Supplemental information

SOBIR1 homologs		52 52552 52
Nicotiana benthamiana Niben101Scf03816q01001.1 (NbSOBIR1)	DFGLAKA L PDAH	THVTTSNVAGTVGYIAPE
Solanum lycopersicum Solvc06q071810.1 (S/SOBIR1)	DFGLAKA V PDAH	THITTSNVAGTVGFIAPE
Solanum lycopersicum Solvc03g111800.2 (S/SOBIR1-like)	DFGLAKA V PDAH	THITTSNVAGT IGYIAPE
Arabidopsis thaliana AT2G31880 (AtSOBIR1)	DFGLAKA M PDAV	THITTSHVAGT VGYIAPE
Nicotiana tabacum A0A1S3XP18	DFGLAKA L PDAH	THITTSNVAGTVGYIAPE
Nicotiana sylvestris A0A1U7WH59	DFGLAKA L PDAH	THITTSNVAGTVGYIAPE
Nicotiana attenuata A0A1J6INR1	DFGLAKA L PDAH	THITTSNVAGTVGYIAPE
Nicotiana tabacum_A0A1S3ZD83	DFGLAKA V PDAH	THVTTSNVAGTVGYIAPE
Solanum tuberosum_M1CKT4	DFGLAKA V PDAH	THITTSNVAGTMGYIAPE
Capsicum chinense_A0A2G3BFP7	DFGLAKA V PDAH	THVTTSNVAGTVGYIAPE
Capsicum baccatum_A0A2G2WM84	DFGLAKA V PDAH	THVTTSNVAGTVGYIAPE
Capsicum annuum_A0A2G2Y0L5	DFGLAKA V PDAH	THVTTSNVAGTVGYIAPE
Solanum tuberosum_M1B7X0	DFGLAKA V PDAH	THITTSNVAGT IGYIAPE
Capsicum chinense_A0A2G3CCQ8	DFGLAKA V PDAH	THITTSNVAGT IGYIAPE
Capsicum annuum_A0A1U8G6T0	DFGLAKA V PDAH	THITTSNVAGT IGYIAPE
Capsicum baccatum_A0A2G2X8C5	DFGLAKA V PD <u>A</u> H	THITTSNVAGT IGYIAPE
Nicotiana attenuata_A0A314KS23	DFGLAKA I PE <mark>S</mark> L	THV <mark>STS</mark> HVVG <mark>T</mark> LGYIAPA
Coffea arabica_A0A6P6X9H5	DFGLAKA M PEAY	THV <mark>TSS</mark> NVVG <mark>T</mark> LGYIAPE
Coffea arabica_A0A6P6X153	DFGLAKA M PEAY	THV <mark>TSS</mark> NVVG <mark>T</mark> LGYIAPE
Coffea canephora_A0A068V365	DFGLAKA M PEAY	THV <mark>TSS</mark> NVVG <mark>T</mark> LGYIAPE
Sesamum indicum_A0A6I9SRZ7	DFGLAKA M PDAN	THVTTSNVAGTVGYIAPE
Olea europaea subsp. europaea_A0A8S0R730	DFGLAKA V PEAN	THV <mark>STS</mark> NVAG <mark>T</mark> AGYIAPE
Camellia sinensis var. sinensis_A0A4S4DBV0	DFGLAKA V PDAH	THV <mark>TTS</mark> NVAG <mark>T</mark> VGYIAPE
Rhododendron simsii_A0A834L953	DFGLAKA V PDQD	THV <mark>TTS</mark> NVAG <mark>T</mark> LGYIAPE
Vitis vinifera_F6GTQ3	DFGLAKA V PDAN	THV <mark>TTS</mark> NVAG <mark>T</mark> VGYI <u>A</u> PE
Tetracentron sinense_A0A834Y9S3	DFGLAKA V PDAN	THVTTSNVAGTVGYI <mark>S</mark> PE
Carpinus fangiana_A0A660KKL0	DFGLAKA M PDAH	THI <mark>STS</mark> NVAG <mark>T</mark> VGYIAPE
Prunus persica_M5WTY7	DFGLAKA V PEYH	THITTSNVAGTVGYI <u>A</u> PE
Quercus lobata_A0A7N2MNZ2	DFGLAKA M PDAN	THITTSNVAGTVGYI <mark>S</mark> PE
Tetracentron sinense_A0A834YD49	DFGLAKA V PDAN	THVTTSNVAGTVGYI <mark>S</mark> PE
Handroanthus impetiginosus_A0A2G9HZY5	DFGLAKA V PDAN	THVTTSNVAGTVGYIAPE
Prunus armeniaca_A0A6J5XGI4	DFGLAKA V PEYH	THITTSNVAGTVGYIAPE
Actinidia chinensis var. chinensis_A0A2R6PUF8	DFGLAKA V PDAY	THVTTSNVAGTVGYIAPE
Castanea mollissima_A0A8J4REW1	DFGLAKA M PDAH	THITTSNVAGTVGYI <mark>S</mark> PE
Handroanthus impetiginosus_A0A2G9IBC5	DFGLAKA V PDAN	THVTTSNVAGTVGYIAPE
Quercus lobata_A0A7N2MML4	DFGLAKA M PDAN	THISTSNVAGTVGYISPE
Jatropha curcas_A0A067KGN0	DFGLAKA M PDAQ	THV <mark>STS</mark> NVAG <mark>T</mark> VGYIAPE
Other RLKs		
Nicotiana bonthamiana, Nibon1016cf02129c00022 1 (M/DAV/1)		
Nicolialia Delilialialia_NiDeli1015ci02126g00022.1 (NDDAK1)	DFGLAKL M DYKD	THVITA - VRGTIGHTAPE
Solanum lycopersicum_Solyc10g047140.2 (S/BAK1)	DFGLAKL M DYKD	THVITA - VRGTIGHTAPE
Arabidopsis thaliana AT2C21620 (AtCERK1)		
Arabidopsis thaliana_ATSG21030 (A(CEKK1) Arabidopsis thaliana_ATEC16000 (AtMIK1)		DATRGAMGTEGYMAPE
Arabidopsis thaliana_AI5G16000 (AtNIK1)	DEGLAKL L DHQD	SHVITA - VRGTVGHTAPE
Arabidopsis thallana_A14G39400 (AtBKI1)		
Arabidopsis thaliana_A14G28490 (AtHAESA)		I PEAMSGIAGSCGYTAPE
Arabidopsis thaliana_Ar5G20480 (AtEFR)		TTASTSAEEGT IGVI ADE
Arabidopsis (naliana_Al 5G46330 (AtFLS2)	DFGTARTLGFREDG <mark>5</mark>	T ASTSAFEST ISTLAPE

Supplementary Figure 1. Five potential phosphorylation sites in the activation segment of *NbSOBIR1* are highly conserved in the kinase domain of various RLKs from different plant species. Protein sequences of the SOBIR1 homologs from various plant species were obtained from the UniProt database (https://www.uniprot.org/), while the protein sequences of other RLKs were retrieved from TAIR (https://www.arabidopsis.org/index.jsp) and the Sol Genomics Network (https://solgenomics.net/). The alignment was visualized using JalView and only the amino acid sequences of the activation segment of the kinase domain are shown. All the putatively phosphorylatable Ser (S) and Thr (T) residues are highlighted in orange. The positions of the five Ser/Thr residues of *Nb*SOBIR1 that are subjected to this study are indicated on top.

Supplementary Figure 2. The analogous residues of *Nb*SOBIR1 Thr522 in both tomato SOBIR1 and SOBIR1-like play a crucial role in mounting Avr4/Cf-4-triggered immune responses. a, Schematic diagram of the kinase domain of SOBIR1, with the activation segment indicated. The amino acid sequences of the activation segments of *Nb*SOBIR1, *S*/SOBIR1 and

S/SOBIR1-like are aligned and are shown below the diagram. Conserved residues acting as potential phosphorylation sites are indicated in red. b-e, Mutagenesis screen of five potential phosphorylation sites in the activation segment of S/SOBIR1 based on the Avr4/Cf-4-triggered HR activation (b and c), MAPK activation (d), and ROS burst (e). f-i, Mutagenesis screen of five potential phosphorylation sites in the activation segment of S/SOBIR1-like based on the Avr4/Cf-4-triggered HR activation (f and **g**), MAPK activation (**h**), and ROS burst (**i**). The development of an HR was imaged at 5 dpi by the Chemidoc (**b** and **f**), and the HR intensity was quantified by Image Lab (**c** and **g**). The HR intensity of leaves that transiently co-express SISOBIR1 WT with Avr4 (c) or SISOBIR1-like WT with Avr4 (g) was set as 1. Statistical analysis was performed with an ANOVA/Dunnett's multiple comparison test, compared with their corresponding WT. Dots indicate individual values (centre line, median; error bar, minima and maxima; n=6). e, i, Leaf discs of N. benthamiana: Cf-4 sobir1 knock-out plants that transiently express individual S/SOBIR1 and S/SOBIR1-like mutants, as well as their corresponding WTs and kinase-dead mutants, were treated with 0.1 µM Avr4 protein, followed by measuring the production of ROS. ROS production is expressed as RLUs, and the data are represented as mean + SEM (n=12). Similar to SOBIR1 WT, all tested SOBIR1 Ser/Thr mutants restored the Avr4/Cf-4triggered ROS production in this complementation study, except for S/SOBIR1 T513A and S/SOBIR1like T526A. Only the results for S/SOBIR1 WT, T513A and D473N are shown in (e), and the results for S/SOBIR1-like WT, T526A, and D486N are shown in (i). Experiments were repeated at least three times, with similar results. Source data are provided as a Source Data file.

Supplementary Figure 3. Accumulation levels of *Nb*SOBIR1 T522A, *Sl*SOBIR1 T513A and *Sl*SOBIR1-like T526A in planta, in comparison to their WT and kinase-dead ("RN") versions. *Nb*SOBIR1 *T522A*, *Sl*SOBIR1 *T513A* and *Sl*SOBIR1-like *T526A*, which fail to restore the Avr4-triggered HR in *N. benthamiana:Cf-4 sobir1* knock-out plants, were transiently co-expressed in *N. benthamiana:Cf-4 sobir1* plants with *Avr4* (both at an OD₆₀₀ of 0.8). Transient expression of their respective WT and kinase-dead D to N version, in combination with *Avr4*, was included as positive and negative controls, respectively. Leaf samples were collected at 2 dpi and total protein extracts were subjected to immuno-purification (IP) using GFP-affinity beads, followed by western blotting (WB) with aGFP antibody (upper panels). The amount of total protein that was used for the IP is reflected by the Rubisco band present in the total protein extracts loaded on SDS gel (lower panels). Arrowheads indicate the band corresponding to SOBIR1-eGFP. Note that transient expression of *WT SOBIR1* in combination with *Avr4* results in cell death, thereby causing very low WT SOBIR1 accumulation levels.

