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Supplementary Note

1 Alternative formulations of methods to estimate r,gmix

Recall that we use the following model in deriving the default method
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and we calculate profile likelihood of 7r,gmix = % € [—1, 1] to obtain the point estimate and credible interval (we

8
omit the prior variance term 7 for simplicity). Here, we explore two alternative approaches to estimate 7,gmix:

¢ Alternative method (1): by directly optimizing and estimating 0'§ and p,, without posing the constraint of
Fadmix = % € [—1, 1]. Parameter estimation can be performed by optimizing a&%, Pgs o2 using the standard
8

variance component estimation as implemented in GCTA.

* Alternative method (2): by relaxing the assumption that (75 | = 0'§ , across local ancestries, the above model
becomes
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optimizing a‘j 1 0'(: 2> Pg> o2 using the standard variance component estimation.

y ~ N(Cea, 0'(3’1 + 0'621).

Here, raamix can be defined as ragmix = Parameter estimation can be similarly performed by

We applied the alternative methods (1) and (2) to African-European admixed individuals in PAGE data and compared
the results to our default method. First, comparing alternative method (1) and the default method, for traits with
Fadmix < 1 using the default method, results are consistent across method (1) and the default method; while for
traits with rygmix = 1 using the default method, alternative method (1) produced estimated 7agmix > 1 for some
traits, which can be explained by sampling variance of r,gmix (Extended Data Figure 5a). Second, results are overall
consistent comparing alternative method (2) and the default method, while we note the estimates from alternative
method (2) are consistently higher than those of the default method (Extended Data Figure 5b). In addition, we
performed a likelihood ratio test of hypothesis of Hy : a’gz’1 = 0'&%’2 by comparing alternative method (1) and (2).

Overall, we are unable to reject Hy for any individual trait, indicating lack of the evidence for 0'§ | # oﬁ , for traits

we analyzed, justifying the assumption of 0'3 = 0'§ = 0'§ , in the default method (Supplementary Table 9).

2 Defining heritability in the model

Under the model described in Methods section, the heritability hé can be derived as a function of a'é%, Pg> o2 as general

form of hé = Va:][aé[;'lli &(;Zl];i]ag Assuming ragmix = 1, we have p, = O'g2 and perfectly correlated B, and B,, we
denote B = B, = B, as per-SNP effect sizes. Defining G = G|+Ga, hé can be written as h%g = #ﬁ’ﬁ]@% Assuming
genotype matrix G is centered for each SNP, Var[GS] = E[W] = E[tr[l%]] =tr[E[BBT] %]. Noting

2 .2 -
that s-th element of the diagonal matrix E[BB"] is Tssﬁ and s-th element of % diagonal is SNP variance

2fs(1 = fy), Var[GB] can be calculated with



0_2 S
Var[Gp] = [Z 2£,(1 - fm?] :
s=1

We have made the assumption of r,gmix = 1 when deriving the heritability formula, and we have shown through
simulations that this formula leads to accurate estimates of heritability in simulation even when this assumption is
violated (with rygmix = 0.9, 0.95, 1.0; Supplementary Tables 5 and 6). Given the simplicity of this formula and that
our real data analysis results indicate r,gmix > 0.9 (Table 1), we used this formula throughout in this work. In our
real data analysis, each trait can have heritability estimates from multiple studies. To obtain a single estimate of
heritability for each trait, we performed random-effects meta-analysis using point estimates and standard error of
the heritability obtained in each study (i.e. heritability estimates in Table 1 are per-trait meta-analysis results from
heritability estimates in Supplementary Table 7).

3 Induced heterogeneity in marginal effects due to tagging

Here we describe the induced heterogeneity of estimated marginal effects at tagging variants, even when causal
effects are identical by ancestry. We consider two variants s, ¢, with variant s as the causal variant and variant ¢ as
the tagging variant. For simplicity, we ignore the covariates and assume y, g; 1, 5.2 have been centered (equivalent
to including the all ‘1’ covariate in the model); similar results can be derived for scenarios with covariates by
projecting y, gs.1, 85,2 out of the covariate space.

We first assume s as the only causal variant. Phenotype can be modeled as y = g,185.1 + 85.28s5.2 + €, or for
notation convenience as

y =GB, +€,
[
where we denote G := [gsi.l gTz} e RV*2) and By = Igs’l] e RxI (similarly for G;, 8,). Using model
s,2

y = G, B, + €, we can estimate the effect sizes of the tagging variant ¢ with

) (GFG)'G]y

Expectation and variance of the estimated effects at variant ¢ are

E[B™] = (GG 'G/G,B,,  VIB,1=02(G/G)™".

The derivation can be extended to multiple causal variants by replacing (G G;)~'G] G, B, with (G; G;)"'G] (X, G,B,),
where the summation of s is over all causal variants.

To simplify the discussion, we further assume effects are the same across ancestries at causal variant s,
Bs.1 = Bs.2 = Bs- Denoting g := g;.1 + g5,2, we have

E[B"™] = (G]G,) 'GlgBs.  V[B™]=02(GIG,)™".

(G]G,)"'G/ g, determines the expectation of the estimated effects at tagging variant ¢, and consequently differences
in ancestry-specific taggability. Of note, (G G,)~'G] g is exactly the solution of least squares when regressing gs
against G; and if t = 5, (G] G,)"'G] gs = [ ! ] (this can be verified by noting g;.1 + 5.2 = &;)-

4 Heterogeneity by local ancestry in marginal effects in real data

We provide additional discussion of heterogeneity by local ancestry in marginal effects in real data analysis. Across
60 study-trait pairs, we detected a total of 217 GWAS significant clumped trait-SNP pairs and we estimated
the ancestry-specific marginal effects for each of these SNPs at GWAS loci. 41 out of 217 trait-SNP pairs



had significant heterogeneity in marginal effects by ancestry (HET test pygr < 0.05/217). 16 out of 41 SNPs
with significant heterogeneity were from UKBB data and PAGE data: 14 MCH-associated SNPs at 16p13.3
in UKBB data had strongest heterogeneity with average —log,,(purr) = 13.0. By performing statistical fine-
mapping analyses (Methods), we determined there were multiple conditionally independent association signals
(Extended Data Figure 6a; also reported in ref.!). Similarly, we determined there were multiple conditionally
independent trait-associated variants nearby 1 RBC count-associated SNP at 16p13.3 in UKBB data (Extended
Data Figure 6b; —log;,(puer) = 5.5) and 1 CRP-associated SNPs at 1g23.2 in PAGE data (Extended Data
Figure 6¢; —log,o(puer) = 4.1; also reported in ref.?) that exhibited heterogeneity in marginal effects. The
rest 25 out of 41 SNPs with significant heterogeneity were from AoU data: 22 height-associated SNPs with
—logo(puET) = 6.8, 2 total cholesterol-associated SNPs with —log,,(pueT) = 5.8, 1 LDL-associated SNPs with
average —log,(puer) = 6.8. We did not perform statistical fine-mapping on AoU microarray data, because we were
concerned that imperfect tagging of relatively low density of microarray SNPs may lead to error-prone inference for
existence of multiple causal variants. We leave fine-mapping analysis on high density SNPs (such as whole genome
sequencing or densely-imputed) of AoU data for future work. Overall, we detected abundant evidence of multiple
causal SNPs for loci that exhibit heterogeneity in marginal effects (especially for MCH-associated SNPs with the
strongest heterogeneity), which was consistent to our simulation study with 7,amix = 1 (see Results).

5 Local ancestry adjustment in heterogeneity estimation
We discuss the use of local ancestry in the heterogeneity estimation. Recall that our main equation is

y = fsﬁfvfﬁl)nc + gs,eurﬁfvfzar + gs,afrﬁgzzr +c'a+e,

and we evaluated three approaches: (1) ignoring local ancestry altogether (“w/0”); (2) including local ancestry as a
covariate in the model (“lanc-included”) ; (3) regressing out the local ancestry from phenotype (“lanc-regressed”)
followed by heterogeneity estimation on residuals. In null simulations, we have observed the inflation of HET
test using “lanc-regressed”. In power simulations, we have observed the reduced power of HET test using “lanc-
included”.

These results are explained by the induced correlation between the local ancestry and ancestry-specific genotypes
s, 8s.eur» 8s.afr- Intuitively, each additional local ancestry from African ancestries £y, indicates an expected increase
of risk allele counts from African ancestries g; afr, and an expected decrease of risk allele counts from European
ancestries g cur- Consequently, £; will be positively correlated with g a5 and negatively correlated with g eyr-
Indeed, the average correlation in a set of randomly sampled SNPs in PAGE data is 0.36 for {5 ~ gs.arr and
—0.55 for £ ~ gs.eur (Supplementary Table 17). Consequently, regressing out the local ancestry only from the
phenotype is equivalent to adding a positive effect to g5 cur and a negative effect to g afr; “lanc-regressed” leads to
drastically inflated HET test (Figure 5a). On the other hand, a joint inference of B janc, Bs.cur» Bs.afr 1N the presence
of correlations among £, g eur» &5.afr Would lead to increased variance in the estimated effects, therefore a power
loss in “lanc-included” (Figure 5b).

