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Supplementary Figures 

    

Supplementary Fig. 1| Sequence coverage of 8 independent mutants and WT popula0on.  
These plots present the distribuCon of read depth across the sequenced target region. Count, 
the number of bases mapped the reference genome (T. gondii ME49). Coverage, read depth. 
Source data are provided as a Source Data file. 

 



 

Supplementary Fig. 2| Single mutant clone 5E4 shows a defect in differen0a0on. a, Phase 
contrast microscopy images of WT (Pru ATG8) and the mutant clone 5E4 parasites aYer 
exposure to alkaline stress for 7 days. Bar, 100 µm. b-m, Flow analysis of parasites at 7 days 
post-differenCaCon. Experiment conducted on the same day were grouped and connected by a 
line. GFP expression is controlled by the bradyzoite-specific LDH2 promoter. AU, arbitrary units. 
The numbers in the pseudocolor plots represent the percentage of the gated populaCon relaCve 
to the total populaCon. b, RepresentaCve flow cytometry pseudocolor plots of GFP fluorescence 
for total populaCon. c, QuanCficaCon of the percentage of GFP(+) cells in total ungated 
populaCon. n = 6 biological replicates; Student’s two-tailed t-test. d, QuanCficaCon of GFP 
intensity for GFP(+) populaCon. n = 6 biological replicates; Student’s two-tailed t-test. e, 
RepresentaCve flow cytometry pseudocolor plots of tdTomato fluorescence for total populaCon. 
f, QuanCficaCon of the percentage of tdTomato(+) cells in total ungated populaCon. n = 6 
biological replicates; NS, not significant (P > 0.05); Student’s two-tailed t-test. g, QuanCficaCon 
of tdTomato intensity for tdTomato(+) populaCon. n = 6 biological replicates; Wilcoxon signed 
rank two-tailed test. h, RepresentaCve flow cytometry pseudocolor plots of tdTomato 
fluorescence for tdTomato(+) and GFP(+) populaCon. i, QuanCficaCon of the percentage of 
tdTomato(+) and GFP(+) cells in total ungated populaCon. n = 6 biological replicates; NS, not 
significant (P > 0.05); Student’s two-tailed t-test. j, QuanCficaCon of tdTomato intensity for 
tdTomato(+) and GFP(+) populaCon. n = 6 biological replicates; Wilcoxon signed rank two-tailed 
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test. k, RepresentaCve flow cytometry pseudocolor plots of tdTomato fluorescence for 
tdTomato(+) and GFP(-) populaCon. l, QuanCficaCon of the percentage of tdTomato(+) and 
GFP(-) cells in total ungated populaCon. n = 6 biological replicates; Student’s two-tailed t-test. 
m, QuanCficaCon of tdTomato intensity for tdTomato(+) and GFP(-) populaCon. n = 6 biological 
replicates; NS, not significant (P > 0.05); Student’s two-tailed t-test. Source data are provided as 
a Source Data file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 3|eIF1 paralogs in apicomplexan parasites. a, Neighbor-joining 
phylogeneCc tree of eIF1 proteins for apicomplexan parasites. Green branches represent 
proteins that share a greater similarity to eIF1.2 (TGME49_286090), while orange branches 
correspond to proteins closely related to eIF1.1 (TGME49_249370). Clades: blue (non-Cssue 
cyst-forming coccidia), pink (Cssue cyst-forming coccidia). Scale bar represents the number of 
amino acid subsCtuCons per site along a branch. Bootstrap values were computed based on 
1000 replicaCons. b, Alignment of these eIF1.1 and eIF1.2 proteins from a using CLustalW. The 
locaCon of F97L mutaCon in eIF1.2 is indicated. 
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Supplementary Fig. 4|The differen0a0on defect of eIF1.2 F97L mutant is not correlated with 
increased tdT-ATG8 intensity, as related to Fig. 2. a-f, Parasites exposed for 7 days to alkaline 
stress. Experiment conducted on the same day were grouped and connected by a line. AU, 
arbitrary units. a, RepresentaCve flow cytometry pseudocolor plots of tdTomato fluorescence 
for tdTomato(+) and GFP(+) populaCon. b, QuanCficaCon of the percentage of tdTomato(+) and 
GFP(+) cells in total ungated populaCon. n = 5 biological replicates. NS, not significant (P > 0.05); 
Student’s two-tailed t-test. c, QuanCficaCon of tdTomato intensity for tdTomato(+) and GFP(+) 
populaCon. n = 5 biological replicates; Student’s two-tailed t-test. d, RepresentaCve flow 
cytometry pseudocolor plots of tdTomato fluorescence for tdTomato(+) and GFP(-) populaCon. 
e, QuanCficaCon of the percentage of tdTomato(+) and GFP(-) cells in total ungated populaCon. 
n = 5 biological replicates; Student’s two-tailed t-test. f, QuanCficaCon of tdTomato intensity for 
tdTomato(+) and GFP(-) populaCon. n = 5 biological replicates; Student’s two-tailed t-test. 
Source data are provided as a Source Data file. 
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Supplementary Fig. 5|Gel shiR analysis of T. gondii eIF1.2 WT or F97L binding to yeast 40S, as 
related to Fig. 3. RepresentaCve gels illustrate yeast 40S (100 nM) binding to varying 
concentraCons of T. gondii eIF1.2 (12.5 to 800 nM in the absence of yeast eIF1A; 12.5 to 400 nM 
in the presence of yeast eIF1A (1 μM)). The lane labeled “eIF1.2 only” contains 100 nM eIF1.2. 
Source data are provided in Supplementary InformaCon file. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 6| Scanning Simula0on indicates eIF1.2 F97L does not decelerate a slow 
step. Simulated eIF1.2 dwell-Cme probability density funcCons reflect two independent, parallel 
processes: 10 and 50 scanning steps, modeled as irreversible processes. The 10-step process 
reflects PIC recogniCon of an upstream start site, 10 nucleoCdes from the mRNA 5ʹ end. The 50-
step process represents scanning bypass of the upstream site, with subsequent recogniCon of a 
downstream start site posiConed 50 nucleoCdes from the mRNA 5ʹ end. Each process includes 
an addiConal slow step, modeling eIF1.2 ejecCon. Probability density funcCons were generated 
by an inverse Laplace transform approach1. The relaCve prevalence of each pathway was 
systemaCcally varied by coefficients mulCplying the individual density funcCons (increasing 
relaCve prevalence of the 10-step pathway from top to botom). To understand whether the 
increased eIF1.2 dwell Cme populaCon for eIF1.2(F97L) was due to a deceleraCon of a slow step 
in the scanning process (e.g., eIF1.2 ejecCon), we reduced the slow-step rate (iniCally 0.3 s-1) by 
10-fold in either the short (10) or long (50) dwell Cme populaCons. a. 10% short+90% long. b. 
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30% short+70% long. c. 50% short and 50% long. d. 90% short and 10% long. Reducing the slow-
step rate introduced a dominant, quasi-exponenCal component to the distribuCon. This 
behavior was not observed in our single-molecule scanning experiments. In the single-molecule 
scanning experiments, the posiCons, and shapes of the short- and long-Cme components do not 
change, but their relaCve contribuCons to the overall distribuCon changed with the F97L 
subsCtuCon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



