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eMethods 

CoVPN Study and Covariate Harmonization 

The Moderna, AstraZeneca, Janssen, and Novavax trials were designed to be harmonized, but minor differences were present. 

Important aspects of the trials are summarized in eMethods Table 1. 

 

eTable 1. Summary of protocol-specific definitions, including date of COVID-19 onset and COVID-19 symptoms that 

triggered illness visit testing. 

 Moderna AstraZeneca Janssen Novavax 

COVID-19 

Case 

definition 

• The participant must 

have experienced at least 

TWO of the following 

systemic symptoms: Fever 

(≥38ºC), chills, myalgia, 

headache, sore throat, new 

olfactory and taste 

disorder(s); OR 

• The participant must 

have experienced at least 

ONE of the following 

respiratory 

signs/symptoms: cough, 

shortness of breath or 

difficulty breathing, OR 

clinical or radiographical 

evidence of pneumonia; 

AND 

• The participant must 

have at least one NP 

swab, nasal swab, or 

saliva sample (or 

respiratory sample, if 

hospitalized) positive for 

SARS-CoV-2 by RT-PCR 

 

Participant must have RT-

PCR-confirmed SARS-

CoV-2 and meet the 

following criteria at any 

point from their initial 

illness visit at the 

site (Day 1) through their 

second illness visit (Day 

14): 

1 One or more Category A 

findings 

OR 

2 Two or more Category 

B findings 

 

Category A: 

• Pneumonia diagnosed by 

chest x-ray, or computed 

tomography scan 

• Oxygen saturation of 

≤94% on room air or 

requiring either new 

initiation or escalation in 

supplemental O2 

• New or worsening 

dyspnea/shortness of 

breath 

 

Category B: 

• Fever >100°F (>37.8°C) 

or feverishness 

• New or worsening cough 

• Myalgia/muscle pain 

• Fatigue that interferes 

with activities of daily 

living 

• Vomiting and/or 

diarrhea (only one finding 

to be counted toward 

endpoint definition) 

• Anosmia and/or ageusia 

(only one finding to be 

counted toward endpoint 

definition) 

PCR or NAAT 

confirmation of SARS-

CoV-2 infection AND ≥2 

of the following 

symptoms (new or 

worsening): fever or 

chills, cough, heart rate 

≥90 beats/minute, muscle 

or body pain, headache, 

new loss of taste or smell, 

sore throat, red or bruised-

looking feet or toes, 

nausea, vomiting, or 

diarrhea; or one or more 

of the following signs or 

symptoms: shortness of 

breath, respiratory rate 

>20 breaths/minute, 

clinical or radiologic 

evidence of pneumonia, 

deep vein thrombosis, or 

abnormal oxygen 

saturation (but above 

93%). 

PCR-confirmed COVID-

19, either mild (≥ 1 of the 

following: subjective or 

objective fever or new 

onset cough; or ≥ 2 of the 

following: new onset or 

worsening of shortness of 

breath or difficulty 

breathing compared to 

baseline, new onset 

fatigue, new onset 

generalized muscle or 

body aches, new onset 

headache, new loss of 

taste or smell, acute onset 

of sore throat, congestion 

or runny nose, new onset 

nausea, vomiting or 

diarrhea) OR moderate 

(≥1 of the following: fever 

≥38.4°C for ≥3 days, any 

evidence of significant 

lower respiratory tract 

infection [shortness of 

breath or breathlessness or 

difficulty breathing with 

or without exertion greater 

than baseline], tachypnea 

[24 to 29 breaths per 

minute at rest], SpO2 94% 

to 95% on room air, 

abnormal chest X-ray or 

chest computerized 

tomography consistent 

with pneumonia or lower 

respiratory tract infection, 

adventitious sounds on 

lung auscultation [e.g., 

crackles/rales, wheeze, 

rhonchi, pleural rub, 

stridor]. 
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Severe 

COVID-19 

case 

definition 

Meeting the COVID-19 

case definition and AND 

any of the following:  

• Clinical signs indicative 

of severe systemic illness, 

respiratory rate ≥30 per 

minute, heart rate ≥125 

beats per minute, SpO2 

≤93% on room air at sea 

level or PaO2/FIO2 <300 

mmHg, OR  

• Respiratory failure or 

Acute Respiratory 

Distress Syndrome 

(ARDS), (defined as 

needing high-flow 

oxygen, non-invasive or 

mechanical ventilation, or 

ECMO), evidence of 

shock (systolic blood 

pressure <90 mmHg, 

diastolic BP <60 mmHg 

or requiring vasopressors), 

OR  

• Significant acute renal, 

hepatic or neurologic 

dysfunction, OR  

• Admission to an 

intensive care unit or 

death 

Participant must have 

laboratory-confirmed 

COVID-19 (SARS-CoV-2 

RT-PCR-positive 

symptomatic illness) plus 

any of the following: 

• Clinical signs at rest 

indicative of severe 

systemic illness 

(respiratory rate ≥30 

breaths per minute, heart 

rate ≥125 beats per 

minute, oxygen saturation 

≤93% on room air at sea 

level, or partial pressure 

of oxygen to fraction of 

inspired oxygen ratio 

<300 mmHg) 

• Respiratory failure 

(defined as needing high-

flow oxygen, 

noninvasive ventilation, 

mechanical ventilation or 

extracorporeal membrane 

oxygenation) 

• Evidence of shock 

(systolic blood pressure 

<90 mmHg, diastolic 

blood pressure <60 

mmHg, or requiring 

vasopressors) 

• Significant acute renal, 

hepatic, or neurologic 

dysfunction 

• Admission to an 

intensive care unit 

• Death 

A SARS-CoV-2 positive 

RT-PCR or molecular test 

result from any available 

respiratory tract 

sample (eg, nasal swab 

sample, sputum sample, 

throat swab sample, saliva 

sample) or other sample 

AND  

any 1 of the following at 

any time during the course 

of observation: 

• Clinical signs at rest 

indicative of severe 

systemic illness 

(respiratory rate ≥30 

breaths/minute, heart rate 

≥125 beats/minute, 

oxygen saturation (SpO2) 

≤93% on room air at sea 

level*, or partial pressure 

of oxygen/fraction of 

inspired oxygen 

(PaO2/FiO2) <300 

mmHg) * SpO2 criteria 

will be adjusted according 

to altitude per the 

investigator judgement. 

