

Supporting Information for

SRSF1 interactome determined by proximity labeling reveals direct interaction with spliceosomal RNA helicase DDX23

Danilo Segovia^{1,2}, Dexter W. Adams^{3,4}, Nickolas Hoffman¹, Polona Safaric Tepes¹, Tse-Luen Wee¹, Paolo Cifani¹, Leemor Joshua-Tor³, Adrian R. Krainer¹
1 - Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
2 - Graduate Program in Molecular and Cellular Biology, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
3 - W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
4 - Graduate Program in Genetics, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
* Graduate Program in Genetics, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
* Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA 516-367-8417
Email: krainer@cshl.edu

This PDF file includes:

Supporting text Figures S1 to S10 Table S1 Legends for Dataset S1 SI References

Supplementary Methods.

Plasmids.

For proximity labeling, we generated the BS construct by cloning SRSF1 cDNA in the mammalian retroviral vector myc-BioID2-pBABE puro (Addgene #80900) (1). We generated the SB construct by cloning SRSF1 cDNA downstream of BioID2 in the MCS-BioID2-HA pBabe-puro (Addgene #120308). To generate the BG construct, we subcloned EGFP-3XNLS from pEGFP-C1 EGFP-3XNLS (Addgene #58468) into myc-BioID2-pBABE puro. To generate Dox-inducible cell lines, we cloned T7-SRSF1 or the constructs containing the BioID2 fusions into the third-generation lentiviral vector pCW57.1 (Addgene #41393).

For BiFC, we used the dual expression plasmid pKK-BiFC-Venus (Addgene #105804) (2). We cloned SRSF1 cDNA downstream of the N-terminus of mVenus, and the different gene candidates upstream of the C-terminus of mVenus. For the analysis of interactions between additional SR protein family members and DDX23, we cloned the cDNA of each SR protein into the vector harboring the DDX23-mV-Ct fusion. All these constructs were generated using Gibson assembly (NEB).

For recombinant protein production, we used the His-SUMO-SRSF1 plasmid for SRSF1 expression, and pCDF-CLK1 for CLK1 co-expression (3). We generated a plasmid expressing His-SUMO-RRMs by subcloning into pLIC-SGC1 (Addgene #39187). For expression of isolated domains of SRSF1, we subcloned RRM1, RRM2 and RS domain into pNH-TrxT, and expressed the proteins as a fusion with His-TrxA.

For the generation of DDX23 constructs, we amplified the cDNA from a HeLa-cell-derived library and we cloned it into pNH-TrxT (Addgene #26106) using ligation-independent cloning (4). We generated the deletion mutants by PCR, and the 9GA mutant was synthesized by Genscript. We then subcloned the cDNA from DDX23-9GA into pNH-TrxT. For expression of the minimal 37-residue DDX23 region that interacts with SRSF1, we designed the TrxA fusion construct and cloned it into pET-28a (+). DEAD to AAAD mutants were generated by site directed mutagenesis.

For expression of DDX23 in human cells, we cloned the cDNA of FL-DDX23 or the deletion constructs into pDarmo.CMVT_v1 (#133072) (5) using Gibson assembly (NEB). For direct visualization of protein localization in live cells, we cloned mVenus upstream of DDX23.

Generation of cell lines for proximity labeling.

For retrovirus production, we used HEK-293 Ampho Phoenix cells. We seeded $1.5-2\times10^6$ cells in 6-cm plates in DMEM, and after 18 h we transfected them with 10 µg of the BioID2 vectors (BS, SB, BG) mixed with 10 µL of Lipofectamine 2000 in 500 µL opti-MEM. 18 h after transfection, we replaced the medium, and after 48 h we collected the supernatants containing retrovirus.

The day before retroviral transduction, we seeded 2×10^5 HeLa cells in 6-cm dishes. For transduction, we used a 1/3 dilution of freshly produced retrovirus, supplemented with 4 µg/mL polybrene. We performed the transduction for 24 h, and started puromycin selection 48 h post-transduction, using puromycin at 2 µg/mL.

Sample preparation for MS analysis.

For MS analysis, we used MS-grade reagents and solvents. We performed the streptavidin pulldown as described in Methods. We then washed the paramagnetic beads with 200 μ L of 100

mM aqueous ammonium bicarbonate pH 8.4 (ABC). We then reduced the bound proteins by performing an incubation with 20 μ L of 3 mM TCEP/100 mM ABC for 20 min at room temperature under constant agitation. We alkylated reduced Cys-residues by adding 20 μ L of 100 mM CEMTS/50% acetonitrile and incubating for 20 min at room temperature under constant agitation. After dilution with 260 μ L 100 mM ABC, we added 1 μ g of sequencing-grade modified porcine trypsin (Promega) to each sample, and we performed the proteolysis overnight at 37 °C under constant agitation. The following day, we quenched the proteolysis by adding 1% v/v MS grade TFA, and we transferred the reaction solutions into clean tubes. We then washed the beads with 100 μ L of 50% ACN, and we pooled the flowthroughs with the respective eluates. We then lyophilized the eluates by vacuum centrifugation until the volume was approximately 50 μ L, and we added 200 μ L of 0.1% TFA to each sample to improve retention on C18. We desalted the peptides by C18 solid-phase extraction using Pierce C18 columns (5 mg loading capacity), and we eluted them using 66% ACN, and then completely lyophilized them. We resuspended the peptide pellets in 30 μ L of 5% DMSO/0.1% formate by sonication, and we used 2 μ L of each sample for LC/MS.

LC/MS analysis.

We loaded the peptides on a 25 cm x 75 μ m ID column packed with Reprosil 1.9 C18 silica particles and resolved them on a 90-min 5-35% acetonitrile gradient in water (0.1% formate) at 200 nL/min. We performed the chromatography using a Thermo EasyLC1200 nano chromatograph. We ionized the eluting peptides by electrospray (2200V) using a 10 μ m ID silica emitter (Fossil IonTech) kept at 2200V compared to the mass spectrometer's inlet. We set the mass spectrometer to collect 120,000 resolution precursor scans (m/z 380-2000 Th) every 3 sec, interspersed with fragmentation spectra recorded in data-dependent mode with a dynamic exclusion of 30 sec (10 ppm mass tolerance). We selected precursor ions using the quadrupole for HCD fragmentation at stepped 28,33,38% normalized energy (max injection time 35 ms). We collected spectra in the linear trap at "normal" scan rate (unit resolution), with first mass locked to 100 Th.

We searched the mass spectra using the Mascot scoring function within ProteomeDiscoverer (v.2.4), with the mass tolerance set at 5 ppm for MS1, and 0.5 Da for MS2. We matched the spectra against the UniProt human database and a database of common contaminants (Crap). We set K and N-terminus biotinylation, M-oxidation and N/Q-deamidation as variable modifications. We set CEMTS adducts on C as a fixed modification. We filtered peptide-spectral matches to maintain FDR<1% using Percolator.

We extracted ion chromatograms (XIC) of precursor ions intensities and we integrated them for label-free quantification across samples. We used the respective area as a quantitative metric for peptide relative quantification. We expressed protein quantification as the sum of the XIC area of all peptides assigned to a given protein. Overall, we identified 2879 proteins at FDR<0.01. We omitted from the analysis non-quantified proteins and proteins detected in a blank injection performed before the experiment. To permit ratio calculation, we imputed missing values with a value close to the minimum empirical quantification recorded (used as proxy for noise level). Only proteins with empirical quantification in at least 2 replicates were used for quantification. To assess differential enrichment in the samples, we calculated ratios of the average LFQ intensity for each protein across samples.

We deposited the mass spectrometry proteomics data set to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048180.

Expression and purification of recombinant proteins.