6 Pitfalls of using marginal effects at GWAS significant variants to estimate heterogeneity

We investigated four methods that use marginal effects as input: (1) HET test; (2) Deming regression slopes of the
marginal effects across SNPs (Deming slope); (3) Ordinary least squares regression slopes of estimated ancestry-
specific marginal effects across SNPs (OLS slope); (4) Pearson correlation of the marginal effects across SNPs
(Pearson correlation). Except for HET test which can compare effects difference for each individual SNP, the other
three methods evaluate the aggregated effects difference across multiple SNPs. We have performed simulations
both with single causal variant and multiple causal variants. In the following, we describe more details on the
performance of HET test and Deming slope (in addition to those in Results section). And we also describe the
performance of OLS slope and Pearson correlation.



6.1 Simulation with single causal variant

When evaluated at causal variants, in contrast to HET test and Deming slope, Pearson correlation and OLS slope
were severely mis-calibrated (Extended Data Figure 7 and supplementary Table 13). For example, when the
simulated hf’, = 0.6%, the false positive rate of HET test was 0.051 (SE 0.01), consistent with the expected level of
0.05 (Extended Data Figure 7a); the average Deming regression slope was 1.005 (SE 0.01) when regressing SBeur
against Bafr (Beur ~ Barr) and 0.996 (SE 0.01) for B ~ Beur, consistent with the expected slope of 1 (Extended
Data Figure 7bc). Pearson correlation significantly deviated from the expected level of 1: 0.964 (SE 0.005)
(Extended Data Figure 7); OLS slope was consistently smaller than 1 for Sag ~ Beur (0.943 (SE 0.017)) and for
Beur ~ Basr (0.985 (SE 0.017)) (Extended Data Figure 7ef). Interestingly, OLS slope’s downward bias varied with
the regression order (B ~ Beur V.S. Beur ~ Parr). This is because the bias of OLS slope is a function of noise
level in the independent variable, and estimated marginal effects in European ancestries and African ancestries
were associated with different levels of standard errors (larger standard errors for S, because of smaller European
ancestries proportion in PAGE African American individuals). Deming slope produced accurate results regardless
of regression order as the differential standard errors are taken into consideration (Methods). Overall our results
are consistent with mis-calibrations of Pearson correlation and OLS slopes due to their ignorance of the errors in
the estimated effects>.

When the causal SNPs were unknown and clumped SNP were used, as shown in Results section, HET test was
increasingly mis-calibrated with larger hz, while Deming slope remained relatively robust (Figure 6). Similar to
HET test, Pearson correlation and OLS slope were less calibrated for clumped SNPs, likely due to increased standard
errors of estimated effects (Extended Data Figure 7d-f). The mis-calibration induced by clumping arises from the
inclusion of multiple SNPs in the clumped set (even though only 1 causal variant was simulated); the clumped
SNPs included both index SNPs with the strongest associations, and secondary SNPs with weaker associations.
These secondary SNPs were less correlated with the causal SNPs (average 7> = 0.072) and were physically more
distant from the causal SNPs (average distance 432.5kb) compared to those strongest associated SNPs in each region
(average > = 0.973, average distance 2.4kb) (in simulation with hz, = 1.0%), and therefore can induce heterogeneity
by ancestry as indicated in Figure 1c. After restricting to SNPs with the strongest association after clumping (thus
matching the simulation setup of a single simulated causal variant), both HET test and Deming slope resumed
well-calibration (Supplementary Table 13). This indicates the efficiency of LD clumping in capturing causal variant
(e.g., 63% of clumped variants were causal when the simulated h%g = 1.0%; Supplementary Table 16). However,
we note OLS slope and Pearson correlation remained not calibrated (Supplementary Table 13).

6.2 Simulation with multiple causal variants

In contrast to simulation with a single causal variant, even evaluated at the causal variants, both HET test and
Deming slope were biased in the presence of multiple causals within the same LD region; the mis-calibration/bias
increased with polygenicity (Figure 6 and supplementary Table 14). For example, in simulation with 2 causal SNPs
per Mb (7¢ausal = 500 on chromosome 1) and hé = 10%, HET had inflated false positive rate (0.249 (SE 0.012) at
the nominal 0.05 rate); average Deming slope of Beyr ~ Barr Was 1.085 (SE 0.016). This is likely due to tagging
among multiple causal variants whereby a causal SNP also tags effect of nearby causal SNPs in an ancestry-specific
way (Methods). LD clumping did not alleviate the mis-calibration/bias (Figure 6 and supplementary Table 14);
for example, the average FPR was 0.279 (SE 0.008) and the average Deming slope was 1.083 (SE 0.018) in
simulations with 4 causal variants per Mb (f¢ausat = 1,000 on chromosome 1). Such mis-calibrations occurred
irrespective of sample size (Extended Data Figure 8), or simulated heritability hi, (Supplementary Table 14). For
completeness, we also evaluated OLS regression slope and Pearson correlation showing mis-calibrations with a
large magnitude (Supplementary Table 14). Finally, we note the upward/downward biases of Deming slope for
Beur ~ Bafr / Bafr ~ Beur» Which were likely due to imbalanced ancestry proportions (~80% African and ~20%
European ancestries) of admixed genotypes in PAGE data (Supplementary Table 18).



7 Identifying individuals with admixed African and European ancestries with principal component
analysis

We seek to identify individuals with African-European admixed ancestries from a diverse population of genotyped
individuals (sample data, e.g., AoU) together with a reference panel (reference data, e.g., 1,000 Genomes) using
principal component analysis. First, we perform a principal component analysis jointly on the sample and reference
data and obtain top principal components (PCs) w; for each individual i. We calculate the averaged PCs for
individuals with European and African continental ancestries in 1,000 Genomes:

Zieafr Wi _ Zieeur Wi

Wafr = w =
afr |afr| B eur |eur|

(In our analysis, for African continental ancestries in 1,000 Genomes, we did not include individuals with sup-
population “ASW” (African Ancestry in Southwest US) or “ACB” (African Caribbean in Barbados), because some
individuals in these sub-populations had admixed ancestries.) Second, we calculate the projected length and distance
of each individual w; to the line (W, Weyr). We first define Wa = Wg — Weyr, and calculate the normalized projected
length #; and distance d; as:

(Wi — Weur) ' WA

t = - — 5 n; = (W; — Weyr) — 1 - Wa, di = ||ni||2~
Iwall

Roughly speaking, t; € [0, 1] if individual i locates in the PC space between European and African ancestries, and
has the interpretation of global ancestry proportion: the closer #; is to 1, the more African ancestries individual i
has, and vice versa. Finally, we define the normalized distance d; with

. d;
Tt max;ecare{d; } + (1 —1) - max;cenc{d;}

to account for the different spread (in PC space) for individuals with European and African continental ancestries. In
our analysis, we used the first two PCs when calculating these quantities, and the set of selected admixed individuals
was robust to the number of PCs used. We selected individuals with admixed ancestries with at least both 10%
European ancestries and 10% African ancestries (¢; € [0.1,0.9]), and who was within 2 X normalized distance
(d; < 2) from the line connecting individuals of European ancestries and African ancestries in 1,000 Genomes
reference panel.

8 Population-specific SNPs can induce downward bias of estimated genetic correlation

We explain reasons that ignoring rare population-specific SNPs can induce downward bias of estimated genetic
correlation. We consider a following example with two SNPs (SNP 1 and SNP 2) and two populations (population
A and population B). We analyze the expected marginal effects when one causal variant is very rare in one
population to explain the potential bias in genetic correlation estimation. For population A, SNPs 1 and 2 are both
common (MAF=30%) and in perfect LD (Cor[SNP 1, SNP 2] = 100%). While for population B, SNP 1 is common
(MAF=30%) but SNP 2 is rare (MAF=0.01%). In population B, because SNP 2 is rare, LD between SNP A and B is
close to zero. Furthermore, we assume same causal allelic effects for population A and B, with 5; = 0.5, 8> = 2.0.
Causal effects and MAF are summarized in the following table (with MAF in parentheses).

Population A | Population B
SNP 1 ) 0.5 (30%) 0.5 (30%)
SNP2B, | 2.0(30%) 2.0 (0.01%)

Causal effects and MAF in two-SNP example.