         

Supplementary Fig. 7|Scanning simula0on suggests that eIF1.2 F97L does not impede the 
scanning rate. Simulated eIF1.2 dwell-Cme probability density funcCons reflect two 
independent parallel processes: 10 and 50 scanning steps, modeled as irreversible processes. 
The 10-step process reflects PIC recogniCon of an upstream start site, 10 nucleoCdes from the 
mRNA 5ʹ end. The 50-step process represents scanning bypass of the upstream site, with 
subsequent recogniCon of a downstream start site posiConed 50 nucleoCdes from the mRNA 5ʹ 



end. Each process includes an addiConal slow step, modeling eIF1.2 ejecCon. Probability density 
funcCons were generated by an inverse Laplace transform approach1. The relaCve scanning 
rates for each pathway were systemaCcally varied, while the slow eIF1.2 ejecCon rate remained 
constant; the relaCve prevalence of each pathway was equal in each simulaCon. The simulated 
results showed that slowing scanning rate for short and long components shiY the posiCons of 
their respecCve distribuCons to longer Cmes, which was not observed in our single-molecule 
scanning experiments. In our single-molecule scanning experiments, the posiCons, and shapes 
of the short- and long-Cme components do not change, but their relaCve contribuCons to the 
overall distribuCon changed with the F97L subsCtuCon.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 8|Polysome profiling, analyses of RNA sequencing and ribosome profiling, 
as related to Fig. 5. a,b, Polysome profiling experiments. n = 2 biological replicates. Data were 
adjusted during plovng to align the 80S peak locaCon of all samples with that of unstressed WT 
samples, and the lowest A260 absorbance values around the 80S peak for all samples were set 
to 0. c, Principal component analysis for RNA sequencing (RNA-seq) and ribosome profiling 
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(Ribo-seq) data. Stressed, 1 day of alkaline stress. WT, ME49∆ku80. n = 3 biological repeats. d-f, 
the Padj values were derived using DeSeq2 and edgeR in Riborex2, employing two-sided tests 
with adjustment for mulCple comparisons. d, DifferenCal analysis of translaConal efficiency in 
∆eif1.2 parasites versus WT parasites under unstressed condiCons. e, DifferenCal analysis of 
translaConal efficiency in WT parasites under stressed versus unstressed condiCons. f, 
DifferenCal analysis of translaConal efficiency in ∆eif1.2 parasites under stressed versus 
unstressed condiCons. Source data are provided as a Source Data file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 9| a-c, ComparaCve analysis of our RNA-seq and Ribo-seq results with a 
previously published RNA-seq dataset for Cssue cysts and in vitro tachyzoites3. Gene listed as 
significantly changed in our study have a fold change greater than 2 or less than 0.5 in either 
RNA-seq, Ribo-seq, or both, with Padj < 0.05, and minimum of 5 reads. Padj values were derived 
using DeSeq2, employing a two-sided test with adjustments for mulCple comparison. b,c, 
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Heatmaps depict the fold change of genes significantly altered between unstressed ∆eif1.2 and 
WT parasites (b, 65 genes), and between stressed ∆eif1.2 and WT parasites  (c, 80 genes) in our 
study (Padj < 0.05). Source data are provided as a Source Data file. 
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