
5 Supplementary

5.1 DVGS Robustness to Hyperparameters

To test the robustness of the DVGS method with respect to
algorithm hyperparameters, we performed a grid search
on the ADULT dataset with 20% corrupted endogenous
labels. We record the ability of DVGS to identify the cor-
rupted labels across all tested hyperparameters. Figure
6 shows the cumulative distribution function (CDF) of
the resulting AUROC values across all hyperparameters
tested. Note that the AUROC metric characterizes the
ability of data values to classify corrupted labels. We
find that almost 85% of the tested hyperparameter con-
figurations resulted in performances within 25% of the
maximum performance, and more that 50% of the tested
hyperparameters resulted in performance within 10% of
the maximum performance, indicating that the DVGS
method is robust to choice of hyperparameters. The hy-
perparameter grid search configurations are shown in
Table 4.

Figure 6: The cumulative distribution function (CDF) of
AUROC(ci,−νi) across all tested hyperparameters, where
νi are data values generated by DVGS and ci are the corrupted
labels label. The red dashed line demarcates all AUROC values
larger than this are within 10% of the max AUROC value (e.g.,
roughly 55% of all tested hyperparameters resulted in an AU-
ROC value within 10% of the max AUROC).

5.2 Average Pearson Correlation (APC) metric

We compute the previously proposed Average Pearson
Correlation (APC) [17] of LINCS level 4 replicates using
the procedure:

For a given level 5 LINCS sample:

• Identify the level 4 bio-replicate sample ids that
were used to generate the level 5 aggregate sam-
ple.

• Load the level 4 sample ID expression profile
into memory

• Filter to select only landmark genes (978)
• Compute the average pairwise Pearson correla-

tion of level 4 bio-replicates

As shown in Figure 7, the resulting APC distribution is
skewed right, with the majority of samples having an
APC less than 0.5, suggesting that most of the replicates
are highly discordant. Notably, future work may wish to
perform data valuation directly on the level 4 samples,
which may enable researchers to "rescue" high-quality
replicates, even if the replicates are highly discordant.

Figure 7: The Average Pearson Correlation (APC) distribution
of level 5 LINCS samples.
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Hyperparameter Values Optimal value
balanced class weights True, False False
dropout 0, 0.25, 0.5, 0.75 0.25
target batch size 100, 200, 400 200
similarity Euclidean, Cosine Similarity, Dot Product, Scalar Projection Euclidean
learning rate 1e-2, 1e-3, 1e-4 1e-3
Instance normalization True, False True
number of layers 1,2 1
activation function Mish, ReLU Mish

Table 4: The DVGS hyperparameter configurations tested in a grid search with 2 replicates per configuration.

5.3 Additional Runtime Experiments

In Figure 8 we show the experimental results of DVGS
as the number of source samples increases. As expected,
DVGS scales linearly with the number of source samples,
divided by the period of gradient computations (T ). In
Figure 8b we show the ability of DVGS to classify cor-
rupted labels, when we increase the value of T , as one
would expect, the AUROC value decreases with larger
T, however, the marginal decrease in performance may
be worthwhile for the improvements in runtime, espe-
cially on large datasets. When applying our method to
the LINCS dataset, we were able to run 500 epochs of
DVGS on 710,216 source samples using a multilayer au-
toencoder neural network (Number parameters > 650k)
in roughly 8 hours on a Nvidia 3090 GPU.

The memory requirement of the DVGS method is in
many ways comparable to classical SGD optimization
problems; however, the computation of high-dimensional
sample-wise gradients can increase the memory require-
ments. Therefore, as the number of model parameters
increases, the memory footprint of the sample gradients
will also increase. To mitigate this issue, we chose to
compute sample gradients in mini-batches, which can
be manually specified to fit a given task. Reducing the
source batch size will therefore reduce the memory foot-
print, but lead to a small increase in computation time.
Additionally, the user can also choose to select a subset of
all the model parameters to use for gradient computation,
which will reduce memory overhead.
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(a) DVGS runtime on the ADULT dataset when computing
gradient similarities every T steps.

(b) Ability of DVGS to identify corrupted labels, with dif-
ferent values of T (period of source gradient computations).

Figure 8: The scalability and performance of the DVGS method dependant on number of source samples and the period of source
similarity computations (T).
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