Plant Communications, Volume 5

Supplemental information

Enhancing wheat regeneration and genetic transformation through

overexpression of *TaLAX1*

Yang Yu, Haixia Yu, Jing Peng, Wang Jinsong Yao, Yi Peng Wang, Feng Li Zhang, Shi Rong Wang, Yajie Zhao, Xiang Yu Zhao, Xian Sheng Zhang, and Ying Hua Su

Supplemental Figures and legends 1

3

Supplemental Figure 1. Phylogenetic relationships among LAX1 homologous 4

proteins and the expression pattern of *TaLAX1* in the development of wheat spikes. 5

- (Supports Figures 1 and 7) 6
- (A) Phylogenetic trees of LAX1 homologous proteins for wheat (Triticum aestivum), 7
- barley (Hordeum vulgare), Brachypodium (Brachypodium distachyon), rice (Oryza 8
- sativa), maize (Zea mays), tomato (Solanum lycopersicum), soybean (Glycine max) and 9
- 10 Arabidopsis (Arabidopsis thaliana). The evolutionary analysis was conducted based on
- 11 OsLAX1 protein sequences in MEGA 11 using the neighbor-joining method.
- (B) Comparison of the predicted amino acid sequences of TaLAX1-A/B/D, HvLAX1, 12

OsLAX1, ZmBA1, and GmLAX1 proteins. The basic helix-loop-helix (bHLH) domain 13

- is indicated by a red horizontal line. 14
- (C-F) RNA in situ hybridizations analyses indicate the expression pattern of TaLAX1 15
- at the single ridge stage (C), double ridge stage (D), glume primordium differentiation 16
- stage (E) and floret differentiation stage (F) of the Chinese Spring wheat spikes. An 17
- antisense probe derived from the whole coding region of TaLAX1-A was used. Scale 18
- bar = $200 \,\mu m$. 19
- 20

22

- 23 Supplemental Figure 2. Expression level of TaLAX1-A/B/D in the regeneration
- 24 process of Chinese Spring. (Supports Figure 1)
- 25 Values are means \pm SD, calculated from three individual experiments.

28

Supplemental Figure 3. T1 progeny of *TaLAX1-A-OE* transgenic lines in Fielder
 and Chinese Spring. (Supports Figure 3)

(A-C) Identification of putative T1 progeny of *TaLAX1-A*-OE transgenic lines from 3
T0 lines in Fielder by QuickStix strips for the Bar protein (A), amplification of
transgenic-specific PCR product (B) and RT-qPCR analysis (C). 2K: 2000 bp, 1K: 1000
bp, M: DNA marker.

- 35 (**D-F**) Identification of putative T1 progeny of *TaLAX1-A*-OE transgenic lines from 3
- To lines in Chinese Spring by QuickStix strips for the Bar protein (**D**), amplification of
- transgenic-specific PCR product (E) and RT-qPCR analysis (F). 2K: 2000 bp, 1K: 1000
- 38 bp, M: DNA marker.
- 39 (G) Spike phenotypes the T1 progeny of non-transgenic lines (control) or TaLAX1-A-
- 40 OE transgenic lines in Fielder. Scale bar = 1 cm.

(H) Main agronomic characters of the T1 progeny of control or *TaLAX1-A-OE*transgenic lines in Fielder.

43 (I) Spike phenotypes of the T1 progeny of control or *TaLAX1-A*-OE transgenic lines in

- 44 Chinese Spring. Scale bar = 1 cm.
- 45 (J) Main agronomic characters of the T1 progeny of control or TaLAX1-A-OE
- 46 transgenic lines in Chinese Spring.
- 47 Values in (C, F) are means \pm SD, values in (H, J) are means \pm SEM. All experiments

in (C, F) were performed at least three times. The data in (H, J) presents a count of the main agronomic characteristics for 15 positive transgenic lines of the T1 generation in Fielder and 16 positive transgenic lines of the T1 generation in Chinese Spring, respectively. *** P < 0.001; ** P < 0.01; * P < 0.05; ns, not significant (Student's *t*-test, two-tailed).

