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1. Surrogate Model Data Collection  
 
 a) Response Characterization 
The nanoparticle attributes that were mapped as a function of this experimental space include 
crystal phase, size, shape, and polydispersity. With the various experimental conditions from the 
surrogate model, we were able to access phase-pure rock salt CoO. Each observed crystal phase, 
or combination of phases, was assigned a unique code (Table S1). The crystal phase was assessed 
by powder X-ray diffraction (XRD), while size, shape, and polydispersity were each assessed by 
automated transmission electron microscopy (TEM) image analysis. 
 
Table S1. Corresponding phases observed in the entire phase space for this system. 
Phase No. Indexed Phase(s) 
1 no isolable product   
2 amorphous cobalt oxide 

3 fcc Co 
4 Co2C + fcc Co  
5 rock salt CoO + fcc Co + Co2C 
6 rock salt CoO + fcc Co 

7 rock salt CoO + wurtzite CoO + fcc Co  
8 rock salt CoO 
9 rock salt CoO + wurtzite CoO 
10 wurtzite CoO 
11 wurtzite CoO + fcc Co  

 
The morphology of each nanoparticle product was quantified using an automated TEM image 
analysis pipeline, as previously reported by Williamson et al.1 This pipeline assesses: (1) average 
nanoparticle size and (2) average nanoparticle size distribution. The shape purity was also assessed 
by this pipeline, which classified the morphology of each product into a statistically significant 
number of distinct shape groups. Nanoparticle ensembles classified into a smaller number of shape 
groups are more shape pure, so shape purity was optimized by minimizing the number of shape 
groups for each product. 
 

b) Screening Design 
The first step in the optimization was performing a parametric screening for the reaction space. 
The purpose of the screening was to systematically sample the reaction space to collect data on the 
experimental variables and their effects on four responses: nanoparticle size, size distribution of 
the ensemble (polydispersity), shape purity (# of shape groups), and crystal phase. The 
experimental variables investigated are: temperature (°C), oleylamine (OAm):Co(acac)2 
(mol/mol), oleic acid (OA):Co(acac)2 (mol/mol), and hexadecanol:Co(acac)2 (mol/mol). The 
boundary conditions for the experimental space are reported in Table S2. For this screening, the 
[Co] concentration is fixed at 50 mM and the reaction time is fixed at 1 h. 
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Table S2. Boundary Conditions for the Parametric Screening of the Synthesis of CoO Nanoparticles 
Experimental variable High bound (+) Low bound (–) 
Temperature (°C) 340 290 
Oleylamine:Co(acac)2 (mol/mol) 20 0.5 
Oleic acid:Co(acac)2 (mol/mol) 20 0.5 
Hexadecanol:Co(acac)2 (mol/mol) 6 0.5 

 
With four experimental variables, a resolution V, 24 (2N, where N = 4) full factorial screening 
design resulted in 19 total experiments (including one reaction at the center point and two 
replicates for statistical significance). Reaction conditions indicated by the screening matrices 
were coded for statistical analysis according to the methods described by Williamson et al.2 The 
corresponding real values of each reaction performed in the screening and the observed responses 
are given in Table S3.  
 
Table S3. Full-Factorial Reaction Screening Matrix and the Corresponding Responses.  

 
c) Literature Data Mining 

Additional reaction data was mined from the literature to increase the size of the surrogate model 
data set. Reactions that produced relevant phases of CoO nanoparticles within the set bounds of 
the investigation were added to the data set and are enumerated in Table S4. The difference in 
characterization techniques can also be assessed with this data, which show that the automated 
TEM image analysis pipeline used in this study is in good agreement with reported literature sizes. 
Interestingly, there are significant disparities between the reported polydispersity from the 
literature and the polydispersities reported by the automated TEM pipeline. Considering the 
similarities in reported size, this shows that the automated pipeline enables a much more thorough 
characterization of the polydispersity as it assesses the entire population of a product in comparison 

