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Appendix 1: methods appendix to “Burden of disease scenarios for 204 countries 
and territories, 2022–2050: a forecasting analysis for the Global Burden of 
Disease Study 2021” 

This appendix provides further methodological detail for “Burden of disease scenarios for 204 countries 

and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021”. 
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Preamble 
This appendix provides further methodological detail for “Burden of disease scenarios for 204 countries 
and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021”. This 
study complies with the Guidelines for Accurate and Transparent Reporting (GATHER) 
recommendations1. It includes detailed tables and information on data in an effort to maximise 
transparency in our estimation process and provide a comprehensive description of analytical steps. We 
intend this appendix to be a living document, to be updated with each iteration of the Global Burden of 
Disease Study. 

Portions of this appendix have been reproduced or adapted from appendices for Foreman et al,.2  Vollset 
et al,3 GBD 2021 Fertility and Forecasting Collaborators,4 Institute for Health Metrics and Evaluation 
(Financing Global Health 2021),5 Murray et al.,6 GBD 2021 Causes of Death Collaborators,7 and GBD 
2021 HIV Collaborators.8 References are provided for reproduced or adapted sections. 
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Section 1: GBD overview 
Section 1.1: Study 2021  
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is a collaborative research effort 
aimed at estimating worldwide population, fertility, morbidity, and mortality. The GBD collaborator 
network draws on the expertise of over 10 000 contributors from around the world. For this paper, we 
estimated deaths, years of life lost, years lived with disability, disability adjusted life years, life 
expectancy and healthy life expectancy from 2022-2050 by cause, age, sex and location. 

Section 1.2: Geographical locations of the analysis 
We produced estimates for 204 countries and territories that were grouped into 21 regions and seven 
super-regions. A list of locations can be found in appendix 1 table S1 (section 8). 

Section 1.3: Time period of the analysis 
We estimated future disease burden from 2022 through 2050, using estimates from the Global Burden of 
Disease Study 2021. 

Section 1.4: Statement of GATHER compliance 
This study complies with the Guidelines for Accurate and Transparent Health Estimates Reporting 
(GATHER)1 recommendations. We have documented the steps involved in our analytical procedures and 
detailed the data sources used. See appendix 1 table S2 (section 8) for the GATHER checklist. The 
GATHER recommendations can be found here: http://gather-statement.org/ 

Section 1.5: List of abbreviations 
Abbreviation Full phrase 

ARIMA Autoregressive Integrated Moving Average 

ARC Annualised rate of change 

ASFR Age-specific fertility rate 

CCF Completed cohort fertility 

CCMP Cohort-component method of projection 

CD4 Clusters of differentiation 4 

CMIP6 Coupled model intercomparison project phase 6 

DTP3 diphtheria, tetanus toxoid, and pertussis (three doses) 

EPP-ASM Estimation projection package - age-sex model 

GBD Global Burden of Diseases, Injuries, and Risk Factors Study 

GDP Gross domestic product 

GenEM Generalized ensemble model 

Hib Haemophilus influenzae type b 

IHME Institute for Health Metrics and Evaluation 

IPCC Intergovernmental Panel on Climate Change 

http://gather-statement.org/
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MCV1 Measles-containing-vaccine first-dose 

MCV1 Measles-containing-vaccine second-dose 

MIR Mortality to incidence ratio 

MPR Mortality to prevalence ratio 

MR-BRT Meta-regression—Bayesian, regularised, trimmed 

LDI Lag distributed income 

PAF Population attributable fraction 

PCV3 Pneumococcal conjugate vaccine (three doses) 

PIR Prevalence to incidence ratio 

RCP Representative Concentration Pathway 

RMSE Root mean-squared error 

ROC Rate of change 

SDGs Sustainable Development Goals 

SDI Socio-demographic Index 

SEV Summary exposure value 

SSP Shared socioeconomic pathway 

TFR Total fertility rate 

TMREL Theoretical minimum risk exposure value 

UI Uncertainty interval 

UNPD United Nations Population Division 

YLD Years lived with disability 

YLL Years of life lost 

Section 2: Overview of the Forecasting Framework 
The Institute for Health Metrics and Evaluation (IHME) forecasting framework uses estimates of disease 
burden, drivers of disease burden (such as risk exposure) and demographic indicators from the Global 
Burden of Diseases, Injuries, and Risk Factors Study (GBD). The modelling process is multi-staged. First, 
independent health drivers (section 2.1) are forecasted into the future. Second, these independent drivers, 
along with the Socioeconomic-demographic Index (SDI), a country-year specific composite index of 
fertility under 25 years, educational attainment, and GDP per capita, are utilized to forecast cause-specific 
mortality (section 2.2.1).  All-cause mortality rate forecasts are obtained by aggregating cause-specific 
mortality, which is then utilized to generate life tables. Forecasts of cause-specific mortality are also used 
to generate forecasts of years of life lost (YLLs, section 2.2.4). Third, forecasts of incidence and 
prevalence (section 2.3) are obtained using a linear mixed effects regression model predicting mortality-
to-incidence (MI) ratios or mortality-to-prevalence (MP) ratios, which are then applied to forecasts of 
cause specific mortality. For causes of disease burden which are non-fatal only (no deaths are observed), a 
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linear mixed effects model on prevalence is used to forecast prevalence directly. Forecasts of years lived 
with disability (YLDs, YLDs section) are then computed from average disability weights from GBD 2019 
and forecasts of prevalence, and forecasts of healthy life expectancy are computed from forecasts of 
YLDs and reference life tables. Disability-adjusted life years (DALYs, section 2.3.6) are calculated as the 
sum of the YLLs and YLDs. Fourth, we compute population forecasts applying forecasts of mortality, 
fertility, migration, and sex ratio at birth to the GBD 2021 starting population (section 2.4). Finally, 
healthy life expectancy (HALE, section 2.5.2) is computed from forecasts of YLDs and life expectancy. 
Uncertainty in inputs and estimated model parameters are propagated by combining draw-level data from 
GBD 2021 with draws from the forecast-generating model incorporating, when feasible, parameter draws 
from estimated sampling or posterior distributions. In addition to a reference forecast, our framework 
allows us to produce alternative scenarios of disease burden, reflecting the potential impact of policies 
that modify drivers of health.  

Many core methods used to forecast the independent drivers, risk factors, mortality, and demography 
indicators are described in detail in previous publications on forecasting by IHME’s Future Health 
Scenarios Team and have been referenced as needed to provide additional detail.2,3  
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Appendix Figure A. Flowchart of the forecasting modelling framework. 

The following causes were modelled separately from the three component mortality model: HIV, COVID-19, forces 
of nature, conflict and terrorism, and executions and police conflict. These models are described in additional detail 
in the Causes modelled outside of the 3-component framework section. 

Section 2.1: Forecasting Independent Drivers 
Independent drivers of health include risk factors incorporated in the GBD 2019 comparative risk 
assessment in addition to sociodemographic determinants of health (met need for contraception, lag-
distributed income, education, fertility) and additional interventions (such as vaccine coverage for select 
infectious diseases and anti-retroviral therapy for HIV).  

Section 2.1.1: Met need for contraception4 
We forecasted contraceptive met need by age and locations using an ensemble model. Met need was 
defined as the proportion of women—from among those aged 25–29 who are fertile and sexually active, 
who report not wanting children or more children or wanting to delay having a child—who are using or 
whose sexual partner is using a method of modern contraception. The ensemble model was comprised of 
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six annualised rate of change (ARC) sub-models with varying recency-weighting parameters (the higher 
the weight, the more weight given to recent years). 

We calculated the age-standardised and location-specific annual change of the logit-transformed met need 
values. To account for the effect of noisy data, we replaced annual changes outside the 2.5th and 97.5th 
percentiles with those corresponding percentile-values. The weight of each sub-model was determined by 
running out-of-sample predictive validity, training each sub-model on data from 1990-2009 and validated 
based on 2010-2019 GBD estimates. We measured each child model’s performance using root mean-
squared error (RMSE) based on which we determined sampling weights of each child model. Then we 
produced the sub-model forecasts based on the 1990-2019 training dataset with 500 draws for each sub-
model and sampled the draws according to the RMSE in the training dataset to obtain the final ensemble 
forecasts. 

Section 2.1.2: Education 
Educational attainment was forecasted using the methodology described in Foreman et al, 20182 with an 
added assumption that educational attainment (up to a maximum of 18 years of education) does not 
change after age 25 as in Vollset et al, 2020.3 After age 25, we held forecasted education constant within 
each location- and sex-specific birth cohort (all individuals born in a certain year). This prevented 
implausible within-cohort changes in education during older age and was more congruent with our 
cohort-specific modelling approach for fertility forecasting (section 5), for which education was a key 
input. 

Briefly, for age groups with a starting interval of 25 years or below, we computed age-, sex-, and 
location-specific annualised rates of change (AROCs) by a recency-weighted average of annual 
differences in logit space after scaling mean years of education (based on GBD 2019 estimates9) by 18 
years. The recency-weighting parameters were chosen using cross-validation, where to reduce the 
potential for overfitting, we selected the parameter producing the smallest root-mean square error at least 
5% greater than the minimum. These AROCs were applied to GBD 2019 draws to produce forecast 
draws, denoted 𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, of mean years of education for location 𝑙𝑙, age 𝑎𝑎 ≤ 25, sex 𝑠𝑠, future years 𝑡𝑡 =
2020, … , 2100, and draw 𝑑𝑑. For age groups with interval starts 𝑎𝑎 > 25, the forecasted value was set to 
the previous value on the cohort trajectory, which is lagged in time by the age-group interval (5 years) 
due to the relationship 

𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑜𝑜𝑡𝑡 𝑏𝑏𝑏𝑏𝑜𝑜𝑡𝑡ℎ = 𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎𝑡𝑡.  (1) 

Specifically, for age groups indexed by the interval start 𝑎𝑎 = 30, 35, … , 95 this is given by 

𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙(𝑙𝑙−5)𝑙𝑙(𝑙𝑙−5)𝑙𝑙 , 𝑡𝑡 ≤ 2019 + 5
𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙(𝑙𝑙−5)𝑙𝑙(𝑙𝑙−5)𝑙𝑙 , 𝑡𝑡 > 2019 + 5 (2) 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙(𝑙𝑙−5)𝑙𝑙(𝑙𝑙−5)𝑙𝑙 and 𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙(𝑙𝑙−5)𝑙𝑙(𝑙𝑙−5)𝑙𝑙 denote draws of past GBD and future forecasts, 
respectively. 

In addition to modelling the impacts of the COVID-19 pandemic on GDP, IHME estimated the effects of 
disruptions in schooling on educational attainment. IHME collected daily school closure data from the 
Oxford COVID-19 Government Response Tracker, government mandate primary documents, and local 
and international news sources.10 Closure data was split into primary and secondary education. The 
definition of a closure was “no in-person classroom activities for over 66% of students”, though in most 
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cases a closure meant that all schools were closed. Daily closures were summed to annual counts and 
divided by 365 days to make proportions. 

IHME extracted UNESCO data11 to map primary and secondary closure data to specific ages in each 
country. GBD education data was split from five-year age groups to single-year age groups by linear 
interpolation prior to the application of the closure data. 

Shocks were applied over the course of the cohort since school closures may affect a cohort over more 
than one year. School closure proportions were scaled to the amount of education students would have 
gained without shocks by multiplying by the one-year absolute change in education before the shocks 
were applied. 

To account for online education, IHME extracted country-specific fixed broadband subscriptions per 100 
people from the International Telecommunication Union (ITU),12 and converted the statistic to per capita 
broadband subscriptions. IHME assumed that students can recover a maximum of half of their lost 
schooling through online education. Thus, the broadband data were scaled to be between zero and 0.5. 
The broadband data were then scaled again to the country-specific school closure proportions themselves. 
These values were added back to the closure proportions before they were applied to the education data as 
shocks. 

To create long-term effects, a cumulative sum was applied to the scaled proportions over the full time 
series of the cohort. The cumulative values were then subtracted over the course of the whole cohort to 
generate education data with prolonged education disruptions. Data were subsequently converted back to 
period space, and the mean was taken over the single-year age groups to recreate the standard five-year 
age groups used for modelling. 

Mean educational attainment over a cohort was defined as, 

�̅�𝐴 =  

⎝

⎜
⎛

𝑎𝑎1
.
.
.
𝑎𝑎𝑁𝑁⎠

⎟
⎞

(3) 

Where 𝛼𝛼 is the level of education attained by the cohort by a specific year.  

Defining 𝜌𝜌k  as the fraction of education lost from group k, we define the cumulative shock value as, 

𝑐𝑐𝑖𝑖 =  �𝑝𝑝𝑘𝑘

𝑖𝑖

𝑘𝑘=1

, 𝑓𝑓𝑐𝑐𝑜𝑜 𝑏𝑏 = 1, 2, … ,𝑁𝑁  (4) 

Thus, 

𝐶𝐶̅ =  

⎝

⎜
⎛

𝑐𝑐1
.
.
.
𝑐𝑐𝑁𝑁⎠

⎟
⎞

(5)
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By subtraction, COVID-adjusted cohort educational attainment, 𝐸𝐸�, is: 

𝐸𝐸� =  �̅�𝐴 − 𝐶𝐶̅      (6) 

Section 2.1.3: Lag-distributed Income5 
Lag distributed income (LDI) per capita, which is a moving average transformation of gross domestic 
product (GDP) per capita and is one of three components of SDI, was used in forecasting cause-specific 
mortality. LDI was computed by conducting a natural log transformation of the weighted average GDP 
with a 10-year lag.13 

Data on retrospective GDP per capita was extracted from five leading sources of these estimates (World 
Bank, International Monetary Fund, United Nations, Penn World Tables, and Maddison) and used 
methods described by James and colleagues14 to generate a single series of GDP per capita using 
Gaussian processes. The resulting series spans 204 countries from 1950 to 2023 and includes uncertainty 
bounds based on concordance or missingness of the input data.  

GDP estimates in the short-term drew on predictions from several data sources which estimated the 
economic impacts of COVID-19 from 2021 to 2026, as well as the economic effects of the emerging 
conflict between Russia and Ukraine from 2022 to 2023. 

GDP per working age adult was then calculated as follows: 

𝐺𝐺𝐸𝐸𝐺𝐺𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘𝑖𝑖𝑤𝑤𝑤𝑤 𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑤𝑤𝑤𝑤 = 𝐺𝐺𝐸𝐸𝐺𝐺𝑙𝑙𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑤𝑤𝑤𝑤 × 𝑊𝑊𝑤𝑤𝑤𝑤𝑘𝑘𝑖𝑖𝑤𝑤𝑤𝑤 𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑤𝑤𝑤𝑤 (20−64 𝑦𝑦𝑦𝑦𝑙𝑙𝑤𝑤𝑙𝑙 𝑤𝑤𝑙𝑙𝑙𝑙)
𝑇𝑇𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑤𝑤𝑤𝑤

      (7) 

Long-term GDP forecasts were created using GDP per worker, as compared to GDP per capita, because 
this improved out-of-sample predictive validity. Ensemble modelling techniques were implemented to 
generate 1000 projections from a broad set of models, and uncertainty was propagated across estimates. 
Models included indicators associated with ARIMA modelling, data recency weights, and a term for 
convergence to global growth rates. Model selection was determined by country-year-specific out-of-
sample validation, as well as exclusion criteria such as statistical significance testing of estimated 
parameters, parameter estimates aligning with pre-determined causal priors, and observed growth rate 
from retrospective estimates. Projections from 2024 to 2100 were generated based on retrospective data 
through 2019.   

Section 2.1.4: Fertility4 
We produced forecasts of fertility using the updated modelling fertility framework4 which differs from the 
published methods in Vollset et al, 2020.3 

The crux of the model is forecasting a cumulative cohort fertility quantity, CCF50, out to the 2100 cohort, 
followed by unfolding it into age-specific fertility rates (ASFR).  CCF50 is defined as the average number 
of children born to an individual female from an observed birth cohort (indexed by year of birth) if she 
lived to the end of her reproductive lifespan (from age 15 through 49).   

The past CCF50 for birth cohorts from 1945 to 1972 were used to forecast CCF50 for birth cohorts from 
1973 to 2100. In the updated methods, we utilized not only female education and proportion of met need 
for contraception estimates, but also under-5 mortality and urbanicity estimates as covariates in the 
CCF50 sub-models. We forecasted CCF50 using three sub-models (with 2, 3 and 4 covariates) to generate 
an ensemble model forecast where all three sub-models were equally weighted. 

From forecasted CCF50, we then derived future age-specific fertility rates (ASFR) forecasts for years 
2022 to 2100 using a combination of linear mixed effect model, spline interpolation, and ARIMA(1,0,0) on 
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residuals to estimate the age pattern of fertility for each cohort. Once the 15-49 ASFR values are 
obtained, we infer the 10-14 and 50-54 values based on their ratios to the rest of the age pattern during the 
last observed year (2021). 

Forecasts for ASFR were used as a direct input to the populations forecasting model (section 2.4) and in 
forecasting future SDI, which is an input to cause-specific mortality (section 2.2) and migration models. 

The detailed description of fertility forecasting methods can be found in GBD 2021 Fertility and 
Forecasting Collaborators.4 

Section 2.1.5: Vaccine Coverage2 
We produced vaccine coverage forecasts for 6 vaccines. These vaccines fell into two categories, those 
that had been introduced in all forecast locations by 2019 (diphtheria-tetanus-pertussis dose 3 [DTP3] and 
measles dose 1 [MCV1]), and those that had not been introduced in all forecast locations by 2019 
(complete rotavirus vaccination [RotaC], pneumococcal conjugate vaccine dose 3 [PCV3], Haemophilus 
influenzae type B [Hib3], and measles dose 2 [MCV2]).  

For DTP3 and MCV1, coverage for the reference scenario was assumed to follow a simple linear model 
in logit space using SDI as the covariate, represented by  

𝑙𝑙𝑐𝑐𝑎𝑎𝑏𝑏𝑡𝑡(𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡) =  𝛼𝛼 +  𝛽𝛽 ∗ 𝑆𝑆𝐸𝐸𝑆𝑆    (8) 

For vaccines that have more recently been introduced into global immunization programs – PCV3, RotaC, 
MCV2, and Hib3 – we modelled the relationship between coverage of these vaccines and either DTP3 or 
MCV1, in order to better capture expected relationships over time as these newer vaccines are introduced 
and scaled up. PCV3, RotaC, and Hib3 are generally given on similar schedules to DTP3; for these 
vaccines, we therefore modelled the ratio of their coverage to that of DTP3. We assumed that coverage of 
each of these vaccines would not exceed DTP3 coverage, given the comparatively broad and longstanding 
availability of DTP vaccines within global immunization programs and historical observations of these 
coverage relationships. For MCV2, we modelled coverage as a ratio to that of MCV1, given that receipt 
of at least one dose is a prerequisite for receipt of two or more doses.  

