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I. Estimates of model parameters 
Locus discretization z, b, v, and 𝜙𝑧 
We discretize chromatin into loci each with genomic length 𝑧 and spatial size 𝑏. We assume that 

in the absence of activity (no extrusion), chromatin conformation follows random walk statistics 

on length scales longer than b such that the root-mean-square size of a section with genomic 

length 𝑠 is proportional to 𝑠1/2. The loci size 𝑏 is assumed to be equal to or larger than the Kuhn 

segment of human chromatin. The exact value of Kuhn length of chromatin is not known with 

the estimates ranging from one to tens of kbp corresponding to tens to hundreds of nanometers 

(nm) (1–5). The lower end of this range represents the 10-nm fiber model of chromatin, while the 

upper end represents the 30-nm fiber model.  

 

As the 10-nm fiber model is more relevant to interphase chromatin in live cells (6, 7), we choose 

a discretization of 𝑧 = 2 kbp. The locus size is approximately 𝑏 = 50 nm using a linear density 

of ≈40 bp/nm (1). This locus discretization is on the order of or larger than Kuhn length 

estimates for human chromatin (3–5). 𝑏 = 50 nm is five times shorter than the length of a 2 kbp 

straight array of 10 nucleosomes and 500 bp of double stranded linker DNA. Each nucleosome 

has a diameter of ≈10 nm and each base pair has length of ≈0.34 nm. The physical space 

occupied by each locus is approximately 

 
𝑣 ≈ 10 (

4

3
𝜋5.53 + 50 ∗ 0.34𝜋) nm3 ≈ 7.5x103nm3 , (S1) 

where we use approximately spherical nucleosomes with radii of ≈5.5 nm each with ≈150 bp, 

and ≈50 bp of double stranded DNA with diameter of ≈2 nm. The volume fraction of chromatin 

(double stranded DNA and nucleosomes) within one 2 kbp locus is approximately 𝜙𝑧 ≈
𝑣/[4𝜋(𝑏/2)3/3] ≈ 0.1. 

 

Locus diffusion time 𝜏0 and extrusion ratio 𝜅 

As described in the main text, chromatin locus dynamics typically exhibit mean square 

displacements 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) ≈ 𝐷1/2Δ𝑡
1/2 with 𝐷1/2 between ≈10-3 μm2 s-1/2 and ≈10-2 μm2 s-1/2 

(8–13). Using Eq. (2) in the main text, the locus diffusion time is 

 
𝜏0 ≈ (

𝑏2

𝐷1/2
)

2

, (S2) 

which for 𝑏 = 50 nm, ranges between 𝜏0 ≈ 0.06 s and 𝜏0 ≈ 6 s. Using a typical cohesin 

processivity of 𝜆 = 200 kbp and a residence time of approximately 𝜏𝑟𝑒𝑠 ≈ 25 min, the extrusion 

velocity is 𝑣𝑒𝑥 ≈ 0.1 kbp/s (14–20). The extrusion ratio 𝜅 ≈ 𝑣𝑒𝑥𝜏0/𝑧 (Eq. (4) in the main text) 

thus ranges from 𝜅 ≈ 0.003 to 𝜅 ≈ 0.3. We choose 𝜅 ≈ 0.2 corresponding to 𝜏0 ≈ 4 s and 

𝐷1/2 ≈ 1.25x10-3 μm2 s-1/2.  

 

Average chromatin volume fraction in the nucleus 

Human diploid cells have approximately 6.2x109 base pairs of chromatin (21). Assuming 

chromatin has on average 150 base pairs per nucleosome and 50 base pairs per linker DNA, the 

chromatin volume is approximately 
 

𝑣𝑐ℎ𝑟𝑜𝑚 ≈ 6.2x109bp (
1 nucleosome and 1 linker

200bp
)(

4
3
𝜋53 + 50(0.34)(𝜋)

1 nucleosome and 1 linker
) nm3

≈ 2.3x1011nm3 ≈ 230μm3. 

(S3) 
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Nuclei of typical human cells have diameters on the order of 10—20 μm (1, 22), meaning the 

average chromatin volume fraction ranges between 𝜙 ≈ 0.06 and 𝜙 ≈ 0.4. This estimate does 

not consider other proteins and molecules that may be complexed with chromatin. 

