimate the magnitudes
of these sources. Most pattern formation discussions assume that noise is negligi-
ble once a pattern has become nonlinearly saturated but this may not be true for
the cortex, especially if synaptic plasticity causes neural interconnections to keep
changing in strength.

4. Figure 2 (and, to some extent, the other figures) are too complex, with too many
panels and with too many details included that are never discussed or discussed
so briefly that only a few experts know what they mean. (E.g., the meaning of
the colors in Fig. 1a, the green and purple wedges in Fig 1b are not mentioned,
Fig. 2d is not discussed well in the caption or text and makes little sense, the dice
in Fig 1 aren’t explain in the caption and not mentioned until long after Figure 1
appears so are just confusing, so just drop these details or figures). I would strongly
recommend the authors to reduce the number of panels and details per panel as
much as possible. It is the quality of the insight and of the logic that will make this
paper interesting and significant, not trying to include every measured or calculated
detail, which overwhelms most readers. Any detail shown in a figure should be
explained in enough detail to justify to the reader why the detail was included,
otherwise, don’t include the detail or panel.

In summary, this paper has many substantial flaws that make it unacceptable for publi-
cation in its present form and will require a major rewriting to become acceptable. By far
the greatest weakness is a lack of clarity about what is a “Turing mechanism” and how
the current experiments relate to a Turing mechanism. The paper, in fact, is not studying
development nor self-organization nor a Turing mechanism but how already structured vi-
sual cortex responds to a variety of time-dependent optogenetic stimulations of unknown
relation to how the same cortical neurons would respond to known visual stimuli. While
the data are interesting and worth publishing, the issues are quite different than what the
present paper claims, as an explanation of self organization.
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Reviewer #2 (Remarks to the Author):

Mulholland and colleagues conducted simultaneous calcium imaging and optogenefics in the developing 

ferret visual cortex to test a theorefical model of corfical circuit development. They characterized 

response of the visual cortex to various spafial pafterns of optogenefic sfimulafion and showed that the 

experimental results matches with simulafions based on the Turing mechanism. They further 

manipulated acfivity of the Thalamus and the cortex to show that the optogenefic response pafterns 

were mainly created within the cortex.

While many studies use the mouse as a model system to study corfical circuit development, the mouse 

brain lacks some important features such as funcfional columns that are widely observed in other 

mammalian species including humans. In this study, authors nicely combined cufting edge experimental 

techniques with sophisficated computafional models in the ferret visual cortex and characterized early 

developmental process of columnar funcfional circuits. Overall, I think this study is a very important step 

toward understanding the development of columnar corfical circuits.

Below are my comments.

Major comment

It was not clear to me how the spafial pafterns of optogenefic sfimulafion affected "self-organizafion" of 

corfical acfivity.

(A)Do spafially structured optogenefic sfimulafion produce novel spafial pafterns not observed in 

spontaneous acfivity?

Or, (B)do spafially structured optogenefic sfimulafions just increase occurrence of subsets of 

spontaneous acfivity pafterns? (similarly to uniform sfimulafion which increases the occurrence of all 

spontaneous pafterns)

If the lafter case (B) were true, is it consistent with the Turing model?

I think the authors can check this point, both for animal experiments and computafional simulafions, by 

comparing spafial pafterns of *individual* optogenefic events (in Figures 3&4) with spafial pafterns of 

spontaneous acfivity (or uniform sfimulafion).

If the case (B) were true and not consistent with the current Turing model, the authors should weaken 

the statement that corfical acfivity pafterns are self-organized, throughout the manuscript.



Minor comments

1) When I first read the manuscript, I did not nofice that the optogenefically evoked acfivity pafterns are 

highpass filtered and mean subtracted. To be able to assess relafive strength of filtered and non-filtered 

acfivity pafterns, please add non-filtered & non-mean subtracted examples, such as an example shown 

in Fig2d, in Fig3 and Fig4.

2) lines887-899 Authors stated "For simplicity, we use a linear rate network model with strong recurrent 

connecfions close to the crifical value ... the maximum eigenvalue of the connecfivity matrix is equal to 

0.99".

I am curious how sensifive the overall simulafion results are to the specific choice of the eigenvalue. 

Also, it would be nice if the authors could discuss biological plausibility of the developing cortex being at 

the crifical state.

3) In Fig3f, the values of similarity between individual events and optogenefics spafial pafterns seem 

quite low, hence it is not clear to what extent individual events reflect optogenefics spafial pafterns. I 

think this is partly because only a small fracfion of pixels are acfivated/deacfivated in each event (in 

highpass filterd images). Can the authors calculate correlafions using only those pixels that showed large 

acfivity change in each events (e.g. use pixels with |z|>2)?

4) It is not mandatory but it would be nice if the authors could present a data showing that GCaMP and 

ChrimsonR are co-expressed in single neurons (which I think is the assumpfion by the authors).

5) Y axis in Fig5g and Fig5h should be the same.

5) In Fig5i, median of the control is somewhere around 0.2. But in Fig5j, theres no control experiment 

around Modularity~0.2. Please check.

Reviewer #3 (Remarks to the Author):

This is an impressive manuscript from Mulholland, Kaschube and Smith, which combines widefield 

fluorescent calcium imaging with optogenefic sfimulafion to show that modular responses emerge from 

corfical interacfions in the developing ferret visual cortex (V1). This work is mofivated by the prior 

finding that modular acfivity pafterns at the spafial scale of corfical columns are present in the 

spontaneous acfivity of visual cortex prior to eye opening. They propose a neural implementafion which 



requires recurrent excitafion of neighboring neurons -which form a module- combined with longer range 

inhibifion between modules. Such a model generates periodic groups of co-acfivated modules which 

resemble the periodic funcfional maps observed in primate and carnivore neocortex. The authors 

describe 3 predicfions of the Turing model, each of which they test by optogenefically sfimulafing ferret 

V1 prior to eye opening. First, they show that non-specific acfivafion of V1 with optosfim produces 

modular and periodic pafterns of neural acfivafion, in line with the Turing predicfion. Next, they 

sfimulated V1 with random pafterns at the characterisfic wavelength of corfical modules observed 

during spontaneous acfivity. Indeed the trial-averaged acfivafion pafterns in V1 strongly resembled the 

spafial structure of the optosfim. To further test the validity of this candidate mechanism, they 

presented optosfim pafterns at spafial wavelengths which differed from the characterisfic wavelength of 

corfical modules observed during spontaneous acfivity. Their model predicts that inputs away from the 

characterisfic wavelength will produce a response at an intermediate wavelength. They show that 

indeed, the spafial wavelength of corfical acfivafion following pafterned sfimulafion lies at a value 

between the input and characterisfic wavelengths, and that this effect is present when input wavelength 

is both narrower and broader than the characterisfic wavelength. This final point is quite valuable, as it 

shows that modular pafterns of corfical acfivafion do not simply reflect the spafial paftern of inputs, nor 

are they confined to a single wavelength regardless of input.

An alternafive hypothesis for modular responses is that the structure of the feedforward acfivity is 

essenfial. The authors reject this hypothesis by showing that modular acfivafion following non-specific 

optosfim persists when LGN is silenced with Muscimol.

Finally, the authors compare the optosfim-evoked acfivafion pafterns to the spontaneous pafterns which 

they had previously observed in cortex. They find that these pafterns are highly correlated in their spafial 

arrangement and can be accounted for by the same low-dimensional principal component 

representafion. This result indicates that these pafterns emerge from a common synapfic source- an 

important finding in support of their hypothesis that a Turing-like organizafion seeds the formafion of 

modular, periodic maps in cortex.

This is a very strong manuscript. The authors lay out a clear hypothesis – that the Turing-like mechanism 

describes the populafion-level organizafion of ferret cortex prior to eye opening. They make testable 

predicfions of how a neural populafion organized in this way would respond to different pafterns of 

input. They show that each of these predicfions is met in-vivo. This work represents a significant advance 

in our understanding of corfical organizafion early in development. It also constrains models of 

funcfional maps in cortex by indicafing that columnar organizafion is an emergent property of the 

structure of intracorfical connecfions present prior to visual experience, rather than depending on 

selecfive pooling of peripheral afferents.

I have only one crifical comment for this work. The manuscript seeks to describe the neural mechanisms 

which generates modular organizafion in the absence of structured visual input. And yet there may be 



many circuit mechanisms that implement this computafional model. Crifically some of the circuit models 

that the authors cite, for example, the aftractor models of Sompolinsky, exhibit dynamics that do not 

seem to match corfical networks. Are there any aspects of the corfical dynamics from the present 

recordings that could make constraints on the neural implementafion of this Turing-like phenomenon?



Reviewer 1

1. The paper has serious conceptual flaws. One is that the authors never clearly state what they mean by a
Turing mechanism so it is difficult to determine what they are claiming in their paper.

The problem is that Turing’s original calculation in 1953 has been now discussed and somewhat reinter-
preted by such a big community of researchers (physicists, mathematicians, chemists, biologists, engineers,
and others) that the concept of a “Turing mechanism” has become so broad as to be useless unless authors
state exactly what they are talking about, which the authors do not in this paper.

Turing’s original calculation was rather narrow and dealt only with the linear instability (growth of in-
finitesimal perturbations of all different wavelengths) associated with an infinitely wide continuous medium
that had no boundary conditions imposed. (Turing discussed mainly two reacting and diffusing chemicals,
although he did discuss briefly a discrete medium consisting of a periodic ring of cells whose sizes were tiny
compared to the wavelength of the instability). Turing showed by his pioneering theoretical calculations
that, under certain circumstances (such as varying the ratio of the diffusion constants of two chemicals), a
spatially uniform medium could become unstable to exponentially growing spatially sinusoidal modes with a
narrow distribution of wavelengths centered on the mode with the fastest growing rate (the so-called critical
wavelength of the linear instability).

