
Temporal multiplexing of perception and 
memory codes in IT cortex

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-024-07349-5



Methods 1 

 2 
Seven male rhesus macaques (Macaca mulatta) of 5-13 years old were used in this study. 3 
All procedures conformed to local and US National Institutes of Health guidelines, 4 
including the US National Institutes of Health Guide for Care and Use of Laboratory 5 

Animals. All experiments were performed with the approval of the Caltech and UC 6 
Berkeley Institutional Animal Care and Use Committee. 7 
 8 
Visual stimuli 9 
Face patch localizer. The fMRI localizer stimuli contained 5 types of blocks, consisting of 10 

images of faces, hands, technological objects, vegetables/fruits, and bodies. Face blocks 11 
were presented in alternation with non-face blocks. Each block lasted 24 s blocks (each 12 
image lasted 500 ms). In each run, the face block was repeated four times and each of 13 

the non-face blocks was shown once. A block of grid-scrambled noise patterns was 14 
presented between each stimulus block and at the beginning and end of each run. Each 15 
scan lasted 408 seconds. Additional details can be found in48. 16 
 17 

Monkey face model. To generate a large number of monkey faces, we built an active 18 

appearance model for monkey faces49, similar to the method used for human faces in50. 19 

Images of frontal views of 165 monkey faces were obtained from the following sources: 20 
a private database kindly provided by Dr. Katalin Gothard (101 images), the PrimFace 21 

database (visiome.neuroinf.jp/primface)51 (22 images), YouTube videos of macaques 22 
(https://www.youtube.com/@ArrozMarisco360) (16 images), documentary movie (Love Is 23 
in the Wild Part 3 - A Monkeys Life, https://kwanza.fr/catalogue/love-is-in-the-wild) (3 24 

images), and face images of macaques from our lab (23 images). The “shape” 25 

parameters were obtained by manually labelling 59 landmarks on each of the frontal face 26 
images. A 2D triangulated mesh was defined on these landmarks. The coordinates of the 27 
landmarks of each image were normalized by subtracting the mean and scaling to the 28 

same width, and a landmark template was obtained by averaging corresponding 29 
landmarks across faces. The “appearance” parameters were obtained by warping each 30 

face to the landmark template through affine transform of the mesh. To reduce the 31 
dimensionality of the model, principal component analysis was performed on both the 32 
coordinates of the landmarks (shape) and pixels of the warped images (appearance) 33 
independently. The first 20 PCs of shape and first 100 PCs of appearance were kept for 34 
the final model, capturing 96.1% variance in the shape distribution and 98.4% variance in 35 

the appearance distribution. We used this model not only to generate unfamiliar monkey 36 
faces, but also to compute shape-appearance features of familiar monkey faces (note: 37 

these familiar faces were included in the 165-face database). For the latter, we projected 38 
the 59 landmarks and projected these onto the shape PCs; we then morphed the 39 
landmarks to the standard landmark template and projected the resulting pixels of the 40 
warped images onto the 100 appearance PCs. 41 
 42 
Stimuli for electrophysiology experiments. Eight different sources of images were used to 43 

generate three different stimulus sets (Extended Data Fig. 2).  44 
1) Personally familiar human faces: Frontal views of faces of 9 people in the lab/animal 45 

facility who interacted with the subject monkeys on a daily basis. 46 



2) Personally familiar monkey faces: Frontal views of faces of 9 monkeys in our animal 1 

facility that were current or previous roommates or cagemates of the subject monkeys, 2 
reconstructed using the monkey face model. 3 

3) Personally familiar objects: Images of 8 toys the subject monkeys interacted with 4 
extensively. 5 
4) Pictorially familiar monkey faces: Frontal views of faces of 8 monkeys from the 6 
PrimFace database (visiome.neuroinf.jp/primface)51, reconstructed using the monkey 7 
face model. 8 

5) Cinematically familiar monkey faces: Frontal views of faces of 19 monkeys from 7 9 
movies clipped from 7 videos from YouTube 10 
(https://www.youtube.com/@ArrozMarisco360) and documentary movie 11 
(https://kwanza.fr/catalogue/love-is-in-the-wild), reconstructed using the monkey face 12 
model. 13 