For these newer vaccines, reference forecasts and scenarios were produced differently by location 
depending on whether a country had introduced the vaccine by the beginning of the forecasting period. 
For countries that had introduced a vaccine, scale-up curves of coverage were modelled as a function of 
healthcare access and quality using Spatio-Temporal Gaussian Process Regression (ST-GPR). For 
locations that had not yet introduced a vaccine, a Weibull regression analysis was performed using SDI, 
2023 GAVI eligibility status (binary), and the corresponding vaccine coverage for DTP3 (or MCV1 for 
MCV2 modelling) as covariates to simulate introduction dates. The Weibull distribution assumes that the 
initial vaccine introduction into global immunization programs will be followed by a spike of 
introductions in many countries, then by a longer tail of introductions in remaining countries. Under this 
distribution, the likelihood of a vaccine being introduced in a country is assumed to increase over time, 
but to never reach precisely 100%. Country-specific introduction dates were then simulated using the 
parameterized Weibull distribution, where the reference scenario introduction date was assumed to be the 
median of the 1000 simulated introduction dates. Curves scaling up the coverage relative to the 
corresponding simple vaccine were produced for each simulated introduction year with a linear regression 
that uses income, education, and the corresponding simple vaccine coverage itself as covariates. The 
result of this process is a forecast both of introduction and subsequent scale-up, expressed as a ratio 
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relative to either DTP3 or MCV1. Last, the scale-up ratios produced in the preceding steps were then 
multiplied by DTP3 coverage (in the case of RotaC, PCV3, and Hib3) or by MCV1 coverage (in the case 
of MCV2) to produce final coverage estimates for these newer vaccines.  

Section 2.1.5.1 COVID-19 disruptions in vaccine coverage 
IHME estimated the short-term (2020–2021) effects in vaccination coverage due to the COVID-19 
pandemic via administrative data on vaccine doses. To estimate disruptions in vaccine coverage, IHME 
used administrative vaccine coverage data collected through the 2022 Joint Reporting Form.15 First, we 
assembled a “shock-free” time series of administrative vaccine coverage data, omitting country-year-
vaccine data points for which countries reported stockouts or for which other known service delivery 
disruptions made sudden decreases in vaccine coverage plausible. In this step, we omitted all data points 
from 2020 and 2021 for all countries due to the COVID pandemic. Second, we then fit spatiotemporal 
Gaussian process regression (ST-GPR) models to this “shock-free” administrative time series, producing 
estimates of expected administrative coverage in the absence of disruptions. Third, we compared the 
reported administrative coverage to these expectations to estimate the magnitude of disruption implied by 
the administrative data for each country, vaccine, and year. Last, we used these estimated disruptions in 
administrative coverage to generate as covariates in our final ST-GPR coverage models, which were fit to 
survey data and bias-adjusted administrative data. If administrative data were missing in 2020 or 2021, 
we imputed disruptions using vaccine- and year-specific distributions of observed disruptions in countries 
with available administrative data, propagating uncertainty throughout this imputation process. This 
approach allowed us to leverage the magnitude of coverage disruptions implied by administrative data, 
while still adjusting for bias in this data. 

Before using vaccine coverage as an input to the risk factor scalar computation (Section 2.1.6.9) for 
estimating cause-specific mortality, we used a rolling mean function to smooth both past and future 
values to mimic the lagged impacts of reduced vaccination coverage on subsequent changes to mortality 
rates. The value of year X was replaced by the mean of years [X-4, X]. For example, the smoothed 2020 
values would be the mean of the values for years 2016 – 2020. In cases where the vaccine had not yet 
been introduced for all 5 years, the mean would only use post-introduction years. Continuing the example 
above, if the vaccine had only been introduced to a location in 2018, the smoothed value would be the 
mean of 2018–2020. These smoothed values were used only as inputs to the PAFs and scalars pipeline, 
such that distinct disruptions to vaccination coverage such as those observed during the COVID-19 
pandemic were incorporated into the cause-specific mortality forecasts with lagged effects from reduced 
vaccination.  

Section 2.1.6: Computing SEVs, PAFs and scalars 
We modelled the future trajectories of risk factors via their summary exposure values (SEVs), which in 
turn generated population attributable fractions (PAFs) that were used to obtain cause-specific scalars for 
our mortality forecasts. As this is the primary conduit through which our scenarios are produced, we 
added several improvements over the risk factors pipeline of Vollset et al.3 Firstly, we used the ensemble 
modelling approach instead of the weighted ARC approach for forecasting SEVs (section 2.1.6.1). 
Additionally, we accounted for mediation in the computation of mediator SEVs. This allowed us to model 
the direct or indirect contribution of a risk to mortality without incurring over-counting, such that changes 
in distal risk factors (leaf nodes) such as diets and smoking can be correctly reflected in mediators such as 
systolic blood pressure, LDL cholesterol, plasma glucose levels, etc., to ultimately lead to accurate 
estimation of PAFs (section 2.1.6.2).  Appendix figure B provides the overview of our pipeline computing 
SEVs, PAFs and scalars. 



Appendix Figure B. Overview of computing scalars. 



Section 2.1.6.1: Risk Exposure (Summary Exposure Values) 
To forecast SEVs, we used a generalized ensemble modelling approach (GenEM) which utilized 12 
different sub-models (or child models). For the child models, we employ two main modelling approaches: 
ARCs and a two-stage spline model based on Meta-Regression Bayesian Regularized Trimmed Tool 
(MR-BRT).16 Each of these models had 6 different recency-weighting parameters2 ranging from 0 to 2.5 
(the higher the weight, the more weight is given to recent years2).  

For the ARC child models, we calculated the age-standardized, sex-specific, and location-specific annual 
change of the logit-transformed SEV values. To account for the effect of noisy data, we replaced annual 
changes outside the 2.5th and 97.5th percentiles with those corresponding percentile-values. The two-stage 
MR-BRT child models used the first stage to fit age-standardized, sex-specific logit of the SEV on SDI: 

𝑙𝑙𝑐𝑐𝑎𝑎𝑏𝑏𝑡𝑡�𝑆𝑆𝐸𝐸𝑆𝑆𝑐𝑐,𝑙𝑙,𝑙𝑙� = 𝛽𝛽0 + 𝛽𝛽1𝑠𝑠𝑝𝑝𝑙𝑙𝑏𝑏𝑠𝑠𝑡𝑡�𝑆𝑆𝐸𝐸𝑆𝑆𝑐𝑐,𝑙𝑙� + 𝜀𝜀𝑐𝑐,𝑙𝑙,𝑙𝑙 ,           (9) 

where 𝑙𝑙𝑐𝑐𝑎𝑎𝑏𝑏𝑡𝑡(𝑆𝑆𝐸𝐸𝑆𝑆𝑐𝑐,𝑙𝑙,𝑙𝑙) is the logit of the age-standardized SEV in country 𝑐𝑐, sex 𝑠𝑠 and year 𝑡𝑡, 𝛽𝛽0 is an 
intercept, 𝛽𝛽1 is a coefficient matrix, 𝑠𝑠𝑝𝑝𝑙𝑙𝑏𝑏𝑠𝑠𝑡𝑡 is the spline with five knots placed evenly across the 
distribution of SDI data and it assumes both right and left linear tails, and 𝜀𝜀𝑐𝑐,𝑙𝑙,𝑙𝑙 is the residual. This is then 
followed by the second stage, where the logit of the residuals from the first stage was linearly modelled 
on time (year): 

𝑙𝑙𝑐𝑐𝑎𝑎𝑏𝑏𝑡𝑡�𝜀𝜀𝑐𝑐,𝑙𝑙,𝑙𝑙� = 𝑦𝑦𝑡𝑡𝑎𝑎𝑜𝑜𝑙𝑙 + 𝜆𝜆 + Ψ𝑐𝑐,𝑙𝑙,𝑙𝑙 ,           (10) 

where 𝜆𝜆 is a fixed intercept value, and Ψ𝑐𝑐,𝑙𝑙,𝑙𝑙 is an error term.  

The weight of each sub-model was defined by running out-of-sample predictive validity experiments. We 
trained each sub-model based on data from 1990-2009 and validated each sub-model based on 2010-2019 
data. We measured each child model’s performance using RMSE based on which we determined 
sampling weights of each child model.  

We then produced the sub-model forecasts based on 1990-2019 training dataset (500 draws in each sub-
model). For each ARC child models, we used the calculated annual change with corresponding recency-
weighting parameter to produce 2020-2050 SEV forecasts. For the MR-BRT child models, we used 
forecast SDI values (500 draws) in addition to the recency weights to obtain forecasting values of SEVs 
based on the model fit.  

We then obtained the final ensemble forecasts (500 draws) based on draws from the child models using 
the sampling weights from the out-of-sample experiments (appendix figure C). 
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Appendix Figure C. Ensemble modelling framework. 

 

Section 2.1.6.2: Risk Factors with Mediation 
A risk factor’s summary exposure value (SEV) is a relative-risk weighted prevalence of risk exposure.6 
This risk contribution to mortality can be either direct (without mediation) or indirect (through a mediator 
risk). 

We investigated mediation amongst risk factors for an outcome 𝑐𝑐 by starting with the definition of PAF 
for a single risk 𝑜𝑜 as 

 
𝐺𝐺𝐴𝐴𝐹𝐹𝑐𝑐𝑤𝑤  =  

𝐺𝐺[𝑐𝑐]  −  𝐺𝐺[ 𝑐𝑐 ∣ r̅ ]
𝐺𝐺[𝑐𝑐] , 

                                                 (11) 

where 𝐺𝐺[𝑐𝑐] is the probability of outcome 𝑐𝑐 in the population and �̅�𝑜 denotes the risk at the theoretical 
minimal risk exposure level (TMREL).  Dropping the 𝑐𝑐 subscript and implicitly indexing on 𝑜𝑜, one can 
extend the definition to a group of 𝑠𝑠 risks 

 
𝐺𝐺𝐴𝐴𝐹𝐹1−𝑤𝑤  =  

𝐺𝐺[𝑐𝑐]  −  𝐺𝐺[ 𝑐𝑐 ∣∣ 𝑜𝑜1−𝑤𝑤������ ]
𝐺𝐺[𝑐𝑐] , 

                                                 (12) 
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where 𝑜𝑜1−𝑤𝑤������ indicates TMREL for all 𝑠𝑠 risks.  If the risks are independent12, this can be decomposed into  

 
𝐺𝐺𝐴𝐴𝐹𝐹1−𝑤𝑤  =  1  −�(1  −  𝐺𝐺𝐴𝐴𝐹𝐹𝑖𝑖)

𝑤𝑤

𝑖𝑖=1

, 
                                                 (13) 

or 

 
1  −  𝐺𝐺𝐴𝐴𝐹𝐹1−𝑤𝑤  =  �(1  −  𝐺𝐺𝐴𝐴𝐹𝐹𝑖𝑖)

𝑤𝑤

𝑖𝑖=1

. 
                                               (14) 

This formula embodies a directed acyclic graph (DAG) shown in appendix figure D, where the 
convergence of the distal risks onto the outcome is modelled by a product of their individual 
(1  −  𝐺𝐺𝐴𝐴𝐹𝐹)s.  

Appendix Figure D. Causal DAG where each risk factor contributes directly to the outcome, for 𝑠𝑠 = 3. 

 

 

Oftentimes the distal risks not only provide direct contributions to the outcome, but also contribute 
indirectly via mediators. A schematic of such flow with one mediator is illustrated in appendix figure E, 
where the bold solid arrow from mediator risk 𝑡𝑡 to the outcome 𝑐𝑐 contains three components: the 
intrinsic contribution from 𝑡𝑡 and the two indirect contributions from the distal risks 𝑜𝑜𝑖𝑖.  We model such 
flow (illustrated by the solid arrows in appendix figure E) by rearranging the previous formula into 

 
1  −  𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚  =  (1  −  𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚𝐼𝐼 ) �(1  −  𝐺𝐺𝐴𝐴𝐹𝐹𝑖𝑖𝑀𝑀),

𝑤𝑤

𝑖𝑖=1

 
(15) 

where 𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚 is the total PAF from mediator 𝑡𝑡 to the outcome, 𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚𝐼𝐼  captures the intrinsic contribution 
from 𝑡𝑡 to 𝑐𝑐, and each 𝐺𝐺𝐴𝐴𝐹𝐹𝑖𝑖𝑀𝑀 represents the effect from risk 𝑏𝑏 that is mediated by 𝑡𝑡. 
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Appendix Figure E. Causal DAG where distal risks contribute both directly (broken lines) and indirectly (thin solid lines) via a 
mediator.  The mediator’s contribution summarizes three components: its intrinsic contribution, plus the two indirect distal 
contributions. 

 

 

For computational convenience, we substitute an alternative3 definition of PAFi via SEVi  and maximum 
relative risk 𝑅𝑅𝑅𝑅𝑖𝑖𝑚𝑚𝑙𝑙𝑚𝑚 

 𝐺𝐺𝐴𝐴𝐹𝐹𝑖𝑖  =  1  −  
1

𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖 (𝑅𝑅𝑅𝑅𝑖𝑖𝑚𝑚𝑙𝑙𝑚𝑚  −  1)  +  1
 (16) 

into Eq. 15 to arrive at  

 
(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚  −  1) 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚  +  1  =  [(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚  −  1) 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚𝐼𝐼   +  1] �� �𝑅𝑅𝑅𝑅𝑖𝑖

𝑀𝑀,𝑚𝑚𝑙𝑙𝑚𝑚  −  1� 𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖  +  1�
𝑤𝑤

𝑖𝑖=1

, 
(17) 

where 

 𝑅𝑅𝑅𝑅𝑖𝑖
𝑀𝑀,𝑚𝑚𝑙𝑙𝑚𝑚  =  (𝑅𝑅𝑅𝑅𝑖𝑖𝑚𝑚𝑙𝑙𝑚𝑚  −  1) 𝑀𝑀𝑖𝑖𝑚𝑚  +  1, (18) 

with 𝑀𝑀𝑖𝑖𝑚𝑚 being the mediation factor of risk 𝑏𝑏 through mediator 𝑡𝑡 on the outcome.  Please refer to 
Foreman et al.2 for details on how Eq. 16 is executed in practice. 

We interpret 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚𝐼𝐼  as the intrinsic contribution of mediator 𝑡𝑡 the outcome, without any contribution 
from the distal risks.  Past values of 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚𝐼𝐼  are computed via Eq. 17, then forecasted along with the distal 
risks, and then re-packaged together via Eq. 17 to arrive at the future total 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚 of the mediators. 

Due to the uncertainty in upstream quantities (𝑀𝑀𝑖𝑖𝑚𝑚, R𝑅𝑅𝑖𝑖, 𝑚𝑚𝑙𝑙𝑚𝑚, and SE𝑆𝑆𝑖𝑖 ), one would occasionally observe 
SE𝑆𝑆𝑚𝑚𝐼𝐼   <  0 or SE𝑆𝑆𝑚𝑚 > 1 draw values from Eq. 17.  They invariably occur due to too much contribution 
from the distal risks.  Our approach to dealing with these wild draws starts with the definition of a “pinch 
factor”2 𝑘𝑘 via a modified version of Eq. 17: 

 
(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚  −  1) 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚  +  1  =  [(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚  −  1) 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚𝐼𝐼   +  1] �� 𝑘𝑘 �𝑅𝑅𝑅𝑅𝑖𝑖

𝑀𝑀,𝑚𝑚𝑙𝑙𝑚𝑚  −  1� 𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖  +  1�
𝑤𝑤

𝑖𝑖=1

 
(19) 
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where 𝑘𝑘 limits the distal flows to yield either SE𝑆𝑆𝑚𝑚𝐼𝐼   =  0 or SE𝑆𝑆𝑚𝑚 = 1.  The value of 𝑘𝑘 can be computed 
via standard Newton’s method, further discussed in the following section. Note that  𝑘𝑘  =  1  where the 
original SE𝑆𝑆𝑚𝑚𝐼𝐼  is within [0, 1]. 

Section 2.1.6.3: Computing mediator SEVs  
The SEV pipeline begins with computing past 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚𝐼𝐼  using Eq. 19 for every cause-mediator pair. There 
are a couple of computational constraints here. First, because the GBD does not store cause-risk specific 
past SEVs, the risk-only past SEV is used in Eq. 19 to compute the cause-risk intrinsic SEV. Second, due 
to the possibility of out-of-bound draws, a pinch factor 𝑘𝑘 is inserted to ensure that all past SE𝑆𝑆𝑚𝑚𝐼𝐼   <  0 
values are set to 0, as previously mentioned. The computation of 𝑘𝑘 begins by defining SE𝑆𝑆𝑚𝑚𝐼𝐼 ′ as the 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚𝐼𝐼  
where all negative values are set to 0. Then from Eq. 19 one may define 

 (𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚  −  1) 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚  +  1
(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚  −  1) 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚𝐼𝐼 ′  +  1

  =  �� 𝑘𝑘 �𝑅𝑅𝑅𝑅𝑖𝑖
𝑀𝑀,𝑚𝑚𝑙𝑙𝑚𝑚  −  1� 𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖  +  1�

𝑤𝑤

𝑖𝑖=1

 
(20) 

where everything is known except 𝑘𝑘.  Eq. 21 is of the form 

 
b  =  �(ai 𝑘𝑘   +  1)

𝑤𝑤

𝑖𝑖=1

 
(21) 

and can be solved by taking the natural logarithm of both sides and define the monotonic function 

 
𝑓𝑓(𝑘𝑘)  = 𝑙𝑙𝑠𝑠(𝑏𝑏) + �𝑙𝑙𝑠𝑠(𝑎𝑎𝑖𝑖 𝑘𝑘 + 1)

𝑤𝑤

𝑖𝑖=1

  
(22) 

where 𝑘𝑘 can then be solved using Newton’s Method. 

Equations 20-22 are employed again when one computes the future total SEV of a cause-mediator pair.  
This is because the aggregation on the right-hand side of Eq. 17 could lead to a final value of 𝑆𝑆𝐸𝐸𝑆𝑆𝑚𝑚 that is 
greater than 1. Hence a new set of 𝑘𝑘 values are computed for all future years. For self-consistency 
reasons, we require that last past year to set the upper bound of what future 𝑘𝑘 values can be. In other 
words, for every trajectory (draw), we identify future 𝑘𝑘 values that exceed their counterpart in the last past 
year and reset them to the last past year’s 𝑘𝑘. Eqs. 20-22 ensure that all of our mediator SEV values lie 
within the [0, 1] bounds. 