But a key point is that Turing only discussed the onset of a linear instability and did not discuss (because
the mathematics was too hard at the time) what the linearly growing modes would evolve into when the
nonlinearities of the evolution equations eventually cause the amplitudes of the growing modes to saturate
to have finite values. This saturated nonlinear regime is a new and different problem in pattern formation
that Turing did not address and many researchers, including the authors, unfortunately and incorrectly, call
the nonlinear saturated pattern a Turing pattern or the result of a Turing mechanism (words used in the
current paper).

This is an extremely important point for the authors to clarify in their paper. The authors at no time dis-
cuss the linear instability of an initially approximately-uniform patternless piece of cortex and so they never
are in a position to observe a classical Turing instability. Instead they are using optogenetics to optically
perturb a portion of the visual cortex of a still developing ferret after the cortex already has developed an
intricate inhomogeneous spatial structure that is not well characterized. (Local excitation and longer-range
lateral inhibition indeed exist but this is an extremely crude qualitative observation since the anatomical
and physiological details have not been measured of the developing cortex and so are poorly characterized.)
That is, the authors are reporting results for a medium (visual cortex) whose spatial symmetry is already
broken (is nonuniform). While the results are still interesting, the results lie outside of what Turing has
discussed and, in fact, lies outside most pattern formation theory since the nonlinear saturation of unstable
modes in a finite disordered inhomogeneous medium or the effects of order-one perturbations of a nonlinear
saturated medium is a difficult and only partially understood problem.

So Figure 1 of the paper is greatly misleading. Fig. 1b shows, but fails to explain adequately, the growth
rates σ(λ) for infinitely-wide sinusoidal modes of infinitesimal magnitude in a spatially uniform domain. This
figure is not applicable to the experimental regime of the paper (or at least the authors have failed to show
that this is the case).

Figure 1c is an interesting and worthwhile experiment (uniformly activate by optogenetics all excitatory
neurons in a region of visual cortex) but is especially unclear how this is connected to a Turing or other
pattern-forming instability: what is the nature of the cortex just before the uniform optical stimulus is
turned on? The authors seem to be assuming that they are perturbing a uniform medium and so are trying
to influence the infinitesimal exponentially growing modes of a traditional Turing instability. But the ferret’s
cortex already has undergone some pattern formation so panels c, d, and e of Figure 1 correspond to some
difficult nonlinear already saturated regime that has no obvious relation to a Turing instability.
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The only way I can make sense of this, which is consistent with Figures 2 and 3, is that the authors are
optogenetically stimulating an already existing nonlinear pattern of cortex. This is, again, interesting to
explore but is an entirely different problem than what the paper claims to be interested in, which is to
explain why a cellular pattern forms in the first place in visual cortex.

In any case, the introduction of the paper and the discussions of Figures 1-3 are deeply confusing because
the authors are not being clear about what they mean by a Turing mechanism. They are definitely not
discussing a Turing instability and not explaining how or why a cellular pattern arose in the first place in
immature ferret cortex. Instead, they are investigating what happens when they optically activate just the
excitatory neurons in a part of cortex that has already undergone substantial pattern formation.

We thank the reviewer for their thoughtful feedback. The reviewer raises one major point which highlights
several aspects in which the communication of our results was vague, confusing, or in need of reframing.
Below, we respond to this feedback at length, providing a clearer explanation of our work, before addressing
the other points raised by the reviewer.

In order to address the first major concern, below we first clarify a few points of potential misinterpretation
of our study (”Points of clarification”, before providing a more detailed explanation of the mechanism that
we test, based on a model (”Pattern formation in LE/LI systems”), as well as a justification of our experi-
ments. Finally we summarize how we have addressed the above suggestions from this reviewer in the revised
version of the manuscript (”Summary of changes”).

Points of clarification

1. Self-organization, broadly speaking, refers to a process where global order arises spontaneously from
the local interactions between a system’s parts. In our paper, we do not study the self-organization of
neural circuits (or neuronal selectivity patterns, such as e.g. ocular dominance maps) over the course
of development, i.e. on time scales hours to weeks, which is the time scale of neuronal plasticity and
synaptic changes. Instead, our goal is to test long-standing models for the self-organization of neural
activity patterns, on the time scale of milliseconds to seconds, the time scale of propagation of activity
within the cortical network. We regret that our introduction was not sufficiently clear about this
important distinction and we have revised it accordingly.

2. The principal aim of this paper was to test predictions of a broad class of models that have put forward
the hypothesis that modular patterns of cortical activity form through a process of self-organization of
neural activity resulting from recurrent local excitation and lateral inhibition (also sometimes referred
to in the literature as ’Mexican hat’ or difference of Gaussians). We use the term ’modular’ to refer to
activity patterns that consist of local domains of active neurons with roughly regular spacing, such that
the pattern is dominated by a single characteristic spatial wavelength. Virtually all spatially extended
spontaneous activity in the early developing ferret visual cortex is modular [30]. Recurrent network
interactions composed of effective local excitation and lateral inhibition can selectively amplify such
modular patterns of activity and are, therefore, a candidate mechanism for modular activity in the
early cortex. We describe this mechanism in more detail below based on a concrete representative of
such a model (see ”Pattern formation in LE/LI systems”).

3. By using the term ’Turing mechanism’ to refer to the mechanism of pattern formation in these models,
we followed the interpretation by Kondo and Miura stating in their review article in 2010 in Science [17]
(also cited in our previous manuscript): Gierer and Meinhardt [21, 20] showed that a system needs
only to include a network that combines “a short-range positive feedback with a long-range negative
feedback” to generate a Turing pattern. This is now accepted as the basic requirement for Turing
pattern formation [37, 21]. According to this view, the term ’Turing mechanism’ is not restricted to
a specific time scale or implies a pattern formation process over the course of development, but is
also applicable to pattern formation during neural activation. Notably, this use of the phrase ’Turing
mechanism’ in this context to describe pattern formation in cortical network activity has been used
previously in the literature [3]. Moreover, the class of models that we sought to test in our study
clearly satisfies the ’basic requirement’ of Kondo and Miura.
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We do, however, acknowledge the criticism by this reviewer that the terms ’Turing mechanism’ and
’Turing patterns’ are used inconsistently in the literature and may thus be confusing. We therefore
revised our manuscript to now avoid ’Turing patterns’, and now refer to ’local excitation and lateral
inhibition’ (abbreviated with ’LE/LI’) instead of ’Turing mechanism’. We still cite Turing’s original
work (and the review by Kondo and Miura) to acknowledge his original contribution.

4. This reviewer seems to assume that with our optogenetic stimulation we elicit activity patterns that are
”already existing” at this early stage in development. However, it is important to note that, currently,
there is no experimental support for such an assumption. For instance, in the literature, clustered
long-range horizontal connections have repeatedly been suggested to impose its modular structure onto
cortical activity [29, 11]. These clustered connections were observed to align to the layout of orientation
preference columns in the mature cortex, but these clustered connections are not present yet at the
considered early stage in development [9]. Instead of reflecting a specifically structured intracortical
network, modular cortical activity could, in principle, be brought in from outside, for instance by
the structure of feed-forward inputs. However, our pharmacology experiments argue strongly against
this possibility, indicating that the cortical network is necessary and sufficient for generating modular
activity, in line with our previous observations that spontaneous modular activity in cortex persists
after blockade of all activity in the retina, and even after silencing LGN [30].

5. It is precisely this assumption of already existing modular patterns at this early age that we are
challenging with our experiments. In our study, we are testing the alternative possibility that the
modular structure of activity is generated spontaneously at the time of cortical activation through
recurrent network interactions of the type LE/LI. Such network interaction amplifies patterns around
a characteristic spatial wavelength, thereby inducing some degree of global ordering, but as such does
not impose a spatial phase of the pattern. Consistent with this possibility, not only do we find that
uniform activation drives modular patterns of activity (Fig. 2) – and with a variable layout of active
domains across repeated stimulations – but also that patterned activation with a wavelength near the
characteristic wavelength of spontaneous activity results in activity patterns that are novel, in the sense
that they deviate from the patterns of uniform stimulation and also from those naturally occurring
during spontaneous activity at this age, as we now show in the revised Fig. 6. These results argue
that our optogenetic stimulation does not merely elicit ”already existing” activity patterns.

6. Prior to uniform optogenetic stimulation, the cortex tends to be quiescent and the frequency of spon-
taneous events in our experiments tends to be low (as seen in Fig 2b-d, and supplemental movie 1).
Therefore, frequently the state of neural activity in the cortex prior to our stimulation is low and
uniform. When we optogenetically stimulate, with a sufficiently high intensity, we see an increase in
calcium activity across our field of view and a modular pattern emerges, consistent with pattern selec-
tion at the timescale of neural activation. For low intensity, the activity is weaker and often remains
close to uniform (Fig. S3), indicating that modular activity requires stimulation above some threshold
intensity. Note that, in order to avoid having our results be contaminated by spontaneous activity, in
our quantification of modularity and wavelength we excluded trials where cortical activity was present
within 1 second prior to opto-stimulation.