We then consider the expected marginal effects as a function of LD and causal effects (similar as Figure 4). For
population A, because SNP 1 and 2 are in perfect LD and tag the causal effects from both SNPs, the marginal effects

are expected to be the same as ﬁfm) = ,82'") = 0.5+ 2.0 = 2.5. While for population B, because of the near-zero

LD, marginal effects are expected to be the same as causal effects, where ,85’”) =0.5, ﬁém) =2.0.

Population A | Population B
SNP 1 g™ 25 0.5
sNp2 gi™ 2.5 2.0

Expected marginal effects in the two-SNP example. SNP 2 will be excluded when population-specific SNPs are
excluded in the analysis.

When population-specific SNPs (SNP 2) are excluded in the analysis, only SNP 1 is observed with marginal
effects of 2.5 in population A and 0.5 in population B; difference across ancestries is then induced. Therefore,
exclusion of population-specific variants can induce downward bias in estimated genetic correlation.

9 Genetic correlation across African and European populations in UK Biobank

We performed genetic correlation analysis of 26 traits across African and European populations in UK Biobank.
We used individuals of European ancestries (average N = 19K) and African ancestries (average N = 6K) in UK
Biobank. European individuals were a subset of white British individuals* (we used a small subset of individuals
for computational efficiency), and African individuals were identified using SCOPE analysis with African ancestry
proportion > 90%. We retained 4.7M SNPs with MAF > 0.5% in both populations from imputed variants in UK
Biobank. We used bivariate REML implemented in GCTA®, a method that leverage individual-level data and
therefore have improved precision® to quantify the correlation of causal effects between European and African
populations. Bivariate REML requires building a genomic relationship matrix (GRM) among all individuals. We
explored three approaches for standardizing genotypes when building the GRM.

(gi,s _Zfs,()verall )

\/Zfs ,overall ( 1 _fs ,overall )
for all individuals regardless of genetic ancestries, where f; overanl 1 the overall allele frequencies calculated

across all individuals.

* Overall standardized. Each individual i’s genotype at s-th SNP g;  is standardized using g; =

* Population-specific standardized. Each individual i’s genotype at s-th SNP g; s is standardized using
(gi,s_2fs,afr)

8is = P fou)

in individuals of African ancestries. Similar standardization is performed for individuals with European
ancestries.

for individual i of African ancestries, where fs of is the allele frequency for s-th SNP

* Population-specific allelic. Genotype &; s = (gi.s — 2f5.afr) for individual i of African ancestries. Similar
standardization is performed for individuals with European ancestries.

With the standardized genotypes &; s, each entry of GRM matrix for individual i and j is then Z
The standardization methods of “overall standardized” and “population-specific standardized” were explored in
ref.® while the standardization method of “population-specific allelic” was explored in refs.”®. We focused
on the method of “population-specific allelic” where allelic effects were compared across genetic ancestries,
because this is similar to our method of genetic correlation within admixed populations. In the analysis of
each trait, we included age, sex, age*sex, and top 20 principal-components of GRM of all individuals as
covariates. We performed quantile normalization of phenotype and covariate values. We performed bivariate
REML using gcta64 —--reml-bivar. We also determined that results are consistent with or without the flag
of ——reml-bivar—-no-constrain that constrains the estimate between -1 and 1 in our analyses.

f:] 8i,s8j.s
I —



10 Additional Discussions

First, for Latino American populations, given the large noises in estimated African local ancestries because of their
small proportion®, it may be desired to alternatively estimate genetic correlation of Native American ancestries vs.
other ancestries (including both European and African ancestries). In this case, the estimated genetic correlation
can be interpreted as differences of causal effects in Native American local ancestries versus the average causal
effects of European and African local ancestries. Second, we have focused on estimating a single global parameter
Fadmix Which summarizes the overall genome-wide genetic correlation. Our modeling framework can be extended
to stratified analyses of SNPs in different annotation categories (e.g., MAF bins or functional annotations '°) to
estimate the genetic correlation within each category. To obtain estimates with sufficient precision for each SNP
category, such stratified analyses would require larger sample sizes compared to the overall analyses we performed
here. We leave such stratified analyses for future work with access to larger sample sizes of admixed individuals.
Third, in the analysis of AoU data, we analyzed microarray data instead of whole genome sequencing (WGS) data
to reduce computational cost. However, our method is shown to be robust to untyped variants. We leave AoU WGS
data analysis for future work. Fourth, methods described here can be readily applied to gene expression data of
admixed individuals to investigate heterogeneity for gene expression; we leave this to future work because such data
with large sample size is currently unavailable to us.



Supplementary Tables

7 admix hé SNPset Mode 95% credible interval Pr[reject ‘Fagmix = 1’]

090 0.10 hm3 0.900 [0.882,0.916] 0.36
090 0.10 imputed 0.904 [0.885,0.92] 0.31
090 0.25 hm3 0.890 [0.881,0.899] 0.76
090 0.25 imputed 0.892 [0.883, 0.902] 0.67
090 0.50 hm3 0.888 [0.882,0.894] 0.99
090 0.50 imputed 0.893 [0.887,0.899] 0.94
095 0.10 hm3 0.931 [0.915, 0.946] 0.15
095 0.10 imputed 0.932 [0.915,0.948] 0.13
095 0.25 hm3 0.938 [0.931, 0.945] 0.42
095 0.25 imputed 0.943 [0.935,0.951] 0.28
095 0.50 hm3 0.943  [0.939, 0.948] 0.59
095 0.50 imputed 0.951 [0.946, 0.956] 0.43
1.00 0.10 hm3 0.994 [0.983, 1] 0.01
1.00 0.10 imputed 1.000 [0.989,1] 0.01
1.00 0.25 hm3 0.991 [0.985, 0.998] 0.07
1.00 0.25 imputed 1.000 [0.996, 1] 0.06
1.00 0.50 hm3 0.989  [0.985, 0.994] 0.09
1.00 0.50 imputed 1.000 [0.998, 1] 0.03

Supplementary Table 1: Numeric results of genetic correlation r,gmix estimation in genome-wide simulations
(with fixed pcausal = 0.1%; Figure 2). We fixed the proportion of causal variants pcyusar = 0.1%, and we varied
genome-wide heritability hé = 0.1,0.25,0.5, genetic correlation rygmix = 0.90,0.95,1.0, and SNP set used in
the estimation. For each simulated genetic architecture, we performed a meta-analysis of estimation across 100
simulations. We report the mode and 95% credible interval from the meta-analysis. We also report the empirical
probability of rejecting the null hypothesis of rygmix = 1 (one-sided test).



Fadmix  Pcausal SNPset Mode 95% credible interval Pr[reject ‘ragmix = 1’]

0.90 0.001% hm3 0.909 [0.9,0.917] 0.61
0.90 0.001% imputed 0.911 [0.901, 0.919] 0.57
0.90 0.01%  hm3 0.900 [0.891, 0.909] 0.74
090 0.01%  imputed 0.903 [0.893,0.912] 0.59
0.90 0.1% hm3 0.890 [0.881, 0.899] 0.76
0.90 0.1% imputed 0.892 [0.883, 0.902] 0.67
0.90 1% hm3 0.902 [0.893,0.911] 0.66
090 1% imputed 0.904 [0.894, 0.913] 0.59
0.95 0.001% hm3 0.923 [0.915, 0.931] 0.52
0.95 0.001% imputed 0.930 [0.921, 0.938] 0.43
095 0.01%  hm3 0.944 [0.937,0.951] 0.34
095 0.01%  imputed 0.952 [0.944, 0.959] 0.31
0.95 0.1% hm3 0.938 [0.931, 0.945] 0.42
0.95 0.1% imputed 0.943 [0.935, 0.951] 0.28
095 1% hm3 0.939 [0.932,0.946] 0.38
095 1% imputed 0.946 [0.938, 0.954] 0.28
1.00 0.001% hm3 0.994  [0.988, 0.999] 0.16
1.00 0.001% imputed 1.000 [0.996, 1] 0.10
1.00 0.01%  hm3 0.988 [0.982,0.995] 0.06
1.00 0.01%  imputed 1.000 [0.994, 1] 0.03
1.00  0.1% hm3 0.991 [0.985, 0.998] 0.07
1.00  0.1% imputed 1.000 [0.996, 1] 0.06
1.00 1% hm3 0.994 [0.989,1] 0.04
1.00 1% imputed 1.000 [0.996, 1] 0.02

Supplementary Table 2: Numeric results of genetic correlation r,gmix estimation in genome-wide simulations
(with fixed hi, = 0.25). We fixed genome-wide heritability hz, = (0.25, and we varied the proportion of causal
variants pcausal = 0.001%, 0.01%, 0.1%, 1%, genetic correlation rygmix = 0.90,0.95,1.0, and SNP set used in
the estimation. For each simulated genetic architecture, we performed a meta-analysis of estimation across 100
simulations, we report the mode and 95% credible interval from the meta-analysis. We also report the empirical
probability of rejecting the null hypothesis of 73gmix = 1 (one-sided test).



