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S1. SNAPSHOT DISTRIBUTIONS IN AGENT-BASED POPULATIONS

We consider the biochemical reactions of the form

Ns∑
i=1

ν−irXi →
Ns∑
i=1

ν+irXi, r = 1, . . . , R, (S1)

whose dynamics are encoded in the transition matrix:

Qx,x′(τ) =
R∑

r=1

wr(x
′, τ)(δx,x′+vr − δx,x′), (S2)

where δ is the Kronecker delta, wr(x
′, τ) are the reaction propensities, and νr = (ν+1r − ν−1r, . . . , ν

+
1r − ν−1r)

T is the
reaction stoichiometry. In the following we omit the age-dependence of the elements of the matrix Q(τ) and simply
write q(x,x′) = Qx,x′(τ).
As done in [22, 23] we derive the time-evolution of snapshot density n(x, τ, t) corresponding to the mean number

of cells with molecule counts x and age τ at time t as

(∂t + ∂τ + γ(x, τ))n(x, τ, t) = Q(τ)n(x, τ, t) (S3)

with the boundary condition

n(x, 0, t) = m

∫ ∞

0

ds
∑
x′∈S

dx′K(x|x′)γ(x′, τ)n(x′, τ, t). (S4)

The sum is taken over the countable state space S for the trait vector x. The boundary condition corresponds to
the cell divisions replacing a mother cell by m newborn daughter cells with K(x|x′) denoting the probability that a
daughter cell inherits x molecules from a total of x′ molecules of the mother cell. The division rate γ(x, τ) depends
on both the cell age as well as the cell trait vector x. Letting n(x, τ, t) ∼ eλtΠ(x|τ)Π(τ), we obtain Eqs. (1). Finally
m = 2 corresponds to the population lineage trees where each division results in two offspring while m = 1 corresponds
to tracking a single offspring in mother machine lineages.

A. Finite State Projection method derivation

In this section we detail the construction of the finite state projection-based method for computing approximate
solutions to the agent-based model. The method allows for the approximation error resulting from the truncation of
the state space of the intracellular dynamics as well as error resulting from the finite time-horizon to be tracked and
controlled. To that end, consider a truncated state space X ⊆ S for the trait x and let X̄ denote the complement of
X . The evolution equations that consider only the evolution of cells that remain within the truncated state space X
is given by the following.

(∂t + ∂τ + γ(x, τ))n(x, τ, t) =
∑
x′∈X

[q(x,x′)n(x′, τ, t)− q(x′,x)n(x, τ, t)] (S5)

n(x′, 0, t) = m

∫ ∞

0

dτ
∑
x′∈X

K(x′|x)γ(x, τ)n(x, τ, t) (S6)

Let us denote

QX (τ)n(x, τ, t) =
∑
x′∈X

q(x,x′)n(x′, τ, t), ∀x ∈ X . (S7)

In addition, we keep track of the number of cells that exit the truncated state space X̄ via the following evolution
equation:

∂tm(x̄, τ, t) =
∑
x̄∈X̄

q(x̄,x)n(x, τ, t). (S8)



For brevity let us denote
∑

x̄∈X̄ q(x̄,x) = q̄(x). Note that the sum is taken over a potentially infinite complement

X̄ . However, in practice when constructing the models based on a defined stochastic reaction network we can often
easily find the total rate q(x) corresponding to reactions leaving the state x ∈ X . Further, we can also compute
the total rate

∑
x′∈X q(x′,x) of transitioning from x to another state within the truncation X . We then use that

q(x) =
∑

x′∈X q(x′,x) + q̄(x) to evaluate the q̄(x) without having to sum over the infinite complement X̄ .
To make analytical progress we consider the asymptotic behaviour of the defined system in the regime where the

population grows exponentially with doubling rate λ. In particular, n(x, τ, t) ∼ eλtΠ(x, τ) and m(x̄, τ, t) ∼ eλtπ(x, τ)
where Π and π are the snapshot densities of cells within the truncated state space and outside of it respectively. In
the exponential growth regime the number of cells crossing the truncation boundary can then be given by

λπ(x, τ) = q̄(x)Π(x, τ). (S9)

The additional source of error that needs to be considered is the finite time interval for integrals involving cell age.
Let us fix a finite time interval [0, τmax]. The proposed method reinitialises both the cells that leave the truncation
X and cells that do not divide in the finite time interval [0, τmax] according to the division kernel as newborn cells.
Thus, we get the following system