7. We agree with this reviewer that at the developmental age our experiments are performed, the cortical
circuitry, while still mostly short-range, likely exhibits some degree of heterogeneity across cortical
space. However, neither is it evident that this heterogeneity could generate the modular activity
we observe, nor is some mild degree of heterogeneity inconsistent with a pattern forming mechanism
based on LE/LI. As we showed previously [30], the main effect of a mild degree of heterogeneity is
a reduction in the diversity of activity patterns, while individual patterns maintain their modular
structure. Importantly, the three predictions we test in the present study (Fig. 1) hold also in the
presence of such heterogeneously perturbed LE/LI interactions (see Fig. 4a-c and Fig. S5 for the
heterogeneous model and Fig. S12 for the homogeneous model).

8. Selective amplification through local excitation and lateral inhibition (LE/LI) appears to be a robust
mechanism for producing modular patterns of activity, not only in a supercritical, but also in a slightly
subcritical regime, in which there is no pattern instability, but modular patterns can still form if the
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inputs contain a random (e.g. white noise) component, as we show in our manuscript (Figs. S5, S12).
Both the connectivity and the various noise sources remain poorly characterized in the early cortex,
but the fact that this mechanism is so effective, irrespective of many model details, makes it a plausible
candidate mechanism for modular cortical activity.

Pattern formation in LE/LI systems
In the following, we will discuss a concrete example of a model in order to explain more clearly the mechanism
we are testing and the claims we are making in the paper. This model describes the firing rate uE of a single
(infinitely large) excitatory neural population in two dimensions (a ‘neural field’). The lateral interactions
are assumed to be identical for each neuron and the external input drive is assumed to be constant in space
and in time. (Later, also other forms of input are considered.)

The firing rate uE of this excitatory neural population is governed by

τE
duE(x, t)

dt
= −uE(x, t) +

[∫
dy (aEME(|x− y|)uE(y, t)− aIMI(|x− y|)uE(y, t)) + J

]
+

(1)

where τE is an effective time constant related to the membrane time constant (several tens of milliseconds),
J > 0 is an external input assumed to be constant in space and time, aE > 0 and aI > 0 control the overall
strengths of the excitatory and inhibitory recurrent connections ME and MI , respectively, and [x]+ denotes
rectification (x = 0 for x ≤ 0, x = x for x > 0). The shape of these connections is assumed to be isotropic
and to fall off as a Gaussian function

MK(|x− y|) = 1

2πσ2
K

exp

(
−|x− y|2

2σ2
K

)
(2)

with K = {E, I}. For σI > σE the connectivity is of the type LE/LI. Fig. 2, left, displays this type of
connectivity and illustrates the case of LE/LI.

A spatially homogeneous fixed point solution of Eq. 1 satisfies

0 = −ūE + [aE ūE − aI ūE + J ]+

We are looking for solutions with a positive firing rate, ūE > 0. For such a solution the rectification can be
dropped and the solution is then given by

ūE = J
1

1− aE + aI

assuming aE < aI + 1.

Next, we seek to study the conditions under which this uniform solution ūE is unstable. To this end, we
insert

uE(x, t) = ūE + ϵwE(x, t)

with 0 < ϵ ≪ 1 into our full model equation (Eq. 1) to study the growth rates of infinitesimal perturbations
wE(x, t) around this uniform solution. Since ūE > 0, the rectification can be dropped resulting in a linear
equation

τE
dwE(x, t)

dt
= −wE(x, t) +

∫
dy (aEME(|x− y|)wE(y, t)− aIMI(|x− y|)wE(y, t)) (3)

describing the evolution of the perturbation wE(x, t). As the connectivities ME and MI are the same at
each location x, plane waves ∼ exp(−ikx) are eigenfunctions of the right-hand side of Eq. (3). Furthermore,
as the connectivities depend only on the distance between locations x and y the corresponding eigenvalue
spectrum depends only on the absolute value of the wavenumber k = |k| and is given by

λ(k) = −1 + aE exp

(
−1

2
σ2
Ek

2

)
− aI exp

(
1

2
σ2
Ik

2

)
(4)
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For σE < σI (LE/LI) and aI and aE sufficiently large, this spectrum has a single peak, slightly above zero,
at a finite wavenumber k0, while eigenvalues approach -1 for wavenumbers much smaller or larger than k0
(Fig. 2, right, solid line). Thus, plane waves around k0 are unstable and grow exponentially, while those
with a small or large wavenumber rapidly decay to zero, implying that a spatial pattern grows that exhibits a
characteristic wavelength Λ = 2π/k0. The growth of this pattern eventually saturates due to the rectification
nonlinearity in the full model (Eq. 1) and the dynamics converges to a hexagonal pattern [30].

Figure 1: Left: Local excitation and lateral inhibition (LE/LI) in the model (Eq. 1) arising from a Gaussian
shaped connectivity (Eq. 2) that is wider for inhibition than for excitation. Right: The eigenvalues (Eq. 4)
exhibit a single maximum at a finite wavenumnber k0 with values near zero, whereas eigenvalues for low and
high wavenumber are strongly negative close to -1. If the maximum is above zero (solid line), plane waves
∼ exp(−ikx) with a k around this wavenumber k0 will grow exponentially according to Eq. 3, while those
with low or high wavenumber will rapidly decay to zero, resulting in the growth of a pattern dominated by
the characteristic wavelength Λ = 2π/k0. If the maximum is slightly below zero (dashed line), plane waves
around k0 will decay to zero, but much slower than those for small and large k resulting in the selective
amplification of a pattern dominated by Λ = 2π/k0 in case the network is activated by external input.
Parameter values: σE = 1, σI = 2 and aE = aI = 2.3 (solid), aE = aI = 1.9 (dashed).

The formation of an activity pattern in this model is a process of self-organization, as the pattern that is
forming is not brought in from outside (given the external input is uniform in space and time), but arises from
the recurrent interactions via a dynamic instability of the homogeneous solution. Whereas the dynamics is
symmetric with respect to continuous translation and rotation, a given solution in the form of a hexagonal
pattern exhibits a much more reduced symmetry. The recurrent interactions determine the wavelength, but
not the global spatial phase and orientation of the pattern that forms, which also depends on the initial
conditions and, potentially, on other factors, such as noise or boundary conditions. In these respects, the
dynamics considered here share several aspects with other pattern forming systems such as, for instance,
Rayleigh-Bénard convection.

A simple extension of the model in Eq. 1 is to include a threshold Θ under the nonlinearity, equivalent to
an input J −Θ. Such type of threshold is frequently used with rate units and can be linked to the voltage
threshold in spiking neuron models. In the presence of such a threshold, modular patterns could only start
forming once the input J exceeds this threshold. Interestingly, by varying the laser power of our uniform
stimulation, we observe a nonlinear increase in the degree of modularity as a function of laser power that
appears consistent with such threshold (SI Fig. 3).

It is important to emphasize that if the system Eq. 1 is driven by an input that contains a broad (e.g.
white) noise component, modular patterns will also form if the peak of the spectrum remains slightly below
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zero (as in Fig. 1, right, dashed curve). The two regimes (slightly below or above this critical point) differ
somewhat with respect to the final patterns they produce, as these are shaped differently by the nonlinear
terms of the dynamics. However, in both regimes there is a selective amplification of modes close to the
critical spatial frequency due to the large difference in growth rate relative to frequencies that are consid-
erably smaller or larger. Since our manuscript seeks to test generic predictions of this basic mechanism
for the generation of modular structure – and not addressing the nonlinear dynamics close to pattern sat-
uration – we focused on the simpler of these two regimes, i.e. the subcritical one, to derive model predictions.

Fig. 1 in the manuscript then proposes to test three predictions of this mechanism. First, spatially uniform
stimulation (which in the cortex is expected to also have significant noise components (see below)) should
result in modular activity patterns that vary from stimulation to stimulation. Second, spatially structured
stimulation with the same wavelength as patterns that naturally occur (i.e. spontaneous activity) should be
able to bias the pattern, since the mechanism described above primarily constrains the spatial wavelength,
but not the overall layout of the pattern. Third, spatially structured stimulation with a deviating wavelength
should result into a dynamic compromise between the intrinsic (critical) wavelength and the wavelength of
the stimulation, biasing the wavelength of the resulting patterns towards the stimulation wavelength.

A more realistic model of the early visual cortex should assume the connectivity exhibits some degree of
variation across cortical locations. The amount of heterogeneity may be lower compared to the mature
cortex when the network is fully refined and the intricate array of clustered long-range horizontal connec-
tions established. Moreover, the effective heterogeneity may be weaker on the columnar level that we are
modelling here. Nevertheless, some degree of heterogeneity is expected, and thus we studied our network
model in both a homogeneous and a moderately heterogeneous regime (by randomly perturbing the Gaussian
connectivity kernels, see Methods) and we obtained consistent results with modular patterns in both cases
and quantitatively similar predictions for the phenomena investigated in Figs. 2-4 (SI Figs. 5,12).

Moreover, in the cortex, there is typically a substantial amount of seemingly random influences (’noise’)
affecting the propagation of neural activity within the network. These include, for instance, synaptic failure
and fluctuating neural excitability. As a simple model of this inherent stochasticity, we fed spatially uncorre-
lated noise into the network, in addition to the input J . Even for strong noise (having a standard deviation
on the order of J), activity patterns remained modular. Moreover, in this regime the model showed a close
match to the data for the predictions tested in Figs. 2-4.

Summary of changes
We acknowledge the potential ambiguity around our use of the term ’Turing mechanism’ and the potential
for confusion surrounding the mechanism we seek to test. We have extensively revised our manuscript to
provide additional clarity and specificity, and to better explain the proposed mechanism and the rationale
for our experiments.

Additionally, throughout our revised manuscript, we have re-framed our rationale and discussion around
specifically testing models that use LE/LI, and we de-emphasized the connection between our results and
the Turing mechanism, while still placing LE/LI within the broader context of mechanisms derived from
Turing’s work. We feel that this makes the interpretation of our experiments more clear, while also contex-
tualizing these results with broader theories of pattern formation.

