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Supplementary methods

Divergence time and diversification rate estimates were essential for the

interpretation of our phylogeny in a macroevolutionary context. However, both fields

have been at the centre of recent methodological debatee.g.,82,85 and appear to be

especially prone to misleading inferences if methodological limitations are not

adequately accounted for. Below, we provide further detail on the methodological steps

that we took in our analyses, and describe how these steps helped us to account for the

limitations that exist in current methods.

Divergence time estimation

Divergence time estimates are sensitive to the molecular clock model86,87, the

extent of topological incongruence between gene trees and the species tree79,88, and

fossil calibrations5,89. Here, we provide further detail on how we accounted for these

issues in the divergence time analyses we performed in treePL76.

Molecular rate variation and conflict

The approach we selected (penalised likelihood implemented in treePL) requires

an input tree with branch lengths equal to the number of substitutions per site

(molecular branch lengths) and, using an autocorrelated molecular clock model,

estimates substitution rates and divergence times based on this input. Estimation of

molecular branch lengths typically involves the analysis of a concatenated alignment of

multiple loci. Two necessary considerations when analysing multiple loci are 1) whether

gene trees for individual loci are topologically incongruent with the species tree; and 2)

whether some loci exhibit stronger variation in substitution rate among branches. Both

of these issues can cause erroneous divergence time estimates: topological

incongruence can jeopardise molecular branch length estimates79,88, and strong patterns

of among-branch substitution rate variation undermine the implementation of molecular

clock models. This latter problem is especially important if there are consistent rate

differences between branches across the analysed loci, because it causes
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lineage-specific rates, a source of error in divergence time estimation regardless of the

quantity of sampled data90.

We used several approaches to explore these issues in our dataset. First,

SortaDate77 was used to rank loci, prioritising the number of congruent bipartitions with

the species tree topology (Supplementary Tab. 5). Molecular branch lengths were then

estimated in the species tree with the top 25 and 50 loci selected by SortaDate.

Inclusion of 50 loci caused a small inflation of molecular branch length estimates on

terminal branches by around 1.8% relative to 25 loci (an expected pattern when loci with

topologically incongruent gene trees are analysed)79,88. Furthermore, using 50 loci led to

the incorporation of just one additional tip in the species tree (Gevuina avellana,

Proteaceae). Given the marginal benefits of including 50 loci with respect to species

sampling, alongside a notable (although small) inflation of branch length estimates for

terminal branches, subsequent divergence time estimates were based on 25 loci.

Branch lengths in the species tree was also estimated according to the

“congruent branches” method of Carruthers et al.79. In this method, for each branch in

the species tree, branch length estimates are based on the mean branch length across

all gene trees with a congruent bipartition for the species tree branch. Topologically

incongruent parts of gene trees are therefore excluded from branch length estimation in

the species tree. This method produced similar molecular branch length estimates to

those based on analysis of a concatenated alignment of the top 25 loci from SortaDate.

Subsequently, molecular branch length estimates based on the top 25 loci from

SortaDate were used in divergence time analyses.

Our implementation of SortaDate and the “congruent branches” method primarily

refer to different ways of accounting for topological incongruence between gene trees

and the species tree. Even though SortaDate measures root-to-tip variation (a proxy for

substitution rate variation), our ranking of gene trees prioritised topological congruence

with the species tree, rather than “clock-like” loci. Therefore, to understand the potential

effects of among-branch-substitution-rate variation that inevitably exist in our dataset,

we experimented with different smoothing values in treePL (0.1, 1, 10, and 100). We did
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not however perform cross-validation to identify the optimum smoothing value, because

this was not computationally feasible with the size of the dataset.

Fossil calibrations

Fossil calibrations were based on the AngioCal dataset of fossil calibrations

originally assembled by Ramírez-Barahona et al.5. The phylogenetic placement of all

fossils within this dataset was re-evaluated in the context of the species tree estimated

here. This re-evaluation referred explicitly to the placement of fossils within the

estimated species tree, not the identity of the fossil. Alongside this, minor updates to the

underlying fossil dataset were made, with these changes being presented in an updated

version of the dataset – AngioCal.v1.1 (Supplementary Tab. 6, Supplementary File 2).

The final set of fossil calibrations that were used is available (Supplementary Tab. 7),

with the phylogenetic placement of each fossil being displayed in Supplementary Fig.

12.

