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S1. Simulation Methods 

S1.1 Modeling the complexes 

In this work, we used experimental crystal structures together with homology modeling 

technique to model the inactive (PDB ID:7EPA) state, the agonist-bound (PDB ID:7EPB) 

state, and the active state (PDB ID:7E9G) for calculations.  

The VFT domains undergo a sequential conformational change, while the 7TM domains 

exhibit a substantial rearrangement from an inactive (S1) to an agonist-bound (S2) state 

with diverse dimerization patterns. Firstly, we directly used the targeted molecular dynamic 

(TMD) method to connect these two states, which leads to collisions between 7TM 

domains. This phenomenon indicates that the rotation of 7TMs forms a coupled 

relationship instead of occurring synchronously. 

In order to avoid collisions, we disassembled the mGlu2 dimer, and used the TMD method 

to obtain the intermediate structures of these two subunits from S1 to S2. Then, USCF 

Chimera(1) was employed to assemble the two subunit intermediates. After obtaining these 

intermediate structures between S1 and S2, we added membrane particles and performed 

relaxation runs on each structure until the energy is converged. Then we trimmed the all-

atom structures into coarse grained (CG) representations and evaluated their CG free 

energy to obtain the conformational free energy change profile (Figure 2a in the main text). 

Each point in Figure 2a represents a possible conformational state and its corresponding 

folding free energy. 

Furthermore, to study how agonists bind to mGlu2, we take four parameters into account: 

the conformations of L subunit and R subunit in mGlu2 homodimer, and the agonist position 

for L and R subunit. In order to differentiate the conformational state of single subunit, the 

start-point and the end-point subunit states were numbered as subunit 0 and subunit 16, 

and the generated 15 intermediate conformations were numbered as subunit 1-15. 

Therefore, a total of 17 subunit states were applied to construct the conformations of 

mGlu2. For the agonist position, we generated the agonist binding free energy profile by 

docking an agonist at different distance away from the binding pocket in the VFT domain 

to the bulk solvent in one subunit of the mGlu2 dimer. Totally 25 structures were generated 

for each subunit state and we numbered each intermediate structure from 25 (agonists in 

the binding pocket) to 0 (agonists in the bulk solvent). Based on these, another agonist 

was also docked at different distance away from the binding pocket to the bulk solvent on 

the other subunit of the mGlu2 dimer. Then the subunit states of the conformations of 

mGlu2 and the agonist positions were combined to represent the process of the agonist 

binding to mGlu2 by four numbers. For example, the start-point was named as S (0, 0, 0, 

0). Thus, a total of 195,364 (17*17*26*26) mGlu2 conformations were constructed. In this 

work, each state can be depicted as S (x, y, z, i) with x, y, ranging from 0 to 16, while z and 

i ranging from 0 to 25. Here x, y represent the conformational change of the L and R subunit 

of mGlu2 dimer, z, i indicate the agonist position for the R and L subunit. 

The free energy landscape we obtained is shown in the main text Figure 4. The free energy 

corresponding to each point in Figure 4 is the sum of the conformational free energy and 

the agonist binding free energy. In addition, we also considered the situation when only 

one agonist binds to mGlu2, and the corresponding figures are shown in Figure S4 and 

S5. 
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In order to learn how the Gi protein induces the conformational changes of mGlu2, the 

structure of Gi protein in the Gi
GDP state (PDB ID: 6CRK) was “repaired” by using 

Modeller(2, 3). Then, HDOCK protein-protein docking (4) was performed to obtain the 

optimal binding pose of Gi protein to mGlu2 in the S2 state. For the structure of the Gi 

protein in the S3 state, we employed the active state of mGlu2 (PDB ID:7E9G) for 

calculations. The TMD method was used to connect the S2 and S3 state. Then, we 

identified the center of mass of the Gi
 protein in the optimal binding mode as the initial 

position and pulled the Gi
 protein away. From the bulk solvent to the G protein binding site, 

a total of 20 binding free energies at a 1 Å interval were obtained for each intermediate 

structure between the S2 and S3 state. Combining these sets of data and the 

conformational free energy change, we could obtain the free energy landscape that is 

shown in the main text Figure 5b. The free energy here consists of the conformational free 

energy of mGlu2-Gi complex and the binding free energy of the two agonists. The possible 

minimal energy path of how Gi protein couples to mGlu2 is shown in Figure 5b by the black 

dashed line.  