Supplementary Figure 4. The kinase domains of SOBIR1 and BAK1 trans-phosphorylate each other in vitro. a, b, S/SOBIR1 Thr513 and S/SOBIR1-like Thr526 are essential for their intrinsic kinase activity. The N-terminally GST-tagged cytoplasmic kinase domains of (a) S/SOBIR1 WT, kinase-dead mutant D473N, and five Ser/Thr-to Ala mutants, and (b) S/SOBIR1-like WT, kinasedead mutant D486N, and five Ser/Thr-to-Ala mutants were produced in E. coli, followed by being subjected to western blotting and in vitro phosphorylation assay. The phosphorylation status of the recombinant proteins was determined by using the Pro-Q Diamond stain, which specifically stains the phosphorylated proteins (top panels). The production of SOBIR1 kinase domains was confirmed by western blotting, using SOBIR1 antibodies (middle panels), and the recombinant proteins were stained by Coomassie brilliant blue (bottom panels). c,d, S/SOBIR1 WT and S/SOBIR1-like WT directly phosphorylate the kinase-dead mutant of S/BAK1 D418N. The N-terminally GST-tagged cytoplasmic domains of S/SOBIR1 WT or D473N (c) and S/SOBIR1-like WT or D486N (d) were co-expressed with the N-terminally His-tagged cytoplasmic domain of S/BAK1 D418N in E. coli. After SDS-PAGE of the E. coli lysates, a Pro-Q Diamond stain was employed to detect the phosphorylated recombinant proteins (top panels), while Coomassie brilliant blue was used to visualize all proteins (bottom panels). e,f, S/BAK1 WT directly phosphorylates the kinase-dead mutant of S/SOBIR1 D473N and S/SOBIR1like D486N. The cytoplasmic domain of S/BAK1 WT or D418N, which was fused to a His tag at its Nterminus, was co-expressed with the cytoplasmic domain of S/SOBIR1 D473N (e) or S/SOBIR1-like D486N (f), which was fused to a GST tag at its N-terminus, in E. coli. The recombinant proteins were then subjected to SDS-PAGE, followed by being stained by Pro-Q Diamond stain (top panels) and Coomassie brilliant blue (bottom panels). Bands with the expected sizes are indicated with an asterisk. Experiments were repeated at least three times with similar results, and representative pictures are shown. Source data are provided as a Source Data file.

V

Nicotiana benthamiana_Niben101Scf03816g01001.1 (NbSOBIR1)	VASLEMIGKGGCGEV	YRAELPG	SNGKIL	ΑΙΚΚΙ	IQPPMDAAE	LTEEDTK	ALNKKN	IRQVKSEI	2 I L G Q I F	RHRNLLPLL
Solanum lycopersicum_Solyc06g071810.1 (S/SOBIR1)	VASLEMIGKGGCGEV	YRAELPG	SNGKII	ΑΙΚΚΙ	IQSPMDAAE	ITEEDTK	ALNKK	IRQVKSEI	2 I VGQ I F	RHRNLLPLL
Solanum lycopersicum_Solyc03g111800.2 (S/SOBIR1-like)	LESLELIGQGGCGKV	YKAALPG	SDGKII	Ανκκι	IQPPKDAAE	LTEEDSK	AMNKKN	IRQIKSEII	KIVGQIF	RHRNLLPLL
Arabidopsis_thaliana_AT2G31880 (AtSOBIR1)	LASLEIIGRGGCGEV	FKAELPG	SNGKIL	Ανκκν	IQPPKDADE	LTDEDSK	FLNKKN	IRQIRSEII	NTVGHIF	RHRNLLPLL
Nicotiana tabacum_A0A1S3XP18	VASLEMIGKGGCGEV	YRAELPG	SNGKIL	ΑΙΚΚΙ	IQPPMDAAE	LTEEDTK	ALNKK	IRQVKSEI	2 I L G Q I F	RHRNLLPLL
Nicotiana sylvestris_A0A1U7WH59	VASLEMIGKGGCGEV	YRAELPG	SNGKIL	ΑΙΚΚΙ	IQPPMDAAE	LTEEDTK	ALNKK	IRQVKSEI	LGQI	RHRNLLPLL
Nicotiana attenuata_A0A1J6INR1	VASLEMVGKGGCGEV	YRAELPG	SNGKIL	ΑΙΚΚΙ	IQPPIGAAE	LTEEDTK		IRQVKSEI	LIGQI	RHRNLLPLL
Nicotiana tabacum A0A1S3ZD83	VASLEMIGKGGCGEV	Y RAEL PG	SNGKIL	ΑΙΚΚΙ	IQPPMDAAE	LAEEDTK		IRQVKSEI	LIGQI	RHRNLLPLL
Solanum tuberosum_M1CKT4	VASLEMIGKGGCGEV	YRAELPG	SNGKIL	ΑΙΚΚΙ	IQSPMDAAE	ITEEDTK		IRQVKSEI	JIVGQII	RHRNLLPLL
Capsicum chinense_A0A2G3BFP7	VASLEMIGKGGCGEV	YRAELPG	SNGKIV	ΑΙΚΚΙ	MQPPMDAAE	IAEEDTK		IRQVKSEI	JIVGQII	RHRNLLPLL
Capsicum baccatum_A0A2G2WM84	VASLEMIGKGGCGEV	YRAELPG	SNGKIL	ΑΙΚΚΙ	MQPPMDAAE	IAEEDTK		IRQVKSEI	JIVGQII	RHRNLLPLL
Capsicum annuum_A0A2G2Y0L5	VASLEMIGKGGCGEV	YRAELPG	SNGKIL	ΑΙΚΚΙ	MQPPMDAAE	IAEEDTK		IRQVKSEI	JIVGQII	RHRNLLPLL
Solanum tuberosum_M1B7X0	LESLELIGQGGCGKV	YKAALPG	SDGKIL	Ανκκι	IQPPRDAAE	LTEEDSK	AMSKKN	IRQIKSEII	KIVGQII	RHRNLLPLL
Capsicum chinense_A0A2G3CCQ8	FESLELIGEGGCGKV	YKAELPG	SNGKIL	Ανκκι	MQPPRDAAE	LTEEDSK	амнкки	IRQIKSEII	KIVGQII	RHRNLLPLL
Capsicum annuum_A0A1U8G6T0	FESLELIGEGGCGKV	YKAELPG	SNGKIL	Ανκκι	MQPPRDAAE	LTEEDSK	амнкки	IRQIKSEII	KIVGQII	RHRNLLPLL
Capsicum baccatum_A0A2G2X8C5	FESLELIGEGGCGKV	YKAELPG	SNGKIL	Ανκκι	MQPPRDAAE	LTEEDSK	амнкки	RQIKSEI	KIVGQVI	RHRNLLPLL
Nicotiana attenuata_A0A314KS23	LALLEKIRKGGCGEV	YKAELPG	SNGKIL	ΑΙΚΚΙ	VEPPKDAAE	LTEEDSK		IRQIKSEII	KIVGQII	RHRNLLPLL
Coffea arabica_A0A6P6X9H5	IARLEVIGRGGCGEV	YKAELPG	SNGKVI	ΑΙΚΚΙ	IQPPRDAAE	LAEESK	ALHKKN	IRQIKSEI	TVGQI	RHRNLLPLL
Coffea arabica_A0A6P6X153	IARLEVIGRGGCGEV	YKAELPG	SNGKVI	ΑΙΚΚΙ	IQPPRDAAE	LAEESK	ALHKKN	IRQIKSEI	TVGQI	RHRNLLPLL
Coffea canephora_A0A068V365	IARLEVIGRGGCGEV	YKAELPG	SNGKVI	ΑΙΚΚΙ	IQPPRDAAE	LAEESK	ALHKK	IRQIKSEI	TVGQI	RHRNLLPLL
Sesamum indicum_A0A6I9SRZ7	LASLDVIGRGGCGEV	FKAVLPG	SNGKEI	ΑΙΚΚΙ	IQPPRDADE	LTEEDSK		IRQIRSEI	TVGQI	RHRNLLALL
Olea europaea subsp. europaea_A0A8S0R730	LNGLEVIGRGGCGEV	YKATLPG	TNGKEI	Ανκκι	IQPSRDAED	LANEDSK		RQIRSEI	TVGKI	RHRNLLPLL
Camellia sinensis var. sinensis_A0A4S4DBV0	LASLEVIGSGGCGIV	YKAELPG	SNGKLI	AIKKI	IQPPKDAAD	LTDEDSK		RQIRSEI) T V G Q I I	RHRNLLPLL
Rhododendron simsii_A0A834L953	LASLELIGRGGCGEV	YKAELPG	SNGKMI	AIKKI	VQPPKDAAE	LTEEDSK		RQIRSEI	TVGQI	RHRNLLSLL
Vitis vinifera_F6GTQ3	LASLEIIGKGGCGEV	YRAELPG	GKL	AIKKI	VQPPKDAAE	LAEEDSK		RQIRSEI	TVGNI	RHRNLLPLL
	426 429 43	1					469			
	Y Y Y						V			
Nicotiana benthamiana_Niben101Scf03816g01001.1 (NbSOBIR1)	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAVGIAS	GLE <mark>Y</mark> LF	IINHSQCI	IHRDLKF	PANVLLDDD
Solanum lycopersicum_Solyc06g071810.1 (S/SOBIR1)	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAAGVAA	GLE <mark>Y</mark> LH	IINHTQRI	HRDLKF	PANILLDDD
Solanum lycopersicum_Solyc03g111800.2 (S/SOBIR1-like)	AHMPRPDCHYLVYEY	MKNGSLQ	DTLQQV	REGKR	ELDWSARHR	IAMGIAA	G L E <mark>Y</mark> L F	IINHTQRI	IHRDLKF	PGNVLLDDD
Arabidopsis_thaliana_AT2G31880 (AtSOBIR1)	AHVSRPECHYLVYEY	MEKGSLQ	DILTDV	QAGNQ	ELMWPARHK	IALGIAA	GLE <mark>Y</mark> LF	IMDHNPRI	IHRDLKF	PANVLLDDD
Nicotiana tabacum_A0A1S3XP18	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAVGIAA	IGLE <mark>Y</mark> LH	IINHSQCI	IHRDLKF	PANVLLDDD
Nicotiana sylvestris_A0A1U7WH59	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAVGIAA	GLE <mark>Y</mark> LF	IINHSQCI	IHRDLKF	PANVLLDDD
Nicotiana attenuata_A0A1J6INR1	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAVGIAA	GLE <mark>Y</mark> LF	IINHSQCI	IHRDLKF	PANVLLDDD
Nicotiana tabacum_A0A1S3ZD83	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAVGIAA	G L E <mark>Y</mark> L F	IINHSQCI	HRDLKF	PANVLLDDD
Solanum tuberosum_M1CKT4	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAAGVAA	G L E <mark>Y</mark> L F	IINHTQRI	IHRDLKF	PANILLDDD
Capsicum chinense_A0A2G3BFP7	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAAGIAA	GLE <mark>Y</mark> LF	IINHTQRI	IHRDLKF	PANVLLDDD
Capsicum baccatum_A0A2G2WM84	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	ELDWLGRHR	IAAGIAA	GLE <mark>Y</mark> LF	IINHTQRI	IHRDLKF	PANVLLDDT
Capsicum annuum_A0A2G2Y0L5	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	TEGTR	VLDWLGRHR	IAAGIAA	G L E <mark>Y</mark> L F	IINHTQRI	IHRDLKF	PANVLLDDN
Solanum tuberosum_M1B7X0	AHMPRPDCHYLVYEY	MKNGSLQ	DTLQQV	REGTR	ELDWSARHR	IAMGIAA	G L E <mark>Y</mark> L F	IINHTQRI	IHRDLKF	PGNVLLDDD
Capsicum chinense_A0A2G3CCQ8	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	REGTR	ELDWPARHR	IAMGIAA	G L E <mark>Y</mark> L F	IINHTQRI	IHRDLKF	PGNVLLDDD
Capsicum annuum_A0A1U8G6T0	AHMPRPDCHYLVYEY	MKNGSLQ	DILQQV	REGTR	ELDWPARHR	IAMGIAA	G L E <mark>Y</mark> L F	IINHTQRI	IHRDLKF	PGNVLLDDD
Capsicum baccatum_A0A2G2X8C5	AHMPRPDCHYLVYEY	MKNGSLQ	DTLQQV	REGTR	ELDWPARHR	IAMGIAA	GLE <mark>Y</mark> LF	IINHTQRI	IHRDLKF	PGNVLLDDD
Nicotiana attenuata_A0A314KS23	AHMPRPDCHYLVYEY	MKNGSLH	DAVQQV	TEGTR	EIDWSARHR	IAVGIAT	GLE <mark>Y</mark> LF	IVNHSQRI	IHRDLKF	PANVLLDDD
Coffea arabica_A0A6P6X9H5	AHMPRPDCHYLVYEF	MKNGSLQ	DMLQKV	AAGEN	ELDWLSRHR	IALGIAA	GLE <mark>Y</mark> LF	IVNHTPRI	IHRDLKF	PANVLLDDD
Coffea arabica_A0A6P6X153	AHMPRPDCHYLVYEF	MKNGSLQ	DMLQKV	AAGEN	ELDWLSRHR	IALGIAA	GLE <mark>Y</mark> LF	IVNHNPRI	IHRDLKF	PANVLLDDD
Coffea canephora_A0A068V365	AHMPRPDCHYLVYEF	MKNGSLQ	DMLQKV	AAGEN	ELDWLSRHR	IALGIAA	GLE <mark>Y</mark> LH	IVNHNPRI	IHRDLKF	PANVLLDDD
Sesamum indicum_A0A6I9SRZ7	AHLPRPDCHYLVYEY	MKNGSLQ	DYLQHV	KEGKK	ELDWSARYR	IALGVAS	GLE <mark>Y</mark> LF	IMNHSPRI	HRDLK	PANVLLDDD
Olea europaea subsp. europaea_A0A8S0R730	AHLPRPDCHYLVYEY	MKNGSLQ	DVIQAV	SEGRR	ELDWLARYK	VAIGVAS	GLE <mark>Y</mark> LH	ILNHTPRI	HRDLKF	PANVLLDDE
Camellia sinensis var. sinensis_A0A4S4DBV0	AHVSRPDCHYLVYEF	MKNGSLQ	DILNQV	SIGTR	ELDWQARHK	IAIGVAS	GLE <mark>Y</mark> LH	ITSHSPRI	HRDLKF	PANVLLDDD
Rhododendron simsii_A0A834L953	AHVPRPDCHYLVYEF	MKNGSLQ	DILNQV	SQGTR	ELDWLARHK	IALGVAA	GLE <mark>Y</mark> LH	IMNHSPRI	HRDLKF	PANVLLDDD
Vitis vinifera_F6GTQ3	AHVSRPNCHYLVYEF	MKNGSLQ	DMLTQV	SEGTR	ELDWLARHR	VALGVAA	GLEYLF	IMSHSPRI	IHRDLKI	PGNILLDDD