Once the future cause-mediator SEVs are computed, we calculate the global DALY-weighted average 
over the causes to obtain the risk-only SEV.  
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Appendix Figure F. A table representation of the relationships between distals, mediators, and causes, where each table is 
separated by mediator. Causes are shown across the x-axis and distals are shown across the y-axis. Gray squares represent a 
distal-mediator-cause combination with a mediation factor of 1 and green squares represent any mediation factor not equal to 1. 
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Section 2.1.6.4: Forecasting Direct Smoking Exposure  

While most risk factor SEVs are forecast as described in the above sections, the complexity inherent in 
smoking exposure meant that forecasting smoking SEVs required a modified approach. Smoking SEVs 
computed within the GBD are composite measures of current, former, and never smoking prevalence, 
distributions of cigarettes smoked per day and pack-years smoked among current smokers, distributions 
of years since smoking cessation among former smokers, as well as the relative risks of smoking and risk 
reduction as a function of years since cessation for each of 32 fatal causes. To allow us to frame our 
reference and custom policy scenarios in policy-relevant units, we chose to forecast smoking prevalence 
rather than the smoking SEV. We then calculated future smoking cause-specific population attributable 
fractions (PAFs), from which we computed future SEVs. 

To forecast smoking prevalence in the reference scenario, we first obtained current smoking and former 
smoking prevalence estimates for every location, sex, 5-year age group, and year from 1990 to 2019 from 
GBD 2021. We used the ensemble modelling framework described in section 2.1.6.1 to forecast each of 
these measures from 2020 to 2050. Importantly, the ensemble models we used consisted only of the six 
ARC child models. In the Improved Behavioural and Metabolic Risks scenario, we set smoking 
prevalence to zero for birth cohorts ages 0 to 19 in 2023. For older cohorts, we linearly reduced current 
smoking prevalence starting in 2023 to 0% by 2050.  

Similarly, we obtained GBD 2021 estimates of the distributions of cigarette-equivalents smoked per day 
and pack-years among current smokers, and distributions of years since quitting among former smokers 
from 2019 to 2022. We assumed that the age-specific distributions of cigarette-equivalents smoked per 
day and pack-years among current smokers remained constant between 2022 and 2050. In the reference 
scenario, we assumed the 2022 age-specific distribution of years since quitting among former smokers 
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remained constant in the future. In the Improved Behavioural and Metabolic Risks scenario, we shifted 
the 2022 distribution of years since quitting for former smokers who quit in 2022 or earlier forward with 
every future year. We also created uniform distributions to model the years since quitting for former 
smokers who quit after 2022.  

We also obtained cause-specific relative risk estimates for both current and former smokers from GBD 
2021. To account for the effects of different mortality rates between current, former, and never smokers, 
we estimated the all-cause relative risks of mortality by smoking status. We computed exposure-weighted 
relative risks by location, age, sex, and cause in 2022 and aggregated these cause-specific relative risks 
across all causes to generate an all-cause relative risk of mortality. Finally, we computed the mortality 
rate among never smokers and used each of the mortality rates to adjust our prevalence estimates in every 
future year. 

Using these inputs, we computed cause specific PAFs for 2019 through 2021 and at five-year intervals 
between 2022 and 2052, using the formula below, adapted from the GBD study (Eq. 23).  

𝐺𝐺𝐴𝐴𝐹𝐹

=
𝑝𝑝(𝑠𝑠) + 𝑝𝑝(𝑓𝑓)∫ exp(𝑥𝑥) ∗ 𝑜𝑜𝑜𝑜(𝑥𝑥) +  𝑝𝑝(𝑓𝑓′)∫ exp(𝑧𝑧) ∗ 𝑜𝑜𝑜𝑜(𝑥𝑥) + 𝑝𝑝(𝑐𝑐)∫ exp(𝑦𝑦) ∗ 𝑜𝑜𝑜𝑜(𝑦𝑦) − 1
𝑝𝑝(𝑠𝑠) + 𝑝𝑝(𝑓𝑓)∫ exp(𝑥𝑥) ∗ 𝑜𝑜𝑜𝑜(𝑥𝑥) + 𝑝𝑝(𝑓𝑓′)∫ exp(𝑧𝑧) ∗ 𝑜𝑜𝑜𝑜(𝑥𝑥) + 𝑝𝑝(𝑐𝑐)∫ exp(𝑦𝑦) ∗ 𝑜𝑜𝑜𝑜(𝑦𝑦)

                                   (23) 

Where 𝑝𝑝(𝑠𝑠) is the prevalence of never smokers, 𝑝𝑝(𝑓𝑓) is the prevalence of former smokers who quit in 
2022 or earlier, 𝑝𝑝(𝑓𝑓′) is the prevalence of former smokers who quit in 2023 or later, 𝑡𝑡𝑥𝑥𝑝𝑝(𝑥𝑥) is a 
distribution of years since quitting among former smokers who quit in 2022 or earlier, 𝑡𝑡𝑥𝑥𝑝𝑝(𝑧𝑧) is a 
uniform distribution of years since quitting among former smokers who quit in 2023 or later, 𝑜𝑜𝑜𝑜(𝑥𝑥) is the 
relative risk for years since quitting, 𝑝𝑝(𝑐𝑐) is the prevalence of current smokers, 𝑡𝑡𝑥𝑥𝑝𝑝(𝑦𝑦) is a distribution of 
cigarettes per smoker per day or pack-years, and 𝑜𝑜𝑜𝑜(𝑦𝑦) is the relative risk for cigarettes per smoker per 
day or pack-years. These PAFs were then interpolated to obtain a full time series from 2019 to 2050 and 
used to compute all-cause SEVs using Eq. 24 below. 

𝑆𝑆𝐸𝐸𝑆𝑆 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐

1−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐
𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚−1

                                                                         (24) 

where c is a cause. The causes for which we forecast smoking-attributable burden include all those 
estimated for the GBD 2019 study.6 

Section 2.1.6.5: PAF Mediation and Aggregation 
For cause of death 𝑐𝑐, Eq. 15 captures all contributions through the mediator 𝑡𝑡 to its all-risk PAF, 
summarizing both the intrinsic effects of 𝑡𝑡 as well as the mediated footprints of the distal risks. The 
dashed lines in Figure E, therefore, entail the unmediated influences of the distal risks to 𝑐𝑐. To model this 
indirect contribution, we start with the definition, 

 
𝑅𝑅𝑅𝑅𝑗𝑗

𝑈𝑈,𝑚𝑚𝑙𝑙𝑚𝑚  = 1 +  �𝑅𝑅𝑅𝑅𝑗𝑗𝑚𝑚𝑙𝑙𝑚𝑚  −  1� ��1 −𝑀𝑀𝐹𝐹𝑗𝑗𝑚𝑚�
𝑀𝑀

𝑚𝑚=1

 
(25) 

as the unmediated 𝑅𝑅𝑅𝑅𝑚𝑚𝑙𝑙𝑚𝑚 between distal risk 𝑗𝑗 and cause 𝑐𝑐. The product term loops over all 𝑀𝑀 mediators 
this distal risk contributes to. 

We may then replace 𝑅𝑅𝑅𝑅𝑚𝑚𝑙𝑙𝑚𝑚 in Eq. 16 with Eq. 24 and define the unmediated PAF between distal risk 𝑗𝑗 
and cause 𝑐𝑐 as 
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 𝐺𝐺𝐴𝐴𝐹𝐹𝑗𝑗𝑈𝑈  =  1  −  
1

𝑆𝑆𝐸𝐸𝑆𝑆𝑗𝑗 �𝑅𝑅𝑅𝑅𝑗𝑗
𝑈𝑈,𝑚𝑚𝑙𝑙𝑚𝑚  −  1�  +  1

 (26) 

 

The all-risk PAF in Figure E is then modelled as 1 − (1 − 𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚)�1 − 𝐺𝐺𝐴𝐴𝐹𝐹𝑤𝑤1
𝑈𝑈��1 − 𝐺𝐺𝐴𝐴𝐹𝐹𝑤𝑤2

𝑈𝑈�, with 𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚 
being the only total PAF since only risk 𝑡𝑡 does not have any indirect path to the outcome. As such, 𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚 
accounts for the thick solid line in Figure E, which captures both the intrinsic contribution of 𝑡𝑡 and the 
indirect effects of the two distal risks, while the broken lines denote the direct effects from the distal risks 
to the outcome and are signified by the unmediated PAFs. 

When there are multiple risks along a given path, only the terminal mediator, which is the one closest to 
the outcome, contributes totally. All the other risks, including the in-between mediators, have their 
impacts mediated via Eqs. 24 and 25.  One may henceforth generalize our model for the all-risk PAF as 

 
1  −  PA𝐹𝐹1−𝑤𝑤  = �(1 − 𝐺𝐺𝐴𝐴𝐹𝐹𝑚𝑚)��1 − PAF𝑖𝑖U�

n−p

i=1

𝑝𝑝

𝑚𝑚=1

. 
                                               

(27) 

where m loops over the top-most (terminal) mediators and 𝑏𝑏 loops over the distal risks and the lower-level 
mediators. 

Section 2.1.6.6: Directly Modelled PAFs 
Some of the PAF terms on the right-hand side of Eq. 26 are exceptions to our canonical pipeline due to 
custom GBD modelling for either the SEV or RRmax. We directly modelled these detailed cause-risk pairs 
via our ensemble model to complete the set of PAFs needed to perform the aggregation specified in Eq. 
26. A list of directly modelled PAFs is given in appendix table A. 

Appendix Table A. Directly modelled PAFs 

Cause  Risk(s)  
Non-rotaviral enteritis  Ambient particular matter pollution 
Rotaviral enteritis  Ambient particular matter pollution 
Encephalitis  Ambient particular matter pollution 
H influenzae type B meningitis  Ambient particular matter pollution 
Non-pneumococcal non-H influenzae type B meningitis  Ambient particular matter pollution 
Pneumococcal meningitis  Ambient particular matter pollution 
Neonatal encephalopathy due to birth asphyxia and trauma  Ambient particular matter pollution 
Haemolytic disease and other neonatal jaundice  Ambient particular matter pollution 
Other neonatal disorders  Ambient particular matter pollution 
Neonatal preterm birth  
Neonatal sepsis and other neonatal infections  Ambient particular matter pollution 
Otitis media  Ambient particular matter pollution 
Sudden infant death syndrome  Ambient particular matter pollution 
Upper respiratory infections  Ambient particular matter pollution 
Non-venomous animal contact  Occupational injuries, Low bone mineral Density, 

Smoking   
Venomous animal contact  Occupational injuries  
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Drowning  Occupational injuries  
Falls  Occupational injuries, Low bone mineral Density, 

Smoking   
Fire, heat, and hot substances  Occupational injuries  
Unintentional firearm injuries  Occupational injuries  
Other exposure to mechanical forces  Occupational injuries, , Low bone mineral Density, 

Smoking   
Other unintentional injuries  Occupational injuries  
Poisoning by carbon monoxide  Occupational injuries  
Poisoning by other means  Occupational injuries  
Other transport injuries  Occupational injuries, Low bone mineral Density, 

Smoking   
Motorcyclist road injuries  Occupational injuries, Low bone mineral Density, 

Smoking   
Motor vehicle road injuries  Occupational injuries, Low bone mineral Density, 

Smoking   
Other road injuries  Occupational injuries, Low bone mineral Density, 

Smoking   
Cyclist road injuries  Occupational injuries, Low bone mineral Density, 

Smoking   
Pedestrian road injuries  Occupational injuries, Low bone mineral Density, 

Smoking  
Pulmonary aspiration and foreign body in airway  Occupational injuries  
Foreign body in other body part  Occupational injuries  
Physical violence by firearm  Intimate partner violence   
Physical violence by sharp object  Intimate partner violence   
Physical violence by other means  Intimate partner violence, Low bone mineral 

Density, Smoking   
Mesothelioma  Occupational exposure to asbestos  
Liver cancer due to hepatitis B  Injected drug use 
Liver cancer due to hepatitis C  Injected drug use 
Cirrhosis and other chronic liver diseases due to hepatitis 
B  

Injected drug use 

Cirrhosis and other chronic liver diseases due to hepatitis 
C  

Injected drug use 

Acute hepatitis B  Injected drug use 
Acute hepatitis C  Injected drug use 

 

Section 2.1.6.7: Non-optimal temperature PAFs6 
Incorporation of the direct effects of non-optimal ambient temperature (heat and cold) are now 
incorporated as risk factors for forecasts of cause-specific mortality. Estimation of future population 
attributable fractions (PAFs) for non-optimal temperature leverage GBD 2021 estimation methods and 
forecasts of temperature from the CMIP-6 Shared Socioeconomic Pathways. These PAFs are then 
incorporated into the calculation of the all-risk PAF and scalar, described in section 2.1.6.5. Details for 
the methodology are described below. 
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Input data and modelling strategy for temperature 
Case definition 
The exposure of non-optimal temperature is defined as the same day exposure to ambient temperature that 
is either warmer or colder than the temperature associated with the minimum mortality risk. Specifically, 
we define the theoretical minimum risk exposure level (TMREL) for temperature as the temperature that 
is associated with the lowest overall mortality attributable to the risk, in a given location and temperature 
zone. Given varying exposure-response curves for different mean annual temperature zones, as well as 
spatially and temporally varying cause compositions, we estimate TMRELs by temperature zone and 
location and are not using a globally uniform TMREL. High temperature (heat) exposure is defined as 
exposure to temperatures warmer than this TMREL and low temperature (cold) is defined as temperatures 
colder than this TMREL.  

Exposure  
CMIP6 
We estimated future temperature using Coupled Model Intercomparison Project Phase 6 (CMIP6) climate 
projections downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 
CMIP6 data include a variety of experiments which each correspond to a combination of a Representative 
Concentration Pathway (RCP) and shared socio-economic pathways (SSP). We used temperature 
forecasts from three experiments: SSP1-RCP1.9, SSP2-RCP4.5, and SSP5-RCP 8.5, corresponding to 
optimistic, likely, and pessimistic trajectories.  For each experiment we sampled from available models to 
incorporate between-model heterogeneity into our uncertainty.  To ensure consistency between all CMIP6 
models, and between GBD and FHS, we resampled CMIP 6 temperature rasters to match the resolution of 
the ERA5 temperature rasters used in the GBD Study, and implemented a baseline shift by day-of-year 
and pixel to ensure temporal continuity between the historical estimates from ERA5 and the forecasted 
estimates from CMIP6. 

Population data  
Population data for calculating population-weighted location means were derived from WorldPop, which 
is an open source project initiated in 2013.17 Multi-temporal, globally consistent, high-resolution human 
population data at 1 km x 1 km resolution can be downloaded from http://www.worldpop.org.uk/ for 
2000, 2005, 2010, 2015, and 2020. For the purpose of our work, we interpolated in-between the 5-year 
estimation bins to obtain annual data. Further, we extrapolated until 1990 by using the 2000-2005 growth 
rate for back-casting.  

Exposure-response modelling for temperature 
ERA5 data  
We estimated exposure response curves by modelling the association between ambient temperature and 
cause-specific mortality. While we used forecasted temperature estimates to forecast future temperature-
attributable burden, risk curve modelling requires temperature data that correspond to the dates and 
locations of deaths in our mortality datasets. We, therefore used historical exposure estimates from these 
ERA5 reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) for 
risk curve modelling. ECMWF produced ERA5 estimates using their Integrated Forecast System (IFS). 
Hourly values of surface temperature are available for a spatial resolution of 0.25°x0.25°. Uncertainty 
estimates for these temperature values, i.e., the ensemble spread (standard deviation) is available for every 
3 hours (00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00) for a spatial resolution of 0.5°x0.5°. At 
the time of analysis, data were available from 1979 to June 2019.18,19 We calculated daily averages of 
temperature and spread for each pixel and then assigned an uncertainty value to each daily temperature 
value. Based on the spread we derived 1,000 draws of each daily temperature pixel.  

http://www.worldpop.org.uk/
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Mortality data  
Deaths at the individual-level that included information regarding the cause (ie, ICD code), date, and the 
location at the second administrative level (admin2) or finer were collected from the GBD cause-of-death 
(CoD) database for vital registration data sources. We adapted the GBD standard procedure for garbage 
code redistribution to redistribute daily mortality data rather than annual data and mapped ICD causes to 
GBD causes for level 3. In total, we analysed 58.9 million deaths from eight different countries and 
15,197 administrative units (table B). For Brazil, the data covers a period from 1999 to 2016 for 5,570 
municipalities and 19.9 million deaths. For Chile, the data covers the period from 1990 to 1996 and 2009 
to 2011 for 15 regions and 2.46 million deaths. For Colombia, the data covers a period from 2001 to 2005 
for 1,125 municipalities and 0.95 million deaths. For Guatemala, the data covers a period from 2009 to 
2016 for 333 municipalities and 0.49 million deaths. For Mexico, the data covers a period from 1996 to 
2015 for 2,438 municipalities and 9.88 million deaths. For New Zealand, the data covers a period from 
1988 to 2014 for 20 district health boards and 0.76 million deaths. For the United States, the data covers a 
period from 1980 to 1988 for 3,124 municipalities and 18.3 million deaths. For China, the data covers the 
year 2016 for 2,556 counties and 6.1 million deaths.  

To estimate cause-specific mortality, based on average daily temperature and temperature zone (defined 
by mean annual temperature), we used a robust meta-regression framework MR-BRT (Bayesian, 
regularised, trimmed) tool.20 We specified the functional dependence of outcome vs. average daily 
temperature and temperature zone as a 2-dimensional surface through a spline interface.  

The use of trimming in a vast array of inference and machine learning problems is standard.21–23 The use 
of high-dimensional splines has been proposed before,24 but the methods used for estimation go beyond 
prior work, and we explain them below.  

The functional relationship between any outcome y and input variables (t1, t2) models y as a linear 
combination of 2d spline basis elements. Each spline basis element is a product of individual basis 
elements for 1D splines for t1 and t2. Therefore, the inference problem looks for a combination of simple 
curvilinear 2D elements that fit the data while preserving smoothness across element boundaries. The 
MR-BRT tool also allows prior information to influence the shape of the spline, particularly in areas with 
sparse data.  