For the GDP release coordinates, we performed series of docking calculations on 

GDP+Mg2+ on each intermediate structure, which was obtained from the possible minimal 

energy path in Figure 5b at different distances. From nucleotide binding pocket to the bulk 

solvent, we got 25 binding free energies at a 1 Å interval. Combining these sets of data 

and the conformational free energy changes, we could obtain the free energy landscape 

that is shown in the main text Figure 5c. 

To evaluate the CG energy, all the all-atomic models we built were relaxed the protein at 

50K for 0.2 ns. Our simulations were performed by Molaris-XG package version 9.1.5. The 

ENZYMIX force field(5, 6) was used. The long-range electrostatics effect was treated by 

the local reaction field method(7). A gird of unified atoms was used to represent membrane 

particles and were added to the system by Molaris-XG(5, 6). Then the all-atom structures 

were converted into the CG representation and performed extensive (5000 steps, 0.001 

ps step-size) relaxation at 50K temperature until the energy of system is converged. During 

relaxation, one structure was output each 100 steps and finally we got a simulation 

trajectory composed of 50 structures. All these structures were used for energy evaluation. 

The CG model we used(8-10) focuses on the accurate treatment of the electrostatic and 

is sensitive to the charge distribution of the protein ionized groups. In consequence, before 

energy evaluation, a Monte Carlo proton transfer (MCPT) method (9) was used to 

determine the charge states of the ionizable residues in each structure. During MCPT, 

protons were “jumped” between ionizable residues, and a standard Metropolis criterion 

was utilized to calculate the acceptance probability. 

 

S1.2 Targeted Molecular Dynamics 

Targeted molecular dynamics was employed to generate the intermediate conformations 

between the three endpoint states (the S1, S2 and S3 states). During TMD simulation, for 

each mapping frame 𝑚, the mapping is performed, and the system is restrained around 

the coordinate 𝑟0,𝑚.  

                    𝑟0,𝑚 = 𝑟𝑚−1
𝑎𝑣𝑔

+ 𝜆(𝑟𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑟𝑚
𝑎𝑣𝑔

)                            (S1) 

In the equation S1, 𝑟𝑚−1
𝑎𝑣𝑔

 is the average coordinate of the system in the 𝑚 − 1 mapping 
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frame. 𝑟𝑡𝑎𝑟𝑔𝑒𝑡  represents the coordinate of the target protein system. 𝜆  is the mapping 

parameter, 𝜆 ∈ [0,1] . For the initial frame, 𝑟𝑚−1
𝑎𝑣𝑔

  is the coordinate of the initial protein 

system. During TMD simulations, subset of atoms is guided towards a final 'target' structure 
by means of steering forces. At each step, the root-mean-square (RMS) distance between 
the current coordinates and the target structure is calculated (after first aligning the target 
structure to the current coordinates). When the system is restrained at the coordinate 𝑟0,𝑚, 

The force on each atom is given by the gradient of the potential: 
                         𝑈𝑇𝑀𝐷 =  𝑘(𝑟 − 𝑟0,𝑚)2                                (S2) 

                            𝑘 =
1

2

𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑁
                                     (S3) 

In this equation, 𝑟 is the instantaneous coordinate in the 𝑚 mapping frame. 𝑟0,𝑚 evolves 

linearly from the initial RMS distance at the first TMD step to the target RMS distance at 
the last TMD step.  𝑘 is the force constant, which is the ratio of the spring constant 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 

and the number of targeted atoms 𝑁. 
The RMS distance for the system from its current coordinate to the target is shrinking 
monotonously during the TMD simulation, driving the moving structure toward the target 
configuration(11). For each domain, forces on the atoms are calculated independently from 
the other domains. 
In our study, from the initial to the target protein system,500 frames of restrained relaxation 
run were performed. 𝑘 was set as 100 kcal/mol/Å2. We picked 15 structures at the equal 
interval to calculate the free energy profiles of the conformational changes in Figure 5a. 
 