54

55 Supplemental Figure 4. Overexpression of *TaLAX1-A* promotes shoot regeneration

after particle bombardment. (Supports Figures 1, 2 and 3)

57 (A) Shoot regeneration phenotypes of Fielder immature embryos infected with empty

vector (control) by particle bombardment. Scale bar = 1 cm.

(B) Shoot regeneration phenotypes of Fielder immature embryos infected with TaLAXI-A-OE by particle bombardment. Scale bar = 1 cm.

61 (C) Regeneration frequencies of Fielder immature embryos infected with control or

62 *TaLAX1-A*-OE vector by particle bombardment.

63 (D) Regenerating shoot frequencies of Fielder immature embryos infected with control

- 64 or *TaLAX1-A*-OE vector by particle bombardment.
- Values in (C, D) are means \pm SEM from two independent experiments. Black points
- are the results from individual experiments. * P < 0.05 (Student's *t*-test, two-tailed).
- 67

69

70 Supplemental Figure 5. Overexpression of TaLAX1-A promotes GUS

transformation by two *Agrobacterium*-mediated co-transformation methods.
(Supports Figure 4)

(A) and (B) show the shoot regeneration and transformation phenotypes of Fielder
immature embryos infected with a mixture of *Agrobacterium* strains. *Agrobacterium*suspensions containing *GUS* and empty vector (control) were mixed together in a 1:1
ratio (A), *GUS* and *TaLAX1-A*-OE were mixed together in a 1:1 ratio (B). Scale bar =

77 2mm.

(C) Regeneration frequencies of Fielder immature embryos infected with mixtures of
 different Agrobacterium strains.

80 (D) Transformation frequencies of Fielder immature embryos infected with mixtures of

- 81 different Agrobacterium strains.
- Values in (C, D) are means \pm SEM from three independent experiments. Black points
- are the results from individual experiments. * P < 0.05 (Student's *t*-test, two-tailed).
- 84

87 Supplemental Figure 6. Paraffin sections of the shoot regeneration process of
88 Chinese Spring. (Supports Figure 5)

- 89 (A) The immature embryos of Chinese Spring were cultured on CIM for 42 days. Scale 90 bar = $200 \mu m$.
- 91 (B-D) The immature embryos of Chinese Spring were cultured on CIM for 42 days,
- followed by incubation on SIM for 5 days (**B**), 7 days (**C**) or 9 days (**D**). Scale bar =
- 93 200 μm.
- 94

96

97 Supplemental Figure 7. TaLAX1-A does not bind to the *TaGRF4-A* promoter.

98 (Supports Figure 5)

99 ChIP-qPCR of the TaGRF4-A promoter using an anti-myc antibody in the TaLAX1-A-

100 OE transgenic plants, negative controls used IgG antibody on *TaLAX1-A*-OE samples.

101 There was no enrichment of fragments. Values are means \pm SD from three independent

102 experiments. ns, not significant (Student's *t*-test, two-tailed).

Supplemental Figure 8. Effect of TaLAX1-A overexpression on shoot regeneration 106

- 107 in the absence of exogenous cytokinin and auxin. (Supports Figure 6)
- 108 (A) Shoot regeneration phenotypes of Fielder immature embryos cultured on CIM
- 109 (without exogenous auxin) for 42 days and on SIM (without exogenous cytokinin) for
- 110 20 days after infection with empty vector (control). Scale bar = 1 cm.
- 111 (B) Shoot regeneration phenotypes of Fielder immature embryos cultured on CIM
- 112 (without exogenous auxin) for 42 days and on SIM (without exogenous cytokinin) for
- 113 20 days after infection to introduce the *TaLAX1-A*-OE vector. Scale bar = 1 cm.
- 114 (C) Regeneration frequencies of Fielder immature embryos cultured on CIM (without
- 115 exogenous auxin) for 42 days and on SIM (without exogenous cytokinin) for 20 days 116
- after infection to introduce the control or TaLAX1-A-OE vector.
- 117 (D) Regenerating shoot frequencies of Fielder immature embryos cultured on CIM 118 (without exogenous auxin) for 42 days and on SIM (without exogenous cytokinin) for
- 20 days after infection to introduce the control or TaLAX1-A-OE vector. 119
- Values in (C, D) are means \pm SEM from six independent experiments. Black points 120
- indicate results from individual experiments. * P < 0.05 (Student's *t*-test, two-tailed). 121
- 122