We used *E. coli* Rosetta cells for expression of SRSF1 constructs. Constructs that included SRSF1's RS domain were co-expressed with CLK1 kinase (3). We initially grew transformed bacterial cultures in LB medium at 37 °C until they reached an optical density (OD) of 0.6 – 0.8. We then transferred the bacterial cultures into a low-temperature incubator (18 °C). Once the cultures

cooled down, we added 0.5 mM IPTG to induce recombinant protein expression, and continued the incubation at 18 °C for 20 h. We then collected the cells by centrifugation at 4000g for 20 min and resuspended them in lysis buffer (25 mM Tris-HCl pH 7.5, 500 mM NaCl, 10 mM NaF, 1× protease inhibitor cocktail). Thereafter, lysates were kept on ice or in a cold room at 4 °C. We lysed the cells by sonication (40% output, 5 s ON, 5 s OFF) on ice. We added 50 units of benzonase nuclease to the extracts, and fractionated them by centrifugation at 27,000g, for 30 min at 4 °C. We recovered the soluble fraction and filtered it through a 0.45 µm cellulose acetate filter. For affinity purification, we incubated the soluble fraction with complete His-tag Purification resin (Roche), for 90 min at 4 °C. We washed the beads with 10 column volumes (CV) of lysis buffer supplemented with 20 mM imidazole, and then eluted the proteins in low-salt lysis buffer (50 mM NaCl) with 300 mM imidazole. We purified the proteins by anion exchange chromatography (Q Sepharose), incubating the IMAC elution pool with Q Sepharose beads equilibrated in 25 mM Tris-HCl pH 7.5, 50 mM NaCl for 12 hs. We washed the beads with equilibration buffer (10 CV) and eluted the bound proteins in a gradient of 100-500 mM NaCI. We pooled the eluted fractions and further purified the proteins by size exclusion chromatography on a Superdex 200 Increase column (Cytiva), in SEC buffer (25 mM Tris-HCl pH 7.5, 500 mM NaCl, 5 mM MgCl₂, 1 mM DTT). We selected proteincontaining fractions by SDS-PAGE analysis, pooled them, and supplemented them with 10% glycerol for storage at -80 °C. To obtain tag-free SRSF1, we performed an additional step after the IMAC purification, consisting of Ulp1 digestion (IMAC purified Ulp1, 1 mg per 20 mg of protein extract, at 4 °C), followed by a second IMAC purification in which we collected the flowthrough.

For expression of DDX23 constructs we used *E. coli* Rosetta cells grown in Terrific Broth. We grew the cultures at 30 °C until OD = 0.8, and we induced the protein expression with 0.5 mM IPTG at 18 °C for 20 h. We then collected the cells by centrifugation at 4000 g for 20 min, and resuspended them in lysis buffer (50 mM Tris-HCl pH 7.5, 2 M LiCl, 5 mM MgCl₂, 1 mM DTT, 1× protease inhibitor cocktail). We continued the purification protocol similarly to the SRSF1 purification, except that we eluted the proteins in high-salt lysis buffer (500 mM NaCl), and we removed the His-tag by TEV protease digestion (IMAC purified TEV_{SH}, 1 mg per 20 mg of protein extract, at 4 °C), for 16 h in digestion buffer (50 mM Tris-HCl pH 7.5, 500 mM NaCl, 5 mM MgCl₂, 1 mM DTT). After digestion, we performed an additional IMAC purification, collecting the flowthrough containing the digested proteins. We further purified the digested proteins on a Heparin column and eluted the bound proteins in a 500 mM-1000 mM NaCl gradient. Finally, we purified the proteins by size exclusion chromatography on a Superdex 200 Increase column, in SEC buffer.

For expression of the minimal His-TrxA-DDX23 (S41-R77) we used *E. coli* Rosetta cells grown in LB. We grew the bacterial cultures at 37 °C until OD = 0.8, and then induced protein expression with 0.5 mM IPTG at 18 °C for 20 h. We then collected the cells by centrifugation at 4000 g for 20 min, and resuspended the cells in lysis buffer (25 mM Tris-HCl pH 7.5, 500 mM NaCl, 1× protease inhibitor cocktail). We performed affinity purification similar to the SRSF1 purification, followed by size exclusion chromatography on a Superdex 200 Increase column, in SEC buffer. We selected protein-containing fractions by SDS-PAGE analysis, and we supplemented them with 10% glycerol before storing them at -80°C. For the obtention of the phosphorylated version of this protein, we co-expressed CLK1 and followed an equivalent expression and purification protocol.

Protein extraction from mammalian cells.

We washed cell monolayers with PBS and lysed them in 20 mM Tris HCl pH 8, 200 mM NaCl, 0.1% NP40, 2 mM MgCl₂, 100 mM NaF, 2 mM EDTA supplemented with protease inhibitor cocktail. We sonicated the cell lysates in a sonication bath, for 10 cycles of 30s, alternating with 30 s resting time. We then centrifuged the samples for 15 min at 20,000 g, at 4 °C. We then mixed the supernatants with Laemmli buffer and analyzed them by SDS-PAGE/Western blotting. For

detection of proteins, we used the following antibodies: anti Myc Tag (Cell signaling, 9B11), anti HA tag (Thermo Fisher 26183), anti SRSF1 (AK-96, CSHL), and anti α-tubulin (Sigma T9026).

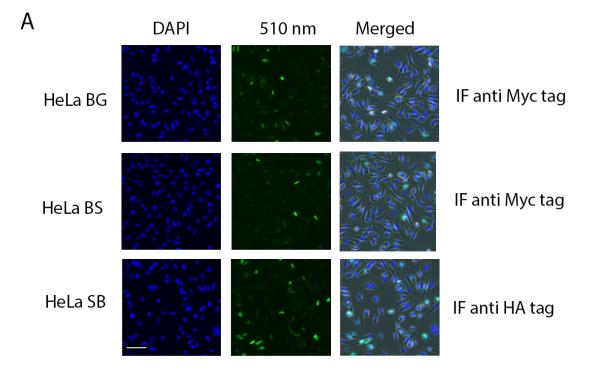
Immunofluorescence and imaging.

For immunofluorescence staining, we seeded HeLa cells in coverslips and incubated them at 37 °C for 24 h. We then fixed the cells using 4% formaldehyde in PBS for 10 min at room temperature. After washing with PBS, we permeabilized the fixed cells with 0.2% Triton X100 in PBS, and after a new set of PBS washes, we blocked the slides for 1 h using 1% BSA, 22.52 mg/mL glycine in PBST. After blocking, we incubated the slides for 1 h with 100 μ L of anti-Myc Tag / HA-Tag antibody solution (1:200) (Cell Signaling Technology or Thermo Fisher) diluted in 1% BSA in PBST. We then washed the slides with PBS and incubated them with anti-mouse secondary antibody, labeled with Alexa Fluor 488 (Invitrogen # A32723), at 10 μ g/mL. After a 1-h incubation, we washed the slides with PBS, stained with DAPI, and visualized the slides by fluorescence microscopy. We imaged the fluorescence emitted by Alexa Flour 488 (510 nm emission) using the GFP channel, and the emission at 461 nm using the DAPI channel, in an Echo Revolve fluorescence microscope (Echo).

RNA extraction form mammalian cells and RT-PCR for splicing analysis.

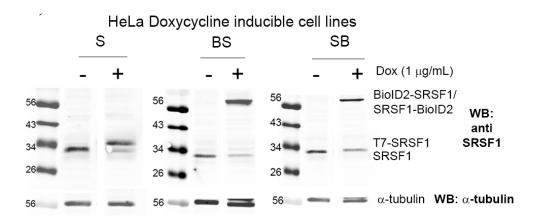
We washed cell monolayers with PBS, lysed them using 1 mL Trizol, and collected the samples in fresh tubes. For RNA extraction, we added 200 μ L of chloroform and vortexed the samples. Immediately after, we centrifuged the samples at 12,000 g for 15 min at 4 °C. We then transferred the upper aqueous phase into fresh tubes and precipitated the RNA by adding 600 μ L of 100% isopropanol. We vortexed the samples and incubated them at -20 °C for 30 min. Then, we centrifuged the samples at 12,000 g for 10 min at 4 °C. We washed the RNA pellets with 70% EtOH, air dried them, and resuspended them in RNAse-free water. We proceeded to cDNA preparation using oligo dT and ImProm-II reverse transcriptase as per the manufacturer's instructions (Promega). We analyzed the alternative splicing pattern of *PEA15* by radioactive RT-PCR, as described (6).

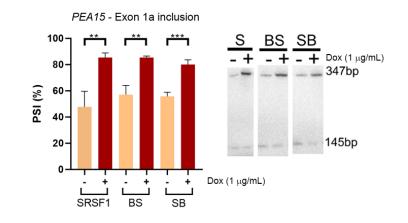
In vitro transcription


We digested 50 μ g of the template DNA (Addgene #11244) with BamHI (NEB) for 3 h at 37 °C. After heat inactivation of the restriction enzyme at 70 °C for 20 min, we treated the digested DNA with 25 units of alkaline phosphatase for 1 h at 37 °C and purified the linear DNA template by agarose gel electrophoresis. For *in vitro* transcription, we used a Promega T7 RNA polymerase kit. Transcription reactions in 20 μ L used Transcription Optimized buffer (Promega) supplemented with 10 mM DTT, 0.5 μ L RNAsin, 2 μ L of rNTP nucleotide mix (5 mM ATP, 5 mM CTP, 1 mM GTP and 0.5 mM UTP), 1 μ L of 10 mM G-cap analog, 2.5 μ L of [α^{32} P] UTP (10 mCi/ μ L), 1 μ L of T7 RNA polymerase, and 2 μ g of DNA template. We incubated the transcription reaction for 2.5 h at 37 °C. Immediately after, we digested the template DNA with RQ1 DNAse in the presence of 1 mM CaCl₂ for 30 min at 37°C, and diluted the sample with 25 μ L of RNA sample buffer. We purified the RNA by denaturing PAGE and elution overnight in 10 mM Tris-HCl pH 7.4, 1 mM EDTA, 0.5% SDS buffer. Finally, we extracted the RNA using acid phenol chloroform, pH 4.2, followed by ethanol precipitation.