For the purpose of modelling the relationship between mortality and mean annual and daily temperature 
we imposed monotonicity in the direction of daily temperature. For all J-shaped curves that depicted an 
increase in mortality above and below a threshold, we forced the curve to monotonically decrease at the 
lower end of the temperature distribution and to monotonically increase at the upper end. For all external 
causes that displayed a monotonic increase over the entire temperature range, we imposed monotonicity 
only in the direction of warmer temperatures. We placed 2 knots of degree 3 in the direction of mean 
annual temperature when fitting the surface. In the direction of daily mean temperature, we placed 3 knots 
of degree 3 for J-shaped causes and 2 knots of degree 1 for external causes that monotonically increase 
over temperature range. Figure G shows an example of a relative risk (RR) surface along daily and annual 
mean temperature for lower respiratory infection.  

We estimated uncertainty using a two-step approach. First, we derived the uncertainty of the mean surface 
from the measurement error using the fit-retrofit error. Second, we added uncertainty from the random 
effects by sampling it separately from the cold and warm side.  
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Figure G: Log relative risk of death from lower respiratory infection along mean annual temperature (mean temp cat) and daily 
mean temperature (daily temp cat). The red dotted line depicts minimum mortality temperature along mean annual temperature 
zones. Green and blue lines depict isopleths, ie, lines of equal log RR of mortality. 

 
Table B: Data inputs for relative risks for non-optimal temperature 

 Input data Relative risk 
Source count (total) 112 
Number of countries with data 8 

 

Cause selection for temperature–outcome pairs  
We excluded all causes with fewer than 100,000 deaths as well as causes of death that did not represent a 
particular entity but rather a summary category (eg, other cardiovascular diseases). Further, dementia and 
protein energy malnutrition were not considered in this analysis due to inconsistencies in data 
classification. The remaining causes were selected based on significance. For this, for each cause and 
each mean temperature zone we determined the widest range of consecutive daily temperatures with 
statistically significant relative risks, expressed as a percentage of the full range of daily temperatures in 
that mean temperature zone. Figure H gives an example of the temperature-mortality relationship for 
three selected slices (mean annual temperature of 6 °C, 17 °C and 21 °C). Significant areas along the 
exposure-response curves are marked in grey. We included all causes where at least 30% of zones had a 
consecutive significance range that spanned at least 5% of the full range of daily temperatures. Twelve 
causes met these criteria and were included as outcomes associated with non-optimal temperature: 
ischaemic heart disease, stroke, hypertensive heart disease, diabetes, chronic kidney disease, lower 
respiratory infection, chronic obstructive pulmonary disease, homicide, suicide, mechanical injuries, 
transport-related injuries, and drowning. See Burkhart et al.25 for more methodological details. 
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Figure H: Selected exposure-response curves for the relationship between daily mean temperature and log RR of lower 
respiratory infection mortality for mean annual temperature categories of 6 °C, 17 °C and 21 °C. Temperatures where 
associations are significant are displayed in grey.  

 

 
Theoretical minimum risk exposure level (TMREL) of temperature 
For the purpose of this analysis, the TMREL was defined as the temperature associated with the lowest 
mortality for all included causes. We calculated a death-weighted average of the cause-specific exposure-
response curves with the minimum of this average curve being the TMREL. This was done for each 
temperature zone and each of the 990 GBD most detailed locations using cause of death estimates 
produced for the GBD 2019 study. As climate zones or mean annual temperature can vary within a 
location, we calculated the TMREL for every mean annual temperature, assuming a consistent cause 
composition within a location.  

Population attributable fractions for temperature 
The population attributable fraction (PAF) was calculated for each temperature pixel and each day of the 
year (i.e., pixel-day). Subsequently, we population-weighted each pixel using the fraction of the 
population living in a given pixel relative to the GBD location. Depending on whether the daily mean 
temperature was below or above the TMREL, the effect was assigned to either low or high temperature. 
Daily population-weighted high and low temperature PAFs were then aggregated for the location and the 
year. Temperature effects can be either harmful or protective depending on whether the RR is above or 
below 1. For harmful temperature effects, ie, effects with a RR above 1, we used the following equation 
to derive PAFs: PAF=(RR-1)/RR; For temperature effects exhibiting a protective effect the equation was 
adapted by implementing the reverse RR: PAF=-((1/RR)-1)/(1/RR). The PAF associated with non-
optimal temperature exposure is an aggregate of heat and cold effects in each location and year. We 
estimated the temperature attributable burden as the product of the total burden for that cause and the 
corresponding PAF for each GBD location, year, age group, and sex.  

Section 2.1.6.8: Ambient particulate matter pollution PAFs 
Incorporation of the effects of ambient particulate matter pollution utilize improved methods to that 
leverage the GBD 2021 estimation methods for air pollution attributable burden, alongside carbon 
emissions forecasts based on the CMIP-6 Shared Socioeconomic Pathway projections. These PAFs are 
then incorporated into the calculation of the all-risk PAF and scalar, described in section 2.1.6.5. Details 
for the methodology are described below. 
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Exposure to ambient particulate matter pollution 
Definition 
Exposure to ambient particulate matter pollution is defined as the population-weighted annual average 
mass concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a 
cubic meter of air. This measurement is reported in µg/m3. 

Baseline Input data 
Ambient air pollution exposure estimates use input data from multiple sources (Table C). These include 
satellite observations of aerosols in the atmosphere, ground monitor measurements, chemical transport 
model simulations, population estimates, and land-use data. 

Table C: Data inputs for exposure for ambient particulate matter pollution 

 Input data Exposure 
Site-years (total) 5442 
Number of countries with data 204 
Number of GBD regions with data (out of 21 regions) 21 
Number of GBD super-regions with data (out of 7 super-
regions) 7 

 

Theoretical minimum-risk exposure level for ambient particulate matter pollution 
The theoretical minimum-risk exposure level (TMREL) was assigned a uniform distribution with 
lower/upper bounds given by the average of the minimum and 5th percentiles of outdoor air pollution 
cohort studies exposure distributions conducted in North America, with the assumption that current 
evidence was insufficient to precisely characterise the shape of the concentration-response function below 
the 5th percentile of the exposure distributions. The TMREL was defined as a uniform distribution rather 
than a fixed value in order to represent the uncertainty regarding the level at which the scientific evidence 
was consistent with adverse effects of exposure. The specific outdoor air pollution cohort studies selected 
for this averaging were based on the criteria that their 5th percentiles were less than that of the American 
Cancer Society Cancer Prevention II (CPSII) cohort’s 5th percentile of 8.2 based on Turner et al. (2016).26 
This criterion was selected because GBD 2010 used the minimum, 5.8, and 5th percentile solely from the 
CPS II cohort. The resulting lower/upper bounds of the distribution for GBD 2020 were 2.4 and 5.9.  

MR-BRT risk splines for ambient particulate matter pollution 
To estimate relative risk curves for each of the PM2.5 outcomes, we used the MR-BRT meta-regression 
tool to fit splines on the input datasets of OAP and HAP studies. We used the following functional form, 
where X and XCF represent the range of exposure characterised by the effect size: 

𝑙𝑙𝑐𝑐𝑎𝑎 � 𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝑋𝑋)
𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝑋𝑋𝐶𝐶𝑃𝑃)

�~log (𝐺𝐺𝑃𝑃𝑏𝑏𝑙𝑙𝑏𝑏𝑠𝑠ℎ𝑡𝑡𝑑𝑑 𝐸𝐸𝑓𝑓𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡 𝑆𝑆𝑏𝑏𝑧𝑧𝑡𝑡)    (28) 

Several key updates were made to the model fitting methods. For each risk–outcome pair, model settings 
and priors were tested when fitting the MR-BRT splines. The final models used third-order splines with 
three interior knots and a constraint on the right-most segment forcing the fit to be linear rather than 
cubic. Splines were also constrained to be concave and monotonically increasing, the most biologically 
plausible shape for the PM2.5 risk curve. We used an ensemble approach to generate final spline 
predictions, in which 50 different models were run with randomly placed knots, then weighted and 
combined based on a measure of fit that penalises excessive changes in the maximum derivative of the 
curve. Knots were free to be placed across the entire domain of the input exposure data. To prevent over-
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fitting, on the non-linear segments, we implemented a Gaussian prior on the third derivative of mean 0 
and variance 1e-4. On the linear segment, a stronger prior of mean 0 and variance 1e-6 was used to ensure 
that the risk curves do not continue to increase beyond the range of the data. 10% of all observations were 
trimmed during model fitting, in accordance with GBD protocol across risk factor teams. 

Forecasted particulate matter concentrations 
Global gridded air particulate matter forecasts were provided by Turnock et. al, 2020 for SSP1 1.9 and 
SSP4 4.5 with means and standard deviations across three different CMIP6 models (GFDL-ESM4, MRI-
ESM2-0, and UKESM1-0-LL). For each scenario, draws were generated using a gamma probability 
distribution function, 𝑝𝑝(𝑥𝑥), in which with given standard deviation as 𝜎𝜎, mean as 𝑃𝑃, and the Gamma 
function as Γ(x) with x as the 1000 samples generated: 

𝑐𝑐 = 𝜎𝜎
3
       (29) 

𝑐𝑐 = 𝑐𝑐2       (30) 

𝑘𝑘 = 𝑝𝑝2

2
       (31) 

𝑏𝑏 = 𝑝𝑝
𝑣𝑣
       (32) 

𝜃𝜃 = 1/b      (33) 

𝑝𝑝(𝑥𝑥) =  𝑥𝑥𝑘𝑘−1 ∗ 𝑦𝑦−𝑚𝑚/𝜃𝜃

𝜃𝜃𝑘𝑘∗Γ(𝑘𝑘)
      (34) 

With generated samples, the forecasts are bilinearly re-gridded from 1 by 1 degree resolution to line up 
with GBD data on a 0.1 by 0.1-degree global grid. Past data for GBD air pollution differ from the 
Turnock et. al. data. For a smooth transition from GBD historical to forecasted PM, the difference for 
each cell between 2021 and each future year was calculated and applied to GBD 2021 estimates. 

Population data  
We obtained global population estimates from WorldPop17 at 0.04167 o by 0.04167 o resolution for the 
year 2023. Aggregation to each 0.1o × 0.1o grid cell was accomplished by rescaling the raster grid to 0.1 o 
resolution.  These data were used in the PAF approach below.  

Proportional PAF approach for ambient particulate matter pollution 
Let 𝐸𝐸𝑥𝑥𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂 be the ambient PM2.5 exposure level and 𝐸𝐸𝑥𝑥𝑝𝑝𝐻𝐻𝑂𝑂𝑂𝑂 be the excess exposure for those who use 
solid fuel for cooking. Let 𝐺𝐺𝐻𝐻𝑂𝑂𝑂𝑂 be the proportion of the population using solid fuel for cooking. We 
calculated PAFs at each 0.1o × 0.1o grid cell. We assumed that the distribution of those using solid fuel for 
cooking (HAP) was equivalent across all grid cells of the GBD location. 

For the proportion of the population not exposed to HAP the relative risk was: 

𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂  =   𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀(𝑧𝑧 =  𝐸𝐸𝑥𝑥𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂)/𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀(𝑧𝑧 =  𝑀𝑀𝑀𝑀𝑅𝑅𝐸𝐸𝑇𝑇),   (35) 

And for those exposed to HAP, the relative risk was  

𝑅𝑅𝑅𝑅𝐻𝐻𝑂𝑂𝑂𝑂  =   𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀(𝑧𝑧 =  𝐸𝐸𝑥𝑥𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐸𝐸𝑥𝑥𝑝𝑝𝐻𝐻𝑂𝑂𝑂𝑂)/𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀(𝑧𝑧 =  𝑀𝑀𝑀𝑀𝑅𝑅𝐸𝐸𝑇𝑇).  (36) 

We then calculate a population-level RR and PAF for all particulate matter exposure: 
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𝑅𝑅𝑅𝑅𝑂𝑂𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(1 − 𝐺𝐺𝐻𝐻𝑂𝑂𝑂𝑂) + 𝑅𝑅𝑅𝑅𝐻𝐻𝑂𝑂𝑂𝑂𝐺𝐺𝐻𝐻𝑂𝑂𝑂𝑂    (37) 

𝐺𝐺𝐴𝐴𝐹𝐹𝑂𝑂𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃−1
𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃

      (38) 

We population weight the grid-cell level particulate matter PAFs to get a country-level PAF, and finally, 
we split this PAF based on the average exposure to each OAP and HAP: 

𝐺𝐺𝐴𝐴𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐸𝐸𝑚𝑚𝑝𝑝𝑂𝑂𝑃𝑃𝑃𝑃
𝐸𝐸𝑚𝑚𝑝𝑝𝑂𝑂𝑃𝑃𝑃𝑃+𝑂𝑂𝐻𝐻𝑃𝑃𝑃𝑃∗𝐸𝐸𝑚𝑚𝑝𝑝𝐻𝐻𝑃𝑃𝑃𝑃

𝐺𝐺𝐴𝐴𝐹𝐹𝑂𝑂𝑀𝑀, and 𝐺𝐺𝐴𝐴𝐹𝐹𝐻𝐻𝑂𝑂𝑂𝑂 = 𝑂𝑂𝐻𝐻𝑃𝑃𝑃𝑃∗𝐸𝐸𝑚𝑚𝑝𝑝𝐻𝐻𝑃𝑃𝑃𝑃
𝐸𝐸𝑚𝑚𝑝𝑝𝑂𝑂𝑃𝑃𝑃𝑃+𝑂𝑂𝐻𝐻𝑃𝑃𝑃𝑃∗𝐸𝐸𝑚𝑚𝑝𝑝𝐻𝐻𝑃𝑃𝑃𝑃

𝐺𝐺𝐴𝐴𝐹𝐹𝑂𝑂𝑀𝑀.  (40) 

With this strategy, 𝐺𝐺𝐴𝐴𝐹𝐹𝑂𝑂𝑀𝑀 = 𝐺𝐺𝐴𝐴𝐹𝐹𝐻𝐻𝑂𝑂𝑂𝑂 + 𝐺𝐺𝐴𝐴𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂, and no burden is counted twice. 

 

Section 2.1.6.9: Scalars 
Once all risk PAFs are computed via Eq. 40, the outcome-specific scalars are, 

 𝑆𝑆𝑐𝑐 =  
1

1  −  𝐺𝐺𝐴𝐴𝐹𝐹𝑐𝑐
                                                

(41) 

where 𝐺𝐺𝐴𝐴𝐹𝐹𝑐𝑐  =  𝐺𝐺𝐴𝐴𝐹𝐹1−𝑤𝑤.  This is identical to the formulation in Foreman et al3. 

Section 2.2: Forecasting mortality2,3 
The study employed a comprehensive approach to model cause-specific mortality, encompassing 280 out 
of 285 causes and cause groups. This approach builds upon the framework established by Foreman et al, 
20182 with certain adaptations. We utilized mixed-effect regression, incorporating the Socio 
Demographic Index (SDI), temporal factors, cause-specific covariates, and a risk factor scalar in separate 
models for males and females. For the remaining four causes (HIV, COVID-19, executions, and police 
conflict, as well as exposure to forces of nature, conflict, and terrorism), alternative methodologies were 
employed (see section 2.2.3). At a higher-level of cause hierarchy, forecasts were derived by aggregating 
from the most-detailed cause-specific mortality up to all-cause mortality. To capture latent trends not 
accounted for by the base model, a random walk with drift attenuation model was applied to all-cause 
mortality, while a random walk without drift model was used for causes in the lower cause hierarchy. 
Subsequently, forecasted mortality were converted into incidence and prevalence estimates for each of the 
284 causes. 

Section 2.2.1: Cause-specific mortality models 
Our cause-specific model, applied to 280 of 285 causes and cause groups, is defined as 

𝑡𝑡𝑇𝑇 = 𝑡𝑡𝑈𝑈  ×  𝑆𝑆       (42) 

Which we estimate in log as 

𝑙𝑙𝑠𝑠(𝑡𝑡𝑇𝑇) = 𝑙𝑙𝑠𝑠(𝑡𝑡𝑈𝑈) + ln(𝑆𝑆) +  𝜖𝜖     (43) 

Where 𝑡𝑡𝑇𝑇 is the total cause-specific mortality. The three components on the right-hand side are: 

• The underlying (or risk deleted) mortality27, 𝑡𝑡𝑈𝑈, which is formulated as a function of the 
Social Development Index (SDI), temporal factors, and other cause-specific covariates as 
deemed necessary. 
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• A risk factor scalar 𝑆𝑆 that synthesises the collective effects of cause-specific risk factors, 
leveraging insights from the Global Burden of Disease (GBD) comparative risk assessment. This 
scalar corresponds to the ratio of total cause-specific mortality to underlying (risk-deleted) cause-
specific mortality and facilitates the quantification of risk–outcome associations while accounting 
for the mediation of risk factors.27 Additional details for the calculation of this risk factor scalar 
from population attributable fractions, please see Foreman et al, 2018 (appendix 1section 5).2 

• Unexplained residual mortality, 𝜖𝜖, accounting for any mortality not captured by the 
aforementioned components. 
 

Specifically, the total mortality rate 𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇  for cause 𝑏𝑏, location 𝑙𝑙, age group 𝑎𝑎, and sex 𝑠𝑠 at time 𝑡𝑡 was 

decomposed in log space into an underlying mortality rate 𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑈𝑈 , a risk factor scalar 𝕊𝕊i𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and residual 

𝜖𝜖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 as 

ln�𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇 � = α𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 +  β𝑖𝑖𝑙𝑙SDI𝑙𝑙𝑙𝑙 +  θ𝑖𝑖𝑙𝑙𝑙𝑙t�����������������

ln�𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖
𝑈𝑈 �

 + ln(𝕊𝕊i𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜖𝜖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙     (44) 

where for the 𝑏𝑏th cause and 𝑠𝑠th sex , α𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 ~ N�β𝛼𝛼,𝑖𝑖𝑙𝑙, 𝜏𝜏𝛼𝛼,𝑖𝑖𝑙𝑙
2 � is a location-age-specific random intercept, 

β𝑖𝑖𝑙𝑙 is a global fixed slope on SDI, and 𝜃𝜃𝑖𝑖𝑙𝑙𝑙𝑙~ N�β𝜃𝜃,𝑖𝑖𝑙𝑙, 𝜏𝜏𝜃𝜃,𝑖𝑖𝑙𝑙
2 �  is an age-specific random slope on the secular 

time trend. This model incorporates the option to apply Girosi-King type priors2,28 on the log total cause-
specific mortality rate. These priors serve the purpose of smoothing forecasts across age, time, and 
location by penalizing significant deviations in adjacent age groups, time intervals, and geographic areas. 
The residuals represent latent trends in total cause-specific mortality not captured that remain unexplained 
by risk factors, SDI, and global secular trends. Notably, our model diverges from the approach employed 
in Foreman et al, 20182  by omitting the use of a spline on SDI, a modification aimed at enhancing the 
long-term stability of forecasts. Further elucidation on the forecasting methodology—for the independent 
drivers used to compute SDI and the risk factor scalar is described in section 2.1. 

