Supplementary information

Complete biosynthesis of QS-21 in engineered yeast

In the format provided by the authors and unedited

Supplementary Information

Complete biosynthesis of QS-21 in engineered yeast

Yuzhong Liu,^{1,2} Xixi Zhao,^{1,2} Fei Gan,^{1,2} Xiaoyue Chen,^{2,3,4} Kai Deng,^{2,12} Samantha A. Crowe,^{1,2,5} Graham A. Hudson,^{1,2} Michael S. Belcher,^{2,3,4} Matthias Schmidt,^{2,6,7} Maria C. T. Astolfi,^{2,8} Suzanne Kosina,⁴ Bo Pang,^{1,2} Minglong Shao,^{2,6} Jing Yin,^{2,6} Sasilada Sirirungruang,^{2,3,4,9} Anthony T. Iavarone,¹ James Reed,¹⁰ Laetitia B. B. Martin,¹⁰ Amr El-Demerdash,^{10,11} Shingo Kikuchi,¹⁰ Rajesh Chandra Misra,¹⁰ Xiaomeng Liang,^{2,6} Michael J. Cronce,^{2,8} Xiulai Chen,^{2,6} Chunjun Zhan,^{2,6} Ramu Kakumanu,^{2,6} Edward E. K. Baidoo,^{2,6} Yan Chen,^{2,6} Christopher J. Petzold,^{2,6} Trent Northen,^{2,4} Anne Osbourn,¹⁰ Henrik Scheller,^{2,3,4} Jay D. Keasling^{1,2,5,6,8,13,14*}

¹ California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA 2 Joint BioEnergy Institute, Emeryville, CA, USA

³ Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

4 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

⁵ Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA ⁶ Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

7 Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany

8 Departments of Bioengineering, University of California, Berkeley, CA, USA

⁹ Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand.

¹⁰ John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.

 11 Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt.

 12 Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA.

¹³ Center for Biosustainability, Danish Technical University, Lyngby, DK

¹⁴ Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China

*Correspondence: keasling@berkeley.edu (J.D.K)

Table of Content

Supplementary Tables

Supplementary Table 1. List of heterologous genes for QS-21 biosynthesis

Supplementary Table 2. List of yeast strains in this study

Supplementary Table 3. Structures and IUPAC nomenclature of glycosylated intermediates

Supplementary Table 4. List of chemicals for feeding or analytical standards

Supplementary Fig. 1 LC-MS traces of the extract from engineered yeasts. In the absence of the *Quillaja* native cytochrome b5 (Qsb₅), C23 position can only be oxidized to a hydroxyl group to form 4 in YL-2 at approximately 13.2 min retention time. When Qsb₅ was co-expressed in YL-3, the C23 hydroxyl group can be further oxidized to the desired aldehyde in **5**.

Gene discovery of MSBP proteins

Identification of the target mass of vaccaroside E, segetoside I, and segetoside I Ac by LC-MS in different organs of *S. vaccaria* suggested that saponins were present in roots, stems, leaves, and flowers.² Since cytochrome P450s (CYPs) are important enzymes involved in the saponin biosynthetic pathway and MSBPs are known to co-express with P450s, leaves and flowers were both collected and analyzed to serve the purpose of cross validation. Genes encoding MSBP homologs to *Arabidopsis thaliana* (At) have been identified in *Saponaria vaccaria* (Sv) transcriptome by sequence similarity search using algorithm tBLASTn. Amino acid sequences of MSBPs from At were submitted in a database of Sv transcriptome (prepared in-house) for comparison with translated DNA sequences of all genes in the transcriptome. Similar sequences were selected based on sequence identity (last column of **Supplementary Table 5**) and the significance of sequence match (third column of **Supplementary Table 5**). The results are summarized in Supplementary Table 5 below. The average expression levels of the different homologs identified in Supplementary Table 5 were also analyzed in leaves and flowers of *Saponaria vaccaria* (see **Supplementary Fig. 2**).

*Transcript names

**The longest 2 sequences (also showing the highest expression level in leaves and flowers in Supplementary Fig. 1) were selected for functional test in yeast (as described in the below Section 1.2.5).

Supplementary Fig. 2 Transcript expression profile of AtMSBP homologs in leaves and flowers of *S. vaccaria*. Data are mean ± s.d.; n = 3 biologically independent samples.

