Supporting Information for

ORIGINAL ARTICLE

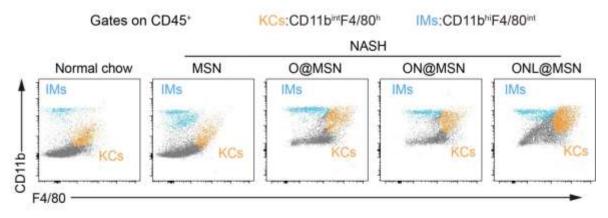
A combined nanotherapeutic approach targeting farnesoid x receptor, ferroptosis, and fibrosis for nonalcoholic steatohepatitis

treatment

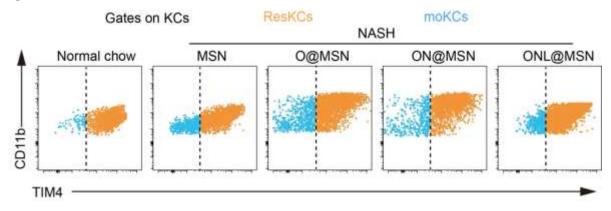
Jiangtao Fu^{a,†}, Pingping Zhang^{a,†}, Zhiguo Sun^{a,†}, Guodong Lu^{a,†}, Qi Cao^a, Yiting Chen^a, Wenbin Wu^a, Jiabao Zhang^{a,b}, Chunlin Zhuang^{a,b}, Chunquan Sheng^{a,b}, Jiajun Xu^{c*}, Ying Lu^{a,b*}, Pei Wang^{a,b*}

^aThe Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China

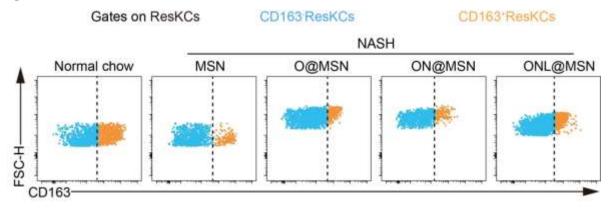
^bNational Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China


^cDepartment of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China

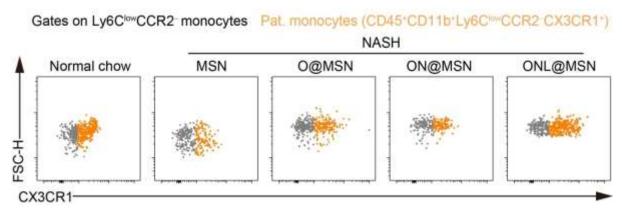
Received 21 November 2023; received in revised form 26 December 2023; accepted 30 December 2023

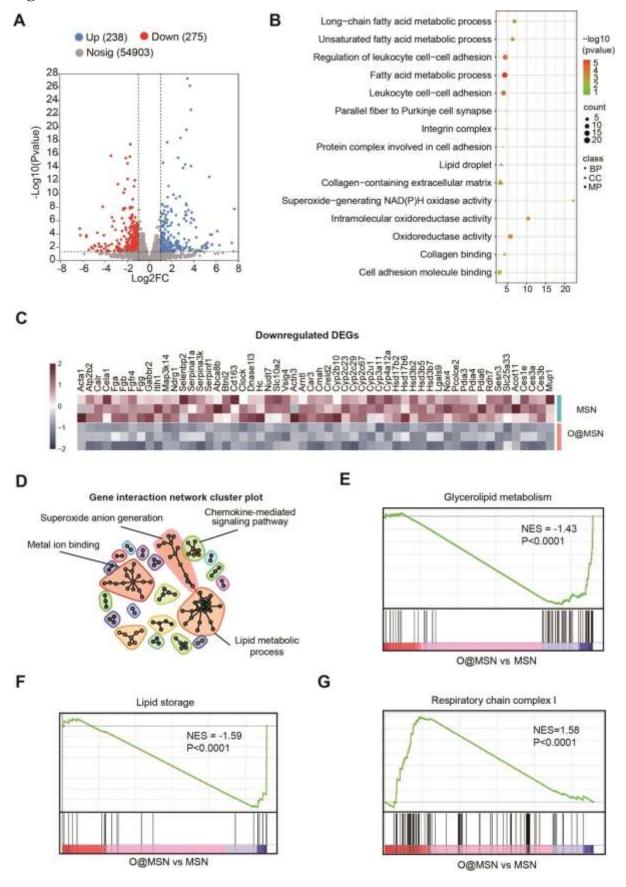

*Correspondence authors.