 

II. Theory and extended data 

a. Description of an extruded chromatin loop 

Theory 

Consider a chromatin section with fractal dimension 𝐷 ≈ 2 on short genomic length scales in the 

absence of activity. As described above, we discretize chromatin into loci, each with spatial size 

b and representing z base pairs. A chromatin section with genomic length s has mean square size 

≈ 𝑏2(𝑠/𝑧) in the absence of activity. The relaxation time of the section is ≈ 𝜏0(𝑠/𝑧)
2, where 𝜏0 

is the locus diffusion time. Let a cohesin bind locus j at time 𝑡′ = 0 and extrude with velocity 

𝑣𝑒𝑥 in units of genomic length per unit time (see Fig. 4 in the main text). The extrusion ratio 𝜅 =
𝜏0𝑣𝑒𝑥𝑧

−1 is the number of loci extruded per diffusion time of a locus (Eq. (4) in the main text). 

𝑠𝑥𝑦 and < 𝑟𝑥𝑦
2 (𝑠𝑥𝑦) > are the genomic distance and mean square spatial distance between loci 𝑥 

and 𝑦 respectively, where the same cohesin domain extruded both loci and locus 𝑥 was extruded 

after locus 𝑦. 

 

The cohesin extrudes locus i at time 𝑡𝑖. Let us track the position of locus i relative to cohesin at 

time t. 𝑠𝑐𝑖 ≈ (𝑡 − 𝑡𝑖)𝑣𝑒𝑥 is the genomic distance between locus i and cohesin (see Fig. S1a). For 

early times such that (𝑡 − 𝑡𝑖)𝑣𝑒𝑥 ≤ 𝑔𝑚𝑖𝑛 ≈ 𝑧/𝜅, locus i is part of the smallest relaxed section of 

the extruded loop. For these early times, the relaxation time 𝜏0(𝑠𝑐𝑖/𝑧)
2 of a section with genomic 

length 𝑠𝑐𝑖 is shorter than or equal to 𝑡 − 𝑡𝑖. The mean square distance between i and cohesin is 

the relaxed size of 𝑠𝑐𝑖, approximately ≈ 𝑏2(𝑠𝑐𝑖/𝑧). For longer times, locus i follows Rouse-like 

subdiffusive dynamics such that the mean square distance between i and cohesin is ≈
𝑏2[(𝑡 − 𝑡𝑖)/𝜏0]

1/2 ≈ 𝑏2[𝑠𝑐𝑖/(𝜅𝑧)]
1/2. Thus, the mean square distance between locus i and 

cohesin as a function of the genomic length between them is 

 

< 𝑟𝑐𝑖
2(𝑠𝑐𝑖) >≈

{
 

 𝑏2 (
𝑠𝑐𝑖
𝑧
)  , 𝑠𝑐𝑖 ≤ 𝑔𝑚𝑖𝑛

𝑏2 (
𝑠𝑐𝑖
𝜅𝑧
)

1
2
  , 𝑠𝑐𝑖 > 𝑔𝑚𝑖𝑛

   , (S4) 

see Fig. S1b. For 𝑠𝑐𝑖 > 𝑔𝑚𝑖𝑛, the mean square distance between locus i and cohesin is smaller 

than the unperturbed size of a section with genomic length 𝑠𝑐𝑖. This crossover broadens as the 

mobility of cohesin increases. With cohesin as the reference point, the extruded loop crosses over 

between fractal dimensions of 𝐷 ≈ 2 and 𝐷 ≈ 4 at genomic distances of ≈ 𝑔𝑚𝑖𝑛 and mean 

square spatial sizes of ≈ 𝑏2 𝑔𝑚𝑖𝑛 𝑧⁄ ≈ 𝑏2 𝜅⁄ . By replacing 𝑠𝑐𝑖 with 𝑙/2, Eq. (S4) estimates the 

mean square size of an extruded loop with length 𝑙 because 𝑙/2 is the genomic distance between 

the cohesin and its binding site (see Eq. (6) in the main text). 

