1 Supplementary Note

2	Supplementary Note	1
3	Supplementary Methods	3
4	Comparison with left atrial biplane measurements	3
5	GWAS sensitivity analysis: LVEDV-indexing	3
6	GWAS sensitivity analysis: no exclusion for abnormal cardiac filling patterns	4
7	GWAS sensitivity analysis: genetic diversity	4
8	Polygenic score sensitivity analyses	5
9	Supplementary Results	6
10	Semantic segmentation model quality assessment	6
11	Segmentation and reconstruction quality control	7
12	Comparison with left atrial biplane measurements	7
13	Quality control for the deep learning model for abnormal cardiac filling patterns	8
14	Relationship between cardiac filling patterns and left atrial volume	9
15	Atrial size was associated with AF, stroke, hypertension, and heart failure	9
16	GWAS sensitivity analysis - LVEDV-indexing	11
17	GWAS sensitivity analysis: no filtering for abnormal cardiac filling patterns	12
18	GWAS sensitivity analysis: genetic diversity	12
19	Supplementary Tables	14
20 21	Supplementary Table 1: relationship between left atrial measurements and prevalent disease	14
22 23	Supplementary Table 2: relationship between left atrial measurements and incident disease	15
24 25	Supplementary Table 3: relationship between left atrial measurements and incident disease after adjustment for left ventricular features	16
26	Supplementary Table 4: REML heritability and genetic correlation	17
27	Supplementary Table 5: Idsc heritability and intercept	18
28 29	Supplementary Table 6: genetic correlation between left atrial measurements, atrial fibrillation, and stroke	19
30 31	Supplementary Table 7: Relationship between atrial fibrillation polygenic score and le atrial measurements	ft 20
32 33	Supplementary Table 8: relationship between left atrial polygenic scores and atrial fibrillation risk	21
34	Supplementary Figures	22
35	Supplementary Figure 1 - Measurement distributions	22
36	Supplementary Figure 2 - Normal and abnormal cardiac filling patterns	23
37	Supplementary Figure 3 - Sample flow diagram	25
38	Supplementary Figure 4 - LV-adjusted left atrial phenotype Manhattan plots	26
39	Supplementary Figure 5 - Mendelian randomization method comparison plot for LAmi	n

40	vs atrial fibrillation	27
41 42	Supplementary Figure 6 - Pleiotropic associations for variants used in Mendelian randomization	29
43 44	Supplementary Figure 7 - Mendelian randomization method comparison plot for LAn vs atrial fibrillation after removing 3 pleiotropic variants	nin 30
45 46	Supplementary Figure 8 - Mendelian randomization method comparison plot for atria fibrillation vs LAmin	al 32
47	Supplementary Figure 9 - Principal components of ancestry	34
48	Supplementary Figure 10 - Atrial volume with or without QC flags	35
49	Supplementary Figure 11 - Principal components of ancestry by inlier group	37
50	Supplementary References	38
51 52	FinnGen Consortium	40

54 Supplementary Methods

55 Comparison with left atrial biplane measurements

The UK Biobank's cardiovascular MRI imaging protocol did not include a volumetric short-axis stack throughout the left atrium¹, so left atrial measurements represent estimates of an unmeasured true left atrial volume. To assess quality, we compared the Poisson surface reconstruction approach with biplane measurements and tested each for association with prevalent atrial fibrillation. Using the R function *cor.test*, we correlated the Poisson surface reconstruction algorithm-based left atrial volume measurements with biplane-based volumes manually measured by experts².

63 GWAS sensitivity analysis: LVEDV-indexing

64 A sensitivity analysis was conducted to assess the consequence of accounting for body size 65 based on each individual's LVEDV (rather than BSA). In addition to functioning as a sensitivity 66 analysis for that purpose, accounting for left ventricular volume could, in principle, help to 67 identify loci whose effects have the opposite effect direction between atrium and ventricle. 68 However, adjusting for heritable covariates in GWAS can also induce associations via collider 69 bias³. Like the primary analyses, the LVEDV-indexed sensitivity analyses were conducted with 70 BOLT-LMM with the same covariates and settings (**Online Methods**). To attempt to identify 71 LVEDV-indexed associations that were likely attributable to the adjustment for LVEDV, we also 72 conducted a GWAS of LVEDV in the same participants with the same settings, and then tested 73 each of the LVEDV-indexed lead SNPs for independent association with LVEDV.

Left Atrial GWAS - Supplementary Note

74 GWAS sensitivity analysis: no exclusion for abnormal cardiac filling

75 patterns

76 A sensitivity analysis was conducted to assess the consequence of retaining participants

identified by the deep learning model as having apparently abnormal cardiac filling. For this

78 sensitivity analysis, only LAmin and BSA-indexed LAmin were evaluated. Like the primary

analyses, BOLT-LMM was used for this analysis with the same covariates and settings (Online

80 Methods).

81 GWAS sensitivity analysis: genetic diversity

82 The primary analyses permitted the inclusion of all participants with LA measurements,

regardless of genetic identity (Supplementary Figure 9). As a sensitivity analysis, individuals

84 were analyzed within genetic inlier groups instead of jointly. To accomplish this, first self-

reported ethnicity—which is only informally correlated with genetic identity—was aggregated

86 into European (British, Irish, and Other European), African (African,

87 "Any_other_Black_background", "White_and_Black_African", and

⁸⁸ "White_and_Black_Caribbean"), South Asian (Bangladeshi, Indian, Pakistani), and East Asian.

89 Individuals with self-reported ancestry of "Any_other_mixed_background", "Mixed",

90 "White_and_Asian", "Any_other_Asian_background", "Caribbean", "Do_not_know",

91 "Other_ethnic_group", or "Prefer_not_to_answer" were not analyzed further. Then, for each

92 group of participants, the R package *aberrant* was run on the centrally computed genetic

93 principal components of ancestry using a 40 standard deviation window similar to the approach

94 of Bycroft, *et al*^{4,5}. Inliers for each genetic identity group were retained. Individuals that were not

95 part of an inlier genetic identity group were excluded. The genetic identity inlier groups were

96 termed EUR, AFR, SAS, and EAS.

98 The sample sizes for the AFR, SAS, and EAS subsets were all well below the threshold 99 recommended for the use of BOLT-LMM ("We recommend BOLT-LMM for analyses of human 100 genetic data sets containing more than 5,000 samples", BOLT-LMM v2.4.1 User Manual 101 https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM manual.html). Therefore, for each 102 of the four genetic inlier groups, a GWAS was conducted with REGENIE v2.2.4 which does not 103 have the same limitation⁶. All models were adjusted for sex, age and age2 at the time of MRI, 104 the first 10 principal components of ancestry, the genotyping array, and the MRI scanner's 105 unique identifier. Fixed-effect meta-analysis was then conducted with METAL (release version 106 2020-05-05) 7.

107

Two additional GWAS were conducted in BOLT-LMM v2.3.4 using the same covariates as the primary GWAS: one for the inlier EUR population, and another where an equivalent number of individuals were dropped at random from the original GWAS cohort (without regard for genetic inlier grouping) to yield a sample size that was the same as the inlier EUR population.

GWAS loci from the primary analysis were fetched from the meta-analysis, the EUR-specificGWAS, and the GWAS in which individuals were dropped at random.

115 Polygenic score sensitivity analyses

In addition to the primary LA polygenic scores produced with PRScs, an additional set of LA polygenic scores was created as a weighted allelic sum based on the lead variants for each trait. That is, for each tested participant, at each of the lead variant alleles, the number of effect alleles possessed by the participant was multiplied by the effect estimate; these were then summed for all alleles for each phenotype. They were tested for association with diseases in the same way as the PRScs scores.

5/47

122 Supplementary Results

123 Semantic segmentation model quality assessment

In a held-out test set of 20 manually annotated images from the two-chamber short axis view
that were not used in training or validation, the average Dice coefficient was 0.89 (SD 0.06) for
the left atrial blood pool. For 20 held-out images from the three-chamber view, the Dice score
was 0.88 (SD 0.07). For 40 held-out images from the four-chamber view, the Dice score was
0.94 (SD 0.03).