2. A next serious weakness of this paper is that the authors do not discuss development nor self-organization
so the title of this paper and much of the introduction and conclusions need to be rewritten. The authors
nowhere present data regarding how the properties of the visual cortex are changing over time, how the
patterns are self-organizing over time. All that is being studied is how preexisting poorly characterized
neural activity patterns at a certain time during development are responding to optogenetic perturbations.
Again, interesting and worthwhile but not what the authors claim they are studying.

A future revised version of this paper would be strengthened if the authors could present results similar
to Figures 2-3 over different developmental periods. The authors should also present, as a control, results
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for an adult ferret (say in a completely dark chamber so its eyes are not active and with its cortex also
optogenetically activated in the same way). And maybe another useful control would be to repeat these
experiments in preborn ferrets for which the optic nerves have been cut, so pattern-formation cues from
retinal waves have been turned off.

We are grateful to the reviewer for pointing out this potential confusion, which also stimulated parts of our
response to Point 1 above. As described in detail in our response to Point 1, we aimed to test whether
the patterns of activity that are observed in the immature ferret brain prior to eye opening arose through
a mechanism that self-organizes activity – that is, large-scale ordered patterns arise through local intra-
cortical circuit interactions at the time the cortex is activated, rather than being preexisting in cortex or
inherited from other brain regions through already structured inputs. We demonstrated that direct uniform
stimulation of the cortex leads to spatially structured output patterns, even in the absence of feedforward
input from the LGN. Additionally, we showed that blocking intracortical glutamatergic activity prevented
modular patterns from forming. Together, this supports that the mechanism that gives rise to these pat-
terns likely resides in intracortical circuits. Moreover, these networks shape cortical activity from uniform
stimulation, resulting in patterns that are similar to those that occur endogenously. The fact that these
uniform opto-evoked patterns are similar to patterns of endogenous activity does not necessarily imply that
these patterns are preexisting. The more plausible interpretation (making less assumptions), however, is
that these endogenous patterns form in response to uniform or noisy input through a similar spontaneous
ordering process as the opto-evoked patterns.

Importantly, spatially structured stimuli can bias the patterns of evoked responses, such that the resulting
patterns deviate from those endogenous patterns. In the revised manuscript we now show this explicitly in
our revised Fig. 6. This result argues against the hypothesis that the evoked patterns preexist. While biased
towards the stimulation pattern, the resulting activity patterns also do not exactly match the stimulation
patterns, but rather still show some overlap with the endogenous patterns, suggesting that the activity arises
via dynamically compromising network interactions and the external input (Fig. 6f-h). This is consistent
with our model network with LE/LI interactions when driven by structured noisy inputs (Fig. S11). A
similar dynamic compromise can be seen for stimulation patterns with a wavelength that deviates from the
characteristic wavelength of the system (Fig. 4).

Regarding development, we performed these experiments in young ferret visual cortex in order to address
questions about whether modular activity can arise from short-range network interactions at synaptic
timescales. At no point did we intend to draw conclusions on how these network properties change over
time, which though a fascinating question is beyond the scope of this single manuscript. Though the Tur-
ing mechanism has frequently been applied to computational models of functional map development which
incorporate learning rules for how these networks could be trained to encode specific visual features over
time, such as orientation selectivity or occular dominance (e.g. [35, 32, 15]), it has also been used to model
the emergence of spontaneous neural activity patterns (e.g. [10, 3, 30]). In our revisions of the manuscript,
we clarify these related but separate ideas, and only in the discussion relate our findings in the longer-term
implications of their role in the development of functional maps for visual features.

Though previous work has demonstrated that spontaneous activity in developing V1 after retinal wave block-
ade on the day of imaging is still modular [30], and thus retinal activity does not seem required for large-scale
modular patterns to occur, it is unknown what effect retinal blockade from birth would have on functional
activity in V1 prior to eye opening. Repeating our experiments in enucleated ferrets would again address
questions of development and its dependence on visual experience, which, while interesting, is not the aim
of our study.

In our revised manuscript, together with the changes noted above, we also highlight that our hypothesis
and results address the generation of modular activity patterns on synaptic (i.e. neural activity) and not
developmental timescales. We have also revised the title of our manuscript to ”Self-organization of modular
activity in immature cortical networks” to further clarify that we are examining this question at a single
point in early cortical network development.
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3. A third serious weakness of the paper is that the authors fail to discuss how optogenetic stimulation of
just the excitatory neurons in visual cortex is related to the kind of neural activity that arises in unperturbed
ferrets from retinal waves or from the eyes when the eyes are open. It is not obvious to this referee why a
spatially uniform optogenetic activation, or a spatially patterned activation like Fig 3(a), has anything to do
with the activation that would occur if the ferret were looking at such a pattern with its eyes. This failure
to discuss how optogenetic stimulation is or is not related to visual stimulation with the eyes weakens the
paper since the optogenetic stimulation could be a highly abnormal way to stimulate visual cortex.

Here, the reviewer highlights an additional area where our explanation of the experimental rationale in our
original manuscript was unclear. The reviewer is correct to note that the patterns of incoming activity
into visual cortex from feed-forward inputs (driven by either retinal waves or visual stimuli) are potentially
unrelated to the patterns of input activation we drive with our optogenetic stimuli. However, the ability to
directly drive the cortex with arbitrary patterns is precisely one of the key strengths of our experimental
design. In our study, we seek to test specific predictions of LE/LI mechanisms by applying specifically
designed inputs to the cortex. Studying the response to these (uniform, or patterned) inputs allows us to
directly compare our results to model predictions.

Before retinal activity (be it either spontaneous waves or visually-evoked activity driven through closed
eyelids) reaches the cortex, it passes through the LGN. As noted above, we conduct our experiments prior
to eye-opening, and the precise nature of the retina-thalamus-cortex transformations at this age of develop-
ment is not well characterized. Therefore it is not possible to directly compare the response of the cortex to
arbitrary inputs applied both optogenetically and visually, as it is currently not possible to know what form
a retinal input may take when it reaches the cortex.

However, it is possible to draw inferences about the potential nature of these cortical inputs based on their
similarity to the patterns of activity evoked through specific optogenetic stimuli. In our original submis-
sion, we make two such comparisons: finding a strong similarity between spontaneous events and uniform-
opto-evoked events (Fig 6), and a lack of such similarity between visually-driven luminance responses and
uniform-opto-evoked events (Fig S7). In our revised manuscript, we now also show that stimulating with
spatially structured input patterns can evoke activity patterns with novel components (Fig 6f-h), in a manner
consistent with our model (Fig. S11), demonstrating that the cortex can response to artificial inputs that
can reveal key aspects of the underlying network.

In our revised manuscript, we now further elaborate on these findings, and more explicitly explain our ra-
tionale for using optogenetic stimulation to directly manipulate input to the cortex.

4. A related issue, similar to the previous one, is that, in Figures 2 and 3, the authors are applying time-
dependent optogenetic stimulations. That is, they are looking at a periodically driven piece of cortex, and
the repetition time, once every five seconds in Figure 3a, is not so long in terms of synaptic time scales
(10-30 ms) or possible times for neurons to habituate or for synapses to undergo plastic changes. Using
time-dependent perturbations of a nonlinear disordered spatial pattern is interesting but far from being
relevant for Turing instabilities or Turing mechanisms.

As explained in detail above, the time scale on which we are examining the mechanism of pattern formation
is the time scale of neural activation (milliseconds to second), for which the applied stimulation paradigm
seems well-suited. Our stimuli are spaced sufficiently far apart in time to allow any evoked activity to return
to baseline, resulting in a cortex with generally uniform low activity at the time the next stimulus is applied.
Our stimulation protocol was not designed to induce changes in synaptic plasticity, but rather probe the
response of the cortical network to various stimulation patterns.

In our revised manuscript, as noted above, we more clearly articulate that we are examining activity patterns
that emerge on the time-scale of neural activity.
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Minor comments:

1. Several places in the paper, including at the beginning of the abstract, the authors mention that primates
and carnivores (which a ferret is) have cortical activity with a distributed modular pattern. This is a puzzling
statement on two accounts. First, why do carnivores have modular cortical patterns but not non-carnivores
of comparable body and brain size (say wolves versus deer)? Because only carnivores have foveated eyes and
perhaps binocular vision?

And second, why don’t any other larger-brain animals besides primates and carnivores have modular struc-
ture, say elephants, seals, and cetaceans? Is anything known about modularity for birds (which can have
foveated eyes, like hawks) and for cephalopods, which can have large foveated eyes (bigger than a human
head for giant squids) and presumably might have evolved to also have modular structures in the visual parts
of their brains. In any case, the mention of just these two cases is strange and doesn’t sound quite right.

The question of why some species have modular cortical activity while others do not is a fascinating and
longstanding question in comparative neurobiology. Modular cortical patterns have been found in humans,
primates, cats, ferrets, tree shrews [6], ungulates [8], and barn owls [19], while Rodents [25, 34], lago-
morphs [12] and pigeons [24] have ‘salt-and-pepper’ cortical architecture. Modularity does not seem to solely
be explained by genetic common ancestor [15], body or brain size, or binocular stereopsis. A definitive
guiding principle has been elusive, as there seems to be exceptions to every rule. V1 neural density, however,
does seem to be a fair predictor of cortical map organization, where creatures with a high density of V1
neurons tend to have modular maps, while lower density V1’s tend to be salt and pepper [28, 36]. It has been
proposed that modularity is an efficient way to coordinate neurons over large cortical distances by minimizing
wiring length [13, 33, 18], which becomes more efficient when there are more cells. This would explain why
animals of similar body and brain size but with different evolutionary prioritization for vision end up with
different visual cortex architecture. Whether these principles hold true for other larger-brained mammals,
such as elephants, seals, and cetaceans, is currently unknown, as it is difficult to assess the functional activity
of these species due to access, technical, and ethical reasons, and thus can for now only speculate on their
cortical activity organization.

