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Supplemental Experimental Procedures

Room boundaries in two environments
The Archviz House (‘House’) consists of eight distinct rooms, with example images depicted in Figure S1.

These rooms are the kitchen, lower hall, lower bedroom, outer deck, upstairs piano room, bathroom, and upstairs
bedroom. Images are classified based on their position inside the defined boundaries of each room. Certain
images, such as those captured on the stairs, do not fall within the boundaries of any room and are therefore
excluded from the evaluation. In House14K, 12,127 of 14,766 images are labeled. In House100K, 83,300 of
102,197 images are labeled. The boundaries and the number of samples for each room are listed in Table S1.
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Figure S1: Eight rooms in the House environment
(A) Kitchen. (B) Living room. (C) Lower hall. (D) Lower bedroom. (E) Outer deck. (F) Upstairs piano room. (G) Bathroom. (H)
Upstairs bedroom.

Room name 𝑥-axis boundary 𝑦-axis boundary Height House14K House100K
boundary images images

kitchen (-17.00, -11.83) (-1.48, 1.80) (1.4, 3.5) 2079 7535
living room (-17.00, -7.60) (-7.00, -1.48) (1.4, 5.2) 3225 32412
lower hall (-6.30, -4.10) (-4.30, -3.10) (0.6, 3.5) 461 3490
lower bedroom (-3.43, 0.05) (-4.30, 1.60) (0.6, 3.5) 1506 10155
outer deck (-7.10, 6.00) (-7.40, -4.75) (0.4, 5.2) 2491 6721
upstairs piano room (-3.20, -0.25) (-4.30, -3.00) (3.5, 5.2) 925 9882
bathroom (-3.20, -0.25) (-4.30, -3.00) (3.5, 5.2) 419 2853
upstairs bedroom ( 0.00, 4.10) (-4.30, 1.37) (3.5, 5.2) 1021 10252

Table S1: The boundaries of the eight rooms in the House environment and the number of samples for
each room
The coordinate ranges are measured in the ThreeDWorld virtual environment. “House14K images” and
“House100K images” means the number of images in each category for House14K and House100K respectively.

The Apartment (‘Apt’) layout consists of nine rooms, arranged in two rows. Rooms in the upper row in the floor
plan are marked as rooms 0 to 4, from left to right. Rooms 5 to 8 are in the lower row in the same left-to-right
sequence. The items placed in each room are carefully designed. For instance, entertainment facilities are filled
in room 0. Rooms 3, 4, 6, and 7 serve as living rooms, each having a distinct style. Room 8 is a kitchen. In



Apt14K, 9,855 of 14,487 images are labeled. Sample images and the specified boundaries for each room are
shown in Figure S2 and Table S2, respectively.
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Figure S2: Nine rooms in the Apt environment
Letters A-I represent the rooms 0 through 8 in order.

Room label 𝑥-axis boundary 𝑦-axis boundary Images
0 (-10.6, -7.2) ( 1.45, 4.80) 680
1 (-7.2, -3.1) ( 1.45, 4.80) 659
2 (-3.1, 0.8) ( 1.45, 4.80) 1312
3 ( 0.8, 6.8) ( 1.45, 4.80) 1295
4 ( 6.8, 9.8) ( 1.45, 4.80) 749
5 (-10.6, -6,2) (-5.70, -0.18) 1333
6 (-6.2, -3.1) (-5.70, -0.18) 794
7 (-3.1, 3.3) (-5.70, -0.18) 1269
8 ( 3.3, 9.8) (-5.70, -0.18) 1764

Table S2: The boundaries of the nine rooms in the Apt environment and the number of samples for each
room
The coordinate ranges are measured in the ThreeDWorld virtual environment.



Learning rate comparison
In our pretext training, we adopted a learning rate of 0.3 instead of the suggested 0.015 from MoCo V2. This

adjustment was made based on its improved overall accuracy on our datasets. Table S3 shows the results of
MoCo V2 with different learning rates when trained on the House100K dataset.

