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A Dynamic programming algorithm to compute
read probabilities

Algorithm [A] shows the precomputation of the read probabilities of a single cell given
the corresponding base-calling error probabilities and fragment types. The probability
of a single read, P(R'|Q', F'), is computed as shown in Eq 6 and 7 in the main
manuscript. The read probability given the fragments and the base-calling error
probabilities, P(R.|F,, N, Q.), is obtained from the corresponding element in the T’
table, T[N}, N2, N3].

Algorithm A Dynamic programming algorithm to compute read probabilities

Input: Reads R. = {R.,..., RL<}, error probabilities Q. = {QZ,...,Q%} and frag-
ment types F. = (F!, F2 F3).

Output: P(R.|F., N, Q.)

function retrieve(T, 1, j, k):

ifi<Oorj<Oork<O0 then
return 0

else if i = j =k =0 then
return 1

else
return Ti, j, k|

end if

function precompute(RY1 QLI F):
allocate T’
fort=0,...,L do
for j=0,...,L —ido
fork=1,...,L —i—jdo
l=i+j+k
p1 = P(RYQY, FY) x retrieve(T,i—1,j,k)
p2 = P(RYQ, F?) x retrieve(T,i,7 — 1,k)
p3 = P(RYQY, F3) x retrieve(T,i,j,k —1)
T[iujv k] =p1+p2+p3
end for
end for
end for
return T
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B Common mutation type probability

The probability mass function of a Dirichlet-Multinomial distribution is

K

P(x|n,a) = n Bl 0. 1) ;

iz, >0 2k Blaw, xx)

where K is the number of categories, n is the number of trials, the « vector is the
Dirichlet concentration parameter, x1.x are the number of outcomes of each category
satisfying Z,[f:l x = n, and B is the Beta function.

The common mutation type probability follows the Dirichlet-Categorical
distribution, that is, a Dirichlet-Multinomial distribution with a single trial (n = 1).
The probability of a common mutation type is

K

where B is the bulk genotype, and B is the Beta function.
If o is a one-vector, the common mutation type probability becomes a discrete
uniform probability over mutation types;

B(Z?:l ay, 1)
B(ay,1)
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C DMutation status probability

The single-cell mutation probability, p,,, follows a Beta distribution with
hyperparameters a and b. The cells’ mutation status configuration probability follows C'
Bernoulli trials with m successes with probability p,,. The mutation status probability
with m mutations is

P(Grclab) = / P(Gr.0lpm, a,b) P(pla.b) dpm

m

a—1 b—1
_m D (1_pm)
_ (] m C—m Pm d m
/pm( Pm) B(a.b) p

m

1 B e
= / Pt (1 = p) T

1 T'(m+a)l(C—m+Db)
B(a,b) I'(m+a+C —m—+b)
B(m+a,C —m+Db)

B(a,b) ’

where B is the Beta function, I' is the Gamma function, and m = 25:1 G, is the
number of mutated cells.
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D Poélya urn model

We modeled the amplification as a Pdlya urn model. For simplicity, we imagine maternal
and paternal alleles as colored balls, red and blue. The ball and its copy are added to
the urn whenever a ball is drawn. The goal is to find the distribution of colored balls
when they reach a target size (in our case, the total number of reads, LT = r + b).

r—1+b—1 12 r—1 1 2 b1
_( r—1 )X 23 8 r+l1r+2 r+b—1
_(r+b=2\ (r=1I(b—-1)!
-(00) T v
b2 DT
= B (b1

1

Cr+b—17

In the first line of the above derivation, the first term ((T':bf)) represents all

combinations of selected balls (i.e., BBRRB, RBRBB, RRBBB, ...). In order to reach
r red and b blue balls at the end, one needs to select » — 1 red and b — 1 blue balls. The
second term ((T;!I)!) represents the probability of selecting all first 7 — 1 balls red. The
third term represents selecting all remaining balls with the color blue.

Equation [I] indicates that we cannot say anything specific about the distribution of r
and b values; each setup has an equal probability, depending on the total number of
colored balls LT.