A more detailed discussion of this question has been the subject of several review articles [14, 28]. In our
manuscript, we highlight that modular activity is ”a hallmark of the primary visual cortex of primates and
carnivores”, as these groups of species are both the most well-studied in terms of visual cortical function,
have relevance to human function (primates) and include the ferret, the model system used in our manuscript
(carnivores). In our revised manuscript, in order to acknowledge the large body of work and clarify that
we do not believe that these principles are limited to just primates and carnivores, we have included a brief
statement in the discussion discussing the reasons why modular activity might have been selected for or
could be an epiphenomenon of different evolutionary pressures.

A third point is that there are modular (cellular) patterns in many places in the brain, e.g., the author do
not mention cortical columns (the oldest and most famous example) or barrel cortices in mice, and even in
smaller animals like flies, whose ommatidia lead to spatially periodic vertical organizations of neurons. So
what is special about visual cortex versus these other regions? The lack of discussion of how the present
paper relates to other cortical modular structures is unfortunate.

The type of pattern formation we are trying to investigate are neural activity patterns, not anatomical or-
ganization. While the laminar structure of cortical columns is present early in development, the degree of
the specificity of their lateral organization is poorly understood, although horizontal connections at this age
are short range and relatively non-specific as compared to adult horizontal architecture. While mouse barrel
cortex has a columnar organization, the functional activity within that network is not modular as we have
defined it (distributed, periodic coactivation across distances). Barrel cortex largely reflects the structure
of its inputs, with individual whiksers projecting to ’barrelets’ in the brain stem, then to ’barreloids’ in the
thalamus, before arriving in the somatosensory cortex to form ’barrels’. There is little evidence suggesting
that these patterns might arise through a dynamic network mechanism utilizing LE/LI, and thus they are
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not a good parallel for the modular activity seen in V1.

In the discussion of our manuscript, we do propose that the mechanisms that organize cortical activity in
V1 need not be exclusive to visual areas. Any circuit that has local facilitation and effective long-range
suppression would be predicted to display modular patterns of neural activity.

Brain development is really a subbranch of biological development and there are lots of examples of cellular
patterns forming outside the brain (stripes and spots on the skin, fingerprints, the segmented structure of a
spinal cord, formation of five fingers on a hand, etc) and some of these mechanisms are known to be related
to Turing instabilities and some involve non-Turing mechanisms like cells that detect absolute concentrations
of some morphogen forming a spatial gradient and then the cell undergoes gene activation and specialization
when it detects a concentration above or below some threshold (a so-called French-flag model of embryonic
patterning).

So the really interesting question the authors should address and discuss is to what extent there are pattern
formation mechanisms occurring in brains that do not occur outside the brain. It is remarkable that the
authors do not cite any references about biological pattern formation since the Turing instability is just one
of many known pattern formation mechanisms.

The reviewer is correct to note that the field of biological pattern formation is quite large. However, a full
review of this literature is beyond the scope of our manuscript, and has already been accomplished quite
well in recent years (e.g. [17] (which we cite in our manuscript).

Rather, our manuscript builds upon the large literature (cited in our introduction) that proposes LE/LI
interactions underlie modular activity in the visual cortex, a hypotheses we set out to explicitly test. The
revisions we have made to our manuscript to re-frame our work directly in terms of these LE/LI mecha-
nisms, and how these mechanisms relate to Turing instability and pattern formation in general, now provide
important context for our work. We also now better describe alternative pattern formation hypotheses that
could potentially operate in the cortex (see below). Finally, we note that we do both highlight and cite key
reviews of biological pattern formation and Turing mechanisms (including [17, 2, 4]).

2. The authors mention way too briefly that “scaffolding” is an alternative theoretical exploration to a Turing
instability for explaining modular activity patterns. In a revised paper, the authors should not assume that
the readers know what scaffolding is and should add a few sentences of explanation and context.

We have edited the text to provided further detail on ‘scaffolding’ as an alternative hypothesis.

[sic] influenced by lateral boundary conditions that define the boundary of the domain, e.g, boundary con-
ditions can suppress patterns, favor a unique pattern, cause time dependent patterns, etc. The authors
completely ignore any consequences of the finiteness of the cortex and any possible influence of boundaries
(say caused by changes in the properties of the neurons as one goes from one part of cortex to another).
Experiments at some point will be needed to determine if boundaries are having any influence.

The reviewer raises an interesting point, and is correct to note that in certain situations boundary conditions
can have a large impact on the behavior of the system. However, it is not clear that such conditions would
play a major role in our experiments, or the degree to which such boundaries may exist in the cortex
during early development. Our imaging area (maximum 3 mm) is much smaller than the size of ferret
visual cortex (over 10 mm in the medial-lateral extent, and approximately an equivalent distance along the
anterior-posterior axis after accounting for the folding of cortex around the caudal pole). Thus, any potential
across-area boundaries would be some distance beyond our stimulation area, regardless of whether any such
boundaries would be accompanied by changes in cellular properties.
That being said, the reviewer is correct to note that the cortex is indeed finite, meaning that boundaries do
exist at some point, and future experiments–potentially manipulating activity over much larger regions of
cortex–will be required to assess their impacts.
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3. The discussion of noise in the paper is too brief and unsatisfying. It would be useful to state briefly
what are some sources of noise and try to estimate the magnitudes of these sources. Most pattern formation
discussions assume that noise is negligible once a pattern has become nonlinearly saturated but this may
not be true for the cortex, especially if synaptic plasticity causes neural interconnections to keep changing
in strength.

We have added to the results and discussion examples about potential noise sources within cortical networks
that could affect the network state during stimulation. In addition, we note that we do attempt to estimate
the magnitude of this noise through the comparison of models with varying noise levels that was presented
in Fig S4 (now Fig S5 in revised submission).

4. Figure 2 (and, to some extent, the other figures) are too complex, with too many panels and with too
many details included that are never discussed or discussed so briefly that only a few experts know what they
mean. (E.g., the meaning of the colors in Fig. 1a, the green and purple wedges in Fig 1b are not mentioned,
Fig. 2d is not discussed well in the caption or text and makes little sense, the dice in Fig 1 aren’t explain
in the caption and not mentioned until long after Figure 1 appears so are just confusing, so just drop these
details or figures). I would strongly recommend the authors to reduce the number of panels and details per
panel as much as possible. It is the quality of the insight and of the logic that will make this paper interesting
and significant, not trying to include every measured or calculated detail, which overwhelms most readers.
Any detail shown in a figure should be explained in enough detail to justify to the reader why the detail was
included, otherwise, don’t include the detail or panel.

We recognize the reviewer’s call for simplicity in figure design. We also recognize the need to balance this
against the need to show sufficient data and controls to adequately support the claims made in the paper.
In general, we favor the inclusion of information and data whenever possible, in order to provide the reader
the fullest possible picture of our results.

That being said, we acknowledge that our descriptions of Figures 1 and 2 in our original submission were
lacking in some respects and therefore have revised the text and figures to address the specific concerns
raised by the reviewer on these figures. We have edited the figure descriptions and removed unnecessary
details to make it easier for readers to follow our results. The colors used in Figure 1a and the dice icon
used throughout are now labeled within the legend. The colors in Figure 1b were removed, as they were
meant to show arbitrary positive/negative growth. The legend for Figure 2d has been expanded and clarified.

Reviewer 2

Mulholland and colleagues conducted simultaneous calcium imaging and optogenetics in the developing fer-
ret visual cortex to test a theoretical model of cortical circuit development. They characterized response of
the visual cortex to various spatial patterns of optogenetic stimulation and showed that the experimental
results matches with simulations based on the Turing mechanism. They further manipulated activity of the
Thalamus and the cortex to show that the optogenetic response patterns were mainly created within the
cortex.

While many studies use the mouse as a model system to study cortical circuit development, the mouse brain
lacks some important features such as functional columns that are widely observed in other mammalian
species including humans. In this study, authors nicely combined cutting edge experimental techniques with
sophisticated computational models in the ferret visual cortex and characterized early developmental process
of columnar functional circuits. Overall, I think this study is a very important step toward understanding
the development of columnar cortical circuits.

Below are my comments.
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Major comment.
It was not clear to me how the spatial patterns of optogenetic stimulation affected ”self-organization” of
cortical activity.
(A)Do spatially structured optogenetic stimulation produce novel spatial patterns not observed in sponta-
neous activity? Or, (B)do spatially structured optogenetic stimulations just increase occurrence of subsets
of spontaneous activity patterns? (similarly to uniform stimulation which increases the occurrence of all
spontaneous patterns)
If the latter case (B) were true, is it consistent with the Turing model?

I think the authors can check this point, both for animal experiments and computational simulations, by
comparing spatial patterns of *individual* optogenetic events (in Figures 3& 4) with spatial patterns of
spontaneous activity (or uniform stimulation).

If the case (B) were true and not consistent with the current Turing model, the authors should weaken the
statement that cortical activity patterns are self-organized, throughout the manuscript.

