
SUPPLEMENTAL METHODS 
Subject recruitment 
Subjects were recruited for parQcipaQon in our cardiomyopathy biobank. PaQents undergoing 
cardiac procedures, as well as non-cardiac paQents with known geneQc mutaQons (as idenQfied 
by their health care provider) were targeted. In the larer case, we had 4 DCM subjects (two of 
which exhibit reduced ejecQon fracQon <45%), 2 HCM subjects (with IVSd >=1.8 cm but wall 
thickness 0.9 and 1.2 cm), and 4 LVNC subjects who lacked a clinical diagnosis. These samples 
were used for WGS but not the cardiomyocyte differenQaQon and subsequent RNA-seq with the 
excepQon of subject 969 (DCM, reduced LVEF of 23.8%), subject 544 (HCM, IVSd 1.8cm), subject 
603 (HCM, IVSd 2.1cm). Their data is included in the WGS figures except where indicated. 

Healthy subjects without known geneQc mutaQons and lacking a progressive condiQon were 
recruited from our cardiovascular prevenQon clinic. An addiQonal category of control paQents 
(referred to as “other” in Table S1) represent paQents with non-cardiac condiQons who were 
recruited at the clinic and over the phone, with permission of their providers. Two paQents with 
known cardiac condiQons other than cardiomyopathy (long QT syndrome and Fabry disease) were 
also recruited. Echocardiogram assessment of lef ventricular ejecQon fracQon (LVEF) and 
interventricular septum thickness, end diastole (IVSd) from the most recent measurement in the 
electronic medical record were queried and populated in RedCap when available. 

iPSC reprogramming 
Induced pluripotent stem cells were reprogrammed from PBMCs using Sendai virus (CytoTune iPS 
2.0 Sendai Reprogramming Kit) as previously described.[39] Three clones were generated per 
subject, karyotyped (KaryoStat, ThermoFisher ScienQfic), determined to be mycoplasma-free, and 
evaluated by immunohistochemistry for expression of pluripotency markers TRA-1-60 (LifeTech 
MA1023) and SSEA4 (LifeTech MA1021). Cells were maintained under feed-free condiQons in 
mTeSR (STEMCELL Technologies, 5850) or EssenQal 8 media (Fisher, A1517001) and stored in 
liquid nitrogen. 

To assess pluripotency of our cohort, we compared our RNA-seq data from 102 iPSC lines to 196 
iPSC lines from the HipSci project (human induced pluripotent stem cell iniQaQve) of the 
Wellcome Sanger InsQtute and EMBL (Expression Atlas ID for dataset: E-MTAB-4748)[40]. The 
HipSci dataset also contained 5 fibroblast samples and 4 PBMC samples for control. Expression 
from the HipSci project was publicly available as an expression matrix with expression tabulated 
as transcripts per million (TPM). To enable equal comparison, we used our raw RNA-seq data to 
tabulate TPM for our cohort (tabulated using DESeq2). (Note that we used salmon-aligned 



[ensemble90] RNA-seq data versus STAR, as this iniQal quality control assessment of the biobank 
was done prior to designing our subsequent RNA analysis workflow.) The joint HipSci-Stanford 
TPM dataset was log2 transformed. Stanford iPSC lines were all derived from blood while HipSci 
lines were derived from either blood or skin Qssue, both of which are from the mesoderm lineage. 
We selected both pluripotency and mesoderm genes for examinaQon based on the iPSCORE 
resource (genes taken from Figure 2A of the iPSCORE paper).[41] The pheatmap package in R was 
used to generate a heatmap (samples and genes clustered using Euclidean distance). We 
confirmed our iPSC cohort exhibited similar expression profiles as the HipSci iPSCs and did not 
cluster with PBMC samples (Figure S1). 
 