129

The short axis imaging sequence was not designed to capture the atria: the atrial short axis sequence was eliminated from the acquisition protocol to save acquisition time¹. The left atrium was nevertheless recognizable in the basal-most segments of images obtained in the short axis view. In the short axis view, the average Dice score for the left atrium was 0.78 (SD 0.35) when weighted by the total number of pixels assigned to the left atrium by the cardiologist or the model, or 0.90 (SD 0.28) when considering images correctly identified by the model as having no left atrial pixels to have a Dice score of 1.

137

In the two-chamber view, the average Hausdorff distance was 6.7mm (SD 4.0mm). In the threechamber view, the average Hausdorff distance was 8.8mm (SD 8.5mm). In the four-chamber
view, the average Hausdorff distance was 5.2mm (SD 4.1mm). In the short-axis view, the
average Hausdorff distance was 5.8mm (SD 4.2mm).

142

In the two chamber view, the average mean contour distance was 1.8mm (SD 0.6mm). In the
three-chamber view, the average mean contour distance was 2.3mm (SD 2.2mm). In the fourchamber view, the average mean contour distance was 1.3mm (SD 0.90mm). In the short-axis

6/47

view, the average mean contour distance was 1.7mm (SD 1.7mm). The mean contour distance
for the automated left atrial segmentation in each of these views was less than the in-plane pixel
spacing of 1.83mm.

149 Segmentation and reconstruction quality control

150 QC-flagged samples (due to more than 1 connected component, frame-to-frame pixel changes 151 greater than 5 standard deviations above the mean, the absence of left atrial pixels, or an 152 abnormal number of CINE images as detailed in the **Online Methods**) were significantly more 153 likely to fail to achieve a successful Poisson reconstruction (OR 1.4, P=1.3E-19). Among the left 154 atria that were successfully reconstructed, we tested whether the presence or absence of any of 155 the QC flags was associated with volumetric measurements. However, the distribution was 156 similar regardless of QC status (Supplementary Figure 10); the presence of QC flags was 157 statistically non-significant for LAmin (0.020 SD greater with a flag, P=0.06) and had a similarly 158 small effect estimate for LAmax (0.036 SD greater with a flag, P=5E-04). Therefore, all samples 159 that were successfully reconstructed were retained for analysis.

160 Comparison with left atrial biplane measurements

161 We correlated the Poisson surface reconstruction algorithm-based left atrial volume

162 measurements with biplane-based volumes manually measured by experts in 3,401

163 participants². When limiting the inputs into the Poisson surface reconstruction algorithm to only

the two- and four-chamber long axis views ("Poisson biplane"), which are the two views used to

- 165 calculate the biplane volume, the correlation improved for both LAmax (from r=0.814, 95% CI
- 166 0.802 to 0.825, P=2.9E-804 with the full reconstruction to r=0.887, 95% CI 0.880 to 0.894,
- 167 P=4.5E-1143 with the Poisson biplane) and LAmin (from r=0.768, 95% CI 0.754 to 0.781,
- 168 P=1.1E-659 to r=0.860, 95% CI 0.851 to 0.868, P=6.9E-994). We interpreted these results as

supporting the notion that, when presented with the same input information, the modelingapproach yields estimates that are similar to the standard biplane estimation.

171

172 We then used logistic regression to recapitulate prior observations that individuals with preexisting atrial fibrillation have larger atrial volumes^{8,9}. In a subset of 39,148 participants, of 173 174 whom 808 had atrial fibrillation, both the full Poisson reconstruction and the Poisson biplane 175 reconstruction could be performed. Although the Poisson biplane better correlated with the 176 manual measurements in the previous analysis, the full Poisson reconstruction was more 177 strongly associated with prevalent atrial fibrillation (LAmax OR 1.72, P=1.3E-78 and LAmin OR 178 1.86, P=1.0E-132) compared to the Poisson biplane model (LAmax OR 1.65, P=6.3E-66 and 179 LAmin OR 1.80, P=2.8E-130).

180

We interpreted these findings as indicating that (1) the Poisson-based measurements were well correlated with manual measurements, and (2) while full volumetric imaging stacks through the atria were not available to adjudicate correctness, the Poisson-based measurements that incorporated all available views (2ch, 3ch, 4ch, and SAX) were more strongly correlated with atrial fibrillation than the Poisson biplane measurements.

186 Quality control for the deep learning model for abnormal cardiac filling

187 patterns

Among 200 participants whose MRIs were manually reviewed (100 flagged as having abnormal cardiac filling patterns and 100 flagged as having normal cardiac filling patterns), manual review determined that 164 were normal and 36 were abnormal. The sensitivity of the model for identifying abnormal cardiac filling patterns was 100% (95% CI 90.3-100.0%) and the specificity was 61% (95% CI 53.1-68.5%). These findings suggested that the model may have over193 detected abnormal cardiac filling—leading to the exclusion of more participants than

194 necessary—but had little evidence for false negatives.

Relationship between cardiac filling patterns and left atrial volume 195 196 Among the 40,558 participants with LA measurements whose filling patterns could be analyzed, 197 we identified 1,013 participants whose patterns did not appear to be consistent with normal 198 cardiac filling patterns. Of these, 376 (37%) had a pre-existing history of AF or atrial flutter. The 199 same 376 participants represented 32% of all 1,189 participants with a history of AF or atrial 200 flutter. The remaining 637 participants with abnormal cardiac filling patterns did not have a 201 history of AF or flutter, representing only 1.6% of the 39,369 participants without such history. 202 203 Among participants with no history of AF or atrial flutter, those with an abnormal atrial cardiac

204 filling patterns had significantly elevated LA volumes (Figure 3; N = 637; LAmin: +1.3 standard 205 deviations [SD] compared to the 38,732 with no AF history and normal cardiac filling patterns, P 206 = 3.1E-321; LAmax: +0.8 SD, P = 3.7E-103). The most extreme volumes were observed in 207 participants with a history of AF or atrial flutter who also had an abnormal cardiac filling pattern 208 (N = 376; LAmin: +4.3 SD compared to those with no AF history and normal cardiac filling 209 patterns, P = 1.6E-1937; LAmax: +2.5 SD, P = 8.9E-623). The 813 participants with a history of 210 AF and normal cardiac filling patterns had larger volumes than those with normal cardiac filling 211 patterns and no AF history (LAmin: +0.6 SD, P = 2.4E-101).

Atrial size was associated with AF, stroke, hypertension, and heart failure After excluding participants with abnormal cardiac filling patterns, we conducted analyses in the remaining 39,545 participants. First, we confirmed previous reports of the relationship between prevalent diseases and atrial size and function. Compared to the 38,732 UK Biobank participants without a diagnosis of AF or atrial flutter prior to MRI, the 813 with a pre-existing diagnosis had larger LA volumes (LAmin: +8.8mL, P = 9.2E-117; LAmax: +10.1mL, P = 1.5E61) and a reduced LAEF (-4.6%, P = 9.7E-68). Participants with a history of heart failure,
hypertension, or stroke also had elevated LA volumes (Figure 3, left panel; Supplementary
Table 1).

221

222 We then examined the relationship between LA measurements and incident cardiovascular 223 diseases. We excluded an additional 1,114 participants with prevalent AF, heart failure, or 224 stroke diagnosed prior to MRI, and 1,525 with missing height, weight, or body mass index (BMI) 225 measurements at the time of MRI. Only a brief period of follow-up time of 2.2 +/- 1.5 years after 226 the MRI assessment center visit was available for most participants. Nevertheless, participants 227 with a larger LA had a greater risk of subsequently being diagnosed with AF (293 incident AF 228 diagnoses; hazard ratio [HR] 1.73 per standard deviation [SD] increase in LAmin; 95% CI 1.60-229 1.88; P = 4.0E-39; Figure 3, right panel). The LAmin was also associated with an increased 230 risk of incident ischemic stroke (98 cases; HR 1.32 per SD; 95% CI 1.11-1.57; P = 2.0E-03) and 231 heart failure (125 cases; HR 1.69; 95% CI 1.48-1.92; P = 1.3E-15). The associations between 232 other LA measurements and these diseases are detailed in Supplementary Table 2. 233 234 We performed a sensitivity analysis that accounted for ECG features and left ventricular 235 structure and function; this yielded a similar point estimate for LAmin as a marker of incident AF 236 risk (HR 1.89 per SD; 95% CI 1.66-2.15; P = 4.5E-22). In this sensitivity analysis, LAmin 237 remained a significant predictor of incident heart failure (HR 1.51 per SD; 95% CI 1.23-1.86; P = 238 8.1E-05) but not of incident ischemic stroke (HR 1.10 per SD; 95% CI 0.84-1.43; P = 0.48; 239 Supplementary Table 3).