We thank the reviewer for the thoughtful comment, which touches upon a key question in systems neuro-
science: What is the nature of the transform between input activity and the output of a cortical network?
The two scenarios proposed present two different extremes of the potential mechanisms that could be shaping
output patterns. In Scenario A, input patterns are able to shape cortical output and produce novel activity
patterns. In Scenario B, the cortical network is rigidly constrained to produce only a specific repertoire of
patterns (e.g. those found in spontaneous activity), and the shape of the input has no effect on the output
activity except to activate a specific subset of these endogenous patterns. The reviewer is correct to suggest
that if the cortex were in such a regime, it would argue against activity patterns within the network being
self-organizing.

Following the reviewer’s suggestion, we now compare individual spatially structured opto-evoked patterns
to the spontaneous patterns we observe in that animal. To assess the overlap between each opto-evoked
pattern and this set of spontaneous patterns, we found the spontaneous pattern that was maximally corre-
lated with each opto-evoked pattern and then compared these correlation values to a cross-validated subset
of spontaneous vs spontaneous matches. If patterned stimulation only increased the occurrence of subsets of
spontaneous activity patterns (Scenario B), we would expect to see no difference in maximum correlations
between opto-evoked and control data. Instead, if patterned stimulation generated novel patterns (Scenario
A), we would expect to see reduced similarity between the opto-evoked patterns and the repertoire of ob-
served spontaneous events, when compared to controls.

Our analysis, now shown in our revised Figure 6 and supplemental figure 11, shows that the average cor-
relation for best matching opto-spontaneous pairs is weaker than the control spontaneous vs spontaneous
correlations (Fig. S11a-c). Additionally, when we project opto-evoked events onto the principal components
of spontaneous activity, we found that spontaneous PCs explain less of the total variance of opto-evoked ac-
tivity compared to spontaneous controls (Fig 6g-h). Together, this indicates that there are novel components
in the evoked patterns, supporting Scenario A above. These results are consistent with model predictions
(Fig. S11 d-e). Interestingly, our results show that opto-evoked activity patterns are neither perfectly aligned
with their stimulus inputs (Figs. 6f, S11a) nor perfectly aligned with endogenous patterns. This indicates
that the most extreme version of Scenario A in which inputs entirely dominate cortical activity and fully
determine the output pattern—which would also be inconsistent with self-organization within the cortex—is
not congruent with our results. Instead, our findings suggest a dynamic compromise between input and
the network’s inherent tendency to organize activity towards a low-dimensional set of modular patterns.
The presence of novel components in patterned opto-evoked activity supports the idea that cortical network
shows self-organization of neural activity.

As noted above in our response to reviewer 1, we have also revised our manuscript to be more explicit about
what we mean by ‘self-organizing’. We show that cortical patterns can arise through local intracortical
interactions—as supported by our pharmacological experiments—and can transform optogenetic inputs—as
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demonstrated in spatial wavelength transformation experiments of Figure 4 and the input/output pattern
transformation of Figures 3 and 6. Collectively, these results support our description of self-organizing neural
activity in the cortex.

Minor comments
1) When I first read the manuscript, I did not notice that the optogenetically evoked activity patterns are
highpass filtered and mean subtracted. To be able to assess relative strength of filtered and non-filtered
activity patterns, please add non-filtered & non-mean subtracted examples, such as an example shown in
Fig2d, in Fig3 and Fig4.

We thank the reviewer for this suggestion, and we have included non-filtered and non-mean subtracted ex-
amples in supplementary figure S6. These figures show that the modular structure of the neural activity
patterns evoked by spatially structured optogenetic stimulation (in Figs 3-4) is clearly evident in the raw
∆F/F data and does not require any sort of spatial filtering. This is also consistent with the responses
evoked from uniform optogenetic stimulation shown in the main text Fig. 2d and in the supplemental movie
M1 (showing the non-filtered version of the 5 example trials in Fig. 2e), which is reported as ∆F/F and is
not spatially filtered or mean subtracted.

It is important to note that also neuropil contributes to the calcium signal, and therefore not all signal in
between the active domains corresponds to active neurons. Though our opsin was targeted to cell somas,
our GCaMP sensor was not, and opto-stimulation seemed to drive global but unstructured increases in flu-
orescence likely due to neuropil activation. Mean subtracting allowed us to subtract off this constant DC
component, while maintaining the trial-varying evoked patterns and allowing us to make more direct com-
parisons to spontaneous activity patterns. Additionally, in previous work [30] using cellular (two-photon)
imaging of early spontaneous activity, we observed little activity in between the active domains during spon-
taneous events, which suggests that most of what is eliminated through spatial filtering is the neuropil signal.

2) lines887-899 Authors stated ”For simplicity, we use a linear rate network model with strong recurrent
connections close to the critical value ... the maximum eigenvalue of the connectivity matrix is equal to
0.99”. I am curious how sensitive the overall simulation results are to the specific choice of the eigenvalue.
Also, it would be nice if the authors could discuss biological plausibility of the developing cortex being at
the critical state.

The major goal of the model was to illustrate the effect of driving this class of models with different simu-
lated inputs in the presence of noise. In choosing the parameters for our model, we did a brief assessment
of varying the normalization maximum of the eigenvalue of the connectivity matrix (between 0.95 and 0.99)
and found that the results of our models are not strongly dependent on having a maximum eigenvalue being
close to the critical value. The value of 0.99 was chosen because, given the size, heterogeneity, and amplitude
of the input noise, when driven with white noise input to simulate spontaneous (unstimulated) activity, it
produced an array of output patterns with a dimensionality similar to that observed in vivo, both from our
data and from previously published data [30]. However, networks further away from the critical point tended
to produce outputs that are more noisy, with less regularly spaced modules, and in this regard were more
similar to those observed in vivo, not inconsistent with the possibility that the cortex may operate some
distance away from the critical point. However, from these analyses alone we cannot make firm conclusions
about the network state. Our empirical results do not appear to provide a strong constraint specifically
on how close to the critical state the cortex operates. While a thorough investigation into how close the
network needs to be to the critical state, especially how this relates to other network parameters such as
heterogeneity and noise, is an interesting and worthwhile endeavor, it is outside the scope of this particular
manuscript.

3) In Fig3f, the values of similarity between individual events and optogenetics spatial patterns seem quite
low, hence it is not clear to what extent individual events reflect optogenetics spatial patterns. I think this
is partly because only a small fraction of pixels are activated/deactivated in each event (in highpass filterd
images). Can the authors calculate correlations using only those pixels that showed large activity change in
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each events (e.g. use pixels with |z| > 2)?

The reviewer points out an interesting feature of our data: the apparently low amount of similarity between
optogenetic patterns that we stimulate with and the pattern that was directly evoked by our stimulus. Al-
though the FOV used for analysis in our experiments are already set conservatively and only include pixels
that show both strong visually evoked (through visual change in luminance stimulus) and opto-evoked (from
uniform opto-stimuli) responses, it is possible that the relatively low correlation values could be due to in-
cluding pixels in the analysis that systematically do not show large changes in activity.

Following the reviewer’s suggestion, when we reran our analysis by calculating the correlation for only pixels
with large activity changes (pixels with |z| > 2). We found that there was a slight increase in correlation
value but otherwise our results were not dramatically changed, indicating that the spatial structures of in-
dividual events are similar to but not perfectly overlapping with the stimulus pattern.

This result is consistent with what can be observed by looking at the spatial patterns of individual trials in
Fig 3b, where there appears to be some overlap with the pattern, but not every module is perfectly aligned
and the modules that are activated can change from trial to trial. It is also in agreement with the new
analysis in our revised Figure 6, showing that the evoked pattern can contain novel features.

Figure 2: For only pixels with large changes in activity (|z| > 2), average similarity of individual opto-evoked
trials to their respective stimulus patterns, compared to trial shuffled similarity.

What then could be the cause of this apparent transformation in input pattern to output pattern? One po-
tential explanation is simply that our ability to drive activity is weak with respect to varying sources of noise
within the cortex. Within the computational model we also see lower correlations in the similarity between
input and stimulus-evoked responses when the relative strength of the stimulus input is weak compared to
the noise of the network (supplemental Fig 5h). It is reasonable to think that stimulation of these developing
cortical networks might be weak or noisy for a number of reasons: viral expression of the opsin within only
a subset of the total population, noisy or unrefined synaptic connectivity within these developing circuits,
competing inputs from other feedforward or feedback areas of the brain. All these factors could contribute
to evoking responses that deviate somewhat from the stimulus input on an individual trial basis, but whose
average responses strongly align to the input pattern (supplemental Fig 5e).

An additional explanation could also potentially be found in the connectivity of the recurrent cortical net-
work. Within random recurrent networks, stimulus inputs that activate preferentially connected subnetworks
can amplify responses, which could drive the network to transform activity towards a preferred set of pat-
terns. The stimulation patterns that we are using are artificial and may overlap poorly with the structure
of endogenous connectivity within the network. Some heterogeneity in recurrent connectivity can be incor-
porated in computational models based on LE/LI connectivity, which as a result produce activity patterns
with low dimensionality and long-range correlations similar to those seen in vivo [30]. Thus, it is possible
that the deviation we observe in individual trials from their stimulus input pattern is a dynamic compromise
between a LE/LI amplification of activity at a characteristic wavelength and the network’s intrinsic tendency
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to drive activity towards preferred patterns via selective amplification of recurrently connected subnetworks.
In such a case, one might expect that resulting activity patterns to sit somewhere between stimulus inputs
and endogenous activity patterns, consistent with the results we show in the revised Fig 6f.

However, our current data cannot distinguish whether the relatively low degree of similarity we see between
stimulus input pattern and individual trial evoked responses is due to either relatively weak input drive or if
the specific connectivity of recurrent networks is transforming activity towards preferred responses. Testing
this would require many different patterned stimuli that systematically vary the spatial phase of the pattern
and quantifying the relationship of those stimuli to the repertoire of spontaneous events. While interesting,
such a high resolution mapping of the cortical transform is beyond the scope of the current manuscript.

