
Supplementary Material: A deep learning model for brain segmentation across pediatric
and adult populations
Appendix A. Datasets
The publicly available datasets used in this study are:

Dataset 1.1.p is available at: http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_ne
twork/.

Dataset 1.2.p, which received support from the Canadian Institutes of Health Research (grant numbers IHD-134090,
MOP-136797) and the Alberta Children’s Hospital Research Institute, is available at: https://osf.io/axz5r/.

Dataset 2.p is available at: https://www.nitrc.org/projects/candi_share/.
Dataset 2.a is available in open access by OASIS (https://www.oasis-brains.org/) and manual labelings by

Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under academic subscription. The data is released
under the Creative Commons Attribution-NonCommercial license (CC BY-NC) with no end date.

Dataset 3.p is available at: https://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html.
Dataset 4.a was obtained from the MIRIAD database (https://www.ucl.ac.uk/drc/research/researc

h-methods/minimal-interval-resonance-imaging-alzheimers-disease-miriad.). The MIRIAD
investigators did not participate in analysis or writing of this report. The MIRIAD dataset is made available through the support
of the UK Alzheimer’s Society (Grant RF116). The original data collection was funded through an unrestricted educational
grant from GlaxoSmithKline (Grant 6GKC).

Figure S.1 and S.2 illustrate the age distribution of the datasets used in this study.

Figure S.1. Age distribution in the training datasets. Dataset 1.3.a is not included
.

Appendix B. Brain structures segmented by icobrain-dl
1. Background

2. WM background

3. GM background

4. CSF background

5. Thalamus

6. Hippocampus

7. Putamen
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Figure S.2. Age distribution in the validation datasets
.

8. Caudate

9. Pallidum

10. Midbrain

11. Pons

12. Medulla

13. Cerebellum

14. Upper lateral ventricles

15. Inferior lateral ventricles

16. Amygdala

17. Left CGM Frontal lobe

18. Right CGM Frontal lobe

19. Left CGM Parietal lobe

20. Right CGM Parietal lobe

21. Left CGM Occipital lobe

22. Right CGM Occipital lobe

23. CGM Temporal lobe

Additional structures can be easily derived from these initial segmentations. For example, the cerebellar gray matter is computed
as the intersection of gray matter (task 1) and cerebellum (task 2).
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Appendix C. Multi-task architecture
The proposed model, icobrain-dl uses a two-headed U-net as backbone, i.e., it produces two predicted segmentation masks to
classify voxels in terms of brain tissues and structures, respectively. In principle, a single output mask could be sufficient if
each voxel received the most fine-grained label available. For example, at the location of the hippocampus, voxels could have
the label GM for task 1 and the label hippocampus for task 2. Since prior anatomical knowledge allows inferring the GM label
from the hippocampus label, the second label can be considered sufficient.

However, we argue that employing both a “coarse-grained” and a “fine-grained” segmentation in separate tasks offers
several advantages:

• Task 1 has a simpler (i.e., easier to learn) label structure, facilitating the model’s training. In the initial stages of training,
this helps to guide the model to acquire meaningful representations that encode at least the three main tissue classes.
Essentially, task 1 serves as a regularizer for task 2, facilitating faster convergence and more effective learning.

• By using two tasks with their respective loss functions, more detailed model evaluation and debugging can be performed
during and after training. For instance, a very low loss on task 1 but a high loss on task 2, is a clue that class mixing
between different GM structures is the limiting factor.

• After training, the output of task 1 can be utilized for post-processing or correcting the output of task 2.

In summary, the adoption of a multi-task setup with a “coarse” (i.e. tissue) and a “fine-grained” (i.e. structural) segmentation
offers benefits such as improved model training, detailed evaluation and debugging capabilities, and the potential for post-
processing and correction. These advantages contribute to the overall effectiveness and reliability of the segmentation model.
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