Cardiomyocyte differenBaBon and drug treatment 
As previously described,[42] iPSCs were plated on Matrigel and cultured in StemMACS iPS-Brew 
XF (MACS Miltenyi Biotec, 130-104-368) unQl the final passage in EssenQal 8 media (Fisher, 
A1517001). Cardiomyocyte differenQaQon was induced at 60-80% confluency, with culture in 
RPMI media (Gibco/LifeTech 11875-119) plus B27 supplement lacking insulin (Gibco/LifeTech 
A1895601). 6µM of CHIR-99021 (Fisher, NC0976209) was added on day 0 and 6 µM IWR1 (Fisher, 
NC1319406) was added on day 3. Beginning on day 7, media was changed every other day using 
RPMI media supplemented with B27 containing insulin (Gibco/LifeTech 17504-044). Upon 
commencement of beaQng (around day 15), cells underwent purificaQon via a three-day glucose 
starvaQon (RPMI media without glucose [Gibco/LifeTech 11879-020] supplemented with insulin-
containing B27), a one-day recovery in glucose-containing media, and subsequent replaQng 
(dissociated in TrypLE, Fisher, 50-591-353). Cells were then maintained in RPMI media 
supplemented with insulin-containing B27 unQl approximately day 30. Afer differenQaQon, drug 
treatment occurred at 0 hours and 24 hours and samples assayed at 48 hours. Cells were treated 
with 250nM MYK-461 (Cayman Chemical, 19216-5mg), 400nM or 1uM omecamQv mecarbil 
(Selleckchem via Fisher, NC1069600), or DMSO. 
 
Additionally, at approximately day 24, one to three wells of the ongoing differentiation were 
replated (dissociated with TrypLE) into 96-well plates for immunohistochemistry (two wells, 
~40,000 cells/well) or 384-well plates (Thermo, 142761, ~20,000 cells / well) for contractility 
assays and maintained in parallel until the end of differentiation. Cardiomyocytes were analyzed 
by immunohistochemistry to assess purity as previously described,[42] via staining for cardiac 
troponin T (Rabbit cTnT, Abcam, ab45932, 1:100). Cells were imaged on the Cytation5 Image 
Reader (BioTek) running the accompanying software (Gen5 Image+ version 3.03) to screen 
differentiations for a minimum of 90% cTnT positive cells. 
 
Whole genome sequencing 
Library preparation and sequencing was performed by Macrogene (first 10 samples) and 
Novogene on genomic DNA we extracted from iPSC cells (Qiagen DNeasy kit). Paired-end 150bp 
reads were acquired on the Illumina HiSeq X Ten for a minimum of 90 gigabases of data. Reads 
were processed using Sentieon's FASTQ to VCF pipeline (Sentieon version 201808.07).[43] This 
pipeline is a drop-in replacement for a BWA[44] plus GATK best-practices[45] pipeline for 
germline SNVs and indels, but has been highly tuned for optimal computational efficiency. BWA 
alignment to hg38 was followed by deduplication, realignment, base quality score recalibration, 



and variant calling to generate g.vcf files for each sample. Coverage was assessed (GATK version 
3.7) (Tables S2 and S3). Individual sample g.vcf files were joined and variant quality score 
recalibration performed. 
 
CuraBon of candidate pathogenic mutaBons 
To manually curate pathogenic and likely pathogenic variants we first created an overly-broad list 
of potenQal cardiomyopathy genes (referred to as our "panel genes” in the figures) (Table S4). 
The raQonale was to include genes posited to play a role in cardiomyopathy, even where the data 
supporQng a causal role was sparse to create a more comprehensive list of candidate mutaQons 
that we then filtered further. This included genes from six clinical geneQc tesQng panels for HCM 
and DCM, the American College of Medical GeneQcs (ACMG) recommended list of genes to test 
for in HCM or DCM,[46] any gene annotated for HCM, DCM, or LVNC in the Human Genome 
MutaQon Database, and genes evaluated for HCM or DCM pathogenicity in two systemaQc studies 
from the literature.[5, 6] We used ANNOVAR[47] to apply various filters, generaQng different 
pools of mutaQons (Figure S2) for manual interpretaQon. 
 