S1.3 Coarse-Grained(CG) model 

The coarse-grained model used in this work is one of most reliable models for studying 

complex protein system like membrane proteins. In this CG models the sidechain of a 

protein residue is represented as a simplified united atom, whereas the main chain atoms 

are represented explicitly as shown in Figure S1. The simplified united atom is generally 

placed at the mass center of the sidechain (for polar and nonpolar residues) or at the center 

of the charged group of a residue (for ionizable residues). In our CG model, the solvent is 

treated implicitly and to represent a membrane a grid of effective atoms is used. A 

consistent treatment of the electrostatic free energy is a key factor for the success of this 

CG model in explaining the energetics of many complicated and large biological systems 

(12-14). 

The total energy of our CG model is given by the expression: 

∆𝐺𝑓𝑜𝑙𝑑 = ∆𝐺𝑚𝑎𝑖𝑛 + ∆𝐺𝑠𝑖𝑑𝑒 + ∆𝐺𝑚𝑎𝑖𝑛−𝑠𝑖𝑑𝑒 

= 𝑐1∆𝐺𝑠𝑖𝑑𝑒
𝑣𝑑𝑊 + 𝑐2∆𝐺𝑠𝑜𝑙𝑣

𝐶𝐺 + 𝑐3∆𝐺𝐻𝐵
𝐶𝐺 + ∆𝐺𝑠𝑖𝑑𝑒

𝑒𝑙𝑒𝑐 + ∆𝐺𝑠𝑖𝑑𝑒
𝑝𝑜𝑙𝑎𝑟

+ ∆𝐺𝑠𝑖𝑑𝑒
ℎ𝑦𝑑

+ ∆𝐺𝑚𝑎𝑖𝑛−𝑠𝑖𝑑𝑒
𝑒𝑙𝑒𝑐         (S4) 

 

The terms on the right are the side chain van der Waals energy, main chain solvation 

energy, main chain hydrogen bond energy, side chain electrostatic energy, side chain polar 

energy, side chain hydrophobic energy, main chain/side chain electrostatic energy, and 

main chain/side chain van der Waals energy, respectively. The constants 𝑐1, 𝑐2, and 𝑐3 are 

scaling coefficients and they have values of 0.10, 0.25, and 0.15, respectively, in this 

work(15, 16). 

 

S1.4 Semi-microscopic Version of Protein Dipole Langevin Dipole Method (PDLD/S-LRA/

β) of Solvation Free Energy and Binding Free Energy Calculation 

The free energy of agonist binding was calculated by the PDLD/S-LRA/β method(17-19). 

The Scaled Protein Dipole Langevin Dipole (PDLD/S) is a method to calculate the 

electrostatic energies of a system in a semi-microscopic level. In the PDLD calculations, 
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the solvent molecules are represented by a grid of Langevin dipoles (LD). The LD 

representation of solvent considers average polarization of the solvent, whereas to use 

averaged protein configurations multiple snapshots of protein configurations are taken from 

a long molecular dynamic simulation. Linear response approximation (LRA) is applied to 

average polarization, and the linear interaction method (LIE) approximates the non-electric 

binding contribution by a scaled vdW term. Therefore, the overall method was named 

PDLD/s-LRA/β. Here, we have used the PDLD/s-LRA/β to calculate the solvation and 

binding free energies of a macromolecular system. The details of the method are discussed 

in many of our previous works(17, 18). We employed the POLARIS(6) module of Molaris-

XG software to calculate the binding free energy of an agonist. The following equation 

represents the free energy change: 

∆𝐺𝑏𝑖𝑛𝑑
𝑃𝐷𝐿𝐷 𝑆⁄ −𝐿𝑅𝐴 𝛽⁄

=
1

2
(〈𝑈𝑒𝑙𝑒𝑐,𝑙

𝑝 〉𝑙 − 〈𝑈𝑒𝑙𝑒𝑐,𝑙
𝑤 〉𝑙) +

1

2
(〈𝑈𝑒𝑙𝑒𝑐,𝑙

𝑝 〉𝑙′ − 〈𝑈𝑒𝑙𝑒𝑐,𝑙
𝑤 〉𝑙′) + 𝛽(〈𝑈𝑣𝑑𝑊,𝑙

𝑝 〉𝑙 −

                                     〈𝑈𝑣𝑑𝑊,𝑙
𝑤 〉𝑙)                                                  (S5) 