In our revised manuscript, we now include a larger discussion of the similarity between the input pattern
and the resulting activity (Fig. 6f-h), and potential explanations. Additionally, given that calculating the
similarity between individual evoked responses and stimulus input patterns using only the most active pixels
(|z| > 2) did not dramatically change our results, we decided to keep our previous approach and use corre-
lations calculated from all pixels within the field of view, for simplicity of methods purposes.

4) It is not mandatory but it would be nice if the authors could present a data showing that GCaMP and
ChrimsonR are co-expressed in single neurons (which I think is the assumption by the authors).

We thank the reviewer for the suggestion, and have now included supplemental figure S2, showing the his-
tology of GCaMP and ChrimsonR expression in developing ferret visual cortex. As would be expected when
injecting two separate AAVs, expression of GCaMP and ChrimsonR tended to be intermingled, with some
cells expressing both constructs, while others were infected by only one (or none) viruses. This is similar to
expression patterns that have been published in other species when using a two virus strategy [7].

One advantage of our single-photon, wide field-of-view approach is that we are targeting and measuring
large-scale network effects and do not require single cell resolution. Prior studies [30, 31] found a strong
correspondence between the activity of local populations of neurons imaged at the cellular level and the
widefield population activity at that location, arguing that widefield imaging captures the average activity
of local populations. This prior work also found high levels of coherence in activity amongst local populations
of neurons, meaning that even without complete co-expression of sensor and opsin, we can still interrogate
how the cortical network responds to relatively large (on the order of hundreds of microns) activation of
specific network elements.

5) Y axis in Fig5g and Fig5h should be the same.

We have modified Figure 5 so that the y-axis of Figure 5h matches its control in 5g for ease of comparison.

6) In Fig5i, median of the control is somewhere around 0.2. But in Fig5j, there’s no control experiment
around Modularity 0.2. Please check.

We thank the reviewer for noticing this discrepancy. Upon review, an error in the file path led to loading
data from the wrong experiment trial in Figure 5i, and the figure has now been corrected.

Reviewer 3

This is an impressive manuscript from Mulholland, Kaschube and Smith, which combines widefield fluo-
rescent calcium imaging with optogenetic stimulation to show that modular responses emerge from cortical
interactions in the developing ferret visual cortex (V1). This work is motivated by the prior finding that
modular activity patterns at the spatial scale of cortical columns are present in the spontaneous activity of
visual cortex prior to eye opening. They propose a neural implementation which requires recurrent excita-
tion of neighboring neurons -which form a module- combined with longer range inhibition between modules.
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Such a model generates periodic groups of co-activated modules which resemble the periodic functional maps
observed in primate and carnivore neocortex. The authors describe 3 predictions of the Turing model, each
of which they test by optogenetically stimulating ferret V1 prior to eye opening. First, they show that
non-specific activation of V1 with optostim produces modular and periodic patterns of neural activation,
in line with the Turing prediction. Next, they stimulated V1 with random patterns at the characteristic
wavelength of cortical modules observed during spontaneous activity. Indeed the trial-averaged activation
patterns in V1 strongly resembled the spatial structure of the optostim. To further test the validity of this
candidate mechanism, they presented optostim patterns at spatial wavelengths which differed from the char-
acteristic wavelength of cortical modules observed during spontaneous activity. Their model predicts that
inputs away from the characteristic wavelength will produce a response at an intermediate wavelength. They
show that indeed, the spatial wavelength of cortical activation following patterned stimulation lies at a value
between the input and characteristic wavelengths, and that this effect is present when input wavelength is
both narrower and broader than the characteristic wavelength. This final point is quite valuable, as it shows
that modular patterns of cortical activation do not simply reflect the spatial pattern of inputs, nor are they
confined to a single wavelength regardless of input.

An alternative hypothesis for modular responses is that the structure of the feedforward activity is essen-
tial. The authors reject this hypothesis by showing that modular activation following non-specific optostim
persists when LGN is silenced with Muscimol.

Finally, the authors compare the optostim-evoked activation patterns to the spontaneous patterns which
they had previously observed in cortex. They find that these patterns are highly correlated in their spatial
arrangement and can be accounted for by the same low-dimensional principal component representation.
This result indicates that these patterns emerge from a common synaptic source- an important finding in
support of their hypothesis that a Turing-like organization seeds the formation of modular, periodic maps
in cortex.

This is a very strong manuscript. The authors lay out a clear hypothesis – that the Turing-like mecha-
nism describes the population-level organization of ferret cortex prior to eye opening. They make testable
predictions of how a neural population organized in this way would respond to different patterns of input.
They show that each of these predictions is met in-vivo. This work represents a significant advance in our
understanding of cortical organization early in development. It also constrains models of functional maps in
cortex by indicating that columnar organization is an emergent property of the structure of intracortical con-
nections present prior to visual experience, rather than depending on selective pooling of peripheral afferents.

I have only one critical comment for this work. The manuscript seeks to describe the neural mechanisms
which generates modular organization in the absence of structured visual input. And yet there may be many
circuit mechanisms that implement this computational model. Critically some of the circuit models that the
authors cite, for example, the attractor models of Sompolinsky, exhibit dynamics that do not seem to match
cortical networks. Are there any aspects of the cortical dynamics from the present recordings that could
make constraints on the neural implementation of this Turing-like phenomenon?

We thank the reviewer for their comments and their enthusiasm for our work. The attractor models by
Sompolinsky and others of the ring-model type are related to the model class used in this study. However,
our model does not operate in the so-called ‘marginal state’ (corresponding to a supercritical regime, [5]),
but in the ‘linear’ state (subcritical), however close to the boundary of linear instability. In either of these
regimes pattern formation involves cross-correlations over relatively long time scales (on the order of one
hundred milliseconds), which may be unrealistic in the mature cortex [16], where balanced amplification [23]
seems to be a plausible alternative. Although we note, these attractor-type models may be less problematic
in the early cortex, where circuits are built and the inputs from the LGN are still temporally imprecise, [1].
Unfortunately, however, the calcium sensor we are using, selected for its high sensitivity and good signal-to-
noise, does not provide sufficient time resolution to distinguish between these different possible models. It
would be interesting to repeat our experiments in the future with a faster readout of activity, for instance
using neuropixels or voltage-sensitive imaging.
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While our experiments provide strong evidence for an intracortical interaction that is effectively LE/LI,
drawing further conclusions on the specific network constraints on the neural implementation of this mecha-
nism is challenging. Due to our widefield 1-photon population level imaging, our data provide little insights
about the anatomical connections implementing this model. Future pharmacology experiments or targeted
manipulations of individual circuit components using cellular resolution optogenetics could have the potential
to reveal the importance of different circuit elements. It would also be interesting to repeat our experiments
at different stages in development (and with a faster readout) to assess whether the effective intracortical
interactions change during cortical maturation, for instance transitioning from a more recurrent to a more
input-dominated regime.

With our existing data, however, our experiments do provide new empirical evidence that may constrain
future models. Previous experiments conducted at a similar age range in ferret visual cortex showed that
spontaneous excitatory activity became abnormally large when suppressing inhibition [22], which indicates
that the cortex, at this age, operates in a regime sometimes called a inhibition-stabilized network (ISN) [27].
This is also the regime of the model in this manuscript. For certain conditions, ISNs show a dependency
of the spatial wavelength as a function of stimulus drive [26]. Our results show that the spatial wavelength
is virtually unchanged as a function of laser power (which is also what the model used in this study would
predict), providing an important constraint that was previously not emphasized in our manuscript.

We thank the reviewer for their suggestion, and now include an expanded discussion of attractor network
models in our revised discussion.
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REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

See aftachment. 
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“Self-organization of modular activity in immature cortical
networks”
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January 23, 2024

I find this revised manuscript acceptable for publication without further changes.

I read carefully the reply to the editor by the authors and the revised manuscript but
only quickly scanned through the supplementary material. I found that the authors were
careful and thorough in thinking about and then doing a very good job in responding to
comments of the three referees. In particular, I feel that the authors did a a very good job
in addressing my comments (as Reviewer 1) and I appreciate and am happy with their
changes. I especially think that the paper was improved by emphasizing the central role
of LE/LI connections rather than Turing patterns. As a result of the many changes, I feel
the paper is stronger and easier to understand and appreciate.

I would like to bring to the attention of the authors three optional minor changes that
the authors could consider making before this paper is published, all dealing with making
certain clarifications rather addressing the experimental and theoretical results:

1. The way the paper is written, with the phrase LE/LI repeated so many times,
the reader may think incorrectly that LE/LI connectivity is an established well-
understood fact in visual cortex. But as the authors point out near line 25 on
page 15 of their revised manuscript, currently there is only indirect anatomical
evidence of LE/LI, and details are currently lacking regarding which neurons are
involved, what is the connectivity of these neurons, etc. I think this point should
be stated more clearly, in the introduction and conclusion, since readers might miss
this point.

2. As currently written and in several places, the paper is a bit too strong in claiming
that they have demonstrated that immature cortical networks have self-organized
activity when, in fact, what the paper has tested are three indirect aspects of self-
organization based on a highly simplified and idealized linear model as summarized
in Figure 1. For example, around line 5 on page 16 of the revised paper, the authors
say “. . . our work demonstrates the power of immature cortical networks to self-
organize neural activity, . . . ” but I would recommend restating this as saying that
the results of this paper make the hypothesis of self-organization of neural activity
based on an LE/LI mechanism much more plausible, with the implication that this
paper should stimulate further near-term research to collect enough new details to
settle this.