Temp. 
OAm: 
Co(acac)2 

OA: 
Co(acac)2 

Hexadecanol:
Co(acac)2 Phase Size Polydispersity Shape Purity 

(˚C) (mol/mol) (mol/mol) (mol/mol) code (nm) (% SD) # of shape groups 
290 20 20 0.5 8 61 60 6 
340 20 20 6 7 25.2 99 5 
340 20 0.5 0.5 4 17.9 46 5 
290 0.5 0.5 0.5 10  -- --  -- 
290 20 0.5 6 6 45.5 58 12 
290 0.5 20 6 1 13.8 45 4 
340 0.5 0.5 6 5 27 99 5 
340 0.5 20 0.5 2 24.6 42 11 
315 10.25 10.25 3.25 6  -- --  -- 
290 20 20 6 8 21.3 42 4 
290 0.5 0.5 6 7 34.5 100 8 
340 0.5 20 6 2 47.6 63 5 
340 20 0.5 6 8 57.3 59 5 
290 20 0.5 0.5 4 17.3 46 5 
290 0.5 20 0.5 2 44.3 95 10 
340 0.5 0.5 0.5 10  -- --  -- 
340 20 20 0.5 6 21.1 34 5 
340 0.5 0.5 0.5 10 45.3 100 4 
340 20 20 0.5 6 65.9 100 5 
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to the polydispersities measured from a small sample of the population that are reported in the 
literature. For this reason, all morphological products from the literature were reassessed using the 
TEM morphology pipeline referenced in Section a. 
 
Table S4. Reactions Mined from Literature and their Corresponding Responses3–7 

 
d) Optimization Design 

After the full-factorial screening design was performed, the reaction time was added as an 
additional variable and reactions from a Doehlert optimization matrix for five variables were 
performed to increase the number of data points and the statistical significance. Time was added 
to the investigation due to its apparent significance on observed responses seen in the reactions 
mined from the literature. The bounds of the study were also expanded for this reason, according 
to Table 1 in the main text. All reactions performed to construct the surrogate model were re-
coded according to the new bounds as per the method described by Williamson et al.2 The real 
values of the reaction conditions and the resulting responses of each reaction are given in Table 
S5. 
 
 
 
 

Temp. Time 
OAm: 

Co(acac)2 

OA: 
Co(acac)2 

Hexadecanol
:Co(acac)2 Phase Size 

Lit. 
Size Polydispersity 

Lit. 
Polydispersity 

Shape 
Purity 

Ref.  

(˚C) (min) (mol/mol) (mol/mol) (mol/mol) code (nm) (nm) (% SD) (% SD) 

# of 
shape 
groups 

 

200 60 50.4 0 0 10 44.2 38 48 10.5 5 3 
200 60 100.3 0 0 10 28.3 26 48 15.4 6 3 
200 60 200 0 0 10 27.3 21 42 19 4 3 
205 180 30.7 0 0 8 22.4 6.2 46 9.3 4 4 
250 120 30.7 0 0 8 17 17 57 11 5 4 
205 30 30.7 0 0 8 9.8 4.5 84 6.7 7 4 
230 60 30.7 0 0 8  -- -- -- --  -- 4 
250 60 30.7 0 0 8  -- -- -- --  -- 4 
210 60 2.0 0.5 1.5 8 9.3 8 28 10 4 5 
210 60 2.0 0.5 1.5 8 12.4 13 24 10 3 5 
240 60 2.0 0.5 1.5 8 13 20 29 -- 5 5 
240 60 2.0 0.5 1.5 8 14.5 25 39 -- 5 5 
300 60 2.0 0.5 1.5 8 34.5 25 29 -- 4 6 
210 60 2.0 0.5 1.5 8 16.8 8 31 -- 4 6 
250 60 15.0 0 0 8 42.8 8 48 -- 11 7 
250 60 7.5 0 0 8 30.7 9 63 -- 5 7 
250 60 5.0 0 0 8 15 11 57 -- 4 7 
250 60 3.7 0 0 8 16 13 43 -- 5 7 
250 60 3.0 0 0 8 17.5 15 38 -- 4 7 
200 60 3.0 0 0 8 16.2 11 100 -- 7 7 
300 60 3.0 0 0 8 23.2 38 49 -- 4 7 
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Table S5. Reactions Indicated by a Doehlert Matrix for Five Variables and their Corresponding 
Responses 