 

where 〈𝑈𝑒𝑙𝑒𝑐,𝑙
𝑝 〉𝑙 is the electrostatic contribution for the interaction between the ligand and 

its surroundings. 𝑝 and 𝑤 designate protein and water, respectively. 𝑙 and 𝑙′ designate the 

ligand in its actual charged form and the “non-polar” ligand, where all of the residual 

charges are set to 0. Previously, this method was called LRA/α, but since the new element 

is the β term relative to our original LRA treatment, we prefer the name LRA/β(19). 

 

S1.4 Pathway Search of Agonists Binding to mGlu2 Based on the Free Energy 

Landscape 

In order to reveal the role of agonists during the activation process of mGlu2 (scenario 3 in 

Figure S3), we take four parameters into consideration: the conformations of L subunit and 

R subunit, the agonists’ positions with respect to L and R subunit. Details are described in 

Section S1.1. Based on the free energy landscape we obtained (Figure 4 in the main text), 

the optimal conformational change pathway was sampled using the Monte Carlo 

sampling(20) as shown in Figure S10. The main process is as follows: 

(1) The scaling process is performed to reconstruct the free energy landscape by 

accelerated molecular dynamics simulation (AMD) method(21-23) in red section of Figure 

S10. In detail, the new free energy value (𝐸𝑆
′) for the conformations of mGlu2 was scaled 

based on the original free energy value (𝐸𝑆) as follows: 

 𝛼 = 𝐸𝑆(𝑚𝑎𝑥)-𝐸𝑆(𝑚𝑖𝑛)                          (S6) 

𝐸𝑆
′ = 𝐸𝑆 +

[𝐸𝑆(𝑚𝑎𝑥)−𝐸𝑆]2

𝛼+𝐸𝑆(𝑚𝑎𝑥)−𝐸𝑆
= 𝐸𝑆 +

[𝐸𝑆(𝑚𝑎𝑥)−𝐸𝑆]2

2𝐸𝑆(𝑚𝑎𝑥)−𝐸𝑆(𝑚𝑖𝑛)−𝐸𝑆
   (S7) 

where 𝛼 is a tuning parameter that determines how deep we want the modified potential 

energy basin to be. 𝐸𝑆(𝑚𝑎𝑥) and 𝐸𝑆(𝑚𝑖𝑛)  indicate the maximum and minimum energy 

values in the original free energy landscape.  

 

(2) The sampling process is performed to search possible pathways via the Metropolis 

sampling process in green block of Figure S1 

(3) . The conformational pathways starts at S(0, 0, 0, 0) and ends at S(16,16, 25, 25). The 

movement of conformational sate for each subunit could be set as -1, 0, and +1, which 
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means one step backward, staying, and forward respectively. The probabilities for the 

movement of one subunit should satisfy the following expression: 

𝑃−1 + 𝑃0 + 𝑃+1 = 1                         (S8) 

In this study, 𝑃−1, 𝑃0, 𝑃+1 are set with values of 0.2, 0.4, and 0.4 respectively. The entire 

move of the conformational state for mGlu2 could further be depicted as 𝑀(𝑖, 𝑗, 𝑙, 𝑘) , 

𝑖, 𝑗, 𝑙, 𝑘 ∈ [+1, 0, −1]. The probability for the movement of four subunits can be calculate as 

follows 

 𝑃𝑀 = 𝑃𝑖 ∗ 𝑃𝑗 ∗ 𝑃𝑙 ∗ 𝑃𝑘                        (S9) 

Each move selection was made randomly based on its relatively probability among all 

potential move ensemble by normalization. Then, a new conformational state of mGlu2 

can be achieved after the move selection. The acceptance of the new conformational state 

is based on the free energy barriers according to the Monte Carlo method as follows: 