6) Unfamiliar human faces: 1840 frontal view of faces from various face databases: 14 
FERET52,53, CVL54, MR255, Chicago56, CelebA57, FEI (fei.edu.br/~cet/facedatabase.html), 15 

PICS (pics.stir.ac.uk), Caltech faces 1999, Essex (Face Recognition Data, University of 16 

Essex, UK; http://cswww.essex.ac.uk/mv/allfaces/faces95.html), and MUCT 17 
(www.milbo.org/muct). The background was removed, and all images were aligned, 18 
scaled, and cropped so that the two eyes were horizontally located at 45% height of the 19 

image and the width of the two eyes equaled 30% of the image width using an open-20 
source face aligner (github.com/jrosebr1/imutils).  21 

7) Unfamiliar monkey faces: 1840 images were generated using the monkey face model 22 
described above by randomly drawing from independent Gaussian distributions for shape 23 
and appearance parameters, following the same standard deviation as real monkey faces 24 

for each parameter. Faces with any parameter larger than 0.8 * maximum value found in 25 

a real monkey face were excluded to avoid unrealistic faces.  26 

8) Unfamiliar objects: Images of objects were randomly picked from a subset of categories 27 
in the COCO dataset (arXiv:1405.0312). The choice of categories was based on two 28 

criteria: 1) only categories that our macaque subjects had no experience with (e.g., 29 
vehicles) were included, 2) categories with highly similar objects were excluded (e.g., stop 30 
signs). The included super-categories were: 'accessory', 'appliance', 'electronic', 'food', 31 

'furniture', 'indoor', 'outdoor', 'sports', and 'vehicle'. 1500 images of objects with area larger 32 
than 2002 pixels were isolated, centered, and scaled to the same width or height, 33 

whichever was larger.  34 
 35 
We emphasize that due to the difficulty of obtaining a large set of high-quality monkey 36 

face images, we used the monkey face model described above to synthesize unfamiliar 37 

monkey faces; for consistency, all familiar monkey faces used in this study were also 38 
reconstructed using the monkey face model. Thus any differences in responses to familiar 39 
versus unfamiliar faces cannot be attributed to use of synthetic stimuli. Values of each 40 

feature dimension were normalized by the standard deviation of the feature dimension for 41 
analysis purposes. 42 
 43 
From these 8 stimulus sources, 3 different stimulus sets were generated:  44 
1) Screening set consisting of 8 or 9 images from 9 different categories (human faces, 45 
monkey faces, and objects, each personally familiar, pictorially familiar, or unfamiliar) 46 



(Extended Data Fig. 2a). There were 74 screening stimuli in all; responses to 24 pictorially 1 

familiar faces and objects were not shown in Figure 1. For unfamiliar stimuli, 8 novel 2 
images were used for each cell or simultaneously recorded group of cells. Each image 3 

was presented in random order, centered at the fixation spot, for 150 ms on 150 ms off 4 
(gray screen), repeated 5-10 times. The size of each image was 7.2° x 7.2°. Data using 5 
the screening stimulus set are shown in Fig. 1, 4b, c, e, f, Extended Data Fig. 3c, 4, 7, 9d, 6 
e, 10a-c.    7 
2) Thousand monkey face set, consisting of 1000 unfamiliar (examples shown in 8 

Extended Data Fig. 2b) and 36 familiar faces (personally familiar, pictorially familiar, and 9 
cinematically familiar faces, Extended Data Fig. 2a, c), presented using the same 10 
parameters as the screening set, except for number of repetitions (3-5 times). In addition, 11 
the 8 novel unfamiliar faces shown in the screening set were shown again. Data using 12 
the stimulus set are shown in Fig. 2, 3, 4d, g, Extended Data Fig. 3e-h, 5 (except PR of 13 

