Supporting Information

Engineering adhesive and antimicrobial hyaluronic acid/elastin like polypeptide hybrid hydrogels for tissue engineering applications

Ehsan Shirzaei Sani^a, Roberto Portillo-Lara^{a,b}, Andrew Spencer^a, Wendy Yu^a, Benjamin M. Geilich^a, Iman Noshadi^a, Thomas J. Webster^{a,c}, and Nasim Annabi^{a,d,e*}

^aDepartment of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA. ^bCentro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL 64700, México. ^cWenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, China.

^dBiomaterials Innovation Center, Brigham and Women's Hospital, Harvard Medical School Boston, MA 02115, USA.

^eHarvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

*Corresponding author: Nasim Annabi, Email: <u>n.annabi@neu.edu</u>

Number of pages: 4

Number of Supporting Figures: 4

The file includes:

Figure S1. Representative compressive cyclic stress–strain curves of MeHA/ELP hydrogels produced by using different ELP concentrations and 2% MeHA.

Figure S2. Ultimate tensile stress of MeHA/ELP hydrogels produced using different MeHA and ELP concentrations.

Figure S3. Swelling properties of photocrosslinked MeHA/ELP composite hydrogels. **Figure S4**. *In vitro* cytocompatibility of MeHA/ELP and MeHA/ELP-ZnO hydrogels.

Figure S1. Representative compressive cyclic stress–strain curves of MeHA/ELP hydrogels produced by using different ELP concentrations and 2% MeHA.

Figure S2. Ultimate tensile stress of MeHA/ELP hydrogels produced using different MeHA and ELP concentrations.

Figure S3. Swelling properties of photocrosslinked MeHA/ELP composite hydrogels. Swelling ratios of hydrogel produced by using various ELP concentrations and (a) 1% or (b) 2% (w/v) MeHA at 37 °C in DPBS (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Figure S4. *In vitro* cytocompatibility of MeHA/ELP and MeHA/ELP-ZnO hydrogels. Representative live/dead images from NIH-3T3 cells seeded on (a) MeHA/ELP and (b) MeHA/ELP-ZnO hydrogels after 5 days of seeding. Representative phalloidin (green)/DAPI (blue) stained images from NIH-3T3 cells seeded on (c) MeHA/ELP and (d) MeHA/ELP-ZnO hydrogels after 5 days of culture. Quantification of (e) viability and (f) metabolic activity of NIH-3T3 seeded on hydrogels after 1, 3, and 5 days of culture. Hydrogels were formed by using 2% MeHA and 10% ELP with 0 and 0.2 %(w/v) ZnO nanoparticles at 120 sec UV exposure time (* p < 0.05, ** p < 0.01).