 
 
2. Classification Model 
 
The classification model was trained in MATLAB using the 72 reactions in the surrogate model, 
with an ensemble of trees using the templateTree function with the ‘Surrogate’ hyperparameter set 
to ‘on’ using the bag method over 500 learning cycles, resulting in an initial training data set of 
36,000 observations (72×500). Specifically, bootstrap aggregation, or bagging with random 
predictor selections at each split (random forest), was used as it was predicted to be best for the 
multiclass nature of the data after a Bayesian optimization of the hyperparameters. The 
classification bagged ensemble model was trained with leave-one-out cross-validation. This 
evaluation method was chosen as it is ideal for smaller datasets, providing a much less biased 

Temp. Time 
OAm: 
Co(acac)2 

OA: 
Co(acac)2 

Hexadecanol:
Co(acac)2 Phase Size Polydispersity Shape Purity 

(˚C) (min) (mol/mol) (mol/mol) (mol/mol) code (nm) (%SD) # of shape groups 
240 105 21.35 5 2.39 8 20 56 4 
240 105 21.35 15 2.39 8 18.5 56 4 
307 105 21.35 10 2.39 8 18.8 51 9 
263 105 21.35 10 4.84 6 17.2 48 5 
263 163.2 37.11 10 3.0 6 15.7 38 4 
263 105 100.25 10 3.0 3 66.3 63 7 
195 105 100.25 5 3.0 10 14.2 44 4 
285 163.2 116.01 15 3.61 6 12.6 66 11 
263 105 100.25 0 3.0 9 18.6 37 4 
195 46.8 84.49 5 2.39 6 14.7 47 8 
263 105 100.25 20 3.0 3 21 97 10 
330 105 100.25 5 3.0 6 13.6 44 9 
202 45.3 11.89 0 1.26 8 14.5 43 4 
190 154.1 53.22 15 4.76 8 14.1 51 4 
281 32.6 114.25 20 0.11 6 15.8 69 6 
185 88.3 200 0.9 0.48 8 15.3 48 6 
243 59.3 149.56 15 3.10 8 16.4 52 5 
191 48.2 200 0 0.0 9 22.5 27 4 
240 179 103.93 15 1.80 6 16.8 57 8 
197 119.8 117.97 5 3.70 11 13.7 55 4 
185 70.5 199.99 0 1.23 8 15 36 4 
255 31.8 199.03 10 2.10 8 23.5 45 6 
224 67.5 0.5 0 1.50 6 14.1 48 4 
208 49 9.73 0 1.24 8 15.6 51 9 
211 60 1.93 0 1.51 9 15.5 46 5 
191 47.8 199.99 0 0.0 10 15.2 42 4 
185 30 0.5 0 0.0 8 12.8 51 9 
204 71.3 100.25 1 0.15 6 13.3 38 6 
340 180 200 20 6.0 3 81.9 83 6 
263 105 100.25 10 3.0 6 10.7 42 5 
301 60 0.5 0 1.8 6 16.6 41 5 
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measure of test error compared to using a single test set because we repeatedly fit a model to a 
dataset that contains n–1 observations.8 The classification accuracy of the initial surrogate model 
was 93.4%, misclassifying only one out of the 16 reactions in the testing set (Figure S1). After the 
nine iterations of the Bayesian optimization, the predictions accuracy improved to 99%, with a re-
substitution loss of 0.0097, which equates to the misclassification rate. The closer the model 
predictions are to the observations, the smaller the misclassification error will be, and error £ 0.05 
is considered acceptable, rendering our model statistically significant.8 
 

 
Figure S1. Confusion chart of the classification model predictions, showing correct predictions 
in blue and incorrect predictions in orange. 
 
Univariate feature ranking for classification (fsschi2 function) ranks features (predictors) using 
chi-squared tests. The predictor variables and the response variable (phase) from the training data 
were provided to a function that returns the indices of predictors ordered by predictor importance. 
This means the first predictor returned is the most important predictor. The feature rankings are 
illustrated in Figure 1 in the main text and patterns in the surrogate model data illustrating the 
relationship between input variable and phase can be seen in Figure S2. 
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Figure S2. The patterns of the coded values for each input variable (x-axis) relating to each 
specific phase (y-axis). 
 