E, and TP), 9, 10d-k.   14 
3) Thousand monkey face set 2, to match both low-level and high-level features for 15 

familiar vs. unfamiliar faces. It consisted of 36 familiar faces (personally familiar, pictorially 16 

familiar, and cinematically familiar faces, Extended Data Fig. 2a, c), 1044 unfamiliar faces 17 
(each set of 36 unfamiliar faces were generated by random permutation of shape 18 
appearance features of the 36 familiar faces; the distributions of pairwise distance of low-19 

level features of AlexNet layer 1 for familiar vs. unfamiliar faces were checked by 20 
Kolmogorov–Smirnov test, 29 sets of unfamiliar faces that were not significantly different 21 

in either distribution were used). These stimuli were presented using the same 22 
parameters as the screening set, except the number of repetitions was 3-5 times for 1008 23 
unfamiliar faces, and to control for response reliability differences due to familiarity, a 24 

higher number of repeats was used for one set of 36 unfamiliar faces as well as for familiar 25 

faces (15-25 times). Data from PR of monkey E and TP of monkeys A and E were 26 

collected using this stimulus set. 27 
  28 

Behavioral task 29 
For electrophysiology and behavior experiments, monkeys were head fixed and passively 30 
viewed a screen in a dark room. Stimuli were presented on an LCD monitor (Acer 31 

GD235HZ). Screen size covered 26.0° x 43.9°. Gaze position was monitored using an 32 
infrared camera eye tracking system (ISCAN) sampled at 120 Hz.  33 
 34 
Passive fixation task. All monkeys performed this task for both fMRI scanning and 35 

electrophysiological recording. Juice reward was delivered every 2-4 s in exchange for 36 

monkeys maintaining fixation on a small spot (0.2° diameter).  37 

 38 
Preferential viewing task. Two monkeys were trained to perform this task. In each trial a 39 

pair of face images (7.2° x 7.2°) were presented on the screen side by side with 14.4° 40 

center distance (Fig. 1b, Extended Data Fig. 3d). Juice reward was given every 2-4 s in 41 
exchange for monkeys viewing either one of the images. Each pair of images lasted 10 42 
s. Face pairs were presented in random order. To avoid side bias, each pair was 43 
presented twice with side swapped.  44 
 45 



Face identification task. A delayed match-to-sample task was used to test performance 1 

on face identification in two monkeys. The task was performed using a touch screen in a 2 
cage without head fixation. The subject touched a dot at the center of the screen to initiate 3 

a trial. In each trial, a face image (the sample) was shown for 1000 ms, followed by a pair 4 
of images (the target and the distractor). The subject had 9 seconds to touch the face that 5 
matched the sample. A juice reward was given for correct response. The sample was 6 
presented at four different blur levels (clear, Gaussian blur standard deviation 5, 10, and 7 
20 pixels), while the target and distractor were presented as clear versions. The target 8 

was identical to the sample except for the difference in blur. The task included 30 pairs of 9 
familiar-unfamiliar faces and 30 pairs of unfamiliar-unfamiliar faces. For each face pair, 10 
the distractor was matched to the target in low-level features (mean luminance, mean 11 
contrast, hue distribution, and shape of the face outline). The Euclidean distance in shape 12 
appearance feature space between the target and distractor face was the same across 13 

familiar and unfamiliar face targets. 14 
 15 

MRI scanning and analysis 16 

Subjects were scanned in a 3T TIM (Siemens, Munich, Germany) magnet equipped with 17 
AC88 gradient insert. 1) Anatomical scans were performed using a single loop coil at 18 
isotropic 0.5 mm resolution. 2) Functional scans were performed using a custom eight-19 

channel coil (MGH) at isotropic 1 mm resolution, while subjects performed a passive 20 
fixation task. Contrast agent (Molday ION) was injected to improve signal/noise ratio. 21 

Further details about the scanning protocol can be found in58. 22 
 23 
MRI Data Analysis. Analysis of functional volumes was performed using the FreeSurfer 24 

Functional Analysis Stream59 and FSL60. Volumes were corrected for motion and 25 

undistorted based on acquired field map. Runs in which the norm of the residuals of a 26 

quadratic fit of displacement during the run exceeded 5 mm and the maximum 27 
displacement exceeded 0.55 mm were discarded. The resulting data were analyzed using 28 

a standard general linear model. The face contrast was computed by the average of all 29 
face blocks compared to the average of all non-face blocks. 30 
 31 

Single-unit recording 32 
Multiple different types of electrodes were used in this study. Single electrodes (Tungsten, 33 

1 Mohm at 1 kHz, FHC) were used to collect most of the data. A Neuropixel prototype 34 
probe (128 channel, HHMI) was used to record ML from subject A. A multi-channel 35 
stereotrode (64 channel, Plexon S-probe) was used to record AM during muscimol 36 

silencing of PR in subject E. A chronic implanted microwire brush array (64 channel, 37 