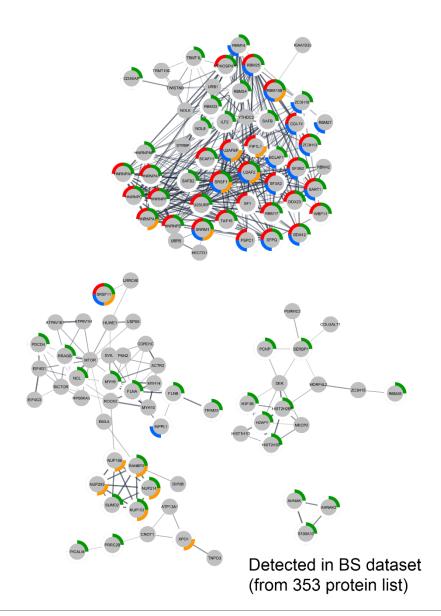
Post-translational modification analysis by MS

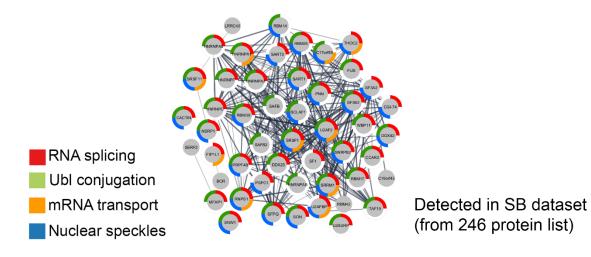
We reduced samples of SEC-purified His-TrxA-DDX23 (S41-R77) or His-TrxA-DDX23 (S41-R77) co-expressed with CLK1, with 3 mM TCEP (tris(2-carboxyethyl)) and alkylated them with 10 mM MMTS (methyl methanethiosulfonate). We then performed an overnight digestion with LysC at 37 °C and quenched the reactions with TFA before LC/MS/MS analysis.


We loaded peptides via a 10 cm x 100 μ m ID trap column packed with 5 μ m aqua C18 particles (Phenomenex) onto a 30 cm x 75 μ m ID analytical column packed with Reprosil 1.9 μ m C18 silica particles (Dr. Maisch), and resolved them on a 5-35% acetonitrile gradient in water (0.1% formic acid) at 200 nL/min. We ionized eluting peptides by electrospray (2200V) and transferred them to an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo). We set the MS to collect 120K resolution precursor scans (m/z 380-2000 Th). We selected precursor ions between 380-900 m/z from HCD fragmentation at stepped 30,35,40% normalized energy and ETD fragmentation with charge-dependent ETD parameters. We selected precursor ions between 900-2000 m/z for HCD fragmentation only at stepped 30,35,40% normalized collision energy. We selected precursors in data-dependent mode for fragmentation one time before excluding them for 30 sec. We collected spectra in the Orbitrap at 30,000 resolution, with the first mass locked to 100 Th.


We searched for peptides using the PEAK's scoring function, with mass tolerance set at 10 ppm for MS1, and 0.02 Da for MS2. We matched the spectra against the E. coli database concatenated with the sequence of His-TrxA-DDX23 and CLK1 kinase, as well as a database of common contaminants (cRAP). We set M-oxidation, N-term/K-acetylation, and STY-phosphorylation as variable modifications. We allowed a maximum of eight variable modifications per peptide. Peptide-spectral matches were filtered to maintain FDR<1%. We integrated extracted ion chromatograms of precursor-ion intensities for label-free quantification across samples.

В


С



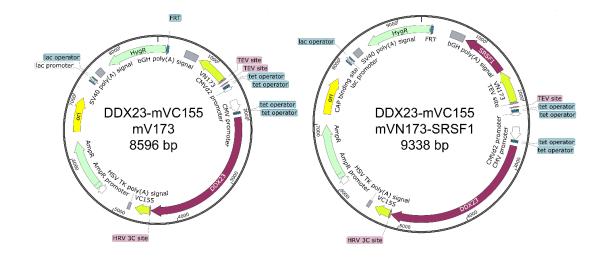

7

Fig. S1. BioID2 fusions do not alter SRSF1 localization, SRSF1 autoregulation nor its function in pre mRNA splicing. A. IF of HeLa cell lines used for proximity labeling. Myc or HA antibody was used to detect the BioID2 fusions of BG, BS and SB. DAPI staining shows nuclei, and predominantly nuclear localization can be observed for all BioID2 fusions. Scale bar represents ~30 μ m. B. Western blotting analysis of Dox-inducible cell lines overexpressing either T7-SRSF1 (S), BioID2-SRSF1 (BS) or SRSF1-BioID2 (SB). Overexpression of SRSF1 was achieved by adding the indicated amount of Doxycycline, for 72 h. Upon overexpression of SRSF1, regardless of the tag used, we detect a decrease in the expression of endogenous SRSF1. This shows that expression of the fusion proteins regulates endogenous SRSF1 protein levels, and therefore, the fusion proteins engage in SRSF1's autoregulation mechanisms. C. RT-PCR analysis of splicing of *PEA15* exon 1a upon SRSF1 overexpression. An unpaired t-test was performed to compare the Percent Spliced In (PSI) in the presence or absence of Doxycycline (SRSF1 overexpression), in three different biological replicates. ** = P ≤ 0.01; *** = P ≤ 0.001. Error bars represent standard deviation. Cell lines expressing the BioID2 fusions can regulate alternative splicing of this endogenous SRSF1 target.

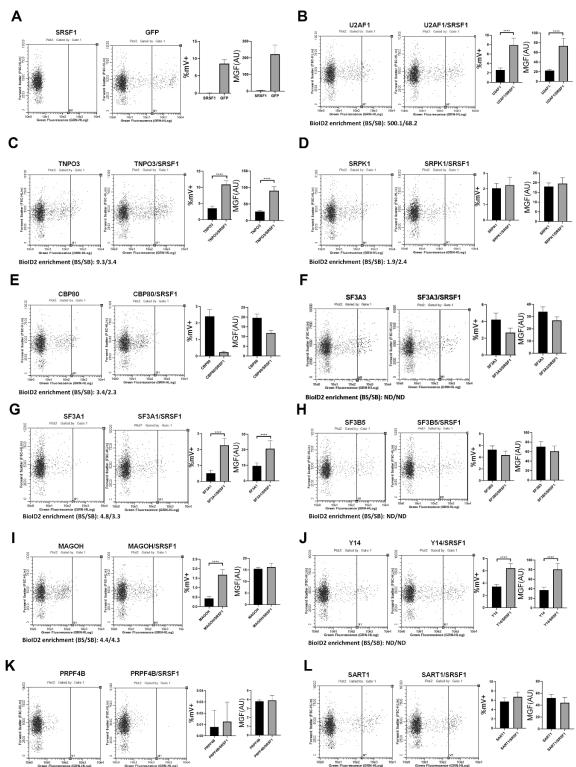


Fig. S2. Protein networks generated with individual datasets, generated from the BioID2-SRSF1 enriched protein list (top), or the SRSF1-BioID2 enriched protein list (bottom).

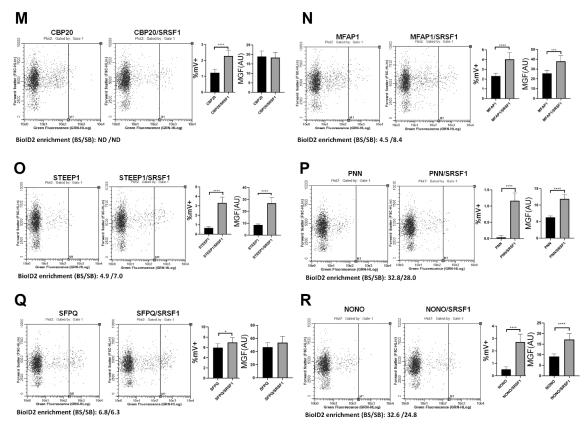


Fig. S3. Schematic representation of BiFC vectors. The fusion genes were cloned upstream of CMV or CMVd2 promoters. Images were generated with Snapgene software.