radmix MAF threshold Mode 95% credible interval —Pr[reject ‘ryamix = 1']

0.90 0.5% 0.892 [0.883,0.902] 0.67
0.90 1% 0.885 [0.876, 0.895] 0.73
0.90 5% 0.847 [0.837, 0.858] 0.89
095 0.5% 0.943  [0.935,0.951] 0.28
095 1% 0.937 [0.929, 0.945] 0.35
095 5% 0.906 [0.896,0.914] 0.63
1.00  0.5% 1.000 [0.996, 1] 0.06
1.00 1% 0.998 [0.991,1] 0.06
1.00 5% 0.966 [0.959,0.974] 0.14

Supplementary Table 3: Numeric results of rygmix estimation in genome-wide simulations using other MAF
thresholds in estimation stage. We simulated phenotypes with fixed hé = 0.25, pcausat = 0.1%, and imputed
variants. We applied our methods using SNPs obtained from different population-specific MAF thresholds. We
used SNPs that have MAF > 0.5% (default), MAF > 1%, MAF > 5% in both of the populations and we assessed the
bias of the methods. We determined increased bias with more stringent MAF threshold. For each simulated genetic
architecture, we performed a meta-analysis of estimation across 100 simulations, we report the mode and 95%
credible interval from the meta-analysis. We also report the empirical probability of rejecting the null hypothesis
of raamix = 1 (one-sided test).

Fadmix ~ Mode 95% credible interval  Pr[reject ‘ryqmix = 1’]

1.00  1.000 [0.996, 1] 0.06
095 0.943 1[0.935,0.951] 0.28
0.90 0.892 [0.883,0.902] 0.67
0.50 0.502 [0.482,0.52] 1.00
0.00 0.009 [-0.023, 0.04] 1.00
-0.50 -0.486 [-0.532,-0.442] 1.00

Supplementary Table 4: Numeric results of rygmix estimation in genome-wide simulations for additional
range of rygmix (With fixed hé = 0.25, peausal = 0.1%, and imputed variants). We varied genetic correlation
Fadmix = —0.5,0,0.5,0.90,0.95, 1.0. In these simulations, we assumed —1 < ryqmix < 1 instead of r3qmix = 0 as in
our default method. For each simulated genetic architecture, we performed a meta-analysis of estimation across 100
simulations, we report the mode and 95% credible interval from the meta-analysis. We also report the empirical
probability of rejecting the null hypothesis of ragmix = 1 (one-sided test).
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hi ramix SNPset Mean SEM

0.10 090 hm3 0.104  0.00218
0.10 090 imputed O0.11 0.0021
0.10 095 hm3 0.0962 0.00203
0.10 095 imputed 0.101  0.00196
0.10 1.00 hm3 0.0918 0.00204
0.10 1.00 imputed 0.0972 0.00197
025 090 hm3 0.243  0.0025
0.25 090 imputed 0.259  0.0025
025 095 hm3 0.239  0.00211
0.25 095 imputed 0.255 0.00219
0.25 1.00 hm3 0.229  0.00199
0.25 1.00 imputed 0.247  0.00208
050 090 hm3 0.468  0.0023
0.50 090 imputed 0.502  0.00223
050 095 hm3 0462  0.00221
0.50 0.95 imputed 0.498  0.00226
0.50 1.00 hm3 0.46 0.0024
0.50 1.00 imputed 0.498  0.0024

Supplementary Table 5: Numeric results of hi, estimation in genome-wide simulations (with fixed pcausal =
0.1%). We fixed the proportion of causal variants pcausai = 0.1%, and we varied genome-wide heritability
h:é = 0.1,0.25,0.5, genetic correlation rygmix = 0.90,0.95,1.0, and SNP set used in the estimation. For each
simulated genetic architecture, we report the mean and SEM of the estimates across 100 simulations.
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Dcausal Fadmix SNPset Mean SEM

0.001% 090 hm3 024  0.0035

0.001% 090 imputed 0.256 0.00377
0.001%  0.95 hm3 0.234 0.00374
0.001%  0.95 imputed 0.252 0.00446
0.001%  1.00 hm3 0.235 0.00386
0.001%  1.00 imputed 0.252 0.00448
0.01% 0.90 hm3 0.244 0.00219
0.01% 090 imputed 0.261 0.00229
0.01% 0.95 hm3 0.239 0.00251
0.01% 0.95 imputed 0.256 0.00252
0.01% 1.00 hm3 0.231 0.00246
0.01% 1.00 imputed 0.249 0.00259
0.1% 0.90 hm3 0.243  0.0025

0.1% 0.90 imputed 0.259 0.0025

0.1% 0.95 hm3 0.239 0.00211
0.1% 0.95 imputed 0.255 0.00219
0.1% 1.00 hm3 0.229 0.00199

0.1% 1.00 imputed 0.247 0.00208
1% 0.90 hm3 0.242  0.0023

1% 0.90 imputed 0.257 0.0023

1% 0.95 hm3 0.238 0.00211
1% 0.95 imputed 0.256 0.00211
1% 1.00 hm3 0.232  0.00204
1% 1.00 imputed 0.248 0.00207

Supplementary Table 6: Numeric results of hé estimation in genome-wide simulations (with fixed hzg =

0.25). We fixed genome-wide heritability hz, = 0.25, and we varied the proportion of causal variants pcausal =
0.001%, 0.01%, 0.1%, 1%, genetic correlation rygmix = 0.90,0.95,1.0, and SNP set used in the estimation. For
each simulated genetic architecture, we report the mean and SEM of the estimates across 100 simulations.
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Study  Trait N Mode 95% credible interval(s) p-value hi,

UKBB Asthma 4079 1.000 [0.15, 1.00] 1 0.21 +0.087
UKBB BMD 1668 0.000 [0.00, 0.78] 0.012 0.34+0.16
AoU BMI 28747 0.996 [0.93, 1.00] 0.89 0.23 +0.017
PAGE BMI 16684 0.929 [0.81, 1.00] 0.14 0.23 +0.024
UKBB BMI 4090 1.000 [0.06, 1.00] 1 0.084 + 0.082
PAGE  C-reactive protein 8321 0.995 [0.82,1.00] 0.94 0.28 +0.046
PAGE Cigarettes per day 6995 0.999 [0.08, 1.00] 1 0.097 + 0.047
PAGE Coffee consumption 11587 0.982 [0.10, 1.00] 0.9 0.074 £ 0.03
AoU Diastolic blood pressure 28765 1.000 [0.88, 1.00] 1 0.094 £ 0.015
PAGE Diastolic blood pressure 11005 1.000 [0.06, 1.00] 1 0.037 £ 0.028
UKBB Diastolic blood pressure 4017 1.000 [0.07, 1.00] 1 0.14 £ 0.084
UKBB Education years 3324 0.000 [0.00,0.94] 0.4 0.055 +0.075
UKBB Ever smoked 4083 0.764 [0.04, 0.98] 0.31 0.17 £ 0.082
PAGE Fasting glucose 9646 0.695 [0.00, 0.93] 0.27 0.064 + 0.035
PAGE  Fasting insulin 7753 1.000 [0.21, 1.00] 1 0.13 £ 0.044
AoU HDL 8539 0.969 [0.65,1.00] 0.66 0.24 +0.049
PAGE HDL 9929 0.788 [0.10, 0.99] 0.1 0.13 £ 0.036
UKBB HDL 3571  1.000 [0.66, 1.00] 1 0.35+£0.098
UKBB HLR count 3852 1.000 [0.07,1.00] 1 0.12 + 0.086
PAGE HbAlc 1740 1.000 [0.06, 1.00] 1 0.27 +0.2
UKBB HbAIlc 3613 0.883 [0.07, 1.00] 0.58 0.17 £ 0.085
AoU Heart rate 28764 0.980 [0.82, 1.00] 0.74 0.099 +0.015
AoU Height 28800 0.952 [0.90, 0.99] 0.03 0.41 +0.017
PAGE Height 16705 0.902 [0.81, 0.97] 0.0042  0.39 +0.025
UKBB Height 4100 0911 [0.51, 1.00] 0.37 0.43 +0.089
PAGE  Hypertension 16617 0.910 [0.16, 1.00] 0.42 0.071 £ 0.021
UKBB Hypertension 4127 0.983 [0.09, 1.00] 0.93 0.16 + 0.082
UKBB Hypothyroidism 4063  1.000 [0.05, 1.00] 1 0.046 + 0.07
AoU LDL 8513 0.835 [0.06, 1.00] 0.46 0.075 £ 0.04
PAGE LDL 9574  0.967 [0.39, 1.00] 0.73 0.15 +0.037
UKBB LDL 3892 0.991 [0.26, 1.00] 0.94 0.28 +0.088
UKBB Lymphocyte count 3935 1.000 [0.00, 0.60] [0.66, 1.00] 1 0.13 £ 0.086
UKBB MCH 3948 0.829 [0.07, 1.00] 0.36 0.2 +0.076
PAGE MCHC 3650 0.228 [0.00, 0.87] 0.061 0.21 £ 0.092
UKBB Monocyte count 3935 0.972 [0.26, 1.00] 0.82 0.3 +0.087
UKBB  Neuroticism 3044 1.000 [0.36, 1.00] 1 0.36 £ 0.11
PAGE PR interval 4071 0.844 [0.08, 1.00] 0.36 0.22 +0.084
PAGE Platelet count 8597 0.839 [0.20, 1.00] 0.12 0.18 £ 0.042
UKBB Platelet count 3948 0.617 [0.00, 0.90] 0.083 0.21 = 0.086
PAGE QRS interval 4078 1.000 [0.07, 1.00] 1 0.12 +0.082
PAGE QT interval 4089 0.920 [0.07, 1.00] 0.69 0.16 = 0.083
UKBB RBC count 3948 1.000 [0.37,1.00] 1 0.31 +0.09
UKBB RBC distribution width 3925 1.000 [0.27,1.00] 1 0.28 + 0.087
AoU Systolic blood pressure 28765 1.000 [0.79, 1.00] 1 0.069 + 0.014
PAGE  Systolic blood pressure 11006 1.000 [0.11, 1.00] 1 0.073 £ 0.032
UKBB Systolic blood pressure 4017 1.000 [0.06, 1.00] 1 0.13 +£0.086
AoU Total cholesterol 8676 0.861 [0.10, 1.00] 0.28 0.13 +£0.041
PAGE Total cholesterol 9981 0.696 [0.10, 0.92] 0.0053 0.18 £0.036
UKBB Total cholesterol 3898 0.972 [0.36, 1.00] 0.81 0.32 £ 0.089
AoU Triglycerides 8698 0.891 [0.29, 1.00] 0.2 0.2 +0.043
PAGE  Triglycerides 9896 0.792 [0.17, 1.00] 0.062 0.15 +0.036
UKBB  Triglycerides 3900 0.822 [0.09, 1.00] 0.24 0.27 £ 0.082
UKBB Type | diabetes 3767 0.381 [0.00, 0.95] 0.77 -0.033 £0.016
PAGE  Type 2 diabetes 14516 0.895 [0.47,1.00] 0.24 0.12 £ 0.026
UKBB Type 2 diabetes 4114 0.920 [0.06, 1.00] 0.82 0.09 +0.072
AoU WHR 26689 0.989 [0.86, 1.00] 0.83 0.12 +0.017
PAGE WHR 10067 0.903 [0.15, 1.00] 0.38 0.12 £ 0.035
PAGE  White blood cell count 8615 0.902 [0.61,1.00] 0.17 0.25 +0.041
UKBB  White blood cell count 4140 1.000 [0.13, 1.00] 1 0.18 £ 0.074
PAGE eGFR 7978 0.805 [0.16, 1.00] 0.09 0.19 £ 0.046