Diversification rate estimation

Diversification rate estimates are dependent on accurate divergence time

estimates. Alongside this, further theoretical issues relate specifically to diversification

rate estimation. This includes problems of model identifiability in time-dependent

diversification rate models82,91,92, and prior sensitivity and accounting for diversification

rate shifts on extinct lineages in lineage specific models92-94. Below, we outline how we

accounted for these issues.

Accounting for divergence time estimation uncertainty

Varying the maximum constraint at the angiosperm crown node between either

154 Ma or 247 Ma led to substantially different divergence time estimates throughout

angiosperms (Extended Fig. 2; Supplementary Fig. 5). Nodes at all depths were

considerably older with a maximum constraint of 247 Ma. By contrast, varying the

smoothing value used in treePL tended to have a more limited effect (Extended Fig. 2;

Supplementary Fig. 5). In this case, significant age differences were restricted to
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younger nodes, there was no directional bias in these age differences, and the overall

pattern of lineage accumulation through time (a proxy for the temporal distribution of

divergence times throughout the tree) remained the same (Supplementary Fig. 5). The

similarity of age estimates with different smoothing values highlights that not performing

cross-validation analyses to identify the optimum smoothing value is likely to be

relatively unimportant for this study.

Given that substantially different divergence time estimates are likely to affect

diversification rate estimates, we estimated diversification rates on trees estimated with

both maximum constraints, but only used trees estimated with a smoothing value of 10.

This smoothing value leads to the estimation of moderate levels of variation in

substitution rates among branches (four-fold rate differences were incorporated by two

standard deviations around the mean estimated rate). Importantly, these two different

maximum constraints do not affect the overall pattern of diversification rate shifts in our

tree, although there is some impact on the absolute timing of when shifts occur (Figs.

3-4; Extended Figs. 5-6).

Time-dependent diversification rate estimation

We estimated time-dependent rates of speciation, extinction, and net

diversification to enable insights into broad scale patterns of angiosperm diversification

through time. Limitations of time-dependent diversification analyses have been known

for decades95, and have recently received further attention82,91,92. These limitations exist

because a myriad of time-varying speciation and extinction rates can have an equal

likelihood for a given time-calibrated phylogeny. This presents a challenge for estimating

and interpreting time-dependent patterns of diversification. Alongside this, the

implementation of time-dependent models at deep positions in a phylogeny can be

problematic, because the amount of data (branches) over which rates are estimated

decreases exponentially into the past91.

To prevent these issues from undermining our analyses and the conclusions we

drew from them, we took the following general approach. First, we explicitly delimited

the purpose of each analysis. This provided a basis for evaluating whether the methods

15



we employed, despite their inevitable imperfections, were sufficient for their purpose.

Second, we compared models to evaluate which parameters were identifiable and

which models were likely to be equally congruent with the time-calibrated phylogenies.

Finally, we interpreted time-dependent diversification rate estimates in their broader

biological context, such as their relationship with gene tree conflict, the temporal

distribution of lineage specific speciation rate shifts, or the origination of major

taxonomic groups such as orders or families. This enabled an assessment of

confidence in our inferences and the conclusions that we drew from them.

Initial time-dependent diversification rate analyses were primarily exploratory.

Given that no previous study has analysed angiosperm diversification rates in a dataset

of this scale, we wanted to determine whether there was evidence of significant trends

in diversification dynamics over geological timescales. We therefore estimated

diversification rate parameters using three different models: 1) a “null” model with

constant rates of speciation and extinction through time, 2) a model that allowed

speciation rates to vary between time intervals but had a constant rate of extinction, and

3) a model that allowed extinction rates to vary between time intervals but had a

constant rate of speciation. The latter two models enabled exploration of how

time-varying patterns of either speciation or extinction explain the accumulation of

angiosperm diversity through time. In the time-varying analyses, parameters were

estimated within 5 Ma intervals, but these intervals were extended where necessary to

ensure that there were at least 50 branching events within each time interval. This

meant there were sufficient data points within each interval for rate estimation.

The time-variable models estimate significant differences (non-overlapping 95%

highest posterior densities) in net diversification rate between time intervals, including

an early burst and a surge during the Cenozoic (Fig. 3; Extended Fig. 5; Supplementary

Fig. 13). We sought to clarify the support for this general pattern and determine whether

it was possible to distinguish between models that explain it by changes to the

speciation rate or changes to the extinction rate. We therefore performed Bayes factor

comparison between models in RevBayes using a stepping stone sampler. We

compared three different models: 1) constant rates of speciation and extinction through
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time, 2) variable speciation rates but constant extinction, and 3) variable extinction rates

but constant speciation (for details of models compared see Supplementary Tab. 8).