• Respiratory failure 

(defined as needing high-

flow oxygen, non-invasive 

ventilation, mechanical 

ventilation, or 

extracorporeal membrane 

oxygenation [ECMO]) 

• Evidence of shock 

(defined as systolic blood 

pressure <90 mmHg, 

diastolic blood pressure 

<60 mmHg, or requiring 

vasopressors) 

• Significant acute renal, 

hepatic, or neurologic 

dysfunction 

• Admission to the ICU 

• Death 

SARS-CoV-2 RT-PCR 

positive symptomatic 

illness with any of the 

following: clinical signs at 

rest indicative of severe 

systemic illness 

(respiratory rate ≥30 

breaths/minute, heart rate 

≥125 beats/minute, SpO2 

≤93% on room air at sea 

level, or PaO2/FiO2 <300 

mmHg); respiratory 

failure (defined as needing 

high-flow oxygen, non-

invasive ventilation, 

mechanical ventilation, or 

extracorporeal membrane 

oxygenation); one or more 

major organ system 

dysfunction or failure to 

be defined by diagnostic 

testing/clinical 

syndrome/interventions, 

including ARDS, acute 

renal failure, acute hepatic 

failure, acute right or left 

heart failure; septic or 

cardiogenic shock (with 

shock defined as systolic 

blood pressure <90 

mmHg OR diastolic blood 

pressure <60 mmHg); 

acute stroke (ischemic or 

hemorrhagic), acute 

thrombotic event (acute 

myocardial infarction, 

deep vein thrombosis, 

pulmonary embolism); 

requirement for: 

vasopressors, systemic 

corticosteroids, or 

hemodialysis; multisystem 

inflammatory syndrome in 

children as per the CDC 

definition (in participants 

<21 years), ICU 

admission; or death. 

Primary 

efficacy 

endpoint 

First occurrence of 

COVID-19 starting 14 

days after the second dose 

First case of SARS-CoV-2 

RT-PCR-positive 

symptomatic illness, in 

seronegative participants 

occurring 14 days post 

second dose  

First occurrence of 

molecularly confirmed, 

moderate to severe/critical 

COVID-19, in 

seronegative participant 

occurring 14 days after 

vaccination 

First episode of PCR-

positive mild, moderate, 

or severe COVID-19, in 

seronegative participants 

occurring 7 days after 

second dose 
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Date of 

COVID-19 

onset 

Later date of either:  

• date of positive PCR test  

• the date of eligible 

symptom(s), 

two dates should be 

within 14 days of each 

other 

Earliest collection date of 

positive central lab RT-

PCR or local lab RT-PCR. 

Date when any sign(s) or 

symptom(s) suggesting 

possible COVID-19 

Minimum date of the 

following events (both 

events must occur): 

• date of PCR positive 

result from the UWVL 

• date of the start of mild, 

moderate, or severe 

COVID-19 disease from 

the COVID-19 Endpoint 

assessment CRF. 

COVID-19 

Symptoms 

Triggering 

Illness 

Visits 

Participants instructed to 

arrange an Illness Visit 

with site to collect an NP 

swab within 72 hours of: 

• Fever (temperature 

≥38ºC) or chills; shortness 

of breath or difficulty 

breathing; or cough for 

any duration, OR 

• Fatigue, muscle or body 

aches, headache, new loss 

of taste or smell, sore 

throat, congestion or 

runny nose, nausea or 

vomiting, or diarrhea 

lasting at least 48 hours 

Participant instructed to 

initiation Illness Visits for 

PCR testing if they 

experienced:  

• Fever, shortness of 

breath, or difficulty breath 

for any duration, OR  

• Chills, cough, fatigue, 

muscle aches, body aches, 

headache, new loss of 

taste, new loss of smell, 

sore throat, congestion, 

runny nose, nausea, 

vomiting, or diarrhea 

present for at least 2 days 

The triggers to proceed 

with home-collection of 

the nasal swabs on 

COVID-19 Day 1-2 and 

to proceed with the 

COVID-19 Day 3-5 visit 

were prespecified as 

follows: 

• A positive RT-PCR 

result for SARS-CoV-2, 

through a private or public 

laboratory 

independent of the study, 

whether symptomatic or 

asymptomatic 

OR 

• New onset or worsening 

of any 1 of the symptoms, 

which lasts for at least 24 

hours, not otherwise 

explained: headache; 

malaise (appetite loss, 

generally unwell, fatigue, 

physical weakness); 

myalgia (muscle pain); 

chest congestion; cough; 

runny nose; shortness of 

breath or difficulty 

breathing (resting or on 

exertion); sore throat; 

wheezing; eye irritation or 

discharge; chills; fever 

(≥38.0°C or ≥100.4°F); 

pulse oximetry value 

≤95%,which is a decrease 

from baseline; heart rate 

≥90 beats/minute at rest, 

which is an increase from 

baseline; gastrointestinal 

symptoms (diarrhea, 

vomiting, nausea, 

abdominal pain); 

neurologic symptoms 

(numbness, difficulty 

forming or understanding 

speech); red or bruised 

looking toes; skin rash; 

taste loss or new/changing 

sense of smell; symptoms 

of blood clots: 

Participant was directed 

via the eDiary to begin 

daily nasal self-swabbing 

for PCR testing at home 

for a total of 3 days if they 

experienced: 

• Fever (temperature 

≥38ºC) or chills for any 

duration, OR 

• Two consecutive days 

of: new onset or 

worsening of cough 

compared with baseline; 

new onset or worsening of 

shortness of breath or 

difficulty breathing over 

baseline; new onset 

fatigue; new onset 

generalized muscle or 

body aches; new onset 

headache; new loss of 

taste or smell; acute onset 

sore throat; acute onset 

congestion or runny nose; 

new onset nausea or 

vomiting; or new onset of 

diarrhea  



© 2024 Fisher LH et al. JAMA Network Open. 

pain/cramping, swelling 

or redness in your 

legs/calves; confusion; 

bluish lips or face; or 

clinical 

suspicion/judgement by 

investigator of symptoms 

suggestive for COVID-19 

 

In this analysis, we used the same harmonized COVID-19 comorbidity and SARS-CoV-2 exposure risk definitions defined in 

Theodore et al.1 For convenience, these definitions are reproduced (with author permission) below: 

Baseline Comorbidities  

In this analysis, comorbid conditions (yes or no) were defined as the presence of a given medical condition indicated in either the 

medical history eCRF or the comorbid questionnaire CRF data. Comorbid conditions listed by CDC as associated with severe 

COVID-19 were first mapped to MedDRA coding. Specifically, the CDC updated on Feb 15, 2022, the listing of underlying medical 

conditions associated with higher risk for severe COVID-19 (https://www.cdc.gov/coronavirus/2019-ncov/science/science-

briefs/underlying-evidence-table.html). All of the medical conditions in this CDC list were mapped to MedDRA 24.0- English version 

coding for the applicable Preferred Term (PT) and High-level Term (HLT) for each medical condition. The medical diagnosis listed in 

medical history eCRF of each participant were available as MedDRA terms. The frequencies of occurrence of each of these conditions 

were tabulated and included as an independent variable. The medical conditions and subcategories with a frequency of occurrence 

<5% were combined or eliminated for the construction of variables analyzed in the final dataset (Supplementary Table 4 from 

Theodore et al.) The mapped coding was then used to determine the presence of each condition as listed in the medical history eCRF.  