MicroProbes) (McMahon, et al., 2014) was used to record from face patch AM in subject 38 
C. The electrode trajectories that could reach the desired targets were planned using 39 
custom software61, and custom angled grids that guided the electrodes to the target were 40 

produced using a 3D printer (3D system). Extracelluar neural signals were amplified and 41 
recorded using Plexon. Spikes were sampled at 40 kHz. For single channel recorded 42 
data, spike sorting was performed manually by clustering of waveforms above a threshold 43 
in PCA space using a custom-made software (Kofiko) in Matlab. Multichannel recorded 44 
data was automatically sorted by Kilosort2 (github.com/MouseLand/Kilosort2)62 and 45 
manually refined in Phy (github.com/cortex-lab/phy).  46 



 1 

Muscimol experiment 2 
To silence face patch PR, 1 µl (5 mg/ml) muscimol (Sigma) was injected into PR at 0.5 3 

µl/min using G33 needle (Hamilton) connected to a 10 µl micro-syringe controlled by a 4 
micro-pump (WPI, UltraMicroPump 3). AM cells were recorded both before and 30 min 5 
after injection. 6 
 7 
Data analysis 8 

All visually-responsive cells were included for analysis. To determine visual 9 
responsiveness, a two-sided T-test was performed comparing activity at [-50 0] ms to that 10 
at [50 300] ms after stimulus onset. Cells with p-value < 0.05 were included. 11 

 12 
Face selectivity index  13 

A face selectivity index (FSI) was defined for each cell as: 14 

𝐹𝑆𝐼 =
𝑟𝑓𝑎𝑐𝑒 − 𝑟𝑛𝑜𝑛−𝑓𝑎𝑐𝑒

𝑟𝑓𝑎𝑐𝑒 + 𝑟𝑛𝑜𝑛−𝑓𝑎𝑐𝑒
 15 

where 𝑟 is the average neuronal response in a 50-300 ms window after stimulus onset 16 
(Extended Data Fig. 3c).  17 

 18 
Population average of response time course 19 
For each cell, responses to the same stimulus category were first averaged in 10 ms time 20 

bins, then the responses were baseline-subtracted (using the average response in the 21 
time window 0 to 50 ms), and normalized by the maximum response across different 22 

stimulus categories after stimulus onset. The normalized responses were finally averaged 23 
across cells for each category after smoothing by a Gaussian function with 10 ms 24 

standard deviation (Fig. 1g right, Fig. 3b, Extended Data Fig. 4c, 10c right, 10g). 25 
 26 

To determine the time point at which responses rose above baseline (e.g., Fig. 1e), we 27 
compared the response at each time point to the baseline response (average response 28 
over [-50 0] ms) using a one-tailed T-test, and determined the first time point at which p 29 

< 0.01. 30 
 31 

Preferred axis of cells 32 
The preferred axis of cells was computed in two different ways63: 33 
 34 
Spike-triggered average (STA). The average firing rate of a neuron was computed to each 35 

stimulus, either in a full time window [50-300] ms or sliding 50 ms time window after 36 

stimulus onset. The STA was defined as: 37 
 38 

𝑃𝑠𝑡𝑎 = (𝑟 − �̅�)𝐹 39 
 40 

where 𝑟 is 1 × 𝑛 vector of the firing rate response to a set of 𝑛 face stimuli, �̅� is the mean 41 

firing rate, and 𝐹 is a 𝑛 × 𝑑 matrix, where each row consists of the 𝑑 parameters 42 
representing each face stimulus in the feature space. 43 
 44 



Linear regression/Whitened STA. For a small sample of stimuli, e.g., 36 familiar faces, 1 

the features are not necessarily white (i.e., uncorrelated). As a control, to ensure that the 2 
difference in STA observed in Fig. 2b, c was not due to mismatched feature distributions 3 

between familiar and unfamiliar faces, we repeated our main analysis using a whitened 4 
STA (Extended Data Fig. 9a, bottom) as follows: 5 