Lineage-specific diversification rate estimation

Our main lineage specific diversification rate analyses were performed in

BAMM83. This method has been criticised for the following reasons in Moore et al.93: 1)

diversification rate shifts on extinct lineages are not adequately accounted for which

leads to inaccurate inferences if there are many extinct lineages, 2) diversification rate

estimates are highly sensitive to the prior number of rate shifts, and 3) rate estimates

are unreliable because of an incorrect likelihood function. Rabosky et al.94 subsequently

demonstrated that in most cases these criticisms are incorrect, or irrelevant in biological

datasets.

Nonetheless, we took steps to ensure that our lineage specific diversification rate

estimates were not jeopardised by these issues. Firstly, we used two different priors for

the expected number of rate shifts that differed by an order of magnitude (10 and 100).

With both priors our results were highly similar (Fig. 4; Supplementary Fig. 14).

Alongside this, we also estimated lineage specific diversification rates in RevBayes81

using the dnCDBDP function. This approach maps different diversification rates as

stochastic characters, differing substantially from the approach used by BAMM96.

Diversification rates estimated in RevBayes were generally similar to those estimated by

BAMM, although the magnitude and number of rate shifts was smaller (Supplementary

Figs. 15-23).

Supplementary results and discussion

Here, we provide further discussion of two sets of results, the details of which

underpin a number of more general findings and discussion points within the main text

of the paper.
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Time-dependent diversification rate estimation

Diversification rates estimated in our study from models incorporating speciation

rate variation or extinction rate variation mirror each other closely. Therefore, time

periods associated with higher speciation rates in the speciation variable model tend to

have lower extinction rates in the extinction variable model, and vice versa

(Supplementary Fig. 13). As a result, net diversification rate estimates from both models

exhibit a very similar pattern (Supplementary Fig. 13). Nonetheless, there are important

differences. In particular, higher net diversification rates (and lower extinction rates) in

the extinction variable model tend to occur during slightly later time intervals than higher

net diversification rates (and higher speciation rates) in the speciation variable model.

This likely occurs because extinction rate shifts during one time interval affect the

survival probability of lineages originating in earlier time intervals (and thus the length of

surviving branches during this earlier interval). By contrast speciation rate shifts affect

the rate of lineage branching during the time interval in which the speciation rate shift

occurs (and thus the length of branches during that time interval). Therefore, if there is a

time interval with shorter branches in the time-calibrated phylogeny (such as the time

interval incorporating early branching events of the time-calibrated phylogenies

estimated here) these shorter branches can be explained by a drop in the extinction rate

during a subsequent time interval.

Bayes factor comparison showed that both models with variable rates were

supported overwhelmingly compared to the model with constant rates (Supplementary

Tab. 8). Further, these comparisons suggest that the extinction variable model is

favoured over the speciation variable model. However, we are not confident in the

assertion that the extinction variable model is a better reflection of the evolutionary

history of angiosperms. The versions of the models we implemented for this comparison

were simplified substantially (compared to the models used in our more exploratory

analyses; see Supplementary Fig. 13) for computational tractability, and given the

findings of Louca and Pennell82, we consider it likely that there are alternative

configurations for speciation variable models that fit the data equally as well as (or

better than) the extinction variable model. Clearly, variable speciation and extinction
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rates are likely to have occurred over the course of angiosperm evolution, although on

viewing these patterns of diversification in their broader biological context, we tentatively

suggest that variable speciation rates played a more important role in driving them.

Below we outline the nature of this broader context and how it has helped to guide our

interpretation of time-dependent diversification rate estimates.

Firstly, our analysis of gene tree conflict provides an important context to our

more general conclusions about the temporal dynamics of net diversification rates in

angiosperms. This is because gene tree conflict shows a temporal pattern that is highly

consistent with our estimates of net diversification rates (Fig. 3), and our simulations

clearly illustrate the tight association between diversification and gene tree conflict.

Therefore, the temporal congruence between conflict and net diversification rates

supports our net diversification rate estimates. Aside from gene tree conflict, in our

analysis of lineage specific diversification rate shifts (which may be less affected by the

identifiability issues91 recently outlined by Louca and Pennell82) the large net

diversification rate increases that occur during the Cenozoic are underpinned by

speciation rate increases (Supplementary Fig. 24). This indicates the general increase

in net diversification rates during this period may therefore be driven by lineage specific

speciation rate increases. Finally, with respect to the early burst of diversification, it is

notable that ~95% of all extant angiosperm orders originate during this period. Whilst

conceivable that the rapid establishment of orders somehow resulted from a drop in the

extinction rate, it is perhaps more intuitive to suggest that orders established rapidly

during this period as a result of elevated speciation rates.