Supplementary Table 7: Genome-wide genetic correlation across 38 complex traits (60 study-trait pairs) for
African-European admixed individuals in PAGE, UKBB, AoU. For each trait, we report number of individuals,
posterior mode and 95% credible interval(s) for estimated ruamix, p-value for rejecting the null hypothesis of
Hy : radmix = 1 (one-sided test), and estimated heritability and standard error. Meta analysis results are performed
across 60 study-trait pairs. UKBB Lymphocyte count has two credible intervals because of the non-concave profile
likelihood curve, likely as a result of small sample size.
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See Supplementary Excel table.

Supplementary Table 8: Genetic correlation estimation are robust to genetic architecture and SNP set. We
performed rygmix estimation under the assumption of alternative genetic architecture and SNP set on real trait
analysis across PAGE and UKBB. We compared posterior mode, 95% credible intervals and p-values (for one-
sided test of Hy : ragmix = 1) of our default setting (using frequency-dependent genetic architecture and imputed
SNPs; Table 1) to those obtained using GCTA genetic architecture and imputed SNPs, and to those obtained using
frequency-dependent genetic architecture and HM3 SNPs. Study-trait pairs whose GCTA optimization failed to
converge are indicated as ‘NA’.

2-component model 3-component model
Trait r (default) og Pe o? r 0'51 ‘7},2:2 P o? r Loglik. diff. p-value of same var.
C-reactive protein 0.996 0.27 (0.05)  0.26 (0.06) 0.70 (0.05) 0.99 (0.06) | 0.30(0.08) 0.25(0.05) 0.28 (0.06) 0.70 (0.05) 1.00 (0.06) | 0.185 0.667
White blood cell count  0.902 0.18 (0.04) 0.16 (0.05) 0.64 (0.04) 0.90 (0.09) | 0.15(0.06) 0.19(0.04) 0.15(0.05) 0.63(0.04) 0.90 (0.09) | 0.137 0.711
MCHC 0.228 0.08 (0.10)  0.02(0.12) 0.83(0.10) 0.21(1.29) | -0.03 (0.14) 0.12(0.11) -0.02 (0.12) 0.82 (0.10) - - -
Platelet count 0.84 0.14 (0.04) 0.11(0.05) 0.81(0.04) 0.84(0.14) | -0.05(0.07) 0.19 (0.05) 0.05 (0.05) 0.80 (0.04) - - -
HDL 0.788 0.09 (0.04) 0.07 (0.04) 0.81(0.04) 0.79 (0.19) | -0.02 (0.06) 0.13(0.04) 0.03 (0.05) 0.81(0.04) - - -
LDL 0.968 0.12(0.04) 0.12(0.04) 0.75(0.04) 0.97 (0.10) | 0.18(0.06) 0.10(0.04) 0.14(0.05) 0.75(0.04) 1.01(0.10) | 0.665 0.415
Triglycerides 0.792 0.12 (0.04) 0.09 (0.05) 0.84(0.04) 0.79 (0.16) | 0.14(0.06) 0.11(0.04) 0.10(0.05) 0.84(0.04) 0.81(0.16) | 0.117 0.732
Total cholesterol 0.696 0.11 (0.04) 0.08 (0.04) 0.75(0.03) 0.70 (0.18) | 0.09 (0.06) 0.11(0.04) 0.07 (0.04) 0.75(0.03) 0.68 (0.20) | 0.059 0.808
Cigarettes per day 1.0 0.09 (0.05) 0.09 (0.06) 0.84(0.05) 1.00(0.16) | 0.04(0.08) 0.11(0.06) 0.08 (0.06) 0.84(0.05) 1.07(0.35) | 0.365 0.546
Coffee consumption 0.982 0.05(0.02) 0.05(0.03) 0.65(0.02) 0.98(0.14) | 0.15(0.04) 0.02(0.03) 0.08 (0.03) 0.65(0.02) 1.56(0.71) | 4.08 0.043
HbAlc 1.0 0.30(0.22) 0.32(0.26) 0.69 (0.21) 1.07 (0.19) | 0.19(0.30) 0.31(0.23) 0.27(0.27) 0.69 (0.21) 1.10(0.27) | 0.115 0.735
Fasting insulin 1.0 0.14 (0.05) 0.14 (0.06) 0.84 (0.05) 1.02(0.09) | 0.09 (0.07) 0.15(0.05) 0.12(0.06) 0.84(0.05) 1.05(0.13) | 0.309 0.578
Fasting glucose 0.694 0.04 (0.04) 0.02(0.04) 0.86(0.04) 0.70(0.52) | -0.19 (0.05) 0.11(0.04) -0.06 (0.04) 0.86 (0.04) - - -
Type 2 diabetes 0.896 0.05 (0.01) 0.04(0.01) 0.37(0.01) 0.89(0.11) | 0.01(0.02) 0.06(0.01) 0.03(0.01) 0.37(0.01) 1.16(0.64) | 2.739 0.098
QT interval 0.92 0.14 (0.09) 0.13(0.11) 0.84(0.09) 0.92(0.23) | 0.16(0.13) 0.14(0.10) 0.14 (0.11)  0.84 (0.09) 0.93 (0.22) | 0.016 0.899
QRS interval 1.0 0.15(0.09) 0.17 (0.10) 0.83(0.09) 1.16(0.13) | 0.05(0.12) 0.19(0.10) 0.14 (0.11)  0.81(0.09) 1.48 (1.07) | 0.749 0.387
PR interval 0.844 0.17 (0.10) 0.14(0.11) 0.80(0.09) 0.84 (0.23) | 0.04(0.13) 0.21(0.10) 0.10(0.11) 0.80(0.09) 1.01(0.73) | 0.876 0.349
Systolic blood pressure 1.0 0.08 (0.03) 0.09 (0.04) 0.86(0.03) 1.07 (0.09) | -0.02 (0.06) 0.11(0.04) 0.04 (0.04) 0.86 (0.03) - - -
Diastolic blood pressure 1.0 0.04 (0.03) 0.04(0.04) 0.94(0.04) 1.01(0.23) | -0.17(0.03) 0.13(0.04) -0.02(0.03) 0.91(0.03) - - -
Hypertension 0.91 0.02 (0.01) 0.02(0.01) 0.38(0.01) 0.91(0.14) | 0.05(0.02) 0.02(0.01) 0.03(0.01) 0.38(0.01) 1.13(0.23) | 1.951 0.162
WHR 0.902 0.08 (0.03) 0.08 (0.04) 0.73(0.03) 0.90(0.14) | 0.13(0.05) 0.07 (0.04) 0.09(0.04) 0.73(0.03) 0.97 (0.14) | 0.525 0.469
Height 0.902 0.22(0.02) 0.20(0.02) 0.38(0.02) 0.90(0.04) | 0.18(0.03) 0.24(0.02) 0.19(0.02) 0.38 (0.02) 0.90 (0.04) | 2.066 0.151
BMI 0.93 0.20 (0.02)  0.19 (0.03) 0.74(0.02) 0.93(0.05) | 0.18(0.04) 0.21(0.03) 0.18(0.03) 0.74(0.02) 0.93 (0.06) | 0.246 0.62
eGFR 0.806 0.11 (0.04) 0.09 (0.04) 0.63 (0.04) 0.81(0.16) | -0.06 (0.05) 0.17 (0.04) 0.03 (0.04) 0.62 (0.04) - - -