Arabidopsis thaliana **(At) MSBP homologs in** *Saponaria vaccaria* **(Sv)**

>PB.393.1 (CDS)

ATGTCAATAGAAATATGGGAAACACTGAAAGAAGCAATAACAACATACACAGGACTATCACCAACACTA TTCTTCACAATAGTTGCACTTAGTCTTGCATTCTACCATGCTGTTTTTGGGTTATTTGGTTCATCATCATCA TCATCATCATCATCATCATCAAATAGCCACCAAAATCCAAGGAATTTTGTTGAGGAAAGTGAGCCTTTAC CACCACCTGTGCAACTTGGTGAGATTACTGAGGATGACTTGAAAAACTATGATGGCTCTGATTCTAAGA AGCCTTTGCTTATGGCCATTAAAGGCCAGATCTATGATGTTTCCCAAAGCAGGATGTTTTATGGTCCAGG TGGGCCATATGCATTGTTTGCAGGAAAAGATGCAAGCAGAGCTCTGGCGAAGATGTCGTTTGAGGATA AAGATCTGACAGGCGATATCTCTGGTCTCGGTCCATTCGAACTCGAGGCCTTACAGGACTGGGAGTACA AGTTCATGAGTAAATACGTCAAGGTCGGAACTATCAAAAAGGATGCTCCTCCCAGTGACGCACCGTCTC CTAGTGAACCCTCTGAAGCTGCTGATGTTACAGACAGGGAAGCTCCCAAACACGCAGAAGATGGCCCAG CCGAGACAGTAGAACCATCCTCTGTTGGTGATGCCGAGAAAAAAGAAGAGTAA

>PB.393.1 (aa)

MSIEIWETLKEAITTYTGLSPTLFFTIVALSLAFYHAVFGLFGSSSSSSSSSSSNSHQNPRNFVEESEPLPPPVQLG EITEDDLKNYDGSDSKKPLLMAIKGQIYDVSQSRMFYGPGGPYALFAGKDASRALAKMSFEDKDLTGDISGL GPFELEALQDWEYKFMSKYVKVGTIKKDAPPSDAPSPSEPSEAADVTDREAPKHAEDGPAETVEPSSVGDAE KKEE*

>PB.16084.2 (CDS)

ATGCAATTAGTCGGGCTAAGAAATATATACGGGATGTTGGTGGAAGCCATACATGATTATTTCGGTCTG TCTCCAACGGCATTCTTGGTCATTGTGGGCATAATGATAGTAACTTACAAGATTGTGTGTGGAATGTTTG TGGCCGTCGATGATTACAAGGCAGTGAGAGATATGAAAGCGGTGTTTGAGGAGGATATGAGGCGGGA GCCAGTGCAGCTGGGCGACGTAACGGAGGAGGAACTCAAGGCTTATGACGGGTCTGACCCAAAGAAG CCGTTGCTGATGGCGATCAAGGGACAGATTTTCGACGTGTCCCGGGGCAGAATGTTCTACGGTCCTGGT GGGCCCTATGCCATGTTTGCTGGTCATGATGCCACCAGAGCGCTAGCTCTTATGTCTTTTGATCCACAAG ATCTAACCGGAAACACCGATGGCCTCAGTGAATCTGAAATAGACGTCCTCGAGGATTGGGAGCTCAAGT TCAATGAGAAATATCCCAAGGTTGGCGTACTTGTATCCAAAGCTGCTATCGTCGACAATCAGCCTCTTGA CACTAAAAAAGATGCTTAG

>PB.16084.2 (aa)

MQLVGLRNIYGMLVEAIHDYFGLSPTAFLVIVGIMIVTYKIVCGMFVAVDDYKAVRDMKAVFEEDMRREPV QLGDVTEEELKAYDGSDPKKPLLMAIKGQIFDVSRGRMFYGPGGPYAMFAGHDATRALALMSFDPQDLTG NTDGLSESEIDVLEDWELKFNEKYPKVGVLVSKAAIVDNQPLDTKKDA*

Supplementary Fig. 3 Extracted LC-MS ion chromatograms of quillaic acid (6) and C3 glucuronidated product 7. Co-expression of UGD and the C3 glucuronidating enzyme CLSM2 in YL-17 led to the formation of a new product, which was identified to be **7**.

Supplementary Fig. 4 Extracted LC-MS ion chromatograms of quillaic acid (6) and C3 glycosylated products. Co-expression of UGD, the C3 glucuronidating enzyme CLSM2, as well as C3GalT in YL-18 led to the detection of the di-glycosylated product **8**, which co-eluted with the chemical standard. The galactosylation is an efficient step as no residual **7** was observed.

