Table Ts3. Analyses of the 3D structures of the cyclophilins.

No	PDB	Res(Å)	Leng	th NID	B-factor	Description Ref	erence
Hur	nan/ve:	rtebrat	es				
1	2CPL	1.63	165	3586	15E,44K,81E	hCyPA	16
2	1CWA	2.10	165	3591	69RHGEK,144R	hCyPA/CsA	25
3	1YND	1.60	164	3519	13DGEP,69RHN,148RN,153SK	hCyPA/(Sanglifehrin A)	52
4	1ZKF	2.55	165	3528	80G,81E,82K	hCyPA/(Suc-AGPF-pNA)	29
5	2X7K	1.15	166	2757	-	hPPIL1 (CGI-124)	R1
6	1ХҮН	2.60	160	3396	156AN	hCyPJ (PPIL3)	R2
7	1CYN	1.85	178	3704	7GP,51EKG,77R	hCyPB/CsA	R3
8	2RMC	1.64	182	3867	48D,182D,184H	mCyPC/CsA	R4
9	2BIT	1.71	164	3664	44K,68TNHNG,147SKS,150GRK	hCyPF	R5
10	2Z6W	0.96	164	3668	13NGK,144S,149S,153SK	hCyPF/CsA	R6
11	1MZW	2.00	173	3756	50E,52RKDGVP,112M,161P	hCyP19 (hCyPH)	18
12	1Q0I	2.00	173	3747	53KD,83D	hCyP19	R7
13	1ZMF	1.88	162	3729	150NKP,215YGKK,239SGP	hCyP33 (AA:137-301)	R8
14	1IIP	2.00	297	6916	100GE,123A	bCyP40 orthogonal	R9
15	1ZKC	1.65	187	4205	414EDPKT,423KE	CLD of hCyP60 (AA:271-457	7) 54
16	2A2N	1.65	164	3700	567HST,573D	CLD of hCyP73	R10
17	2GW2	1.80	173	3976	68V,85R,126I	CLD of hCyP88	R11
18	2HE9	2.00	172	3844	54GKK,70NG,80E,160A	CLD of hCyP157	R12
Invertebrates/Parasites							
1	1DYW	1.80	172	3869	87GEK	CeCyp3 (CeCyP18d)	R13
2	1E3B	1.85	172	3839	87GE,111G	CeCyP3/(Complex-Au)	R14
3	1H0P	1.75	182	4154	67P,70E,189IAVDT	CeCyP5	R15
4	1A58	1.95	177	3837	none	BmCyP18	R16
5	1C5F	2.47	177	3858	51KIS	BmCyP18/CsA	R17
6	1Z81	2.80	186	4066	991,1561,182L	РуСуР23/р	R18
7	2B71	2.50	169	3844	101GKS,105YGEY	РуСуР18	R18
8	1QNG	2.10	170	3933	45KIGSRGKN	PfCyP18/CsA	R19
9	2FU0	1.80	155	3563	62SGDGTG,73GN,106FFIT	PfCyP87	R18
10	2HAQ	1.97	166	3376	50K,103GE,170NSH	LdCyP18 (CyPA)	R20
11	2CMT	1.50	164	3650	43F,73F,76VKGDGT	SmCyP18	R21

All the X-ray files were taken from the PDB server whereas the structures were analyzed with the methods recently described [19]. The numbers of the intra-molecular distances (NID) between the AAs in $i \ge i+2$ sequence positions and at atomic distances $d_{ij} \le 4.5$ Å are dependent on the size of the CLD and structure resolution. In average, about 3700 inter-atomic interactions take place within 2.7-4.5 Å that contribute to the overall stability of the CLD. The residues having higher than the average flexibility (Debye/Waller B-factors) are explicitly indicated. **Abbreviations:** NID, the number of intramolecular interatomic distances calculated between the $i \ge i+2$ AA residues (AAs) in the distance range (2.7 Å \ge d \le 4.5 Å); B-factor, the AAs that have a higher flexibility than average; b, Bos taurus; Py, Plasmodium yoelii; Pf, Plasmodium falciparum; Ld, Leishmania donovani; Bm, Brugia malayi; Ce, Caenorhabditis elegans; Schistosoma mansoni. The chemical of Sanglifehrin Sm. name Α: (3S,6S,9R,10R,11S,12S,13E,15E,18S,21S)-18-{(1E,3E,7S,8S)-9-[(2S,3R,4S,5S,6R,9S,11S)-9ethyl-4-hydroxy-3,5,11-trimethyl-8-oxo-1-oxa-7-azaspiro[5.5]undec-2-yl]-8-hydroxy-1,7dimethylnona-1,3-dienyl}-10,12-dihydroxy-3-(3-hydroxybenzyl)-6-isopropyl-11-methyl-9-(3-oxobuty1)-19-oxa-1,4,7,25-tetraazabicyclo[19.3.1]pentacosa-13,15-diene-2,5,8,20tetrone.