	525 530 543
Nicotiana benthamiana Niben101Scf03816q01001.1 (NbSOBIR1)	MEARIADFGLAKALPDAHTHVTTSNVAGTVGYIAPEYHQTLKFTGKCDIYSFGVVLAVLVIGKLPSDEFFQHTPEMS
Solanum lycopersicum_Solyc06g071810.1 (S/SOBIR1)	MEARVADFGLAKAVPDAHTHITTSNVAGTVGFIAPEYYQTLKFTDKCDIYSFGVVLAVLVIGKGPSDDFFQHTSEMS
Solanum lycopersicum_Solyc03g111800.2 (S/SOBIR1-like)	MEARIADFGLAKAVPDAHTHITTSNVAGTIGYIAPEYHQTLKFTDKCDIYSFGVLLGVLVMGKLPSDEFFQNTSEMS
Arabidopsis_thaliana_AT2G31880 (AtSOBIR1)	MEARISDFGLAKAMPDAVTHITTSHVAGTVGYIAPEFYQTHKFTDKCDIYSFGVILGILVIGKLPSDEFFQHTDEMS
Nicotiana tabacum_A0A1S3XP18	MEARIAD FOLAKAL PDAHTHITTSNVAGTVGY IAPEYHQTL KFTDKCDIYSFGVVLAVL VIGKLPSDEFFQHTPEMS
Nicotiana sylvestris_AUA1U/WH59	MEARIADEGLAKALPDAHIHIIISNVAGIVGYIAPEYHQILKFIDKCDIVSEGVVLAVLVIGKLPSDEFFQHIPEMS
Nicotiana tabacum A0A1S37D83	MEARIADEGLAKAUPDAHIHITISNYAGIYOYIADEYHOTIKETNKODIYSEGYYIAYLYIGKLESDEFFQHIPEMS
Solanum tuberosum M1CKT4	MEARIADEGLAKAVPDAHTHITTSNVAGTMGVIAPEV VOLIKETDKODIVSEGVVIAVIVIGKOPSDEVEOHTSEMS
Capsicum chinense A0A2G3BFP7	MEPRIADEGLAKAVPDAHTHVTTSNVAGTVGY JAPEYHOTLKETDKCDIVSEGVVLAVLVVGKLPSDDEFOHTSEMS
Capsicum baccatum_A0A2G2WM84	MEARIADFGLAKAVPDAHTHVTTSNVAGTVGYIAPEYHQTLKFTDKCDIYSFGVVLAVLVIGKLPSDDFFQHTSEMS
Capsicum annuum_A0A2G2Y0L5	MEPRIADFGLAKAVPDAHTHVTTSNVAGTVGYIAPEYHQTLKFTDKCDIYSFGVVLAVLVVGKLPSDDFFQHTSEMS
Solanum tuberosum_M1B7X0	MEARIADFGLAKAVPDAHTHITTSNVAGTIGYIAPEYHQTLKFTDKCDIYSFGVLLGVLVMGKLPSDEFFQNTSEMS
Capsicum chinense_A0A2G3CCQ8	LEARIADFGLAKAVPDAHTHITTSNVAGTIG <mark>Y</mark> IAPE <mark>YH</mark> QTLKFTDKCDI <mark>Y</mark> SFGVLLGVLVMGKLPSDEFFQTTSEMS
Capsicum annuum_A0A1U8G6T0	LEGRIADFGLAKAVPDAHTHITTSNVAGTIG <mark>Y</mark> IAPE <mark>YY</mark> QTLKFTDKCDIYSFGVLLGVLVMGKLPSDEFFQTTSEMS
Capsicum baccatum_A0A2G2X8C5	LEPRIADFGLAKAVPDAHTHITTSNVAGTIGYIAPEYHQTLKFTDKCDIYSFGVLLGVLVMGKLPSDEFFQTTSEMS
NICOTIANA ATTENUATA_AUA314KS23	MEARIADFGLAKAIPESLTHVSTSHVVGTLGYIAPAYYQTVKFTDKCDIYSFGVLLGVLVMGKFPSDELFQPASGMG
Coffea arabica_A0A6P6X153	MEARIADEGLAKAMPEAYTHVISSNVVGILGYIAPEYHQILKFIDKCDIYSEGVLASLVMGKLPSDEFFQEIDEMN
Coffea canephora A0A068V365	MEARIADEGLAKAMPEALINVISSNVVGILGTIAPEINGILFIDKODISEGVILASLVMGKLPSDEFFQEIDEMN
Sesamum indicum A0A6I9SRZ7	MEARIADEGLAKAMPDANTHVITSNVAGTUGVIAPEV VOTEKETDKODIVSEGVVI GVI VMGKL PSDEFEDITDEI S
Olea europaea subsp. europaea_A0A8S0R730	MEARIADEGLAKAVPEANTHVSTSNVAGTAGY JAPEYHOTEKETEKCDIYSEGVVLGALTMGKEPSDEFEOHTEEMH
Camellia sinensis var. sinensis_A0A4S4DBV0	MEARIADFGLAKAVPDAHTHVTTSNVAGTVGYIAPEYHQTLKFTDKCDIFSFGVLLGVLVIGKLPSDDFFQHTSEMS
Rhododendron simsii_A0A834L953	MEARIADFGLAKAVPDQDTHVTTSNVAGTLGYIAPEYHQTMKFTDKCDIYSFGVLLGVLVIGRLPSDNFFQDTSEMS
Vitis vinifera_F6GTQ3	MEARIADFGLAKAVPDANTHVTTSNVAGTVGYIAPEYHQTLKFTDKCDIYSFGVLLGVLVVGKLPSDDFFQHTAEMS
	_
Nicotiana benthamiana Niben101Scf03816q01001.1 (NbSOBIR1)	LVKWLRNVMTSEDPKRA DSKL GNGFEEQMLLVLK ACFCTLENPKERPNSKDVRCMLTQ KH
Solanum lycopersicum_Solyc06g071810.1 (S/SOBIR1)	LVKWLRNVMTSDDPKIAIDPKLIGNGYDEQMLLVLKIACFCTLDNPKERPNSKDVRCMLTQIKH
Solanum lycopersicum_Solyc03g111800.2 (S/SOBIR1-like)	LVKWMRNVMTSEDPNRAIDPKLMGNGNEDQMLLVLKIAC <u>F</u> CTMENPKERPNSKDVRCMLMQIKH
Arabidopsis_thaliana_AT2G31880 (AtSOBIR1)	LIKWMRNIITSENPSLAIDPKLMDQGFDEQMLLVLKIAC <mark>Y</mark> CTLDDPKQRPNSKDVRTMLSQIKH
Nicotiana tabacum_A0A1S3XP18	LVKWLRNVMTSEDPKRAIDPKLIGTGFEEQMLLVLKIACFCTLENPKERPNSKDVRCMLTQIKH
Nicotiana sylvestris_A0A1U7WH59	L V KWL K N V M T SEDP K R A I D P KL I G T G F E E Q M L V L K I A C F C T L E N P K E R P N S K D V R C M L T Q I K H
Nicotiana attenuata_A0A1J6INR1	L VKWL RNVMT SEDPKRA I DQKL I GNGFEEQMLL VLKIACFCTLENPKERPNSKDVRCML TQ I KH
Nicotiana tabacum_AUAIS32D83	LVKWLRNVMTSEDPKRAIDPKLIGSGFEEQMLLVLKIACFCTLENPKERPNSKDVRCMLTQIKH
Cansicum chinense ANA2G3BEP7	
Capsicum baccatum A0A2G2WM84	
Capsicum annuum A0A2G2Y0L5	
Solanum tuberosum_M1B7X0	L V KWMRNVMT SEDPNRA I DPKLMGNGNEDQMLLVLK I ACFCTLENPKERPNSKDVRCMLMQ I KH
Capsicum chinense_A0A2G3CCQ8	LVKWMRNVMTSEDPNRA DPKLMGNGNEEQMLLVLK ACFCTLENPKERPDSKDVRCMLMQ KH
Capsicum annuum_A0A1U8G6T0	LVKWMRNVMTSEDPNRAIDPKLMGNGNEEQMLLVLKIACFCTLENPKERPNSKEVRCMLMQIKH
Capsicum baccatum_A0A2G2X8C5	LVKWMRNVMTSEDPNRAIDPKLMGNG <u>N</u> EEQMLLVLKIACFCTLENPKERPNSKEARCMLMQIKH
Nicotiana attenuata_A0A314KS23	LVKWMRNVMTSENPKRAIDPKLMGNG <mark>Y</mark> EEQMLLVLKIACFCTLDNPKERPNSKDVRCMLTQIK <u>P</u>
Coffee arabica_AUA6P6X9H5	L V HWMRNVMTSEDPKRA I DPKLLGNGYEEQMLLVLK I ACFCTLENPKERPNS I D I RAMLFQ I KYEKRQVM
Coffea capephora A0A068V365	LVLWMRNVMTSEDPKRAIDPKLLGNGYEEQMLLVLKIACFCTLENPKERPNSIDIRAMLFQIKYEKR
Sesamum indicum A0A6I9SRZ7	LVLWMRNVMISEDFRKAIDFKLIGNGTEEQMLLVLKIAGFGILENFKERPNSIDIRAMLFQIKTEKR
Olea europaea subsp. europaea A0A8S0R730	
Camellia sinensis var. sinensis_A0A4S4DBV0	
Rhododendron simsii_A0A834L953	
Vitis vinifera_F6GTQ3	LVKWMANIRTSDDPSRAIDRKLMGNGFEEQMLLVLKIACFCTVDDAKIRPNSKDVRTMLSQIKH