Occupational Risk  

Occupational risk was determined by attributing Occupational Safety and Health Administration (OSHA) hazard recognition scores to 

self-reported workplace information provided by participants. OSHA functions as a regulatory agency under the United States 

Department of Labor to ensure safe and healthful working conditions, and as such, defined categories in response to the Covid-19 

pandemic to aid in the assessment and mitigation of exposure risk in the workplace. Low exposure risk jobs have minimal contact with 

the public or coworkers. Medium exposure risk jobs have frequent or sustained close contact with the public or coworkers in outdoor 

or well-ventilated settings. High exposure risk jobs include close or poorly ventilated working conditions with known or suspected 

sources of SARS-CoV-2 (such as a hospital, grocery store or public transit). Very high exposure risk jobs are performing specific 

medical, postmortem or laboratory procedures. If individuals selected more than one category, the maximum score was taken. High 

and very high exposure risk categories were combined for analysis.  

Living Situation Risk  

Living situation risk synthesizes variables across all four trials and is scored on a scale of low, medium, high, or very high risk. It is 

based on housing type for the Moderna trial and number of co-habitants for the other 3 trials. For the AstraZeneca, Janssen, and 

Novavax trials, low, medium, high, and very high risk conditions corresponded to 0-1, 2, 3 and 4 or more co-habitants, respectively. 

For the Moderna study, individuals self-reported the housing type(s) that applied. Each housing type was assigned to low (participants 

specified as not having risk of exposure related to housing), medium (single-family or detached housing, housing without shared 

entrances or elevators), high (congregate settings such as dormitory, group housing, or high density such as apartments with shared 

entrances or elevators), or very high (nursing homes, long-term care facilities, shelters, and multi-family dwellings) risk categories. If 

participants selected more than one housing type, the highest risk score was taken. If “other” was selected, a value was imputed using 

the most frequent category within a given study.   
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Protocol-specific schedule of illness visits, specimen types, and viral load quantitation 

Although COVID-19 endpoint definitions were harmonized across the four trials, the schedule of illness visits, and specimen types 

varied by parent protocol. Moderna collected a nasal/nasopharyngeal (NP) swab on illness visit 1, followed by saliva on illness visit 

days 3, 5, 7, 9, 14, 21, and 28. AstraZeneca collected nasal/NP swabs on illness visit days 1, 14, 21, and 28; and saliva on days 1, 3, 5, 

8, 11, 14, 21, and 28. Janssen collected nasal/NP swabs on illness visit 1, and every other illness visit day through day 23. Novavax 

collected nasal/NP swabs only from illness visit days 1, 2, and 3 (eFigure 1). 

 

eFigure 1. Summary of protocol-defined sampling collection for illness visits, triggered by symptom onset. Nasal and 

nasopharyngeal (NP) swabs are denoted by a head with swab, and saliva specimens are denoted by a mouth with a tube.  

 

Specimens collected from participants enrolled in the Moderna trial were quantified by Eurofins Viracor.2 The RT-PCR assay targets 

two genes (N1 and N2) in a single channel and conversion to a standardized viral load has been previously described.3 Specimens 

collects from participants of the AstraZeneca trial were quantified at LabCorp using an RT-PCR assay targeting the E and ORF1ab 

genes separately. University of Washington Virology (UWVL) quantified specimens from both Janssen and Novavax using the Abbott 

m-2000 SARS-CoV-2 real-time RT-PCR, which targets the N1 and N2 genes in a single channel.4 For specimens from the Janssen 

trial, swabs were first tested at a local lab and remnants of locally positive swabs were sent to University of Washington for 

quantification and sequencing (if selected). Because of the international nature of this trial, not all study sites had access to suitable 

local PCR testing capacity. If local testing was not available, specimens were shipped to Covance/Labcorp for qualitative PCR testing, 

and presumptive positive specimens were then sent to University of Washington for quantification. As a result, swabs that were not 

tested locally underwent an additional freeze-thaw cycle before quantitation at University of Washington.  

 

Urchin – A Tool for Predicting SARS-CoV-2 Variants from Spike Sequences 

The gold-standard approach to determine the lineage (and hence WHO variant status) of a SARS-CoV-2 sequence is with either the 

PANGOLIN or NextClade software tools. Because these tools provide information about the specific lineage of a given virus, they 

require a whole-genome sequence as input. These studies focused on the spike protein, and as such, sequences for some studies, for 

various reasons, were only available as the S gene (nucleotide sequence) or the spike protein (protein sequence). We needed a way to 

determine the WHO-defined variant label for these spike-only sequences. 

We accomplished this with a predictive model, which we implemented as a Shiny5-based web tool named Urchin. Urchin uses an 

optimized learner for predicting the WHO Greek-lettered variant name of a given SARS-CoV-2 spike protein sequence. In this 

particular analysis, Urchin’s predictions were used to determine the variant labels for sequences from the Moderna (n = 790) and 

AstraZeneca (n = 680) studies. 

To train and validate the Urchin model we started with a corpus of approximately 1.93 million sequences obtained from the GISAID 

database6 on August 21, 2021 (EPI-SET doi 10.55876/gis8.230822ky). We later updated our data set to account for emergence of the 

Omicron variants, specifically 10,000 sequences of both BA.1 and BA.2 along with the 239 BA.3 sequences available at the date of 

retrieval (March 20, 2022). These sequences were aligned using the MAFFT multiple sequence alignment program,7 with manual 

touch-ups as needed. From here, we generated a feature set by rendering the sequence data into a set of binary indicator variables for 

each position, leading to a feature for each observed amino acid at every site (e.g., “position 614 is ‘G’”), excluding gaps (“-”) and 

unknown amino acids (“X”). As a dimensionality reduction step, features that were within 20 instances of being perfectly homogenous 

were screened out. To ensure that signature sites characteristic of variant definitions would not be accidentally filtered out, we 

identified a set of signature sites for all extant variants and prespecified them to be included as training features, regardless of whether 

they would pass the dimensionality reduction filter. These signature sites are enumerated in eTable 2. This dimensionality reduction 

step reduced the derivation set from 17,488 features down to 9,467 features. We then conducted a 70:30 training:validation split of the 

https://doi.org/10.55876/gis8.230822ky
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data, using random selection and stratifying by variant. This resulted in a training set of 1,348,494 sequences and a validation set of 

577,927 sequences. 

 

eTable 2. Variant-specific signature sites that were included in the homogeneity screening process (all positions indexed to the 

NC_045512 reference strain)8 

WHO Label Spike Position 

Alpha 501, 570, 614, 681, 716, 982, 1118 

Beta 80, 215, 417, 484, 501 ,614, 701 

Gamma 18, 20, 26, 138, 190, 417, 484, 501, 614, 655, 1027, 1176 

Delta 19, 95, 142, 158, 452, 478, 614, 681, 950 

Iota 5, 95, 253, 484, 614, 701 

Eta 52, 67, 484, 614, 677, 888 

Kappa 95, 142, 154, 452, 484, 614, 681, 1071 

Lambda 75, 76, 246, 452, 490, 614, 859 

Mu 95, 143, 144, 145, 346, 484, 501, 614, 681, 950 

Theta 265, 484, 501, 614, 681, 1092, 1101, 1176 

Zeta 484, 614, 1176 

Epsilon 13, 152, 452, 614 

 

To optimize our model and eliminate any bias that might occur from variants that were over-represented in the database, we created an 

exploration set from the training set by randomly sampling N sequences for each variant, where N is equal to 38, the frequency of the 

least-represented variant in the training data (Theta). Since the training data contained sequences for 15 variants (including the 

Ancestral lineage), this resulted in an exploration set containing 570 sequences. This exploration set was then used as the training set 

for an initial learner.  