The surrogate model data is visualized in 3-dimensions using classic multidimensional scaling 
(CMD) to compress the 5-dimensional data into 3-dimensions using the first three principal 
components (PCs) (Figure S3a,b). ScatteredInterpolant was used to interpolate the 3-D dataset of 
scattered surrogate model data. This returns the interpolant (𝐹) for the experimental dataset. 
Interpolant	𝐹 can be evaluated at a set of query points, such as (𝑥𝑞, 𝑦𝑞, 𝑧𝑞) in 3-D, to produce 
predicted interpolated values 𝑣𝑞	 = 	𝐹(𝑥𝑞, 𝑦𝑞, 𝑣𝑞). The resulting phase map for the three most 
significant experimental variables is shown in Figure 1 and the phase map of the entire data scaled 
down to 3-dimensions is shown in Figure S3c. 
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Figure S3. (a) Pareto chart of the principal components (PCs) after the classic multidimensional 
scaling. The first three principal components describe approximately 88% of the data and are used 
to create the scatterplot in (b) and the interpolation of the scatterplot in (c). Phases correspond to 
the colors in the legend. 
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3. Bayesian Optimization 
 
Individual iterative Bayesian optimizations were run for three of the responses: nanoparticle size, 
polydispersity, and shape purity. The Bayesian optimizations were adapted from the methods 
described by Frey and coworkers for a chemically informed data-driven optimization (ChIDDO), 
with the trained classification model incorporated into each Bayesian model to predict crystal 
phase at each iteration of the optimization.9 The surrogate models for each response were created 
using regression-based response surface methodology (RSM), as depicted in Figure 2 in the main 
text and previously described by Williamson et al.2 
 
An acquisition function uses the current information, Xexp and 𝑦exp, and the surrogate model 
predictions to calculate how informative a possible design condition is expected to be based on the 
criteria for the respective acquisition function.9 To determine the most informative design point to 
sample next, two acquisition functions – expected improvement (EI) and modified rank-batch 
(MRB) – were tested to find a local maximum of the acquisition function score. This process was 
repeated 30 times at 21 different initiation points to get closer to the global solution for each 
response. The design point with the maximum score that was also predicted to produce the target 
rock salt phase was subsequently added to 𝑥next. Two acquisition functions, EI and MRB, were 
tested: 
 
The EI acquisition function is given by eq. S1:  

𝐸𝐼(𝑥) = (𝜇(𝑥)‒ 𝑓(𝑥!)‒ 𝜉)𝜓 4
"($)‒'($!)‒(

)($)
5 + 𝜎(𝑥)𝜙 4"($)‒'($

!)‒(
)($)

5	      (S1) 

where 𝜇(𝑥)	is the mean of the regressor at x, 𝜎(𝑥)	is the variance of the regressor at x, 𝑓	is the 
function to be minimized, 𝑥! is the location of the estimated minimum, 𝜉 is the 
exploration/exploitation parameter, 𝜓(𝑧)	 is the cumulative distribution function of a standard 
Gaussian distribution, and 𝜙(𝑧)	is the density function of a standard Gaussian distribution.9 
 
The MRB mode sampling function was developed by Frey et al. from the work of Cardoso et al.9,10 
The MRB acquisition function calculates a score consisting of three normalized parameters: a 
distance score (Δ), an uncertainty score (Γ), and the objective function prediction (Ω). The distance 
score was calculated as:  
 

       ∆	= 1 − 1/=1 +𝑚𝑖𝑛A∑ C𝑥* − 𝑥*
+$,D-.

*/0 E        (S2) 

 

Where A∑ C𝑥* − 𝑥*
+$,D-.

*/0  is the minimum distance between the proposed set of conditions, 𝑥, 
and each of the known sets of conditions, 𝑥+$,. The uncertainty score (Γ) is the standard deviation 
of the RSM prediction at 𝑥 normalized compared to the maximum and minimum observed standard 
deviation. The objective function prediction (Ω) is 𝑦,1+. at 𝑥 normalized compared to the 
maximum and minimum observed prediction.  
 