Supplementary Figure 5. Alignment of the protein sequences of the SOBIR1 kinase domain from various plant species. Amino acid sequences of the SOBIR1 homologs from various plant species were obtained from the UniProt database (<u>https://www.uniprot.org/</u>). The alignment was visualized using JalView and only the amino acid sequences of the kinase domain are shown, with all the Tyr (Y) residues highlighted in green. The Tyr residues that are subject of this study are marked with arrowheads on the top, and their position in *Nb*SOBIR1 is indicated on the top. The RD motif (in which a conserved arginine (R) precedes the highly conserved catalytic aspartate (D)), present in all SOBIR1 kinase domains, is indicated by a box.

Supplementary Figure 6. *SISOBIR1* Tyr460 and *SISOBIR1-like* Tyr473, which are the analogous residues of *NbSOBIR1* Tyr469, are essential for the Avr4/Cf-4-triggered HR in *N. benthamiana*. **a**, Schematic diagrams of the kinase domains of *NbSOBIR1*, *SISOBIR1* and *SISOBIR1-like*, with the location of the activation segment, the RD motif, and all Tyr residues indicated. **b-e**, Mutagenesis screen of all putative Tyr phosphorylation sites in *SISOBIR1* (**b** and **c**) and *SISOBIR1-like* (**d** and **e**), as shown in Figure 2 for *NbSOBIR1*, to determine their importance in immune signalling by complementation. Statistical analysis was performed with an ANOVA/Dunnett's multiple comparison test, compared with their corresponding WT. Dots indicate individual values (centre line, median; error bar, minima and maxima; n=6). Experiments were repeated at least three times, with similar results and representative pictures are shown. Source data are provided as a Source Data file.

Supplementary Figure 7. Accumulation levels of *Nb*SOBIR1 Y469F, *SI*SOBIR1 Y460F and *SI*SOBIR1-like Y473F, as well as their corresponding WT and kinase-dead (D to N) versions, *in planta*. *Nb*SOBIR1 Y469F, *SI*SOBIR1 Y460F and *SI*SOBIR1-like Y473F, which fail to fully restore the Avr4-triggered HR in *N. benthamiana:Cf-4 sobir1* knock-out plants, were transiently expressed in *N. benthamiana:Cf-4 sobir1* knock-out plants, were transiently expressed of 0.8), next to their respective WT that was combined with Avr4 as a positive control, and their kinase-dead D to N version that was combined with Avr4 as a negative control. Leaf samples were collected at 2 dpi and total protein extracts were subjected to IP of the GFP-tagged SOBIR1 mutants using GFP-affinity beads, followed by WB with aGFP antibody (upper panels). The amount of total protein that was used for the IP is reflected by the Rubisco band present in the stain-free gel (lower panels). Arrowheads indicate the band representing SOBIR1-eGFP. Note that transient expression of SOBIR1 WT in combination with Avr4 triggers an HR in *N. benthamiana:Cf-4 sobir1* plants, which explains the low accumulation levels of SOBIR1 WT.

Supplementary Figure 8. S/SOBIR1 Tyr460 and S/SOBIR1-like Tyr473 are required for Avr4/Cf-4-induced MAPK activation, but not for ROS accumulation and their intrinsic kinase activity. a,b, The different Tyr mutants of S/SOBIR1 and S/SOBIR1-like were transiently expressed in leaves of the N. benthamiana: Cf-4 sobir1 knock-out line, with their corresponding WTs as positive controls and kinase-dead mutants as negative controls. Leaf discs were taken from these plants at 24 hours after agro-infiltration, followed by adding 0.1 µM Avr4 protein and measuring ROS accumulation over time. ROS production is expressed as RLUs, and the data are represented as mean + SEM. Similar to SOBIR1 WT, all tested SOBIR1 Tyr mutants restored the Avr4/Cf-4-triggered ROS production in this complementation study. Only the results for S/SOBIR1 WT, Y460F and D473N are shown in (a), and results for S/SOBIR1-like WT, Y473F and D486N are shown in (b). c, d, S/SOBIR1 Y460F and S/SOBIR1-like Y473F, as well as their corresponding WTs and kinase-dead mutants, were transiently co-expressed with Avr4 in leaves of N. benthamiana: Cf-4 sobir1 knock-out plants. Leaf samples were collected at 2 dpi and total protein extracts were subjected to immunoblotting with a p42/p44-erk antibody to determine the activation of downstream MAPKs by phosphorylation. **e**, **f**, The N-terminally GST-tagged cytoplasmic kinase domains of S/SOBIR1 Y460F and S/SOBIR1-like Y473F were produced in E. coli, with their corresponding WTs as positive controls and their kinasedead mutants as negative controls. After SDS-PAGE of the E. coli lysates, the recombinant proteins were stained with Coomassie brilliant blue (lower panels), whereas the phosphorylation status of the kinase domains was determined by performing a Pro-Q Diamond stain (upper panels). Experiments were repeated at least three times and similar results were obtained. Representative pictures are shown. Source data are provided as a Source Data file.

Supplementary Figure 9. Phylogenetic analysis of BIK1 homologs from Arabidopsis, tomato, and *N. benthamiana***. a**, The amino acid sequences of only the kinase domain were extracted from all RLCK members from Arabidopsis, tomato, and *N. benthamiana* and aligned to subsequently generate a neighbour-joining phylogenetic tree, using QuickTree (Howe et al., 2002). The sub-clade of putative BIK1 homologs, which comprises 123 sequences, including *At*BIK1 (bootstrap support higher than 90%) is shown in red. **b**, Phylogenetic analysis of the RLCK-VII subfamily members from Arabidopsis (which are indicated in red), tomato, and *N. benthamiana*. Amino acid motifs identified in the complete protein sequence using MEME are shown (Bailey et al., 2009). All the members present in this tree were further assigned to six subfamilies, which are depicted in different colours. These subfamilies are referred to as subfamily 4, 5, 6, 7, 8, and 9, according to the RLCK-VII subfamilies in Arabidopsis reported previously by Rao et al. (2018).

