Supplementary Information

General synthesis of ionic-electronic coupled two-dimensional materials

Xiang Xu^{1,#}, Yunxin Chen^{1,#}, Pengbin Liu¹, Hao Luo², Zexin Li¹, Dongyan Li¹, Haoyun Wang¹, Xingyu Song¹, Jinsong Wu², Xing Zhou^{1⊠} and Tianyou Zhai^{1, 3⊠}

¹State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

²Nanostructure Research Center, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.

³Optics Valley Laboratory, Hubei 430074, P. R. China

These authors contributed equally.

Email: zhoux0903@hust.edu.cn (X,Z) ; zhaity@hust.edu.cn (T,Y,Z)

Supplementary Figures

$$
X + A_p = AX_y
$$

\n
$$
X + M_p = MX_z
$$

\n
$$
X + M_p + A_p = AMX_2
$$

\n
$$
M_p:Cr, Fe, etc.
$$

\n
$$
A_p: Cul/Agl
$$

Supplementary Figure 1. Chemical reactions that may occur during the synthesis process of AMX2.

Supplementary Figure 2. Uncontrollable pre-reaction in the common CVD method for synthesizing AMX2.

In the common chemical vapor deposition (CVD) process, the vapor of chalcogen precursor and metal precursors are both placed upstream. The precursors have already met before reaching the substrate and undergo uncontrollable pre-reactions during the heating and mass transport process. Due to the uncontrollable pre-reactions, large numbers of binary byproducts AX_y and MX_z are generated, as well as particulate matter generated through heterogeneous reactions during mass transportation. These complex processes result in the nonuniform distribution of precursors and uncontrollable synthesis of $2D AMX₂$.

Supplementary Figure 3. Synthesis of CuCrSe² by common CVD method. a Change of precursors before and after the reaction. **b** Typical optical image of the growth situation using this method. **c** Raman spectra of each point in (**b**).

CuI and Cr powders are chosen as two types of metal precursors. The mica substrate is placed downstream, and Se vapor comes from upstream. During this CVD process, CuI and Cr powders are excessively selenated, hindering the further evaporation of the precursor. Large numbers of bulks like Cu_xSe by-products and a small amount of other stoichiometric ternary by-products such as $CuCr₂Se₄$ are generated on the substrate.

Supplementary Figure 4. Schematic diagrams of separated-precursor-supply CVD method. a CVD setup for synthesizing AMX² nanosheets. **b** Schematic diagram of the separated precursor transport mode.

Resolidified chalcogen precursors were obtained by annealing sulfur/selenium powder in Ar at 150℃/300℃ for 5 min in a tube furnace and then cooling to room temperature naturally.

In the separated-precursor-supply CVD method, the metal precursors were placed in a small quartz tube with one side sealed. This CVD setup protects the metal precursors and forces the vaporized metal precursors to flow against the S/Se vapors, which suppress the pre-reactions between the precursors. Consequently, the by-products also can be suppressed and the supply of metal precursors could maintain a stable state during the whole process to support the synthesis of the AMX₂ nanosheets.

Supplementary Figure 5. Experiment setup of CVD tube furnace for computational fluid dynamics simulations.

In this CFD simulation, there are two fluid domains, including the space in the quartz tube and the space out of the quartz tube. The size of the whole model is $72*50*50$ cm, and the boundary walls (dashed gray lines) are set as openings with fixed pressure and temperature. The total number of elements and nodes of the modeling are 1821120 and 428231, respectively. In the quartz tube, the Ar is injected through the inlet hole (radius: 2 mm) with a constant flow rate of 0.13 m/s, which is the same as the experiment Ar flux of 100 sccm. The temperature monitor point is at the real position of the thermocouple. The two solid domains are the quartz tube and the insulation of the furnace. We defined the parameters for the quartz and the insulation of the furnace which are given in the following table.

Supplementary Figure 6. The velocity distribution around the small quartz tube at different temperatures. a-c Distribution of velocity u in the small quartz tube at 600℃, 700℃, and 800℃ respectively. **b** The variation curve of velocity u along the dashed line in (**a**)-(**c**).