240 GWAS sensitivity analysis - LVEDV-indexing

241 We are not aware of a general solution to the interpretation of GWAS signals that incorporate 242 adjustment for heritable covariates. However, we observed the LVEDV-indexed lead SNPs to 243 fall into three patterns: first, some SNP associations appeared to be driven largely by the 244 LVEDV indexing rather than LA volume. As an example of this pattern, the LVEDV-indexed 245 LAmax association with BAG3 (P=3.5E-10) was comparable to that for the LVEDV association 246 with BAG3 alone (P=2.1E-10), while the unadjusted LAmax measurement was not associated (P > 1E-3). At each of these loci, the effect direction in LVEDV was opposite to that in the 247 248 respective LVEDV-indexed LA volume GWAS, which was expected. Practically, these signals 249 appeared to be driven by the LVEDV values, with the LA measurements acting as noise. 250 Second, some SNP associations appeared to be driven by the LAmax association alone, with 251 only minimal contribution from the LVEDV adjustment. For example, the LVEDV-indexed LAmax 252 association with IRAK1BP1 (P=2.0E-8) was similar to that for the LAmax association (P=2.7E-253 11), while the SNP was not associated with LVEDV (P > 1E-3). Third, some SNP associations 254 appeared to be driven by the interplay between LA volumes and the LVEDV adjustment. For 255 example, the NEDD4L locus was associated with LVEDV-indexed LAmax (P=4.7E-8) despite 256 not being strongly associated with either LVEDV or LAmax alone (P > 1E-3 for both).

257

For the LVEDV-indexed LA volumes, 11 loci reached genome-wide significance for LAmax, 12
for LAmin, and four for LASV. Of these, six of the LVEDV-indexed LAmax loci had association P
< 1E-3 with LVEDV, as did nine of the LAmin loci and two of the LASV loci. Novel loci that were
not associated at genome-wide significance in the unadjusted GWAS, and which were not
associated with LVEDV at 1E-3 or stronger, included *BLK*, *ANKRD1*, *MYH7*, and *NEDD4L* for
LAmax; *CASQ2*, *DHX15*, *PROB1*, *UQCRB*, *ANKRD1*, and *MYH7* for LAmin, and *TNKS* and *HNRNPM* for LASV. Most of these loci were identified in the BSA-indexed GWAS as well.

11/47

GWAS sensitivity analysis: no filtering for abnormal cardiac filling patterns 266 267 Given the high sensitivity but low specificity of the model detecting abnormal cardiac filling 268 patterns, sensitivity analysis retained the 615 participants who were not identified as having a 269 normal cardiac filling pattern for GWAS of LAmin and BSA-indexed LAmin, yielding a total 270 sample size of N=35,664 participants. (Because some participants are excluded by other criteria 271 downstream of this filter in the primary GWAS, this number is smaller than the 1,013 noted in 272 Supplementary Figure 3.) The lead SNPs are recorded in Supplementary Data 11. Compared with the main analysis of 35,049 participants, some loci with marginal P-values were 273 274 lost while others were gained; net, an additional two loci (10 in total) were identified for LAmin 275 and an unchanged number of loci (13) were significant for BSA-indexed LAmin. For example, 276 the association signal for PITX2 variant rs2466455 for LAmin increased in significance from 277 P=4.6E-06 to P=3.10E-08 in this sensitivity analysis. Similarly the strongest associated variant 278 near PITX2 for BSA-indexed LAmin in this analysis (rs2723334, P=1.70E-10) had stronger 279 evidence for association than in the primary analysis (P=2.2E-08).

280 GWAS sensitivity analysis: genetic diversity

281 Data from all participants were used for the primary GWAS, incorporating a diversity of genetic 282 identities (**Supplementary Figure 9**). In a sensitivity analysis, only individuals with inlier genetic 283 identities for one of four inlier groups were retained and analyzed separately (EUR, AFR, SAS, 284 or EAS; **Supplementary Figure 11**). In this analysis, the largest inlier group was that for EUR, 285 with 31,878 participants (9.9% smaller than the primary analysis). The second largest group 286 was comprised of the 2,655 participants (7.6%) who were not genetic inliers for any group and 287 were therefore not included in these sensitivity analyses. This was followed by SAS (N=284), 288 AFR (N=133), and EAS (N=99), together comprising about 1.5% of the primary GWAS sample

size. GWAS were separately conducted for EUR, SAS, AFR, and EAS, and then metaanalyzed. Because of the loss of the participants who were included in the joint analysis but
were not inliers for any genetic identity group, the multi-ancestry meta-analytic approach
represented a loss of 7.6% of the total sample size compared to the primary analysis. These
meta-analytic P-values were fetched for the lead variants from the primary analysis and are
displayed in Supplementary Data 2 as the "*P_META*" column.

295

Two additional sensitivity analyses were performed using BOLT-LMM: a EUR-specific GWAS, and an analysis in which individuals were dropped at random to achieve the same sample size as the EUR-specific GWAS. The P-values for the primary analysis's lead variants are also displayed in **Supplementary Data 2** with the "*P_EUR*" and "*P_RANDOMDROP*" columns, respectively.

301

302 The weakest association signal occurred for the BSA-indexed LAmin phenotype in the multi-

303 ancestry meta-analysis at the GOSR2 locus (P=2.5E-06), which was an order of magnitude

304 weaker than the evidence for the EUR subgroup without meta-analysis (P=2.0E-07).

305 Nevertheless, across these sensitivity analyses, we largely observed minor variation in

306 association signal without clear evidence for population stratification.

307

308

309

311 Supplementary Tables

312 Supplementary Table 1: relationship between left atrial measurements and

313 prevalent disease

Estimate	SE	Т	Ρ	Trait	Condition	N tested	N with disease
10.1	0.6	16.6	1.5E-61	LAmax	Prevalent AF	39545	813
1.9	1.4	1.3	1.9E-01	LAmax	Prevalent Stroke	39545	149
8.7	1.2	7.3	3.4E-13	LAmax	Prevalent CHF	39544	210
4.6	0.2	24.0	1.5E-126	LAmax	Prevalent HTN	39545	11852
8.8	0.4	23.0	9.2E-117	LAmin	Prevalent AF	39545	813
2.4	0.9	2.7	6.7E-03	LAmin	Prevalent Stroke	39545	149
7.7	0.7	10.3	7.3E-25	LAmin	Prevalent CHF	39544	210
2.5	0.1	20.7	2.4E-94	LAmin	Prevalent HTN	39545	11852
-4.6	0.3	-17.4	9.7E-68	LAEF	Prevalent AF	39545	813
-1.3	0.6	-2.2	2.9E-02	LAEF	Prevalent Stroke	39545	149
-3.8	0.5	-7.3	3.0E-13	LAEF	Prevalent CHF	39544	210
-0.4	0.1	-4.9	7.5E-07	LAEF	Prevalent HTN	39545	11852

314

315 Association between left atrial measurements (dependent variables) and condition present at

the time of imaging (independent variables). Models were adjusted for age, sex and the

317 magnetic resonance imaging device serial number. Effect estimates and standard errors are

318 displayed in standard deviation units. P values are two-tailed. SE: standard error.