124

Supplemental Figure 9. Regeneration and transformation of T1 progeny of 125 126 TaLAX1-A-OE transgenic lines in the absence of exogenous cytokinin. (Supports 127 Figure 6)

(A) Fielder immature embryos from T1 progeny of non-transgenic lines (control) were 128 129 cultured on CIM for 42 days and on SIM (without exogenous cytokinin) for 20 days 130 after infection with the Ubi_{pro} : GUS vector. Scale bar = 1 cm.

131 **(B)** Fielder immature embryos from T1 progeny of *TaLAX1-A*-OE lines were cultured 132 on CIM for 42 days and on SIM (without exogenous cytokinin) for 20 days after

133 infection with the Ubi_{pro} : GUS vector. Scale bar = 1 cm.

134 (C) Regeneration frequencies of immature embryos of control or TaLAX1-A-OE

135 transgenic lines infected with the *Ubipro:GUS* vector in the absence of cytokinin.

136 (D) Transformation frequencies of immature embryos of control or TaLAX1-A-OE 137

transgenic lines infected with the *Ubipro:GUS* vector in the absence of cytokinin.

Values in (C, D) are means \pm SEM from three independent experiments. Black points 138 are the results from individual experiments. *** P < 0.001; ** P < 0.01 (Student's t-139

- 140 test, two-tailed).
- 141

143

Supplemental Figure 10. Regeneration and transformation of T1 progeny of *TaLAX1-A*-OE transgenic lines in the absence of exogenous cytokinin and auxin.

146 (Supports Figure 6)

147 (A) Fielder immature embryos from T1 progeny of non-transgenic lines (control) were 148 cultured on CIM (without exogenous auxin) for 42 days and on SIM (without 149 exogenous cytokinin) for 20 days after infection with the Ubi_{pro} : GUS vector. Scale bar 150 = 1 cm.

(B) Fielder immature embryos from T1 progeny of *TaLAX1-A*-OE lines were cultured on CIM (without exogenous auxin) for 42 days and on SIM (without exogenous cytokinin) for 20 days after infection with the *Ubi_{pro}:GUS* vector. Scale bar = 1 cm.

154 (C) Regeneration frequencies of immature embryos of control or TaLAXI-A-OE 155 transgenic lines infected with the Ubi_{pro} : GUS vector in the absence of cytokinin and 156 auxin.

157 **(D)** Transformation frequencies of immature embryos of control or *TaLAX1-A*-OE 158 transgenic lines infected with the Ubi_{pro} : *GUS* vector in the absence of cytokinin and 159 auxin.

- 160 Values in (C, D) are means \pm SEM from three independent experiments. Black points
- are the results from individual experiments. * P < 0.05 (Student's *t*-test, two-tailed).
- 162

164

Supplemental Figure 11. Identification of putative T0 progeny of *ZmBA1*-OE or
 GmLAX1-OE transgenic lines. (Supports Figure 7)

- 167 (A) Plants obtained from regenerated shoots induced by ZmBA1-OE on a rooting
- 168 medium for root elongation. Scale bar = 1 cm.
- (B) Identification of putative T0 progeny of *ZmBA1*-OE transgenic lines by RT-qPCR analysis.
- 171 (C) Plants obtained from regenerated shoots induced by GmLAX1-OE on a rooting
- 172 medium for root elongation. Scale bar = 2 cm.
- (D) Identification of putative T0 progeny of *GmLAX1*-OE transgenic lines by RT-qPCRanalysis.
- Values in (**B**, **D**) are means \pm SD, all experiments were performed at least three times.
- **** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05; ns, not significant (Student's
- 177 *t*-test, two-tailed).