The process of generating draws of non-latent cause-specific total mortality forecasts at time 𝑡𝑡 proceeds 
through several stages. Initially, independent drivers (detailed in section 4) utilized for computing the 
forecasted risk factor scalar 𝕊𝕊�𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and covariate SDI� 𝑙𝑙𝑙𝑙𝑙𝑙are incorporated, with 𝑑𝑑 indexing the draw. To 
address the inherent uncertainty in model estimation, draws of the fixed and random effects were 
generated from a multivariate normal distribution with mean and variance matrix set to the estimates and 
their estimated joint covariance matrix, respectively, computed using the TMB package for R using the 
GBD estimates of past mortality and assuming 𝜖𝜖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ∼ 𝑁𝑁�0,  𝜎𝜎𝑖𝑖𝑙𝑙2�. Forecast draws of the underlying 
mortality, ln(𝑡𝑡𝚤𝚤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑈𝑈 )� , are obtained by evaluating the model at these parameters and SDI forecast draws. 
The most-detailed cause-specific non-latent mortality forecast draws are obtained by combining draw-
specific forecasts of the underlying mortality rate and risk factor scalar. These draws are used to 
generating mortality forecasts for higher-level causes and all-cause mortality forecasts, as elucidated in 
the following sections. 

Section 2.2.2: Aggregating to all-cause mortality 
 Total mortality forecasts for upper-level causes and all-cause total mortality were derived by aggregating 
cause-specific non-latent mortality forecasts, which incorporate risk factors, SDI, and global secular 
trends. Additionally, forecasted latent trends, as described previously,2 were incorporated into the 
forecasting process for each cause-level in the GBD hierarchy. At future times 𝑡𝑡, the age-, sex-, and 
location-specific all-cause non-latent mortality, denoted by 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑁𝑁 , was forecasted (estimated) by 
aggregation of cause-specific estimates and forecasts (after exponentiation out of log space): 
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𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝑁𝑁� = ∑ exp�ln(𝑡𝑡𝚤𝚤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑈𝑈 )� + ln�𝕊𝕊�i𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙��284
𝑖𝑖=1     (45) 

 

Section 2.2.2.1: Modelling latent trends in mortality 
The latent trends in all-cause mortality, referred to as the unexplained residual mortality at the all-cause 
level, were modelled using a random walk with attenuated drift. We employed the random walk with drift 
(RWD) methodology to forecast residuals, computed utilising equation 46. The historical drift was 
estimated through a linear regression model (equation 47), augmented with a slope attenuation function 
(equation 48). This refined approach aims to enhance the accuracy of residual forecasts and reduce the 
influence of latent trends over future time periods by adjusting drift estimation based on evolving slope 
patterns within the data. Similarly, latent trends for lower-level causes in the GBD cause hierarchy were 
modelled using a random walk without drift. This strategy aimed to minimize excessive variation for 
causes at the detailed cause-specific level.  

Notably, past-time all-cause residuals were computed in log space (utilizing the mean of the reference 
scenario draws) as 

𝜖𝜖�̂�𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  1
𝐷𝐷
∑ �ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑇𝑇 ) − ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝑁𝑁 )�  �𝑙𝑙      (46) 

for 𝑡𝑡 = 1990, … , 2019 where 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇  is the GBD draw of all-cause total mortality for location 𝑙𝑙, age 𝑎𝑎, 

sex 𝑠𝑠, time 𝑡𝑡, and draw 𝑑𝑑. We estimated past time drift using the linear regression model with mean 

E(𝜖𝜖�̂�𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =  𝛾𝛾0,𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛾𝛾1,𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡,     (47) 

where  𝛾𝛾0,𝑙𝑙𝑙𝑙𝑙𝑙 is an intercept and 𝛾𝛾1,𝑙𝑙𝑙𝑙𝑙𝑙 is a slope on time for past times 𝑡𝑡 = 1990, … , 2019. Beginning at 
the first forecasted year 𝑡𝑡0 = 2020, future latent trend forecasts were generated with slope attenuation 
according to  

𝜖𝜖�̂�𝑙𝑙𝑙𝑙𝑙(𝑙𝑙+1) =  𝜖𝜖�̂�𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛾𝛾1,𝑙𝑙𝑙𝑙𝑙𝑙 exp[−0.1(𝑡𝑡 − 𝑡𝑡0)]     (48) 

This approach  yielded more credible long-term forecasts compared to the ARIMA blend used by 
Foreman and colleagues, 2018.2  

The ultimate forecasts for all-cause log total mortality and total log mortality for lower-level causes in the 
GBD hierarchy were formulated by incorporating latent trends drawn from the fitted random walk model, 
denoted by 𝜖𝜖�̂�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.  These trends were integrated into the non-latent forecasts derived from our base 
model, with an adjustment made to accommodate the uncertainty associated with the input GBD 
estimates. Notably, estimation of both the non-latent and latent trends made use of past-time GBD 
estimates, which are means across the corresponding GBD draw distributions. To incorporate uncertainty 
in the supplied GBD estimates and ensure continuity between past and forecast means, we intercept-
shifted the non-latent all-cause mortality forecast draws (in log space) by the draw-level residual in 2019 
non-latent all-cause mortality. Specifically, the shifts were defined by 

𝜁𝜁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙(2017)𝑙𝑙
𝑇𝑇 ) −  ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙(2017)𝑙𝑙

𝑇𝑇 )� ,     (49) 

where 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙(2017)𝑙𝑙
𝑇𝑇  is the 𝑑𝑑th GBD draw of location-, age-, and sex-specific all-cause total mortality in 

2019. In log space, the all-cause total mortality forecasts were computed as  

ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇 )� = ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑁𝑁 ) +� 𝜖𝜖�̂�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜁𝜁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.     (50) 
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Since the log of the mean of a log normally distributed random variable is biased away from the mean 
ofthe corresponding normal distribution by an additive factor of the half the variance of the normal 
distribution, we applied the following bias correction in exponentiation to obtain final all-cause total 
mortality forecasts in the original mortality rate space: 

𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇� = exp �ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑇𝑇 )� + �̂�𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖
2

2
�.      (51) 

where �̂�𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 is the sample variance (across the draws) of ln(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇 )� . 

Section 2.2.3: Causes modelled outside of the 3-component framework 
Five causes of death were modelled outside of the three-component model, due to their stochastic 
historical trends and in order to capture unique transmission dynamics of the HIV epidemic and the 
known impacts of HIV specific interventions. This follows the GBD cause of death estimation process to 
model these causes independently.7 

Section 2.2.3.1: HIV3 
Forecasting ART Coverage 
In the past, ART coverage is projected using the spending on HIV care and treatment and ART price29. 
However, we found that some locations maintained flat coverage at lower levels into the future. We 
interrogated our ART forecasting methods to determine the reason. We started by assessing the capping 
system and the strength of the relationship between coverage and GDP/ART dose equivalents. ART dose 
was calculated using Spend/ART price, and we discovered that the Spending in some locations is zero.   
 
To avoid using spending and to address the problem that ART projections maintain flat in the future, we 
projected the ART coverage using historical rate of change (ROC). The cap is 0.95 for all locations, CD4 
counts, ages, and both sexes. We calculated ROCs using ART coverage from past 5 years by age, sex, and 
CD4 count. After projection, we found out that in the same age group and sex combination, the future 
trend of ART coverage by CD4 count differs. We wanted to force the future trend of ART coverage to be 
the same across CD4 count groups. So, we selected the largest ROC across all CD4 groups in each age-
sex combination and apply this ROC to all CD4 groups. By doing so, the projected ART coverage has the 
same future trend in each age-sex combination.   
 
Forecasting the Transmission rate 
We explored various approaches to calculating and forecasting using the transmission rate. A few 
challenges came up related to differences when incidence is calculated within EPP-ASM compared to 
Spectrum. For this purpose, transmission rate = incidence hazard / prevalence.  
 
In EPP-ASM, incidence is calculated at the beginning of each time loop, while in Spectrum it is at the 
end. This affected both the back-calculation of the “true” transmission rate and the forward calculation of 
incidence with the forecasted transmission rate. In the end, we realized that we were not interested in back 
calculating the true transmission rate, but the transmission rate that would reproduce new infections in 
Spectrum, the simulation we are currently using for forecasting. We then switched the input incidence for 
the transmission rate calculation from Spectrum/EPPASM output incidence to final GBD incidence. 
 
Using the transmission rate in Spectrum required us to augment the code to calculate new infections using 
the transmission rate, prevalence, susceptible population, and ART coverage. The first year of the 
transmission rate-based calculation requires an epidemic seed, given that there are zero PLHIV to infect 
others. The parameter name used in the code is iota, and it operates just like incidence hazard (multiplied 
by the susceptible population). We included back-calculation of iota in the transmission rate calculation 
and set up Spectrum to pull the iota value from that file and use it to kick off the epidemic.  
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After back calculating the transmission rates and plotting them by region, we observed that the 
transmission rate generally exhibits a high starting value followed by a logistic decline, with random 
variation over the past ~15 years. This follows the r-hybrid functional form used to parameterize the time-
trend for the transmission rate in EPP-ASM. R-hybrid combines a logistic function with a linear 
piecewise spline with a random-walk penalty. In general, high-income locations exhibited higher 
transmission rates (>0.3), and lower-income locations lower transmission rates (<0.3). We chose to use a 
simple global approach to forecasting after trying various super region-specific approaches and 
encountering issues of “runaway” epidemics (more to say about this below). We took the global median 
across all location-year values of the transmission rate in the last ten years (choosing this for its relative 
stability in contrast to the high variation in earlier periods) to get a global equilibrium transmission rate 
value to use as a target to converge towards over time.  
 
The choice of a global equilibrium value followed experimentation where we used super-region 
equilibrium values. In higher income locations, we saw many forecasts that resulted in what we are 
calling “runaway” epidemics, where the effective reproductive rate is above one even in the presence of 
very high ART coverage and prevalence grows to greater than ten percent. This seems to partially be a 
result of the fact that the entire population is considered as potentially susceptible in these locations, even 
though the epidemics are dominated by higher-risk groups like injections drug users, sex workers, and 
men who have sex with men. Taking into consideration the true size of the susceptible population would 
be one approach to constraining new infections in the future, but this would represent a substantial change 
in methodology and would require some difficult calculations of the proportion of the population within 
in each high-risk group. This approach of estimating the size of high-risk groups and modelling them 
separately is taken in a few concentrated epidemics in Spectrum, but we are not clear on the quality of the 
estimation of the population sizes, nor the data available to support estimation. Instead, we can control the 
transmission rate and ART coverage. Therefore, we took a conservative approach and forecasted global 
convergence towards a lower global equilibrium and sought to increase ART coverage into the future.  
 
To forecast location-specific trends in the transmission rate, we projected the location-specific trend over 
the last five years and took a shifting weighted average between that projection and the global 
equilibrium. We used a logistic weighting scheme that smoothly moved from fully weighting the 
location-specific projection to fully weighting the global equilibrium over a twenty-year window.  
 
We averaged the location-specific projections with the global equilibrium value only in locations with 
increasing trend and where the projected transmission rate is larger than the global equilibrium value. If 
the location-specific projections decrease, even if the location-specific projections are higher than global 
equilibrium, it won’t cause “runaway”. And if the increasing location-specific projections are lower than 
global equilibrium in the twenty-year averaging window, there is no need to drag the projections up to 
global equilibrium. We cap the projection using the value 1.25 times transmission rate at extension year: 
2021.   
Projections of HIV incidence, prevalence, and mortality 

In order to produce age- and sex-specific estimates of HIV incidence, prevalence, and mortality, we input 
projected transmission rates along with ART, PMTCT, and Cotrimoxazole coverage, as well as a number 
of other predicted demographic inputs, into the Spectrum model. Spectrum is a cohort component model 
originally developed by UNAIDs that we have modified to incorporate CD4-specific probability of 
treatment in addition to a number of other methods developments made for GBD.30 Spectrum ages a 
population over time using demographic parameters while applying HIV incidence, disease progression, 
treatment coverage, and mortality. Our final results are age-, sex-, location-specific Spectrum outputs 
through 2100. 
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Section 2.2.3.2: Disasters, war and terrorism, legal interventions 
Cause-specific mortality due to exposure to disasters, conflict and terrorism, as well as executions and 
police conflict were forecasted based on the methods described in Foreman et al, 2018.2  

Section 2.2.3.3: COVID-19 and other pandemic-related mortality (OPRM) estimation7 
To estimate excess mortality, we first developed a database of all-cause mortality by week and month 
after accounting for reporting lags, anomalies such as heat waves, and under-registration of death. Next, 
we developed an ensemble model to predict expected deaths in the absence of the COVID-19 pandemic 
for the years 2020 and 2021. In location and time combinations with data used for these models, excess 
mortality was estimated as observed mortality minus expected mortality. To estimate excess mortality for 
location-years without data, we developed a statistical model to directly predict the excess mortality due 
to COVID-19, using covariates that pertained to both the COVID-19 pandemic and background 
population-health-related metrics at the population level before SARS-CoV-2 emerged. Uncertainty was 
propagated through each step of this estimation procedure. Full details of the estimation of excess 
mortality, COVID-19 deaths, and OPRM are provided in appendix 1 of GBD 2021 Causes of Death 
Collaborators.7 For the years 2023 through 2030, we assumed linear reductions in deaths from COVID-
19. 

Section 2.2.4: YLLs 
YLLs were computed by multiplying the number of deaths by the reference life expectancy at the age of 
death. Forecasts for YLLs were computed from forecasted age-sex-location-specific mortality rates and 
the reference life table31.  

Section 2.3: Forecasting non-fatal disease burden  
Non-fatal disease burden was forecasted via individually modelling 290 causes independently according 
to the properties of each cause. Briefly, mixed-effect models were used to model prevalence and 
incidence, either by modelling prevalence directly or by modelling the mortality-incidence (MI) ratio and 
mortality-prevalence (MP) ratio and using forecasted mortality to convert to incidence and prevalence. 
Causes modelled via the mortality-incidence ratio are converted to prevalence via a modelled prevalence-
incidence (PI) ratio. Once forecasts of prevalence for all causes were obtained, they were converted to 
YLDs via average disability weights calculated as YLD divided by prevalence in 2019. These were then 
added to YLLs to obtain DALYs. 

Section 2.3.1: MI, MP, PI ratios  
Ratios of MI, MP, PI, and YLDs to YLLs are all modelled via: 

log�𝑅𝑅𝑙𝑙,𝑙𝑙,𝑙𝑙,𝑦𝑦� =  𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝐸𝐸𝑆𝑆𝑙𝑙,𝑦𝑦 + 𝜋𝜋0:𝑙𝑙,𝑙𝑙,𝑙𝑙 + 𝜋𝜋1:𝑙𝑙,𝑙𝑙,𝑙𝑙𝑆𝑆𝐸𝐸𝑆𝑆𝑙𝑙,𝑦𝑦 + 𝜀𝜀𝑙𝑙,𝑙𝑙,𝑙𝑙,𝑦𝑦   (52) 

where 𝑅𝑅𝑙𝑙,𝑙𝑙,𝑙𝑙,𝑦𝑦 is the age-sex-location-year specific ratio for a given cause, with the covariate 𝑆𝑆𝐸𝐸𝑆𝑆𝑙𝑙,𝑦𝑦 being 
the location-year specific SDI. 𝜋𝜋0:𝑙𝑙,𝑙𝑙,𝑙𝑙 is the age-sex-location specific random intercept, 𝜋𝜋1:𝑙𝑙,𝑙𝑙,𝑙𝑙 is the age-
sex-location specific slope on SDI, and 𝜀𝜀𝑙𝑙,𝑙𝑙,𝑙𝑙,𝑦𝑦is the residual term. A shift in log space is applied to each 
age-sex-location combination after prediction to align the value of the modelled value in the last year of 
GBD estimates with the GBD estimate for that year. 

Section 2.3.2: Prevalence-only models  
For causes where prevalence was directly modelled due to lack of mortality, the model was: 

  
logit�𝐺𝐺𝑙𝑙,𝑙𝑙,𝑙𝑙,𝑦𝑦� =  𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝐸𝐸𝑆𝑆𝑙𝑙,𝑦𝑦 + 𝜋𝜋0:𝑙𝑙,𝑙𝑙,𝑙𝑙 + 𝜀𝜀𝑙𝑙,𝑙𝑙,𝑙𝑙,𝑦𝑦    (53) 
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where 𝐺𝐺𝑙𝑙,𝑙𝑙,𝑙𝑙,𝑦𝑦is the age-sex-location-year specific prevalence of a given cause, with location-year specific 
SDI as the covariate for the fixed slope and 𝜋𝜋0:𝑙𝑙,𝑙𝑙,𝑙𝑙 as the age-sex-location specific random intercept. 

Section 2.3.3: Producing forecasts of incidence and prevalence  
After forecasts of the ratios were produced, the MI and MP ratios were converted to incidence and 
prevalence, respectively, via division of mortality forecasts by the corresponding ratio. These estimates 
were then converted into the “secondary” metric using the PI ratio. For instance, incidence forecasts 
multiplied by the PI ratio yields estimates of the prevalence for a given cause. 

Section 2.3.4: YLDs  
Once all the prevalence estimates were combined from the separate modelling paths (causes modelled 
primarily via prevalence directly, MP ratio, or MI ratio converted to prevalence via PI ratio), YLDs were 
produced by a simple multiplication of an average disability weight. The average disability weight was 
calculated as the division of GBD YLD estimates in 2019 by the prevalence in 2019 for a given cause. 
This assumed that disability weights for any given cause will remain constant from 2019 into the future, 
which will likely not be entirely accurate, but it is difficult to predict exactly how disability weights will 
change with evolving technologies and other societal shifts. A portion of YLDs were estimated using the 
modelled YLD-YLL ratio, which uses the same model as the rest of the ratios. 