1



I do not feel that this paper is a definitive demonstration of LE/LI leading to self-
organization (although I think it is the most likely possibility and I cannot think of
simple alternatives). A more definitive future paper would likely involve using some
combination of dense connectomics of the V1 region (or maybe Ed Callaway-like
sparse connectomics) combined with more detailed nonlinear biophysical simula-
tions of the dense connectomics to show that specific experimental circuitry, when
simulated, leads to the experimentally observed self-organization of neural activity.

3. I think it would help if the paper added a few sentences at the end of the discussion
on page 16, saying that a major remaining mystery is why some animals do not
have modular activity, they have a salt-and-pepper mixed architecture. That is,
while this paper makes a strong case that LE/LI leads to modular cortical activity
for young ferrets and so presumably for similar animals, the paper doesn’t discuss
that the significance of this modular activity — why these animals evolved to have
this capability but other visual animals did not — is not understood. LE/LI could
perhaps be a consequence of brain-size-related optimizations not related to behavior
such as minimizing wire length and reducing delay times, which the authors mention
briefly around line 35 on page 14, but this point is buried towards the end of a long
paragraph and instead should be more prominent.

This is the kind of point that might be settled by future theoretical evolutionary
and optimization calculations of the kind that James DiCarlo and collaborators
(and others) have carried out, by studying layers of artificial neural networks with
few imposed details, and by imposing some constraints roughly consistent with
experiment (such as maybe a 4:1 ratio of excitatory to inhibitory neurons, certain
probabilities of connectivity as a function of radius, etc), and then seeing what
kind of dynamics evolves for certain classes of stimuli. The linear pattern formation
model used by the authors is, while insightful, phenomenological and does not clarify
why some animals did and did not evolve to have modular activity.

Again, I feel that making changes in response to these comments is optional, the paper is
acceptable in its current form.
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Reviewer #2 (Remarks to the Author):

The authors have addressed all my concerns. They have notably performed further analysis of opto-

evoked acfivity on a single-trial basis. Addifionally, they acknowledged that their data does not enfirely 

support the interpretafion of the developing cortex being in a crifical state. I have no addifional 

comments. This paper makes a substanfial contribufion to the field.

Reviewer #3 (Remarks to the Author):

The authors have addressed my concerns.



We thank all 3 reviewers for their careful consideration of our manuscript. All reviewers now find the 

manuscript acceptable for publication, without further changes. Reviewer 1 raises some additional points 

for optional further edits, which we agree would further strengthen the manuscript. Below we address the 

comments of all reviewers in detail.  

 

Reviewer 1 

I find this revised manuscript acceptable for publication without further changes.  

I read carefully the reply to the editor by the authors and the revised manuscript but only quickly 

scanned through the supplementary material. I found that the authors were careful and thorough in 

thinking about and then doing a very good job in responding to comments of the three referees. In 

particular, I feel that the authors did a a very good job in addressing my comments (as Reviewer 1) and I 

appreciate and am happy with their changes. I especially think that the paper was improved by 

emphasizing the central role of LE/LI connections rather than Turing patterns. As a result of the many 

changes, I feel the paper is stronger and easier to understand and appreciate. I would like to bring to the 

attention of the authors three optional minor changes that the authors could consider making before this 

paper is published, all dealing with making certain clarifications rather addressing the experimental and 

theoretical results: 

We are pleased to hear that the changes we made were able to address the concerns raised in our initial 

submission, and agree that the manuscript is now much stronger for it. We are glad that Reviewer 1 now 

finds the manuscript acceptable for publication without further changes.  

In addition, we also thank the reviewer for raising further 3 points in their comments, and their 

suggestions for optional further edits to the manuscript. We agree with these points, and have made 

additional changes to the manuscript as noted below.  

 

1. The way the paper is written, with the phrase LE/LI repeated so many times, the reader may 

think incorrectly that LE/LI connectivity is an established well understood fact in visual cortex. 

But as the authors point out near line 25 on page 15 of their revised manuscript, currently there is 

only indirect anatomical evidence of LE/LI, and details are currently lacking regarding which 

neurons are involved, what is the connectivity of these neurons, etc. I think this point should be 

stated more clearly, in the introduction and conclusion, since readers might miss this point. 

Reviewer 1 is correct in that LE/LI is mostly a hypothesized connectivity scheme, which is 

currently lacking in clear anatomical evidence. To make this clearer for the reader, we added a 

line in the conclusion that more explicitly states this (page 10, line 20-21), and state that LE/LI is 

a hypothesized mechanism in the introduction. Also, we highlight that paragraph 4 of our 

introduction also already makes this point (‘empirical evidence for specific neural connectivity 

schemes that could support such a mechanism has been scarce’). We believe these changes clarify 

this important point for readers.  

2. As currently written and in several places, the paper is a bit too strong in claiming that they 

have demonstrated that immature cortical networks have self-organized activity when, in fact, 

what the paper has tested are three indirect aspects of self-organization based on a highly 

simplified and idealized linear model as summarized in Figure 1. For example, around line 5 on 

page 16 of the revised paper, the authors say “. . . our work demonstrates the power of immature 

cortical networks to self-organize neural activity, . . . ” but I would recommend restating this as 

saying that the results of this paper make the hypothesis of self-organization of neural activity 



based on an LE/LI mechanism much more plausible, with the implication that this paper should 

stimulate further near-term research to collect enough new details to settle this. 

I do not feel that this paper is a definitive demonstration of LE/LI leading to self-organization 

(although I think it is the most likely possibility and I cannot think of simple alternatives). A more 

definitive future paper would likely involve using some combination of dense connectomics of 

the V1 region (or maybe Ed Callaway-like sparse connectomics) combined with more detailed 

nonlinear biophysical simulations of the dense connectomics to show that specific experimental 

circuitry, when simulated, leads to the experimentally observed self-organization of neural 

activity. 

We have softened some of the language of our conclusions. Our results are consistent with the 

predictions made by this class of models, but at this time we cannot entirely rule out alternative 

mechanisms—although our results are inconsistent with current alternative theories, such as 

retinal mosaics or a ridged, clustered scaffold. LE/LI seems like the most plausible theory, but 

much work still needs to be done to more fully understand whether and how this mechanism is 

implemented in the cortex. In the discussion we acknowledge that a more thorough understanding 

of the connectomics in the mammalian cortex may reveal new insights into how immature 

cortical circuits transform inputs.    

While we acknowledge that the idealized linear model that we used to do some simulations in this 

paper is likely oversimplified, it is the simplest demonstration of the key phenomenon that we 

investigated in this study, which is that outputs of LE/LI networks are biased towards a 

characteristic wavelength. Importantly, the emergence of modular outputs has been shown in non-

linear, more biologically plausible models e.g. in (Smith et al., 2018, Antolik 2017), indicating 

that lateral interactions can shape network outputs under a diverse range of network parameters. It 

would be interesting to explore whether similar results would be expected in nonlinear models 

guided by connectomics, as this would provide a more detailed set of predictions about which 

neurons are involved in producing these patterns of activity. 

3. I think it would help if the paper added a few sentences at the end of the discussion on page 16, 

saying that a major remaining mystery is why some animals do not have modular activity, they 

have a salt-and-pepper mixed architecture. That is, while this paper makes a strong case that 

LE/LI leads to modular cortical activity for young ferrets and so presumably for similar animals, 

the paper doesn’t discuss that the significance of this modular activity — why these animals 

evolved to have this capability but other visual animals did not — is not understood. LE/LI could 

perhaps be a consequence of brain-size-related optimizations not related to behavior such as 

minimizing wire length and reducing delay times, which the authors mention briefly around line 

35 on page 14, but this point is buried towards the end of a long paragraph and instead should be 

more prominent. 

This is the kind of point that might be settled by future theoretical evolutionary and optimization 

calculations of the kind that James DiCarlo and collaborators (and others) have carried out, by 

studying layers of artificial neural networks with few imposed details, and by imposing some 

constraints roughly consistent with experiment (such as maybe a 4:1 ratio of excitatory to 

inhibitory neurons, certain probabilities of connectivity as a function of radius, etc), and then 

seeing what kind of dynamics evolves for certain classes of stimuli. The linear pattern formation 

model used by the authors is, while insightful, phenomenological and does not clarify why some 

animals did and did not evolve to have modular activity. 

We agree that this is an important ongoing question, and we have added a paragraph to the 

discussion expanding on this topic. Why cortical networks exhibit spatial clustering of activity 

and neural representations is still poorly understood. Is it merely an epiphenomenon of a wire-



length minimization problem, or does it confer other computational benefits? The proposed work 

above could shed some interesting light on these topics, especially if it could explain some of the 

differences found between primates/carnivores and rodents. This would be especially interesting 

in the context of the growing evidence that rodent cortical networks do exhibit some modest 

degree of spatial organization, but on much smaller scales, and if these sorts of models could 

simulate what effects these changes in scale might have on computations.  

 

Again, I feel that making changes in response to these comments is optional, the paper is acceptable in its 

current form. 

 

Reviewer #2 (Remarks to the Author): 

The authors have addressed all my concerns. They have notably performed further analysis of opto-

evoked activity on a single-trial basis. Additionally, they acknowledged that their data does not entirely 

support the interpretation of the developing cortex being in a critical state. I have no additional comments. 

This paper makes a substantial contribution to the field. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed my concerns. 

 

We thank reviewers 2 & 3 for their efforts in reviewing our manuscript, and are pleased to hear that our 

revisions have addressed all of their concerns.  
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