The flow rate in the outer space of the tube is relatively high, and the *u* component is positive. Due to the one-sided sealing of the small quartz tube, the flow rate in the tube rapidly decreases, indicating that the gas flow is very stable. The velocity component in the *u* direction is mainly negative, showing that the gas flow inside the tube is mainly reversed. This velocity distribution ensures the stable supply of the metal precursors. And this distribution has no obvious changes at 600℃-700℃, which means that this method allows us to realize a stable supply of metal precursors when synthesizing the 20 AMX_2 .

Supplementary Figure 7. CFD transient simulation of precursor concentration. a-g Precursor distribution at time steps 1, 5, 9, 12, 17, 22, and 37 of transient simulation, respectively.

The mass flow direction inside the small quartz tube is opposite to that of $X(S/Se)$ vapor according to the changing of precursor concentration over time. In addition, the metal concentration inside the small tube can reach a high level to ensure a matched concentration between metal and chalcogen vapors.

Supplementary Figure 8. Distribution of precursor concentration in the common CVD method. a precursor concentration distribution near the substrate. **b** Precursor concentration along the red solid line in (**a**).

The vapor of X(S/Se) meets with the metal precursors before reaching the substrate, leading to uncontrollable pre-reactions. Meanwhile, the concentration of the X(S/Se) precursor is much higher than that of the metal precursor, resulting in excessive selenization or sulfurization of the metal precursor.

Supplementary Figure 9. Comparison of metal precursor concentration distribution of separated-precursor-supply strategy and common CVD method. The concentration of metal precursors along the red line in Fig. 1e and Supplementary Fig. 8. (**a** Linear y-axis. **b** Logarithmic y-axis.)

The concentration of metal precursors placed in small tubes is higher and the concentration distribution changes linearly, which is more conducive to achieving a sufficient and controllable supply of metal precursors.

Supplementary Figure 10. Synthesis of CuCrSe² by separated-precursor-supply CVD method. Change of precursors before and after the reaction. The uniform phase and morphology distribution of the flakes can be seen in Figure 1d and 1e.

Consistent with the common CVD method, CuI and Cr powders are used as two types of metal precursor powders. The metal precursor powders are placed at the bottom of a small quartz tube with one side sealed, and the fluorocrystalline mica substrate is placed near the metal precursors. After the CVD process, CuI powder was not excessively selenized and remained in a molten and resolidified state. Importantly, we obtained uniform CuCrSe₂ nanosheets on the mica substrate (Figure 1d and 1e).

Supplementary Figure 11. Typical optical images of the 20 kinds of 2D AMX² on the substrate, scale bar: 10 μm.

Supplementary Figure 12. AFM images of the 20 kinds of 2D AMX2.

Supplementary Figure 13. The quasi-2D layered structure characteristics of AMX2. a A atoms are limited between the MX_2 layers. **b** Tetrahedral and octahedral site of A atoms in AMX₂. **c** The tetrahedral $[AX₄]$ layer. **d** The octahedral $[MX₆]$ layer.

Supplementary Figure 14. Raman and SHG characterizations of CuScS2, AgScSe2, CuCrS2, and AgCrS₂**.** a-d Raman spectra of as-synthesized CuScS₂, AgScSe₂, CuCrS₂ and AgCrS₂, respectively. **e-g** The SHG signal of CuScS₂, CuCrS₂ and AgCrS₂, respectively. The SHG signal was excited by a 900 nm femtosecond laser.

Supplementary Figure 15. Raman and SHG characterizations of CuCrSe2, AgCrSe2, CuFeS2, and CuFeSe₂**.** a-d Raman spectra of as-synthesized CuCrSe₂, AgCrSe₂, CuFeS₂ and CuFeSe₂, respectively. **e-h** The SHG signal of CuCrSe₂, AgCrSe₂, CuFeS₂ and CuFeSe₂, respectively. The SHG signal was excited by a 900/800 nm femtosecond laser.