Others have suggested a maximum minor allele frequency of 1 × 10−4 for cardiomyopathy.[5] For 
pool 1, we set a more inclusive filter for a minor allele frequency less than 0.01, which is the 
threshold for a rare variant, (frequency in ExAc, version November 2015), and required the variant 
be an exonic (excluding synonymous SNVs) or splicing mutaQon or have a CADD phred score 
greater than or equal to 20. Thus, pool 1 represents rare variants with the potenQal to alter 
protein sequence in our “panel genes”. For the sake of thoroughness, we also sought to capture 
mutaQons regardless of their likeliness to alter protein sequence if they were rare enough. These 
were curated separately in pool 0. For pool 0, we filtered for variants with a minor allele frequency 
less than or equal to 0.001 in ExAC or 1000 Genomes (version August 2015). Pool 0 (15.9 million 
mutaQons) and pool 1 (6082 mutaQons) were too large to examine manually. We thus further 
filtered for a ClinVar designaQon of pathogenic or likely pathogenic (for any disease) as curated 
by ANNOVAR (and thus a reflecQon of the latest ClinVar informaQon in the ANNOVAR database). 
We found a large number of rare GATA4 variants in introns (933 mutaQons) or untranslated region 
(270 mutaQons) that had been flagged in ClinVar for congenital heart disease (and not 
cardiomyopathy). Afer removing these for lack of relevance to HCM and DCM, we had 159 
mutaQons in pool 5. We call pool 5 “WGS_P” for pathogenic, to demarcate this filtering strategy 
was dependent on a pathogenic or likely pathogenic ClinVar designaQon. These represent our first 
strategy for filtering for candidate variants. We evaluated each of these manually and with 
CardioClassifer, an online research tool for annotaQng pathogenicity of cardiomyopathy 
mutaQons.[48] However, we then went back and applied addiQonal filtering strategies to 
overcome some of the technical limitaQons of this strategy. Below is a brief descripQon. See Figure 
S2 for the full filtering workflow. 
 
The first complicaQon we addressed was that our variant calling workflow had the potenQal for a 
larger indel to be miscategorized as two neighboring smaller indels or SNVs. We thus created pool 
10 to merge nearby mutaQons and evaluate the resulQng larger mutaQon for pathogenicity. This 
step was performed only for the diseased samples and not the control subjects. We started by 
flagging any mutaQon within 40 bp of another mutaQon in the same subject (365 mutaQons). We 



removed individual indels greater than 50 bp since this could have represented a sequencing 
error. (This was applied before merging neighboring mutaQons). For SNVs, we merged SNVs if they 
occurred within 2 bp of each other (ie could be on the same codon, and thus their expected effect 
on protein sequence would only be properly determined when analyzed together). We also 
merged SNVs within 5 bp of an indel to expand the indel. We then confirmed that the neighboring 
mutaQons had the same zygosity and were on the same allele, thus jusQfying our analysis of them 
in tandem. We call pool 10 “WGS_merge’ to indicate it represents manually merging of nearby 
mutaQons.  
 
The second complicaQon we addressed is that our first filtering strategy was dependent on ClinVar 
flags. This could lead to many false negaQves due to many variants not being listed in ClinVar. We 
thus took any of the pool 1 variants (rare variants with the potenQal to alter protein sequence of 
“panel genes”) that hadn’t had a ClinVar flag and kept them in the analysis if they met the more 
stringent allele frequency of less than 0.001 (pool 13). Note that for Pool 13, unlike the previous 
frequency filters, here we used the maximum frequency in 1000 Genomes and any individual 
ethnic group in ExAc (to screen out mutaQons that while rare in genomic datasets as a whole, are 
more abundant in specific ancestral backgrounds). We needed to further curate pool 13 to a list 
that was feasible for manual evaluaQon. We applied two separate addiQonal filters. First, we kept 
any mutaQon in pool 13 that was in a gene for which the CardioClassifer tool could be applied, 
given that this overcame the technical limitaQon of manual curaQon and would allow us to first 
screen mutaQons via the tool. This created pool 14. (CardioClassifier is an expert-developed tool 
incorporaQng cardiomyopathy specific knowledge to apply ACMG guidelines.) The 
CardioClassifier genes for HCM are MYH7, TNNT2, TPM1, MYBPC3, PRKAG2, TNNI3, MYL3, MYL2, 
ACTC1, CSRP3, PLN, TNNC1, GLA, FHL1, LAMP2, and GAA. The CardioClassifier genes for DCM are 
LMNA, TNNT2, SCN5A, TTN, TCAP, MYH7, VCL, TPM1, TNNC1, RBM20, DSP, and BAG3. For LVNC 
we used the 12 DCM genes. The CardioClassifer genes for long QT syndrome were KCNQ1, KCNH2, 
SCN5A, and KCNE1. For pool 14, we required that the mutaQon fall in a CardioClassifer gene 
associated with the disease of the subject. We call pool 14 “WGS_freq” to indicate these are 
mutaQons that lacked a ClinVar flag but were kept in the analysis due to their low frequency. 
 