Clarifying the relationship between diversification and gene tree
conflict

The simulations we undertook to analyse the relationship between gene tree

conflict and time-varying speciation and extinction rates broadly supported our

conclusion that conflict and diversification are tightly linked (Extended Fig. 4). However,

some key nuances about this relationship were revealed. First, these simulations

showed that where shifts in the net diversification rate result from speciation rate shifts,
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gene tree conflict resulting from incomplete lineage sorting is directly associated with

changes to the speciation rate (Extended Fig. 4). By contrast, where shifts in the net

diversification rate result from changes to the extinction rate, the relationship is less

direct (note the delay between increased conflict and reduced rates of extinction in

Extended Fig. 4). This pattern is explained by the fact that extinction rate shifts affect

branch lengths during earlier time intervals (as covered in the discussion of

time-dependent diversification rate estimates) – and that under the expectation of a

multi-species coalescent process, there will be more gene tree conflict associated with

shorter branches in the species tree.

Ostensibly, this difference in the relationship between conflict and speciation

compared to conflict and extinction could make it appear that conflict could be used as a

basis for distinguishing between competing models with variable extinction and/or

speciation rates. However, we do not consider this to be the case. Instead, the

difference in the relationship between conflict and speciation, compared to conflict and

extinction reflects the different effect that speciation and extinction have on branch

lengths in the species tree. Conflict will typically be associated with regions of the

species tree that have shorter branches, but these shorter branches can be induced by

a myriad of time-varying speciation and extinction rates.
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Supplementary figures

High-resolution versions of all figures are available in Zenodo

(https://doi.org/10.5281/zenodo.10778206).
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Supplementary Fig. 2
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Supplementary Fig. 2 | Backbone species tree. Multispecies coalescent phylogenetic tree resulting from the backbone

analysis. Node supported (in blue) is indicated as “posterior probability / percentage of genes supporting main hypothesis”.
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Supplementary Fig. 3
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Supplementary Fig. 3 | Global species tree. Multispecies coalescent phylogenetic tree resulting from the global analysis,

sampling up to five species per family. Node supported (in blue) is indicated as “posterior probability / percentage of genes

supporting main hypothesis”. For a summary of relationships among deeper nodes, please refer to Extended Fig. 1 and