(λ+ ∂τ + γ(x, τ))Π(x, τ) = QX (τ)Π(x, τ) (S10)

Π(x, 0) = m

∫ τmax

0

dτ
∑
x′∈X

K(x|x′)

[
γ(x′, τ) +

1

m
q̄(x′)

]
Π(x′, τ) +

∑
x′∈X

K(x|x′)Π(x′, τmax). (S11)

We then consider the conditional distribution Π(x|τ) = Π(x,τ)
Π(τ) . Substituting this into the joint evolution (Equa-

tion S10) and noting that the age-dependent marginal evolution is given by

(∂τ + λ+ γ(τ))Π(τ) = 0 (S12)

gives us

(∂τ + γ(x, τ)− γ(τ))Π(x|τ) = QX (τ)Π(x|τ) (S13)

where γ(τ) is the marginal division rate EΠ [γ(x, τ)|τ ] denoting the expectation taken with respect to Π(x|τ). We
note that

(∂τ + γ(x, τ))Π′(x|τ) = QX (τ)Π′(x|τ) (S14)

then describes the density of cells that have not divided upon reaching the age τ leading to the first passage time
distribution for a cell to divide from trait x at time τ , division distribution for brevity, given by

ν(x, τ) = me−λτγ(x, τ)Π′(x|τ). (S15)

Again by the definition of conditional distribution we can then derive the boundary condition for the conditional
evolution as

Π(x|0) =
∑
x′∈X

K(x|x′)

[∫ τmax

0

dτ
[
ν(x′, τ) + e−λτ q̄(x′)Π′(x′|τ)

]
+ e−λτmaxΠ′(x′|τmax)

]
. (S16)

The exit probability

ε(x′, λ) =

∫ τmax

0

dτe−λτ q̄(x′)Π′(x′|τ) + e−λτmaxΠ′(x′|τmax) (S17)

corresponds to the cells leaving the truncation from state x′ and not dividing within the finite time horizon [0, τmax].
Note that summing over x′ ∈ X corresponds to the total exit probability ε for a cell to leave the state space

ε(λ) =

∫ τmax

0

dτe−λτ
∑
x∈X

q̄(x)Π′(x|τ) + e−λτmax

∑
x∈X

Π′(x|τmax). (S18)

This takes into account truncation as well as the finite time-horizon used to compute the transient evolution of Π′(x|τ).
Summing the boundary condition over x then gives

1 = m

∫ τmax

0

dτe−λτν(τ) + ε(λ) (S19)



In the solution algorithm, presented in the Methods section of the main text, the equations (S16) and (S19) are
computed at every iteration step. The implementation of the solution algorithm makes use of the Julia FiniteS-
tateProjection package [62] for the construction of truncated Q(τ).
Note that if ε(x, λ) = 0 for all x ∈ X then the boundary condition for the population lineage trees described in the

main text by Equations (1) is recovered. Moreover

1 = m

∫ ∞

0

dτe−λτν(τ) (S20)

would correspond to the Euler-Lotka equation for the population lineage trees in the case of the untruncated state
space and the time horizon [0,∞].

S2. RELATING GROWTH RATE SELECTION TO DIVISION RATE SELECTION

Here, we extend the snapshot density considered in Section S1 to cell size dynamics with growth-rate mediated
selection. In particular, we assume that exponential growth of cell size ς with growth rate α(x), which continuously
depends on the molecule numbers x. We arrive at the following evolution equation for the snapshot density

(∂t + ∂τ + ∂ςα(x)ς + γ(x, ς, τ))n(x, ς, τ) = Q(τ, ς)n(x, ς, τ) (S21)

with boundary condition

n(x, ς, 0) = m

∫ ∞

0

dς ′
∫ ∞

0

dτ
∑
x′∈X

K(x|x′,
ς

ς ′
)G(ς|ς ′)γ(x′, ς ′, τ)n(x′, ς ′, τ). (S22)

The partitioning of the molecule numbers is now assumed to depend also on the proportion of the size ς
ς′ a daughter

cell inherits from the mother cell of size ς ′. The G(ς|ς ′) defines the probability of a cell with size ς ′ at division ending
up with size ς after division. For example, for independent binomial partitioning, each molecule is partitioned into a
daughter with a probability θ equal to the inherited size fraction, i.e.,