Section 2.3.5: COVID-19 non-fatal estimation 
COVID-19 non-fatal estimation is split into two large components: estimating the acute sequela of 
COVID-19, and estimating the post-acute sequela among survivors of COVID-19.32 First, estimates of 
daily infections, hospital admissions, ICU admissions, and deaths due to severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection were taken from the COVID-19 model of the Institute 
for Health Metrics and Evaluation (IHME). Infections were multiplied by the pooled estimate of the 
proportion of infections without symptoms, and deaths were subtracted from the estimate of symptomatic 
cases and to get estimates by age, sex, and country of symptomatic survivors of COVID-19 infection. 
Then, infections were followed through the disease course to obtain surviving cases of mild/moderate 
non-hospitalised, severe hospitalized, and critical ICU cases of COVID-19 at risk for post-acute 
symptoms. 

Second, post-acute sequela were estimated. The proportions of symptomatic survivors with one or more 
of three symptom clusters of long COVID (with fatigue, cognitive problems, and shortness of breath as 
the key symptoms) were extracted from international cohort studies and two US medical record 
databases. Data from four cohort studies with individual case records available that did not report on 
excess risk of long COVID symptom clusters in comparison to controls or self-reported health status prior 
to COVID-19 were adjusted by the ratio of excess to total symptoms from six studies that reported both. 
Then, the proportions with long COVID symptom clusters by follow-up time since the end of the acute 
infection were estimated using a Bayesian meta-regression tool, separately for hospitalized and non-
hospitalized cases. Subsequently, estimates from studies providing distributions of symptom cluster 
overlap and severity gradients of cognitive and respiratory problems were pooled. Finally, the global 
estimates of symptomatic COVID-19 survivors were multiplied by the proportions experiencing one or 
more of the symptom clusters at three months post infection. 

Section 2.3.6: DALYs  
DALYs were obtained for a given cause as the sum of YLDs and YLLs. Causes that only have YLLs or 
YLDs will have DALYs that are equal to the given measure. 
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Section 2.4: Forecasting population 
Our methods for forecasting population, as well as the pipelines generating its requisite upstream inputs 
(life expectancy, ASFR,  and sex ratio at birth), except migration, were directly inherited from Vollset et 
al.3   

Section 2.4.1: Forecasting migration3  
Forecasts of migration were adapted from those published in Vollset et al, 2020.3 Revisions to the 
modelling approach are described below. 

Net migration rates for each country or territory were forecasted as a function of natural population 
increase (NPI) and mortality resulting from natural disasters, wars, execution and police conflict, and 
terrorism (eg, events that can be considered cultural and/or economic shocks), utilizing past migration 
rates from UNPD33,34 and GBD estimates of mortality.9 Migration rates were converted to counts and age-
sex split using Eurostat migrant population data and balanced across locations to achieve zero-net 
migration globally.  

For country or territory 𝑙𝑙 at year 𝑡𝑡, we fit the following multiple linear regression model for the migrate 
rate using least squares estimation with past times 𝑡𝑡 = 1990, 1991, … , 2020, 2021: 

𝑀𝑀𝑆𝑆𝐺𝐺𝑅𝑅𝑙𝑙𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽𝑁𝑁𝑁𝑁𝐺𝐺𝑆𝑆𝑙𝑙𝑡𝑡 + 𝛽𝛽𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐾𝐾𝑙𝑙𝑡𝑡 + γ𝑙𝑙 + 𝜀𝜀𝑙𝑙𝑡𝑡,   (54) 

where 𝑀𝑀𝑆𝑆𝐺𝐺𝑅𝑅𝑙𝑙𝑙𝑙is the UNPD migration rate estimate (annual net number of migrants per 1000 people); 
𝑁𝑁𝐺𝐺𝑆𝑆𝑙𝑙𝑙𝑙is the UNPD natural population increase estimate (difference between crude birth and death rates 
per 1000 people); 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐾𝐾𝑙𝑙𝑙𝑙 is the GBD mortality rate estimate aggregated over all ages and both sexes 
and summed across the causes natural disasters, war, terrorism, and legal interventions; γ𝑙𝑙 is a location-
specific random intercept; and 𝜀𝜀𝑙𝑙𝑙𝑙 is a residual accounting for variation in location- and time-specific 
migration unexplained by the model. 

We utilised a random walk with attenuated drift model to forecast the residuals. For each location, past-
time residuals were computed as 𝜀𝜀�̂�𝑙𝑙𝑙 = 𝑀𝑀𝑆𝑆𝐺𝐺𝑅𝑅𝑙𝑙𝑙𝑙 −  𝑀𝑀𝑆𝑆𝐺𝐺𝑅𝑅� 𝑙𝑙𝑙𝑙 and were used to fit the random walk model 
using the same approach described in section 2.2. Future forecasts of the migration rate, denoted 
𝑀𝑀𝑆𝑆𝐺𝐺𝑅𝑅� 𝑙𝑙𝑙𝑙𝑙𝑙, were generated by evaluating the estimated regression model at the UNPD forecasted estimates 
for NPI and our mean forecasts of SDI (section 4) and cause-specific mortality for natural disasters, war, 
terrorism and legal interventions (section 6.1.3) then adding this value to forecast draws of the residuals, 
𝜀𝜀�̂�𝑙𝑙𝑙𝑙𝑙 . Finally, to prevent implausibly extreme long-range trends in migration, migration rate forecast draws 
𝑀𝑀𝑆𝑆𝐺𝐺𝑅𝑅� 𝑙𝑙𝑙𝑙𝑙𝑙 were capped between -10 and 10, which approximates the 5th and 95th percentiles of past 
migration rates. For 21 countries where migration rates were implausibly low, we attenuated migration 
trends from 2021 to 0 net migration by 2050. 

Migration rates were converted to counts by age and sex, and global net migration was balanced to 0 
using methods described in Vollset et al.3  

Section 2.5: Forecasting Life expectancy and healthy life expectancy 
Section 2.5.1: Life expectancy 
Life tables and life expectancy were calculated as in Vollset et al (2020)35 with 23 age groups (early 
neonatal, late neonatal, post neonatal, 1-4 years, 5-9, … to 95 years and older). Older ages were handled 
as described in supplementary appendix (section 3.2) in Wang et al (2016). 
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Section 2.5.2: HALE 
Healthy Life Expectancy (HALE) was calculated using the Sullivan method.36 This entails first 
calculating adjusted person years lived in a given age interval (𝑠𝑠𝑇𝑇𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗) using the formula: 

𝑠𝑠𝑇𝑇𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗 = 𝑠𝑠𝑇𝑇𝑥𝑥 ∗ 100,000 ∗ (1 − 𝑌𝑌𝑇𝑇𝐸𝐸𝑤𝑤𝑙𝑙𝑙𝑙𝑦𝑦)    (55) 

where 𝑌𝑌𝑇𝑇𝐸𝐸𝑤𝑤𝑙𝑙𝑙𝑙𝑦𝑦 is the rate of years lived with disability across all causes. Adjusted person-years lived in 
all this interval and all subsequent age intervals (Tx) is computed as  

∑ 𝑎𝑎𝑑𝑑𝑗𝑗𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡𝑑𝑑_𝑠𝑠𝑇𝑇𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚−𝑙𝑙𝑤𝑤𝑦𝑦
𝑙𝑙=𝑚𝑚      (56) 

Finally,  
𝑆𝑆𝐴𝐴𝑇𝑇𝐸𝐸 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎

𝐼𝐼𝑚𝑚
      (57) 

where Ix is the number living at the beginning of the age interval of 100,000 born alive. 

Section 3: Developing alternative scenarios 
We produced DALY forecasts for the reference scenario and four alternative scenarios. The alternative 
scenarios were based on the full elimination by 2050 for the following risk factors: unsafe water, 
sanitation, handwashing (WaSH), temperature, and air pollution; behavioural and metabolic non-
communicable disease (NCD) risk factors; nutrition risk factors and vaccination coverage (appendix table 
D). Additionally, we included a scenario that combined scenarios across all the above risk factors. The 
alternative scenario of full elimination by 2050 was defined as SEV for the corresponding risk factor to be 
reaching a value of zero by 2050 starting in 2022 with an exception for the smoking component.  

To create the alternative smoking scenario, we linearly eliminated current smoking prevalence for each 
country between 2022 and 2050 for each birth cohort. We also did not allow new smoking initiation for 
any birth cohort, which resulted in no current or former smokers in birth cohorts that were younger than 
10 years of age in 2022. As in the reference scenario, we assumed that the age-specific distributions of 
cigarettes per day among smokers and pack-years among smokers were constant between 2022 and 2050. 
Similarly, we maintained the existing distributions of years since quitting for former smokers as of 2022 
or earlier, shifting them forward with each future year (i.e. individuals who had quit smoking 10 years 
prior in 2020 would have quit 20 years prior in 2030). As we decreased the proportion of current smokers 
in the population, the proportion of former smokers in the population increased. Since the proportion of 
the population that quit in every year after 2022 was held constant in the scenario, we assumed a uniform 
distribution of years since quitting for those individuals.  

To account for the differences in risk of mortality among current, former, and never smokers, we used the 
cigarettes per day and pack-years distributions and the dose and cause-specific GBD relative risk curves 
to compute the cause specific exposure distribution weighted relative risk of mortality for each of the 
three groups. We then computed the mortality-rate weighted average of these cause-specific relative risks 
to obtain the all-cause relative risk of mortality for current smokers, former smokers, and never smokers, 
respectively. In each future year, we used these relative risk estimates to update the prevalence of current, 
former, and never smokers in the population. We then used these inputs to compute cause-specific 
population attributable fractions at five-year intervals between 2022 and 2052. We then interpolated to 
obtain a full time series of population attributable fractions between 2022 and 2050, from which we 
computed all-cause smoking SEVs.  
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Appendix Table D. Alternative scenarios description 

Scenarios Components Targets 
Reference  All drivers at reference NA 

Ambient particulate matter pollution 
(PM2.5) 

SSP2-4.5 

Temperature 

Improved Environment 
 
  

Household air pollution  
Full elimination by 2050, linear 
decrease to 0 starting in 2023 

Drinking water 
Sanitation 

Handwashing 
Ambient particulate matter pollution 

(PM2.5) 
SSP1-1.9 

Temperature 
Improved Behavioural and 

Metabolic Risks 
Smoking Full elimination of smoking 

prevalence by 2050, linear decrease to 
0 starting in 2023; no new smoker 
initiation after 2022 

Diet Full elimination by 2050, linear 
decrease to 0 starting in 2023 

BMI in adults Full elimination by 2050, linear 
decrease to 0 starting in 2023 

Improved Childhood 
Nutrition and Vaccination 

Child wasting Full elimination by 2050, linear 
decrease to 0 starting in 2023 

Child stunting 

Child underweight 

Iron deficiency 

Vitamin A deficiency 

Sub-optimal breast feeding 

Vaccine coverage Linear increase vaccine coverage to 
100% in all locations for all 6 
modelled vaccines by 2050 starting in 
2023. For instances where the 
reference scenario is more optimistic 
than this alternative scenario, set the 
alternative scenario to reference. 

Combined Includes all components of above 
scenarios 

Includes all targets of above scenarios. 

Section 4: Uncertainty interval estimation 
Uncertainty in data inputs, estimated model parameters, and bias-correction procedures were captured by 
generating 500 draws at the age-sex-location-year level for each of the measures carried through the many 
GBD multi-step estimation processes (population, mortality, migration, fertility,3,37 risk factors,38 causes 
of death,31 and non-fatal estimation.31 This approach captures uncertainty in each modelling stage and 
propagates it through the entire estimation process. Point estimates were computed as the mean of 500 
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draws from the corresponding final (posterior) draw distribution and 95% uncertainty limits (UIs) were 
computed from the 2.5 and 97.5 percentiles. 

Section 5: Model evaluation 
To evaluate the predictive validity of our results, we performed a 10-year holdout forecast through all 
components of the forecasting machinery. We then compared these 10-year forecasts to the actual values 
for those years in GBD 2019 results to evaluate out-of-sample predictions for mortality and DALY 
estimates. Specifically, we used the following skill metric39 for validation period 2010–2019: 

𝑠𝑠𝑘𝑘𝑏𝑏𝑙𝑙𝑙𝑙 = 1 −  𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸(𝑀𝑀𝑤𝑤𝑙𝑙𝑦𝑦𝑙𝑙)
𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸(𝑀𝑀𝑙𝑙𝑙𝑙𝑦𝑦𝑙𝑙𝑖𝑖𝑤𝑤𝑦𝑦 𝑀𝑀𝑤𝑤𝑙𝑙𝑦𝑦𝑙𝑙)

     (58) 

where Model is the IHME forecasting model and Baseline Model is a simplistic model where value of 
2009 year was held constant over 2010–2019. For each model, we calculated squared errors between 
observed and predicted mean values for each cause/sex/location/year and winsorized the squared errors at 
95% level to remove outliers. To calculate RMSE values, we took a square root of an average of the 
winsorized squared errors across location/year. This skill metric was reported for both DALY and 
mortality estimates for males and females of all age group (age group id = 22) for level 0, 1, and 2 causes 
(appendix table E and F). A positive skill metric indicates that a model being evaluated performs better 
than the baseline model whereas a negative skill suggests the opposite. 

Both level 0 and level 1 causes skill values were positive for mortality out-of-sample predictions 
(appendix table E). Skill value for mortality level 0 cause was 0.44 and 0.49 for male and female, 
respectively. The highest skill among level 1 causes was for communicable, maternal, neonatal, and 
nutritional diseases for female (0.75) and the lowest was for injuries among male (0.19).  Among level 2 
causes, neurological disorders cause had the highest skill value of 0.74 for male and musculoskeletal 
disorders cause had the lowest skill value of -0.82 for female. There were five Level 2 causes that had 
negative skills values (for mortality, these included mental disorders and musculoskeletal disorders), these 
five causes contributed just 11.81% of all deaths combined. 

Similarly, both male and female DALY out-of-sample model estimates had a positive skill value for all 
level 0 and level 1 causes. DALY level 0 cause had skill values of 0.58 and 0.66 for male and female, 
respectively. Among level 1 causes, communicable, maternal, neonatal, and nutritional diseases had the 
highest skill value of 0.78 for female and non-communicable diseases and injuries had the lowest skill 
values of 0.24, respectively, both for male. The highest skill value among level 2 causes was HIV/AIDS 
and sexually transmitted infections for 0.74 for female and the lowest skill value was -1.93 for skin and 
subcutaneous diseases for female. Five of 22 Level 2 causes had negative skill values (these included skin 
and subcutaneous diseases and digestive diseases), but the causes with negative skill values contributed 
20.73% of all DALYs. 

The major limitation in skill evaluation is the short period (only 10 years) for validation due to the data 
availability. To address negative skill values, we will revisit the corresponding models with a negative 
skill and include data with longer range for validation period which will lead potentially to higher skill 
values. 

Appendix Table E. Skill values for all age mortality estimates 

Level Cause name Male Female Percent of total 
mortality (%) 

0 All causes 0.44 0.49 100 
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Level Cause name Male Female Percent of total 
mortality (%) 

1 Communicable, 
maternal, neonatal, and 
nutritional disorders  

0.72 0.75 17.2 

Non-communicable 
diseases  

0.36 0.36 74.24 

Injuries 0.19 0.34 8.56 

2 Neglected tropical 
diseases 

0.15 0.20 0.73 

Malaria 0.12 0.20 0.57 

Nutritional 
deficiencies 

0.67 0.61 0.42 

Neoplasms 0.29 -0.05 19.23 

Cardiovascular 
diseases 

0.1 0.08 30.20 

Chronic respiratory 
diseases  

-0.12 -0.18 4.74 

Digestive diseases -0.15 -0.03 4.86 

Neurological disorders 0.74 0.68 4.06 

Substance use 
disorders 

0.14 0.20 0.56 

Diabetes and kidney 
diseases 

0.44 0.37 5.27 

Other non-
communicable 
diseases 

-0.01 -0.21 1.98 

Skin and subcutaneous 
diseases 

0.14 0.19 0.20 

Transport injuries 0.01 0.28 2.60 

Unintentional injuries 0.11 0.30 3.47 

Self-harm and 
interpersonal violence 

0.26 0.37 2.49 

HIV/AIDS and 
sexually transmitted 
infections  

0.60 0.70 1.57 

Respiratory infections 
and tuberculosis 

0.51 0.41 6.25 

Enteric infections 0.54 0.56 3.07 

Other infectious 
diseases 

0.64 0.63 1.37 

Maternal and neonatal 
disorders 

0.55 0.62 3.80 

Mental disorders -0.69 -0.47 0 

Musculoskeletal 
disorders 

-0.04 -0.82 0.23 
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Appendix Table F. Skill values for all age DALY estimates 

Level Cause Male Female Percent of total 
DALYs (%) 

0 All causes 0.58 0.66 100 

1 Communicable, 
maternal, neonatal, and 
nutritional disorders 

0.76 0.78 25.37 

Non-communicable 
diseases 

0.24 0.25 63.96 

Injuries 0.24 0.41 10.67 

2 Neglected tropical 
diseases 

0.26 0.32 1.76 

Malaria 0.18 0.25 1.07 

Nutritional 
deficiencies 

0.72 0.57 1.81 

Neoplasms 0.10 -0.19 10.45 

Cardiovascular 
diseases 

0 -0.08 14.2 

Chronic respiratory 
diseases 

-0.26 -0.08 4.26 

Digestive diseases -0.35 -0.28 3.71 

Neurological disorders 0.31 0.32 4.02 

Substance use 
disorders 

0.01 0.08 1.44 

Diabetes and kidney 
diseases 

0.28 0.11 4.15 

Other non-
communicable 
diseases 

-0.04 -0.31 5.86 

skin and subcutaneous 
diseases 

-1.85 -1.93 1.78 

Transport injuries 0.06 0.33 3.46 

Unintentional injuries 0.20 0.25 4.30 

Self-harm and 
interpersonal violence 

0.30 0.44 2.92 

HIV/AIDS and 
sexually transmitted 
infections  

0.61 0.74 2.03 

Respiratory infections 
and tuberculosis 

0.65 0.62 5.85 

Enteric infections 0.59 0.65 3.92 

Other infectious 
diseases 

0.63 0.62 2.19 

Maternal and neonatal 
disorders 

0.54 0.60 7.82 



45 
 

Level Cause Male Female Percent of total 
DALYs (%) 

Mental disorders -0.20 0.05 5.12 

Musculoskeletal 
disorders 

0.60 0.53 6.27 

 

Section 6: Post-processing of the results to align with GBD 2021 
In order to align forecasts with the most recently generated GBD 2021 results, we performed a shift on all 
burden measures (deaths, incidence, prevalence, YLLs, YLDs, DALYs) to align with GBD 2021 in the 
year 2021 (𝑡𝑡0 = 2021). We shifted prevalence in logit space to cap values between zero and one, while 
we shifted all other measures in log space. The shift had two main parts: a “reference” shift to align 
values in 2021 and a “scenario” shift to make the scenarios start diverging from reference in 2021.  