Given that truncating variants can have an especially dramatic effect on protein sequence, we 
separately evaluated pool 13 for mutations that may change the length of the protein sequence 
to create pool 15. For pool 15, we included stop-gain, stop-loss, frameshift insertion, or 
frameshift deletion mutations. (Note that for stop-loss and frameshift insertions, they could act 
to increase protein sequence rather than truncate.) We removed indels greater than 50 bp due 
to the possibility they represent sequencing artifact. There were 95 mutations, but removing 
those already identified in pool 14 left 46. We call pool 15 “wgs_trunc” for truncation, to indicate 
they may alter protein length. For variants most likely to be pathogenic truncating variants 
(heterozygous, stop-gain mutations) we performed additional characterization, using the RNA-
seq data from the iPSC-derived cardiomyocytes where available. First we used our combat-
corrected processed data (see Supplemental Methods section for RNA-seq) to compare gene 
expression in the mutation-carrying line to the other cardiomyopathy (HCM or DCM depending 
on the disease of the mutation-carrying line) or control lines. Second, we re-processed the RNA-



seq fastq files to get allelic expression via STAR, setting the waspOutputMode as SAMtag and 
inputting a vcf file for the line containing the mutation of interest. 
 
Pools 14 and 15 generated candidates with less definiQve annotaQon data. Thus as a control to 
provide confidence on the likeliness for false posiQves, we applied the same filters to the control 
subjects to evaluate the rate of detecQng mutaQons with these filters in a cohort that should have 
few true pathogenic or likely pathogenic mutaQons (pool 16). We filtered for CardioClassifier’s 
“cardiomyopathy” gene list: ACTC1, BAG3, CSRP3, DSP, FHL1, GAA, GLA, KCNE1, KCNH2, KCNQ1, 
LAMP2, LMNA, MYBPC3, MYH7, MYL2, MYL3, PLN, PRKAG2, RBM20, SCN5A, TCAP, TNNC1, 
TNNI3, TNNT2, TPM1, TTN, VCL. We call pool 16 “WGS_healthyfreq” and pool 17 
“WGS_healthyTrunc” to indicate it is the same filters from WGS_freq and WGS_trunc applied to 
the control subjects. 
 
We also pulled any variant listed in the electronic medical record (EMR). For many of these we 
had already assessed pathogenicity as part of our WGS workflow. However, some variants in the 
EMR had not passed our WGS filters and had not been annotated yet. We collected these into 
pool 8 for evaluaQon. Ofen, pathogenicity classificaQon for the variant was provided in the EMR, 
however we always classified them ourselves as well in case the original annotaQon pre-dated 
new informaQon in the literature. We call pool 8 “Clin_research” to indicate they are variants that 
came from the clinical geneQc tesQng for which we needed to research their potenQal 
pathogenicity. 
 