𝑃𝑙𝑖𝑛 = (𝑟 − �̅�)𝐹(𝐹𝑇𝐹)−1 6 
 7 

For all figures, we used 20 dimensions to compute the preferred axis (first 10 shape and 8 
first 10 appearance dimensions). 9 
 10 
Principal orthogonal axis 11 
The principal orthogonal axis was defined as the longest axis orthogonal to its preferred 12 

axis. First, for each of the 1000 unfamiliar face images represented as 𝑑-dimensional 13 

vector (𝑓𝑑) in face feature space, its component along the preferred axis (𝑃) of the cell 14 

was subtracted  15 

𝑓𝑑−1 = 𝑓𝑑 − (𝑓𝑑 ∙ 𝑃/|𝑃|2)𝑃. 16 

Then principal component analysis was performed on the set of 1000 vectors (𝑓𝑑−1), and 17 
the principal orthogonal axis was the first principal component. 18 
 19 

Quantifying significance of axis tuning 20 
For each cell, we compared the explained variance by the axis model to a distribution of 21 

explained variances computed for data in which stimulus identities were shuffled (1000 22 
repeats). We considered axis tuning significant if the frequency of a higher explained 23 
variance in the shuffle distribution was less than 5% (Extended Data Fig. 3e, g). 24 

 25 
Quantifying consistency of preferred axis 26 

For each cell, the stimuli were randomly split into two halves, and a preferred axis was 27 

calculated using responses to each subset. Then, the Pearson correlation (𝑟) was 28 
calculated between the two. This process was repeated 100 times, and the consistency 29 

of preferred axis for the cell was defined as the average 𝑟 value across 100 iterations 30 
(Extended Data Fig. 3f, h). 31 

 32 
Face feature decoding and reconstruction 33 
To decode face features, firing rates after stimulus onset in a chosen time window (see 34 
Fig. 2d, e legend) were first averaged across multiple repeats of the same stimulus, then 35 
linear regression was performed on a training set of 999 unfamiliar faces to compute the 36 

linear mapping from population response vector 𝑟 to face feature vector 𝑓: 37 

𝑓 = 𝑀𝑟 38 
The decoding was performed on the remaining one unfamiliar and all familiar faces using 39 
this mapping M. Decoding accuracy was measured by (i) the correlation coefficient 40 

between decoded and actual face features (Fig. 2d), (ii) the mean square error between 41 
decoded and actual face features (Fig. 4g). For both methods, the decoding accuracy for 42 
unfamiliar faces was computed 1000 times through leave-one-out cross validation.  43 
 44 



To reconstruct faces (Fig. 2e), we built a face feature decoder as above using responses 1 

to unfamiliar faces, computed either in a short ([120 170] ms) or long ([220 270] ms) 2 
latency window. 3 

 4 
Face identity decoding 5 
To decode face identity (Fig.4b), firing rates after stimulus onset in a chosen time window 6 
of each trial were randomly split in half and averaged. Then a multi-class linear SVM 7 
decoder was trained to classify each face identity for 30 familiar or 30 unfamiliar feature-8 

matched (Extended Data Fig. 8) faces separately, using one half for training and testing 9 
on the other half. This was repeated 20 times.  10 
 11 
Familiarity decoding 12 
Firing rates after stimulus onset in a chosen time window (stated for each particular case 13 

in the figure legends) were first averaged across multiple repeats of the same stimulus, 14 
then the decoding accuracy was obtained as the average of leave-one-out cross-15 

validated linear SVM decoding. For the thousand face set, the training sample was 16 

balanced by randomly subsampling 36 unfamiliar faces, repeated 10 times (Fig. 3c). 17 
 18 
Centroid shift analysis  19 

To determine the time when the shift of the neural representation centroids for familiar 20 
and unfamiliar faces provided familiarity discriminability (Fig. 3d), population responses 21 

(50 ms sliding time window, step size 10 ms) to all 36 familiar faces and randomly 22 
subsampled 36 unfamiliar faces were first projected to the axis connecting neural 23 
centroids of familiar and unfamiliar faces. Then d’ was computed for the projected values: 24 

𝑑′ =
𝜇𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟 − 𝜇𝑢𝑛𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟

√1
2 (𝜎𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟

2 + 𝜎𝑢𝑛𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟
2 )

 25 

Here µ and σ are the mean and variance of the projected values, respectively. The 26 

computation was repeated 10 times for each random subsampling of 36 unfamiliar faces. 27 
Chance level d’ was estimated by randomly shuffling the population responses to each 28 

face 10 times. The time when d’ was significantly higher than chance was determined by 29 
one-tailed T-test (p < 0.01, n = 10).  30 