Supplementary Fig. 4.
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Tetracarpaeaceae
Penthoraceae
Haloragaceae
Cynomoriaceae
Vitaceae
Francoaceae
Geraniaceae
Lythraceae
Onagraceae
Combretaceae
Vochysiaceae
Myrtaceae
Melastomataceae
Crypteroniaceae
Alzateaceae
Penaeaceae
Aphloiaceae
Geissolomataceae
Strasburgeriaceae
Staphyleaceae
Stachyuraceae
Crossosomataceae
Guamatelaceae
Picramniaceae
Nitrariaceae
Biebersteiniaceae
Kirkiaceae
Burseraceae
Anacardiaceae
Sapindaceae
Meliaceae
Simaroubaceae
Rutaceae
Gerrardinaceae
Petenaeaceae
Tapisciaceae
Dipentodontaceae
Neuradaceae
Thymelaeaceae
Malvaceae
Cytinaceae
Muntingiaceae
Sphaerosepalaceae
Bixaceae
Cistaceae
Sarcolaenaceae
Dipterocarpaceae
Akaniaceae
Tropaeolaceae
Caricaceae
Moringaceae
Setchellanthaceae
Limnanthaceae
Koeberliniaceae
Emblingiaceae
Capparaceae
Cleomaceae
Brassicaceae
Tovariaceae
Pentadiplandraceae
Gyrostemonaceae
Resedaceae
Bataceae
Salvadoraceae
Krameriaceae
Zygophyllaceae
Polygalaceae
Quillajaceae
Surianaceae
Fabaceae
Rosaceae
Rhamnaceae
Dirachmaceae
Barbeyaceae
Elaeagnaceae
Ulmaceae
Cannabaceae
Urticaceae
Moraceae
Nothofagaceae
Fagaceae
Myricaceae
Juglandaceae
Casuarinaceae
Ticodendraceae
Betulaceae
Anisophylleaceae
Cucurbitaceae
Apodanthaceae
Corynocarpaceae
Coriariaceae
Tetramelaceae
Datiscaceae
Begoniaceae
Connaraceae
Oxalidaceae
Cephalotaceae
Brunelliaceae
Cunoniaceae
Elaeocarpaceae
Huaceae
Lepidobotryaceae
Celastraceae
Elatinaceae
Malpighiaceae
Centroplacaceae
Balanopaceae
Trigoniaceae
Dichapetalaceae
Euphroniaceae
Chrysobalanaceae
Caryocaraceae
Lophopyxidaceae
Putranjivaceae
Erythroxylaceae
Rhizophoraceae
Ctenolophonaceae
Irvingiaceae
Pandaceae
Ochnaceae
Bonnetiaceae
Clusiaceae
Calophyllaceae
Podostemaceae
Hypericaceae
Humiriaceae
Goupiaceae
Violaceae
Achariaceae
Lacistemataceae
Salicaceae
Passifloraceae
Picrodendraceae
Phyllanthaceae
Linaceae
Ixonanthaceae
Peraceae
Rafflesiaceae
Euphorbiaceae
Strombosiaceae
Erythropalaceae
Balanophoraceae
Ximeniaceae
Olacaceae
Coulaceae
Octoknemaceae
Aptandraceae
Opiliaceae
Santalaceae
Loranthaceae
Misodendraceae
Schoepfiaceae
Aextoxicaceae
Berberidopsidaceae
Frankeniaceae
Tamaricaceae
Plumbaginaceae
Polygonaceae
Droseraceae
Nepenthaceae
Drosophyllaceae
Dioncophyllaceae
Ancistrocladaceae
Rhabdodendraceae
Simmondsiaceae
Physenaceae
Asteropeiaceae
Caryophyllaceae
Achatocarpaceae
Amaranthaceae
Macarthuriaceae
Microteaceae
Stegnospermataceae
Limeaceae
Lophiocarpaceae
Barbeuiaceae
Kewaceae
Aizoaceae
Gisekiaceae
Sarcobataceae
Phytolaccaceae
Petiveriaceae
Nyctaginaceae
Molluginaceae
Montiaceae
Halophytaceae
Basellaceae
Didiereaceae
Talinaceae
Portulacaceae
Anacampserotaceae
Cactaceae
Cornaceae
Curtisiaceae
Grubbiaceae
Nyssaceae
Hydrangeaceae
Loasaceae
Hydrostachyaceae
Marcgraviaceae
Tetrameristaceae
Balsaminaceae
Sladeniaceae
Pentaphylacaceae
Fouquieriaceae
Polemoniaceae
Ebenaceae
Primulaceae
Sapotaceae
Lecythidaceae
Theaceae
Mitrastemonaceae
Symplocaceae
Diapensiaceae
Styracaceae
Sarraceniaceae
Roridulaceae
Actinidiaceae
Clethraceae
Cyrillaceae
Ericaceae
Bruniaceae
Columelliaceae
Viburnaceae
Caprifoliaceae
Paracryphiaceae
Pennantiaceae
Torricelliaceae
Griseliniaceae
Pittosporaceae
Araliaceae
Myodocarpaceae
Apiaceae
Escalloniaceae
Rousseaceae
Campanulaceae
Pentaphragmataceae
Stylidiaceae
Alseuosmiaceae
Phellinaceae
Argophyllaceae
Menyanthaceae
Goodeniaceae
Calyceraceae
Asteraceae
Cardiopteridaceae
Stemonuraceae
Aquifoliaceae
Phyllonomaceae
Helwingiaceae
Oncothecaceae
Metteniusaceae
Icacinaceae
Eucommiaceae
Garryaceae
Rubiaceae
Gelsemiaceae
Loganiaceae
Gentianaceae
Apocynaceae
Codonaceae
Wellstediaceae
Boraginaceae
Hydrophyllaceae
Namaceae
Ehretiaceae
Cordiaceae
Heliotropiaceae
Convolvulaceae
Solanaceae
Montiniaceae
Sphenocleaceae
Hydroleaceae
Vahliaceae
Plocospermataceae
Carlemanniaceae
Oleaceae
Peltantheraceae
Calceolariaceae
Gesneriaceae
Plantaginaceae
Scrophulariaceae
Linderniaceae
Byblidaceae
Stilbaceae
Lamiaceae
Mazaceae
Phrymaceae
Wightiaceae
Paulowniaceae
Orobanchaceae
Schlegeliaceae
Martyniaceae
Lentibulariaceae
Thomandersiaceae
Bignoniaceae
Verbenaceae
Pedaliaceae
Acanthaceae
TetrachondraceaeThis study Li et al. 2021