Supplementary Table 9: Numerical results comparing estimated r,gmix between alternative method
formulations and default method (related to Extended Data Figure 5). We compare results of (1) default method
(2) directly optimizing and estimating a'g%, pg (2-component) (3) directly optimizing and estimating o? a'g2 , and

g’
pg (3-component). Results of 3-component method for some traits were not displayed because one of o? 1> a‘é )

is estimated to be negative, causing the genetic correlation undefined. Standard errors are reported in parentheses.
We also report the log-likelihood difference between 2-component model and 3-component model, and p-value
for two-sided test of Hy : (T;’l = a-g2,2' The observation that r,gmix e€stimated via alternative methods without
constraining r,amix < 1 were larger than those estimated via the default method suggests that estimates from the

default method provided a lower bound of true r,gmix in real data analysis. See Supplementary Notes for details.
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Trait Neur  Narr  Population-specific allelic  Population-specific standardized —Overall standardized

Hypothyroidism 19850 6092 0.667 (0.79) 0.192 (0.31) 1.00 (3.0)
Type 1 diabetes 19004 5516 - - -

Type 2 diabetes 19927 6140 1.00 (0.75) 0.668 (0.48) 0.944 (0.89)
Hypertension 19996 6176 0.131 (0.31) -0.112 (0.33) -0.184 (0.29)
Asthma 19570 6127 1.00 (2.4) 0.339 (0.38) 0.934 (2.0)
Total cholesterol 19051 5790 0.847 (0.22) 0.743 (0.21) 0.887 (0.24)
Diastolic blood pressure 18632 6043 0.238 (0.22) 0.145 (0.21) 0.0920 (0.25)
RBC distribution width 19375 5790 0.634 (0.24) 0.754 (0.25) 0.902 (0.33)
RBC count 19403 5837 0.501 (0.12) 0.484 (0.12) 0.530 (0.14)
Ever smoked 19924 6073 0.534 (0.24) 0.496 (0.22) 0.513 (0.25)
Height 19951 6079 0.547 (0.077) 0.507 (0.074) 0.510 (0.079)
LDL 19018 5779 0.878 (0.25) 0.806 (0.24) 0.926 (0.26)
BMI 19930 6071 0.663 (0.14) 0.552 (0.13) 0.686 (0.17)
HbAlc 19058 4853 0.571 (0.23) 0.681 (0.28) 0.784 (0.31)
HDL 17478 5368 0.473 (0.20) 0.297 (0.16) 0.392 (0.21)
BMD 11326 2197 0.214 (0.26) 0.313 (0.35) 0.250 (0.26)
HLR count 19030 5681 0.334 (0.13) 0.276 (0.13) 0.265 (0.14)
White blood cell count 19405 5839 0.466 (0.14) 0.427 (0.12) 0.571 (0.16)
Lymphocyte count 19366 5821 0.632 (0.19) 0.496 (0.16) 0.687 (0.25)
Monocyte count 19369 5818 0.206 (0.14) 0.177 (0.16) 0.198 (0.19)
Platelet count 19405 5839 0.604 (0.13) 0.578 (0.13) 0.650 (0.16)
Triglycerides 19039 5786 0.539 (0.14) 0.510 (0.14) 0.620 (0.17)
MCH 19397 5838 0.433 (0.13) 0.426 (0.11) 0.438 (0.14)
Neuroticism 16297 4002 0.811 (0.75) 0.623 (0.42) 1.00 (2.0)
Systolic blood pressure 18632 6043 0.468 (0.18) 0.472 (0.18) 0.535 (0.21)
Education years 16620 5118 0.337 (0.19) 0.408 (0.17) 0.560 (0.25)
Meta analysis 0.497 (0.034) 0.457 (0.032) 0.506 (0.041)

Supplementary Table 10: Genome-wide genetic correlation across 26 complex traits for African and European
ancestral populations in UK Biobank. For each trait, we report number of individuals for European and African
ancestral populations. We reported results of genetic correlation using three methods used to normalize the genotype
matrix when calculating the GRM matrix: (1) population-specific allelic effects (default); (2) populations-specific
standardized effects; (3) overall standardized effects (see Methods for details). We also report results of random-
effects meta-analysis across traits. REML analysis for Type 1 diabetes did not converge and results are therefore not
reported. We note that our results are overall consistent with the estimated correlation reported in recent works ®!1:12
(differences across these works can be explained by the different set of analyzed traits).

See Supplementary Excel table.

Supplementary Table 11: Summary statistics of 217 genome-wide significant trait-associated SNPs. We
performed GWAS for each of 60 study-trait pairs in PAGE, UKBB, AoU. We report summary statistics for each
of trait-associated SNPs that have two-sided association p < 5 x 10~® and minor allele frequency > 0.5% in both
European and African ancestries. For each pair of trait and SNP, we report two-sided association p-value, two-
sided HET p-value, ancestry-specific allele frequencies calculated within PAGE, UKBB, AoU admixed individuals,
estimated ancestry-specific effect sizes and standard errors. Across all 217 SNPs, Pearson’s r = 0.73 (SE 0.04),
OLS regression slope of B ~ Beur = 0.84 (SE 0.06), OLS regression slope of Beyr ~ Bagr = 0.64 (SE 0.06), Deming
slope of Bafr ~ Beur = 1.22 (SE 0.09), Deming regression slope of Beyr ~ Barr = 0.82 (SE 0.06). Across 193 SNPs
after excluding MCH-associated SNPs, Pearson’s r = 0.85 (SE 0.03), OLS regression slope of Bafy ~ Beur = 0.92
(SE 0.05), OLS regression slope of Beyr ~ Barr = 0.80 (SE 0.06), Deming slope of Bafy ~ Beur = 1.08 (SE 0.05),
Deming regression slope of Beyr ~ Bafr = 0.93 (SE 0.04).

15



hé Beur : Bafr  W/O lanc included lanc regressed
0.2% 1.00 0.0515 (0.012)  0.0509 (0.01) 0.0768 (0.013)
1.05 0.0525 (0.011) 0.0514 (0.0096) 0.0791 (0.014)
1.10 0.0598 (0.01)  0.0575 (0.0094) 0.0814 (0.014)
1.15 0.0714 (0.011) 0.0613 (0.011)  0.0884 (0.014)
1.20 0.0826 (0.011) 0.0675 (0.01) 0.0946 (0.014)
0.6% 1.00 0.0503 (0.01)  0.0509 (0.0094) 0.166 (0.014)
1.05 0.0583 (0.011) 0.0557 (0.01) 0.174 (0.016)
1.10 0.0841 (0.012) 0.0687 (0.013)  0.191 (0.015)
1.15 0.113 (0.015)  0.0832 (0.013)  0.207 (0.018)
1.20 0.153 (0.016)  0.104 (0.013) 0.22 (0.019)
1.0% 1.00 0.0524 (0.01)  0.0528 (0.0091) 0.228 (0.018)
1.05 0.0631 (0.01)  0.0584 (0.0097) 0.242 (0.018)
1.10 0.0989 (0.013) 0.0771 (0.012)  0.263 (0.021)
1.15 0.158 (0.015)  0.106 (0.015) 0.283 (0.022)
1.20 0.227 (0.017)  0.147 (0.017) 0.308 (0.02)

Supplementary Table 12: Numerical results for pitfalls of including local ancestry in estimating heterogeneity
(Figure 5). We report the false positive rate (for null simulations) and power (for power simulations) for two-sided
HET p-values. In each simulation, we selected a single causal variant and simulated quantitive phenotypes where
causal variants had varying heritability h§ = 0.2%,0.6%, 1.0% and varying ratios of effects across ancestries
Beur : Parr = 1.0,1.05,1.1,1.15,1.2. Standard errors (displayed in parentheses) were calculated based on 100
random sub-samplings with each sample consisting of 500 SNPs (Methods).