Supplementary Figure 16. Raman, SHG, and PL characterizations of CuGaS2, CuGaSe2, AgGaS₂, and AgGaSe₂. a-d Raman spectra of as-synthesized CuGaS₂, CuGaSe₂, AgGaS₂, and AgGaSe₂, respectively. **e-h** The SHG signal of CuGaS₂, CuGaSe₂, AgGaS₂, and AgGaSe₂, respectively. The SHG signal was excited by a 900 nm femtosecond laser. **i-l** The PL spectra of as-synthesized CuGaS₂, CuGaSe₂, AgGaS₂, and AgGaSe₂, respectively.

Supplementary Figure 17. Raman, SHG, and PL characterizations of CuInS2, CuInSe2, AgInS2, and AgInSe₂**.** a-d Raman spectra of as-synthesized CuInS₂, CuInSe₂, AgInS₂, and AgInSe₂, respectively. **e-h** The SHG signal of CuInS₂, CuInSe₂, AgInS₂, and AgInSe₂, respectively. The SHG signal was excited by a 900/800 nm femtosecond laser. **i-l** The PL spectra of as-synthesized CuInS₂, $CuInSe₂, AgInS₂, and AgInSe₂, respectively.$

Supplementary Figure 18. Raman characterizations of CuSbS2, AgSbSe2, AgBiS2, and AgBiSe2.

a-d Raman spectra of as-synthesized CuSbS₂, AgSbSe₂, AgBiS₂, and AgBiSe₂, respectively.

Supplementary Figure 19. Structure characterization of CuScS2. a Low magnification TEM image and corresponding EDS elemental mapping of CuScS₂. **b** SAED pattern of as-synthesized 2D CuScS₂ nanosheet. **c** Atom-resolution experimental TEM image of CuScS₂. **d** The EDS spectra of the flake.

Supplementary Figure 20. Structure characterization of AgScSe2. a Low magnification TEM image and corresponding EDS elemental mapping of AgScSe₂. **b** SAED pattern of as-synthesized 2D AgScSe₂ nanosheet. **c** Atom-resolution experimental TEM image of AgScSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 21. Structure characterization of CuCrS2. a Low magnification TEM image and corresponding EDS elemental mapping of CuCrS₂. **b** SAED pattern of as-synthesized 2D CuCrS₂ nanosheet. **c** Atom-resolution experimental TEM image of CuCrS₂. **d** The EDS spectra of the flake.

Supplementary Figure 22. Structure characterization of AgCrS2. a Low magnification TEM image and corresponding EDS elemental mapping of AgCrS₂. **b** SAED pattern of as-synthesized 2D AgCrS₂ nanosheet. **c** Atom-resolution experimental TEM image of AgCrS₂. **d** The EDS spectra of the flake.

Supplementary Figure 23. Structure characterization of CuCrSe2. a Low magnification TEM image and corresponding EDS elemental mapping of CuCrSe₂. **b** SAED pattern of as-synthesized 2D CuCrSe₂ nanosheet. **c** Atom-resolution experimental TEM image of CuCrSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 24. Structure characterization of AgCrSe2. a Low magnification TEM image and corresponding EDS elemental mapping of AgCrSe₂. **b** SAED pattern of as-synthesized 2D AgCrSe₂ nanosheet. **c** Atom-resolution experimental TEM image of AgCrSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 25. Structure characterization of CuFeS2. a Low magnification TEM image and corresponding EDS elemental mapping of CuFeS₂. **b** SAED pattern of as-synthesized 2D CuFeS₂ nanosheet. **c** Atom-resolution experimental TEM image of CuFeS₂. **d** The EDS spectra of the flake.

Supplementary Figure 26. Structure characterization of CuFeSe2. a Low magnification TEM image and corresponding EDS elemental mapping of CuFeSe₂. **b** SAED pattern of as-synthesized 2D CuFeSe₂ nanosheet. **c** Atom-resolution experimental TEM image of CuFeSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 27. Structure characterization of CuGaS2. a Low magnification TEM image and corresponding EDS elemental mapping of CuGaS₂. **b** SAED pattern of as-synthesized 2D CuGaS₂ nanosheet. **c** Atom-resolution experimental TEM image of CuGaS₂. **d** The EDS spectra of the flake.

