Association of Genomic Features with Integration in Stably Expressed or Inducible Cell Lines

Charles C. Berry

August 31, 2004

Contents

1	Intr	oduction	2
2	Pref	erence for Genes	3
	2.1	Acembly Genes	3
	2.2	refGenes	4
	2.3	genScan Genes	6
	2.4	uniGenes	8
3	CpG	Island Neighborhoods	10
	3.1	1 kilobase neighborhoods	10
	3.2	5 kilobase neighborhoods	11
	3.3	10 kilobase neighborhoods	12
	3.4	25 kilobase neighborhoods	13
	3.5	50 kilobase neighborhoods	14
4	Gen	e Density, Expression 'Density', and CpG Island Density	
		e Density, Enpression Density, and eper Island Density	15
	4.1	25 kiloBase Window	15 16
	$4.1 \\ 4.2$	25 kiloBase Window 50 kiloBase Window	15 16 20
	4.1 4.2 4.3	25 kiloBase Window 25 kiloBase Window 100 kiloBase Window 100 kiloBase Window	15 16 20 25
	$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \end{array}$	25 kiloBase Window 250 kiloBase Window 100 kiloBase Window 250 kiloBase Window	15 16 20 25 30
	$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \end{array}$	25 kiloBase Window	15 16 20 25 30 35
	$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \end{array}$	25 kiloBase Window 25 kiloBase Window 50 kiloBase Window 250 kiloBase Window 250 kiloBase Window 250 kiloBase Window 100 kiloBase Window 100 kiloBase Window 101 kiloBase Window 100 kiloBase Window 102 kiloBase Window 100 kiloBase Window 100 kiloBase Window 100 kiloBase Window	15 16 20 25 30 35 40
	$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \end{array}$	25 kiloBase Window 250 kiloBase Window 100 kiloBase Window 250 kiloBase Window 250 kiloBase Window 250 kiloBase Window 100 kiloBase Window 250 kiloBase Window 200 kiloBase Window 250 kiloBase Window <td>15 16 20 25 30 35 40 45</td>	15 16 20 25 30 35 40 45
	$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \end{array}$	25 kiloBase Window 50 kiloBase Window 100 kiloBase Window 50 kiloBase Window 250 kiloBase Window 500 kiloBase Window 100 kiloBase Window 500 kiloBase Window 250 kiloBase Window 500 kiloBase Window 1 megaBase Window 500 kiloBase Window 2 megaBase Window 500 kiloBase Window 4 megaBase Window 500 kiloBase Window	15 16 20 25 30 35 40 45 50
	$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \end{array}$	25 kiloBase Window 25 kiloBase Window 50 kiloBase Window 250 kiloBase Window 250 kiloBase Window 250 kiloBase Window 200 kiloBase Window 250 kiloBase Window	15 16 20 25 30 35 40 45 50 55
	$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \end{array}$	25 kiloBase Window	15 16 20 25 30 35 40 45 50 55 59

5	Juxt	taposition with Gene Start and End Positions	67
	5.1	Acembly Annotations	67
	5.2	RefSeq Annotations	71
	5.3	genScan Annotations	74
	5.4	uniGene Annotations	77
6	GC	content	79
7	Cyte	obands	80

1 Introduction

In this document, I examine the association of integration siting in cells selected as **stably expressed** (labelled 'IBB' hereafter) or **inducible** (labelled 'ID') with various genomic features.

The numbers are shown below:

exp.group IBB ID 447 388

The distribution of relative frequency of insertions across the chromosomes is given in this barplot:

Are there chromosomes that are particularly favored for integration by one group over the other? This was tested for statistical significance. The test performed used the likelihood ratio statistic for the logistic regression model (reviewed in [2]) as implemented by the glm function of R using the binomial family. The null hypothesis tested is the ratio of true integration events in the two groups is constant across all chromosomes. This test attains a p-value of 0.17674.