K(x|x′, θ) =

Ns∏
i=1

(
x′
i

xi

)
θxi(1− θ)x

′
i−xi . (S23)

The inherited size fraction also defines the size division kernel:

G(ς|ς ′) =
∫ 1

0

dθρ(θ)δ(ς − ς ′θ), (S24)

where δ is the Dirac delta function and ρ satisfies ρ(θ) = 1
2 ρ̄(θ)+

1
2 ρ̄(1−θ) with ρ̄ modelling the inherited size fraction

accounting asymmetric cell division. The snapshot distribution in the asymptotic limit t → ∞ where the population
grows exponentially with growth rate λ is then given by

(λ+ ∂τ + ∂ςα(x)ς + γ(x, ς, τ))Π(x, ς, τ) = Q(τ, ς)Π(x, ς, τ) (S25)

with boundary condition

Π(x, ς, 0) = m

∫ ∞

0

dς ′
∫ ∞

0

dτ
∑
x′∈X

K(x|x′,
ς

ς ′
)G(ς|ς ′)γ(x′, ς ′, τ)Π(x′, ς ′, τ). (S26)

Integrating the division kernel over the birth sizes ς∫ ∞

0

dςK(x|x′,
ς

ς ′
)G(ς|ς ′) =

∫ ∞

0

dςK(x|x′,
ς

ς ′
)

∫ 1

0

dθρ(θ)δ(ς − ς ′θ) = Eρ [K(x|x′, θ)] (S27)

Using the law of conditional probability Π(x, ς, τ) = Π(ς|x, τ)Π(x, τ) and marginalising out ς, the evolution equation
for the marginal snapshot distribution with boundary condition becomes

(∂τ + λ+ EΠ [γ(x, ς, τ)|x, τ ]) Π(x, τ) = EΠ [Q(τ, ς)|x, τ ] Π(x, τ) (S28)

Π(x, 0) = m

∫ ∞

0

dτ
∑
x′∈X

Eρ [K(x|x′, θ)]EΠ [γ(x′, ς ′, τ)|x′, τ ] Π(x′, τ) (S29)



We define

Q(τ) = EΠ[Q(τ, ς)|x, τ ], (S30)

γ(x, τ) = EΠ [γ(x, ς, τ)|x, τ ] , (S31)

K(x|x) = Eρ [K(x|x, θ)] (S32)

as the marginal division rate and the effective division kernel, respectively. We then recover the model that depends
only on the gene expression state x and the cell age τ :

(∂τ + λ+ γ(x, τ))Π(x, τ) = Q(τ)Π(x, τ) (S33)

Π(x, 0) = m

∫ ∞

0

dτ
∑
x′∈X

K(x|x′)γ(x′, τ)Π(x′, τ). (S34)

The model without cell size control is thus a reduced model of the developed cell size control model.
S3. MODEL DESCRIPTIONS

A. Telegraph model

In this section we provide the complete specification of the agent-based telegraph model used in the main manuscript.
The intracellular dynamics are given by the following stochastic reaction network

Goff
kon−−→ Gon

Gon
koff−−→ Goff

Gon
kprod−−−→ Gon + b× x

x
kdeg−−→ ∅

where b ∼ Geometric(b̄) is a geometrically distributed random variable parametrised by the mean b̄. In practice, to
simplify the implementation with Julia Catalyst package [63] the bursty reaction was truncated and split into multiple
reactions

Gon
p(1)kprod−−−−−→ Gon + 1× x

· · ·

Gon
p(N)kprod−−−−−−→ Gon +N × x

where the rate of each reaction is weighed by the probability density p of the burst size. Note that the truncation of
the bursty reaction is not necessary for the computations of q̄ in Section S1A. The total rate out of the each state
with gene on and protein count x is the sum of koff , kdeg and kprod . Thus all we need to find the rate corresponding
to cells leaving the truncation is to consider the cumulative probability of bursts that do not leave the truncation.