Our “final pool” represents all the mutaQons from all of these filtering strategies. For any variant 
in our final pool that was only found in WGS data and not listed in the EMR (not clinically validated 
to be present in the subject’s genome), we further examined the mutaQon in the vcf file for quality 
metrics to confirm confidence that the mutaQon was present. The final pool became Table S5. 
Column K indicates which filtering strategy resulted in idenQficaQon of the mutaQon. Note that if 
a mutaQon was idenQfied from our first filtering strategy “WGS_P” it will be listed as such in 
Column K. Even if the variant is truncaQng or rare, it won’t be listed as “WGS_trunc” or 
“WGS_freq” because these addiQonal filtering approaches were not necessary to idenQfy the 
mutaQon. Thus column K represents the minimal filtering we needed to idenQfy the variant. 
 
Comparison of mutaBon burden in cardiomyopathy genes with echocardiogram measurements 
We first analyzed the distribuQon of pool 1 variants (Figure S2) between HCM, DCM, and control 
lines. We found six samples (control lines 820, 822; HCM lines 543, 598; DCM line 596, 969) were 
outliers (z score > 3) for having a large number of pool 1 variants. Thus the subsequent analysis 
of mutaQon types in the control, HCM, and DCM cohort were done on the full cohorts and afer 
removing these six samples to ensure there were no differences in the results. StarQng with the 
pool 1 variants, we removed mutaQons with frequency > 0.001 in 1000 genomes or any ExAc 
ethnicity. (Previous ANNOVAR filter used to generate pool 1 used the mutaQon frequency in ExAc 
as a whole, while here we used the maximum frequency in any ethnicity.) We removed indels > 
50bp as these could be due to a sequencing error. We removed mutaQons shared by more than 
10 paQents. (Only 3 mutaQons fit this descripQon. They were shared by 171, 46, 31 paQents). The 
next most common mutaQons were shared by 7 paQents. This is also the max frequency for a 



mutaQon we annotated as pathogenic or likely pathogenic. Finally, we grouped the mutaQons into 
two categories. The first category was mutaQons that could change protein length (frameshif 
inserQon, frameshif deleQon, stop-gain, stop-loss). The second category was all other exonic or 
splicing mutaQons. For calculaQng mean and standard deviaQon values, the two “other” samples 
with known cardiac condiQons (long QT syndrome and Fabry’s disease) were excluded from the 
control cohort. P-values for figure 2A are calculated using t-test. 
 
Pucklewartz et al.[16] defined a set of 102 cardiomyopathy genes whose cumulaQve burden of 
nonsynonymous SNVs correlates with LVEF in DCM. We replicated this analysis by summing the 
instances of a nonsynonmous SNV in the 102 genes. This was done by going back to the original 
Annovar output files for SNVs (we did not include indels) and using R to idenQfy all 
nonsynonymous SNVs regardless of allele frequency (as opposed to starQng from our pooled of 
filtered rare variants). We set a cutoff of DP (depth of coverage) >=8 and GQ (genotype quality) 
>=20. Zygosity was not incorporated. The total burden was plored against LVEF and linear 
regression computed. We did this for both the HCM and DCM lines. We the repeated the analysis 
for DCM afer se�ng an addiQonal threshold of maximum allele frequency of 0.5 (using the 
maximum frequency in 1000 Genomes and any individual ethnic group in ExAc). This was done 
separately on DCM samples with a known pathogenic or likely pathogenic variant (P/LP) and those 
without (nopatho). Finally, we applied a further filter for the variants, restricQng variants to 20 
core DCM genes with greater evidence for pathogenicity (as defined by appearing in at least one 
of the following: [4] or DCM genes only[5, 15]). The core genes are: ACTC1, ACTN2, BAG3, DES, 
DSP, FLNC, JPH2, LMNA, MYH7, NEXN, PLN, RBM20, SCN5A, TCAP, TNNC1, TNNI3, TNNT2, TPM1, 
TTN, VCL. 
 