Supplementary Fig. 5 Extracted LC-MS ion chromatograms of quillaic acid and C3 glycosylated products. a, Due to the inhibition of UDP-Xyl on UDP-glucose dehydrogenase (UGD), no glycosylated products were observed when UDP-xylose synthase (UXS) was co-expressed. **b**, The AtUGDA101L mutant presumably has a lower binding affinity of UDP-Xyl, and thus, more tolerant

of UDP-Xyl, leading to the biosynthesis of the C3-fully glycosylated product (**9**). The biosynthesis of **9** was confirmed by the co-elution with the chemical standard.

Supplementary Fig. 6 Extracted LC-MS ion chromatograms to confirm the production of C28 tri-glycosylated terpenoid, 12. Glycosylation of **11** produced by YL-27 (**a**) led to the formation of a new product with the high-resolution *m*/*z* of which corresponded to the molecular weight of **12** upon the expression of C28XylT3 in YL-29 shown in **b**.

Supplementary Fig. 7 Extracted LC-MS ion chromatograms to confirm the production of C28 fully glycosylated 13 and 14. A new mass peak was detected that correspond to the C28 tetraglycosylated-molecule only in the presence of C28XylT4 in YL-33 (**b**) and C28ApiT in YL-34 (**c**), but not in the parent strain YL-30 (**a**).

Subcellular localization studies of UGT73CY3

Confocal images of cells with overexpressed C-terminally mCherry-tagged HSP42, which is a yeast native chaperone protein,^{5,6} visualized its co-localization with the GFP-tagged protein aggregates (**Supplementary Fig. 8a**), but its overexpression only had a negligible impact on GT aggregation. Efforts towards solubilizing the GT, including N- and C-terminal truncation, solubility tagging (*e.g.*, SUMO, MBP, DsRED in YL-38 to YL-40, **Supplementary Fig. 8b**) yielded no noticeable improvements of its cytosolic expression. A time course study of the co-localization of RPN1, a subunit of the yeast proteasome, showed that upon nutrient depletion the proteasome initiates C28XylT4 degradation and recycling.^{7,8} However, when fresh carbon and nitrogen resources are provided (*i.e.*, fresh YP galactose), the proteasome remains inactive and localized to the nucleus (**Supplementary Fig. 8c**). In addition, the expression of protein under galactose-inducible promoters is switched on when additional inducer (*i.e.*, galactose) is added to the media, leading to higher cytosolic expression of UGT73CY3. Extensive protein engineering efforts might be required to express fully functional and soluble C28XylT4 and C28ApiT4 in *Saccharomyces cerevisiae*.

Supplementary Fig. 8 Subcellular localization studies in yeast of XylT4, solubility tagged XylT4, colocalization studies with HSP42 and RPN1. a, Confocal images of cells with overexpressed Cterminally mCherry-tagged HSP42, which is a yeast native chaperone protein visualized its colocalization with the GFP-tagged protein aggregates. **b**, Solubility tagging (*e.g.*, SUMO, MBP, DsRED yielded no noticeable improvements of the cytosolic expression of the GT. **c**, A time course study of the co-localization of RPN1, a subunit of the yeast proteasome, showed that upon nutrient depletion the proteasome initiates C28XylT4 degradation and recycling. However, when fresh carbon and nitrogen resources are provided (*i.e.*, fresh YP galactose), the proteasome remained inactive and localized to the nucleus. In addition, the expression of protein under galactose-inducible promoters is switched on when additional inducer was added to the media, leading to higher cytosolic expression of the GT. Images were acquired using a Zeiss LSM 710 confocal microscope (scale bar represents 10 μm; at least three independent experiments were conducted).

Supplementary Fig. 9 Production of QS-21-Api in the engineered yeast strain (YL-47). It was also observed from engineered yeasts that produce mono- and di-acylated as well as arabinofuranosylated C28-tri- and tetra-saccharides leading to the biosynthesis of QS-21-Api. The production of QS-21-Api was confirmed by its co-elution with the QS-21 standard. All LC-MS chromatograms were extracted with the theoretical m/z values of the respective compounds of interest.