 31 
Analysis of orthogonality between familiarity and face feature decoding axes 32 
To determine the cosine similarity between familiarity and face feature decoding axes 33 
(Fig. 3f), we obtained the familiarity decoding axis as described above in the section on 34 
“Familiarity decoding.” For unfamiliar faces, we obtained the face feature decoding axis 35 

as described in the section above on “Face feature decoding and reconstruction.” For 36 
familiar faces, we obtained the face feature decoding axis by computing the pseudo-37 

inverse of the face feature encoding axis (necessary due to the small number of familiar 38 
faces); we obtained the latter as described above in the section on “Preferred axis of cells” 39 
(using the STA). 40 
 41 
Computing normalized firing rate changes 42 

Normalized firing rate change in Fig. 4e was computed as follow: 43 



𝑅𝑎𝑓𝑡𝑒𝑟 − 𝑅𝑏𝑒𝑓𝑜𝑟𝑒

𝑅𝑎𝑓𝑡𝑒𝑟 + 𝑅𝑏𝑒𝑓𝑜𝑟𝑒
 1 

where 𝑅𝑏𝑒𝑓𝑜𝑟𝑒 is the mean firing rate within 50-300 ms after stimulus onset before 2 

Muscimol injection, and 𝑅𝑎𝑓𝑡𝑒𝑟 is the same for after muscimol injection. 3 

 4 
Matching face feature distributions 5 
We wanted to ensure that the difference in preferred axis (Fig. 2b, c) and the difference 6 
in pairwise distance in the neural state space (Extended Data Fig. 10j, k) were not due to 7 
mismatched feature distributions between familiar and unfamiliar faces. To this end, we 8 
identified a feature-matched subset of 30 familiar and 30 unfamiliar faces. For the top 20 9 

face features, these two face sets were matched in feature variance (Extended Data Fig. 10 
8a), distribution of pairwise face distances in feature space (Extended Data Fig. 8b), and 11 

distribution of each feature (Extended Data Fig. 8c). This was achieved by searching for 12 
a subset of faces that minimized the following cost function:  13 

𝐶 = 𝐶𝑣𝑎𝑟 + 𝐶𝑝 14 

The first term evaluated the difference of variance:  15 

𝐶𝑣𝑎𝑟 =  ∑(𝑣𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟(𝑖) − 𝑣𝑢𝑛𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟(𝑖))2

𝑛

𝑖=1

𝑛⁄ + |∑ 𝑣𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟(𝑖)

𝑛

𝑖=1

𝑛⁄ − ∑ 𝑣𝑢𝑛𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟(𝑖)

𝑛

𝑖=1

𝑛⁄ | 16 

where v(i) is the variance of the ith feature, n = 20 is the number of features. It is the sum 17 

of mean square error and absolute value of mean difference between the variance of 18 
each feature.  19 

 20 
The second term ensured the distributions in consideration are not significantly different, 21 
which was measured by the p values of K-S test being larger than 0.05:  22 

𝐶𝑝 = 𝑔(𝑚𝑖𝑛(𝑝𝐷 , 𝑝1, … , 𝑝𝑛)) 23 

𝑔(𝑥) = {
1/(𝑥 + 0.001) 𝑥 < 0.05

0 𝑥 ≥ 0.05
 24 

where 𝑝𝐷 is the p value of K-S test between distributions of pairwise face distances for 25 

familiar vs. unfamiliar, 𝑝𝑖 is the p value of K-S test between distributions of the ith feature 26 

for familiar vs. unfamiliar. 27 
 28 

The optimization was performed using a gradient-descent-like algorithm: in each iteration 29 

𝑑𝐶 was estimated by removing or adding each face, and the change that decreased 𝐶 30 

the most was applied, until 𝐶 did not decrease anymore. To balance the number of familiar 31 
and unfamiliar faces in the result, we set a minimum number of familiar faces (23-36). 32 

When the number was chosen to be 30, the resulting number of unfamiliar faces also 33 
happened to be 30. 34 
 35 