The score that is calculated at each step in the minimization process for the respective	𝑥 is:  
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𝑆𝑐𝑜𝑟𝑒 = 	𝛽Δ + 𝛽Γ + Ω         (S3) 

 
where β is a tradeoff value. A high value of β encourages more exploration; that is, encourages 
searching unknown areas of the design space. A lower value of β encourages exploitation; that is, 
searching locally near the current maximum prediction. All the acquisition functions include a 
tradeoff value that decreases as more experiments are run, moving from exploration to 
exploitation. For MRB, β changes linearly from 1 to 0. For EI, β changes logarithmically from 
around 0.05 to 1 × 10−7. 
 

 
Scheme S1. High-level depiction of the Bayesian optimization flow scheme. Final graph depicts 
Bayesian optimization to minimize size, with the crystal phase of each experiment indicated by 
color according to the legend. Predicted size distribution (i.e., polydispersity) is shown in green. 
The model predictions after training are shown in teal, with the phase shown in the inset graph. 
 
The last step in Scheme S1 can be described as follows: 
 
Input: A set of Ninit experimental points, Xexp, where Xexp ∈R parameter space (PS), evaluated to 
give the objective function value, 𝑦exp. Pexp = {Xexp, 𝑦exp}. 

1. Pexp is passed to the RSM to make predictions, 𝜇RSM, and uncertainties, σRSM, at any point 
in PS.  

2. Pexp, μRSM, and σRSM are passed to the acquisition function to select	𝑛b new experiments, 
Xnext, to evaluate.  

3. Trained classifier predicts resultant phase of Xnext. 
4. Condition phase(Xnext) = target phase is evaluated as a binary (1) or (0). 
5. If phase(1), \objective function is evaluated at Xnext to give 𝑦next (Pnext) and then Pexp = 

Pexp ∪ Pnext.  
6. Steps 1-3 repeat until 30, Ntotal, experiments are evaluated.  
7. Return: Pexp. 
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a) Optimizing Nanoparticle Size 
 
𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒	𝑀𝑜𝑑𝑒𝑙	𝑓𝑜𝑟	𝑆𝑖𝑧𝑒	

= 	21.053	 + 	24.8994(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 	− 	7.10049(𝑇𝑖𝑚𝑒) 	
+ 	5.42007(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	− 	7.5423(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	14.7241(𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	+ 	0.989089(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒-)
− 	26.4194(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑇𝑖𝑚𝑒	)
+ 	17.052(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
− 	1.06488(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	20.3503𝑇(𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	− 	4.52205(𝑇𝑖𝑚𝑒-) 	
+ 	3.03148(𝑇𝑖𝑚𝑒 × 𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	− 	32.0434(𝑇𝑖𝑚𝑒 × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	38.0946(𝑇𝑖𝑚𝑒 × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	0.859547(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 	
− 	17.4581(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)- × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	9.13135(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)- × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	21.846(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 	
+ 	14.4873(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)- × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
− 	23.1916(𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 

 
 

 
Figure S4. The average of the results for the Bayesian optimization of nanoparticle size. 
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Acquisition function: EI 

 
Figure S5. (a) Bayesian optimization to minimize nanoparticle size using the EI acquisition 
function, with predicted size after training shown in green. (b) Magnification of the model 
predictions indicated by green circles in part (a) with the phase corresponding to the legend. 
 