In the case of neutral condition with no selection the division rate is given by γ(x, τ) = g(τ) where g(τ) is the
hazard of the Gamma distribution parametrised by mean its µ and squared coefficient of variation cv2. In general,
if f and F are the probability density and cumulative distribution functions of a distribution respectively, then the
hazard of the distribution is defined by

g(τ) =
f(τ)

1− F (τ)
. (S35)

In the selection case the division rate is given by γ(x, τ) = s(x)g(τ) where s(x) is a Hill function

s(x) =
1(

K
x

)n
+ 1

. (S36)

The parameters are chosen to describe the slow-switching dynamics of the promoter state to give rise to bimodal
expression levels and are given in the table below.



kon koff kprod mean burst size b̄ kdeg Gamma(µ, cv2) Hill exponent n Hill coefficient K

0.7 0.2 20.0 1.2 0.1 (0.8595, 0.6) 2 4.472

B. Single gene feedback models

There are several models that follow the same general structure presented in the main text. We start by presenting
the general structure of the agent-based and effective dilution formulations of the single gene feedback models. The
specific instances of these models are then arrived to by choosing different ways to define the rate functions within
the models.

1. Agent-based model

The intracellular dynamics of the agent-based model are given by the following general stochastic reaction network

∅ rprod (x⃗)−−−−−→ x x
rdeg(x⃗)−−−−→ ∅

modelling production and degradation of a single protein x with rates rprod(x⃗) and rdeg(x⃗) respectively. The general
model assumes the division rate γ(x, τ) is in the form

γ(x, τ) = s(x)g(τ).

The partitioning of mother cell protein numbers at division follows symmetric binomial partitioning.

2. Effective dilution model

In the effective dilution model we add a linear dilution term to the stochastic reaction network

∅ rprod (x⃗)−−−−−→ x x
rdil (x⃗)+rdeg(x⃗)−−−−−−−−−→ ∅.

where rdil(x⃗) is the rate of dilution modelling the loss of protein due to cell divisions in an exponentially growing
population. A common approach when no division-rate selection on x is considered is to take rdil(x⃗) = λ where λ
is the doubling time of the cell population. The stationary solutions for the birth-death processes arising from the
effective dilution models were computed using standard steady state methods [64].

3. Model instances

There are three different variants of the single protein feedback model that are considered in this paper. Each of
them use the same general outline defined in Sections S3B 1 and S3B2.
a. Transcriptional feedback model The transcriptional feedback model considers the protein x promoting its own

production without division-rate selection on x by defining the rate of production and degradation as

rprod(x) = α+ k/((K/x)2 + 1)) rdeg(x) = 0. (S37)

The degradation rate of the protein is taken to be 0 for simplicity. This model considers no division-rate selection
on x and thus we take s(x) = 1. The age-dependent division-rate component g(τ) is given as the hazard of the
Gamma distribution parametrised by its mean µ and the squared coefficient of variation cv2. Let f and F denote the
probability density and cumulative distribution functions of the Gamma distribution respectively. The division rate
γ(x, τ) is then given by

γ(x, τ) =
f(τ)

1− F (τ)
. (S38)

The dilution rate in the effective dilution model is defined as

rdil(x) = λ (S39)

where λ is the doubling time of an exponentially growing cell population resulting from the Gamma distributed inter-
division time distribution above. The parametrisations chosen to give rise to bimodal behaviour are given in the table
below.



α k Hill coefficient K λ Gamma(µ, cv2)

{0.0, 0.5, · · · , 7} 60.0 31.62 1.0 (0.7177, 0.1)

b. Positive growth feedback model The positive growth feedback model uses the general structure outline in
Sections S3B 1 and S3B2 and features a constant production and degradation rate

rprod(x) = α rdeg(x) = δ.

The x-dependent division rate function s(x) is given by a repressive Hill function

s(x) = k/((x/K)3 + 1).

while the age-dependent component is taken to be constant g(τ) = 1.0 corresponding to exponential division time
distribution when no selection on gene expression is considered. The dilution rate in the effective dilution model is
defined as

rdil(x) = k/((x/K)3 + 1).

The parametrisations of the model are given in the table below.

α k Hill coefficient K δ

{15, 20, · · · , 60} 20.0 4.64 1.0

c. Combined feedback model The combined feedback model combines the transcriptional feedback mechanism
from Section S3B 3 a and growth feedback mechanism from Section S3B 3 b. In particular,

rprod(x) = α+ k1/((K1/x)
2 + 1) rdeg(x) = δ.

The division rate function is similar to growth feedback model (with higher Hill exponent) and is given by a Hill
function dependent on the protein counts

s(x) = k2/((x/K2)
4 + 1) g(τ) = 1.