We approached this as a multi-class problem, to develop a learner that would predict the Greek-lettered variant of any sequence, as 

provided by GISAID’s metadata file. All sequences from the A.1 Ancestral lineage and the B.1 basal outbreak lineage (with the 

G614G mutation) were grouped into a single “Ancestral Strain” variant category. For our learning method, due to the discrete nature 

of mutations and their associations with variants, we selected extreme gradient boosting (XGBoost9) with the multiclass log loss 

evaluation metric and 50 rounds of boosting iterations.  

We performed 5-fold cross validation to estimate the error with the exploration set. This resulted in a cross-validated predictive 

accuracy (the proportion of correct predictions) of 0.988 (95% CI:  0.975, 0.995). Using the same hyperparameters, we trained a single 

model to predict the variant of the validation set, resulting in a predictive accuracy of 0.993 (0.9927, 0.9931). Only 79 of the total 

9467 features held predictive importance in this model and thus were used to define our new feature set. These final features (79 

residues across 60 unique positions) are enumerated in eTable 3. 

 

eTable 3. The final set of features (79 features across 60 unique positions) used by the final predictive model (all positions 

indexed to the NC_045512 reference strain). 

Spike 

Position 
Amino Acid 

13 I, S 

19 R, T, I 

20 N 

24 L 

52 R, Q 
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63 T 

68 I 

69 H 

70 V 

71 S 

72 G 

75 V, G 

80 A, D 

95 I, T 

98 S 

126 V 

142 G 

143 V 

144 S, Y 

145 N 

150 K 

152 C, W 

153 M 

190 R 

213 G 

215 Y, D 

222 A 

242 L 

253 G 

258 W 

259 T 

261 G 

262 A 

264 A 

265 Y 

271 Q 

272 P 

275 F 

323 T 

346 K, R 

371 L 

405 N 

417 N 

452 L, R 

477 S 

484 K, E 

490 F 
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496 G 

501 N, Y 

570 D 

677 H 

681 P, H 

701 A, V 

859 T, N 

888 F, L 

950 N 

966 L 

969 N 

1101 Y 

1176 F, V 

 

Using this refined set of features, we trained a final model on the full training set, using the same XGBoost parameters as before. 

Validating this model on the holdout set of 577,927 sequences, it performed with a predictive accuracy of 0.9929 (0.9927, 0.9931). 

This is the final model that was selected for use with the Urchin web tool. 

The results across both studies then underwent a phylogenetic analysis in order to investigate any potential miscalls from Urchin. Both 

sequence sets were combined and phylogenetic trees were generated using the PhyML software with the Blosum62 model. From these 

trees, 20 sequences predicted to be of the Ancestral Strain by Urchin appeared to be miscalls, and this was confirmed with a tree built 

from a larger set of sequences. The 20 miscalls were confirmed to be: 9 Lambda, 5 Iota, 4 Beta, and 2 which were either Gamma or 

Zeta. Of these 20 miscalls, 6 were from the Moderna study (0.7% miscalls) and 14 from AstraZeneca (2% miscalls). The miscalls 

were due to either missing sequence content, rare mutations, or, in the case of Lambda, a 13-AA deletion covering spike positions 64 

through 76 that is inconsistently found in Lambda and was confusing our learner by defeating the characteristic G75V mutation. 

This predictor is available online as the Urchin web tool, which can be accessed at https://urchin.fredhutch.org/. Users can submit a set 

of spike sequence data in FASTA format and Urchin will return the predicted WHO variant labels. The sequences do not need to be 

aligned, and they are each transformed into the 79 features required by the learner. The final model uses these features to predict the 

variant label for each submitted sequence. The results are reported back to the user and can be downloaded as a CSV file. Urchin is 

available to the public for the sake of reproducibility, https://urchin.fredhutch.org/ as it has not been retrained for recent variants 

(particularly emerging Omicron subvariants and recombinants), so it will be of limited use with modern sequences. The source code is 

available at https://github.com/jamesprg/urchin.  

 

Multiple imputation of SARS-CoV-2 Variants 

While all protocols prioritized obtaining a sequence from each infection observed in the trial, successful sequencing was not always 

possible. There are several reasons why it was not possible to obtain a viral sequence, even from repeated sampling over the course of 

an infection. In general, sequencing was not even attempted if the specimen was found to have a low viral load (or high cycle 

threshold), although the specific sequencing thresholds will vary by lab. Sequencing could also be missing for other reasons, including 

low sample volume or poor specimen quality. As a result, sequencing was not available for 20.6% of the analysis cohort and were 

classified as such for the primary analyses.  

The extensive genomic data that was collected, sequenced, and openly shared from specimens worldwide through GISAID provided 

an opportunity for imputation analyses to fill in those missing variants. As the specimen level, the information is highly variable in the 

GISAID metadata; as such, we focused on the strongest predictors of circulating viruses: space and time.  

We used GISAID metadata of specimens from individuals in the 8 countries represented in our analysis population: Argentina, Brazil, 

Chile, Colombia, Mexico, Peru, South Africa, and the United States of America. The specimens in our analysis cohort were classified 

as one of the WHO-named variants (Alpha, Beta, Delta, Gamma, etc.) or Other. Since this analysis was limited to the early part of the 

pandemic, the Other category was primarily composed of Ancestral lineages, but had other minor lineages that did not reach the level 

of a named variant. We excluded specimens with impossible variant-date combinations, such as Delta in November of 2020.  

https://urchin.fredhutch.org/
https://urchin.fredhutch.org/a
https://github.com/jamesprg/urchin


© 2024 Fisher LH et al. JAMA Network Open. 

For imputation analyses, we supplemented the analysis data with the estimated proportion of circulating variants at the time of 

infection, based on the local GISAID metadata. In particular, for each infection in the analysis dataset, we estimate the proportion of 

cases attributed to each variant by summarizing a two-week window around the date of COVID-19 onset in local GISAID data. For 

swabs collected from participants within the United States, state-level GISAID data was used, while country-level GISAID data was 

used for all other infections. eFigure 2 provides a visual representation of the available data used to estimate the distribution of 

circulating variants by infection in Chile. In the example, we would attribute all of the circulating cases to the Other category for the 

first infection (left-most red vertical line); in contrast, for the last infection missing a variant (the rightmost vertical line), the estimated 

distribution of variants at that time would inclue nearly all of the observed variants (except Delta), to varying degrees.  

eFigure 2. Example of data used for imputation analyses. Gray dots represent the observed variants sequencing in Chile over time 

in the GISAID database, blue dots indicate samples from the analysis dataset that have successfully been sequenced, and the red 

dashed lines denote the dates of illness visit day 1 swabs that are missing sequencing information. Other includes Ancestral strain, as 

well as all other non-WHO-named lineages. 