HET FPR Deming (AFR~EUR) Deming (EUR~AFR) Pearsonr OLS (AFR~EUR) OLS (EUR~AFR)
group hé
Causal 0.2% 0.051 (0.01)  0.999 (0.013) 1.001 (0.013) 0.914 (0.009) 0.878 (0.023) 0.952 (0.024)
0.6% 0.051 (0.011) 0.996 (0.01) 1.005 (0.01) 0.964 (0.005) 0.943 (0.017) 0.985 (0.017)
1.0% 0.048 (0.008) 0.999 (0.008) 1.001 (0.008) 0.978 (0.002) 0.967 (0.013) 0.989 (0.013)
Clumped (single) 0.2% 0.048 (0.008) 1.003 (0.014) 0.997 (0.014) 0.886 (0.048) 0.837 (0.08) 0.939 (0.032)
0.6% 0.049 (0.009) 0.998 (0.009) 1.002 (0.009) 0.964 (0.004) 0.947 (0.017) 0.983 (0.017)
1.0% 0.047 (0.009) 0.999 (0.007) 1.001 (0.007) 0.978 (0.002) 0.968 (0.013) 0.988 (0.013)
Clumped (all) 0.2% 0.048 (0.008) 1.002 (0.014) 0.998 (0.014) 0.87 (0.047)  0.823 (0.074) 0.921 (0.05)
0.6% 0.064 (0.01)  0.996 (0.011) 1.004 (0.011) 0.859 (0.052) 0.797 (0.07) 0.927 (0.058)
1.0% 0.14 (0.014)  0.984 (0.009) 1.016 (0.01) 0.709 (0.054) 0.562 (0.07) 0.898 (0.072)

Supplementary Table 13: Numerical results for simulations with single causal variant (Figure 6). We report
the average and standard errors for each metric in simulations. Standard errors (displayed in parentheses) are based
on 100 random sub-samplings with each sample consists of 500 SNPs. For clumped variants, we either retained
only the SNP with strongest association within each region (“Clumped (single)”), or retained all the SNPs from
clumping results (“Clumped (all)”’) (Methods).
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Neasa  h3  HET FPR Deming (AFR~EUR) Deming (EUR~AFR) Pearson r OLS (AFR~EUR) OLS (EUR~AFR)
62 10% 0.181 (0.011) 0.985 (0.011) 1.015 (0.011) 0.916 (0.008)  0.858 (0.015) 0.978 (0.013)
20% 0.25(0.013)  0.995 (0.012) 1.005 (0.012) 0.926 (0.005) 0.885 (0.013) 0.969 (0.012)
125 10% 0.195(0.013) 0.987 (0.012) 1.014 (0.012) 0.884 (0.01)  0.817 (0.018) 0.957 (0.014)
20% 0.279 (0.015)  0.979 (0.014) 1.022 (0.015) 0.892 (0.007) 0.83 (0.015) 0.959 (0.015)
250  10% 0.203 (0.011) 0.975 (0.013) 1.025 (0.013) 0.874 (0.009)  0.804 (0.016) 0.95 (0.013)
20% 0.304 (0.014) 0.958 (0.017) 1.044 (0.019) 0.852 (0.009) 0.773 (0.016) 0.94 (0.02)
500 10% 0.249 (0.012) 0.922 (0.013) 1.085 (0.016) 0.838 (0.011)  0.739 (0.016) 0.951 (0.015)
20% 0.307 (0.015) 0.954 (0.019) 1.049 (0.021) 0.817 (0.011)  0.729 (0.018) 0.917 (0.019)
1000 10% 028 (0.011)  0.942 (0.012) 1.062 (0.014) 0.818 (0.009) 0.732 (0.014) 0.914 (0.014)
20% 0.361 (0.015) 0.906 (0.022) 1.105 (0.026) 0.761 (0.014)  0.651 (0.017) 0.89 (0.026)
(a) Results for causal variants
Newsa  h3  HET FPR Deming (AFR~EUR) Deming (EUR~AFR) Pearson r OLS (AFR~EUR) OLS (EUR~AFR)
62 10% 0.234 (0.013) 0.963 (0.013) 1.038 (0.014) 0.548 (0.057)  0.383 (0.062) 0.789 (0.066)
20% 0.354 (0.015) 0.923 (0.02) 1.084 (0.024) 0.426 (0.046)  0.275 (0.044) 0.662 (0.075)
125 10% 023(0.012) 0.971(0.015) 1.031 (0.016) 0.606 (0.082)  0.498 (0.095) 0.745 (0.101)
20% 0.357 (0.013)  0.908 (0.021) 1.102 (0.026) 0.462 (0.047)  0.345 (0.054) 0.626 (0.083)
250 10% 0.217 (0.013) 0.97 (0.013) 1.031 (0.014) 0.669 (0.075)  0.567 (0.097) 0.798 (0.099)
20% 0.355 (0.015) 0.921 (0.019) 1.087 (0.022) 0.514 (0.055)  0.395 (0.07) 0.679 (0.086)
500 10% 0.25(0.013)  0.941 (0.018) 1.063 (0.02) 0.632 (0.057) 0.531 (0.087) 0.759 (0.08)
20% 0.351(0.014) 0.915 (0.02) 1.094 (0.024) 0.502 (0.061)  0.414 (0.083) 0.619 (0.089)
1000 10% 0.28 (0.012)  0.923 (0.016) 1.083 (0.018) 0.535 (0.067)  0.466 (0.088) 0.621 (0.071)
20% 0.395(0.017) 0.875 (0.024) 1.144 (0.031) 0.459 (0.064)  0.393 (0.081) 0.543 (0.076)

Supplementary Table 14: Numerical results for simulations with multiple causal variants (Figure 6). We report
numerical results for the 4 metrics in simulations with varying number of causal variants 62, 125, 250, 500, 1000
causal variants (such that on average there were approximately 0.25, 0.5, 1.0, 2.0, 4.0 causal variants per Mb) and
varying heritability explained by all causal variants h:é
larger than the chromosome 1 heritability of a typical complex trait because the limited sample size in our data
produced only few clumped variants when hé was small. We report the average and standard errors for each metric
in simulations. Standard errors (displayed in parentheses) were based on 100 random sub-samplings with each

(b) Results for clumped variants

sample consists of 1,000 SNPs (Methods).
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HET FPR / Power Deming (EUR~AFR) OLS (EUR~AFR) HET FPR / Power Deming (EUR~AFR) OLS (EUR~AFR)

hy  Bew: Bate by Beur : Bate

02% 0.0 0.648 (0.022) 0.039 (0.011) 0.042 (0.016) 02% 0.0 0452 (0.02) 0.248 (0.017) 0.235 (0.097)
05 0.337 (0.021) 0.537 (0.011) 0512 (0.017) 05 0.296 (0.023) 0.573 (0.013) 0.533 (0.026)
0.9 0.062 (0.012) 0.918 (0.014) 0.88 (0.027) 0.9 0.057 (0.011) 0.923 (0.015) 0.873 (0.058)
10 0.052 (0.01) 1.004 (0.016) 0.948 (0.026) 1.0 0.049 (0.009) 1.001 (0.014) 0.939 (0.047)
11 0.064 (0.012) 1.099 (0.018) 1.042 (0.026) 11 0.058 (0.01) 1.085 (0.017) 0.972 (0.069)

0.6% 0.0 0.905 (0.013) 0.001 (0.004) 0.0 (0.008) 0.6% 0.0 0.77 (0.018) 0.07 (0.016) 0.073 (0.053)
05 0.668 (0.02) 0.503 (0.007) 0.495 (0.011) 05 0.648 (0.019) 0.515 (0.008) 0.505 (0.012)
0.9 0.085 (0.012) 0.906 (0.008) 0.892 (0.013) 0.9 0.083 (0.011) 0.909 (0.009) 0.896 (0.014)
1.0 0.047 (0.01) 1.0 (0.009) 0.98 (0.018) 1.0 0.047 (0.009) 0.998 (0.01) 0.975 (0.016)
11 0.078 (0.013) 1.102 (0.011) 1.079 (0.018) 11 0.076 (0.012) 1.1 (0.01) 1.071 (0.024)