References

R1. Stegmann CM, Luhrmann R, Wahl MC (2010) The crystal structure of PPIL1 bound to cyclosporine A suggests a binding mode for a linear epitope of the SKIP protein. PLoS One 5:e10013

R2. Huang LL, Zhao XM, Huang CQ, Yu L, Xia ZX (2005) Structure of recombinant human cyclophilin J, a novel member of the cyclophilin family. Acta Crystallogr D Biol Crystallogr 61:316-321

R3. Mikol V, Kallen J, Walkinshaw MD (1994) X-ray structure of a cyclophilin B/cyclosporin complex: comparison with cyclophilin A and delineation of its calcineurin-binding domain. Proc Natl Acad Sci USA 91:5183-5186

R4. Ke H, Zhao Y, Luo F, Weissman I, Friedman J (1993) Crystal structure of murine cyclophilin C complexed with immunosuppressive drug cyclosporin A. Proc Natl Acad Sci USA 90:11850-11854

R5. Schlatter D, Thoma R, Kung E, Stihle M, Muller F, Borroni E, Cesura A, Hennig M (2005) Crystal engineering yields crystals of cyclophilin D diffracting to 1.7 Å resolution. Acta Crystallogr D Biol Crystallogr 61:513-519

R6. Kajitani K, Fujihashi M, Kobayashi Y, Shimizu S, Tsujimoto Y, Miki K (2008) Crystal structure of human cyclophilin D in complex with its inhibitor, cyclosporin A at 0.96-Å resolution. Proteins 70:1635-1639

R7. Reidt U, Reuter K, Achsel T, Ingelfinger D, Luhrmann R, Ficner R (2000) Crystal structure of the human U4/U6 small nuclear ribonucleoprotein particle-specific SnuCyp-20, a nuclear cyclophilin. J Biol Chem 275:7439-7442

R8. Wang T, Yun CH, Gu SY, Chang WR, Liang DC (2005) 1.88 Å crystal structure of the C domain of hCyP33: a novel domain of peptidyl-prolyl cis-trans isomerase. Biochem Biophys Res Commun 333:845-849

R9. Taylor P, Dornan J, Carrello A, Minchin RF, Ratajczak T, Walkinshaw MD (2001) Two structures of cyclophilin 40: folding and fidelity in the TPR domains. Structure 9:431-438

R10. Davis T, Walker JR, Newman EM, Mackenzie, F, Butler-Cole, C, Finerty, PJ Jr, Weigelt J, Sundstrom M, Arrowsmith C, Edwards A, Bochkarev A, Dhe-Paganon S (2007) Structural Genomics Consortium (SGC). Crystal structure of the peptidylprolyl domain of human PPWD1 (2A2N), <u>http://www.rcsb.org/pdb</u>

R11. Stegmann CM, Seeliger D, Sheldrick GM, de Groot BL, Wahl MC (2009) The thermodynamic influence of trapped water molecules on a protein-ligand interaction. Angew Chem Int Ed Engl 48:5207-5210

R12. Davis T, Walker JR, Newman EM, Mackenzie F, Butler-Cole C, Finerty PJ Jr, Weigelt J, Sundstrom M, Arrowsmith C, Edwards, A, Bochkarev A, Dhe-Paganon, S (2007) Structural Genomics Consortium (SGC). Structure of the PPIase cyclophilin-type domain of the human NK-tumor recognition protein (2HE9), <u>http://www.rcsb.org/pdb</u>

R13. Dornan J, Page AP, Taylor P, Wu S, Winter AD, Husi H, Walkinshaw MD (1999)

R15. Picken NC, Eschenlauer S, Taylor P, Page AP, Walkinshaw MD (2002) Structural and biological characterisation of the gut-associated cyclophilin B isoforms from *Caenorhabditis elegans*. J Mol Biol 322:15-25

R16. Taylor P, Page AP, Kontopidis G, Husi H, Walkinshaw MD (1998) The X-ray structure of a divergent cyclophilin from the nematode parasite *Brugia malayi*. FEBS Lett 425:361-366

R17. Ellis PJ, Carlow CK, Ma D, Kuhn P (2000) Crystal structure of the complex of Brugia malayi cyclophilin and cyclosporin A. Biochemistry 39:592-598

R18. Vedadi M, Lew J, Artz J, Amani M, Zhao Y, Dong A, Wasney GA, Gao M, Hills T, Brokx S, Qiu W, Sharma S, Diassiti A, Alam Z, Melone M, Mulichak A, Wernimont A, Bray J, Loppnau P, Plotnikova O, Newberry K, Sundararajan E, Houston S, Walker J, Tempel W, Bochkarev A, Kozieradzki I, Edwards A, Arrowsmith C, Roos D, Kain K, Hu, R (2007) Genome-scale protein expression and structural biology of *Plasmodium falciparum* and related *Apicomplexan* organisms. Mol Biochem Parasitol 151:100-110

R19. Peterson MR, Hall DR, Berriman M, Nunes JA, Leonard GA, Fairlamb AH, Hunter WN (2000) The three-dimensional structure of a *Plasmodium falciparum* cyclophilin in complex with the potent anti-malarial cyclosporin A. J Mol Biol 298:123-133

R20. Venugopal V, Sen B, Datta AK, Banerjee R (2007) Structure of cyclophilin from *Leishmania donovani* at 1.97 Å resolution. Acta Crystal F63:60-64

R21. Gourlay LJ, Angelucci F, Baiocco P, Boumis G, Brunori M, Bellelli A, Miele AE (2007) The three-dimensional structure of two redox states of cyclophilin A from *Schistosoma mansoni*. Evidence for redox regulation of peptidyl-prolyl cis-trans isomerase activity. J Biol Chem 282:24851-24857