 

We used these estimated proportions of circulating variants at the time of infection to do a simple imputation analysis. Specifically, we 

imputed the missing variant by taking a random draw from the multinomial distribution, with variant probabilities defined by 

estimated proportions of circulating variants at the time of infection and fitting the multivariate regression model (Figure 4). 

Regression results over 20 imputed datasets were then combined and summarized to account for the additional variability using the 

mice package in R.10 Global nominal p-values were defined as the median of the multiple p-values obtained from Wald tests for each 

imputed dataset only when standard approaches failed.11  

 

 

 

Sensitivity and Exploratory analyses 
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We consider several sensitivity and exploratory analyses. To examine the robustness of our conclusions to the variant imputation 

analysis, we repeated the multivariate model on the subset of participants with successful sequencing. Two analyses explored the 

sensitivity of our conclusions to the variant identification, by restricting the multivariate analysis to the subset of those identified as 

being infected by the Ancestral variant only and by using Hamming distances in lieu of variant calls in the subset of participants with 

successful sequencing.  To explore the sensitivity of our conclusions to the inclusions of negative PCR results, we repeated the 

multivariate analysis restricting to those with detectable viral load.  The sensitivity analysis restricted to those enrolled in the US 

examined the impact of including international trial sites, primarily from the Janssen trial, on the primary conclusions.  The sensitivity 

analysis limited to those enrolled in the Janssen trial explored the sensitivity of our conclusions within the largest trial. As an 

exploratory analysis, the multivariate model was fit including country-specific smoothed calendar time trends, to allow for potential 

confounding of viral load by local epidemic dynamics. In particular, the GAM model is an extension of the multivariate linear 

regression used in the primary analysis that flexibly models non-linear local temporal trends in COVID-19 incidence using cubic 

regression splines. 

 

Severity prediction 

In a post-hoc exploratory analysis, we examined the utility of log viral load at diagnosis in the prediction of severe COVID-19. This 

was only feasible for the Janssen trial, where two measures of viral load were considered: the log viral load at diagnosis (i.e., first 

illness associated swab) and the area under the longitudinal log viral load curve (VL-AUC), estimated using the trapezoidal rule over 

28 days. Additional predictors included a full set of baseline participant characteristics and infection characteristics, summarized 

below:  

 

 

Variable sets Variables 

Baseline demographics 
Age (continuous), sex, country, race, ethnicity, BMI at baseline (continuous), 

risk of COVID-19 exposure (categorical), living conditions (categorical) 

Baseline comorbidities 

(binary) 

Lung disease, cardiovascular disease, obesity, diabetes, liver disease, HIV, 

history of smoking, asthma, hypertension, COVID-19 comorbidities 

Infection characteristics 
Infecting variant, initial VL, AUC of VL trajectory (VL-AUC), days since onset 

VL measurements began 

 

Superlearner modeling, using the negative log-likelihood loss function, and a library of adaptive and non-adaptive learners and 

classifiers, was employed. Cross-validation was performed at two levels: five-fold outer level to compute the cross-validated area 

under the ROC curve (CV-AUC), and 5-fold inner level to estimate ensemble weights. CV-AUC and influence curve-based 

confidence intervals were computed for the ensemble model (Superlearner), discrete Superlearner, and the individual learners.12 

Marginal and conditional variable importance were assessed using the vimp package in R.13 

 

For predictive models that included a single covariate (either log VL at first illness associated PCR test, or VL-AUC), learner libraries 

included glm and gam (SL.mean, SL.glm, SL.gam). Predictive models adjusting for additional baseline covariates used a larger 

collection of learner libraries that also included glm interactions (SL.glm.interaction), elastic net (SL.glmnet; alpha=0, 0.25, 0.5, 0.75, 

1 ), random forests (SL.ranger), and gradient-boosted machines (SL.xgboost).  
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Supplemental Results 

eTable 1. Additional baseline characteristics 

 

 
Moderna 
(N=594) 

AstraZeneca 
(N=97) 

Janssen 
(N=916) 

Novavax 
(N=60) 

Total 
(N=1667) 

Age at enrollment (years)      

  Mean (SD) 48.1 (14.4) 46.3 (14.9) 46.1 (14.9) 41.8 (14.9) 46.7 (14.7) 

Underrepresented Minority (US Only) 

  Yes 165 (27.8) 15 (15.5) 68 (7.4) 12 (20.0) 260 (15.6) 

  No 429 (72.2) 55 (56.7) 207 (22.6) 44 (73.3) 735 (44.1) 

BMI at Baseline Visit (kg/m2) 

  Mean (SD) 30.4 (7.0) 29.7 (6.3) 28.1 (5.6) 29.3 (7.0) 29.0 (6.3) 

Baseline comorbidities: n (%) 

  Lung Disease 24 (4.0) 3 (3.1) 52 (5.7) 8 (13.3) 87 (5.2) 

  Cardiovascular Disease 153 (25.8) 27 (27.8) 194 (21.2) 14 (23.3) 388 (23.3) 

  Obesity 258 (43.4) 46 (47.4) 257 (28.1) 27 (45.0) 588 (35.3) 

  Diabetes 60 (10.1) 9 (9.3) 65 (7.1) 6 (10.0) 140 (8.4) 

  Kidney Disease 4 (0.7) 0 (0.0) 5 (0.5) 0 (0.0) 9 (0.5) 

  Liver Disease 5 (0.8) 3 (3.1) 7 (0.8) 0 (0.0) 15 (0.9) 

  HIV 3 (0.5) 2 (2.1) 14 (1.5)  19 (1.1) 

  History of Smoking 9 (1.5) 17 (17.5) 11 (1.2) 18 (30.0) 55 (3.3) 

  Asthma 58 (9.8) 3 (3.1) 49 (5.3) 6 (10.0) 116 (7.0) 

  Hypertension 148 (24.9) 26 (26.8) 184 (20.1) 13 (21.7) 371 (22.3) 

Risk of Exposure to SARSCoV2 as per OSHA (Imputed): n (%) 

  Lower Exposure Risk  30 (30.9) 848 (92.6) 34 (56.7) 912 (54.7) 

  Medium Exposure Risk 150 (25.3) 45 (46.4) 20 (2.2) 19 (31.7) 234 (14.0) 

  High Exposure Risk 444 (74.7) 22 (22.7) 48 (5.2) 7 (11.7) 521 (31.3) 

Housing Type: n (%) 

  Low-Risk Housing 94 (15.8)    94 (5.6) 

  Medium-Risk Housing 450 (75.8) 71 (73.2) 534 (58.3) 60 (100.0) 1115 (66.9) 

  High-Risk Housing 30 (5.1) 26 (26.8) 3 (0.3)  59 (3.5) 

  Very-High-Risk Housing 20 (3.4)  379 (41.4)  399 (23.9) 

Living Condition: n (%) 

  Low-Risk Living Condition 94 (15.8) 33 (34.0) 329 (35.9) 45 (75.0) 501 (30.1) 

  Medium-Risk Living Condition 450 (75.8) 16 (16.5) 305 (33.3) 11 (18.3) 782 (46.9) 

  High Risk-Living Condition 30 (5.1) 19 (19.6) 206 (22.5) 2 (3.3) 257 (15.4) 

  Very-High-Risk Living Condition 20 (3.4) 29 (29.9) 76 (8.3) 2 (3.3) 127 (7.6) 
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Summary of univariate model results 

Viral load at diagnosis was highly variable, with a median viral load of 6.18 log10 copies/mL (interquartile range 4.66-7.12 log10 

copies/mL). Among the three protocols that provided data that included undetectable viral loads, 6.3% (68/1073) of participants met 

this criterion. Distributions of log10 viral load and univariate analyses of factors associated with viral load at diagnosis are summarized 

in Figure 3 and eTable 2. 