For the “reference” shift 𝐸𝐸𝑤𝑤𝑦𝑦𝑟𝑟, we calculated the difference using a blended approach of two methods by 
calculating both “relative” and “absolute” differences, 𝐸𝐸𝑤𝑤𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑣𝑣𝑦𝑦 and 𝐸𝐸𝑙𝑙𝑎𝑎𝑙𝑙𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙𝑦𝑦, respectively, for each 
location/sex/age at the draw level: 

𝐸𝐸𝑤𝑤𝑦𝑦𝑟𝑟 = 𝛼𝛼 ∗ 𝐸𝐸𝑤𝑤𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑣𝑣𝑦𝑦 + (1 − 𝛼𝛼) ∗ 𝐸𝐸𝑙𝑙𝑎𝑎𝑙𝑙𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙𝑦𝑦,    (59) 

Where: 

𝛼𝛼 = 1
(1+𝑦𝑦−𝑘𝑘∗(𝑃𝑃𝑖𝑖0+13.81))

     (60) 

𝛼𝛼 is a coefficient determining how much weight should go to each method, 𝐸𝐸𝑤𝑤𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑣𝑣𝑦𝑦 = 𝑀𝑀𝑙𝑙0,…,𝑖𝑖𝑛𝑛
∗
𝐶𝐶𝑖𝑖0
𝑂𝑂𝑖𝑖0

  is a 

“relative” difference and 𝐸𝐸𝑙𝑙𝑎𝑎𝑙𝑙𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙𝑦𝑦 = 𝑀𝑀𝑙𝑙0,…,𝑖𝑖𝑛𝑛
− (𝐴𝐴𝑙𝑙0 − 𝐶𝐶𝑙𝑙0) is an “absolute” difference. Here, 𝐴𝐴𝑙𝑙0 is the 

reference scenario forecast in 𝑡𝑡0 , 𝑀𝑀𝑙𝑙0,…,𝑖𝑖𝑛𝑛
 is the reference scenario forecasted values between 𝑡𝑡0 and 𝑡𝑡𝑤𝑤, 

and 𝐶𝐶𝑙𝑙0  is GBD 2021 data in 𝑡𝑡0.  

We calculated the “relative” difference at the draw level by taking the ratio between the GBD 2021 data 
in 2021 (𝐶𝐶𝑙𝑙0) and the reference scenario forecast in 2021 (𝐴𝐴𝑙𝑙0) and then multiplying this ratio by the 
future forecasted values between 𝑡𝑡0 and 𝑡𝑡𝑤𝑤 years (𝑀𝑀𝑙𝑙0,…,𝑖𝑖𝑛𝑛

). Additionally, we obtained the “absolute” 
difference at the draw level by first calculating the difference between the reference scenario forecasts in 
2021 (𝐴𝐴𝑙𝑙0) and the GBD 2021 data in 2021 (𝐶𝐶𝑙𝑙0) , and then subtracting this difference from the future 
draw-level forecasted values between 𝑡𝑡0 and 𝑡𝑡𝑤𝑤 years (𝑀𝑀𝑙𝑙0,…,𝑖𝑖𝑛𝑛

).We calculated 𝛼𝛼 which is a weight given 
to the “relative” difference, and (1 − 𝛼𝛼) is a weight given to “absolute” difference. The weight 𝛼𝛼 is given 
in a form of a logistic function with a value of 0.5 at 13.81 namely a rate of 1 per million, and 𝑘𝑘 value 
being equal to 0.7. To account for special cases when we have extremely small values for 𝐴𝐴𝑙𝑙0, we set 𝛼𝛼 
value to 0 at draw level for location/age/sex when 𝐴𝐴𝑙𝑙0 for a draw is less than 10−6. Additionally, for 10 
causes we also set 𝛼𝛼 value to 0 if 𝑀𝑀𝑙𝑙0,…,𝑖𝑖𝑛𝑛

 at the mean level is higher than the maximum value of mean 
values of the past GBD 2021 data. The 10 causes include measles, malaria, African trypanosomiasis, 
gonococcal infection, cystic echinococcosis, other neglected tropical diseases, encephalitis, acute hepatitis 
B, exposure to forces of nature, and conflict and terrorism. Moreover, we set 𝛼𝛼 value to 1 at draw level 
for location/age/sex when 𝑙𝑙𝑐𝑐𝑎𝑎10(

𝑂𝑂𝑖𝑖0
𝐶𝐶𝑖𝑖0

) ≥ 1, i.e. we use only the “relative” difference to avoid negative 

draw values. To get rid of negative draws being introduced when using an absolute shift, we set a 
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minimum value of 0 after all shifting is completed. These processes result in forecasts in which all 
scenarios align with GBD 2021 in the year 2021, along with alternative scenarios that diverge from the 
reference scenario in 2021. 
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Section 8: Tables 
 



Appendix Table S1: GBD location hierarchy used for forecasting with levels
Location Level

Global 0

Central Europe, eastern Europe, and central Asia 1

Central Asia 2

Armenia 3

Azerbaijan 3

Georgia 3

Kazakhstan 3

Kyrgyzstan 3

Mongolia 3

Tajikistan 3

Turkmenistan 3

Uzbekistan 3

Central Europe 2

Albania 3

Bosnia and Herzegovina 3

Bulgaria 3

Croatia 3

Czechia 3

Hungary 3

Montenegro 3

North Macedonia 3

Poland 3

Romania 3

Serbia 3

Slovakia 3

Slovenia 3

Eastern Europe 2

Belarus 3

Estonia 3

Latvia 3

Lithuania 3

Moldova 3

Russia 3

Ukraine 3

High income 1

Australasia 2

Australia 3

New Zealand 3

High-income Asia Pacific 2

Brunei 3

Japan 3

South Korea 3

Singapore 3

High-income North America 2

Canada 3
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Greenland 3

USA 3

Southern Latin America 2

Argentina 3

Chile 3

Uruguay 3

Western Europe 2

Andorra 3

Austria 3

Belgium 3

Cyprus 3

Denmark 3

Finland 3

France 3

Germany 3

Greece 3

Iceland 3

Ireland 3

Israel 3

Italy 3

Luxembourg 3

Malta 3

Monaco 3

Netherlands 3

Norway 3

Portugal 3

San Marino 3

Spain 3

Sweden 3

Switzerland 3

UK 3

Latin America and Caribbean 1

Andean Latin America 2

Bolivia 3

Ecuador 3

Peru 3

Caribbean 2

Antigua and Barbuda 3

The Bahamas 3

Barbados 3

Belize 3

Bermuda 3

Cuba 3

Dominica 3

Dominican Republic 3

Grenada 3

Guyana 3
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Haiti 3

Jamaica 3

Puerto Rico 3

Saint Kitts and Nevis 3

Saint Lucia 3

Saint Vincent and the Grenadines 3

Suriname 3

Trinidad and Tobago 3

Virgin Islands 3

Central Latin America 2

Colombia 3

Costa Rica 3

El Salvador 3

Guatemala 3

Honduras 3

Mexico 3

Nicaragua 3

Panama 3

Venezuela 3

Tropical Latin America 2

Brazil 3

Paraguay 3

North Africa and Middle East 1

North Africa and Middle East 2

Afghanistan 3

Algeria 3

Bahrain 3

Egypt 3

Iran 3

Iraq 3

Jordan 3

Kuwait 3

Lebanon 3

Libya 3

Morocco 3

Oman 3

Palestine 3

Qatar 3

Saudi Arabia 3

Sudan 3

Syria 3

Tunisia 3

Türkiye 3

United Arab Emirates 3

Yemen 3

South Asia 1

South Asia 2
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Bangladesh 3

Bhutan 3

India 3

Nepal 3

Pakistan 3

Southeast Asia, east Asia, and Oceania 1

East Asia 2

China 3

North Korea 3

Taiwan (province of China) 3

Oceania 2

American Samoa 3

Cook Islands 3

Fiji 3

Guam 3

Kiribati 3

Marshall Islands 3

Federated States of Micronesia 3

Nauru 3

Niue 3

Northern Mariana Islands 3

Palau 3

Papua New Guinea 3

Samoa 3

Solomon Islands 3

Tokelau 3

Tonga 3

Tuvalu 3

Vanuatu 3

Southeast Asia 2

Cambodia 3

Indonesia 3

Laos 3

Malaysia 3

Maldives 3

Mauritius 3

Myanmar 3

Philippines 3

Seychelles 3

Sri Lanka 3

Thailand 3

Timor-Leste 3

Viet Nam 3

Sub-Saharan Africa 1

Central sub-Saharan Africa 2

Angola 3

Central African Republic 3
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Congo (Brazzaville) 3

DR Congo 3

Equatorial Guinea 3

Gabon 3

Eastern sub-Saharan Africa 2

Burundi 3

Comoros 3

Djibouti 3

Eritrea 3

Ethiopia 3

Kenya 3

Madagascar 3

Malawi 3

Mozambique 3

Rwanda 3

Somalia 3

South Sudan 3

Uganda 3

Tanzania 3

Zambia 3

Southern sub-Saharan Africa 2

Botswana 3

Eswatini 3

Lesotho 3

Namibia 3

South Africa 3

Zimbabwe 3

Western sub-Saharan Africa 2

Benin 3

Burkina Faso 3

Cabo Verde 3

Cameroon 3

Chad 3

Côte d'Ivoire 3

The Gambia 3

Ghana 3

Guinea 3

Guinea-Bissau 3

Liberia 3

Mali 3

Mauritania 3

Niger 3

Nigeria 3

São Tomé and Príncipe 3

Senegal 3

Sierra Leone 3

Togo 3
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Gather Compliance 
This study complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) 
recommendations. We have documented the steps involved in our analytical procedures and detailed the data 
sources in the GATHER checklist below. The GATHER recommendations can be found here: http://gather-
statement.org/  

Appendix Table S2. GATHER compliance 

# GATHER checklist item Description of compliance Reference 
Objectives and funding  

1  Define the indicator(s), populations 
(including age, sex, and geographic 
entities), and time period(s) for 
which estimates were made. 

Narrative provided in the paper and 
appendix describing indicators, 
definitions, and populations 

Main text (Methods - Overview) and appendix  

2  List the funding sources for the 
work. 

Funding sources listed in paper  Main text (Summary – Funding)  

Data Inputs  
   For all data inputs from multiple sources that are synthesized as part of the study:  

3  Describe how the data were 
identified and how the data were 
accessed.  

Narrative provided in paper and 
appendix describing data seeking 
methods 

Main text (Methods) and appendix  

4  Specify the inclusion and exclusion 
criteria. Identify all ad-hoc 
exclusions. 

Narrative provided in paper and 
appendix describing inclusion and 
exclusion criteria by data type 

Main text (Methods) and appendix  

5  Provide information on all included 
data sources and their main 
characteristics. For each data source 
used, report reference information or 
contact name/institution, population 
represented, data collection method, 
year(s) of data collection, sex and 
age range, diagnostic criteria or 
measurement method, and sample 
size, as relevant.  

Narrative for data sources is 
provided in paper and appendix. 
Metadata for sources by geography 
are available through an online data 
source tool; information on 
metadata for UNPD data available 
in the appendix 

Main text (Methods), appendix, and through the 
online sources tool, which includes all GBD 
data inputs used to produce the estimates used 
in the models for our forecasts: https://
ghdx.healthdata.org/gbd-2021/sources

6  Identify and describe any categories 
of input data that have potentially 
important biases (e.g., based on 
characteristics listed in item 5). 

Limitations of and biases in data 
included in paper 

Main text (Discussion – Limitations)  

   For data inputs that contribute to the analysis but were not synthesized as part of the study:  
7  Describe and give sources for any 

other data inputs.  
Included in online data source tools  Online sources tool: https://ghdx.healthdata.org/

gbd-2021/sources
   For all data inputs:  

8  Provide all data inputs in a file 
format from which data can be 
efficiently extracted (e.g., a 
spreadsheet rather than a PDF), 
including all relevant meta-data 
listed in item 5. For any data inputs 
that cannot be shared because of 
ethical or legal reasons, such as 
third-party ownership, provide a 
contact name or the name of the 
institution that retains the right to the 
data. 

Downloads of input data are 
available through online data 
query tools
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Data analysis  
9  Provide a conceptual overview of the 

data analysis method. A diagram 
may be helpful.  

A brief overview of the overall 
methodological processes have 
been provided 

Main text (Methods) and appendix  

10  Provide a detailed description of all 
steps of the analysis, including 
mathematical formulae. This 
description should cover, as relevant, 
data cleaning, data pre-processing, 
data adjustments and weighting of 
data sources, and mathematical or 
statistical model(s).  

Detailed descriptions of all steps of 
the analysis, as well as relevant 
mathematical formulae, have been 
provided 

Main text (Methods) and appendix  

11  Describe how candidate models were 
evaluated and how the final model(s) 
were selected. 

Details on model evaluation and 
finalisation have been provided 

Main text (Methods – Model performance) and 
appendix 

12  Provide the results of an evaluation 
of model performance, if done, as 
well as the results of any relevant 
sensitivity analysis. 

Details on evaluation of model 
performance have been provided 

Main text (Results – Model performance) and 
appendix

13  Describe methods for calculating 
uncertainty of the estimates. State 
which sources of uncertainty were, 
and were not, accounted for in the 
uncertainty analysis. 

Details on uncertainty calculations 
have been provided 

Main text (Methods) and appendix  

14  State how analytic or statistical 
source code used to generate 
estimates can be accessed. 

Access statement and link provided Code is provided in an online repository: https://
ghdx.healthdata.org/gbd-2021/code

Results and Discussion  
15  Provide published estimates in a file 

format from which data can be 
efficiently extracted. 

Results are available to view and 
download through an online 
visualisation tool

Online tools: 
https://vizhub.healthdata.org/gbd-foresight/

16  Report a quantitative measure of the 
uncertainty of the estimates (e.g. 
uncertainty intervals). 

Uncertainty intervals are provided 
with results 

Main text (Results and Discussion) and online  
tools: https://vizhub.healthdata.org/gbd-foresight/

17  Interpret results in light of existing 
evidence. If updating a previous set 
of estimates, describe the reasons for 
changes in estimates. 

Discussion of methodological 
differences between this study 
and existing evidence 

Main text (Research in Context, Introduction, 
Methods, Discussion) and appendix 

18  Discuss limitations of the estimates. 
Include a discussion of any 
modelling assumptions or data 
limitations that affect interpretation 
of the estimates. 

Discussion of limitations was 
provided 

Main text (Discussion – Limitations)  
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Cause Incidence Prevalence YLD

Appendix Table S3. Primary modelling strategies for incidence, prevalence and YLDs used for each 
cause. YLD, years lived with disability; MIR, mortality-incidence ratio, PIR, prevalence-incidence 
ratio; YLL, years of life lost; ARC, annualised rate of change; MPR, mortality-prevalence ratio.

HIV/AIDS
Spectrum Spectrum YLD from Prevalence

Syphilis
MIR PIR YLD from Prevalence

Chlamydial infection
MIR Direct Prevalence YLD from Prevalence

Gonococcal infection
MIR PIR YLD from Prevalence

Trichomoniasis
PIR Direct Prevalence YLD from Prevalence

Genital herpes
PIR Direct Prevalence YLD from Prevalence

Other sexually transmitted 
infections

Not Modelled MPR YLD:YLL

Latent tuberculosis infection
Not Modelled Direct Prevalence Not Modelled

Tuberculosis Fatal
MIR PIR YLD from Prevalence

Pneumococcal pneumonia
MIR PIR YLD from Prevalence

H influenzae type B 
pneumonia

MIR PIR YLD from Prevalence

Non-pneumococcal non-H 
influenzae type B pneumonia

MIR PIR YLD from Prevalence

Upper respiratory infections
Direct Incidence PIR YLD from Prevalence

Otitis media
MIR PIR YLD from Prevalence

COVID-19
COVID COVID COVID
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Rotaviral enteritis
MIR PIR YLD from Prevalence

Non-rotaviral enteritis
MIR PIR YLD from Prevalence

Typhoid fever
MIR PIR YLD from Prevalence

Paratyphoid fever
MIR PIR YLD from Prevalence

Invasive Non-typhoidal 
Salmonella (iNTS)

MIR PIR YLD from Prevalence

Other intestinal infectious 
diseases

Not Modelled Not Modelled YLD:YLL

Malaria
ARC PIR YLD from Prevalence

Chagas disease
PIR ARC YLD from Prevalence

Visceral leishmaniasis
PIR ARC YLD from Prevalence

Cutaneous and mucocutaneous 
leishmaniasis

PIR ARC YLD from Prevalence

African trypanosomiasis
PIR ARC YLD from Prevalence

Schistosomiasis
Not Modelled ARC YLD from Prevalence

Cysticercosis
Not Modelled ARC YLD from Prevalence

Cystic echinococcosis
PIR ARC YLD from Prevalence

Lymphatic filariasis
Not Modelled ARC YLD from Prevalence

Onchocerciasis
Not Modelled ARC YLD from Prevalence

Trachoma

Not Modelled ARC YLD from Prevalence
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Dengue
MIR ARC YLD from Prevalence

Yellow fever
MIR ARC YLD from Prevalence

Rabies
MIR ARC YLD from Prevalence

Ascariasis
Not Modelled ARC YLD from Prevalence

Trichuriasis
Not Modelled ARC YLD from Prevalence

Hookworm disease
Not Modelled ARC YLD from Prevalence

Food-borne trematodiases
Not Modelled ARC YLD from Prevalence

Leprosy
PIR ARC YLD from Prevalence

Guinea worm disease
PIR ARC YLD from Prevalence

Other neglected tropical 
diseases

Not Modelled ARC YLD from Prevalence

Pneumococcal meningitis
MIR PIR YLD from Prevalence

H influenzae type B meningitis
MIR PIR YLD from Prevalence

Non-pneumococcal non-H 
influenzae type B meningitis

MIR PIR YLD from Prevalence

Encephalitis
MIR PIR YLD from Prevalence

Diphtheria
MIR PIR YLD from Prevalence

Whooping cough
MIR PIR YLD from Prevalence

Tetanus

MIR PIR YLD from Prevalence
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Measles
PIR Direct Prevalence YLD from Prevalence