320 Supplementary Table 2: relationship between left atrial measurements and

321 incident disease

Coef	HR	SE (Coef)	z	Р	Trait	Condition	N tested	N with disease	Mean survival	SD survival
0.48	1.61	0.05	9.00	2.2E-19	LAmax	Incident AF	36900	293	2.2	1.5
0.27	1.31	0.10	2.68	7.3E-03	LAmax	Incident Stroke	36900	98	2.3	1.5
0.45	1.57	0.08	5.49	3.9E-08	LAmax	Incident CHF	36887	125	2.3	1.5
0.14	1.15	0.05	2.83	4.7E-03	LAmax	Incident HTN	26088	469	2.2	1.5
0.55	1.73	0.04	13.09	4.0E-39	LAmin	Incident AF	36900	293	2.2	1.5
0.28	1.32	0.09	3.09	2.0E-03	LAmin	Incident Stroke	36900	98	2.3	1.5
0.52	1.69	0.07	8.00	1.3E-15	LAmin	Incident CHF	36887	125	2.3	1.5
0.20	1.22	0.05	4.31	1.6E-05	LAmin	Incident HTN	26088	469	2.2	1.5
-0.63	0.53	0.06	-10.86	1.9E-27	LAEF	Incident AF	36900	293	2.2	1.5
-0.23	0.80	0.10	-2.22	2.7E-02	LAEF	Incident Stroke	36900	98	2.3	1.5
-0.57	0.56	0.09	-6.50	8.2E-11	LAEF	Incident CHF	36887	125	2.3	1.5
-0.18	0.84	0.05	-3.77	1.7E-04	LAEF	Incident HTN	26088	469	2.2	1.5

322

323 Association between left atrial measurements (independent variables) and incidence of

324 conditions subsequent to imaging (dependent variables) based on Cox proportional hazards
 325 models. Models were adjusted for age, sex, the magnetic resonance imaging device serial

number, height, weight, and body mass index. P values are two-tailed. Effect estimates ("Coef")

327 are exponentiated to hazard ratios ("HR"). SE: standard error.

329 Supplementary Table 3: relationship between left atrial measurements and 330 incident disease after adjustment for left ventricular features

		05		, í				NI		00
Coef	HR	SE (Coef)	z	Р	Trait	Condition	N tested	N With disease	Mean survival	SD survival
0.63	1.87	0.09	7.06	1.7E-12	LAmax	Incident AF	36900	293	2.2	1.5
-0.06	0.94	0.17	-0.34	7.4E-01	LAmax	Incident Stroke	36900	98	2.3	1.5
0.36	1.44	0.14	2.57	1.0E-02	LAmax	Incident CHF	36887	125	2.3	1.5
0.27	1.31	0.08	3.55	3.9E-04	LAmax	Incident HTN	26088	469	2.2	1.5
0.63	1.89	0.07	9.66	4.5E-22	LAmin	Incident AF	36900	293	2.2	1.5
0.10	1.10	0.14	0.70	4.8E-01	LAmin	Incident Stroke	36900	98	2.3	1.5
0.41	1.51	0.11	3.94	8.1E-05	LAmin	Incident CHF	36887	125	2.3	1.5
0.27	1.30	0.06	4.27	1.9E-05	LAmin	Incident HTN	26088	469	2.2	1.5
-0.61	0.54	0.08	-8.14	3.8E-16	LAEF	Incident AF	36900	293	2.2	1.5
-0.16	0.85	0.13	-1.31	1.9E-01	LAEF	Incident Stroke	36900	98	2.3	1.5
-0.42	0.66	0.11	-3.75	1.8E-04	LAEF	Incident CHF	36887	125	2.3	1.5
-0.17	0.84	0.06	-2.89	3.9E-03	LAEF	Incident HTN	26088	469	2.2	1.5

331

332 Association between left atrial measurements (independent variables) and incidence of

conditions subsequent to imaging (dependent variables) based on Cox proportional hazards
 models. Models were adjusted for age, sex, the magnetic resonance imaging device serial

number, height, weight, body mass index, heart rate, electrocardiographic features (P-wave
 duration, QRS duration, PQ interval, QTc interval) and left ventricular features (end-systolic

337 volume, end-diastolic volume, and ejection fraction). P values are two-tailed. Effect estimates

338 ("Coef") are exponentiated to hazard ratios ("HR"). SE: standard error.

Trait 1	Trait 2	Corr	SE	Meaning
LAEF		0.14	0.02	heritability
LAmax		0.37	0.02	heritability
LAmax_indexed		0.32	0.02	heritability
LAmin		0.33	0.02	heritability
LAmin_indexed		0.27	0.02	heritability
LASV		0.28	0.02	heritability
LASV_indexed		0.22	0.02	heritability
LAEF	LAmax_indexed	-0.42	0.06	genetic correlation
LAEF	LAmin_indexed	-0.71	0.03	genetic correlation
LAEF	LASV	-0.14	0.07	genetic correlation
LAEF	LASV_indexed	0.00	0.07	genetic correlation
LAmax	LAEF	-0.48	0.05	genetic correlation
LAmax	LAmax_indexed	0.90	0.01	genetic correlation
LAmax	LAmin	0.95	0.01	genetic correlation
LAmax	LAmin_indexed	0.88	0.01	genetic correlation
LAmax	LASV	0.93	0.01	genetic correlation
LAmax	LASV_indexed	0.77	0.02	genetic correlation
LAmax_indexed	LAmin_indexed	0.94	0.01	genetic correlation
LAmax_indexed	LASV_indexed	0.91	0.01	genetic correlation
LAmin	LAEF	-0.72	0.03	genetic correlation
LAmin	LAmax_indexed	0.86	0.01	genetic correlation
LAmin	LAmin_indexed	0.94	0.01	genetic correlation
LAmin	LASV	0.77	0.03	genetic correlation
LAmin	LASV_indexed	0.62	0.04	genetic correlation
LAmin_indexed	LASV_indexed	0.72	0.04	genetic correlation
LASV	LAmax_indexed	0.84	0.02	genetic correlation
LASV	LAmin_indexed	0.70	0.04	genetic correlation
LASV	LASV_indexed	0.87	0.01	genetic correlation

340 Supplementary Table 4: REML heritability and genetic correlation

- 342 REML-based heritability of each trait and genetic correlation between trait pairs are depicted.
- 343 Corr represents the point estimate for each estimate. SE: standard error.

345 Supplementary Table 5: *Idsc* heritability and intercept

Name	Observed scale h2	Lambda GC	Mean χ²	Intercept	Ratio
invnorm_LAEF_poisson	0.1078 (0.0224)	1.0496	1.0649	0.9983 (0.0093)	< 0
invnorm_LAmax_poisson	0.2351 (0.0274)	1.1301	1.1496	0.989 (0.0106)	< 0
invnorm_LAmin_poisson	0.2014 (0.0212)	1.1175	1.1315	0.9963 (0.0087)	< 0
invnorm_LASV_poisson	0.1891 (0.0313)	1.0926	1.1085	0.9816 (0.0126)	< 0
invnorm_LAmax_poisson_indexed	0.2361 (0.0298)	1.1459	1.1409	0.9914 (0.0112)	< 0
invnorm_LAmin_poisson_indexed	0.2157 (0.0227)	1.0957	1.1317	0.9979 (0.009)	< 0
invnorm_LASV_poisson_indexed	0.193 (0.0339)	1.0957	1.0993	0.9812 (0.0133)	< 0

346

347 *Ldsc*-based heritability, lambda GC, mean χ^2 , and *ldsc* intercepts are depicted.