Supplementary Figure 28. Structure characterization of CuGaSe2. a Low magnification TEM image and corresponding EDS elemental mapping of CuGaSe₂. **b** SAEDs pattern of as-synthesized 2D CuGaSe₂ nanosheet. **c** Atom-resolution experimental TEM image of CuGaSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 29. Structure characterization of AgGaS2. a Low magnification TEM image and corresponding EDS elemental mapping of AgGaS₂. **b** SAED pattern of as-synthesized 2D AgGaS₂ nanosheet. **c** Atom-resolution experimental TEM image of AgGaS₂. **d** The EDS spectra of the flake.

Supplementary Figure 30. Structure characterization of AgGaSe2. a Low magnification TEM image and corresponding EDS elemental mapping of AgGaSe₂. **b** SAED pattern of as-synthesized 2D AgGaSe₂ nanosheet. **c** Atom-resolution experimental TEM image of AgGaSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 31. Structure characterization of CuInS2. a Low magnification TEM image and corresponding EDS elemental mapping of CuInS₂. **b** SAED pattern of as-synthesized 2D CuInS₂ nanosheet. **c** Atom-resolution experimental TEM image of CuInS₂. **d** The EDS spectra of the flake.

Supplementary Figure 32. Structure characterization of CuInSe2. a Low magnification TEM image and corresponding EDS elemental mapping of CuInSe₂. **b** SAED pattern of as-synthesized 2D CuInSe₂ nanosheet. **c** Atom-resolution experimental TEM image of CuInSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 33. Structure characterization of AgInS2. a Low magnification TEM image and corresponding EDS elemental mapping of AgInS₂. **b** SAED pattern of as-synthesized 2D AgInS₂ nanosheet. **c** Atom-resolution experimental TEM image of AgInS₂. **d** The EDS spectra of the flake.

Supplementary Figure 34. Structure characterization of AgInSe2. a Low magnification TEM image and corresponding EDS elemental mapping of AgInSe₂. **b** SAED pattern of as-synthesized 2D AgInSe₂ nanosheet. **c** Atom-resolution experimental TEM image of AgInSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 35. Structure characterization of CuSbS2. a Low magnification TEM image and corresponding EDS elemental mapping of CuSbS₂. **b** SAED pattern of as-synthesized 2D CuSbS₂ nanosheet. **c** Atom-resolution experimental TEM image of CuSbS₂. **d** The EDS spectra of the flake.

Supplementary Figure 36. Structure characterization of AgSbSe2. a Low magnification TEM image and corresponding EDS elemental mapping of AgSbSe₂. **b** SAED pattern of as-synthesized 2D AgSbSe₂ nanosheet. **c** Atom-resolution experimental TEM image of AgSbSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 37. Structure characterization of AgBiS2. a Low magnification TEM image and corresponding EDS elemental mapping of AgBiS₂. **b** SAED pattern of as-synthesized 2D AgBiS₂ nanosheet. **c** Atom-resolution experimental TEM image of AgBiS₂. **d** The EDS spectra of the flake.

Supplementary Figure 38. Structure characterization of AgBiSe2. a Low magnification TEM image and corresponding EDS elemental mapping of AgBiSe₂. **b** SAED pattern of as-synthesized 2D AgBiSe₂ nanosheet. **c** Atom-resolution experimental TEM image of AgBiSe₂. **d** The EDS spectra of the flake.

Supplementary Figure 39. Ionic conductivity of the as-grown 2D AgCrS2. a Optical image of the AgCrS² device with a channel width of 6.09 μm and a channel length of 6.35 μm. **b** AFM image of AgCrS² nanosheet exhibiting a thickness of 10.4 nm. **c** The Nyquist plot of the device.