 
Acquisition function: MRB 

 
Figure S6. (a) Bayesian optimization to minimize nanoparticle size using the MRB acquisition 
function, with predicted size after training shown in green. (b) Magnification of the model 
predictions indicated by green circles in part (a) with the phase corresponding to the legend.
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b) Optimizing Nanoparticle Polydispersity 
 
𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒	𝑀𝑜𝑑𝑒𝑙	𝑓𝑜𝑟	𝑃𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑡𝑦	

= 	59.7	 + 	22.7(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 	− 27.5(𝑇𝑖𝑚𝑒) 	− 	9.7(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	26.5(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	− 8.7(𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	20.6(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒-) − 	44.9(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑇𝑖𝑚𝑒	)
+ 	19.8(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 11.5(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	51.0(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	− 	47.7(𝑇𝑖𝑚𝑒-) 	
− 	38.1(𝑇𝑖𝑚𝑒 × 𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	− 	0.8(𝑇𝑖𝑚𝑒 × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	43.1(𝑇𝑖𝑚𝑒 × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	− 	34.7(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 	
+ 	12.2(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)- × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
− 	0.9(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)- × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	14.0(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 	+ 	19.9(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)- × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
− 	19.5(𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 

 

 
Figure S7. The average of the results for the Bayesian optimization of nanoparticle polydispersity. 
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Acquisition function: EI 

 
Figure S8. (a) Bayesian optimization to minimize nanoparticle polydispersity using the EI 
acquisition function, with predicted polydispersity after training shown in green. (b) Magnification 
of the model predictions indicated by green circles in part (a) with the phase corresponding to the 
legend. 
 
Acquisition function: MRB 
 

 
Figure S9. (a) Bayesian optimization to minimize nanoparticle polydispersity using the MRB 
acquisition function, with predicted polydispersity after training shown in green. (b) Magnification 
of the model predictions indicated by green circles in part (a) with the phase corresponding to the 
legend.
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c) Optimizing Nanoparticle Shape Purity 
 
𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒	𝑀𝑜𝑑𝑒𝑙	𝑓𝑜𝑟	𝑆ℎ𝑎𝑝𝑒	𝑃𝑢𝑟𝑖𝑡𝑦	

= 	14.7	 + 	13.7(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 	+ 5.3(𝑇𝑖𝑚𝑒) 	
+ 	8.5(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-)	– 	0.8(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
− 2.9(𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	+ 	1.1(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒-)
− 	4.7(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑇𝑖𝑚𝑒	) + 	10.9(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 4.0(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	3.6(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-)	– 	1.9(𝑇𝑖𝑚𝑒-) 	
+ 	6.4(𝑇𝑖𝑚𝑒 × 𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	+ 	2.1(𝑇𝑖𝑚𝑒 × 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-) 	
+ 	4.6(𝑇𝑖𝑚𝑒
× 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-)	– 	3.3(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)--)	– 	2.3(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-
× 𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)-)	– 	2.9(𝑂𝐴𝑚: 𝐶𝑜(𝑎𝑐𝑎𝑐)-
× 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-)	– 	1.5(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 	
+ 	3.0(𝑂𝐴: 𝐶𝑜(𝑎𝑐𝑎𝑐)- × 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)-)
− 	2.5(𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑜𝑙: 𝐶𝑜(𝑎𝑐𝑎𝑐)--) 

 
 

 
Figure S10. The average of the results for the Bayesian optimization of nanoparticle shape purity. 
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Acquisition function: EI 

 
Figure S11. (a) Bayesian optimization to minimize the number of nanoparticle shape groups using 
the EI acquisition function, with predicted shape groups after training shown in green. 
(b) Magnification of the model predictions indicated by green circles in part (a) with the phase 
corresponding to the legend. 

 
Acquisition function: MRB 

 
Figure S12. (a) Bayesian optimization to minimize the number of nanoparticle shape groups using 
the MRB acquisition function, with predicted shape groups after training shown in green. 
(b) Magnification of the model predictions indicated by green circles in part (a) with the resultant 
phase corresponding to the legend.
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 d) Multi-Response Optimization 
The models from each individual Bayesian optimization were compiled into a single model using 
a desirability function, as previously described by Williamson et al.2 This model was use to 
maximize desirability for a multi-objective optimization of all three responses. After nine iterations 
of the Bayesian optimization, the reactions shown in Table S6 were added to the fitness function. 
The full parameter space is visualized in Figure S14. 
 