349 Supplementary Table 6: genetic correlation betwe	en left atrial
--	----------------

LA Measurement	Disease	Genetic correlation	SE	Z	Р
LAEF	AF	-0.16	0.08	-2.0	5.1E-02
LAEF	All stroke	-0.14	0.10	-1.3	1.8E-01
LAEF	Cardioembolic stroke	-0.16	0.28	-0.6	5.8E-01
LAmax	AF	0.32	0.06	5.2	1.6E-07
LAmax	All stroke	0.17	0.07	2.4	1.8E-02
LAmax	Cardioembolic stroke	0.13	0.24	0.6	5.7E-01
LAmax_indexed	AF	0.26	0.06	4.5	6.7E-06
LAmax_indexed	All stroke	0.14	0.07	2.0	4.1E-02
LAmax_indexed	Cardioembolic stroke	0.11	0.19	0.6	5.8E-01
LAmin	AF	0.37	0.06	6.4	2.0E-10
LAmin	All stroke	0.21	0.08	2.5	1.2E-02
LAmin	Cardioembolic stroke	0.18	0.31	0.6	5.7E-01
LAmin_indexed	AF	0.33	0.06	5.8	7.7E-09
LAmin_indexed	All stroke	0.19	0.08	2.4	1.7E-02
LAmin_indexed	Cardioembolic stroke	0.15	0.27	0.6	5.8E-01
LASV	AF	0.18	0.06	3.1	2.0E-03
LASV	All stroke	0.10	0.07	1.4	1.7E-01
LASV	Cardioembolic stroke	0.07	0.14	0.5	6.0E-01
LASV_indexed	AF	0.09	0.06	1.5	1.3E-01
LASV_indexed	All stroke	0.04	0.06	0.7	4.8E-01
LASV_indexed	Cardioembolic stroke	0.02	0.06	0.4	6.7E-01

349 Supplementary Table 6. genetic correlation between 1 350 measurements, atrial fibrillation, and stroke

351

352 LA: left atrium. SE: standard error. P values are two-tailed.

Supplementary Table 7: Relationship between atrial fibrillation polygenic
 score and left atrial measurements

356

Estimate	Low	High	SE	т	Р	Score	Trait	N
0.039	0.029	0.048	0.0049	7.93	2.3E-15	af.prs	LAmax	35049
0.042	0.032	0.053	0.0054	7.85	4.3E-15	af.prs	LAmax_indexed	33893
0.052	0.042	0.061	0.0049	10.49	1.1E-25	af.prs	LAmin	35049
0.055	0.045	0.065	0.0053	10.43	2.1E-25	af.prs	LAmin_indexed	33893
-0.047	-0.057	-0.037	0.0052	-9.03	1.8E-19	af.prs	LAEF	35049
0.013	0.003	0.023	0.0050	2.61	9.1E-03	af.prs	LASV	35049
0.012	0.001	0.023	0.0054	2.20	2.8E-02	af.prs	LASV_indexed	33893

357

Low and High represent the lower and upper bounds of the 95% confidence interval for the

Estimate. SE: standard error. Units are in standard deviations of the left atrial measurements
 per standard deviation of the atrial fibrillation polygenic score. P values are two-tailed from a
 linear model.

Supplementary Table 8: relationship between left atrial polygenic scores and atrial fibrillation risk

N	Disease	Score	N with Disease	Beta	HR	SE	Р
417881	Atrial fibrillation or flutter	invnorm_LAmax	21147	0.057	1.06	0.007	2.5E-16
417881	Atrial fibrillation or flutter	invnorm_LAmax_indexed	21147	0.066	1.07	0.007	1.4E-21
417881	Atrial fibrillation or flutter	invnorm_LAmin	21147	0.078	1.08	0.007	1.7E-29
417881	Atrial fibrillation or flutter	invnorm_LAmin_indexed	21147	0.082	1.09	0.007	7.4E-32
417881	Atrial fibrillation or flutter	invnorm_LASV	21147	0.026	1.03	0.007	2.6E-04
417881	Atrial fibrillation or flutter	invnorm_LAEF	21147	-0.059	0.94	0.007	8.3E-18

HR: hazard ratio in atrial fibrillation risk per standard deviation in the left atrial polygenic score. SE: standard error. P values are two-tailed from a Cox model.

372 Supplementary Figures

374 Supplementary Figure 1 - Measurement distributions

375 Trait distributions for the left atrial phenotypes without adjustment and after adjustment for body

376 surface area (BSA). LAEF is dimensionless and is therefore not adjusted for BSA.

Supplementary Figure 2 - Normal and abnormal cardiac filling patterns 378 379 Curves depicting the data used in the abnormal filling pattern detector are displayed for one 380 individual with a normal pattern (top panel) and one with an abnormal pattern (bottom panel). 381 For visual simplicity, only the left atrial and left ventricular curves from the four-chamber view 382 are displayed. Each datum represents the cross-sectional area at each time point for each 383 chamber. Values are scaled between 0 and 1 (y-axis) on a per-chamber basis so that the 384 maximum is always 1 and the minimum is always 0 for each chamber independently, which is 385 consistent with how the data are transformed prior to being input into the deep learning model. 386 Values are visualized at the 50 timepoints during image acquisition (x-axis). Both panels begin 387 at ventricular end-diastole. The example in the top panel reveals a triphasic pattern: ventricular 388 systole continues until timepoint 20, passive ventricular filling until timepoint 45, and then an 389 active ventricular filling phase due to atrial systole from 45-50. The example in the bottom

- 390 panel reveals a biphasic pattern: there is only ventricular systole until timepoint ~25 and
- 391 ventricular diastole for the remainder of the cycle, with the atrium passively filling and emptying
- in parallel.
- 393

395 Supplementary Figure 3 - Sample flow diagram

396 Sample exclusion steps between surface reconstruction and the creation of the GWAS cohort

397 are described.

398

Supplementary Figure 4 - LV-adjusted left atrial phenotype Manhattan plots
Manhattan plots for LA measurements divided by LVEDV. X-axis: chromosomal position. Y-axis:
-log10(P-value). Nearest gene names are annotated near significant loci, which are colored in
red.

406 Supplementary Figure 5 - Mendelian randomization method comparison

407 plot for LAmin vs atrial fibrillation

- 408 SNP effects on the exposure (X-axis) are plotted against SNP effects on the outcome (Y-axis).
- 409 Here, the X-axis effect size comes from the LAmin volume GWAS in this manuscript, while the

- 410 Y-axis effect size comes from the Christophersen, et al, 2017 atrial fibrillation GWAS¹⁰. Points
- 411 represent the mean effect estimates, with 95% confidence intervals for the mean.

413 Supplementary Figure 6 - Pleiotropic associations for variants used in

414 Mendelian randomization

415 Each of the 19 SNPs from the LAmin Mendelian randomization analysis was tested for 416 association with seven phenotypes previously identified as atrial fibrillation risk factors in 417 CHARGE-AF. For each SNP, this figure displays the mean point estimate of the effect of 1 unit 418 change in the dosage of the non-reference allele on each trait, along with 95% confidence 419 intervals for the mean. Traits where the association with the SNP achieves Bonferroni 420 significance are shown in red. Three of the 19 SNPs were identified to have a significant 421 association with at least one putative confounding factor (rs10878349 near IRAK3, rs56129480 422 near SP3, and rs78033733 near MYL4).

- 428 Y-axis effect size comes from the Christophersen, et al, 2017 atrial fibrillation GWAS¹⁰. Points
- 429 represent the mean effect estimates, with 95% confidence intervals for the mean.

- 432 Supplementary Figure 8 Mendelian randomization method comparison
- 433 plot for atrial fibrillation vs LAmin
- 434 SNP effects on the exposure (X-axis) are plotted against SNP effects on the outcome (Y-axis).
- 435 Here, the X-axis effect size comes from the Christophersen, et al, 2017 atrial fibrillation

- 436 GWAS¹⁰, while the Y-axis effect size comes from the LAmin volume GWAS in this manuscript.
- 437 Points represent the mean effect estimates, with 95% confidence intervals for the mean.

440 Supplementary Figure 9 - Principal components of ancestry

- 441 Principal components of ancestry for the GWAS participants, as well as participants' self-
- 442 described ethnicity mapped with color.

444 Supplementary Figure 10 - Atrial volume with or without QC flags

445 Histogram of distribution of LAmin volumes among participants with successful left atrial surface

reconstruction. Values for those with at least one QC-flagged MRI segmentation series are

447 colored in red, while those for participants with no flagged series are colored in turquoise. The

448 segmentations are stacked.