Based on the mixed ionic-electronic conductor model, the decoupled ionic conductivity can be obtained by fitting the electrochemical impedance curves. As an example, the Nyquist plot of 10.4 nm AgCrS₂ nanosheet can be fitted with two semicircles, and the low-frequency impedance intercept represents electronic impedance (R_e) , while the high-frequency intercept corresponds to ionic impedance (R_i) . The fitted R_i of the 10.4 nm AgCrS₂ is ~5.2 M Ω . The thickness (*t*) of the flake is 10.4 nm, and the channel width (*d*) and length (*L*) of the device are 6.09 μm and 6.35 μm, respectively. Then, the ionic conductivity σ_i at room temperature can be calculated by the following equation:

$$
\sigma_i = \frac{L}{R \cdot t \cdot d} = \frac{6.35 \, \mu m}{5.2 \, M\Omega \cdot 10.4 \, nm \cdot 6.09 \, \mu m \times 10^{-4}} = 192.8 \, mS/cm
$$

Supplementary Figure 40. Thickness dependence of the ionic conductivity in AgCrS² nanosheets.

Supplementary Figure 41. The SHG mapping of a CuScS² nanosheet. SHG signal is sensitive to the local crystal structure, it can be used to reveal the crystals' crystallinity, defects, domain wall, etc⁷. The uniform distribution of the SHG signal demonstrates the good crystallinity and the single-domain characteristics of the as-synthesized CuScS₂.

Supplementary Figure 42. The in-plane PFM phase and amplitude hysteresis loop of a CuScS² nanosheet.

Supplementary Figure 43. Temperature-dependent SHG measurement of a CuScS² nanosheet. a The spectra of SHG signal at different temperatures. **b** Schematic diagram of the arrangement of $Cu⁺$ ion in CuScS₂ structure when the temperature is below and beyond the T_C .

Supplementary Figure 44. The calculated energy barrier for Cu⁺ migration in CuScS2.

Supplementary Figure 45. Memristor properties in the dark state of CuScS² device. a Triangular electric pulse. **b** The current variation of the device at 100 mV during positive and negative pulse modulation processes. c-d I_{ds} - V_{ds} output characteristics of the CuScS₂ device in various positive and negative voltage pulses respectively.

Supplementary Figure 46. The stability of the CuScS² photovoltaic response. (2 V/0.5 s poling pulse; illumination λ =532 nm, 256.6 mW/cm²)

Supplementary Figure 47. Cross-sectional EDS mapping of CuScS² device after polarization. a

SEM image of the CuScS₂ device. **b** The EDS mappings of the device after polarization.

Supplementary Figure 48. Band structures of CuScS² with different Cu contents. a-c The calculated band structures of the $CuScS_2$ when it is in the intrinsic state (**a**) or when the Cu is deficient (**b**) and excessive (**c**).

Supplementary Tables

Supplementary Table 2. Classification of the as-grown 2D AMX² that was neither synthesized by CVD nor obtained by ME in previous.

CuScS₂, AgScSe₂, AgCrSe₂, CuCrSe₂, CuFeS₂, CuFeSe₂, CuGaS₂, CuGaSe₂, AgGaS₂, AgGaSe₂, $CuInS₂, CuInSe₂, AgInS₂, AgInSe₂, CuSbS₂, AgSbSe₂, AgBiSe₂$

(18 kinds)

Supplementary Table 3. Classification of the as-grown 2D AMX² according to their possible properties.

Supplementary Methods

Detailed synthesis descriptions of $2D$ AMX₂:

CuScS2:

A porcelain boat containing resolidified sulfur precursor was placed upstream and heated to 150℃. 20 mg CuI powder was laid at the bottom of the small quartz tube with a length of 3.5 cm while 5 mg Sc_2S_3 and 1 mg NaCl powder were ground uniformly and placed 1 cm away from the CuI. The mica substrate was placed near the Sc precursors and the one-side sealed small quartz tube was placed downstream with the open side facing upstream. This small tube's bottom is 14 cm away from the heating center of the furnace. During the growth process, a constant flow of 100 sccm Ar was used as the carrier gas. The furnace was heated from room temperature to $800~850~\text{C}$ and maintained for 5 min. Once the growth process finished, the furnace was pushed away for rapid cooling to room temperature. The Sc_2S_3 powder used here was synthesized by vacuum heating the Sc and S powders at 1000℃ for 8 hours.