Learning Pretext Task Downstream ImageNet Classification
rate training loss accuracy Training loss Test accuracy (%)
0.015 3.73 73.45 209.25 7.61
0.3 4.43 82.11 4.71 17.36

Table S3: Comparison results of MoCo V2 with two different learning rates trained on the House100K
dataset

Details of the implementation of ESS-MB on other models
SimCLRS1 is a popular contrastive learning model in which the positive pair of an augmented view is itself.

Negative pairs are other augmented samples from the same batch. Our ESS-MB on SimCLR found positive
samples from the same batch according to spatial information. All parameters were the same as those in SimCLR.
We ran the experiment on a single GPU for 200 epochs as suggested by the code.

DCLS2 removes the positive pairs’ effect on the denominator of InfoNCE loss. We implemented the updated
loss function based on our original ESS-MB model for both DCL and ESS-MB with DCL. All the parameters were
the same as the ESS-MB on MoCo.

CLSAS3 categorizes augmentation operations into ‘strong’ and ‘weak’ and tries to align the feature distance
distribution of views derived from these two augmentation types when finding the positive pairs from the weak
augmented samples simultaneously. CLSA inherits the structure of MoCo. Based on the implementation of CLSA,
our approach found positive pairs of an augmented view from the dictionary. In our experiment, we kept the
hyperparameters of CLSA but modified the dictionary size and learning rate to match our original ESS-MB.

NNCLRS4 computes similarity according to the proximity within a latent space generated by the encoder
to contrastively learn representations from unlabeled images. The Lightly package was used to run NNCLR
simulations with the ResNet-18 backbone. To ensure a fair comparison, we switched the backbone of ESS-MB
on MoCo to Resnet-18 and trained both models for 200 epochs in the pretraining phase.

MoCo V3S5 applied the contrastive learning structure to the Vision TransformerS6 backbone. The dictionary
size is set to 4096 to align with the threshold of ESS-MB approach. We run both models for 200 epochs in the
pretraining with 256 batch size.

Assessing the clustering of learned features
After training on the datasets, we applied t-SNES7 on the features for a subset of images from the

corresponding datasets to determine whether the training produced clustering of features from spatially proximal
images. We randomly selected approximately 10,000 images that were inside the room boundaries and took the
features from the fully trained ResNet model as input to the t-SNE. In the resulting t-SNE space, each image’s
features were labeled with a number (and a corresponding color), indicating the room of its origin.

The t-SNE visualizations generated for both the baseline and ESS-MB models trained on House and Apt
environments are shown in Figures S3 and S4, respectively. Furthermore, we used the Silhouette Coefficient,S8

Calinski-Harabasz index,S9 and Davies-Bouldin indexS10 as metrics to assess the clustering quality of the t-
SNE outputs. These results are shown in Table S4. Both results show a model trained on the more extensive
House100K dataset exhibited a stronger capability in distinguishing features generated from different rooms
compared to the one trained on the smaller House14K dataset. For all the models trained on three datasets, ESS-
MB exhibited reduced clustering relative to the baseline model. This might be attributed to the ESS-MB training
approach, which tends to group features of spatially proximal images together, regardless of room boundaries.
In contrast, the baseline MoCo model relies only on instance discrimination. As a result, cluster boundaries for
nearby locations in adjacent rooms would not be as distinct with ESS-MB.
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Figure S3: The t-SNE results of the learned features in the House environment
(A) ESS-MB on House14K. (B) ESS-MB on House100K. (C) Baseline on House14K. (D) Baseline on House100K.
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Figure S4: The t-SNE results of the learned features in the Apt environment
(A) ESS-MB on Apt14K. (B) Baseline on Apt14K.

Pretext dataset Model Silhouette ↑ CH index ↑ DB index ↓
House100K Baseline 0.2394 4538.16 0.8552
House100K ESS-MB 0.1437 2393.92 1.8488
House14K Baseline -0.0548 1187.78 5.5367
House14K ESS-MB 0.0972 1549.44 9.8386

Table S4: Evaluation of the learned features
CH and DB stand for Calinski-Harabasz and Davies-Bouldin indices, respectively. An upward arrow indicates that
a higher value for the respective index denotes more effective clustering, while a downward arrow implies the
reverse.
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