449

450	Supplementary Figure 11 - Principal components of ancestry by inlier group
451	Principal components of ancestry for the GWAS participants, as well as participants' self-
452	described ethnicity mapped with color. Each genetic inlier group is split into its own facet. The
453	participants that were not part of any genetic inlier group are labeled "None".

455 Supplementary References

456 1. Petersen, S. E. et al. UK Biobank's cardiovascular magnetic resonance protocol. J

457 Cardiovasc Magn Reson 18, (2016).

- 458 2. Petersen, S. E. *et al.* Reference ranges for cardiac structure and function using
- 459 cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population
- 460 cohort. *Journal of Cardiovascular Magnetic Resonance* **19**, 18 (2017).
- 461 3. Aschard, H., Vilhjálmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for Heritable
- 462 Covariates Can Bias Effect Estimates in Genome-Wide Association Studies. *Am J Hum*
- 463 *Genet* **96**, 329–339 (2015).
- 464 4. Bellenguez, C. *et al.* A robust clustering algorithm for identifying problematic samples in
 465 genome-wide association studies. *Bioinformatics* 28, 134–135 (2012).
- 466 5. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data.
 467 *Nature* 562, 203 (2018).
- 468 6. Mbatchou, J. *et al.* Computationally efficient whole-genome regression for quantitative and
 469 binary traits. *Nat Genet* 53, 1097–1103 (2021).
- 470 7. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of
 471 genomewide association scans. *Bioinformatics* 26, 2190–2191 (2010).
- 472 8. Sanfilippo, A. J. et al. Atrial enlargement as a consequence of atrial fibrillation. A

473 prospective echocardiographic study. *Circulation* **82**, 792–797 (1990).

- 474 9. Sardana Mayank et al. Association of Left Atrial Function Index with Atrial Fibrillation and
- 475 Cardiovascular Disease: The Framingham Offspring Study. *Journal of the American Heart*

476 *Association* **7**, e008435 (2018).

- 477 10. Christophersen, I. E. *et al.* Large-scale analyses of common and rare variants identify 12
- 478 new loci associated with atrial fibrillation. *Nat Genet* **49**, 946–952 (2017).

481 FinnGen Consortium

Aarno Palotie^{8,19,20}, Mark Daly²¹, Bridget Riley-Gills²², Howard Jacob²², Dirk Paul²³, Athena 482 483 Matakidou²³, Adam Platt²³, Heiko Runz²⁴, Sally John²⁴, George Okafo²⁵, Nathan Lawless²⁵, Heli Salminen-Mankonen²⁵, Robert Plenge²⁶, Joseph Maranville²⁶, Mark McCarthy²⁷, Julie 484 Hunkapiller²⁷, Margaret G. Ehm²⁸, Kirsi Auro²⁹, Simonne Longerich³⁰, Caroline Fox³⁰, Anders 485 486 Mälarstig³¹, Katherine Klinger³², Deepak Raipal³², Eric Green³³, Robert Graham³³, Robert Yang³⁴, Chris O'Donnell³⁵, Tomi P. Mäkelä³⁶, Jaakko Kaprio³⁷, Petri Virolainen³⁸, Antti 487 488 Hakanen³⁸, Terhi Kilpi³⁹, Markus Perola³⁹, Jukka Partanen⁴⁰, Anne Pitkäranta⁴¹, Taneli Raivio⁴¹, 489 Raisa Serpi⁴², Tarja Laitinen⁴³, Veli-Matti Kosma⁴⁴, Jari Laukkanen⁴⁵, Marco Hautalahti⁴⁶, Outi Tuovila⁴⁷, Raimo Pakkanen⁴⁷, Jeffrey Waring²², Bridget Riley-Gillis²², Fedik Rahimov²², Ioanna 490 491 Tachmazidou²³, Chia-Yen Chen²⁴, Heiko Runz²⁴, Zhihao Ding²⁵, Marc Jung²⁵, Shameek Biswas²⁶, Rion Pendergrass²⁷, Julie Hunkapiller²⁷, Margaret G. Ehm²⁸, David Pulford⁴⁸, Neha 492 493 Raghavan³⁰, Adriana Huertas-Vazguez³⁰, Jae-Hoon Sul³⁰, Anders Mälarstig³¹, Xinli Hu³¹, 494 Katherine Klinger³², Robert Graham³³, Eric Green³³, Sahar Mozaffari³³, Dawn Waterworth⁴⁹, 495 Nicole Renaud³⁵, Ma'en Obeidat³⁵, Samuli Ripatti³⁷, Johanna Schleutker⁵⁰, Markus Perola³⁹, Mikko Arvas⁴⁰, Olli Carpén⁴¹, Reetta Hinttala⁴², Johannes Kettunen⁴², Arto Mannermaa⁴⁴, 496 497 Katriina Aalto-Setälä⁵¹, Mika Kähönen⁴³, Jari Laukkanen⁴⁵, Johanna Mäkelä⁴⁶, Reetta 498 Kälviäinen⁵², Valtteri Julkunen⁵², Hilkka Soininen⁵², Anne Remes⁵³, Mikko Hiltunen⁵⁴, Jukka 499 Peltola⁵⁵, Minna Raivio⁵⁶, Pentti Tienari⁵⁶, Juha Rinne⁵⁷, Roosa Kallionpää⁵⁷, Juulia Partanen⁵⁸, 500 Ali Abbasi²², Adam Ziemann²², Nizar Smaoui²², Anne Lehtonen²², Susan Eaton²⁴, Heiko Runz²⁴, 501 Sanni Lahdenperä²⁴, Shameek Biswas²⁶, Julie Hunkapiller²⁷, Natalie Bowers²⁷, Edmond Teng²⁷, Rion Pendergrass²⁷, Fanli Xu⁵⁹, David Pulford⁴⁸, Kirsi Auro²⁹, Laura Addis⁵⁹, John Eicher⁵⁹, 502 503 Qinggin S Li⁶⁰, Karen He⁴⁹, Ekaterina Khramtsova⁴⁹, Neha Raghavan³⁰, Martti Färkkilä⁵⁶, Jukka 504 Koskela⁵⁶, Sampsa Pikkarainen⁵⁶, Airi Jussila⁵⁵, Katri Kaukinen⁵⁵, Timo Blomster⁵³, Mikko 505 Kiviniemi⁵², Markku Voutilainen⁵⁷, Mark Daly⁶¹, Ali Abbasi²², Jeffrey Waring²², Nizar Smaoui²², Fedik Rahimov²², Anne Lehtonen²², Tim Lu²⁷, Natalie Bowers²⁷, Rion Pendergrass²⁷. Linda 506