2 Preference for Genes

2.1 Acembly Genes

Here we examine the relative preference that integration events in the two groups have for genes. In the following plot we show the relative frequency of integrations in genes according to the 'Acembly' anotation. The bars grouped over the label "In Gene" give the relative frequency of integration events (compared to control sites) between bases located within Acembly gene annotations, while the label "Not in Gene" give the relative frequency of integration events (compared to control sites) between bases not located within Acembly gene annotations.

Is there is a difference in the tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.053439. In the following plot we show the relative frequency of insertions in exons according to the 'Acembly'

anotation The bars grouped over the label "In Exon" give the relative frequency of integration events (compared to control sites) between bases located in exons according to the Acembly annotation, while the label "Not in Exon" give the relative frequency of integration events (compared to control sites) between bases not located in exons according to the Acembly gene annotation.

Here is the table of coefficients of the log ratio of intensities for ID sites versus IBB sites along with their standard errors, z statistics, and p-values:

	coef	se	Z	р
(Intercept)	0.166	0.174	0.953	0.3410
in.gene	-0.426	0.193	-2.210	0.0270
in.exon	0.391	0.211	1.860	0.0632

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

2.2 refGenes

Here we examine the relative preference that insertions of the two types have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'refGene' anotation.

Is there is a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.86057.

In the following plot we show the relative frequency of insertions in exons according to the 'refGene' anotation.

Here is the table of coefficients of the log ratio of intensities for ID sites versus IBB sites along with their standard errors, z statistics, and p-values:

	coei	se	Z	р
(Intercept)	-0.1570	0.112	-1.4000	0.162
in.gene	0.0137	0.144	0.0947	0.925
in.exon	0.2180	0.396	0.5500	0.583

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

2.3 genScan Genes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'genScan' anotation.

Is there is a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.091842.

In the following plot we show the relative frequency of insertions in exons according to the 'genScan' anotation.

Here is the table of coefficients of the log ratio of intensities for ID sites versus IBB sites along with their standard errors, z statistics, and p-values:

	coei	se	Z	р
(Intercept)	0.0741	0.146	0.509	0.611
in.gene	-0.2890	0.166	-1.740	0.082
in.exon	0.3110	0.444	0.699	0.485

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

data set.

2.4 uniGenes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'uniGene' anotation.

Is there is a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.46991.

In the following plot we show the relative frequency of insertions in exons according to the 'uniGene' anotation.

Here is the table of coefficients of the log ratio of intensities for ID sites versus IBB sites along with their standard errors, z statistics, and p-values:

coef	se	Z	р
-0.0606	0.132	-0.460	0.645
-0.1210	0.157	-0.769	0.442
0.0863	0.267	0.324	0.746
	coef -0.0606 -0.1210 0.0863	coef se -0.0606 0.132 -0.1210 0.157 0.0863 0.267	coefsez-0.06060.132-0.460-0.12100.157-0.7690.08630.2670.324

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

3 CpG Island Neighborhoods

Here we study the effect of being in the neighborhood of CpG Islands. Following Wu et al [4], who found that the neighborhoods within ± 1 kb of CpG islands are enriched for MLV insertions, we study such neighborhoods.

3.1 1 kilobase neighborhoods

The following plot shows the effect of being in or within ± 1 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.55736.

3.2 5 kilobase neighborhoods

The following plot shows the effect of being in or within ± 5 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.09008.

3.3 10 kilobase neighborhoods

The following plot shows the effect of being in or within ± 10 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.17307.

3.4 25 kilobase neighborhoods

The following plot shows the effect of being in or within ± 25 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.39436.

3.5 50 kilobase neighborhoods

The following plot shows the effect of being in or within ± 50 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.28185.