а

b

С

RLCK-VII-5

ACCAGAATCCCTTCTTGGTGAAGG 2-ACCGCATCTAGCAGAATGTTGG 3-TGGAGTCTTGTGAATCAAAGGGG 4-GTTACTTTCCGCATTACTTGTGG 5-AAGAGCTAAAAGCTGCAACGGG 6-GTTTATGAGTTCATGACCCGTGG 7-GCTTTGGCCCTGTTTACAAAGGG 8-CTAATTTAACCAAATTCTGATGG d

Niben101Scf00712g13012

16

Supplementary Figure 10. Editing genes of RLCK-VII subfamilies in *N. benthamiana:Cf-4.* **a**, Scheme of the binary vector used for editing RLCK-VII genes. T-DNAs encompass the *Bar* gene (resistance to phosphinothricin; under control of the *nos* promoter), the FCY-UPP genes (p*AtUbq10* control)⁷⁸, the *Bs3* gene from pepper (*Capsicum annuum*; own promoter), the intron-optimized *zCas9i* gene (*AtRPS5a* promoter control) and up to 10 sgRNA transcriptional units driven by an *At*U6-26 promoter fragment. **b-g**, Gene models of *RLCK-VII* genes according to the solgenomics.net *N. benthamiana* genome release v1.01, with target sites indicated (coloured triangles). The colour code used for cut sites corresponds to the sgRNA array indicated in panel **a**. The target sites of the various sgRNAs are indicated for each subfamily next to the gene models.

Supplementary Figure 11. Gene expression patterns of the 14 members from *N.***benthamiana RLCK-VII-6.** Heat map of the relative expression (log2) of all 14 RLCK members of subfamily 6, as determined upon transient expression of Avr4, constitutively active NRC1 (Gabriëls et al., 2007), or the coat protein (CP) of potato virus X (Tameling et al., 2010), in leaves of *N.***benthamiana** plants transgenic for both *Cf-4* and *Rx*, with the latter gene mediating recognition of the CP of PVX. The RLCK-encoding genes that were selected to be knocked out are highlighted in pink. NRC1, NB-LRR PROTEIN REQUIRED FOR HR-ASSOCIATED CELL DEATH 1; CP, coat protein.

Supplementary Figure 12. Various subfamilies from RLCK-VII play an important role in the Avr4/Cf-4/SOBIR1-triggered ROS burst in N. benthamiana:Cf-4. Selected members from each RLCK-VII subfamily, being subfamilies 4, 5, 6, 7, 8 and 9, were targeted for knock-out in N. benthamiana: Cf-4 by multiplex CRISPR/Cas technology. Subsequently, ROS accumulation induced upon Avr4 protein treatment of leaf discs obtained from five individual rlck-vii-4 knock-out transformants (**a** and **b**), four *rlck-vii-5* knock-out transformants (**c** and **d**), seven *rlck-vii-6* knockout transformants (**e** and **f**), four *rlck-vii-7* knock-out transformants (**g** and **h**), three *rlck-vii-8* knockout transformants (i and j) and five *rlck-vii-9* knock-out transformants (k and l), was determined. For this, leaf discs were treated with 0.1 µM Avr4 protein, and the generation of ROS was monitored. Note that all *rlck* knock-out transformants were tested in the T1 generation. (**a**, **c**, **e**, **g**, **i**, and **k**) ROS production is expressed as RLUs, and the data are represented as mean + SEM (n=8). (**b**, **d**, **f**, h, j, and l) Statistical analysis was performed with an ANOVA/Dunnett's multiple comparison test, compared with their corresponding WT. Dots indicate individual values (centre line, median; error bar, minima and maxima). The ROS profiles of the positive control (N. benthamiana: Cf-4), included in all assays, are indicated in red in all the line charts. Similar results were obtained in three replicates and data from one representative experiment are shown. Source data are provided as a Source Data file.

Supplementary Figure 13. RLCK-VII-6, -7 and -8 from *N. benthamiana* **also play a positive role in the flg22/FLS2-triggered ROS burst.** ROS production, triggered upon treatment with flg22, by discs taken from leaves of *rlck-vii-4* (**a** and **b**), *rlck-vii-5* (**c** and **d**), *rlck-vii-6* (**e** and **f**), *rlck-vii-7* (**g** and **h**), *rlck-vii-8* (**i** and **j**) and *rlck-vii-9* (**k** and **l**) *N. benthamiana:Cf-4* knock-out plants from the T1 generation, was measured. For this, leaf discs were taken from the different knock-out plants, as well as from *N. benthamiana:Cf-4* (the positive control), followed by treatment with a final concentration of 0.1 μM flg22 peptide and subsequent monitoring of the accumulation of ROS. (**a**, **c**, **e**, **g**, **i**, and **k**) ROS production is expressed as RLUs, and the data are represented as mean + SEM (n=8). (**b**, **d**, **f**, **h**, **j**, and **l**) Statistical analysis was performed with an ANOVA/Dunnett's multiple comparison test, compared with their corresponding WT. Dots indicate individual values (centre line, median; error bar, minima and maxima). The ROS traces of the positive control are indicated in red in all the line charts. All experiments were repeated at least three times and data from one representative experiment are shown. Source data are provided as a Source Data file.

Supplementary Figure 14. RLCK-VII-7 is required for the Avr4/Cf-4-triggered HR in *N*. *benthamiana:Cf-4*. A solution of 5 μ M pure Avr4 protein was infiltrated in leaves of the *N*. *benthamiana:Cf-4 rlck-vii-4* (**a**), *rlck-vii-5* (**b**), *rlck-vii-6* (**c**), *rlck-vii-7* (**d**), *rlck-vii-8* (**e**) and *rlck-vii-9* (**f**) transformants, and the Avr4/Cf-4-triggered HR was subsequently imaged using the ChemiDoc and quantified using Image Lab, at 2 dpi. All individual quantifications are shown as dots (n=8) and the means as lines. Statistical analysis was performed with an ANOVA/Dunnett's multiple comparison test, compared with *N*. *benthamiana:Cf-4*. Experiments were repeated at least three times with similar results, and representative results are shown. Source data are provided as a Source Data file.

	Nibentolsc	Niten Disc	ND8110055901006	103268903002 Niben10155	HORE DOLLARS AND	Nipen1015et0	HARDARDON HURRID SERVICEBOOD	NDERTO SOUASSOL
rlck-vii-6 #1	+1 bp; +1 bp	+1 bp; +1 bp	-3 bp	-12 bp; +1 bp	inversion and deletion	+1 bp; +1 bp	-5 bp; -5 bp	-1 bp; +1 bp/-1 bp
rlck-vii-6 #2	+1 bp; +1 bp	+1 bp; +1 bp	-3 bp	+1 bp; +1 bp	inversion and deletion	+1 bp; +1 bp	-5 bp; -5 bp	-1 bp; +1 bp/-1 bp
rlck-vii-6 #3	+1 bp; +1 bp	+1 bp; +1 bp	-1 bp	-10 bp; -2 bp	inversion, insertion and deletion	+1 bp; +1 bp	inversion and deletion	-14 bp; -4 bp

b

С

d

е

f

	Nibento	Nibento	Nibento	Nibento	Nibento	Niben10	Nibento
<i>rlck-vii-7</i> #1	-7 bp; +1 bp	-4 bp; +1 bp	+1 bp; -1 bp	-1 bp; -1 bp	inversion, insertion and deletion	-1 bp; -1 bp	-1 bp
rlck-vii-7 #2	-8 bp; -2 bp	-3 bp; -3 bp	-7 bp; +1 bp	+1 bp; -9 bp	+1 bp; -6 bp	+1 bp; -9 bp	-9 bp

h. benthamiana: Cf-4

Supplementary Figure 15. Genotypes and morphological phenotypes of the different *rlck-vii* knock-out lines. Overview of the types of mutations present in all the *RLCK-VII-6* members (**a**), 24

а

RLCK-VII-7 members (**c**), and *RLCK-VII-8* members (**e**) in the independent homozygous *N*. *benthamiana:Cf-4* knock-out lines. Morphological phenotypes of *N*. *benthamiana:Cf-4* and the three independent *rlck-vii-6* (**b**), two independent *rlck-vii-7* (**d**), and two independent *rlck-vii-8* (**f**) knock-out lines. All plants were grown in soil under the same conditions and were photographed when they were four to five weeks old.

Supplementary Figure 16. Members of RLCK-VII-6, -7, and -8 differentially contribute to ROS accumulation in *N. benthamiana* induced by nlp20/RLP23 and pg13/RLP42 combinations. Leaf discs taken from independent *N. benthamiana:Cf-4 rlck-vii-6* (a and b), *rlck-vii-7* (c and d), and *rlck-vii-8* (e and f) lines, as well as from *N. benthamiana:Cf-4*, transiently expressing either RLP23 or RLP42, were treated with the corresponding elicitors at a 1 μ M concentration and the accumulation of ROS was monitored. ROS production is expressed as RLUs, and the data are represented as mean + SEM (n=8). Source data are provided as a Source Data file.

Supplementary Figure 17. The Avr4 protein triggers a swift MAPK activation in *N.* benthamiana:Cf-4. Water (mock) or 5 μ M of pure Avr4 protein was infiltrated in leaves of *N.* benthamiana:Cf-4. Leaf samples were taken at the indicated time points after Avr4 infiltration, and total protein extracts were subjected to immunoblotting using a p42/p44-erk antibody specifically detecting MAPKs that are activated by phosphorylation (a-pMAPK). Rubisco is shown as a total protein loading control. O/N, overnight. The experiment was repeated two times with similar results and a representative result is shown.