Varicella and herpes zoster
MIR PIR YLD from Prevalence

Acute hepatitis A
PIR Direct Prevalence YLD from Prevalence

Acute hepatitis B
PIR MPR YLD from Prevalence

Acute hepatitis C
PIR MPR YLD from Prevalence

Acute hepatitis E
Direct Incidence PIR Congenital YLD from Prevalence

Other unspecified infectious 
diseases

Not Modelled MPR YLD from Prevalence

Maternal hemorrhage
MIR PIR YLD from Prevalence

Maternal sepsis and other 
maternal infections

MIR PIR YLD from Prevalence

Maternal hypertensive 
disorders

MIR PIR YLD from Prevalence

Maternal obstructed labor and 
uterine rupture

MIR PIR YLD from Prevalence

Maternal abortion and 
miscarriage

MIR PIR YLD from Prevalence

Ectopic pregnancy
MIR PIR YLD from Prevalence

Other maternal disorders
Not Modelled Not Modelled YLD:YLL

Neonatal preterm birth
Direct Incidence Direct Prevalence YLD from Prevalence

Neonatal encephalopathy due 
to birth asphyxia and trauma

Direct Incidence Direct Prevalence YLD from Prevalence

Neonatal sepsis and other 
neonatal infections

Direct Incidence PIR Congenital YLD from Prevalence
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Hemolytic disease and other 
neonatal jaundice

Direct Incidence Direct Prevalence YLD from Prevalence

Other neonatal disorders
Not Modelled Not Modelled YLD:YLL

Protein-energy malnutrition
Direct Incidence PIR Congenital YLD from Prevalence

Iodine deficiency
PIR Direct Prevalence YLD from Prevalence

Vitamin A deficiency
PIR Direct Prevalence YLD from Prevalence

Dietary iron deficiency
Not Modelled Direct Prevalence YLD from Prevalence

Other nutritional deficiencies
Not Modelled Not Modelled YLD:YLL

Lip and oral cavity cancer
MIR PIR YLD from Prevalence

Nasopharynx cancer
MIR PIR YLD from Prevalence

Other pharynx cancer
MIR PIR YLD from Prevalence

Esophageal cancer
MIR PIR YLD from Prevalence

Stomach cancer
MIR PIR YLD from Prevalence

Colon and rectum cancer
MIR PIR YLD from Prevalence

Liver cancer due to hepatitis B
MIR PIR YLD from Prevalence

Liver cancer due to hepatitis C
MIR PIR YLD from Prevalence

Liver cancer due to alcohol use
MIR PIR YLD from Prevalence

Liver cancer due to NASH

MIR PIR YLD from Prevalence
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Hepatoblastoma
MIR PIR YLD from Prevalence

Liver cancer due to other 
causes (internal)

MIR PIR YLD from Prevalence

Gallbladder and biliary tract 
cancer

MIR PIR YLD from Prevalence

Pancreatic cancer
MIR PIR YLD from Prevalence

Larynx cancer
MIR PIR YLD from Prevalence

Tracheal, bronchus, and lung 
cancer

MIR PIR YLD from Prevalence

Malignant skin melanoma
MIR PIR YLD from Prevalence

Non-melanoma skin cancer 
(squamous-cell carcinoma)

MIR PIR YLD from Prevalence

Non-melanoma skin cancer 
(basal-cell carcinoma)

PIR Direct Prevalence YLD from Prevalence

Soft tissue and other 
extraosseous sarcomas

MIR PIR YLD from Prevalence

Malignant neoplasm of bone 
and articular cartilage

MIR PIR YLD from Prevalence

Breast cancer
MIR PIR YLD from Prevalence

Cervical cancer
MIR PIR YLD from Prevalence

Uterine cancer
MIR PIR YLD from Prevalence

Ovarian cancer
MIR PIR YLD from Prevalence

Prostate cancer
MIR PIR YLD from Prevalence

Testicular cancer

MIR PIR YLD from Prevalence

62



Kidney cancer
MIR PIR YLD from Prevalence

Bladder cancer
MIR PIR YLD from Prevalence

Brain and central nervous 
system cancer

MIR PIR YLD from Prevalence

Retinoblastoma
MIR PIR YLD from Prevalence

Other eye cancers
MIR PIR YLD from Prevalence

Neuroblastoma and other 
peripheral nervous cell tumors

MIR PIR YLD from Prevalence

Thyroid cancer
MIR PIR YLD from Prevalence

Mesothelioma
MIR PIR YLD from Prevalence

Hodgkin lymphoma
MIR PIR YLD from Prevalence

Burkitt lymphoma
MIR PIR YLD from Prevalence

Other non-Hodgkin lymphoma
MIR PIR YLD from Prevalence

Multiple myeloma
MIR PIR YLD from Prevalence

Acute lymphoid leukemia
MIR PIR YLD from Prevalence

Chronic lymphoid leukemia
MIR PIR YLD from Prevalence

Acute myeloid leukemia
MIR PIR YLD from Prevalence

Chronic myeloid leukemia
MIR PIR YLD from Prevalence

Other leukemia

MIR PIR YLD from Prevalence
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Other malignant neoplasms 
(internal)

MIR PIR YLD from Prevalence

Myelodysplastic, 
myeloproliferative, and other 
hematopoietic neoplasms

MIR PIR YLD from Prevalence

Benign and in situ intestinal 
neoplasms

PIR Direct Prevalence Not Modelled

Benign and in situ cervical and 
uterine neoplasms

PIR Direct Prevalence Not Modelled

Other benign and in situ 
neoplasms

PIR Direct Prevalence Not Modelled

Rheumatic heart disease
PIR Direct Prevalence YLD from Prevalence

Ischemic heart disease
MIR Direct Prevalence YLD from Prevalence

Ischemic stroke
MIR Direct Prevalence YLD from Prevalence

Intracerebral hemorrhage
MIR PIR YLD from Prevalence

Subarachnoid hemorrhage
MIR PIR YLD from Prevalence

Hypertensive heart disease
Not Modelled MPR YLD from Prevalence

Non-rheumatic calcific aortic 
valve disease

PIR Direct Prevalence YLD from Prevalence

Non-rheumatic degenerative 
mitral valve disease

PIR MPR YLD from Prevalence

Other non-rheumatic valve 
diseases

Not Modelled MPR YLD from Prevalence

Myocarditis
MIR PIR YLD from Prevalence

Alcoholic cardiomyopathy
Not Modelled MPR YLD from Prevalence

Other cardiomyopathy

Not Modelled MPR YLD from Prevalence
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Pulmonary Arterial 
Hypertension

Not Modelled MPR YLD from Prevalence

Atrial fibrillation and flutter
PIR MPR YLD from Prevalence

Peripheral artery disease
PIR MPR YLD from Prevalence

Endocarditis
MIR PIR YLD from Prevalence

Other cardiovascular and 
circulatory diseases (internal)

Not Modelled MPR YLD from Prevalence

Chronic obstructive pulmonary 
disease

PIR MPR YLD from Prevalence

Silicosis
PIR MPR YLD from Prevalence

Asbestosis
PIR MPR YLD from Prevalence

Coal workers pneumoconiosis
PIR MPR YLD from Prevalence

Other pneumoconiosis
PIR MPR YLD from Prevalence

Asthma
PIR MPR YLD from Prevalence

Interstitial lung disease and 
pulmonary sarcoidosis

PIR MPR YLD from Prevalence

Other chronic respiratory 
diseases

Not Modelled Not Modelled YLD:YLL

Cirrhosis and other chronic 
liver diseases due to hepatitis 
B

PIR MPR YLD from Prevalence

Cirrhosis and other chronic 
liver diseases due to hepatitis 
C

PIR MPR YLD from Prevalence

Cirrhosis and other chronic 
liver diseases due to alcohol 
use

PIR MPR YLD from Prevalence

Cirrhosis and other chronic 
liver diseases due to NAFLD

PIR MPR YLD from Prevalence
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Cirrhosis and other chronic 
liver diseases due to other 
causes

PIR MPR YLD from Prevalence

Peptic ulcer disease
PIR MPR YLD from Prevalence

Gastritis and duodenitis
PIR MPR YLD from Prevalence

Gastroesophageal reflux 
disease

PIR Direct Prevalence YLD from Prevalence

Appendicitis
MIR PIR YLD from Prevalence

Paralytic ileus and intestinal 
obstruction

MIR PIR YLD from Prevalence

Inguinal, femoral, and 
abdominal hernia

PIR MPR YLD from Prevalence

Inflammatory bowel disease
PIR MPR YLD from Prevalence

Vascular intestinal disorders
MIR PIR YLD from Prevalence

Gallbladder and biliary 
diseases

PIR MPR YLD from Prevalence

Pancreatitis
PIR MPR YLD from Prevalence

Other digestive diseases
Not Modelled Not Modelled YLD:YLL

Alzheimer's disease and other 
dementias

PIR MPR YLD from Prevalence

Parkinson's disease
PIR MPR YLD from Prevalence

Idiopathic epilepsy
PIR MPR YLD from Prevalence

Multiple sclerosis
PIR MPR YLD from Prevalence

Motor neuron disease

PIR MPR YLD from Prevalence
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Migraine
PIR Direct Prevalence YLD from Prevalence

Tension-type headache
PIR Direct Prevalence YLD from Prevalence

Other neurological disorders
Not Modelled MPR YLD from Prevalence

Schizophrenia
PIR Direct Prevalence YLD from Prevalence

Major depressive disorder
PIR Direct Prevalence YLD from Prevalence

Dysthymia
PIR Direct Prevalence YLD from Prevalence

Bipolar disorder
PIR Direct Prevalence YLD from Prevalence

Anxiety disorders
PIR Direct Prevalence YLD from Prevalence

Eating disorders
PIR MPR YLD from Prevalence

Autism spectrum disorders
Direct Incidence Direct Prevalence YLD from Prevalence

Attention-deficit/hyperactivity 
disorder

PIR Direct Prevalence YLD from Prevalence

Conduct disorder
PIR Direct Prevalence YLD from Prevalence

Idiopathic developmental 
intellectual disability

Not Modelled Direct Prevalence YLD from Prevalence

Other mental disorders
Not Modelled Direct Prevalence YLD from Prevalence

Alcohol use disorders
Direct Incidence PIR Congenital YLD from Prevalence

Opioid use disorders
PIR Direct Prevalence YLD from Prevalence

Cocaine use disorders

PIR MPR YLD from Prevalence
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Amphetamine use disorders
PIR MPR YLD from Prevalence

Cannabis use disorders
PIR Direct Prevalence YLD from Prevalence

Other drug use disorders
PIR MPR YLD from Prevalence

Diabetes mellitus type 1
PIR Direct Prevalence YLD from Prevalence

Diabetes mellitus type 2
PIR BMI covariate YLD from Prevalence

Chronic kidney disease due to 
diabetes mellitus type 1

PIR MPR YLD from Prevalence

Chronic kidney disease due to 
diabetes mellitus type 2

PIR MPR YLD from Prevalence

Chronic kidney disease due to 
hypertension

PIR MPR YLD from Prevalence

Chronic kidney disease due to 
glomerulonephritis

PIR MPR YLD from Prevalence

Chronic kidney disease due to 
other and unspecified causes

PIR MPR YLD from Prevalence

Acute glomerulonephritis
MIR PIR YLD from Prevalence

Atopic dermatitis
PIR Direct Prevalence YLD from Prevalence

Contact dermatitis
PIR Direct Prevalence YLD from Prevalence

Seborrhoeic dermatitis
PIR Direct Prevalence YLD from Prevalence

Psoriasis
PIR Direct Prevalence YLD from Prevalence

Cellulitis
MIR PIR YLD from Prevalence

Pyoderma

MIR PIR YLD from Prevalence
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Scabies
PIR Direct Prevalence YLD from Prevalence

Fungal skin diseases
PIR Direct Prevalence YLD from Prevalence

Viral skin diseases
PIR Direct Prevalence YLD from Prevalence

Acne vulgaris
PIR Direct Prevalence YLD from Prevalence

Alopecia areata
PIR Direct Prevalence YLD from Prevalence

Pruritus
PIR Direct Prevalence YLD from Prevalence

Urticaria
PIR Direct Prevalence YLD from Prevalence

Decubitus ulcer
MIR PIR YLD from Prevalence

Other skin and subcutaneous 
diseases

PIR MPR YLD:YLL

Glaucoma
Not Modelled Direct Prevalence YLD from Prevalence

Cataract
Not Modelled Direct Prevalence YLD from Prevalence

Age-related macular 
degeneration

Not Modelled Direct Prevalence YLD from Prevalence

Refraction disorders
Not Modelled Direct Prevalence YLD from Prevalence

Near vision loss
Not Modelled Direct Prevalence YLD from Prevalence

Other vision loss
Not Modelled Direct Prevalence YLD from Prevalence

Age-related and other hearing 
loss

Not Modelled Direct Prevalence YLD from Prevalence

Other sense organ diseases

Not Modelled Direct Prevalence YLD from Prevalence
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Rheumatoid arthritis
PIR MPR YLD from Prevalence

Osteoarthritis hip
PIR Direct Prevalence YLD from Prevalence

Osteoarthritis knee
PIR Direct Prevalence YLD from Prevalence

Osteoarthritis hand
PIR Direct Prevalence YLD from Prevalence

Osteoarthritis other
PIR Direct Prevalence YLD from Prevalence

Low back pain
PIR Direct Prevalence YLD from Prevalence

Neck pain
PIR Direct Prevalence YLD from Prevalence

Gout
PIR Direct Prevalence YLD from Prevalence

Other musculoskeletal 
disorders

Not Modelled Direct Prevalence YLD from Prevalence

Neural tube defects
Direct Incidence Direct Prevalence YLD from Prevalence

Congenital heart anomalies
Direct Incidence Direct Prevalence YLD from Prevalence

Orofacial clefts
Direct Incidence Direct Prevalence YLD from Prevalence

Down syndrome
Direct Incidence Direct Prevalence YLD from Prevalence

Turner syndrome
Direct Incidence Direct Prevalence YLD from Prevalence

Klinefelter syndrome
Direct Incidence Direct Prevalence YLD from Prevalence

Other chromosomal 
abnormalities

Direct Incidence Direct Prevalence YLD from Prevalence

Congenital musculoskeletal 
and limb anomalies

Direct Incidence Direct Prevalence YLD from Prevalence

70



Urogenital congenital 
anomalies

Direct Incidence Direct Prevalence YLD from Prevalence

Digestive congenital 
anomalies

Direct Incidence Direct Prevalence YLD from Prevalence

Other congenital birth defects
Not Modelled Direct Prevalence YLD from Prevalence

Urinary tract infections and 
interstitial nephritis

MIR PIR YLD from Prevalence

Urolithiasis
MIR PIR YLD from Prevalence

Benign prostatic hyperplasia
PIR Direct Prevalence YLD from Prevalence

Male infertility
Not Modelled Direct Prevalence YLD from Prevalence

Other urinary diseases
Not Modelled Not Modelled YLD:YLL

Uterine fibroids
PIR MPR YLD from Prevalence

Polycystic ovarian syndrome
PIR Direct Prevalence YLD from Prevalence

Female infertility
Not Modelled Direct Prevalence YLD from Prevalence

Endometriosis
PIR MPR YLD from Prevalence

Genital prolapse
PIR MPR YLD from Prevalence

Premenstrual syndrome
PIR Direct Prevalence YLD from Prevalence

Other gynecological diseases
PIR MPR YLD from Prevalence

Thalassemias
Direct Incidence Direct Prevalence YLD from Prevalence

Thalassemias trait Direct Incidence Direct Prevalence YLD from Prevalence

71



Sickle cell disorders
Direct Incidence Direct Prevalence YLD from Prevalence

Sickle cell trait
Direct Incidence Direct Prevalence YLD from Prevalence

G6PD deficiency
Direct Incidence Direct Prevalence YLD from Prevalence

G6PD trait
Direct Incidence Direct Prevalence YLD from Prevalence

Other hemoglobinopathies and 
hemolytic anemias

Not Modelled MPR YLD from Prevalence

Endocrine, metabolic, blood, 
and immune disorders

Not Modelled MPR YLD from Prevalence

Caries of deciduous teeth
PIR Direct Prevalence YLD from Prevalence

Caries of permanent teeth
PIR Direct Prevalence YLD from Prevalence

Periodontal diseases
PIR Direct Prevalence YLD from Prevalence

Edentulism
PIR Direct Prevalence YLD from Prevalence

Other oral disorders
Not Modelled Direct Prevalence YLD from Prevalence

Pedestrian road injuries
MIR PIR YLD from Prevalence

Cyclist road injuries
MIR PIR YLD from Prevalence

Motorcyclist road injuries
MIR PIR YLD from Prevalence

Motor vehicle road injuries
MIR PIR YLD from Prevalence

Other road injuries
MIR PIR YLD from Prevalence

Other transport injuries

MIR PIR YLD from Prevalence
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Falls
MIR PIR YLD from Prevalence

Drowning
MIR PIR YLD from Prevalence

Fire, heat, and hot substances
MIR PIR YLD from Prevalence

Poisoning by carbon monoxide
MIR PIR YLD from Prevalence

Poisoning by other means
MIR PIR YLD from Prevalence

Unintentional firearm injuries
MIR PIR YLD from Prevalence

Other exposure to mechanical 
forces

MIR PIR YLD from Prevalence

Adverse effects of medical 
treatment

MIR PIR YLD from Prevalence

Venomous animal contact
MIR PIR YLD from Prevalence

Non-venomous animal contact
MIR PIR YLD from Prevalence

Pulmonary aspiration and 
foreign body in airway

MIR PIR YLD from Prevalence

Foreign body in eyes
PIR Direct Prevalence YLD from Prevalence

Foreign body in other body 
part

MIR PIR YLD from Prevalence

Environmental heat and cold 
exposure

MIR PIR YLD from Prevalence

Exposure to forces of nature
MIR PIR YLD from Prevalence

Other unintentional injuries
MIR PIR YLD from Prevalence

Self-harm by firearm MIR PIR YLD from Prevalence
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Self-harm by other specified 
means

MIR PIR YLD from Prevalence

Physical violence by firearm
MIR PIR YLD from Prevalence

Physical violence by sharp 
object

MIR PIR YLD from Prevalence

Sexual violence
Not Modelled Direct Prevalence YLD from Prevalence

Physical violence by other 
means

MIR PIR YLD from Prevalence

Conflict and terrorism
PIR MPR YLD from Prevalence

Executions and police conflict
MIR PIR YLD from Prevalence
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