QS-21 production and purification

YL-46 was cultured in 10 mL YPD medium in a 50-mL glass tube at 30 °C, 200 rpm for 16-18 hours as the seed culture. The seed culture was inoculated into 24-deep well plates with 2 mL YPD per well with an initial OD600 of 0.3. A total of ten of 24-deep well plates (approximately 500 mL) were cultured at 30 °C, 200 rpm following the same as the yeast strain culture condition described in the manuscript. A total of 53.8 µg QS-21 was produced and quantified using LCMS. The 24-deep well plates were centrifuged at 3000 g for 2 mins from which the supernatant was discarded and the cell pellets were washed with 500 μ L H₂O per well and resuspended in 800 μ L of MeOH/H2O (v:v=1:1) per well for QS-21 extraction by bead beating (3800 HZ, 3 mins). The cell pellets were extracted twice to yield a total of 41.9 µg of QS-21 in 200 mL of MeOH/H2O. Crude extracts from cell culture were fractionated by Reverse Phase-HPLC on an Agilent Prep-C18 column (5 μm, 21.2 x 150 mm) using a linear gradient of 0-45% acetonitrile (0.1% formic acid) in water (0.1% formic acid) over 4 min followed by 45-75% acetonitrile (0.1% formic acid) in water (0.1% formic acid) over 14 min at a flow rate of 4 mL/min, and finally followed by isocratic 75% acetonitrile (0.1% formic acid) in water (0.1% formic acid) for 3 min. The QS-21-Xyl peak area (tR19.6 min to 19.9 min) was collected and lyophilized. This crude QS-21 fraction was injected on an Agilent Zorbax Eclipse XDB-C18 semi-prep Column (5 μm, 9.4 x 250 mm) using a linear gradient of 30-50% over 18 min at a flow rate of 4 mL/min followed by isocratic 50% acetonitrile (0.1% formic acid) in water (0.1% formic acid) for 5 min. The QS-21-Xyl peak ($tR = 19.9$ min) was collected and lyophilized for MS and NMR analyses.

Tandem mass spectrometry

Samples and a QS-21 standard were analyzed using a liquid chromatography (LC) system (1200 series, Agilent Technologies, Santa Clara, CA) that was connected in line with a Thermo Exploris 120 mass spectrometer equipped with an electrospray ionization (ESI) source (Thermo Fisher Scientific, Waltham, MA) in negative ionization mode. LCMS method parameters are defined in **Supplementary Table 6**. The LC system contained the following modules: G1322A solvent degasser, G7120A binary pump, G1316C thermostatted column compartment, and G7167B autosampler unit (Agilent). Metabolites were separated using an Agilent 1290 series HPLC installed with a Kinetex 2.6 µm XB-C18 100 Å Column 50 x 2.1 mm column (00B-4496-AN, Phenomenex, Torrance, CA, USA). The MS data were acquired using an Orbitrap Exploris[™] 120 Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) in negative ionization mode. Raw files were converted to MZML using ProteoWizard MSConvert 3.0.21265-4230726.¹⁴ Ion chromatograms and spectra were extracted using the RaMS package version 1.3.1 and plotted in base R 4.3.0¹⁵; vector-based PDFs were generated using Cairo 1.6. MS1 ion comparisons (SI x) are reported for the most intense ion across the EIC (with 5-ppm window). From a centroided mzml file, the most intense MS2 spectrum for each file was selected and then filtered to remove fragment ions <400 m/z and below 0.6% of the max intensity within each spectrum; a 15-ppm window was used to determine if sample fragment ions matched to standard reference compound fragment ions.

Supplementary Table 7. MS2 fragment ion masses and their corresponding intensities

Supplementary Fig. 10 Total biosynthesis of QS-21 from simple sugars using engineered yeast strains compared to the QS-21 standard. a, No QS-21 was detected in the background strain YL-45. **b**, QS-21-Xyl produced by engineered yeast YL-50. **c**, QS-21-Api produced by engineered yeast YL-51. All LC–MS chromatograms were extracted with the theoretical m/z values of the respective compounds of interest.

Calculations of the QS-21 content and production rate in *Q. saponaria* **and** *S. cerevisiae*

Q. saponaria: The production of QS-21 mainly is sourced from the bark, which is approximately 20% of the tree mass. Of bark, extraction and dialysis led to a crude extract DQ.⁹ Further purification of DQ led to the saponin mixture Quil A (250 mg from the pool of 6 batches of 5 g of bark,^{9,10} 0.8% yield from the bark). From Quil A, the purification of QS-21 was recently reported to be approximately 2%.^{11,12}