Angiosperms
Ceratophyllales
Magnoliids

Monocots
Commelinids
Eudicots

Rosids
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Fabids

Asterids
Campanulids
Lamiids

Supplementary Fig. 4 | Tanglegram comparing relationships among angiosperm families in this study with Li et al. 
(2021). Branch colours indicate the major clades to which each family belongs, according to the circumscriptions adopted 
in our study (left) and Li et al.4 (right), which is broadly consistent with APG IV18. Coloured circles in the tree (left) represent 
the posterior probability of each node as: maximum (absent), between 1 and 0.95 (green), between 0.95 and 0.75 (yellow), 
between 0.75 and 0.5 (red), below 0.5 (black)
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Supplementary Fig. 5

Supplementary Fig. 5 | Lineage through time plots for the eight time-calibrated phylogenetic trees. Comparison of the
shape of the plots gives an indication of the temporal distribution of node ages in each time-calibrated phylogenetic tree.
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Supplementary Fig. 6

Supplementary Fig. 6 | Percentage of extant lineages sampled through time. The results are based on the young tree

(maximum constraint at the root node of 154Ma) and old tree (maximum constraint at the root node of 247Ma), as predicted

by our simulation-based approach. The black line is the mean estimate across replicate simulations, the grey shaded area is

two standard deviations around the mean. In a series of analyses, different extinction fractions were specified (as indicated),

which affects the shape of the curve, particularly in more recent times.
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Supplementary Fig. 7

Supplementary Fig. 7 | Simulations exploring the relationship between gene tree conflict and diversification. The line
in each plot shows the level of gene tree conflict through time. This is calculated as the percentage of gene trees that do not

share a congruent bipartition with each species tree branch, with the plotted value being the mean across all species tree

branches that cross each 0.5 Myr time slice. Species trees are simulated under different speciation rate and extinction rate

parameters in each experiment. a-c, Have an effective population size of 5000, d, Has an effective population size of 50000.
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Supplementary Fig. 8

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 8 | Gene tree conflict across the phylogeny. The results are based on the young tree (maximum

constraint at the root node of 154Ma). Branch colours represent the percentage of gene trees that do not share a congruent

bipartition with the species tree branch.
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Supplementary Fig. 9

Supplementary Fig. 9 | Heatmap of relative gene recovery per order. Columns within the heatmap represent genes. The
expected length of each gene was calculated as the average length of all sequences in the target file for each gene. Numbers

within parentheses next to orders indicate the number of samples for that group. Blank cells indicate zero recovery.

32



Supplementary Fig. 10

Supplementary Fig. 10 | Pairwise comparison of normalised Robinson-Foulds distances between the backbone tree
and replicates. Distances to the backbone tree (left; mean: 4.71%) are not significantly different (p-value = 0.3127 in

two-tailed T-test) to the distances among replicates (right; mean: 4.86%). This result indicates that our sample selection in the

backbone tree does not introduce any systemic bias to the phylogenetic inference.
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Supplementary Fig. 11

Supplementary Fig. 11 | Heatmap of gene occupancy in alignments per order. Columns within the heatmap represent

genes. Occupancy is calculated as the proportion of samples per order for which any data were retained in each gene

alignment. Numbers within parentheses next to orders indicate the number of samples for that group.
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Supplementary Fig. 12

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 12 | Phylogenetic distribution of fossil calibrations. At each numbered node a fossil calibration has
been used. The number refers to the ID number in AngioCal V1.1 (Supplementary Tab. 6). This also corresponds to column 5

in Supplementary Tab. 7.
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Supplementary Fig. 13

Supplementary Fig. 13 | Comparison of speciation rate, extinction rate, and net diversification rate estimates from
different time dependent diversification rate models that were used in this study. In each case, the lines refer to the

posterior mean and the shaded area around each line refers to the 95% HPD. a, and b, Show the estimated speciation rate,

extinction rate and net diversification rate through time in the constant rates model. c, and d, Show the estimated speciation

rate, extinction rate, and net diversification rate through time in the speciation variable model. e, and f, Show the estimated

speciation rate, extinction rate, and net diversification rate through time in the extinction variable model.