Supplementary Figure 18. A split-luciferase assay shows the interaction between several tomato RLCKs and S/SOBIR1. a, Cluc-tagged Arabidopsis BIK1 (AtBIK1) and tomato RLCKs and were transiently co-expressed with Nluc-tagged S/SOBIR1. Nluc-tagged GUS was included as a negative control. At 3 dpi leaves were sprayed with luciferin and luciferase activity was subsequently observed using a ChemiDoc device. Representative images of two independent experiments, each including six leaves for each interaction that was tested, are shown. Blue indicates that there is no luciferase signal, and a colouration increasing to red indicates a stronger luciferase signal, representing interaction to take place between the proteins. b-l, Quantification of the luminescence as shown in a. Dots indicate individual values (centre line, median; error bar, minima and maxima, n=6) Statistical significance was determined by Student's t-tests. m, Accumulation levels of the various tomato RLCKs, fused to the C-terminal part of the luciferase enzyme (Cluc). At 3 dpi an immunoprecipitation assay, followed by immunoblotting using anti-luciferase antibody (a-Cluc) was Solyc07G041940-Cluc; performed. S/41940, *S*/82500, Solyc04G082500-Cluc; SI62400, Solyc11G062400-Cluc; S/62920, Solyc06G062920-Cluc; S/25820, Solyc05G025820-Cluc; S/88690, Solyc01G088690-Cluc; S/07050, Solyc05G007050-Cluc; S/77560, Solyc08G077560-Cluc; S/112220, Solyc01G112220-Cluc; S/05500, Solyc06G005500-Cluc. Source data are provided as a Source Data file.

Supplementary Figure 19. Volcano plot showing the RLCKs that were identified by proximity-dependent labelling using *Nb*SOBIR1-YFP-TbID as a transiently expressed bait in *N. benthamiana*. The change from grey crosses to closed circles marks the threshold for statistical significance. The RLCKs that were significantly enriched in three independent experiments in which *Nb*SOBIR1-YFP-TbID (on the right) was used as a bait, when compared to GUS-YFP-TbID (on the left), are indicated with dots having different colours. Note that for RLCK-VII-6 (purple) and RLCK-VII-8 (red) we were able to identify individual RLCKs, with the exception of Niben101Scf05476g01001 being detected together with Niben101Scf01025g10006, which is its closest paralog in the phylogeny shown in Figure S9. For RLCK-IV (green) and RLCK-VIII (blue) the determined peptide sequences did not allow the assignment of individual RLCK members.

20. complementation RLCK Supplementary Figure Α assay shows that Niben101Scf00012g00012 partially restores the ROS burst. A complementation assay with the RLCK-VII-8 family member Niben101Scf00012g00012 (Nb00012) was performed by transient expression, driven by the 35S promotor, in the rlck-vii-8 #1 knock-out line of N. benthamiana:Cf-4. a, ROS production over time upon treatment of leaf discs transiently expressing either GUS or Nb00012 with Avr4, is expressed as RLUs and the data are represented as mean + SEM (n=8). N. benthamiana: Cf-4 was taken along as a control. Note that only partial restoration of the biphasic ROS burst takes place. b, Total amount of ROS generated by the leaf discs, of which the profile is shown in **a**. Dots indicate individual values (centre line, median; error bar, minima and maxima, n=8) (One-way ANOVA with Tukey's test). The total photon count represents the sum of all the relative light units (RLUs) measured over a four-hour period. Letters indicate statistical groupings. Experiments were repeated three times with similar results. Source data are provided as a Source Data file.

Supplementary Figure 21. The overall structure of the inactive *At***SOBIR1 kinase domain and position of the important Tyr residues.** The ribbon diagram of the SOBIR1 kinase domain is coloured in light blue. The non-hydrolysable ATP analogue AMP-PNP and Mg²⁺ are presented as an orange stick and a green sphere, respectively. *At*SOBIR1 Tyr476, which is analogous to *Nb*SOBIR1 Tyr469, is indicated as a yellow stick.

		Amount	Target sequence	
Subfamily	Gene name	of	(E' 2')	Note
		sgRNAs	(5 - 5)	
	Niben101Scf10970		TTACTTAAGATTGGAGA	
	g00025	2	AGGAGG;	
	Niben101Scf06902	2	ATGGGGAAAGAGGTATT	
	a02019		CAGCGG	
	Niben101Scf01745			
	a04011			
	904011 Nibop1015cf01490			
	~00004		ATTAAGAAGCTCAATAC	
	<i>90004</i>	2	ACTTGG;	
		3	GGAATGGCTTATTTGCA	Not present in the
	Niben101Scf01071		CGACGG	phylogeny, but
	a03021			clustered to this
				subfamily according to
4				iTAK*
			GTAGTGCCAGCGTTGAT	
	Niben101Scf00012	2	ACGCGG;	
	g00010	2	GTGCGGAGGATGATGAA	
			AGGGGG	
	Niben101Scf03565		GGATCGGCTAAAGTTCC	
	q07022	2	TGGTGG;	
	Niben101Scf04487		GCTCATAGGTTATTGCG	
	a04008		CACAGG	
	<i>ye</i>		GTTCTACGTTGGCGACA	
	Niben101Scf05081			
	g01018			
	Niben101Scf06172	2	GCTTIGGCCCTGTTIAC	
	g03007			
			GATGG	
	Niben101Scf01326			Not expressed
	g08016			according to QUT
	Niben101Scf06750			
	g02015			
	Niben101Scf01521		CCAGAATCCCTTCTTGG	
-	g12006	2	TGAAGG;	
Э	Niben101Scf08874	2	ACCGCATCTAGCAGAAT	
	g01012		GTTGG	
	Niben101Scf11795			
	q00014			
	Niben101Scf14805		TGGAGTCTTGTGAATCA	
	a04011		ΑΔΑΘΘΑ	
	Niben101Scf10820	2		
	a01005		Татаа	
	901003 Nibon1015cf05720			
	-00004	2	ACCCCC	
	g00004		ALGGGG;	

Supplementary Table 1. *RLCK* genes selected to be targeted by single guide (sg)RNAs.

_					
		Niben101Scf03100		GTTTATGAGTTCATGAC	
		g00002		CCGTGG	
-		Niben101Scf10157			Not selected, see Figure
		a01009			S11
		Niben101Scf02836		+	Not selected see Figure
		a02000			
		<i>903009</i>			511
		NIDen101SCf08898			Not selected, see Figure
		g00003		<u> </u>	S11
		Niben101Scf03396			Not selected, see Figure
		g00005			S11
		Niben101Scf08926		[Not selected, see Figure
		q01017			S11
		Niben101Scf00199		L	Not selected, see Figure
		a05025			S11
		Niber101Scf03610		AATTACTTCCTCA	
		~0000E		AATTACTIGETIGGIGA	
		900005	2		
	6	Niben101Scf10055		AIIGAIIGGGIACIGII	
		g01006		GCGAGG	
		Niben101Scf03268	1	GGGTTTGGTCCTGTGCA	
		g03002	-	TAAGGG	
				TTATCGTCGAACGCGAT	
		Niben101Scf00870	2	CATCGG;	
		g13015	Z	GATATTCAAGTTGCTTG	
				CCATGG	
		Niben101Scf06739		GTAATTTCTTGGGTGAA	
		q05004		GGAGG;	
		Niben101Scf02460	2	ATTGTTGTGAAGAGGAA	
		a01004		CACAGG	
		Niben101Scf02763			
		a02011		TACCC	
		<i>903011</i>	2		
		Niben101Scf01445		GIAIAIGAGIACAIGCC	
_		g02008		CAGAGG	
		Niben101Scf14996			Not expressed
		g00011		į	according to QUT
		Niben101Scf12935			Not expressed
		g00042			according to QUT
				GAGCTAGGAAGATTATC	
		Niben101Scf00712	_	AACAGG;	
		a13012	2	CCTAGTGGAGATGGAGG	
		9		AGGTGG	
	7	Niben101Scf04294	i 	ΔΑGACTITCTCATCCTAA	
		a06004		CCTCC	
		900004 Nibop1015cf01176	2		
		-01025		TCTACC	
		g01025	 		
				CGCTCGCGGTAGCTGAA	
		Niben101Scf00585	2	AAACGG;	
		g02015	_	CTTGACACAAAACGACC	
_			 	TAGTGG	
-					

	Niben101Scf03673		ATTTATGCAGAAGGGAA	
	g03007	2	GCTTGG;	
	Niben101Scf00671	Z	AGCCGCAAGTCCCAAGA	
	g00009		AAGTGG	
	Niben101Scf02413 g03005	1	CTTGACACAAAACGACC TAGTGG	Not present in the phylogeny, but clustered to this subfamily according to iTAK
	Niben101Scf03493		ATGAACTCCGAGTAGCC	
	q00018		ACGAGG;	
	Niben101Scf02869	2	GCTATAACCAAACCAGT	
	q18003		TCCCGG	
	Niben101Scf01378		ATCGGGACGAAAATTCC	
	a00004		TAGTGG	
	Niben101Scf00012	2	GATAGCAATCCAAGCTC	
	a00012		GAGGG	
	900012 Niben101Scf06482			
8	a03003			
	905005 Nibon1015cf00625			
	a04002	3		
	904002			
	~07002		GIIIIGG	
	907003		TTAAACCAACCAACCETC	
	NIDEI11015CI05476			
	<i>g01001</i>	2	GCAGGG;	
	NIDEN101SCT01025			
	<i>g1000</i> 6		GGACGG	
	N/h == 1010 = (0000 1		GITTATGAGGICATGAC	
	NIDEN101SCT09004	2		
	<i>g</i> 00018		GUUCATAGTAUUTATAA	
	N/h == 1010 = (11004			
	NIDEN101SCT11684			
	g00005	2		
	Niben101Scf05916		GTATATGACCAAAGGAA	
	g00004		GCIIGG	
	Niben101Scf102/4		TIAIGGCCCIGCAAACC	
	g00001	2		
9	NIDen101SCT02826		GIAIAIGAAIIIAIGCCA	
	g01012		AGAGG	
	Niben101Scf19533		GTCAAGAAATTGAAGCC	
	g00007	2	GGAAGG;	
	Niben101Scf022/9		GIGIAIGAGIICAIGCC	
	g05002		IAAAGG	
	Niben101Scf11389		GGTTCTGCTGGGAATCC	
	g00006		TAGAGG;	
		3	GCAACTTCGTCATCCAA	
	Niben101Scf01521		ACCTGG;	
	g13003		GTGTATGAGTTCATGCC	
			TAAAGG	

*iTAK (<u>http://itak.feilab.net/</u>); QUT (<u>http://www.benthgenome.qut.edu.au/</u>). The *RLCK* genes that are not expressed according to the QUT genome browser were not chosen to be targeted by CRISPR/Cas9. Some genes that are not present in the phylogenetic tree (Figure S9B) but were found to be clustered in a specific subfamily by using iTAK, were also selected to be knocked out.