507 McCarthy⁵⁹, Amy Hart⁴⁹, Meijian Guan⁴⁹, Jason Miller³⁰, Kirsi Kalpala³¹, Melissa Miller³¹, Xinli 508 Hu³¹, Kari Eklund⁵⁶, Antti Palomäki⁵⁷, Pia Isomäki⁵⁵, Laura Pirilä⁵⁷, Oili Kaipiainen-Seppänen⁵², 509 Johanna Huhtakangas⁵³, Nina Mars³⁷, Ali Abbasi²², Jeffrey Waring²², Fedik Rahimov²², Apinya 510 Lertratanakul²², Nizar Smaoui²², Anne Lehtonen²², Marla Hochfeld²⁶, Natalie Bowers²⁷, Rion 511 Pendergrass²⁷, Jorge Esparza Gordillo⁵⁹, Kirsi Auro²⁹, Dawn Waterworth⁴⁹, Fabiana Farias³⁰, Kirsi Kalpala³¹, Nan Bing³¹, Xinli Hu³¹, Tarja Laitinen⁵⁵, Margit Pelkonen⁵², Paula Kauppi⁵⁶, 512 Hannu Kankaanranta⁶², Terttu Harju⁵³, Riitta Lahesmaa⁵⁷, Nizar Smaoui²², Glenda Lassi²³, 513 514 Susan Eaton²⁴, Hubert Chen²⁷, Rion Pendergrass²⁷, Natalie Bowers²⁷, Joanna Betts⁵⁹, Kirsi 515 Auro²⁹, Rajashree Mishra⁵⁹, Majd Mouded⁶³, Debby Ngo⁶³, Teemu Niiranen⁶⁴, Felix Vaura⁶⁴, 516 Veikko Salomaa⁶⁴, Kaj Metsärinne⁵⁷, Jenni Aittokallio⁵⁷, Mika Kähönen⁵⁵, Jussi Hernesniemi⁵⁵, 517 Daniel Gordin⁵⁶, Juha Sinisalo⁵⁶, Marja-Riitta Taskinen⁵⁶, Tiinamaija Tuomi⁵⁶, Timo Hiltunen⁵⁶, 518 Jari Laukkanen⁶⁵, Amanda Elliott⁶⁶, Mary Pat Reeve³⁷, Sanni Ruotsalainen³⁷, Benjamin 519 Challis²³, Dirk Paul²³, Julie Hunkapiller²⁷, Natalie Bowers²⁷, Rion Pendergrass²⁷, Audrey Chu⁵⁹, 520 Kirsi Auro²⁹, Dermot Reilly⁶⁷, Mike Mendelson⁶⁸, Jaakko Parkkinen³¹, Melissa Miller³¹, Tuomo 521 Meretoja⁵⁶, Heikki Joensuu⁵⁶, Olli Carpén⁵⁶, Johanna Mattson⁵⁶, Eveliina Salminen⁵⁶, Annika 522 Auranen⁶⁹, Peeter Karihtala⁵³, Päivi Auvinen⁵², Klaus Elenius⁵⁷, Johanna Schleutker⁵⁷, Esa 523 Pitkänen³⁷, Nina Mars³⁷, Mark Daly²¹, Relja Popovic²², Jeffrey Waring²², Bridget Riley-Gillis²², 524 Anne Lehtonen²², Jennifer Schutzman²⁷, Julie Hunkapiller²⁷, Natalie Bowers²⁷, Rion Pendergrass²⁷, Diptee Kulkarni⁵⁹, Kirsi Auro²⁹, Alessandro Porello⁴⁹, Andrey Loboda³⁰, Heli 525 526 Lehtonen³¹, Stefan McDonough³¹, Sauli Vuoti⁷⁰, Kai Kaarniranta⁵², Joni A Turunen⁷¹, Terhi 527 Ollila⁵⁶, Hannu Uusitalo⁵⁵, Juha Karjalainen³⁷, Esa Pitkänen³⁷, Mengzhen Liu²², Heiko Runz²⁴, 528 Stephanie Loomis²⁴, Erich Strauss²⁷, Natalie Bowers²⁷, Hao Chen²⁷, Rion Pendergrass²⁷, Kaisa Tasanen⁵³, Laura Huilaja⁵³, Katariina Hannula-Jouppi⁵⁶, Teea Salmi⁵⁵, Sirkku Peltonen⁵⁷, Leena 529 530 Koulu⁵⁷, Nizar Smaoui²², Fedik Rahimov²², Anne Lehtonen²², David Choy²⁷, Rion Pendergrass²⁷, 531 Dawn Waterworth⁴⁹, Kirsi Kalpala³¹, Ying Wu³¹, Pirkko Pussinen⁵⁶, Aino Salminen⁵⁶, Tuula 532 Salo⁵⁶, David Rice⁵⁶, Pekka Nieminen⁵⁶, Ulla Palotie⁵⁶, Maria Siponen⁵², Liisa Suominen⁵², Päivi

533 Mäntylä⁵², Ulvi Gursov⁵⁷, Vuokko Anttonen⁵³, Kirsi Sipilä⁷², Rion Pendergrass²⁷, Hannele Laivuori³⁷, Venla Kurra⁵⁵, Laura Kotaniemi-Talonen⁵⁵, Oskari Heikinheimo⁵⁶, Ilkka Kalliala⁵⁶, 534 535 Lauri Aaltonen⁵⁶, Varpu Jokimaa⁵⁷, Johannes Kettunen⁵³, Marja Vääräsmäki⁵³, Outi Uimari⁵³, 536 Laure Morin-Papunen⁵³, Maarit Niinimäki⁵³, Terhi Piltonen⁵³, Katja Kivinen³⁷, Elisabeth Widen³⁷, 537 Taru Tukiainen³⁷, Mary Pat Reeve³⁷, Mark Daly²¹, Niko Välimäki⁷³, Eija Laakkonen⁷⁴, Jaakko 538 Tyrmi⁷⁵, Heidi Silven⁷⁶, Eeva Sliz⁷⁶, Riikka Arffman⁷⁶, Susanna Savukoski⁷⁶, Triin Laisk⁷⁷, Natalia 539 Pujol⁷⁷, Mengzhen Liu²², Bridget Riley-Gillis²², Rion Pendergrass²⁷, Janet Kumar²⁸, Kirsi Auro²⁹, 540 liris Hovatta⁷⁸, Chia-Yen Chen²⁴, Erkki Isometsä⁵⁶, Hanna Ollila³⁷, Jaana Suvisaari⁶⁴, Thomas 541 Damm Als⁷⁹, Antti Mäkitie⁸⁰, Argyro Bizaki-Vallaskangas⁵⁵, Sanna Toppila-Salmi⁷⁸, Tytti 542 Willberg⁵⁷, Elmo Saarentaus³⁷, Antti Aarnisalo⁵⁶, Eveliina Salminen⁵⁶, Elisa Rahikkala⁵³, Johannes Kettunen⁵³, Kristiina Aittomäki⁸¹, Fredrik Äberg⁸², Mitja Kurki⁸³, Samuli Ripatti³⁷, Mark 543 544 Daly⁶¹, Juha Karjalainen³⁷, Aki Havulinna⁸⁴, Juha Mehtonen³⁷, Priit Palta³⁷, Shabbeer Hassan³⁷, Pietro Della Briotta Parolo³⁷, Wei Zhou⁸⁵, Mutaamba Maasha⁸⁵, Shabbeer Hassan³⁷, Susanna 545 546 Lemmelä³⁷, Manuel Rivas⁸⁶, Mari E. Niemi³⁷, Aarno Palotie³⁷, Aoxing Liu³⁷, Arto Lehisto³⁷, 547 Andrea Ganna³⁷, Vincent Llorens³⁷, Hannele Laivuori³⁷, Taru Tukiainen³⁷, Mary Pat Reeve³⁷, 548 Henrike Heyne³⁷, Nina Mars³⁷, Joel Rämö³⁷, Elmo Saarentaus³⁷, Hanna Ollila³⁷, Rodos 549 Rodosthenous³⁷, Satu Strausz³⁷, Tuula Palotie⁸⁷, Kimmo Palin⁷³, Javier Garcia-Tabuenca⁸⁸, 550 Harri Siirtola⁸⁸, Tuomo Kiiskinen³⁷, Jiwoo Lee⁸³, Kristin Tsuo⁸³, Amanda Elliott⁶⁶, Kati Kristiansson³⁹, Mikko Arvas⁴⁰, Kati Hyvärinen⁸⁹, Jarmo Ritari⁸⁹, Olli Carpén⁴¹, Johannes 551 Kettunen⁴², Katri Pylkäs⁷⁶, Eeva Sliz⁷⁶, Minna Karjalainen⁷⁶, Tuomo Mantere⁴², Eeva 552 553 Kangasniemi⁴³, Sami Heikkinen⁵⁴, Arto Mannermaa⁴⁴, Eija Laakkonen⁷⁴, Nina Pitkänen³⁸, 554 Samuel Lessard³², Clément Chatelain³², Perttu Terho³⁸, Sirpa Soini³⁹, Jukka Partanen⁴⁰, Eero 555 Punkka⁴¹, Raisa Serpi⁴², Sanna Siltanen⁴³, Veli-Matti Kosma⁴⁴, Teijo Kuopio⁴⁵, Anu Jalanko³⁷, 556 Huei-Yi Shen³⁷, Risto Kajanne³⁷, Mervi Aavikko³⁷, Henna Palin⁴³, Malla-Maria Linna⁴¹, Mitja Kurki⁸³, Juha Karjalainen³⁷, Pietro Della Briotta Parolo³⁷, Arto Lehisto³⁷, Juha Mehtonen³⁷, Wei 557 558 Zhou⁸⁵, Masahiro Kanai⁸⁵, Mutaamba Maasha⁸⁵, Hannele Laivuori³⁷, Aki Havulinna⁸⁴, Susanna