BioID2 enrichment (BS/SB): 4.9/6.4

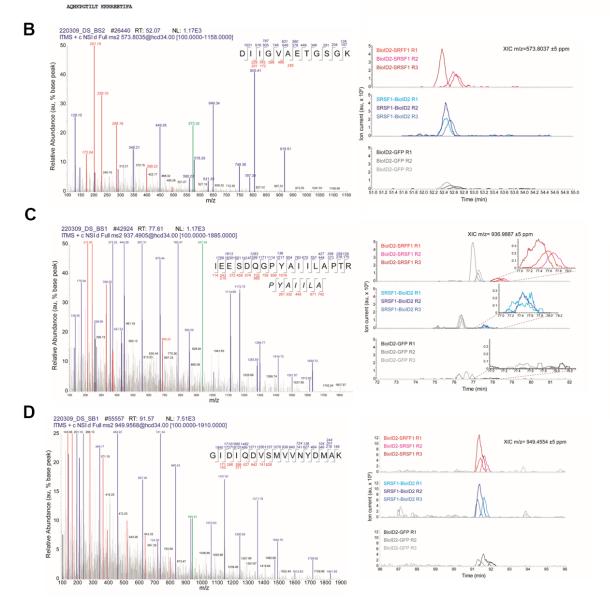
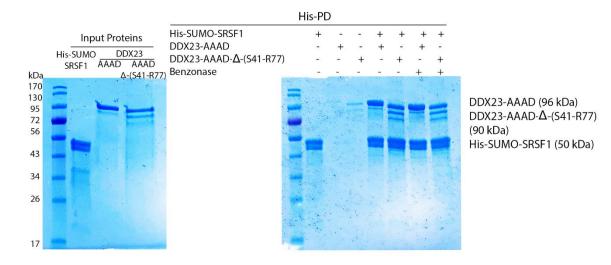

BioID2 enrichment (BS/SB): 10.5 /13.4

Fig. S4. Bimolecular fluorescence complementation validates some of the interactions detected by proximity labeling. A-R. BiFC results for the indicated proteins, represented as Forward scatter vs. green fluorescence plots. The vertical line indicates the threshold for cells that were considered mVenus positive. The bar graphs on the right of each panel show % mVenus-positive cells (%mV+) and mean green fluorescence (MGF). An unpaired t-test was performed to compare the %mV+ cells and MGF values between the test and control conditions. * = P ≤ 0.05; *** = P ≤ 0.001; **** = P ≤ 0.001. Error bars represent standard deviation. In several cases, no significant differences were observed or the % mVenus-positive cells decreased. Limitations of BiFC discussed in the main manuscript can affect the results observed for those interactions, therefore, we did not perform a statistical analysis on those samples.



MAGELADIOD RAASPSKEER KISKTFORER DERFORKES SKOKKUESE FORKUESE FRAGKSKS SKSKALER ERREKERED KERDINGOOD DERDOGERID KORKESSISE GREGOPKSEK DEDSKOGEED ERGIGTOKAA PISIEELIAK <mark>KANEBAAAK HA</mark>TISKAERE ABALIKUAGE VEERGELEE ERKOGHAPO LGRA<mark>HEDEN DE</mark>ERREKER MERETNORED ERGIGTIREE KOKSKELEAL HERVIGGIKK RETTRILING KYVPENDASE DISIDYNPIK KERENGENOOD LGRA<mark>HEDEN DE</mark>ERREKER MERETNORED ERGIGTIREE KOKSKELEAL HERVIGGIKK RETTRILING KYVPENDASE DISIDYNPIK KERENGENOOD LGRAHEDEN DEERREKER MERETNORED ERGIGTIREE KOKSKELEAL HERVIGGIKK RETTRILING KYVPENDASE DISIDYNPIK KERENGENOOD LGRAHEDEN DEERREKER MERETNORED ERGIGTIREE KOKSKELEAL HERVIGGIKK KIDENDON RIFREDYSIT TROGGIENDI KERENGEN REPLACIDIK OGGERGERFY GDIEKKRET. BUCKGRAAL RILEVIDNOO YENINTIGED ALEIGUNED ILGVARTOSE KYAAFLIELU WITTLEVID BIERSDOOPY ALILAPTRIK AODIBERTIK PORPIGIRV AVIGGISKED GGFRIENCE IVIATORIEL DUIDNERVILV. SKETYVIDE ADBRIDDEN FOVELLEBE FOUGLIELE VERBOURD ERBENDEDEN X X X X QUINETATOR PAVERLARSY LAEDAWVIG SACHERVE GRÄVINGESE FROGLALIE GEDOPPILIE VANGENOU ANSLEVEND ANTEGEDER GERERALDIK RAGNDILVA TUVAGRGIDI OVSKVIND MANNEDYNE BIGRIGRAGK SKALTELER BISAVEREK QALLESEVSS CEPELANEDO

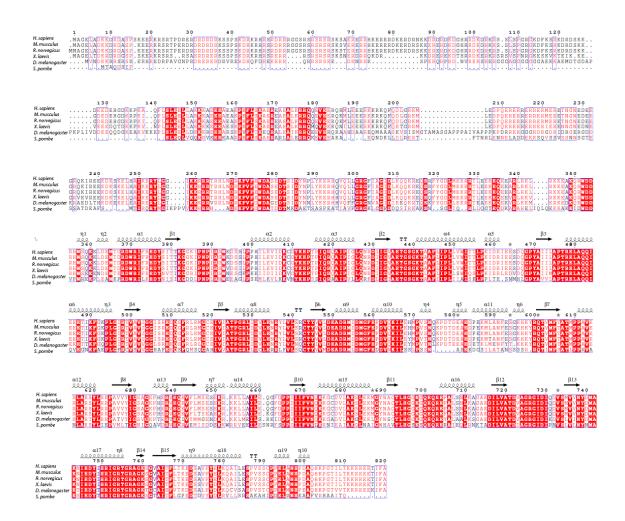


Fig. S5. Detection of DDX23 and label-free quantification. A. DDX23 primary sequence. Detected peptides are highlighted in green and yellow. Manually validated peptides are highlighted in yellow. D = N/Q deamidation, X = CEMTS adducts on C. B-D. Representative fragmentation

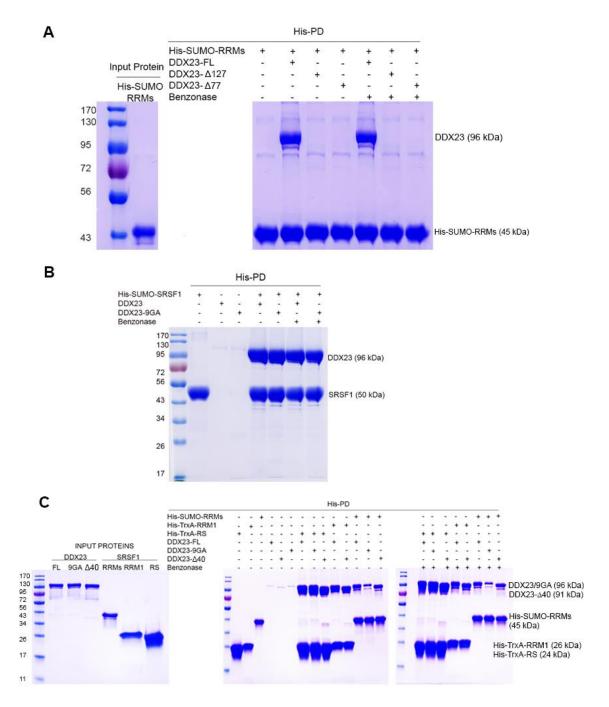

spectra of peptides are indicated in yellow. Peptide ions' extracted ion chromatograms (XIC) used for label-free quantification are shown for all constructs and all replicates.

Fig S6. DDX23 inactive mutants (DEAD \rightarrow AAAD) interact with SRSF1, even in the absence of the S41-R77 region. Representative His Pulldown assay using His-SUMO-SRSF1-RRMs purified from *E. coli* and untagged versions of mutant DDX23, as indicated in the figure.