Primer	Primer name	Sequence (5' - 3')
code		
Primers us mutations	sed for introducing point mutations	in the SOBIR1 kinase domain (the introduced
ho113	NhSOBIR1_T512A fw*	acactercagatacceatGeacatattacgaette
ho114	NbSOBIRI_1512A TW	asatcatsscatataCatagacatctagasatac
ho115	NbSOBIRI_1515A fw	
ho115	NbSOBIRI_1313A TW	cotacacacattacacatgriocyacticaaatgrigtagg
ho117	NDSOBIRI_ISISATEV	
ho110	NDSOBIRI_ISIOA IW	
110110 ho110	NDSODIRI_ISIOA IEV	
no119	NDSOBIRI_SSI7A IW	
N0120	NDSOBIRI_SSI7A rev	
h0121	NDSOBIR1_1522A fw	cttcaaatgttgcaggaGctgtgggatatattgcacc
ho122	NbSOBIR1_1522A rev	ggtgcaatatatcccacagCtcctgcaacatttgaag
ao1	SISOBIR1_1503A fw	gcagttccagatgctcatGcacatatcaccacttc
ao2	SISOBIR1_T503A rev	gaagtggtgatatgtgCatgagcatctggaactgc
ao3	SISOBIR1_T506A fw	gctcatacacatatcGccacttcaaatgttgcag
ao4	SISOBIR1_T506A rev	ctgcaacatttgaagtggCgatatgtgtatgagc
ao5	SISOBIR1_T507A fw	caccGcttcaaatgttgcaggaactgttggatttattg
ao6	SISOBIR1_T507A rev	caataaatccaacagttcctgcaacatttgaagCggtg
ao7	SISOBIR1_S508A fw	gctcatacacatatcaccactGcaaatgttgcagg
ao8	SISOBIR1_S508A rev	cctgcaacatttgCagtggtgatatgtgtatgagc
ao9	SISOBIR1_T513A fw	caaatgttgcaggaGctgttggatttattgc
ao10	SISOBIR1_T513A rev	gcaataaatccaacagCtcctgcaacatttg
ho166	SISOB-like_T516A_fw	gctgtcccagatgctcatGcacatattacaacttc
ho167	SISOB-like_T516A_rev	gaagttgtaatatgtgCatgagcatctgggacagc
ho168	SISOB-like_T519A_fw	cagatgctcatacacatattGcaacttcaaatgtggc
ho169	SISOB-like_T519A_rev	gccacatttgaagttgCaatatgtgtatgagcatctg
ho170	SISOB-like_T520A_fw	gatgctcatacacatattacaGcttcaaatgtggcag
ho171	SISOB-like_T520A_rev	ctgccacatttgaagCtgtaatatgtgtatgagcatc
ho172	SISOB-like_S521A_fw	ctcatacacatattacaactGcaaatgtggcaggaac
ho173	SISOB-like_S521A_rev	gttcctgccacatttgCagttgtaatatgtgtatgag
ho174	SISOB-like_T526A_fw	cttcaaatgtggcaggaGctataggatacatcgctc
ho175	SISOB-like_T526A_rev	gagcgatgtatcctatagCtcctgccacatttgaag
ho123	NbSOBIR1_Y355F fw	ggtggatgcggagaagtttTtagagctgagttaccggg
ho124	NbSOBIR1_Y355F rev	cccggtaactcagctctaAaaacttctccgcatccacc
ho125	NbSOBIR1_Y426F fw	ctaggccagactgccattTcttggtatatgaatatatg
ho126	NbSOBIR1_Y426F rev	catatattcatataccaagAaatggcagtctggcctag
ho127	NbSOBIR1_Y429F fw	gactgccattacttggtatTtgaatatatgaaaaatgg
ho128	NbSOBIR1 Y429F rev	ccatttttcatatattcaAataccaagtaatggcagtc
ho129	NbSOBIR1 Y431F fw	qccattacttqqtatatqaatTtatqaaaaatqqqaqc
ho130		gctcccatttttcataAattcatataccaagtaatggc
ho131	NbSOBIR1 Y469F fw	gatagcttctggacttgagtTtctccatataaaccac
ho132	NbSOBIR1 Y469F rev	gtggtttatatggagaAactcaagtccagaagctatc
ho133	NbSOBIR1 Y525F fw	
ho134	NbSOBIR1_Y525F rev	ataatattetaataeataeateeaaatteetae
ho135		natatattucaccanaatTccatcanacactaaa
10133	13505IRT_1550F IW	galalaligeaceaguali cealeagueacigaag

Supplementary Table 2. Nucleotide sequences of the primers used in this study.

ho136	NbSOBIR1_Y530F rev	cttcagtgtctgatggAattctggtgcaatatatc
ho137	NbSOBIR1_Y543F fw	cgggtaagtgtgatatatTcagctttggtgtggtg
ho138	NbSOBIR1_Y543F rev	caccacaaagctgAatatatcacacttacccg
ao11	SISOBIR1 Y346F fw	gtggctgtggagaagtttTtagagcagagctac
ao12	SISOBIR1 Y346F rev	gtagctctgctctaAaaacttctccacagccac
ao13	SISOBIR1 Y417F fw	gccagactgtcattTcttggtctacgaatacatg
ao14		catatattcatagaccaagAaatgacagtctggc
ao15	SISOBIR1 Y420F fw	cttggtctTcgaatacatgaaaaatgggagtttacag
ao16	SISOBIR1 Y420F rev	ctgtaaactcccatttttcatgtattcgAagaccaag
ao17	SISOBIR1 Y422F fw	
ao18	SISOBIR1 Y422F rev	ggatatcctgtaaactcccatttttcatgAattcg
ao19	SISOBIR1 Y460F fw	
ao20	SISOBIR1_Y460F rev	getgetggtetegggtetegggtetegetate
ao21	SISOBIR1_14001 TeV	
2021	SISOBIRI_1521F ray	ctataaacttcaatatctaataaAattctaatac
2022	SISOBIRI_1521F Tev	
2023	SISOBIRI_IJZZI IW	gtaccagaatatt tagacactgaagttac
auz4		
a025	SISUBIRI_1334F IW	
a026	SISUBIRI_1534F rev	
ao27	SISUBIRI_YS88F fW	
ao28	SISUBIRI_YS88F rev	gcattigttcgtcgAatccatticctataagc
no142	SISOB-IIKe_Y359F_TW	
h0143	SISOB-like_Y359F_rev	ctttccgtcacttccaggtaatgcagctttaAaaacttttcc
ho144	SISOB-like_Y430F_fw	gccaagaccagactgccactTcttggtctatgagtacatg
ho145	SISOB-like_Y430F_rev	catgtactcatagaccaagAagtggcagtctggtcttggc
ho146	SISOB-like_Y433F_fw	ctgccactacttggtctTtgagtacatgaaaaatgggagc
ho147	SISOB-like_Y433F_rev	gctcccatttttcatgtactcaAagaccaagtagtggcag
ho148	SISOB-like_Y435F_fw	gccactacttggtctatgagtTcatgaaaaatgggagc
ho149	SISOB-like_Y435F_rev	gctcccatttttcatgAactcatagaccaagtagtggc
ho150	SISOB-like_Y473F_fw	gctgctggactcgagtTtctccatataaatcatactcagcg
ho151	SISOB-like_Y473F_rev	cgctgagtatgatttatatggagaAactcgagtccagcagc
ho152	SISOB-like_Y529F_fw	ggcaggaactataggatTcatcgctccagaatatcatcag
ho153	SISOB-like_Y529F_rev	ctgatgatattctggagcgatgAatcctatagttcctgcc
ho154	SISOB-like_Y534F_fw	ggatacatcgctccagaatTtcatcagacactgaagttcactg
ho155	SISOB-like_Y534F_rev	cagtgaacttcagtgtctgatgaAattctggagcgatgtatcc
ho156	SISOB-like_Y547F_fw	ctgataagtgtgatatatTcagctttggggtgctg
ho157	SISOB-like_Y547F_rev	cagcaccccaaagctgAatatatcacacttatcag
ho447	1004/5004_K110A_f2	ggctcagcctgtggctgtaGCgcttttggatttag
ho448	1004/5004_K110A_r2	ctaaatccaaaagcGCtacagccacaggctgagcc
ho451	13012_K127A-f2	gctgttGCaaaatcaaatcctgatagtgaacaaggtctcaagg
ho452	13012_K127A-r2	gatttgattttGCaacagcaactggaattccaactccaactttag
ho449	1025_K119A-f2	gtaattgctgttGCgaaattgaattccgaaagcttacaggggttg
ho450	1025 K119A-r2	caatttcCGaacagcaattacagtgccgctgccactcc
ho453	 00012 K109A-f2	gtgtgatcattgctgtgGCacggctgaatcaagaag
ho454	 00012 K109A-r2	cttcttgattcagccgtGCcacaacaatgatcacac
ho472	6482 K114A-f2	gctgtgGCgaagttaaatcaagaagatttacaggagacac
ho473	6482 K114A-r2	gatttaacttcGCcacaactatcacgattccagatccaga
Primers fo	pr genotyping the <i>rlck-vii-</i> 6 knock-or	ut nlants.
ho228	747 geno 1-F 192/10	
110220	/ T/ _geno_1 1 _J32719	ccuaaccaaayycaaayyay