E-mail addresses: <u>pwang@smmu.edu.cn</u> (Pei Wang), acuace@163.com (Ying Lu), xujiajun920@163.com (Jia-Jun Xu).


[†]These authors made equal contributions to this work.

Representative flow cytometry analysis of Kupffer cells (KCs) and infiltrating monocytes (IMs) based on F4/80 and CD11b staining in CD45⁺ leukocytes isolated from liver tissues. In the manual gating analysis, the F4/80^{high}CD11b^{int}CD45⁺ cells were considered as KCs, whereas the F4/80^{int}CD11b^{high}CD45⁺ cells were considered as IMs.


Representative flow cytometry analysis of yolk sac-derived resident KCs (ResKCs) and monocyte-derived KCs (MoKCs) based on TIM4 staining in KCs. In the manual gating analysis, the TIM4^{high}F4/80^{high}CD11b^{int}CD45⁺ cells were considered as ResKCs, whereas the TIM4^{low}F4/80^{high}CD11b^{int}CD45⁺ cells were considered as MoKCs. The former resolves inflammation whereas the later induces inflammation.

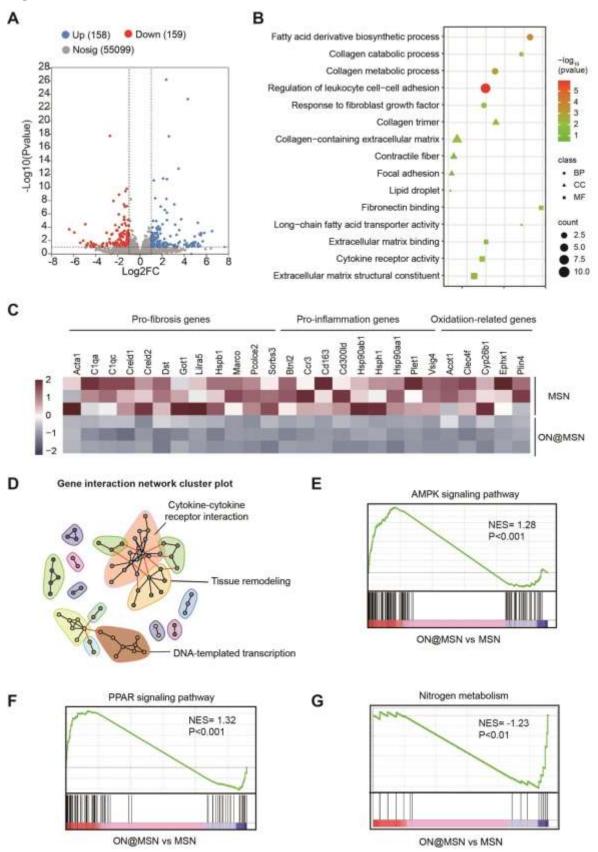

Representative flow cytometry analysis of CD163⁺ ResKCs and CD163⁻ ResKCs based on CD163 staining in ResKCs. CD163 is a member of the scavenger receptor cysteine-rich family and is expressed by anti-inflammatory M2 macrophages, which produce anti-inflammatory cytokines.

Representative flow cytometry analysis of Ly6C^{high} IMs, Ly6C^{Int} IMs and Ly6C^{low} IMs based on Ly6C staining in IMs (F4/80^{int}CD11b^{high}CD45⁺), and the further clustering inflammatory monocytes (CD64⁺Ly6C^{high} IMs) and non-inflammatory monocytes (CD64⁻Ly6C^{high} IMs) based on CD64 staining in Ly6C^{high} IMs.

Representative flow cytometry analysis of patrolling monocytes $(CD45^+CD11b^+Ly6C^{low}CCR2^-CX3CR1^+)$ based CX3CR1 staining on in $CD45^{+}CD11b^{+}Ly6C^{low}CCR2^{-}$ cells. In the manual gating analysis, the $CD45^{+}CD11b^{+}Ly6C^{low}CCR2^{-}CX3CR1^{+}$ monocytes are considered to be the patrolling monocytes.

Bulk-tissue RNA sequencing shows the effects of O@MSN on transcriptome in liver tissue of NASH mice.

(A) Volcano plot showing the upregulated DEGs (n = 163) and downregulated DEGs (n = 199) in liver tissue of mice by treatment of O@MSN compared with MSN.


(B) KEGG plot showing the mainly processes altered by O@MSN compared with MSN in molecular function (MF), biological process (BP) and cell component (CC).

(C) Heatmap plot showing the Top DEGs modulated by O@MSN.

(D) Gene interaction network cluster plot showing the major important modules interacting with other genes altered by treatment of O@MSN compared with MSN.