𝑟𝑎𝑛𝑑(0,1) ≤ 𝑒𝑥𝑝
−∆𝐸

𝑘𝐵𝑇
                       (S10) 

(4) The selection process is to evaluate the sampled pathways in yellow part of Figure 

S11. 5,000 conformational pathways are sampled under the Metropolis criteria. For all the 

sampled conformational pathways, the redundant conformations that occurring more than 

twice were deleted from the original pathway. The truncated pathways with no redundant 

conformations were applied for further processing. Then the free energy barrier calculation 

for each truncated pathway by considering all the occurred free energy barriers along the 

pathway. The largest free energy barrier was recorded. Next, we compared the free energy 

barriers of each truncated pathway and found one which had the smallest energy barrier. 

Finally, we obtained the energetic and conformational changes along the optimal 

conformational pathway of agonist binding to VFT in mGlu2 from S1 to S2 process. 

In addition, we also considered two other situations shown in Figure S3: only one agonist 

binds to the L and R subunit (scenario 1 and scenario 2 in Figure S3) respectively. And the 

process of finding the optimal conformational change pathway in those two situations is 

similar to the above, the workflow chart is shown in Figure S11.  

Different values of 𝑃−1, 𝑃0, 𝑃+1 takes different time for sampling, especially the larger the 

value of 𝑃−1, the longer it takes. Therefore, considering efficiency, the values of 𝑃−1, 𝑃0, 

𝑃+1 are 0.2, 0.4, and 0.4 in the scenario that only one agonist binding to the L subunit of 

mGlu2 dimer while the value of 𝑃−1, 𝑃0, 𝑃+1 are 0.1, 0.45, and 0.45 in the scenario that only 

one agonist binding to the R subunit of mGlu2 dimer.  
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Table S1. Conformational free energy terms of key conformations in the process of a 

conformational transition from the S1 to the S2 state. The unit of energy is kcal/mol. 

 𝐸𝐹𝑜𝑟𝑚2𝑀𝐶
1 𝐸𝑆𝑐𝑎𝑙𝑒𝑑 𝑠𝑖𝑧𝑒

2 𝐸𝐻𝑦𝑑𝑟𝑜
3 𝐸𝑣𝑑𝑊

4 𝐸−𝐷𝐺 𝑈𝐹
5 𝐸𝑃𝑜𝑙𝑎𝑟

6 𝐸𝑡𝑜𝑡𝑎𝑙
7 

S1 89.38 258.5 -870.2 -21.43 3.19 52.77 -487.79 
I1 79.89 258.5 -863.02 -21.8 3.19 41.59 -501.65 
T1 75.06 258.5 -845.91 -21.69 3.19 42.2 -488.65 
I2 70.14 258.5 -864.05 -22.29 3.19 44.58 -509.93 
T2 81.5 258.5 -845.76 -22.1 3.19 47.49 -477.18 
I3 88.47 258.5 -876.07 -22.3 3.19 57.48 -490.73 
S2 92.19 258.5 -864.33 -22.08 3.19 53.86 -478.67 

 

1: Electrostatic energy term obtained using whole residue charges (0 or ±1), which minimize 

electrostatic energy in the MCPT method. 
2:Empirical term that takes into account effect of a protein size on a folding free energy. 
3:Scaled hydrophobic energy term.  
4:Scaled van der Waals energy term. 
5:Negative of a scaled charge-charge energy estimate of an unfolded protein. 
6:Polar energy contribution term 
7:The sum of EForm2MC, EScaled size, EHydro, EVDW, E-DG UF and EPOLAR. 
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Figure S1. A visual presentation of the CG model used in this study. The inactive 

state of mGlu2 of PDB 7EPA is shown in an all-atom representation in the left and in 

a CG representation on the right. 

 

 

 

 
Figure S2. Distribution of key amino acid residues that affect the energy barrier between 

(a) I1 and T1 state; (b) I2 and T2 state; (c) I3 and S2 state. 



9 

 

 

 

Figure S3. Schematic diagram of glutamate binding to VFT in mGlu2 under three different 

conditions: with glutamate only binding to the L subunit, with glutamate only binding to the 

R subunit, with 2 glutamates binding to the L and R subunits. 