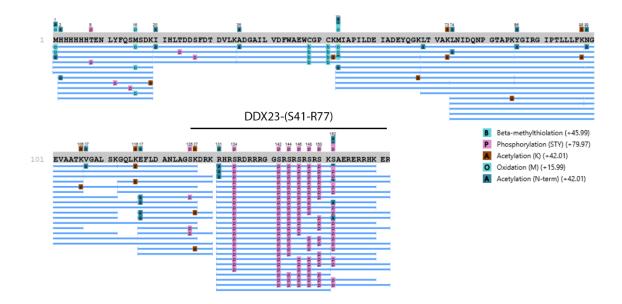
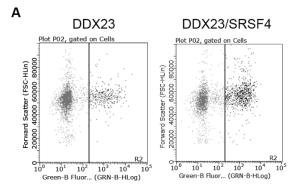
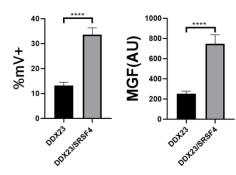
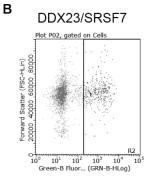
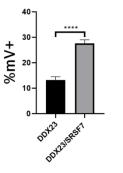


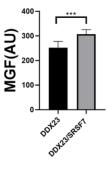
Fig S7. Sequence alignment of DDX23 and its orthologs. Secondary structures based on the crystal structure of human DDX23 (PDB: 4NHO) are depicted on top of the alignment.

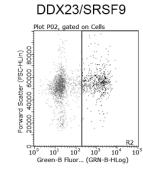


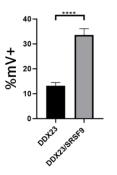

Fig. S8. DDX23 interacts with RRMs. The 9GA mutation On DDX23 does not affect its interaction with FL-SRSF1 but affects the interaction with RRM1. A. Representative His Pulldown assay using His-SUMO-SRSF1-RRMs purified from *E. coli* and untagged DDX23, or the indicated deletion mutants. B. Representative His Pulldown assay using His-SUMO-SRSF1 purified from *E. coli* (phosphorylated by co-expressed CLK1 kinase) and untagged DDX23, WT or 9GA-mutant, as indicated. A positive interaction can be observed for FL-SRSF1 and DDX23, irrespective of the presence of the 9GA mutation. C. Pulldown assays that demonstrate that the SRSF1 RS domain (phosphorylated by CLK1) binds to FL-DDX23 and DDX23-Δ40. In addition, RRM1 can also bind

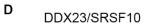

to both FL-DDX23 and DDX23- Δ 40. Decreased binding between His-SUMO-RRMs and the -9GA mutant is observed.

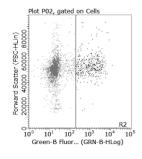


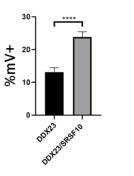

Fig. S9. Post-translational modifications (PTMs) detected by MS in His-TrxA-DDX23 chimeric protein co-expressed with CLK1 kinase in *E. coli*. Blue lines represent peptides identified, and colored letters represent PTMs.

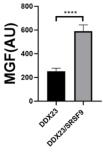









С



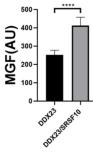


Fig. S10. DDX23 interacts with additional SR proteins in BiFC assays. A-D. BiFC results for the indicated proteins, represented as Forward scatter vs. green fluorescence plots. Vertical line indicates the threshold for cells that were considered mVenus-positive. Bar graphs next to each panel represent % mVenus-positive cells (%mV+) and mean green fluorescence (MGF). An unpaired t-test was performed to compare the %mV+ cells and MGF values between the test and control conditions *** = P ≤ 0.001; **** = P≤ 0.0001. Error bars represent standard deviation.

Table S1. Complete list of genes encoding proteins that were enriched ≥5-fold in the proximitylabeling-derived datasets. Comparisons were made between BS and SB vs. the BG control. Values represent enrichment over control (fold change).

	Gene	BS/BG		Gene	BS/BG		Gene	BS/BG
1	SRSF1	4547.1	36	KRT72	29.5	71	BCR	16.5
2	HAUS2	950.7	37	CDSN	29.4	72	ELAC2	16.0
3	AHNAK2	796.2	38	NCBP3	29.1	73	CLTC	16.0
4	U2AF1	500.1	39	TCERG1	28.6	74	SAFB2	15.8
5	MACROH2A1	490.9	40	KNOP1	27.2	75	TGM2	15.6
6	H2BU1	444.2	41	PPHLN1	26.3	76	DSG1	15.6
7	HMGXB4	397.8	42	SAFB	26.1	77	COLGALT1	15.2
8	RABL6	374.8	43	ATP5IF1	24.8	78	SRSF11	15.0
9	SERF2	287.7	44	H3-3A	24.4	79	PCF11	14.6
10	DNAJC8	238.3	45	PRRC2B	23.7	80	SAMD9	14.5
11	FIP1L1	226.9	46	RAB3GAP2	23.0	81	DIP2B	14.5
12	RASSF7	213.8	47	LMO7	22.4	82	CNOT1	14.2
13	TAF15	176.3	48	ITPR1	22.0	83	MTDH	14.1
14	BCLAF1	143.7	49	RP9	21.5	84	RBBP6	13.8
15	HNRNPA1	140.4	50	PC	21.0	85	EDF1	13.8
16	CACTIN	127.9	51	CCDC124	20.8	86	SF3B2	13.4
17	SF3A2	125.6	52	ITPR3	20.6	87	GBF1	13.3
18	POLR1G	122.2	53	SUB1	20.4	88	IGHG1	12.9
19	CERS2	94.2	54	ARHGEF1	20.4	89	ALB	12.9
20	SERBP1	88.0	55	CAVIN1	20.2	90	U2SURP	12.8
21	DVL1	83.9	56	SRRM1	20.2	91	SCAF11	12.8
22	LYZ	70.6	57	USP9X	20.1	92	MCCC1	12.3
23	RBM17	59.1	58	ATP6V1E1	19.3	93	BLVRA	12.1
24	PCNP	51.6	59	RNPS1	19.2	94	CCAR2	12.0
25	HNRNPA3	50.0	60	HNRNPAB	19.1	95	CCAR1	11.9
26	HACD2	47.6	61	MAP4K4	18.9	96	MINK1	11.7
27	HNRNPA2B1	40.1	62	CEP170	18.6	97	SRSF3	11.6
28	FUS	38.7	63	MPHOSPH10	18.6	98	RANBP2	11.6
29	RBM27	35.5	64	NCKAP1	18.5	99	ELP1	11.4
30	PSPC1	33.8	65	H3C15	18.4	100	KRT78	11.3
31	TCOF1	32.8	66	OAS3	18.1	101	DNAJC9	11.2
32	PNN	32.8	67	MTOR	17.3	102	SMG8	11.2
33	NONO	32.7	68	ARMCX2	17.2	103	RBM15B	11.0
34	PFKL	30.9	69	NOL8	17.1	104	S100A10	10.9
35	ZC3H18	29.6	70	RBM25	16.7	105	ACACA	10.9

	Gene	BS/BG		Gene	BS/BG		Gene	BS/BG
106	HNRNPA0	10.8	142	JUP	8.7	178	HMGB1	7.5
107	SART3	10.7	143	AUP1	8.7	179	HMGB2	7.5
108	EML4	10.6	144	URB1	8.6	180	STATH	7.5
109	TXN	10.6	145	EBP	8.6	181	RPS6KA3	7.4
110	SART1	10.6	146	FLNA	8.6	182	MACF1	7.4
111	PCCA	10.5	147	MAP1S	8.6	183	LMAN2	7.4
112	MYH14	10.4	148	TMED10	8.5	184	RBM14	7.4
113	SREK1IP1	10.4	149	PINX1	8.5	185	COPB1	7.3
114	RICTOR	10.3	150	HNRNPF	8.5	186	NKD2	7.3
115	RBM42	10.3	151	SSRP1	8.5	187	EPB41L1	7.3
116	KTN1	10.2	152	XPO7	8.4	188	ACO1	7.2
117	PDCD4	10.2	153	ZNF281	8.4	189	ASCC3	7.2
118	ATP2B4	10.2	154	NUP188	8.3	190	U2AF2	7.2
119	RBM39	10.1	155	LDHAL6B	8.3	191	HBS1L	7.2
120	RBM33	10.0	156	MTRR	8.3	192	GCN1	7.2
121	SBF1	9.9	157	HMGN4	8.3	193	EIF4G3	7.1
122	DPP3	9.9	158	AP2B1	8.3	194	TRMT1L	7.1
123	DDB1	9.8	159	TRABD	8.2	195	AHNAK	7.1
124	CYCS	9.8	160	LRRC40	8.2	196	ARMCX3	7.0
125	PKN2	9.7	161	SKIV2L	8.2	197	HNRNPC	7.0
126	ROCK2	9.7	162	TTC37	8.1	198	SF1	7.0
127	SNW1	9.6	163	SUMO2	8.1	199	ARHGAP18	6.9
128	MOGS	9.5	164	CARMIL1	8.1	200	ATP13A1	6.9
129	HUWE1	9.4	165	CAPN1	8.1	201	TRIM16	6.9
130	TNPO3	9.3	166	TSN	8.0	202	CCNT1	6.9
131	NSRP1	9.3	167	PICALM	8.0	203	POLE	6.9
132	MYH10	9.2	168	ECPAS	7.9	204	ILK	6.9
133	PPIG	9.2	169	VAPA	7.9	205	SFPQ	6.8
134	MECP2	9.1	170	DYNC1H1	7.8	206	RBM26	6.8
135	TRIR	9.1	171	YTHDC2	7.8	207	PLEC	6.8
136	SYNJ2	9.0	172	SUN1	7.7	208	LUC7L2	6.8
137	EMC7	8.9	173	EHD4	7.7	209	PTPRF	6.8
138	DDX42	8.8	174	CD151	7.6	210	LARP7	6.8
139	LYAR	8.8	175	FAR1	7.6	211	DEK	6.7
140	INF2	8.8	176	TMA7	7.6	212	S100A16	6.7
141	GBP1	8.7	177	TAF3	7.6	213	SPTBN1	6.7