AgScSe2:

The growth process of $AgScSe_2$ is similar to that of $CuScS_2$. The difference is that the Se precursor was placed upstream, and Sc₂Se₃ and AgI powders were chosen as the metal precursors; 100 sccm Ar and 5 sccm H_2 were used. The Sc₂Se₃ powder used here was obtained by vacuum heating the Sc and Se powders at 1000℃ for 8 hours.

CuCrS2:

The growth process of CuCrS₂ is similar to that of CuScS₂. The difference is that 100 mg CuI powder was used; 5 mg Cr and 10 mg NaCl powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube; The furnace was heated from room temperature to 780~900 $\mathbb C$ and maintained for 5 min.

CuCrSe2:

The growth process of $CuCrSe₂$ is similar to that of $CuScS₂$. The difference is that the Se precursor was placed upstream; 100 mg CuI powder was used; 5 mg Cr and 10 mg KI powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube; 100 sccm Ar and 5 sccm H² were used.

AgCrS2:

The growth process of $AgCrS_2$ is similar to that of $CuScS_2$. The difference is that 150 mg AgI

powder was placed at the bottom while 5 mg Cr and 1 mg NaCl powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube.

AgCrSe2:

The growth process of $AgCrSe_2$ is similar to that of $CuScS_2$. The difference is that the Se precursor was placed upstream; 150 mg AgI powder was placed at the bottom while 5 mg Cr and 1 mg KI powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube; 100 sccm Ar and 5 sccm H_2 were used.

CuFeS2:

The growth process of CuFeS₂ is similar to that of CuScS₂. The difference is that 10 mg Fe and 3 mg KI powder were placed at the bottom while 70 mg CuI powder was sandwiched between two micas near the open side of the small quartz tube; The furnace was heated from room temperature to 700~750 $\mathbb C$ and maintained for 5 min; Natural cooling was used.

CuFeSe2:

The growth process of $CuFeSe₂$ is similar to that of $CuScS₂$. The difference is that the Se precursor was placed upstream; 50mg CuI was used; 10 mg $Fe₂O₃$ and 3 mg KI powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube; 100 sccm Ar and 5 sccm H₂ were used; The furnace was heated from room temperature to 700~750 \mathbb{C} and maintained for 5 min.

CuGaS2:

The growth process of $CuGaS₂$ is similar to that of $CuScS₂$. The difference is that 30 mg Ga was placed at the bottom while $3 \text{ mg Cu}_2\text{O}$ and 3 mg NaCl powders were ground uniformly and placed 2 cm away from the open side of the small quartz tube; The furnace was heated from room temperature to $700~750$ C and maintained for 10 min.

CuGaSe2:

The growth process of $CuGaSe₂$ is similar to that of $CuScS₂$. The difference is that the Se precursor was placed upstream; 30 mg Ga was placed 4.5 cm away from the bottom while 10 mg Cu2O and 3 mg KI powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube; 100 sccm Ar and 5 sccm H_2 were used; The furnace was heated from room temperature to 700~750 $\mathbb C$ and maintained for 5 min.

AgGaS2:

The growth process of $AgGaS_2$ is similar to that of $CuScS_2$. The difference is that 50 mg Ga was placed at the bottom while 5 mg AgI powder was placed 2 cm away from the open side of the small quartz tube; The furnace was heated from room temperature to $700~\text{--}750~\text{C}$ and maintained for 5 min. **AgGaSe2:**

The growth process of $AgGaSe₂$ is similar to that of $CuScS₂$. The difference is that the Se precursor was placed upstream; 100~150 mg Ga was placed at the bottom while 50 mg AgI powder was placed 2 cm away from the open side of the small quartz tube; 100 sccm Ar and 5 sccm H_2 were used; The furnace was heated from room temperature to $650~\text{--}750~\text{C}$ and maintained for 5 min.