ho229	747_geno_1-R1004_JS2420	gattagccaggtagatagtgg
ho230	747_geno_1-R5004_JS2421	gactgaagttccaaaagcc
ho231	747_geno_2-F_JS2422	gtgatgaagattgcatggg
ho232	747_geno_2-R2008_JS2423	gtttacgagttattgcacgat
ho233	747_geno_2-R3011_JS2424	caccaactcccaaaagcc
ho234	747_geno_3-F3002_JS2425	gtggtcattcaaggctagc
ho235	747_geno_3-R3002_JS2426	ttttcttaaactccgtgccg
ho236	747_geno_4-F13015_JS2427	tcatcatagtaggctagcc
ho237	747_geno_4-R13015_JS2428	tagtccttttgcagcaccta
ho238	747_geno_5-F_JS2429	cgtaggttgtcattctcgga
ho239	747_geno_5-R1006_JS2430	tgtaacttcttggggtacgt
ho240	747_geno_5-R0005_JS2431	tgcgtaccatcaaaacaacc
ho241	747_R1-13015_JS2486	tgttttctcttacacacccc
ho242	747_F2-13015_JS2487	tgaatacatggcaaggggaa
Primers for	or genotyping the <i>rlck-vii-7</i> knock-o	out plants.
LHo07	734_00009F_JS2556	ccagttcttctggtctacg
LHo08	734_03007F_JS2555	cctgttcttctgatctatg
LHo09	734_03007R+00009R_JS2557	caactaagcagaccttacc
LHo10	734_01025F_JS2558	tccattgttcagacacagtg
LHo11	734_06004F_JS2559	cattgctcagagatagtgag
LHo12	734_06004R+01025R_JS2560	gatgctcagaaagaagg
LHo13	734_02015F_JS2551	acaaaaggacccaaattgct
LHo14	734_02015R_JS2552	tggagtaagcgtcttctcat
LHo15	734_03005F_JS2553	ctacgtacgcctcttacaga
LHo16	734_03005R_JS2554	cggtgattgcttgtatcgat
LHo17	734_13012F_JS2561	tagcaacagcacaacttgtt
LHo18	734_13012R_JS2562	tccttgagaccttgttcact
Primers fo	or genotyping the <i>rlck-vii-8</i> knock-o	out plants.
Po05	Scf00012	aaattagaacacggacaat
Po01	Scf00229_fw	gctgcaaagatagtagcaattgg
Po02	Scf00229_rv	gaagcacgcagataggcg
Po03	Scf00635_fw	gcaattggcttttgtatgtgc
Po04	Scf00635_rv	gcgacctaataatagttcaaaattgc
Po36	Scf1025_fw	gactagtaattcgaacagc
Po37	Scf1025_rv	tccctaatctgtatatgggg
Po09	Scf01378	aaattaggacacgggcaac
Po08	Scf02819	tttcggttgaacccgtgga
Po10	Scf03493	tttcggttgaactcatagc
Po11	Scf05476_fw	gtaattggtttctttggatgtgtatc
Po14	Scf05476_rv	gcgaatcaagtcgcctattcatca
Po15	Scf6482_fw	ggtgtcatgagaagtgcagattgc
Po16	Scf6482_fw	ccaattttactacgaagtaccatgcg
Po06	Scf06482_fw	gcaaagatagtagtaattggcttttgtatgtgc
Po07	Scf06482_rv	gcaaatgaatgtaattttgaactagtattacgtgc
Po12	Scf0012-1378_fw	atgttgctatctctggttt
Po13	Scf02869-3493_rv	gcctgtgttcatcttctaag

Primers used for generating *E. coli* expression constructs of the SOBIR1 kinase domain (sequences that are identical to the expression vectors are underlined).

ho201	pET-GST_fw	aagcttgcggccgcactcgag
ho202	pET-GST_rev	caggggcccctggaacagaacttc
ho203	NbSOBIR1_KD+90bp_fw	<u>gttctgttccaggggcccctg</u> cgaaagggaaagactgatggaac
ho204	NbSOBIR1_KD+90bp_rev	<pre>ctcgagtgcggccgcaagcttctaatgcttgatctgagttaacatac</pre>
ho215	SISOBIR1_KD+90bp_fw	<u>gttctgttccaggggcccctg</u> agaagagggaataacgattcaag
ho216	SISOBIR1_KD+90bp_rev	<pre>ctcgagtgcggccgcaagcttctaatgcttgatctgagttaacatgc</pre>
ho217	SISOBIR1-like_KD+90bp_fw	<u>gttctgttccaggggcccctg</u> agagggatcagaaatgatccagg
ho218	SISOBIR1-like_KD+90bp_rev	<pre>ctcgagtgcggccgcaagcttttaatgcttgatctgcatcaacatgc</pre>
ho219	pET-15b_fw	cggatcctcgagcatatggctg
ho220	pET-15b_rev	gctgctaacaaagcccgaaaggaag
ho221	NbSO_KD+90bp_fw	<u>gccatatgctcgaggatccg</u> cgaaagggaaagactgatggaac
ho222	NbSO_KD+90bp_rev	<pre>ctttcgggctttgttagcagcctaatgcttgatctgagttaacatac</pre>
ho223	SISO_KD+90bp_fw	<u>gccatatgctcgaggatccg</u> agaagagggaataacgattcaag
ho224	SISO_KD+90bp_rev	<pre>ctttcgggctttgttagcagcctaatgcttgatctgagttaacatgc</pre>
ho225	SISO-like_KD+90bp_fw	<u>gccatatgctcgaggatccg</u> agagggatcagaaatgatccagg
ho226	SISO-like_KD+90bp_rev	<pre>ctttcgggctttgttagcagcttaatgcttgatctgcatcaacatgc</pre>
ho282	NbSERK3b_kd_fw	gccatatgctcgaggatccgggacaactcaagaggttttccttg
ho283	NbSERK3b_kd_rev	<pre>ctttcgggctttgttagcagctcatcttggccccgacaattcatc</pre>
ho286	SISERK3a_kd_fw	gccatatgctcgaggatccgggacaactcaaaaggttttccttgc
ho287	SISERK3a_kd_rev	<pre>ctttcgggctttgttagcagctcatcttggccctgacaactcatc</pre>
ho326	1004-5004GST_fw	<u>gttctgttccaggggcccctg</u> atgaagattacatgggaatctctagttcc
ho327	1004GST_rv	<pre>ctcgagtgcggccgcaagcttagctctatggaaatcattgtgcaatg</pre>
ho333	5004GST_rv	<u>ctcgagtgcggccgcaagctt</u> agctctatggaaattattgcgcaatg
ho439	13012_GST-fw	<u>gttctgttccaggggcccctg</u> atgggaaattgctggcctaaatc
ho440	13012_GST-rev	<pre>ctcgagtgcggccgcaagcttgtagcttcgattgatggcagcatg</pre>
ho437	1025_GST-fw	<u>gttctgttccaggggcccctg</u> atgggaatttgtttcagtaatgcgtc
ho438	1025_GST-rev	<pre>ctcgagtgcggccgcaagcttgtatgctcttcttgggagtggatag</pre>
ho441	00012_GST-fw	<u>gttctgttccaggggcccctg</u> atggggatttgtttgagtgctag
ho442	00012_GST-rev	<pre>ctcgagtgcggccgcaagctttttagcataaaagggagaagc</pre>
ho464	6482_GST_fw	<u>gttctgttccaggggcccctg</u> atggggatttgtctgagcaacc
ho465	6482_GST_rev	<pre>ctcgagtgcggccgcaagcttctgcccggggagtctcttc</pre>
Primers us	ed for generating the split-luciferas	e binary constructs.
JRO03	KpnI-Solyc07g041940.2-fw	cggggtaccatgaagattggatgggaatc
JRO04	SalI-Solyc07g041940.2-rev	acgcgtcgacggatctcttgaaaccattttg
JRO05	KpnI-Solyc04g082500.2-fw	cggggtaccatgggaaattgttggcc
JRO06	SalI-Solyc04g082500.2-rev	acgcgtcgacatagctacggttttttggagc
JRO07	KpnI-Solyc11g062400.1-fw	cggggtaccatggggatttgctttgg
JRO08	SalI-Solyc11g062400.1-rev	acgcgtcgactcttgaatgtgtcacatatctctt
JRO09	KpnI-Solyc06g062920.2-fw	cggggtaccatggctacttgcggaattg
JRO10	SalI-Solyc06g062920.2-rev	acgcgtcgacataagaatttagtttgtttgttctttc
JRO11	KpnI-Solyc05g025820.2-fw	cggggtaccatgaagattacatgggaatctctag
JRO12	SalI-Solyc05g025820.2-rev	acgcgtcgacagctctatggaaatcattgtgc
JRO13	Kpn1-Solyc01g088690.2-fw	cggggtaccatgaagtgttttttttacttcaag
JRO14	Xhoi-Solyc01g088690.2-rev	ccgctcgagtgtagttttacccttctgcatg
JRO15	Kpn1-Solyc05g007050.2-fw	cggggtaccatgggattaggtggtgatg

acgcgtcgacagttttgccgtttggttt cggggtaccatgctgaagtgtttttatatattca

acgcgtcgacagcctgagctaagg

cggggtaccatgggagtttgtttcagttctaa

SalI-Solyc05g007050.2-rev

KpnI-Solyc08g077560.2-fw

SalI-Solyc08g077560.2-rev

KpnI-Solyc01g112220.2-fw

JRO16

JRO17

JRO27

JRO21

JRO22	SalI-Solyc01g112220.2-rev	acgcgtcgactgatgctctttttgggagtg
JRO23	KpnI-Solyc06g005500.2-fw	cggggtaccatggggatatgtttgagtgc
JRO24	SalI-Solyc06g005500.2-rev	acgcgtcgactttagcgtaaaggggagaag
Lo94	SISOBIR1-Kpn1-fw	cggcgcggtaccatgacttcgaatatccacttttttcttttatacg
Lo95	SISOBIR1-Sal1-NoStop-rev	gccgccgtcgacatgcttgatctgagttaacatgc
Lo153	GUS-Kpn1-fw	cggcggggtaccatgttacgtcctgtagaaacc
Lo154	GUS-Sal1-rev	gaagccgtcgacttgtttgcctccctgctgcggtttttc
Primers used for generating the TbID binary constructs.		
J04	NbSOBIR1-fw	ttcttgaaggtcatgtgcc
JO6	YFP-rev	ctcaggtagtggttgtcgg
J08	TurboID-rev	gcagatacaggtcattggg
JO9	GUS-fw	ggttatctctatgaactgtgcg
Primers used for generating the complementation construct of Niben101Scf00012g00012.1.		
Nucleotides in lower case letters align with the Gateway sequence.		
Po17	Niben101Scf00012g00012.1 fw	caccATGGGGATTTGTTTGAGTGCTAG
Po18	Niben101Scf00012g00012.1 fw	TTTAGCATAAAAGGGAGAAGC

* fw, forward; rev, reverse.