 

 

Figure S4. The complete free energy landscape of mGlu2 conformational transition 

between S1 and S2 states when only the L subunit binds one agonist. (a) Coupled free 

energy landscape of the distance between the binding pockets in the VFT domain and the 

agonist and the conformational changes of the L subunit of mGlu2 from state S1 to S2. 

Totally 17*17*26 states of mGlu2 constructed the complete free energy landscape of the 

agonist binding process. The X and Y axis indicate the conformational changes of L and R 

subunits of the mGlu2 dimer which vary from 0 to 16 while the Z axis represents the 

distance between the binding pocket of the L subunits and the agonist which varies from 0 

to 25. The possible minimal energy path is represented by a black line. (b) The key 

energetic and conformational change along the optimal conformational pathway of agonist 

binding to VFT in mGlu2 transitioning from S1 to S2 state. Distance here indicates the 

distance between the ligand and the binding pocket in the VFT domain of the L subunit. 

The state of L subunit, R subunit, and the distance are represented by pink, green lines, 

and orange lines, respectively. The highest barrier along this possible minimal energy path 

is 23.55 kcal/mol, which occurs between the L-I2’ and L-T2’. 
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Figure S5. The complete free energy landscape of mGlu2 when only the R subunit binds 

one agonist. (a) Coupled free energy landscape of the distance between the binding 

pockets in the VFT domain and the agonist and the conformational changes of the R 

subunit of mGlu2 from state S1 to S2. Totally 17*17*26 states of mGlu2 constructed the 

complete free energy landscape of the agonist binding process. The X and Y axis indicate 

the conformational changes of L and R subunits of the mGlu2 dimer which vary from 0 to 

16, while the Z axis represents the distance between the binding pocket of the R subunit 

and the agonist which varies from 0 to 25. The possible minimal energy path is represented 

by a black line. (b) The key energetic and conformational change along the optimal 

conformational pathway of agonist binding to VFT in mGlu2 transitioning from S1 to S2 

state. Distance here indicates the distance between the ligand and the binding pocket in 

the VFT domain of the R subunit. The state of L subunit, R subunit, and the distance are 

represented by pink, green, and orange lines, respectively. The highest barrier along this 

possible minimal energy path is 17.90 kcal/mol, which occurs between the R-I2’ and R-T2’. 

 

 

Figure S6. Free energy profiles along the minimal energy path in Figure 5b during the Gi 

coupling to mGlu2 activation process.  
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Figure S7. Free energy profiles along the minimal energy path (Path 3 in Figure 5c, from 

potin a to point d) during the GDP release process.  

 

 

 

Figure S8. Distribution of key residues in mGlu2-Gi complex. 
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Figure S9. Evaluation of mutational effects of the key residues identified by previous 

studies. The effects were calculated using ∆∆𝐺 = ∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡 − ∆𝐺𝑊𝑇. ∆∆𝐺 > 0 indicates the 

mutation impedes Gi activation, and ∆∆𝐺 < 0 indicates the mutation facilitates Gi activation. 

The data are expressed as means ± SEM. 
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Figure S10. Flowchart of finding the optimal energy path, and conformational changes of 

agonists binding to two VFTs in the mGlu2 dimer. In red section, the scaling process is 

performed to reconstruct the free energy landscape by accelerated molecular dynamics 

simulation (AMD) method. In green section, the sampling process is performed to search 

possible pathways via the Metropolis sampling process. Totally 5,000 conformational 

pathways are sampled under the Metropolis criteria. And in yellow section, the selection 

process to evaluate the sampled pathways is shown.  
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Figure S11. Flowchart of finding the optimal energy path, and conformational changes of 

an agonist only binding to the VFT in one subunit of mGlu2. In red section, the scaling 

process is performed to reconstruct the free energy landscape by accelerated molecular 

dynamics simulation (AMD) method. In green section, the sampling process is performed 

to search possible pathways via the Metropolis sampling process. Totally 5,000 

conformational pathways are sampled under the Metropolis criteria. And in yellow section, 

the selection process to evaluate the sampled pathways is shown.  
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