CuInS2:

The growth process of CuInS₂ is similar to that of CuScS₂. The difference is that 50 mg In powder was placed at the bottom while 3 mg CuO powder and 1mg NaCl powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube; The furnace was heated from room temperature to 700~750 \mathbb{C} and maintained for 5 min.

CuInSe2:

The growth process of CuInSe₂ is similar to that of $CuScS₂$. The difference is that the Se precursor was placed upstream; Mixed 50 mg In_2O_3 and 50 mg In powders were placed at the bottom while 10 mg CuO and 5 mg KI powder were ground uniformly and placed 2 cm away from the open side of the small quartz tube; 100 sccm Ar and 5 sccm H_2 were used; The furnace was heated from room temperature to $550~600$ C and maintained for 5 min.

AgInS2:

The growth process of $AgInS_2$ is similar to that of $CuScS_2$. The difference is that 50 mg In powder was placed at the bottom while 5 mg AgI powder was placed 2 cm away from the open side of the small quartz tube; The furnace was heated from room temperature to $700~\sim}750~\text{C}$ and maintained for 5 min.

AgInSe2:

The growth process of AgInSe₂ is similar to that of $CuScS₂$. The difference is that the Se precursor was placed upstream of the quartz tube; Mixed 50 mg In_2O_3 and 50 mg In powder were placed at the bottom while 5 mg AgI powder was placed 2 cm away from the open side of the small quartz tube; The furnace was heated from room temperature to $700~\text{--}750~\text{C}$ and maintained for 5 min. **CuSbS2:**

The growth process of $CuSbS₂$ is similar to that of $CuScS₂$. The difference is that 50 mg Sb powder was placed at the bottom of the small quartz tube and 50 mg CuI powder was placed above Sb powder separated by a piece of sapphire. Three mica substrates were placed horizontally near the open side of the small quartz tube, while the small tube was placed downstream with the open side facing downstream. This small tube's open side is 14 cm away from the heating center of the furnace. 50 sccm Ar and 5 sccm H₂ were used. The growth temperature was 540~560 \degree with a ramp rate of 30 ºC/min. Once reaching the desired growth temperature, the process was terminated and the furnace was cooled naturally to room temperature.

AgSbSe2:

The growth process of $AgSbSe₂$ is similar to that of $CuSbS₂$. The difference is that the Se precursor was placed upstream; 50 mg AgI powder was placed near Sb powder.

AgBiS2:

The growth process of $AgBiS_2$ is similar to that of $CuSbS_2$. The difference is that 50 mg Bi powder was placed at the bottom while 10 mg AgI powder was placed near Bi powder; 100 sccm Ar was used.

AgBiSe2**:**

The growth process of AgBiSe₂ is similar to that of $CuSbS₂$. The difference is that the Se precursor was placed upstream. 100 mg Bi powder was placed at the bottom while 10 mg AgI powder was placed near the Bi powder; 100 sccm Ar and 5 sccm H₂ were used.

Supplementary References

- 1. Zhong, T., Li, X., Wu, M. & Liu, J.-M. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. *Natl. Sci. Rev.* **7**, 373–380 (2020).
- 2. Kanematsu, T., Okamoto, Y. & Takenaka, K. Large magnetic-field-induced strain at the magnetic order transition in triangular antiferromagnet AgCrS₂. Appl. Phys. Lett. 118, 142404 (2021).
- 3. Rasch, J. C. E. et al. Magnetoelastic coupling in the triangular lattice antiferromagnet CuCrS₂. *Phys. Rev. B* **80**, 7 (2009).
- 4. Abrahams, S. C. Inorganic structures in space group *P*3*m*1; coordinate analysis and systematic prediction of new ferroelectrics. *Acta Crystallogr. B* **64**, 426–437 (2008).
- 5. Li, B. *et al.* Liquid-like thermal conduction in intercalated layered crystalline solids. *Nat. Mater.* **17**, 226–230 (2018).
- 6. Niedziela, J. L. *et al.* Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. *Nat. Phys.* **15**, 73–78 (2019).
- 7. Khan, A. R. *et al.* Optical harmonic generation in 2D materials. *Adv. Funct. Mater.* **32**, 2105259 (2022).