The overall QS-21 yield from *Q. saponaria*:

$$
20\% * \frac{250 mg}{5 g * 6} * 2\% = 0.0032\%
$$

Quillaja saponaria produces QS-21 after 30-50 years¹⁷ and a maximum of 35% of the basal tree area can be extracted every 5-10 years from the same site, enforced by the forestry management plan has been approved by CONAE¹⁷, which makes it rate of production:

$$
\frac{0.0032\%}{10 \text{ years}} \frac{1 \text{ year}}{365 \text{ days}} \times 35\% = 3 \cdot 10^{-7} \text{\%}/\text{day}
$$

S. cerevisiae: Yeast dry cell weight is approximately 7.04 g L⁻¹ which can be calculated based on the OD of 25 divided by the index of OD conversion to dry cell weight (25/3.55 = 7.04 g L⁻¹).¹³ The titer of QS-21 in YL-46 is 0.9 mg L^{-1} , which led to the QS-21 content in yeast to be:

$$
\frac{0.09 \frac{mg}{L}}{25 * \frac{1 g DCW}{3.55 L}} = 0.0012\%
$$

S. cerevisiae produces that amount over a period of approximately 4 days, which makes it rate of production:

$$
\frac{0.0012\%}{4 \; days} = 3 \cdot 10^{-4} \%/day
$$

Hence, unoptimized *S. cerevisiae* produces QS-21-xyl at approximately 1,000 times the rate of *Q. saponaria*.

References

- 1. Reed, J. *et al.* Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree. *Science*, **379**, 1252-1264 (2023).
- 2. Chen, X. *et al.* Deciphering triterpenoid saponin biosynthesis by leveraging transcriptome response to Methyl Jasmonate elicitation in *Saponaria vaccaria*. *Nat. Comm*. **14**, 7101 (2023).
- 3. Martin, L.B.B. *et al*. Complete biosynthesis of the potent vaccine adjuvant QS-21. *Nat. Chem. Biol*. *Accepted.*
- 4. Wong, J., d'Espaux, L., Dev, I., van der Horst, C. & Keasling, J. *De novo* synthesis of the sedative valerenic acid in *Saccharomyces cerevisiae*. *Metab. Eng.* **47**, 94–101 (2018).
- 5. Sathyanarayanan, U. *et al.* ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo. *Nat. Commun.* **11**, 5226 (2020).
- 6. Lee, H.-Y., Chao, J.-C., Cheng, K.-Y. & Leu, J.-Y. Misfolding-prone proteins are reversibly sequestered to an Hsp42-associated granule upon chronological aging. *J. Cell Sci.* **131**, jcs.220202 (2018).
- 7. van Deventer, S., Menendez-Benito, V., van Leeuwen, F. & Neefjes, J. N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. *J. Cell Sci.* **128**, 109–117 (2015).
- 8. Enenkel, C., Kang, R. W., Wilfling, F. & Ernst, O. P. Intracellular localization of the proteasome in response to stress conditions. *J. Biol. Chem.* **298**, 102083 (2022).
- 9. Dalsgaard, K. Saponin adjuvants. I. The presence of a non-dialysable fraction of *Quillaja saponaria* Molina with adjuvant activity in foot-and-mouth disease vaccines. *Bull. Off. int. Epiz.* **77**, 1289-1295 (1972).
- 10. Dalsgaard, K. Saponin adjuvants III. Isolation of a substance from *Quillaja saponaria* molina with adjuvant activity in foot-and-mouth disease vaccines. *Archiv fir die gesamte Virusforschung* **44**, 243-254 (1974).
- 11. *Saponins Used in Traditional and Modern Medicine*, Springer New York, NY (1996).
- 12. Qi, Y. & Fox, C. B. A Two-step orthogonal chromatographic process for purifying the molecular adjuvant QS-21 with high purity and yield. *J. Chromatogr. A* **1635**, 461705 (2021).
- 13. Garay-Arroyo, A. *et al*. Response to different environmental stress conditions of industrial and laboratory *Saccharomyces cerevisiae* strains. *Appl. Microbiol. Biotechnol.* **63**, 734–741 (2004).
- 14. Chambers, *et al.* A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. **30**, 918-920 (2012).
- 15. R Core Team (2023). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
- 16. Wallace, F., Fontana, C., Ferreira, F., Olivaro, C. Structure elucidation of triterpenoid saponins found in an immunoadjuvant preparation of *Quillaja brasiliensis* using mass spectrometry and 1 H and 13C NMR spectroscopy. *Molecules* **27**, 2402 (2022).
- 17. San Martin, R., Briones, R. Industrial uses and sustainable supply of *Quillaja saponaria* (Rosaceae) saponins. *Econ. Bot.* **53**, 302–311 (1999).