Parent protocol was univariately associated with viral load (adjusted p<0.01), with placebo cases in Janssen having an estimated 0.83 

log10 copies/mL lower mean viral load relative to those in the reference Moderna protocol (95% CI: 1.04 to 0.62 lower) (Figure 3A, 

eTable 2). Additionally, country was associated with viral load: Colombia and South Africa had significantly lower mean viral loads 

compared to the reference US. Given that 95% of non-US cases were enrolled in the Janssen trial, these associations between country 

and protocol and viral load are likely related.  

 

Other baseline factors univariately associated with viral load at diagnosis included participant race, having one or more comorbidities, 

and SARS-CoV-2 exposure risk (eTable 2). Similar viral load distributions were observed among participants who had severe disease 

vs. those with non-severe disease (Figure 3B).    

 

Viral load distributions were highest closest to COVID-19 onset (Figure 3D, eTable 2), with an estimated 0.26 log10 copies/mL lower 

mean viral load each additional day (95% CI: 0.34 to 0.18 lower; adjusted p<0.01). 

Additionally, there were apparent differences in viral load among the SARS-CoV-2 variants (adjusted p<0.01). Viral loads 

corresponding to infections missing sequences were lower than those with sequences, with median viral loads of 3.62 and 6.48 log10 

copies/mL, respectively (Figure 3C). This may be due to an inherent threshold for successful sequencing. The univariate analysis 

estimated Beta, Gamma, and Mu to have between 0.5 and 1.2 log10 copies/mL lower and Delta to have 0.28 log10 copies/mL higher 

mean viral load at diagnosis relative to Ancestral. However, there were just seven Delta infections in this cohort. In these univariate 

analyses, infecting variant explained approximately 23% of the variability in log10 viral load, although this was primarily attributable 

to the difference in viral load between individuals with and without sequences. 

 

Thus, while several factors were found to be associated with viral load at diagnosis based on univariate analyses, none of the 

participant characteristics, beyond infecting variant, explained more than 3.7% of the observed variability.   

 

 
eTable 2. Univariate linear regression results for placebo infections. Estimated mean difference 
in log10 viral load (VL) at diagnosis between each covariate category and the reference category, or 
per unit increase in the covariate in the case of continuous covariates, along with 95% confidence 
interval and nominal p-value, based on univariate linear regression models. Global nominal pvalues 
from Wald Test to test coefficients for categorical variables with > 2 levels. Adjusted p-values account 
for multiplicity and are corrected using the Holm method. Adjusted R2 are included from the univariate 
model fit.  
 

Covariate 
Mean Difference 

log10(VL) (95% CI) 
Nominal 
P-value 

Global 
Nominal P 

Adjusted 
P-value 

Adjusted 
R2 

Age Category (Ref: 1829)      
 3039 0.15 (0.20, 0.50) 0.40 0.42 1.00 0.000 
 4049 0.12 (0.19, 0.44) 0.44    
 5064 0.25 (0.04, 0.55) 0.09    
 65+ 0.30 (0.06, 0.67) 0.11    
Sex (Ref: Female)      
 Male 0.08 (0.12, 0.27) 0.44  1.00 0.000 
Race (Ref: White)      
 American Indian or Alaska Native 0.56 (0.87, 0.25) <0.01 <0.01 <0.01 0.025 
 Asian 0.16 (0.79, 0.47) 0.62    
 Black or African American 0.96 (1.31, 0.62) <0.01    
 Multiple 0.29 (0.68, 0.11) 0.16    
 Other 1.40 (0.29, 2.50) 0.01    
 Not Reported -0.52 (-1.12, 0.08) 0.09    
Ethnicity (Ref: Not Hispanic or Latino)      
 Hispanic or Latino -0.29 (-0.48, -0.09) <0.01 0.01 0.19 0.004 
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 Not Reported -0.56 (-1.46, 0.35) 0.23    
BMI at Baseline Visit 0.00 (0.01, 0.02) 0.70  1.00 0.000 
BMI Category (Ref: Healthy weight)      
 Underweight 0.58 (1.86, 0.69) 0.37 0.65 1.00 0.000 
 Overweight or obese 0.01 (0.21, 0.23) 0.93    
Infecting Variant (Ref: Ancestral)      
 Alpha 0.54 (-0.98, -0.10) 0.015 <0.01 <0.01 0.029 
 Beta 1.24 (-1.70, -0.77) <0.01    
 Gamma 0.49 (-0.82, -0.17) 0.003    
 Epsilon 0.08 (-0.62, 0.46) 0.767    
 Zeta 0.21 (-0.59, 0.18) 0.287    
 Iota 0.03 (-1.29, 1.34) 0.968    
 Delta 0.28 (-0.94, 1.50) 0.654    
 Lambda 0.26 (-0.69, 0.18) 0.248    
 Mu 0.86 (-1.31, -0.40) <0.01    
Symptom Severity (Ref: Not Severe)      
 Severe 0.14 (0.41, 0.13) 0.31  1.00 0.000 
Days since COVID19 Onset 0.26 (0.34, 0.18) <0.01  <0.01 0.025 
COVID19 Comorbidities 0.31 (0.52, 0.11) <0.01  0.05 0.005 
Parent Protocol (Ref: Moderna)      
 AstraZeneca 0.02 (0.45, 0.41) 0.94 <0.01 <0.01 0.037 
 Janssen 0.83 (1.04, 0.62) <0.01    
 Novavax 0.46 (0.99, 0.07) 0.09    
Country (Ref: USA)      
 Argentina 0.29 (0.71, 0.14) 0.18 <0.01 <0.01 0.028 
 Brazil 0.16 (0.49, 0.16) 0.33    
 Chile 0.11 (1.10, 0.88) 0.83    
 Colombia 0.82 (1.13, 0.51) <0.01    
 Mexico 0.89 (2.04, 0.25) 0.13    
 Peru 0.18 (0.59, 0.23) 0.39    
 South Africa 1.28 (1.73, 0.83) <0.01    
US Underrepresented Minority  0.44 (0.73, 0.16) <0.01  0.04 0.025 
Lung Disease (Ref: No) 0.34 (0.78, 0.10) 0.13  1.00 0.001 
Cardiovascular Disease (Ref: No) 0.13 (0.10, 0.36) 0.26  1.00 0.000 
Obesity (Ref: No) 0.04 (0.16, 0.25) 0.68  1.00 0.000 
Diabetes (Ref: No) 0.21 (0.14, 0.56) 0.25  1.00 0.000 
Kidney Disease (Ref: No) 0.15 (1.19, 1.49) 0.83  1.00 0.000 
Liver Disease (Ref: No) 0.36 (0.67, 1.40) 0.49  1.00 0.000 
HIV (Ref: No) 0.32 (1.24, 0.60) 0.50  1.00 0.000 
History of Smoking (Ref: No) 0.08 (0.47, 0.63) 0.77  1.00 0.000 
Asthma (Ref: No) 0.32 (0.70, 0.07) 0.10  1.00 0.001 
Hypertension (Ref: No) 0.14 (0.10, 0.37) 0.25  1.00 0.000 
Risk of Exposure to SARSCoV2 as per 
OSHA (Ref: Lower Exposure Risk) 