4 Gene Density, Expression 'Density', and CpG Island Density

In this section the association with gene density is examined. The 'genes' that are counted are the Ensembl genes. In addition, we study various functions of the EST counts for the Ensembl genes using data described in Versteeg et al [3] and CpG Island density. Based on preliminary observations, it was decided to determine the density of ESTs found in a region in the following ways:

count.exprs Count only one EST per gene and divide by number of bases

exprs Count up to 200 ESTs per gene and divide by number of bases

big.exprs Counting only the ESTs in excess of two hundred per gene and divide by number of bases

The bolded terms are used as abbreviations in what follows. The abbreviation **dens** is used to indicate gene density as number of genes per base.

4.1 25 kiloBase Window

In the barplot that follows we examine the association of insertion sites with gene density in a 25 kilobase window surrounding each locus. More such plots will follow and the method of their construction is always to try to divide the data according to the deciles of density. However, it often happens that there is a very skewed distribution of density and often even the 90^{th} percentile is zero. In that case, the barplots simply show the sites for which the density is zero and those for which it is non-zero. If there are fewer than ten groups of bars, then the groupings contain ten percent of the sites each except for the leftmost grouping which will contain all of the remaining sites.

Also note that the title of the plot contains clues as to its content; the prefix indicates the type of variable studied while the suffix indicates the window width in the number of bases. The p-value given is the result of fitting a quadratic polynomial to the gene density values.

dens.25k - p-value = 0.34438

In the barplot that follows we examine the association of insertion sites with expression density in a 25 kilobase window surrounding each locus. First, we count just one EST per gene.

count.exprs.25k - p-value = 0.40539

Now we count up to 200 ESTs per gene:

exprs.25k - p-value = 0.13277

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.25k - p-value = 0.64815

Here the effect of density of CpG islands is studied:

cpg.dens.25k - p-value = 0.073691

4.2 50 kiloBase Window

First, we see gene density:

dens.50k - p-value = 0.045084

Here are the results for EST density. First, we count just one EST per gene.

Now we count up to 200 ESTs per gene:

exprs.50k - p-value = 0.018256

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.50k - p-value = 0.30184

Here the effect of density of CpG islands is studied:

cpg.dens.50k - p-value = 0.043417

4.3 100 kiloBase Window

First, we see gene density:

dens.100k - p-value = 0.18165

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.100k - p-value = 0.40178

Now we count up to 200 ESTs per gene:

exprs.100k - p-value = 0.10123

ing starts only after 200 ESTs per gene

And here count-

big.exprs.100k - p-value = 0.20328

Here the effect of density of CpG islands is studied:

cpg.dens.100k - p-value = 0.012266

4.4 250 kiloBase Window

First, we see gene density:

dens.250k - p-value = 0.33382

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.250k - p-value = 0.060095

Now we count up to 200 ESTs per gene:

exprs.250k - p-value = 0.5713

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.250k - p-value = 0.38762

Here the effect of density of CpG islands is studied:

cpg.dens.250k - p-value = 0.00044781

4.5 500 kiloBase Window

First, we see gene density:

dens.500k - p-value = 0.10433

Here are the results for EST density. First, we count just one EST per gene.

Now we count up to 200 ESTs per gene:

exprs.500k - p-value = 0.24795

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.500k - p-value = 0.21487

cpg.dens.500k - p-value = 0.00032722

4.6 1 megaBase Window

dens.1M - p-value = 0.097193

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.1M - p-value = 0.010932

Now we count up to 200 ESTs per gene:

exprs.1M - p-value = 0.21409

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.1M - p-value = 0.47466

cpg.dens.1M - p-value = 0.0018961

4.7 2 megaBase Window

dens.2M - p-value = 0.0385

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.2M - p-value = 0.0091795

Now we count up to 200 ESTs per gene:

exprs.2M - p-value = 0.21620

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.2M - p-value = 0.81479

cpg.dens.2M - p-value = 0.0057697

4.8 4 megaBase Window

dens.4M - p-value = 0.35540

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.4M - p-value = 0.087686

Now we count up to 200 ESTs per gene:

exprs.4M - p-value = 0.064126

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.4M - p-value = 0.64414

cpg.dens.4M - p-value = 0.0019046

4.9 4 megaBase Window

dens.8M - p-value = 0.58613

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.8M - p-value = 0.40197

Now we count up to 200 ESTs per gene:

exprs.8M - p-value = 0.30922

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.8M - p-value = 0.80836

4.10 16 megaBase Window

dens.16M - p-value = 0.33148

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.16M - p-value = 0.19284

Now we count up to 200 ESTs per gene:

exprs.16M - p-value = 0.40471

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.16M - p-value = 0.52021

4.11 32 megaBase Window

dens.32M - p-value = 0.059183

Here are the results for EST density. First, we count just one EST per gene.

count.exprs.32M - p-value = 0.011657

Now we count up to 200 ESTs per gene:

exprs.32M - p-value = 0.15809

And here counting starts only after 200 ESTs per gene $% \left({{{\rm{B}}} \right)$

big.exprs.32M - p-value = 0.30093

5 Juxtaposition with Gene Start and End Positions

5.1 Acembly Annotations

In this section we study the effect of juxtaposition in terms of gene start and end positions. The first barplot shows the effect of gene width for those insertions that are located within an Acembly gene.

The next plot uses the width of a non-gene region for insertions that fall into such regions.

acembly non-gene width - p-value = 0.00014776

The next plot studies the distance to the nearest boundary between a gene and a non-gene region. The distance is expressed as a fraction of the length of the region. Thus, '0.25' refers to one quarter of the distance from the site to nearest boundary divided by the total width of the region.

This plot studies the effect of nearness to the beginning of a transcript. For sites in genes, it is the distance to the start of the gene divided by the width of the gene. For other sites it is the distance from the site to the nearer gene if that gene boundary is also a transcription starting point. Locations near '0' are relatively near the beginning of transcription, while those near '1' are near the termination of the transcript.

acembly start.dist - p-value = 0.060898

5.2 RefSeq Annotations

refSeq boundary.dist - p-value = 0.7536

refSeq start.dist - p-value = 0.25313

5.3 genScan Annotations

genScan non-gene width - p-value = 0.00068707

genScan boundary.dist - p-value = 0.9533

genScan start.dist - p-value = 0.34622

5.4 uniGene Annotations

uniGene non-gene width - p-value = 0.00068707

uniGene boundary.dist - p-value = 0.9533

uniGene start.dist - p-value = 0.34622

6 GC content

Here we study the effect of GC content on insertion. The GC content is taken from the Human Genome Draft at GoldenPath from the table

http://genome.ucsc.edu/goldenPath/14nov2002/database/gcPercent.txt.gz. Following the plot is a table of fitted coefficients based on splitting the GC percent data at the median.

gcpct - p-value = 0.526

7 Cytobands

Here we study the association of cytoband with insertion intensity. The data are obtained from

http://genome.ucsc.edu/goldenPath/14nov2002/database/cytoBand.txt.gz.

A formal test of significance attains a p-value of 0.41588.

References

- Yvonne M. M. Bishop, Stephen E. Fienberg, and Paul W. Holland. Discrete multivariate analyses: Theory and practice. MIT Press, 1975.
- [2] P. McCullagh and John A. Nelder. Generalized linear models. Chapman & Hall Ltd, 1999.
- [3] Rogier. Versteeg, Barbera. D. C. van Schaik., Marinus. F. van Batenburg., Marco. Roos, Ramin. Monajemi, Huib. Caron, Harmen. J. Bussemaker, and Antoine. H. C. van Kampen. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. *Genome Res*, 13(9):1998– 2004, Sep 2003.
- [4] Xiaolin. Wu, Yuan. Li, Bruce. Crise, and Shawn. M. Burgess. Transcription start regions in the human genome are favored targets for MLV integration. *Science*, 300(5626):1749–1751, Jun 2003.