To assess mutaQonal burden in HCM samples within the promoter regions of the 102 Puckelwartz 
et al genes, we defined a promoter as 2000 bp upstream and 500 bp downstream of the 
transcripQon start site and collected all SNV variants (not indels) regardless of frequency and 
regardless of mutaQon type. DP (depth of coverage) >=8 and GQ (genotype quality) >=20 filters 
were applied. Unlike the analysis of LVEF versus coding variants in DCM, for promoter analysis we 
did not restrict the variants to nonsynonymous SNVs. For each gene we computed the mean 
number of variants in the control and HCM cohorts separately. 54 genes had higher mean in 
control than promoter. These were: A2ML1, ALPK3, BAG3, CACNA1C, CALR3, CASQ2, CAV3, 
CHRM2, CSRP3, CTNNA3, DES, DOLK, EMD, EYA4, FHL1, FKTN, GATA6, GATAD1, JUP, KRAS, LAMP2, 
LDB3, LMNA, LRRC10, MAP2K1, MYL2, MYOM1, MYOZ2, MYPN, NEBL, NEXN, NKX2.5, NRAS, 
PDLIM3, PRDM16, PRKAG2, PTPN11, RAF1, RASA1, RBM20, RRAS, SCN5A, SHOC2, SLC22A5, 
TAFAZZIN, TCAP, TGFB3, TMEM43, TNNC1, TNNI3, TNNT2, TPM1, TRDN, TXNRD2. We performed 
regression on the total mutaQon count in these promoters compared to IVSd for HCM samples 
with and without known pathogenic mutaQons and accounQng for RNA subgroup (steep or 
moderate). Finally, we applied the published polygenic risk score[29] to the HCM samples. The 
dbSNP IDs were used to convert from hg37 to hg38 coordinates and search the Annovar output 
files for overlapping variants. In instances where a variant was not returned for the loci, we 
assumed the sample had the reference allele. For each variant we determined presence or 
absence of the risk allele (ignoring zygosity) and mulQplied by the published beta values, summing 
across all variants to get the final risk score. The score is composed of 36 SNVs.  



 
RNA-seq library preparaBon, sequencing, quality control, and expression matrix generaBon 
RNA was extracted from iPSCs or cardiomyocytes (RNeasy, Qiagen). Illumina RNA-seq libraries 
(TruSeq Stranded Total RNA LP Gold) were prepared on the Bravo (Agilent; 3 samples prepared 
manually as indicated in Table S6), pooled (Table S6), and sequenced (NovaSeq-6000, paired-end, 
100bp). Where possible drug treatment condiQons for the same differenQaQon were kept 
together in batches, while replicate differenQaQons for the same iPSC lines were split apart, and 
HCM, DCM, and control samples were distributed across batches. Reads were aligned to hg38 
(STAR). Principal component analysis on cardiomyocyte and iPS samples separately returned no 
outlier samples (as defined as Zscore of principal component 1 > 3). Library quality control was 
assessed via fastp, fastQC, STAR, and Picard metrics. Samples were flagged for poor QC by the 
following metrics: GC content afer filtering outside of 20-80% (fastp), duplicaQon rate greater 
than 40% (fastp), uniquely mapped read pairs (fragments) < 20 million (STAR), mean reads 
(average of forward and reverse) <20 million (fastQC), ribosomal RNA bases > 20% (Picard), coding 
plus UTR (untranslated region) < 50% (Picard), uniquely mapping fragments <60% (STAR). Samples 
with more than one flag were removed. Cardiomyocyte and iPSC samples were subsequently 
processed separately. Reads were computed as CPM (edgeR) and corrected for library preparaQon 
batch (combat-seq) and TMM normalized (edgeR) to generate the final expression matrix. For 
samples with biological replicates, TMM counts were averaged. Principal component analysis was 
performed and principal component 1 assessed for spearman correlaQon with the following 
metadata: percent GC content (fastp), mean reads (average of forward and reverse) in millions 
(fastQC), percent ribosomal RNA bases (Picard), uniquely mapped fragments in millions (STAR), 
duplicaQon rate (fastp), percent coding or UTR (picard), library preparaQon batch, and sequencing 
pool. The maximum absolute value for spearman correlaQon between PC1 and the library 
metadata was 0.08 for cardiomyocyte samples, indicaQng good quality control with technical 
arQfacts having minimal influence on the dataset. iPSC samples had higher correlaQon for three 
metrics (0.26 with GC content, 0.22 with duplicaQon rate, and 0.11 with percent coding or UTR), 
with the remaining less than an absolute value of 0.04.  
 