In the effective dilution model consider the corresponding dilution term

rdil(x) = k2/((x/K2)
4 + 1)

The parametrisations chosen to give rise to bimodal behaviour are given in the table below.

α k1 Hill coefficient K1 k2 Hill coefficient K2 δ

{5.88, 6.02, · · · , 7.00} × 102 5.6× 103 140.0 40.0 16.46 25.0

C. Genetic toggle switch

Here we provide the complete specifications of the genetic toggle switch model used in the main manuscript.

1. Agent-based model

The intracellular dynamics of the agent-based model are given by the following stochastic reaction network

∅ rprodA(x)−−−−−→ A A
rdegA(x)−−−−−→ ∅

∅ rprodB (x)−−−−−−→ B B
rdegB (x)−−−−−→ ∅



where the functions defining the rates of production and degradation for the two protein counts xA and xB are as
follows:

rprodA(x) = k0 + k1/((K1/xB)
2 + 1) rdegA(x) = δ

rprodB (x) = α/((K2/xA)
2 + 1) rdegB (x) = δ.

In particular, the proteins A and B inhibit each other’s expression. We call α the induction strength. The division
rate γ(x, τ) for the agent-based model is then given by

γ(x, τ) = s(x)g(τ).

where

s(x) = k3/((xA/K3)
2 + 1) g(τ) = 1.0

In particular, we are considering positive division-rate selection on the protein A.

2. Effective dilution model

As previously, in the effective dilution model we add a linear dilution term to the stochastic reaction network

∅ rprodA(x)−−−−−→ A A
rdil (x)+rdegA(x)−−−−−−−−−−→ ∅

∅ rprodB (x)−−−−−→ B B
rdil (x)+rdegB (x)−−−−−−−−−−→ ∅

where rdil(x) is the rate of dilution modelling the loss of protein due to cell divisions in an exponentially growing
population. The dilution rate in the effective dilution model is defined as

rdil(x) = k3/((xA/K3)
2 + 1).

The parametrisations of the model are given in the table below.

α k0 k1 K1 K2 δ k3 K3

{16.0, 16.5, · · · , 22.0} 0.4 20.0 20.0 20.0 0.2 4.0 120.0

S4. PARAMETER AND DIVISION RATE INFERENCE

A. Conversion factor

The Escherichia coli datasets [36, 47] analysed in the main text report fluorescence intensity of the reporter protein.
In order to fit the agent-based model to data we convert the intensity to copy numbers of the protein by analysing
the variability in the mother and daughter cell fluorescences at division as done, for example, in [65]. To that end we
find a linear relationship f = ax between the copy numbers of fluorescent molecules x and fluorescence intensity f .
This conversion is done under the assumption that partitioning of the fluorescent molecules between the two daughter
cells at division is binomial with probability p = 1

2 . Variance of the daughter cell fluorescence fd is then given by

Var(fd) = Var(axd) = a2p(1− p)xm =
a

4
fm

where xm and fm are the molecule count and fluorescence of the mother cell respectively. From the data we then fit
the slope ā of Var(fd) = āfm and equate it with a

4 to estimate the conversion factor a.



B. Bursty gene expression model

The agent-based model considered for both the DNA damage response and antibiotic resistance data sets is the
same with different parametrisations. The intracellular dynamics of the agent-based model are given by the following
stochastic reaction network

∅ k−→ b× x

where b ∼ Geometric(b̄) is a geometrically distributed random variable parametrised by the mean b̄ (see Section S3A
for implementation details). The division rate of the model is given by γ(x, τ) = s(x)g(τ) where g(τ) is the hazard
of the kernel density estimate of the interdivision times in the data. If f and F denote the probability density and
cumulative distribution functions of the kernel density estimate

g(τ) =
f(τ)

1− F (τ)
. (S40)

The function s(x) is fitted to individual conditions. In the cases of no antibiotic treatment and no induced DNA
damage we assume there is no division-rate selection on the gene expression and thus the s(x) = 1. In the cases of
antibiotic treatment and induced DNA damage we fit the parameters of a Hill function of the form

s(x) =
L(1− δ)xm

(Km + xm) + δ
. (S41)

The partitioning of mother cell molecule numbers at division follows symmetric binomial partitioning. The parameters
fitted for the DNA damage response model is given in Table S1 and the parameters fitted for the antibiotic resistance
model are given in Table S2.