1.0% 0.0 0.948 (0.01) 0.001 (0.003) 0.001 (0.007) 1.0% 0.0 0.836 (0.018) 0.041 (0.012) 0.04 (0.039)
05 0.79 (0.018) 0.503 (0.006) 0.497 (0.009) 05 0.772 (0.019) 0.511 (0.006) 0.503 (0.009)
0.9 0.105 (0.014) 0.899 (0.007) 0.887 (0.013) 0.9 0.105 (0.015) 0.901 (0.008) 0.887 (0.014)
1.0 0.047 (0.01) 0.999 (0.007) 0.985 (0.014) 1.0 0.05 (0.01) 1.0 0.007) 0.986 (0.014)
11 0.097 (0.012) 1.1 (0.008) 1.085 (0.014) 11 0.094 (0.013) 1.098 (0.007) 1.081 (0.013)

2.0% 0.0 0.982 (0.006) 0.001 (0.002) -0.001 (0.004) 2.0% 0.0 0.897 (0.012) 0.015 (0.007) 0.024 (0.029)
05 0.893 (0.013) 0501 (0.004) 0.5 (0.006) 05 0.88 (0.013) 0.506 (0.004) 0.505 (0.007)
0.9 0.151 (0.016) 0.902 (0.005) 0.902 (0.008) 09 0.151 (0.015) 0.903 (0.003) 0.901 (0.01)
1.0 0.048 (0.009) 0.998 (0.005) 0.995 (0.009) 1.0 0.05 (0.009) 0.998 (0.005) 0.995 (0.009)
11 0.14 (0.015) 1.1 (0.006) 1.093 (0.009) 11 0.14 (0.013) 1.099 (0.005) 1.091 (0.01)

50% 0.0 0.999 (0.001) 0.001 (0.001) -0.0 (0.002) 50% 0.0 0.932 (0.011) 0.005 (0.003) 0.015 (0.015)
05 0.96 (0.009) 0.499 (0.002) 0.499 (0.004) 05 0.956 (0.01) 0.501 (0.003) 0.5 (0.005)
0.9 0.306 (0.021) 0.9 (0.003) 0.897 (0.003) 0.9 0.305 (0.022) 0.9 (0.003) 0.898 (0.006)
1.0 0.052 (0.011) 1.0 0.003) 0.999 (0.005) 1.0 0.051 (0.009) 1.0 0.003) 0.998 (0.006)
1.1 0.276 (0.02) 1.101 (0.004) 1.099 (0.006) L1 0.275 (0.019) 1101 (0.003) 1.099 (0.007)

(a) Results for causal variants (b) Results for clumped variants

Supplementary Table 15: Numerical results for additional simulations with single causal variant with varying
hé and Beur : Bafr (Figure 6). We report the average and standard errors for each metric in simulations. Standard
errors (displayed in parentheses) are based on 100 random sub-samplings with each sample consists of 500
SNPs. For clumped variants, we retained only the SNP with strongest association within each region. For causal
variants at small hz, simulation settings (h%g = 0.2%), we observed small upward bias for Deming regression when
Beur : Baer < 1, which can result from that Deming regression ignores the correlation between estimated SBeyr and Sag
(Methods); this bias diminishes as hé increases. For clumped variants at small hé simulation settings (h%g = 0.2%),
we observed bias towards the null of Beyr : Batr = 1, Which can be explained by that variants with similar effects by
ancestry are more likely to be prioritized in clumping procedure; this bias diminishes as hé increases.

2 .
hg Single All

0.2% 0.45 0.45
0.6% 0.57 0.51
1.0% 0.63 0.36

Supplementary Table 16: Probability for the clumped variants being causal in simulations with single causal
variant (Figure 6). We report the probability for the clumped variants to be causal in simulations. “Single”
corresponds to retaining only the SNP with strongest association within each region and “All” corresponds to
retaining all the SNPs from clumping results (Methods).
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EUR AFR lanc

EUR 1.00 -0.22 + 0.0086  -0.55 + 0.0098
AFR -0.22 £0.0086 1.00 0.36 = 0.0092
lanc  -0.55+£0.0098 0.36 +0.0092 1.00

Supplementary Table 17: Correlation between ancestry-specific genotypes and local ancestry. We report the
pairwise Pearson correlation across ancestry-specific genotypes g cur, s,eur and local ancestry £;. For each SNP,
we calculated the pairwise correlations across 17,299 individuals. We report the mean and SEM averaged across
500 random SNPs across chromosome 1.

Group Neausat HET FPR Deming (AFR~EUR) Deming (EUR~AFR) Pearson r OLS (AFR~EUR) OLS (EUR~AFR)
PAGE 1 0.052 (0.01)  0.999 (0.008) 1.001 (0.008) 0.964 (0.004) 0.947 (0.016) 0.981 (0.016)

41 0.623 (0.023) 0.888 (0.047) 1.129 (0.06) 0.748 (0.019)  0.651 (0.023) 0.86 (0.035)
Simu 20% EUR 80% AFR 1 0.048 (0.008) 0.995 (0.008) 1.005 (0.008) 0.968 (0.004) 0.946 (0.018) 0.99 (0.017)

41 0.6 (0.021) 0.922 (0.038) 1.086 (0.045) 0.808 (0.014) 0.727 (0.022) 0.899 (0.028)
Simu 80% EUR 20% AFR 1 0.047 (0.008) 1.001 (0.008) 0.999 (0.008) 0.967 (0.004) 0.987 (0.017) 0.948 (0.016)

41 0.581 (0.022) 1.067 (0.048) 0.939 (0.043) 0.817 (0.014)  0.899 (0.032) 0.743 (0.023)

(a) Results for causal variants

Group Neausat HET FPR Deming (AFR~EUR) Deming (EUR~AFR) Pearsonr OLS (AFR~EUR) OLS (EUR~AFR)
PAGE 1 0.114 (0.014) 0.989 (0.011) 1.011 (0.011) 0.857 (0.044) 0.792 (0.081) 0.931 (0.05)

41 0.604 (0.022) 0.403 (0.181) 2.322 (0.34) 0.134 (0.052)  0.109 (0.048) 0.169 (0.064)
Simu 20% EUR 80% AFR 1 0.083 (0.013) 0.991 (0.009) 1.009 (0.009) 0.821 (0.056) 0.688 (0.091) 0.983 (0.027)

41 0.566 (0.021)  0.593 (0.063) 1.705 (0.183) 0.331 (0.045) 0.188 (0.037) 0.586 (0.079)
Simu 80% EUR 20% AFR 1 0.069 (0.01)  1.004 (0.009) 0.996 (0.009) 0.871 (0.056) 0.893 (0.086) 0.855 (0.082)

41 0.508 (0.024) 1.527 (0.147) 0.661 (0.063) 0.315 (0.051)  0.222 (0.045) 0.451 (0.083)

(b) Results for clumped variants

Supplementary Table 18: Simulation results in PAGE data set and simulated genotype data sets with varying
ancestry proportion. We investigated the bias of Deming slope (ﬂgﬁ) ~ ,8;1'::)) observed in Figure 6 by performing
simulations on 3 genotype data sets: (a) PAGE data set of 17,299 individuals with ~20% European and ~80%
African ancestry proportions. (b) simulated genotype data set of 20000 individuals with 20% European and 80%
African ancestry proportions. (c¢) simulated genotype data set of 20,000 individuals with 80% European and 20%
African ancestry proportions. Simulated genotype data was generated as follows: first, we simulated the local
ancestries for each SNP and individual using a Poisson process parametrized by the recombination rate and genetic
distance; second, we used the phased genotype segment from a random individual in 1,000 Genomes with the
corresponding ancestry (European / African) as the genotype for each simulated local ancestry segment. Such
simulation method preserves the realistic local ancestry segment length distribution, MAF and LD structure for
the generated genotypes. To simulate the phenotype, we randomly selected 100 regions each spanning 20 Mb on
chromosome 1. For each region, we either simulated n¢aysa = 1 causal variant at the middle of the region, or
simulated n¢ausa1 = 41 equally spaced across 20 Mb (on average 2 causal variant per Mb); these causal variants
had same causal effects across local ancestries and each causal variant was expected to explain a fixed amount of
heritability (0.6%) (we simulated a large heritability to better simulate the bias due to different ancestry proportions).
We determined that biases from PAGE and simulated genotype data with 20% European / 80% African ancestries
were both upward and biases from simulated genotype data with 80% European / 20% African ancestries were
downward. Therefore, we determined the biases were due to imbalanced ancestry proportions (~20% European
and ~80% African ancestries) in PAGE data. We report the mean and standard errors for each metric. Standard
errors (displayed in parentheses) are based on 100 random sub-samplings with each sample consists of 500 SNPs.
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