DESeq2 analysis of differenBal expression 
Raw data was input into DESeq2 (as required for DESeq2) with library preparaQon batch included 
in the design (in line with the combat-seq correcQon strategy we used for generaQng our final 
expression matrix). We assessed baseline (without drug) control vs HCM cardiomyocytes and 
control vs DCM cardiomyocytes separately and determined significance (Benjamin-Hochberg 
corrected p-value < 0.05). Drug treatment was compared to DMSO using all samples regardless 
of disease. Geno ontology analysis for differenQally expressed genes (or for ADCY5 connected 
genes in the network, see below) was performed using DAVID bioinformaQcs,[49] with enriched 
ontologies defined as Benjamin-Hochberg corrected p-value < 0.05. 
 
Personalized co-expression network construcBon using lionessR 
Linear interpolaQon to obtain network esQmates for single samples was performed using 
lioness[18, 19] implemented in R (lionessR package). This was done separately on the HCM versus 
control cohort and the DCM versus control cohort. First, a cohort-level network was built using 
the control and diseased samples. The finalized cardiomyocte expression matrix (TMM 



normalized, batch-corrected) was input. The dataset was refined to the top 2000 most variable 
genes (greatest standard deviaQon between all samples, diseased and control samples 
combined). For the control and diseased samples separately a co-expression matrix was 
computed using Pearson correlaQon for each gene-by-gene comparison. The control matrix was 
subtracted from the diseased matrix to assess differenQal co-expression between the control and 
diseased cohorts, and the network was trimmed to the 200 most differenQal edges (LIMMA) 
between control and disease. Doing this for both the HCM and DCM data, we thus built two 
networks: an HCM network (reflecQng differenQal co-expression between HCM and control 
samples) and a DCM network (reflecQng differenQal co-expression between DCM and control 
samples). Personalized co-expression networks were inferred for each sample individually 
through an iteraQve process where lionessR removed one sample from the cohort, recalculated 
the cohort edge strengths, and determined the difference in cohort edge strength with and 
without the sample, and then applyied a linear model to esQmate the edge weights of the sample. 
 
Node strength calculaBon 
Node strength represented the total weight of all edges surrounding a gene. We calculated this 
in two ways. For Figure 3B, this was calculated by summing the weights of all edges surrounding 
a gene. This was displayed by plo�ng the summed weight on the x-axis for different genes along 
the y-axis. Samples were colored from light shades (small ADCY5 node strength) to dark shades 
(large ADCY5 node strength) and maintained the same color when displaying nodes strengths of 
other genes. This was useful for visualizing the variability across our diseased cohorts. For 
subsequent analyses of node strength in Figures 4 and 5, we modified the calculaQon such that 
greater node strength would indicate greater difference from non-diseased samples. Each edge 
surrounding a gene were previously determined by lionessR to be red (stonger in disease) or 
green (stronger in control). This was colored based on behavior of the full cohort. To calculate 
node strength in each sample, we subtracted the sum of the green edges from the sum of the red 
edges. 
 
Assessment of co-modulaBon of edges around a common hubnode 
We defined hubnodes as genes that were connected to at least three other genes. We tested 
which hubnodes represented units of network acQvaQon, in that higher co-expression of one of 
the edges co-occurred with higher co-expression of the other edges. For each disease network, 
we analyzed the disease (HCM or DCM) and control cohorts separately. We first calculated the 
Pearson correlaQon coefficient for each edge-by-edge comparison. Second, we subset all edge-
edge pairs surrounding a shared hubnode, called the “All” dataset. We also created a 
“background” dataset with all edge-edge pairs expect those for which the same gene was shared 
in both edges. We randomly sampled the All and Background datasets and calculated the 
difference in Pearson correlaQon coefficient (All – Background). We did this 10,000 Qmes to obtain 
the mean and 95% confidence intervals. Nodes whose 95% confidence interval bars do not cross 
zero are concluded to exhibit co-modulaQon of the edge strengths for their surrounding edges. 
 