k b L K δ m

Wild type 0.2070 1.4643 N/A N/A N/A N/A
DNA damage 0.2070 1.4643 1.0469 44.68 0.0 11

TABLE S1. The parameters fitted for the DNA damage response model via Bayesian Optimisation.

k b L K δ m

No treatment 0.5684 1.4087 N/A N/A N/A N/A
Treatment (selection) 0.5684 1.4087 1.2336 70.4 0.0 20
Treatment (selection + adaptation) 0.3378 2.0725 1.4643 92.8 0.0 4

TABLE S2. The parameters fitted for the antibiotic resistance model via Bayesian Optimisation.

C. Bayesian optimization

The Bayesian optimisation routine uses the scikit-optimize Python package with the default options [66]. In
particular, the optimiser uses the Matérn kernel with smoothness parameter ν = 2.5 corresponding to twice differen-
tiable functions. The length scales of the kernel are tuned by the optimising routine by maximising the log marginal
likelihood. Finally, the acquisition function is chosen probabilistically at every iteration between the lower confidence
bound, negative expected improvement and negative probability improvement acquisition functions implemented in
the package. We performed the parameter optimisation with 200 evaluations of the likelihood function and initialised
with 10 random parametrisations. This was replicated 5 times with the optimal parametrisation across the replications
chosen. The bounds used to constrain the search space are given in the table below.