	Gene	BS/BG		Gene	BS/BG		Gene	BS/BG
214	CLTC	6.7	249	SGPL1	6.1	284	NUP153	5.7
215	AP2A1	6.7	250	RHOG	6.1	285	H3BN98	5.7
216	NDUFB5	6.6	251	TRMT10C	6.1	286	CSNK2A1	5.7
217	ΡΤΡΑ	6.6	252	EHD2	6.1	287	ARL6IP5	5.7
218	HECTD1	6.5	253	SACM1L	6.1	288	NOL6	5.7
219	DSP	6.5	254	PRMT5	6.1	289	CCN1	5.6
220	EIF5B	6.5	255	SEC24C	6.0	290	CYC1	5.6
221	CARS1	6.5	256	FAM98A	6.0	291	XPO1	5.6
222	SVIL	6.4	257	GEMIN5	6.0	292	HNRNPD	5.6
223	STRBP	6.4	258	SQOR	6.0	293	GHITM	5.6
224	SSR1	6.4	259	AP3B1	5.9	294	STXBP1	5.6
225	UBR5	6.4	260	H1-10	5.9	295	NELFA	5.6
226	TRIM25	6.4	261	FANCI	5.9	296	UNC13D	5.6
227	INPPL1	6.4	262	MORF4L2	5.9	297	PGRMC2	5.6
228	MRPL1	6.3	263	RRAGB	5.9	298	UBE2M	5.5
229	MAP2K3	6.3	264	HSPB1	5.9	299	EXOC4	5.5
230	ATL3	6.3	265	NCAPG	5.9	300	POLR2B	5.5
231	ARHGAP1	6.3	266	TRIO	5.9	301	LPCAT1	5.5
232	RBM34	6.3	267	DHRS7B	5.9	302	RPN2	5.5
233	KMT2A	6.3	268	ATP6V1H	5.9	303	TOMM70	5.5
234	EPB41L2	6.3	269	PREB	5.9	304	PGM1	5.5
235	FADS2	6.3	270	ERGIC1	5.8	305	NUP205	5.5
236	ZC3H13	6.3	271	PRKCA	5.8	306	FLNB	5.5
237	SON	6.2	272	SCAMP3	5.8	307	POLR1F	5.5
238	FLNA	6.2	273	ILVBL	5.8	308	ACTR2	5.5
239	DHCR7	6.2	274	VTI1B	5.8	309	PODXL	5.4
240	NAA25	6.2	275	DHCR24	5.8	310	CXCR4	5.4
241	PRIM2	6.2	276	HMGA1	5.8	311	C7orf50	5.4
242	HS2ST1	6.2	277	CMBL	5.7	312	PLEC	5.4
243	МҮН9	6.2	278	B4GALT1	5.7	313	MAP1B	5.4
244	UGT8	6.1	279	OSBPL8	5.7	314	DDX23	5.4
245	ZNF800	6.1	280	NRDC	5.7	315	COPS3	5.4
246	PPFIA1	6.1	281	DNAJB1	5.7	316	FASN	5.4
247	PLAA	6.1	282	ZC3H15	5.7	317	CAPN2	5.4
248	UPF2	6.1	283	EIF4G1	5.7	318	NSDHL	5.3

	Gene	BS/BG		Gene	SB/BG		Gene	SB/BG
319	SLC2A1	5.3	1	SRSF1	5165.3	36	RBM17	49.2
320	ILF2	5.3	2	MACROH2A1	1276.6	37	NOL8	48.1
321	DPYSL3	5.3	3	HAUS2	849.2	38	HMGXB4	41.2
322	RNF213	5.3	4	H2BU1	741.7	39	RABL6	40.9
323	CAMK2G	5.3	5	CINP	472.5	40	TCERG1	39.5
324	PSMC1	5.3	6	PPHLN1	471.4	41	KRT72	35.2
325	DST	5.2	7	LORICRIN	334.1	42	FUS	31.7
326	SCYL1	5.2	8	FIP1L1	297.5	43	DSG1	30.1
327	NCL	5.2	9	BCLAF1	292.2	44	SAFB2	29.5
328	DNTTIP2	5.2	10	NCBP3	287.9	45	TRIR	29.5
329	CORO1C	5.2	11	SERBP1	255.6	46	PNN	28.1
330	CDC45	5.2	12	AHNAK2	217.0	47	SRRM1	27.7
331	CTNNA1	5.2	13	TAF15	205.2	48	PCF11	27.1
332	WASHC4	5.2	14	SERF2	196.1	49	PCNP	25.9
333	WBP11	5.2	15	DVL1	190.4	50	DNAJC19	25.4
334	NUP214	5.2	16	HNRNPA1	181.6	51	ARMCX2	25.2
335	LPGAT1	5.1	17	CACTIN	175.2	52	NONO	24.8
336	GTF3C4	5.1	18	RASSF7	169.8	53	MAP4K4	24.8
337	COPB2	5.1	19	SF3A2	156.5	54	ALB	24.8
338	ACSL4	5.1	20	ATP5IF1	133.5	55	RBM15B	23.8
339	NFIB	5.1	21	DNAJC8	110.3	56	EDF1	23.3
340	SEC63	5.1	22	LYZ	97.2	57	PIP	23.0
341	SRP54	5.1	23	RBM27	92.7	58	ARHGEF1	22.5
342	KYNU	5.1	24	SAFB	79.6	59	ATP6V1E1	22.4
343	ТМРО	5.1	25	RP9	79.4	60	IGHG1	22.3
344	CYFIP1	5.1	26	CDSN	72.2	61	COLGALT1	22.3
345	IPO9	5.1	27	U2AF1	68.2	62	OAS3	22.3
346	VAT1	5.0	28	RNPS1	66.6	63	PSPC1	21.0
347	ITGB1	5.0	29	HNRNPA3	64.0	64	TXN	19.0
348	UFL1	5.0	30	RBM25	61.8	65	RBBP6	18.4
349	H1-3	5.0	31	SF3B2	60.0	66	SNW1	18.2
350	KRT85	5.0	32	ZC3H18	57.5	67	SRSF11	17.9
351	CCDC47	5.0	33	H3C15	54.3	68	SUB1	17.4
352	HSD17B12	5.0	34	AZGP1	53.1	69	DDX42	16.3
353	TARS1	5.0	35	HNRNPA2B1	51.3	70	DCD	16.1