(E-G) Gene Set Enrichment Analysis (GSEA) plot showing several enriched signaling pathways by treatment of O@MSN compared with MSN.

Bulk-tissue RNA sequencing shows the effects of ONL@MSN on transcriptome in liver tissue of NASH mice.

(A) The experimental design of bulk-tissue RNA sequencing on liver tissues of mice receiving treatment of ONL@MSN or MSN (control).

(B) Correlation between the samples from two groups.

(C) Volcano plot showing the upregulated DEGs (n = 163) and downregulated DEGs (n = 199) in liver tissue of mice receiving treatment of ONL@MSN compared with that of mice receiving treatment of MSN.

Alpha diversity of microbiota A Sobs p=0.6826 Simpson p=0.4154 Shannon p=0.8884 Coverage p=0.05457 Rank-Abundance curves Ace p=0.5778 Relative Abundance MSN ONL@MSN 285 0.999 245 0.24 3.3 P > 0.05 10 100 200 0.998 245 20 0.0 OTU Level Rank Beta diversity of microbiota в ONL@MSN MSN PCoA PLS-DA PCA 0.4 3 6 COMP2(44.4%) PC2(25.26%) PC2(29.1%) 0 0 0 -3.5 -4 -0.2 0.3 -6 Ó 6 -2.5 0 2.5 -0.5 0 PC1(47.23%) PC1(29.09%) COMP1(32.63%) Linear discriminant analysis Effect Size (LEfSe) C Samples distances heatmap on Species level D Odoribacter Faecalibaculum ONL@MSN3 Rikenellaceae_RC9_gut_group Faecalibaculum_rodentium Rikenella_microfusus ONL@MSN2 Desulfovibrionia Desulfovibrionaceae Desulfovibrio ONL@MSN1 Desulfovibrionales Desulfobacterota ONL@MSN Desulfovibrio MSN MSN3 Saccharimonadaceae Clostridia_UCG-014 Candidatus_Saccharimonas MSN2 Saccharimonadales Saccharimonadia Clostridia MSN1 Candidatus_Saccharimonas Patescibacteria MSN3 MSN2 ONL@MSN? ONL@MSN2 ONL@MSN3 WSN. Clostridia Clostridia Clostridia Odoribacter Rikenellaceae_RC9_gut_group Eubacterium_fissicatena_group Eubacterium_fissicatena_group ASF356 0 0.4 0.0 Monoglobaceae Monoglobus Monoglobales Monoglobus Eubacterium_ventriosum_group Eubacterium_ventriosum_group Lachnospiraceae_NK4B4_group Lachnospiraceae_NK4B4_group Erysipelotrichaceae б

Fecal 16S-rRNA sequencing shows the effects of ONL@MSN on gut microbiota community in NASH mice.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

LDA SCORE(log10)

(A) The Alpha diversity of gut microbiota in feces of mice receiving treatment of ONL@MSN or MSN (control).

(B) The Beta diversity of gut microbiota in feces of mice receiving treatment of ONL@MSN or MSN (control).

(C) Correlation between the gut microbiota community in samples from two groups.

(D) LEfSe of gut microbiota community in samples from two group.

Nanoparticle	Drug loading efficiency (%)	Entrapment efficiency (%)
O@MSN (OCA)	67.70 ± 0.22	66.03±0.21
ON@MSN (OCA)	61.55 ± 0.12	59.75±0.12
ONL@MSN (OCA)	54.21 ± 0.06	53.03±0.06
ONL@MSN (Liproxsatin-1)	50.17 ± 0.12	49.91±0.12

Table S1 Drug loading efficiency of nanoparticles.

Data are expressed as mean \pm SD (n = 3).

	Table	S2	Primers	for	real-time	PCR.
--	-------	-----------	---------	-----	-----------	------

Gene	Forward	Reverse
Cxcl1	CACCCAAACCGAAGTCATAGC	GGGGACACCTTTTAGCATCTTT
Ccl2	TGAGGTGGTTGTGGAAAAGG	CCGTAGCGTTGGGTTTCT
Ccl5	ACTCCCTGCTGCTTTGCC	CTGGTGTAGAAATACTCCTTGACG
Tnf-α	TTCTCATTCCTGCTTGTGG	CACTTGGTGGTTTGCTACG
Il-1β	CAGGCTCCGAGATGAAC	TGCTTGTGAGGTGCTGA
Il-6	TGGGACTGATGCTGGTG	CTGGCTTTGTCTTTCTTGTTA
Gapdh	CCCATCACCATCTTCCAG	ATGGGGAAGGTGAAGGTCG