Principal component analysis 
The edge weights for the HCM cohort, control cohort, and individual HCM samples were analyzed 
by principal component analysis (prcomp, scale=TRUE, in R). Separately, the same was done for 



the DCM cohort, control cohort, and individual DCM samples. Linear regression compared 
principal component 1 (PC1) to echocardiogram measurements (LVEF for DCM, IVSd for HCM) 
(Figures 4B and 4D). The contribuQon of ADCY5 edges to PC1 for the HCM network (Figure 5A) 
was computed. For each sample, the scaled edge weights were mulQplied by the loadings for PC1 
and all ADCY5 edges summed. 
 
The relaQve contribuQon of each edge to the principal component was calculated as: (loadings^2) 
/ sum(loadings^2). This was done for the full network (not on individual samples). Edges were 
ordered from highest to lowest relaQve contribuQon. Visual inspecQon of the list revealed 
enrichment of ADCY5 edges at the top of the PC1 list for highest contribuQon and ANLN edges at 
the top of the PC3 list. This was confirmed by plo�ng the cumulaQve contribuQon (sum of relaQve 
contribuQons) with each successive edge added (Figure 5B) alongside the cumulaQve contribuQon 
specifically from ADCY5 or ANLN edges only. (Note that for clarity, in Figure 5B, the cumulaQve 
contribuQon for either ADCY5 or ANLN was not plored as a smooth curve, but only displayed at 
the ADCY5 or ANLN edges.) 
 
Pearson correlaQon was used to obtain R2 values for correlaQon of hubnode strength to PC1 and 
to echocardiogram measurements and as well as to compare ADCY5 node strength to ADCY5 
expression and MEF2A expression in HCM samples. 
 
KineBc imaging cytometry to measure contracBlity 
ContracQlity was assessed as previously described.[50, 51] On approximately day 24, cells were 
dissociated (TrypLE, Fisher, 50-591-353) and replated in Matrigel-coated 384 well plates (20,000 
cells/well, 8 wells per drug condiQon), and maintained in parallel for the remainder of the 
differenQaQon. The four perimeter rows and columns of wells were not used, and filled with PBS 
to minimize the effect of temperature fluctuaQon on the assay. At the Qme of assay, 400nM 
tetramethylrhodamine, methyl ester (TMRM, Marker Gene Techonologies), a live cell stain of 
mitochondria, was added to the cardiomyocyte cell culture, and the cells were returned to the 
37°C incubator for approximately 15 min to restabilize their temperature. ContracQlity was 
analyzed on the IC200 KineQc Imaging Cytometer (Vala Sciences) running CyteSeer sofware (Vala 
Sciences), using a 0.75 NA 20x Nikon Apo VC objecQve. Cells were maintained at 37C°, 5% CO2 
throughout the assay. Time series images were acquired over 10 second at 33 Hz frequency. A 
custom MatLab script was used to further process the outputs of CyteSeer and extract key metrics 
of contracQlity, including averaging mulQple contracQons per well into a representaQve peak and 
extracQng the area under the curve (AUC) as well as average Qme between peaks (T.peak) .[52] 
AUC divided by T.peak represented the total amount of deformaQon normalized to Qme. Each 
differenQaQon was assayed in 8 wells per condiQon (DMSO and drugs).  
 
ADCY5 hub node correcBon with drug treatment 
For each edge surrounding ADCY5 in the HCM and DCM networks respecQvely, we calculated the 
mean edge weight in disease at baseline and afer drug treatment as well as in control samples 
at baseline. We computed the difference as such: HCMDMSO – ControlDMSO; HCMMYK – ControlDMSO; 
DCMDMSO – ControlDMSO; DCMOMEC – ControlDMSO. We then converted the differences to absolute 
value. Box and whisker plots displayed these values for all edges in each comparison. 