36



Supplementary Fig. 14

Supplementary Fig. 14 | Summary of lineage-specific diversification rate shifts estimated by BAMM for the young
tree (maximum constraint at the root node of 154 Ma). This is equivalent to Figure 4 but with the prior for the number of

shifts set to 100. a, Diversification rate increases per lineage through time. The colour corresponds to the average magnitude
of the rate increases during the time period. b, Equivalent to a, but for rate decreases. c, Equivalent to a, but focusing on the
largest 25% of diversification rate increases. In a, b, and c, the number of shifts is extracted from the maximum a posteriori

shift configuration, and the background grey-scale gradient is the estimated percentage of extant lineages represented in the

species tree through time (“sampling fraction”).
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Supplementary Fig. 15

Supplementary Fig. 15 | Summary of lineage-specific diversification rate shifts estimated by RevBayes for the young
tree (maximum constraint at the root node of 154 Ma). The number of shifts through time is derived from the mean

posterior rate estimate for each branch, with rate shifts being defined as cases where there is a greater than 10% rate

difference between ancestral and descendant branches. Unlike with analyses in BAMM, shifts are not derived from a

maximum a posteriori shift configuration because several shift configurations had an equal posterior probability. a,
Diversification rate increases per lineage through time. The colour corresponds to the average magnitude of the rate

increases during the time period. b, Equivalent to a, but focusing on the largest 25% of diversification rate increases. There is

no panel for rate decreases because RevBayes only estimated small rate decreases (< 10% between ancestral and

descendant branches in all cases). In a and b the prior for the number of shifts is set to 100, and the background grey-scale

gradient is the estimated percentage of extant lineages represented in the species tree through time (“sampling fraction”).
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Supplementary Fig. 16

Supplementary Fig. 16 | Summary of lineage-specific diversification rate shifts estimated by RevBayes for the young
tree (maximum constraint at the root node of 154 Ma). The number of shifts through time is derived from the mean

posterior rate estimate for each branch, with rate shifts being defined as cases where there is a greater than 10% rate

difference between ancestral and descendant branches. Unlike with analyses in BAMM, shifts are not derived from a

maximum a posteriori shift configuration because several shift configurations had an equal posterior probability. a,
Diversification rate increases per lineage through time. The colour corresponds to the average magnitude of the rate

increases during the time period. b, Equivalent to a, but focusing on the largest 25% of diversification rate increases. There is

no panel for rate decreases because RevBayes only estimated small rate decreases (< 10% between ancestral and

descendant branches in all cases). In a and b the prior for the number of shifts is set to 10, and the background grey-scale

gradient is the estimated percentage of extant lineages represented in the species tree through time (“sampling fraction”).
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Supplementary Fig. 17

Supplementary Fig. 17 | Summary of lineage-specific diversification rate shifts estimated by RevBayes for the old
tree (maximum constraint at the root node of 247 Ma). The number of shifts through time is derived from the mean

posterior rate estimate for each branch, with rate shifts being defined as cases where there is a greater than 10% rate

difference between ancestral and descendant branches. Unlike with analyses in BAMM, shifts are not derived from a

maximum a posteriori shift configuration because several shift configurations had an equal posterior probability. a,
Diversification rate increases per lineage through time. The colour corresponds to the average magnitude of the rate

increases during the time period. b, Equivalent to a, but focusing on the largest 25% of diversification rate increases. There is

no panel for rate decreases because RevBayes only estimated small rate decreases (< 10% between ancestral and

descendant branches in all cases). In a and b the prior for the number of shifts is set to 100, and the background grey-scale

gradient is the estimated percentage of extant lineages represented in the species tree through time (“sampling fraction”).
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Supplementary Fig. 18

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 18 | Net diversification rates estimated in BAMM for the young tree (maximum constraint at the
root node of 154 Ma). The plotted shift configuration represents the configuration with the maximum a posteriori probability,

with branch colours representing the net diversification rate. The prior for the number of shifts is set to 10.
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Supplementary Fig. 19

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 19 | Net diversification rates estimated in BAMM for the old tree (maximum constraint at the root
node of 247 Ma). The plotted shift configuration represents the configuration with the maximum a posteriori probability, with

branch colours representing the net diversification rate. The prior for the number of shifts is set to 10.
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Supplementary Fig. 20

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 20 | Net diversification rates estimated in BAMM for the young tree (maximum constraint at the
root node of 154 Ma). The plotted shift configuration represents the configuration with the maximum a posteriori probability,

with branch colours representing the net diversification rate. The prior for the number of shifts is set to 100.
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Supplementary Fig. 21