The described urn model is simply a Beta-Binomial distribution;

P(R=r,B=b=BB(n=r+b—-2,a=1,=1)

:( n )B(r,b)

r—a/) B(a, )

_( n )(r—l)!(b—l)! (a+pB-1)
S \r—a) (r+b-1)! (a—-1YB-1)

N (S LS

r—1 r+b—1)
B 1
Cr4b—17

In the case of an ADO event, the urn is initialized with a single ball (e.g., red) and
P(R=L")=1
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E Details on counting amplification trees and edges

We model the amplification process of each allele as follows. Let the t-tree be a rooted
binary tree with ¢ leaves in which the inner vertices are labeled from 1 to ¢t — 1, where the
labels indicate the order of amplification. A d-edge is an edge that has d leaves under it.

In order to form a t-tree, there is G) choice for the first amplification event (at the
root), @) possibilities for the second event, and so on, which leads to the number of
t-trees

t—1), ift>1
OIS
0, otherwise.

The number of d-edges in all ¢t-trees is

d(iiil)’ ifo<d<t
C(t,d)=4C(t), ifd=t
0, otherwise.

Our model considers the amplified fragments’ subsampling during the read
sequencing. For this purpose, we introduced an arbitrary incoming edge to the root
node, which enables the C(t,t) computation. Fig|A|shows all possible 4-trees and
illustrates 3-edges in red and 4-edges in dashed format.

. i .
v

QO
O/@):ilo Q%@O O/CD\O O/@)\O

¢ ¢

Fig A. Illustration of C'(4) = 6 possible 4-trees. The labeled nodes indicate the
order of the amplification events. The dashed line represents an incoming edge to the

root to account for subsampling during the sequencing of the fragments. The red edges
are all possible 3-edges in 4-trees, C(4, 3).
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E.1 C(t) derivation

The number of ¢-trees where ¢ > 1 is computed as follows;
t—1 .
t—1-—1 t—1—1
C(i C(t—1
Z 1( i—1 > (Z)(t—z’—1> (t=1)

—Z(tjll Hewee-

(oo

(t—1), ift>1

0, otherwise.

Ct) =

LIl

r—’H

E.2 (C(t,d) derivation

The number of d-edges in t-trees where d < t is computed as follows;

t—

[

3 <t ‘Z: 1) Cli, Ot — i)
1

_ 2; = 1(;'(7: _)Z_ FiCG i - 1)
—23 (=Bt
=2t — 2)! t: g(i’f;!
=2(t —2)! j_: Cc(i(’i;i).

There is one t-edge per tree; therefore, C(¢,t) is simply C(t).
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F Read likelihood

The likelihood of the reads given the cell’s genotype, base-calling error probabilities,
read coverage, amplification, and allelic dropout probabilities is

P(RC|XCa Q.. LCapaeapado)

1 1 1
= Z Z P(Di7D§|pad0) Z P(AC|DiaDgaLc7pae)
D1=0 D2=0 A.=0
> P(F.,N.|D},D?, A¢, Xc, Le) P(Re|F., Ne, Qo).
Fe,Nc
The ADO events are modeled as two independent Bernoulli distributions with the
same success probability pado;

P(Dinglpado) = P(Di |pado) P(D?‘pado)
= Be(Dé ‘pado) BG(DE ‘pado)

D;+D? 2—(D!4D?
=Dado (1 7p¢ld0) (De C)~

The number of edges in the amplification trees depends on the ADO events and the
number of observations, L.. An example is illustrated in Fig

o”@‘o
! b

o

Fig B. Illustration of different amplification processes with L. =4

observations. Top row: An example where the second allele is dropped (D} = 0 and

D? =1). Bottom row: An example with no allelic dropout event (D! = 0 and
D2 —0).

2L.—2, if D!=0,D?=0
gle  _ 2L.—1, if D! =0,D?>=1
D¢, Dz 2L.—1, if D! =1,D%=0
0, if D! =1,D? =1.
The probability of the number of AEs is a Binomial distribution of Eéﬁ pe trials
with p,e success probability;

P(AJD&, Dvacapae) = Bin(Ac|Eé:i’Dg7pae)
Lc

Eécl D2 A EJ p2—Ae
= e ) pos (1= pae) P#P2 .
Ae
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Since the AE has a low probability, it is unlikely to observe more than one AE.
Therefore, we only consider the cases where A. € {0, 1} rather than A, € [0, Eéi pel-

Then the probability of the AE count is

(1 - pae)EgE’Dza

if A, =0

1 12 _ Le
P(A.|D;, D7, Lepae) = Eéﬁ,pg Pae (1= pae) Pi02 ™1 if A, =1
0, otherwise.