559	Lemmelä ³⁷ , Tuomo Kiiskinen ³⁷ , L. Elisa Lahtela ³⁷ , Mari Kaunisto ³⁷ , Elina Kilpeläinen ³⁷ , Timo P.	
560	Sipilä ³⁷ , Oluwaseun Alexander Dada ³⁷ , Awaisa Ghazal ³⁷ , Anastasia Kytölä ³⁷ , Rigbe	
561	Weldatsadik ³⁷ , Sanni Ruotsalainen ³⁷ , Kati Donner ³⁷ , Timo P. Sipilä ³⁷ , Anu Loukola ⁴¹ , Päivi	
562	Laiho ³⁹ , Tuuli Sistonen ³⁹ , Essi Kaiharju ³⁹ , Markku Laukkanen ³⁹ , Elina Järvensivu ³⁹ , Sini	
563	Lähteenmäki ³⁹ , Lotta Männikkö ³⁹ , Regis Wong ³⁹ , Auli Toivola ³⁹ , Minna Brunfeldt ³⁹ , Hannele	
564	Mattsson ³⁹ , Kati Kristiansson ³⁹ , Susanna Lemmelä ³⁷ , Sami Koskelainen ³⁹ , Tero Hiekkalinna ³⁹ ,	
565	Teemu Paajanen ³⁹ , Priit Palta ³⁷ , Kalle Pärn ³⁷ , Mart Kals ³⁷ , Shuang Luo ³⁷ , Tarja Laitinen ⁵⁵ , Mary	
566	Pat Reeve ³⁷ , Shanmukha Sampath Padmanabhuni ³⁷ , Marianna Niemi ⁸⁸ , Harri Siirtola ⁸⁸ , Javier	
567	Gracia-Tabuenca ⁸⁸ , Mika Helminen ⁸⁸ , Tiina Luukkaala ⁸⁸ , Iida Vähätalo ⁸⁸ , Jyrki Pitkänen ³⁷ , Marco	
568	Hautalahti ⁹⁰ , Johanna Mäkelä ⁹⁰ , Sarah Smith ⁹⁰ , Tom Southerington ⁹⁰	
569		
570	8 Institute for Molecular Me	dicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE),
571	University of Helsinki	
572	19 Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard	
573	Medical School	
574	20 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard	
575	21 Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki,	
576	Finland; Broad Institute of MIT and Harvard; Massachusetts General Hospital	
577	22 Abbvie, Chicago, IL, United States	
578	23 Astra Zeneca, Cambridge, United Kingdom	
579	24 Biogen, Cambridge, MA, United States	
580	25 Boehringer Ingelheim, Ingelheim am Rhein, Germany	
581	26 Bristol Myers Squibb, New York, NY, United States	
582	27 Genentech, San Francisco, CA, United States	
583	28 GlaxoSmithKline, Collegeville, PA, United States	
584	29 GlaxoSmithKline, Espoo, Finland	
	44/47	Left Atrial GWAS - Supplementary Note

- 585 30 Merck, Kenilworth, NJ, United States
- 586 31 Pfizer, New York, NY, United States
- 587 32 Translational Sciences, Sanofi R&D, Framingham, MA, USA
- 588 33 Maze Therapeutics, San Francisco, CA, United States
- 589 34 Janssen Biotech, Beerse, Belgium
- 590 35 Novartis Institutes for BioMedical Research, Cambridge, MA, United States
- 591 36 HiLIFE, University of Helsinki, Finland, Finland
- 592 37 Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki,
- 593 Finland
- 38 Auria Biobank / University of Turku / Hospital District of Southwest Finland, Turku, Finland
- 595 39 THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- 596 40 Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank,
- 597 Helsinki, Finland
- 598 41 Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki
- 42 Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital
- 600 District, Oulu, Finland
- 43 Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District,
- 602 Tampere, Finland
- 44 Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District,
- 604 Kuopio, Finland
- 45 Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District,
- 606 Jyväskylä, Finland
- 607 46 FINBB Finnish biobank cooperative
- 608 47 Business Finland, Helsinki, Finland
- 609 48 GlaxoSmithKline, Stevenage, United Kingdom
- 49 Janssen Research & Development, LLC, Spring House, PA, United States

45/47 Left Atrial GWAS - Supplementary Note

- 611 50 Auria Biobank / Univ. of Turku / Hospital District of Southwest Finland, Turku, Finland
- 51 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- 613 52 Northern Savo Hospital District, Kuopio, Finland
- 614 53 Northern Ostrobothnia Hospital District, Oulu, Finland
- 615 54 University of Eastern Finland, Kuopio, Finland
- 616 55 Pirkanmaa Hospital District, Tampere, Finland
- 617 56 Hospital District of Helsinki and Uusimaa, Helsinki, Finland
- 618 57 Hospital District of Southwest Finland, Turku, Finland
- 58 Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
- 620 59 GlaxoSmithKline, Brentford, United Kingdom
- 621 60 Janssen Research & Development, LLC, Titusville, NJ 08560, United States
- 622 61 Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki,
- 623 Finland; Broad Institute of MIT and Harvard; Massachusetts General Hospital
- 624 62 University of Gothenburg, Gothenburg, Sweden/ Seinäjoki Central Hospital, Seinäjoki,
- 625 Finland/ Tampere University, Tampere, Finland
- 626 63 Novartis, Basel, Switzerland
- 627 64 Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- 628 65 Central Finland Health Care District, Jyväskylä, Finland
- 629 66 Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki,
- 630 Finland; Broad Institute, Cambridge, MA, USA and Massachusetts General Hospital, Boston,
- 631 MA, USA
- 632 67 Janssen Research & Development, LLC, Boston, MA, United States
- 633 68 Novartis, Boston, MA, United States
- 634 69 Pirkanmaa Hospital District, Tampere, Finland
- 635 70 Janssen-Cilag Oy, Espoo, Finland
- 636 71 Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Eye Genetics

46/47 Left Atrial GWAS - Supplementary Note

- 637 Group, Folkhälsan Research Center, Helsinki, Finland
- 638 72 Research Unit of Oral Health Sciences Faculty of Medicine, University of Oulu, Oulu,
- 639 Finland; Medical Research Center, Oulu, Oulu University Hospital and University of Oulu, Oulu,
- 640 Finland
- 641 73 University of Helsinki, Helsinki, Finland
- 642 74 University of Jyväskylä, Jyväskylä, Finland
- 643 75 University of Oulu, Oulu, Finland / University of Tampere, Tampere, Finland
- 644 76 University of Oulu, Oulu, Finland
- 645 77 Estonian biobank, Tartu, Estonia
- 646 78 University of Helsinki, Finland
- 647 79 Aarhus University, Denmark
- 648 80 Department of Otorhinolaryngology Head and Neck Surgery, University of Helsinki and
- 649 Helsinki University Hospital, Helsinki, Finland
- 650 81 Department of Medical Genetics, Helsinki University Central Hospital, Helsinki, Finland
- 651 82 Transplantation and Liver Surgery Clinic, Helsinki University Hospital, Helsinki University,
- 652 Helsinki, Finland
- 653 83 Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki,
- Finland; Broad Institute, Cambridge, MA, United States
- 655 84 Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki,
- 656 Finland; Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- 657 85 Broad Institute, Cambridge, MA, United States
- 658 86 University of Stanford, Stanford, CA, United States
- 659 87 University of Helsinki and Hospital District of Helsinki and Uusimaa, Helsinki, Finland
- 660 88 University of Tampere, Tampere, Finland
- 661 89 Finnish Red Cross Blood Service, Helsinki, Finland
- 662 90 Finnish Biobank Cooperative FINBB
 - 47/47 Left Atrial GWAS Supplementary Note