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 21 | Net diversification rates estimated in RevBayes for the young tree (maximum constraint at
the root node of 154 Ma). The plotted rates are the mean posterior rate estimate for each branch, with branch colours

representing the net diversification rate. The prior for the number of shifts is set to 100.
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Supplementary Fig. 22

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 22 | Net diversification rates estimated in RevBayes for the old tree (maximum constraint at the
root node of 247 Ma). The plotted rates are the mean posterior rate estimate for each branch, with branch colours

representing the net diversification rate. The prior for the number of shifts is set to 100.
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Supplementary Fig. 23

https://doi.org/10.5281/zenodo.10778206

Supplementary Fig. 23 | Net diversification rates estimated in RevBayes for the young tree (maximum constraint at
the root node of 154 Ma). The plotted rates are the mean posterior rate estimate for each branch, with branch colours

representing the net diversification rate. The prior for the number of shifts is set to 10.
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Supplementary Fig. 24

Supplementary Fig. 24 | The number of large speciation rate increases through time in the young tree (maximum
constraint at the root node of 154 Ma). The number of shifts is extracted from the maximum a posteriori shift configuration,

the prior for the number of shifts is set to 10, and the background grey-scale gradient is the estimated percentage of extant

lineages represented in the species tree through time (“sampling fraction”).
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Supplementary tables

All supplementary tables are available in Zenodo

(https://doi.org/10.5281/zenodo.10778206).

Supplementary Tab. 1 | Sample metadata and recovery statistics. Metadata is

presented for all samples included in this work, including data source, voucher

information for data generated for this study, ENA/DDBJ/NCBI accession numbers,

recovery statistics, occupancy in Astral analysis, groups for order-level sub-alignments

and the presence of each sample in the backbone, calibrated tree and pruned tree.

Abbreviations in source column: GAP - Genomics for Australian Plants project, PAFTOL

- Plant and Fungal Trees of Life Project, EVOFLORAND - Biogeography, evolution,

ecology and conservation of the Andalusian flora, OneKP - One Thousand Plant

Transcriptomes Initiative9, SRA - Sequence Read Archive.

Supplementary Tab. 2 | Details of plant portraits illustrating Fig. 1. All plant portraits
were obtained from Curtis’s Botanical Magazine (via the Biodiversity Heritage Library).

For each plant portrait, the artist, volume and year of publication are provided, followed

by Biodiversity Heritage Library (BHL) unique page id, and both originally published

name and currently accepted name. Portraits are ordered clockwise, starting from the

ANA Grade.

Supplementary Tab. 3 | Ages of major clades, orders and families. Ages of stem

and crown nodes are provided from both young and old trees (maximum constraint at

the root node 154 Ma and 247 Ma, respectively). For each clade, the number of

samples within that clade and the node number of the clade in the calibrated tree file is

provided.
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Supplementary Tab. 4 | Number of rate shifts per order. It includes the number of

overall and nested shifts. The results are based on the young tree (maximum constraint

at the root node of 154 Ma).

Supplementary Tab. 5 | Gene alignments summary and SortaDate results. A
summary of each combined gene alignment (after cleaning) is reported, showing

dimensions and composition of each. Alignment summaries were produced using

AMAS71. The genes are sorted according to the SortaDate ranking.

Supplementary Tab. 6 | Fossil calibration dataset – AngioCal v1.1. Updated version
of the fossil calibration dataset, AngioCal v1.0, from Ramírez-Barahona et al.5

Supplementary Tab. 7 | Fossil calibrations points used in this study. For each
fossil, the age used and the node description are provided, followed by the tips in our

tree used to define that node and the ID Number in AngioCal v1.1 (Supplementary Tab.

4). The phylogenetic placement can be observed in Supplementary Fig. 12.

Supplementary Tab. 8 | Bayes factor comparison for different time variable
diversification rate models. The maximum likelihood from the three diversification

models (constant rates, variable speciation and variable extinction) is presented with

brief interpretation.
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Supplementary files

All supplementary files are available in Zenodo

(https://doi.org/10.5281/zenodo.10778206).

Supplementary File 1 | Target file used for sequence recovery. Reference

sequences translated into amino acids used during the sequence recovery.

Supplementary File 2 | Fossil calibration dataset – AngioCal v1.1. Updated version
of the fossil calibration dataset, AngioCal v1.0, from Ramírez-Barahona et al.5
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