The read probabilities given the fragment genotypes, fragment counts, and
base-calling error probabilities are computed with dynamic programming, described in
the Appendix.

Finally, the fragment probabilities are calculated, as shown in Tables [A] and
Table [A] shows possible combinations of random variables and associates them with a
unique ID; Table [B] shows the fragment configuration probabilities corresponding to the
configurations in Table [Al The columns D!, D? and A, are the random variables the
probability is conditioned on. F,. and N, columns are the valid fragment genotype and
fragment count contributions. For brevity, we omitted two significant, repetitive
constraints in the table; (i) (F}, F?) = X, and (ii) N} + N2 + N3 = L.. All
configurations that do not satisfy these conditions have 0 probability. In the case of AE
events (A, = 1), the fragment genotype that had the error is shown in the pa(F?)
column. Finally, the fragment probabilities are displayed.

Table A. Random variable configurations and associated case IDs of fragment
configuration probabilities. For brevity, the conditions (F}, F?) = X, and

N! + N2 + N3 = L. are not shown but are assumed to be correct. The fragment
configuration probability is simply zero if these conditions are not met.

Case ID || DI D? A, F.= (FI,F? F3) N.= (NI,N2,N3)  pa(F?)
0 0 0 0 =0 >0, >0, 0) 5
1 0o 1 0 Fy=0 (Le, 0, 0) ;
2 1 0 o0 Fy=0 0, Le, 0) ;
3 1 1 o0 Fy=0 0, 0, 0) ;
4 0 0 1 d(FgHFl) =1, d(F3HF2) 7& 1 (Z 0, >0, > 0) F
5 0 0 1 d(Fg”Fl) # 1, d(FgHFg) =1 (> 0, >0, > 0) Fy
6 0 0 1 |dB|FR)=1dF|R) =1 (0, >0, >0 P
7 0 0 1 d(Fg”Fl) =1, d(FgHFQ) =1 (> 0, 0, > O) I
8 0 0 1 d(FgHFl) =1, d(FgHFg) =1 (> 0, >0, > 0) Fy or Iy
9 0 1 1 d(F3||F)) = 1 (>0, 0, >0) R
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Table B. Case IDs and corresponding fragment configuration probabilities. For brevity,

the conditions (F}, F?) = X. and N! + N2 + N2 = L, are not shown but are assumed
to be correct. The fragment configuration probability is simply zero if these conditions

are not met.

Case ID

0

p(FC?NC|DivD(%aAC7XCaLC)
1

L-1

1
1

1

© 0o N O Ot W N

—
o

C(N1+N3,N3) 1

‘H

C(Ni+Ns) 5 o

C(N2+N3,N3) 1

—

C(N2+N3) EleLD2

C(N1+N3,N3) 1

=

C(N1+N3) EBLD[Z

C(N2+N3,N3) 1

C(N1+N3,N3)

C(Nz+Ns) Eh, o

D= D= D= O

(N2+N3,N3)

+ C
C(N1+N3) C(N2+N3)

C(L,N3) 1 1

C(L) EILDI,D2 6
C(L,N3) 11
6

(L) BE o,
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G Differences between singleton and paired sites

Here, we compiled the differences between singleton and paired sites in various
equations.

e Singleton sites consist of one base pair in the genome. Paired sites consist of a
pair of base pairs, one base pair is the candidate mutation site, and the other is
the gSNV locus.

e The mutation type random variable, Z, has K = 3 categories for singleton sites
and K = 12 for paired sites. The number of categories affects Eq 4 in the main
manuscript.

e The third fragment type probability, F2, is 1/3 for singleton sites and 1/6 for
paired sites. Table [Bf contains this probability.

e The computation of the likelihood of a selected site depends on the site type; see
Eq 5 and 6 in the main manuscript.

e For the real data processing and site selection, the data in Mpileup format is
sufficient for singleton site analysis since one can obtain the nucleotides and their
associated Phred quality scores. On the contrary, the analysis-ready BAM files are
needed for the paired sites to extract the reads covering both loci. However, a
Mpileup file can be used as a guide to speed up site selection.
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H Real data preprocessing

We followed a standard pipeline to process the raw unmapped reads (bulk and
single-cell DNA sequencing data in FASTQ format). The adapters are removed from
the reads using Cutadapt [1]. The reads are mapped to the GRCh37 human reference
genome using Bowtie2 [2}3]. The mapped reads are converted to BAM format, and the
duplicate reads are marked using Picard [4]. The reads are realigned based on the
known indels (1000 Genomes Phase I and Mills and 1000 Genomes Gold Standard
Indels) using GATK [5]. The base quality scores are recalibrated using GATK, and
analysis-ready reads in BAM format are obtained.