    
 

 Medium Exposure Risk 0.61 (0.32, 0.90) <0.01 <0.01 <0.01 0.028 
 High Exposure Risk 0.74 (0.52, 0.95) <0.01    
Living Condition (Ref: Low Risk Living 
Condition) 

    
 

 Low Risk Living Condition 0.10 (0.20, 0.41) 0.51 0.03 0.49 0.0035 
 Medium Risk Living Condition 0.32 (0.04, 0.61) 0.03    
 Very High Risk Living Condition 0.09 (0.52, 0.34) 0.68    

 

 

 

 

Summary of univariate sensitivity analyses 
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As a brief sensitivity analysis, we compared three univariate analyses of infecting variant (eTable 3). Overall, all three approaches 

provided similar estimates of mean difference in VL relative to the Ancestral variant. Estimates from imputation are comparable to 

those obtained in both the complete case and observed data analyses. All confidence intervals overlap, although there are some small 

differences in individual variant estimates. The most notable difference in estimates was seen in among Gamma infections, where the 

complete case analysis estimated the difference in mean VL at 0.49 log10 copies/mL lower than Ancestral (95% CI: 0.82 to 0.17 

lower) and the imputation analysis estimated Gamma infections to be 0.22 log10 copies/mL lower compared to Ancestral (95% CI: 

0.63 lower to 0.20 higher).  
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eTable 3. Comparison of model results from three univariate analysis of infecting variant. The observed data approach, which 

classifies missing variants as such; the complete case analysis, which limits the univariate analysis to the subset with successful 

sequencing; and the multiple imputation univariate analysis, which imputes missing variants based on the observed distribution of 

circulating variants near the swab collection, are compared. Multiple imputation results combine 20 imputations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Observed Data 

(N = 1,667) 
Successfully Sequenced 

(N=1,323) 
Multiple Imputation 

(N = 1,667) 

Infecting Variant 
Relative to Ancestral 
(N observed) 

Mean Difference 
log10(VL) (95% CI) 

Nominal 
P-value 

Mean Difference 
log10(VL) (95% CI) 

Nominal 
P-value 

Mean Difference 
log10(VL) (95% CI) 

Nominal 
P-value 

Alpha (58) -0.54 (-1.02, -0.07) 0.026 0.54 (-0.98, -0.10) 0.015 -0.60 (-1.12, -0.08) 0.023 

Beta (50) -1.24 (-1.75, -0.73) <0.001 1.24 (-1.70, -0.77) <0.01 -1.32 (-1.82, -0.81) <0.001 

Gamma (110) -0.49 (-0.85, -0.14) 0.007 0.49 (-0.82, -0.17) 0.003 -0.22 (-0.63, 0.20) 0.306 

Epsilon (37) -0.08 (-0.67, 0.51) 0.786 0.08 (-0.62, 0.46) 0.767 -0.14 (-0.82, 0.54) 0.683 

Zeta (76) -0.21 (-0.63, 0.21) 0.328 0.21 (-0.59, 0.18) 0.287 0.11 (-0.38, 0.59) 0.672 

Iota (6) 0.03 (-1.41, 1.46) 0.971 0.03 (-1.29, 1.34) 0.968 -0.46 (-2.37, 1.45) 0.633 

Delta (7) 0.28 (-1.05, 1.61) 0.681 0.28 (-0.94, 1.50) 0.654 -0.28 (-1.81, 1.24) 0.714 

Lambda (59) -0.26 (-0.73, 0.22) 0.288 0.26 (-0.69, 0.18) 0.248 -0.07 (-0.59, 0.45) 0.792 

Mu (53) -0.86 (-1.35, -0.36) <0.001 0.86 (-1.31, -0.40) <0.01 -0.70 (-1.26, -0.15) 0.013 

Missing (344) -2.52 (-2.74, -2.29) <0.001     
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Multivariate model using Hamming distance 

 

As an exploratory analysis, we also used the Hamming distance of spike sequences from placebo infections to the Ancestral SARS-

CoV-2 strain as an alternative to the variant.  

 

eFigure 1. Scatter plot of viral load at diagnosis (log10 copies/mL) by hamming distance of 
spike sequence to Ancestral SARS-CoV-2, for those placebo infections with successful 
sequencing. 
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eTable 4. Multivariate Linear Regression of log10 viral load at diagnosis using Hamming 
distance. N=1,323 infections with sequenced infections and with values for all covariates tested in 
multivariate model. Estimated mean difference in viral load at diagnosis (log10 copies/mL) between 
each covariate category and the reference category, or per unit increase in the covariate in the case 
of continuous covariates, along with 95% confidence interval and nominal p-value, based on 
univariate linear regression models. Global nominal pvalues from Wald Test to test coefficients for 
categorical variables with >2 levels. Adjusted p-values account for multiplicity and are corrected using 
the Holm method.  
 

 Covariate 
Mean Difference 

log10(VL) (95% CI) 
Nominal 
P-value 

Global 
Nominal P-value 

Adjusted 
P-value 

Age Category (Ref: 1829)     

 3039 -0.08 (-0.38, 0.23) 0.629 0.357 1.00 

 4049 0.04 (-0.24, 0.32) 0.76   

 5064 0.14 (-0.13, 0.41) 0.303   

 65+ 0.24 (-0.11, 0.58) 0.175   

Sex (Ref: Female)     

 Male -0.00 (-0.18, 0.17) 0.962  1.00 

Race (Ref: White)     

 American Indian or Alaska Native -0.16 (-0.63, 0.31) 0.506 0.371 1.00 

 Asian -0.08 (-0.68, 0.53) 0.799   

 Black or African American -0.37 (-0.75, 0.01) 0.055   

 Multiple -0.21 (-0.66, 0.23) 0.348   

 Other 0.56 (-0.41, 1.54) 0.257   

 Not Reported -0.29 (-0.84, 0.25) 0.296   

Ethnicity (Ref: Not Hispanic or Latino)     

 Hispanic or Latino -0.05 (-0.34, 0.24) 0.731 0.441 1.00 

 Not Reported 0.50 (-0.34, 1.34) 0.24   

Infecting Variant      

 Hamming distance to Ancestral -0.01 (-0.04, 0.01) 0.315  1.00 

Symptom Severity (Ref: Not Severe)     