Table S6. Reaction Conditions Predicted from the Bayesian Optimization with the Resulting 
Responses 

 

Temp. Time 
OAm: 

Co(acac)2 

OA: 
Co(acac)2 

Hexadecanol: 
Co(acac)2 Phase Size Shape Purity Polydispersity 

(˚C) (min) (mol/mol) (mol/mol) (mol/mol) code (nm) # of shape groups (% SD) 
222 61.1 1.0 0.9 2.4 9 25.2 11 58 
234 66.7 7.7 0.5 1.6 8 18.1 4 55 
196 105.0 100.3 5.7 3.0 1 -- -- -- 
196 62.1 171.5 0.0 1.3 8 16.3 4 49 
205 115.4 80.0 4.3 3.2 8 17.1 6 47 
217 84.3 0.65 1.0 2.1 9 36.6 10 122 
213 31.8 0.6 0.9 1.8 9 30.0 7 85 
196 51.4 200.0 0.0 0.4 8 16.7 4 49 
238 137.1 82.5 0.0 3.3 7 16.1 5 41 
215 60.0 0.6 1.2 2.0 9 26.1 4 101 
235 120.0 64.7 6.9 3.3 3 21.0 6 131 
195 105.0 100.3 5.0 3.0 6 15.2 4 49 
209 59.9 1.9 0.5 1.5 8 19.3 4 63 
300 1.0 0.5 0.3 1.6 9 23.0 5 72 
191 106.2 101.1 4.9 2.9 10 9.1 4 52 
215 1.0 2.6 0.6 1.6 8 15.98 4 70 
185 54.1 200.0 0.0 0.0 8 9.8 4 54 
206 54.0 3.8 0.4 1.7 8 7.7 5 45 
193 105.0 200.0 3.0 0.0 1 -- -- -- 
193 105.0 100.3 5.0 3.0 1 -- -- -- 
202 105.7 98.8 5.1 2.9 1 -- -- -- 
200 105.5 99.6 5.0 2.9 8 6.6 8 46 
186 107.5 98.6 4.9 2.8 1 -- -- -- 
191 106.2 101.6 5.0 3.0 1 -- -- -- 
194 105.4 99.4 4.9 2.9 1 -- -- -- 
195 53.9 200.0 0.0 0.0 8 7.7 8 57 
189 45.7 195.2 0.0 0.1 8 7.8 8 56 
300 60.0 1.1 0.5 1.4 9 21.5 10 71 
333 60.0 1.9 0.5 0.5 3 12.7 4 48 
196 118.2 118.3 6.5 3.7 1 -- -- -- 
197 60.0 118.0 6.5 3.7 1 -- -- -- 
290 60.0 0.1 0.1 0.1 10 9.9 4 45 
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Figure S13. A visualization of the entire phase space with each reaction condition depicted as a 
bar plot and the resulting phases color coded.  
 

 
Figure S14. Overall desirability plot for size, polydispersity, and shape as a function of the three 
most significant experimental variables. A desirability score of 1 corresponds to each of the 
predicted optima in the multiple response optimization being identical to their individual optima 
(100% desirability). 
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 e) Additional Characterization 

 
Figure S15. Powder XRD pattern of a two-phase mixture of rock salt CoO and metallic fcc Co 
produced by a reaction with a OA:Co(acac)2 ratio of 10, a reaction time of 110 min, a temperature 
of 263 ˚C, and ratios of OAm:Co(acac)2 and hexadecanol:Co(acac)2 of 25 and 4, respectively. 
 
 

 
Figure S16. Shape group labels for (a) the ensemble of optimized rock salt CoO nanoparticles and 
(b) the ensemble of unoptimized rock salt CoO nanoparticles taken from automated TEM image 
analysis. 
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Figure S17. Powder XRD pattern of the optimized 6.6 nm CoO nanoparticles, with results from a 
Rietveld refinement to the Fm3mm structure of rock salt CoO. 
 