In order to identify gSNV sites, we used FreeBayes [6] software on bulk data. The
minimum alternate count is set to 10, and the minimum alternate fraction is set to 0.2.
The reported heterozygous SNPs (0/1) are used as gSNV sites. The regions around
gSNV sites are used for analysis.

SCI® requires the input data to be in Mpileup format. Our software uses the
Mpileup format for faster site detection, which is not a mandatory file format.
Samtools |7] is used to pile up individual BAM files.

April 29, 2024
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I Fibroblast dataset information

Table [C] shows the single-cell ids, their clonal information, and approximate read
coverages. For more information, see [8].

Table C. Fibroblast dataset information

Paper Cell ID Donor Clone ID Project Cell ID  Coverage
0 C5RO 1 22 15x
1 C5RO 1 24 15x
2 C5RO 1 27 15x
3 C5RO 1 30 15x
4 C5RO 1 33 15x
5 C5RO 1 34 15x
6 C5RO 1 36 15x
7 C5RO 1 37 15x
8 C5RO 1 38 15x
9 C5RO 1 40 15x
10 C5RO 1 42 15x
11 C5RO 1 43 15x
12 C5RO 2 4 10x
13 C5RO 2 6 10x
14 C5RO 2 16 10x
15 C5RO 2 17 10x
16 C5RO 2 19 10x
17 C5RO 2 21 10x

April 29, 2024
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J Number of sites in biological data experiments

Table [D] shows the number of sites used during the biological data experiments. The
gSNV column is the number of bulk heterozygous sites detected by the FreeBayes [6]
software. The paired, singleton, and total sites are the paired, singleton, and the total
number of sites used by the proposed method. The SCI® column is the number of
mutations reported by SCI®.

Table D. The number of sites per chromosome used during the biological data

experiment

Chr 2SNV paired  singleton total SCI®
chr 1 158304 21040 278844 299884 213796
chr 2 168536 18995 264076 283071 188241
chr 3 148956 16957 222185 239142 152300
chr 4 145413 13781 196315 210096 127486
chr 5 134734 12274 190120 202394 134922
chr 6 131005 15957 214361 230318 150313
chr 7 116606 12754 175727 188481 123977
chr 8 106457 12970 174987 187957 121738
chr 9 86655 9916 132501 142417 97515
chr 10 104292 12634 168017 180651 120637
chr 11 106351 12233 171426 183659 122519
chr 12 99553 10896 151332 162228 101703
chr 13 75318 5854 91960 97814 64348
chr 14 65728 6956 100771 107727 73194
chr 15 58000 7559 96954 104513 74673
chr 16 69048 10161 113141 123302 84303
chr 17 59305 8673 103650 112323 76798
chr 18 56471 6363 79423 85786 63121
chr 19 45606 6026 77229 83255 61581
chr 20 46514 8997 93367 102364 70059
chr 21 31124 4700 44346 49046 29857
chr 22 27352 5721 61414 67135 50133
Total 2041328 241417 3202146 3443563 2303214
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K Similarity score comparison of all methods

In this section, we compare the similarity score of all four methods, Scuphr, Scuphr
with default parameters (pg4o = 0.1 and p,. = 0.01), SCI®, and SCI® with candidate
sites selected by Scuphr. Fig[C] shows the similarity scores of all methods in the low AE
dataset, and Fig[D] shows the similarity scores of all methods in the high AE dataset.
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Fig C. Similarity scores of all methods for low amplification error datasets.
Top row: Results for 10 cells. Center row: Results for 20 cells. Bottom row:

Results for 50 cells.
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Fig D. Similarity scores of all methods for high amplification error datasets.
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L Runtime analysis for parameter estimation

Parameter estimations are done using 20 singleton and paired sites. Each parameter
estimation is performed by running three independent chains for 5,000 iterations
sequentially. Each configuration is repeated ten times, and the results are shown in
Fig |[Ef and [F]l The runtimes increase with the number of cells. Parameter estimation

with the paired sites requires more wall-clock time than singleton sites. Scuphr saves
intermediate states and reuses them frequently instead of recomputing the same states.
The parallelization is done per site; hence no substantial performance gains are going
from 16 to 32 cores.
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Fig E. Runtime comparison of parameter estimation using singleton sites.
The x-axis is the number of cores, and the y-axis is the wall-clock time in seconds.
Standard deviations are shown with vertical lines. Left: Runtime for 10 cells. Center:

Runtime for 20 cells. Right: Runtime for 50 cells.
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Fig F. Runtime comparison of parameter estimation using paired sites. The
x-axis is the number of cores, and the y-axis is the wall-clock time in seconds. Standard
deviations are shown with vertical lines. Left: Runtime for 10 cells. Center: Runtime
for 20 cells. Right: Runtime for 50 cells.
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M Runtime comparison with more cores for SCI®

In addition to the single-core SCI® runs, we compared the runtimes with multiple-core
SCI® runs for a subset of experiment configurations, as presented in Fig[G] As a result
of the embarrassingly parallel distance matrix computation, our method scales linearly
with the number of cores. Even though SCI® is not an inherently parallel method, we
observed slight performance gains with the increasing number of cores. However, this
gain is not linear, and we hypothesize that the gain is primarily due to the efficient
computations of used libraries in the software.

I L owo

500 1000

0 - - o o
1 2 16 2 1 2 16 2 1 2

16 2
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Fig G. Runtime comparison of SCI® with the varying number of cores for
singleton sites. The x-axis is the number of cores, and the y-axis is the wall-clock
time in seconds. Standard deviations are shown with vertical lines. Left, center, and
right subplots are the results for the (cell, site) tuples (20, 256), (20, 512), and (50, 256),
respectively.
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N SCI® details

We installed SCI® version v0.1.7 using Bioconda [9]. In all of the experiments, the
software’s default parameters are used. The bulk data is provided as control bulk
normal (BN), and the single-cell data are inputted as tumor cells (CT). The MCMC
chains are run for 1,100,000 iterations, and the reported tree is used for analysis.

For the synthetic datasets with high phasing frequency (e.g., 1), SCI® picked a small
number of sites for analysis due to high heterogeneity in the genome. We did additional
experiments and provided the sites our software picked using the SCI® software’s
inclusion and exclusion lists features. We used Monovar [10] to detect variants and
picked the reference and alternate nucleotide information of inclusion sites from its
output. For the sites Monovar did not detect, we picked the most common
non-reference nucleotide as the alternate.

For the real dataset, SCI® is applied to each chromosome independently (due to the
file sizes of Mpileup format). The resulting trees are sampled with replacement,
weighted with respect to the number of mutations, for bootstrapping.

April 29, 2024

19/122)



O Phylovar details

We used the codes on Phylovar’s official repository for analysis. Following the
documentation of the software, we extracted the candidate mutation sites previously
picked by SCI® and created a new Mpileup file to use as input. During this phase, we
removed the bulk data from the Mpileup file.

We ran Phylovar 5 times with different seed values. We modified the available code
and added seed for reproducibility. On each run, we ran Phylovar with 20 hill-climbing
chains on a pool of 32 cores for 50,000 iterations. For the remainder of the parameters,
we used the settings displayed on their GitHub repository.
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P List of random variables

We have listed all of the observed variables on Table [E] and random variables on
Table [Fl The notation for site (loci) 7 is omitted but mentioned in the description. The
hyperparameters are listed on Table [G]

Table E. List of observed variables and their descriptions.

Observed variable

Description

B
L

(Re, Q)

Bulk genotype at site 7
Total number of reads for cell ¢ at site 7
Collection of reads and phred scores for cell ¢ at site 7

Table F. List of random variables and their descriptions.

Random variable

Description

Z

Ge

X

A

(D¢, D¢)
(Fe, Ne)

Common mutation type at site m

Mutation status for cell ¢ at site m

Genotype for cell ¢ defined as a function of B, Z, G, at site 7w
Number of amplification errors for cell ¢ at site 7

Dropout status for alleles 1 and 2 for cell ¢ at site 7
Fragment type and the counts for cell ¢ at site 7

Table G. List of hyper parameters and their descriptions.

Hyper parameters

Description

Pae
Pado

Pm
a

b

Common mutation type

Mutation status for cell ¢

Genotype for cell ¢

Number of amplification errors
Dropout status for alleles 1 and 2
Fragment type and the counts for cell ¢
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