 Severe -0.22 (-0.47, 0.02) 0.07  0.628 

Days since COVID19 Onset -0.02 (-0.11, 0.06) 0.579  1.00 

COVID19 Comorbidities (Ref: No)     

 Yes 0.00 (-0.19, 0.20) 0.974  1 

Parent Protocol (Ref: Moderna)     

 AstraZeneca -0.13 (-0.56, 0.29) 0.532 <0.001 <0.001 

 Janssen -1.07 (-1.37, -0.78) <0.001   

 Novavax -0.46 (-0.99, 0.08) 0.098   

Country (Ref: USA)     

 Argentina 0.20 (-0.28, 0.68) 0.409 0.204 1.00 

 Brazil 0.40 (-0.00, 0.80) 0.052   

 Chile 0.40 (-0.55, 1.35) 0.413   

 Colombia 0.11 (-0.43, 0.66) 0.68   

 Mexico -0.88 (-2.21, 0.45) 0.194   

 Peru 0.51 (-0.11, 1.14) 0.108   

 South Africa -0.05 (-0.62, 0.52) 0.865   
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Summary of complete case analysis (multivariate model among those with variant data, no imputation) 

eFigure 2. Estimated mean differences in SARS-CoV-2 viral load in nasal/NP swab at COVID-19 

diagnosis, among those with successful variant calls (N = 1,323; adjusted R2 = 0.106). Forest 

plot illustrating estimated mean difference in log10 copies/mL SARS-CoV-2 viral load between groups 

defined by participant or COVID-19 disease characteristics, based on multivariate regression 

analysis. 95% confidence intervals and Holm-adjusted p-values are provided. Days since Covid-19 

onset is defined as the number of calendar days between protocol-defined onset of COVID-19 and 

the specimen collection corresponding to diagnosis. 
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eFigure 3. Estimated mean differences in SARS-CoV-2 viral load in swabs at COVID-19 

diagnosis on the subset of participants with quantifiable viral load at diagnosis, imputing 

missing variants (N=1,599; adjusted R2 = 0.044). Forest plot illustrating estimated mean difference 

in log10 copies/mL SARS-CoV-2 viral load between groups defined by participant or COVID-19 

disease characteristics, based on multivariate regression analysis with imputed variants. 95% 

confidence intervals and Holm-adjusted p-values are provided. 
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eFigure 4a. Summary of parametric results from GAM analysis with country-specific temporal 

regression splines (N = 1,667; adjusted R2 = 0.081). Estimated mean difference in log10 viral load 

(VL) at diagnosis between each covariate category and the reference category, or per unit increase in 

the covariate in the case of continuous covariates, along with 95% confidence interval and nominal p-

value, based on univariate linear regression models. Median global nominal pvalues from Wald Test 

to test coefficients for categorical variables with >2 levels. Adjusted p-values account for multiplicity 

and are corrected using the Holm method. Days since Covid-19 onset is defined as the number of 

calendar days between protocol-defined onset of COVID19 and the specimen collection 

corresponding to diagnosis. 
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eFigure 4b. Estimated country-level temporal smoothers. Ticks at bottom of each panel indicate 

contributing cases. 
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Subgroup Sensitivity Analyses 

 

 

eFigure 5. Multivariate linear regression of log10 viral load at diagnosis on the subset of 
participants infected with the Ancestral variant Only (N = 867; adjusted R2 = 0.104). Estimated 
mean difference in viral load at diagnosis (log10 copies/mL) between each covariate category and the 
reference category, or per unit increase in the covariate in the case of continuous covariates, along 
with 95% confidence interval and nominal p-value, based on univariate linear regression models. 
Global nominal pvalues from Wald Test to test coefficients for categorical variables with >2 levels. 
Adjusted p-values account for multiplicity and are corrected using the Holm method.  
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eFigure 6. Estimated mean differences in SARS-CoV-2 viral load in swabs at COVID-19 
diagnosis on the subset of participants living in the US, imputing missing variants (N=995; 
adjusted R2 = 0.047). Forest plot illustrating estimated mean difference in log10 copies/mL SARS-
CoV-2 viral load between groups defined by participant or COVID-19 disease characteristics, based 
on multivariate regression analysis with imputed variants. 95% confidence intervals and Holm-
adjusted p-values are provided. Median p-values over multiple imputations are reported. 
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eFigure 7. Estimated mean differences in SARS-CoV-2 viral load in swabs at COVID-19 
diagnosis on the subset of placebo participants enrolled in the Janssen trial, imputing 
missing variants (N=916; adjusted R2 = 0.025). Forest plot illustrating estimated mean difference in 
log10 copies/mL SARS-CoV-2 viral load between groups defined by participant or COVID-19 disease 
characteristics, based on multivariate regression analysis with imputed variants. 95% confidence 
intervals and Holm-adjusted p-values are provided.  
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Predictors of Severe COVID-19 

Viral load measurements alone were found to be poor predictors of severe COVID-19. Viral load at diagnosis had a CV-AUC of 0.52 

(95% CI: 0.47 to 0.57) and the area under the viral load curve (VL-AUC) had a CV-AUC of 0.49 (95% CI: 0.42 to 0.57). The 

predictive performance of the ensemble model, discrete Superlearner, and individual learners are summarized in eFigure 8. 

 

 

eFigure 8. Summary of the utility of log viral load at diagnosis (A) and the area under the VL 
trajectory curve (B) in predicting severe COVID-19. For each analysis, we summarize the cross-
validated area under the ROC curve estimates and 95% confidence intervals for each of the 
candidate algorithms, in additional to the discrete and continuous SuperLearner. 
 
 
In eFigure 9, the estimated marginal feature importance for all available covariates was plotted in descending order and neither viral 

load measurement broke the top 10 most important variables in predicting severe COVID-19. Participant characteristics, including 

age, race, country, and various comorbidities were ranked as higher importance than both viral load measurements, which is consistent 

with the literature;14 variant was among the top-ranked variables marginally, although none of these features were found to be 

statistically significant. 
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eFigure 9. Marginal variable importance measures for all available baseline characteristics and 
covariates collected around the time of infection. 
 
Prediction of severe COVID-19 disease was improved with the inclusion of additional baseline characteristics, with a CV-AUC of 

0.71 (95% CI: 0.67 to 0.75; eFigure 10).  

 

eFigure 10. Summary of multivariate predictors of COVID-19 severe disease. Cross-validated 
area under the ROC curve estimates and 95% confidence intervals for each of the candidate 
algorithms, in additional to the discrete and continuous SuperLearner. 
 
When adjusting for other baseline and infection characteristics, log viral load at diagnosis (IV1) had the highest-ranked conditional 

variable importance measure (eFigure 11). This suggests that after accounting for other known predictors, log viral load at diagnosis 
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(IV1) does improve the prediction of severe COVID-19. However, the wide 95% confidence intervals suggest that the improvements 

in prediction with log viral load measurements are modest at best. 

 

eFigure 11. Estimated conditional variable importance measures and 95% CI for the features in 
the prediction of severe COVID-19.  
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