 

 
Figure S18. Powder XRD pattern of the unoptimized 65 nm CoO nanoparticles, with results from 
a Rietveld refinement to the Fm3mm structure of rock salt CoO. 
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Figure S19. (a) HR-TEM and (b) SAED for the optimized 6.6 nm CoO nanoparticles. (c) HR-TEM 
and (d) SAED for the unoptimized, 65 nm CoO nanoparticles. 
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Figure S20. In situ powder XRD patterns collected from 35-600 °C in flowing 5% H2 for (a) Opt-
CoO/SiO2, (b) Unopt-CoO/SiO2, and (c) IWI-CoO/SiO2. Diffraction peaks in (a) and (b) at 50.5, 
55.6, 57.2° 2θ are associated with the quartz sample holder. The quartz sample holder was 
subtracted in (c). Stick patterns from ICDD reference cards for rock salt CoO and fcc Co metal, as 
well as spinel Co3O4 for the IWI-CoO/SiO2 sample, are plotted below for comparison. (con’t) 

(a) 

(b) 
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(con’t) Figure S20. In situ powder XRD patterns collected from 35-600 °C in flowing 5% H2 for 
(a) Opt-CoO/SiO2, (b) Unopt-CoO/SiO2, and (c) IWI-CoO/SiO2. Diffraction peaks in (a) and (b) 
at 50.5, 55.6, 57.2° 2θ are associated with the quartz sample holder. The quartz sample holder was 
subtracted in (c). Stick patterns from ICDD reference cards for rock salt CoO and fcc Co metal, as 
well as spinel Co3O4 for the IWI-CoO/SiO2 sample, are plotted below for comparison. 
 
 

 
Figure S21. XPS spectra of the Co 2p3/2 region for (a) Opt-CoO/SiO2 and (b) Unopt-CoO/SiO2 
catalysts in the as-synthesized forms (native) and following reduction at 450 °C. 
  

(c) 



 S24 

 
Figure S22. Conversion and product selectivity with time-on-stream (TOS) for CO2 
hydrogenation reaction over the Unopt-CoO/SiO2 catalyst after reductive pretreatments at (a) 300, 
(b) 380, (c) 400, and (d) 450 °C. Reaction conditions were 300 °C, 3 MPa, WHSV of 1 
gCO2•gcat-1•h-1 and H2:CO2 molar ratio of 3. Data during the induction period at early TOS for each 
condition were not recorded. 
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Figure S23. Conversion and product selectivity with time-on-stream (TOS) for CO2 
hydrogenation reaction over the Opt-CoO/SiO2 catalyst after reductive pretreatments at (a) 300, 
(b) 380, (c) 400, and (d) 450 °C. Reaction conditions were 300 °C, 3 MPa, WHSV of 1 
gCO2•gcat-1•h-1 and H2:CO2 molar ratio of 3. Data during the induction period at early TOS for each 
condition were not recorded. 
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Figure S24. Conversion and product selectivity with time-on-stream (TOS) for CO2 
hydrogenation reaction over the IWI-CoO/SiO2 catalyst after reductive pretreatments at (a) 300, 
(b) 380, (c) 400, and (d) 450 °C. Reaction conditions were 300 °C, 3 MPa, WHSV of 1 
gCO2•gcat-1•h-1 and H2:CO2 molar ratio of 3. Data during the induction period at early TOS for each 
condition were not recorded. 
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Figure S25. (a-d) HAADF-STEM images of cobalt-containing particles in the reduced (450 °C) 
Unopt-CoO/SiO2 catalyst, showing a halo of carbon surrounding the particles, as indicated by 
yellow arrows. (e-f) STEM-EDS maps of Co and C, respectively, shown for the area indicated by 
the purple dotted box in (d), and overlaid on the same image in (g). The edge of the carbon shell 
is denoted with a yellow dotted line in (d) and (g), and EDS indicates a lack of other (non-carbon) 
elements in the shell region. 
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Figure S26. SEM images and EDS elemental maps of post-reaction (a, d, g) Opt-CoO/SiO2, (b, e, 
h) Unopt-CoO/SiO2, and (c, f, i) IWI-CoO/SiO2 catalysts. Color indicates intensity for elemental 
maps (cyan for Si; magenta for Co). The inset in the IWI-CoO/SiO2 SEM image indicates the 
region where the image and EDS maps were collected (yellow box), and the inset scale bar is 5 
μm. 
 
4. Code 
Code for all previous sections can be found at: https://github.com/EmilyWill330 
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