	Gene	SB/BG		Gene	SB/BG		Gene	SB/BG
71	PRRC2B	15.8	106	SF1	11.4	141	HNRNPF	7.8
72	U2SURP	15.7	107	GIMAP7	11.4	142	JUP	7.7
73	CSN1S2	15.6	108	ACOX3	11.2	143	S100A16	7.7
74	LM07	15.3	109	KNOP1	11.2	144	ELP1	7.6
75	TCOF1	15.1	110	SRP54	10.8	145	PINX1	7.6
76	HACD2	14.9	111	SBF1	10.8	146	ELAC2	7.5
77	NSRP1	14.7	112	САСҮВР	10.7	147	MELK	7.4
78	SRSF3	14.6	113	DSP	10.7	147	RAB3GAP2	7.4
79	ARMCX3	13.7	114	PC	10.6	149	MINK1	7.4
80	DNAH8	13.6	115	MOGS	10.6	150	SCAF1	7.4
81	ITPR1	13.5	115	TRABD	10.0	150	CARMIL1	7.4
82	SAMD9	13.5	110	PRIM2	10.4	151	SART3	7.4
83	SAND9	13.4	117	ZFC3H1	10.4	152	WBP11	7.4
84	CCAR1	13.4	119	SON	10.2	153	CDK12	7.3
85	HNRNPAB		119	SREK1IP1	9.8	154	NCL	7.5
		13.2						7.1
86	KRT78	13.2	121	CEP170	9.8	156	HSPA4L	
87	SYNJ2	13.1	122	BLVRA	9.6	157	STEEP1	7.0
88	HNRNPAO	12.9	123	UFL1	9.5	158	MYH14	7.0
89	U2AF2	12.9	124	UGT8	9.5	159	ABCD1	6.9
90	CSN3	12.7	125	SMG8	9.3	160	TRMT1L	6.9
91	NCKAP1	12.7	126	UBE2M	9.0	161	DPP3	6.9
92	RBM33	12.5	127	SUN1	8.9	162	PCCA	6.8
93	CCDC124	12.5	128	DSC1	8.9	163	VAPA	6.8
94	CCAR2	12.4	129	RNPEP	8.8	164	RHOG	6.7
95	CSN2	12.3	130	DDB1	8.6	165	SVIL	6.7
96	LRRC40	12.3	131	HRNR	8.6	166	POLE	6.6
97	PPIG	12.2	132	MPHOSPH10	8.5	167	CSN1S1	6.6
98	CALML5	12.1	133	MFAP1	8.4	168	SMCHD1	6.5
99	RBM26	12.0	134	POLR1G	8.3	169	FANCI	6.5
100	BCR	12.0	135	EMC7	8.3	170	GNPAT	6.5
101	SCAF11	11.9	136	YTHDC2	8.2	171	CAVIN1	6.5
102	RICTOR	11.9	137	SQOR	8.0	172	PRPF4B	6.5
103	RBM39	11.8	138	ITPR3	7.9	173	JPH2	6.4
104	GOT1	11.6	139	EPB41L1	7.9	174	DVL3	6.4
105	NR2F2	11.4	140	FLNA	7.9	175	DIP2B	6.4

GeneSB/BGGeneSB/BG176SFPQ6.4211ZC3H135.6177DHRS7B6.3212PLCB35.6178THOC26.3213LUC/L25.6179NOL66.3214AC015.6180NELFA6.3215HNRNPC5.6181PREB6.3216RBM425.5182DPYSL36.3217ARHGAP55.5183CARS16.2218GBP15.5184KRT96.2220LMAN25.4185PPIP5K26.2220LMAN25.4186MAP2K36.2221NA4255.4187POLR2B6.1222FLG25.4188UPF26.1223EI/4615.3190MCCC16.1225GEMIN55.3191MICU26.0226HMGN45.3192SNRPB26.0227DDX235.3193ZNF6386.0228NKD25.3194HLTF5.9231TRAM15.3195CMBL5.9231TRAM15.3196TRIM255.9231TRAM15.2197CCN715.9235STRBP5.2198KRT15.9235STRBP5.2199STXBP15.9235STRBP5.2101 <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>				1		
177 DHRS7B 6.3 212 PLCB3 5.6 178 THOC2 6.3 213 LUC7L2 5.6 179 NOL6 6.3 214 ACO1 5.6 180 NELFA 6.3 215 HNRNPC 5.6 181 PREB 6.3 216 RBM42 5.5 182 DPYSL3 6.3 217 ARHGAP5 5.5 183 CARS1 6.2 219 MAGT1 5.5 184 KRT9 6.2 220 LMAN2 5.4 185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 224 SMC1A 5.3 190 MCC1 6.1 225 GEMIN5 5.3 191 MIC2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 228 NKD2	-	Gene	SB/BG		Gene	SB/BG
178 THOC2 6.3 213 LUC7L2 5.6 179 NOL6 6.3 214 ACO1 5.6 180 NELFA 6.3 215 HNRNPC 5.6 181 PREB 6.3 216 RBM42 5.5 182 DPYSL3 6.3 217 ARHGAP5 5.5 183 CARS1 6.2 218 GBP1 5.5 184 KR79 6.2 219 MAGT1 5.5 185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 EIF4G1 5.3 190 MCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRP82 6.0 228 NKD2 5.3 193 ZNF638 6.0 230 AP241	176	SFPQ	6.4	211	ZC3H13	5.6
179 NOL6 6.3 214 ACO1 5.6 180 NELFA 6.3 215 HNRNPC 5.6 181 PREB 6.3 216 RBM42 5.5 182 DPYSL3 6.3 217 ARHGAP5 5.5 183 CARS1 6.2 218 GBP1 5.5 184 KRT9 6.2 219 MAGT1 5.5 185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 224 SMCIA 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 228 NKD2 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 231 TRAM1 <	177	DHRS7B	6.3	212	PLCB3	5.6
180 NELFA 6.3 215 HNRNPC 5.6 181 PREB 6.3 216 RBM42 5.5 182 DPYSL3 6.3 217 ARHGAP5 5.5 183 CARS1 6.2 218 GBP1 5.5 184 KRT9 6.2 219 MAGT1 5.5 185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 ElF4G1 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 228 NKD2 5.3 193 ZWF638 6.0 230 AP2A1 5.3 194 HLTF 5.9 231 TRAM1 5.3 195 CMBL 5.9 233 POLR1A	178	THOC2	6.3	213	LUC7L2	5.6
181 PREB 6.3 216 RBM42 5.5 182 DPYSL3 6.3 217 ARHGAP5 5.5 183 CARS1 6.2 218 GBP1 5.5 184 KRT9 6.2 219 MAGT1 5.5 185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 EIF4G1 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.2 196 TRIM25 5.9 233 POLR1A	179	NOL6	6.3	214	ACO1	5.6
182 DPYSL3 6.3 217 ARHGAP5 5.5 183 CARS1 6.2 218 GBP1 5.5 184 KRT9 6.2 219 MAGT1 5.5 185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 EIF4G1 5.3 190 MCC1 6.1 225 GEMIN5 5.3 190 MCC21 6.0 226 HMGN4 5.3 191 MICU2 6.0 228 NKD2 5.3 192 SNRPB2 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.3 196 TRIM25 5.9 233 POLR1A 5.2 200 PRKCA 5.9 235 STRBP	180	NELFA	6.3	215	HNRNPC	5.6
183 CARS1 6.2 218 GBP1 5.5 184 KRT9 6.2 219 MAGT1 5.5 185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 EIF4G1 5.3 190 MCC21 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.3 196 TRIM25 5.9 233 POLR1A 5.2 200 PRKCA 5.9 233 POLR1A 5.2 201 INPPL1 5.8 235 STRBP	181	PREB	6.3	216	RBM42	5.5
184 KRT9 6.2 219 MAGT1 5.5 185 PPIP5K2 6.2 220 LMAN22 5.4 186 MAP2K3 6.2 221 NAA255 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 EIF4G1 5.4 189 INF2 6.1 224 SMC1A 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.3 196 TRIM25 5.9 233 PDIR1A 5.2 199 STXBP1 59 235 STRP 5.2 200 PRKCA 5.9 235 STRP	182	DPYSL3	6.3	217	ARHGAP5	5.5
185 PPIP5K2 6.2 220 LMAN2 5.4 186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 EIF4G1 5.4 189 INF2 6.1 224 SMC1A 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.3 196 TRIM25 5.9 233 POLR1A 5.2 199 STXBP1 59 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC	183	CARS1	6.2	218	GBP1	5.5
186 MAP2K3 6.2 221 NAA25 5.4 187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 EIF4G1 5.4 189 INF2 6.1 224 SMC1A 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 228 NKD2 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 59 232 PTPRF 5.3 198 KRT1 59 233 POLR1A 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC <	184	KRT9	6.2	219	MAGT1	5.5
187 POLR2B 6.1 222 FLG2 5.4 188 UPF2 6.1 223 ElF4G1 5.4 189 INF2 6.1 224 SMC1A 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KR11 5.9 233 POLR1A 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPP1 5.8 236 XPC 5.2 203 KRT14 5.8 237 FLNA 5	185	PPIP5K2	6.2	220	LMAN2	5.4
188 UPF2 6.1 223 EIF4G1 5.4 189 INF2 6.1 224 SMC1A 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 230 AP2A1 5.3 195 CMBL 5.9 231 TRAM1 5.3 196 TRIM25 5.9 232 PTPRF 5.3 198 KRT1 5.9 232 PTPRF 5.3 199 STXBP1 5.9 233 POLR1A 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 203 KRT14 5.8 237 FLNA 5.2 204 SCAMP3 5.8 239 TGM2 <td< td=""><td>186</td><td>MAP2K3</td><td>6.2</td><td>221</td><td>NAA25</td><td>5.4</td></td<>	186	MAP2K3	6.2	221	NAA25	5.4
189 INF2 6.1 224 SMC1A 5.3 190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 229 HS2ST1 5.3 195 CMBL 5.9 230 AP2A1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 233 POLR1A 5.2 199 STXBP1 5.9 234 CCDC93 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 <t< td=""><td>187</td><td>POLR2B</td><td>6.1</td><td>222</td><td>FLG2</td><td>5.4</td></t<>	187	POLR2B	6.1	222	FLG2	5.4
190 MCCC1 6.1 225 GEMIN5 5.3 191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 229 HS2ST1 5.3 195 CMBL 5.9 230 AP2A1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 196 TRIM25 5.9 232 PTPRF 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 233 POLR1A 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.1 205 SGPL1 5.7 240 CYCS <	188	UPF2	6.1	223	EIF4G1	5.4
191 MICU2 6.0 226 HMGN4 5.3 192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 229 HS2ST1 5.3 195 CMBL 5.9 230 AP2A1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 234 CCDC93 5.2 199 STXBP1 5.9 235 STRBP 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 203 KRT14 5.8 237 FLNA 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 242 MTRR <t< td=""><td>189</td><td>INF2</td><td>6.1</td><td>224</td><td>SMC1A</td><td>5.3</td></t<>	189	INF2	6.1	224	SMC1A	5.3
192 SNRPB2 6.0 227 DDX23 5.3 193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 229 HS2ST1 5.3 195 CMBL 5.9 230 AP2A1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 233 POLR1A 5.2 199 STXBP1 5.9 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 203 KRT14 5.8 237 FLNA 5.2 204 SCAMP3 5.8 239 TGM2 5.1 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 242 MTR 5.1 208 MAP15 5.7 243 PPFIA1 <	190	MCCC1	6.1	225	GEMIN5	5.3
193 ZNF638 6.0 228 NKD2 5.3 194 HLTF 5.9 229 H525T1 5.3 195 CMBL 5.9 230 AP2A1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 233 POLR1A 5.2 199 STXBP1 5.9 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 203 KRT14 5.8 237 FLNA 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 242 MTRR 5.1 207 PKN2 5.7 243 PPFIA1 5.1 208 MAP1S 5.7 243 PPFIA1 <	191	MICU2	6.0	226	HMGN4	5.3
194 HLTF 5.9 229 HS2ST1 5.3 195 CMBL 5.9 230 AP2A1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 233 POLR1A 5.2 199 STXBP1 5.9 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 237 FLNA 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTR 5.1 208 MAP1S 5.7 243 PPFIA1 5	192	SNRPB2	6.0	227	DDX23	5.3
195 CMBL 5.9 230 AP2A1 5.3 196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 233 POLR1A 5.2 199 STXBP1 5.9 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.1 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5	193	ZNF638	6.0	228	NKD2	5.3
196 TRIM25 5.9 231 TRAM1 5.3 197 CCNT1 5.9 232 PTPRF 5.3 198 KRT1 5.9 233 POLR1A 5.2 199 STXBP1 5.9 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.1 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 208 MAP1S 5.7 242 MTR 5.1 209 RBM14 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7	194	HLTF	5.9	229	HS2ST1	5.3
197 CCNT1 59 232 PTPRF 5.3 198 KRT1 59 233 POLR1A 5.2 199 STXBP1 59 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.1 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	195	CMBL	5.9	230	AP2A1	5.3
198 KRT1 59 233 POLR1A 5.2 199 STXBP1 59 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 243 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	196	TRIM25	5.9	231	TRAM1	5.3
199 STXBP1 59 234 CCDC93 5.2 200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	197	CCNT1	59	232	PTPRF	5.3
200 PRKCA 5.9 235 STRBP 5.2 201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HB51L 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP15 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	198	KRT1	59	233	POLR1A	5.2
201 INPPL1 5.8 236 XPC 5.2 202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	199	STXBP1	59	234	CCDC93	5.2
202 PLAA 5.8 237 FLNA 5.2 203 KRT14 5.8 238 HB51L 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	200	PRKCA	5.9	235	STRBP	5.2
203 KRT14 5.8 238 HBS1L 5.2 204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP15 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	201	INPPL1	5.8	236	ХРС	5.2
204 SCAMP3 5.8 239 TGM2 5.2 205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	202	PLAA	5.8	237	FLNA	5.2
205 SGPL1 5.7 240 CYCS 5.1 206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	203	KRT14	5.8	238	HBS1L	5.2
206 FAM111B 5.7 241 KRT10 5.1 207 PKN2 5.7 242 MTRR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	204	SCAMP3	5.8	239	TGM2	5.2
207 PKN2 5.7 242 MTRR 5.1 208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	205	SGPL1	5.7	240	CYCS	5.1
208 MAP1S 5.7 243 PPFIA1 5.1 209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	206	FAM111B	5.7	241	KRT10	5.1
209 RBM14 5.7 244 AGPS 5.1 210 CERS2 5.6 245 KAT7 5.1	207	PKN2	5.7	242	MTRR	5.1
210 CERS2 5.6 245 KAT7 5.1	208	MAP1S	5.7	243	PPFIA1	5.1
	209	RBM14	5.7	244	AGPS	5.1
246 NKRF 5.0	210	CERS2	5.6	245	KAT7	5.1
				246	NKRF	5.0