Finally, we confirmed that for the resulting set of 30 familiar and 30 unfamiliar faces, the 36 
faces were indeed feature matched (Extended Data Fig. 8), and the axis model explained 37 
similar amounts of variance for both familiar and unfamiliar face responses. 38 
 39 
In Extended Data Fig. 2b, to demonstrate the diversity of faces in the 1000 face set and 40 
the capability to match each of our familiar face sets, we used the same matching method 41 
with different subsets of familiar faces. 42 



 1 

Face feature sensitivity analysis 2 
To test whether tuning to familiar faces can be explained by loss of tuning to certain 3 

feature dimensions, we computed the sensitivity to each feature for 36 familiar faces or a 4 
random subsample of 36 unfamiliar faces. Sensitivity was measured as the slope of the 5 
linear regression of feature value vs. neuronal firing rate. 6 
 7 
Test simple nonlinear model  8 

To test whether a logistic output nonlinearity can explain apparent axis change, we 9 
compared the explained variance of an axis model followed by a linear function or logistic 10 
function. The 36 unfamiliar or 36 familiar faces were first projected to a preferred axis 11 
computed from responses to 964 unfamiliar faces, then the projected value vs. neural 12 

responses were fitted by either a linear function or a logistic function ( 𝑓(𝑥) =
𝐿

1+𝑒−𝑘(𝑥−𝑥0) ).  13 

 14 

Additional details for figures 15 

Figure 1b. Data combined from two test sessions on two different days for each subject. 16 
36 familiar-unfamiliar faces pairs (18 unfamiliar faces sampled from 1000 unfamiliar 17 

faces, and the other 18 unfamiliar faces were novel faces never seen before). 18 
Figure 1c. Firing rate responses were normalized by dividing the maximum response 19 
across the stimuli for each cell. 20 

Figure 2a. The 8 random unfamiliar faces indicated by the green dots were excluded from 21 
calculation of the preferred axis of the cells here. 22 

Figure 2b. In computing the cosine similarity of the unfamiliar vs. unfamiliar condition for 23 
stimulus set #2 (most AM and PR) random sample of subsets of 36 unfamiliar faces (100 24 

repeats) were pooled together. For stimulus set #3 (PR of monkey E and TP), to control 25 
for response reliability difference of familiarity, the set of 36 unfamiliar faces that 26 

presented at same high repeats as familiar faces were used. Same for Extended Data 27 
Fig. 5a, b. 28 
Figure 2c. Computed using a 50 ms sliding time window, step size 10 ms. 29 

Figure 2d. The decoder was trained on large set of unfamiliar faces, the performance was 30 
measured by the correlation coefficient between actual and decoded face feature vectors, 31 

computed using a 50 ms sliding time window, step size 10 ms. 32 
Figure 3a. Responses normalized same as Figure 1c. Number of cells, AM n = 134, PR 33 
n = 76, TP n = 197. 34 
Figure 3b. Significance criteria, p < 0.001. 35 

Figure 3c. Accuracy computed using a 50 ms sliding time window, step size 10 ms. 36 
Chance level was obtained using shuffled data. Significant criteria, p < 0.01. 37 

Figure 3d. Distance computed using a 50 ms sliding time window, step size 10 ms. 38 
Significant criteria, p < 0.01. For stimulus set #2 (most AM and PR) random sample of 39 

subsets of 36 unfamiliar faces (10 repeats) were used. For stimulus set #5 (PR of monkey 40 
E and TP), to control for response reliability difference of familiarity, the set of 36 41 
unfamiliar faces that presented at same high repeats as familiar faces were used. 42 
Figure 3e. Significant criteria, p < 0.05. 43 

Figure 4f, g. Response time window 50-300 ms. 44 
 45 
Statistics and Reproducibility 46 



Experiment 1 (screening stimuli) was repeated in two different animals for AM, TP, and 1 

ML, in three different animals for PR (Extended Data Fig. 4a-c).  2 
Experiment 2 (thousand monkey faces) was repeated in three different animals for AM 3 

and PR, in two different animals for TP and ML (Extended Data Fig. 5a-c). 4 
Muscimol silencing experiments were repeated in two different animals (A, E) with similar 5 
results. Fig. 4 showed results pooled from the two animals.  6 
View preference test were repeated in two different animals (Fig. 1b, Extended Data Fig. 7 
3d), face identification task were repeated in two different animals (Extended Data Fig. 8 

3b). 9 
Additional information for statistical test can be found in Supplementary Table 1. 10 
 11 
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