k b L K δ m

(0.0, 1.0) (1.0, 10.0) (0.0, 5.0) (0.0, 150.0) (0.0, 1.0) (0, 20)
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FIG. S1. Convergence of the mother machine lineage statistics of the telegraph model. (A-B) Birth (panel A) and division
(panel B) distributions of the mother machine lineage model with fixed a truncation size and τmax converges in a couple of
iterations and agrees with the agent-based simulation. (C) The exit probability due to the FSP truncation decreases with the
truncation size and time horizon τmax.
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FIG. S2. Summary distributions of the transcriptional feedback model. (A) The interdivision time distribution shows slow di-
viding cells being over-represented in mother machine lineages (yellow) compared to population lineage trees (red). (B-C) Pro-
tein distributions predicted by the agent-based models at birth (panel B) and division (panel C) are compared with the sta-
tionary distribution of the effective dilution model.
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FIG. S3. Summary distributions of the model combining transcriptional and growth feedback mechanism. (A) The interdivision
time distributions display the behaviour observed for the growth feedback model with the right tail of the unimodal interdivision
time distribution becoming longer as the synthesis rate α increases. As before the corresponding slow dividing cells are repressed
in the lineage tree statistics. (B-C) Protein distributions predicted by the agent-based models at birth (panel B) and division
(panel C) are compared with the stationary distribution of the effective dilution model.
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FIG. S4. (A-D) Agent-based model with growth feedback (SI Section S3B 3b). (A) Illustration of the growth feedback
model where stable proteins are synthesized with rate α and high protein abundance inhibits cell divisions. (B) Agent-based
simulations of mother machine lineages (α = 20.0) show switching between low and high protein levels while, in lineage tree
histories, the fast dividing lineages determine the cell fate. (C) Protein distribution modes display bimodality for mother
machine lineages and EDM but only one mode for lineage trees. (D) Protein distribution of mother machine lineages display
slowly diving subpopulations not seen in lineage trees. (E) The interdivision time distribution shows slow dividing cells
are over-represented in mother machine lineages (yellow) compared to the population lineage trees (red). The right tail of the
unimodal interdivision time distribution corresponding to the mother machine lineages becomes longer as the protein production
rate α increases. The corresponding slow dividing cells are repressed in the lineage tree statistics. (F-G) Protein distributions
predicted by the agent-based models at birth (panel F) and division (panel G) are compared with the stationary distribution
of the effective dilution model.
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FIG. S5. Summary distributions of the genetic toggle switch (SI S3C). (A) The right tail of the unimodal interdivision time
distributions becomes longer as the synthesis rate α increases. The corresponding slow dividing cells are repressed in the lineage
tree statistics compared to the mother machine lineages. (B) Birth protein distributions predicted by the agent-based models
(α = 18.9) for mother machine lineages (blue) displays bimodality with the less prominent peak corresponding to slow-dividing
cells while in lineage trees (red) this peak is missing.
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FIG. S6. Agent-based stochastic simulations of lineage tree histories (red) and mother cell lineages (yellow) of the single gene
feedback models. (A-B) Simulations of transcriptional feedback model (model details in SI Section S3B 3 a) for α = 4.0.
Agent-based simulations with cells initialised in a low expression level state (1 molecule, panel A) and a high expression
level state (20 molecule, panel B). Lineage tree histories and mother machine lineages explore both the high expression
and low expression states under both initialisations. (C-D) Simulations of the growth feedback model (model details in SI
Section S3B3 b) for α = 20.0. (C) Agent-based simulations initialised with cells in a low expression level fast dividing state
(1 molecule). The lineage tree histories remain in their initial fast dividing state while mother machine lineages eventually
visit the slow dividing state. (D) Agent-based simulations initialised with cells in a high expression level state (20 molecules).
Lineage tree histories show strong selection for the fast dividing cell lineages in a population with histories coming down to the
low expression fast dividing state in a couple of divisions. The histories resulting from cells that quickly make the transition to
fast dividing regime are going to be highly represented in lineage tree histories. (E-G) Simulations of the combined feedback
model (model details in SI Section S3B3 c) for α = 616.0. Agent-based simulations with cells initialised in a low expression
level state (1 molecule, panel E) and two high expression level states (37 molecules in panel F, 111 molecules in panel G).
On short time scales the mother machine lineages and lineage tree histories agree with the qualitative dynamics of each other.
However, over time the lineage tree histories settle in the fast dividing cell state.
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FIG. S7. Agent-based stochastic simulations of lineage tree histories (red) and mother cell lineages (blue) of the genetic toggle
switch for induction strength α = 18.9 (model details in SI S3C). (A-B) Simulations trajectories starting with a cell in a slow
dividing state (protein A count 5, B count 75). (C-D) Simulations trajectories starting with a cell in a fast dividing state
(protein A count 35, B count 0).
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FIG. S8. Conversion factor estimation for the DNA damage response dataset. (A-B) The partitioning of fluorescence between
the mother and daughter cells compared against symmetric partitioning (gray line with slope 0.5). (C) Linear regression lines
for the binned mother cell fluorescence values against the variance of the daughter cell fluorescence within the bin. Scatter
points represent the midpoints of the bins. The slope of the wild type case is chosen as the conversion factor. (D-E) Histograms
displaying the birth (panel D) and division (panel e) fluorescence distributions of the wild type (blue) and the induced DNA
damage strain (red) from the data. (F-G) Histograms showing the birth (panel F) and division (panel G) protein distribution
resulting from the estimated conversion factor.
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FIG. S9. Changes in the division rate without selection effects do not capture the SOS response dynamics observed in the
data. (A) Interdivision time distributions for the two conditions are fitted by a separate kernel density estimate. (B) With
the gene expression dynamics kept constant between the conditions the division protein distribution is well captured by the
model. (C-D) Comparison of the division distributions of the wild type (panel C) and damage-induced (panel D) cells from
the data with the mother machine lineage division distribution. The model overestimates the correlation between the protein
count and interdivision time for the damage-induced cells.



BA

C

D E

F G

FIG. S10. Conversion factor estimation for the DNA damage response dataset. (A-B) The partitioning of fluorescence
between the mother and daughter cells compared against symmetric partitioning (gray line with slope 0.5). (C) Linear
regression lines for the binned mother cell fluorescence values against the variance of the daughter cell fluorescence within the
bin. Scatter points represent the midpoints of the bins. The slope of the no treatment case is chosen as the conversion factor.
(D-E) Histograms displaying the birth (panel D) and division (panel E) fluorescence distributions of the untreated (blue) and
with antibiotic-treated (red) cells from the data. (F-G) Histograms showing the birth (panel F) and division (panel G) protein
distribution resulting from the estimated conversion factor.
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FIG. S11. Changes in the division rate alone are not sufficient to capture the antibiotic treatment response of Escherichia
coli cells. (A) Interdivision time distributions of for conditions are fitted by a separate kernel density estimate. (B) With
the gene expression dynamics kept constant between the conditions the model predicts significantly higher division protein
counts than observed in the antibiotic-treated data. (C-D) Comparison of the division distributions of untreated (panel C)
and antibiotic-treated (panel D) cells from the data with the corresponding agent-based lineage tree division distributions.
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