Dataset S1 (separate file).

Excel file containing quantitative proteomics results from Proteome Discoverer, and data analysis (detailed in the "Protocol" sheet, along with the description of each sheet). The following values are reported for each identified protein: False Discovery Rate (FDR) (High or Medium), UniProt accession number, a brief description of the protein, the name of the gene encoding the protein, the experimental q-value, Sum Pep score (protein score calculated as the negative log of the Posterior error probability (PEP) values of connected Peptide Spectrum Matches (PSMs)), coverage percentage (the percent calculated by dividing the number of amino acids in all found peptides by the total number of amino acids in the entire protein sequence), number of peptides, number of PSMs, number of unique peptides, number of amino acids, molecular weight, calculated isoelectric point (pl), Mascot score, number of peptides identified by Mascot and number of razor peptides (a peptide that has been assigned to the protein group with the largest number of total peptide identified). For each protein we also report the label free quantification (AUC) values recorded in two instrument blank runs (no injection) and in the different experimental replicates (BS1, BS2, BS3, SB1, SB2, SB3, BG1, BG2, BG3). 161 proteins with no LFQ value were removed (these proteins are not quantified because of their low abundance; therefore, they are unlikely to be enriched) and 12 proteins detected in the blank with intensity >1% than in average samples were removed (Filtering sheet). In addition, ratios between the BS or SB condition vs the BG control are reported in Imputation and Rations. Proteins sorted by total combined abundance are shown in the following sheet, followed by a list of the 1699 most abundant proteins, sorted by their abundance in BS or SB datasets respectively. Green color indicates proteins enriched 5 or more times in each dataset.

SI References

- 1. D. I. Kim *et al.*, An improved smaller biotin ligase for BioID proximity labeling. *Mol Biol Cell* **27**, 1188-1196 (2016).
- R. J. Szczesny *et al.*, Versatile approach for functional analysis of human proteins and efficient stable cell line generation using FLP-mediated recombination system. *PLoS One* 13, e0194887 (2018).
- 3. G. N. Maertens *et al.*, Structural basis for nuclear import of splicing factors by human Transportin 3. *Proc Natl Acad Sci U S A* **111**, 2728-2733 (2014).
- 4. P. Savitsky *et al.*, High-throughput production of human proteins for crystallization: the SGC experience. *J Struct Biol* **172**, 3-13 (2010).
- 5. K. B. Rogala *et al.*, Structural basis for the docking of mTORC1 on the lysosomal surface. *Science* **366**, 468-475 (2019).
- 6. O. Anczukow *et al.*, SRSF1-Regulated Alternative Splicing in Breast Cancer. *Mol Cell* **60**, 105-117 (2015).