 

The largest chromatin section that can relax around locus i has genomic length on the order of 

 
𝑔𝑖 ≈ (

𝑠𝑐𝑖𝑧

𝜅
)

1
2
  (S5) 

with mean square size 



4 

 

 
𝜉𝑖
2 ≈ 𝑏2

𝑔𝑖
𝑧
≈ 𝑏2 (

𝑠𝑐𝑖
𝜅𝑧
)

1
2
 . (S6) 

𝑔𝑖 is found by equating the time since i was extruded 𝑡 − 𝑡𝑖 ≈ 𝑠𝑐𝑖/𝑣𝑒𝑥 to 𝜏0(𝑔𝑖/𝑧)
2, the 

relaxation time of a section with genomic length 𝑔𝑖. The genomic length of these relaxed 

sections increases with 𝑠𝑐𝑖. The largest relaxed section in a loop with genomic length l has 

genomic length  

 

𝑔(𝑙) ≈ (
𝑙𝑧

2𝜅
)

1
2
≈ (

𝑔𝑚𝑖𝑛𝑙

2
)

1
2
 , (S7) 

where 𝑙/2 is the half-loop length, or the genomic distance between cohesin and the cohesin 

binding site. The mean square size of a section with genomic length 𝑔(𝑙) is 

 

𝜉2(𝑙) ≈ 𝑏2
𝑔(𝑙)

𝑧
≈ 𝑏2 (

𝑙

2𝜅𝑧
)

1
2
≈ 𝑏2 (

𝑔𝑚𝑖𝑛𝑙

2𝑧
)

1
2
 . (S8) 

In Figure S1c, we sketch the genomic lengths of the relaxed sections in a loop of length 𝑙 as a 

function of 𝑠𝑐𝑖. Consider two loci i and m extruded by the same cohesin domain where locus 𝑖 
was extruded before locus 𝑚 (see Fig. S1a). The genomic distance between the two loci is 𝑠𝑚𝑖 ≈
(𝑡𝑖 − 𝑡𝑚)/𝑣𝑒𝑥. The mean square spatial distance between i and m is approximately 

 

< 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) >≈

{
 

 𝑏2 (
𝑠𝑚𝑖
𝑧
)  , 𝑠𝑚𝑖 ≤ 𝑔𝑖

𝑏2 (
𝑠𝑐𝑖
𝜅𝑧3

)

1
4
𝑠
𝑚𝑖

1
2   , 𝑠𝑚𝑖 > 𝑔𝑖

   , (S9) 

where 𝑠𝑐𝑖 is the genomic distance between locus 𝑖 and cohesin (see Fig. S1d). The mean square 

distance for 𝑠𝑚𝑖 ≤ 𝑔𝑖 is the relaxed distance, while the mean square distance for 𝑠𝑚𝑖 > 𝑔𝑖 is 

smaller than the relaxed distance. Equation (S9) is consistent with a crossover in fractal 

dimension between 𝐷 ≈ 2 and 𝐷 ≈ 4 at genomic distances of ≈ 𝑔𝑖 and mean square spatial sizes 

of ≈ 𝜉𝑖
2.  

 

Now consider the mean square distance between the cohesin binding site locus j and a locus i 

within a loop of genomic length l (see Fig. S1a). The genomic distance between them is 𝑠𝑖𝑗. The 

longest relaxed chromatin section around the cohesin binding site has a genomic length of 

approximately 𝑔(𝑙) (see Eq. (S7)). As such, the mean square distance between j and i is 

approximately 

 

< 𝑟𝑖𝑗
2(𝑠𝑖𝑗) >≈

{
 
 

 
 𝑏2 (

𝑠𝑖𝑗
𝑧
)  , 𝑠𝑖𝑗 ≤ 𝑔(𝑙)

𝑏2
[𝑠𝑖𝑗𝑔(𝑙)]

1
2

𝑧
  , 𝑠𝑖𝑗 > 𝑔(𝑙)

   , (S10) 

see Fig. S1e. As discussed in the main text, the mean square distance between any two loci 

separated by a genomic distance s extruded by the same cohesin domain crosses over between 

scaling behaviors of ∼ 𝑠1 to ∼ 𝑠1/2 (see Eq. (8) and Figs. 5D and 6A in the main text). The 

crossover occurs at genomic lengths on the order of 𝑔(𝑙) because the relaxed sections with 

length 𝑔(𝑙) have the most loci pairs, thus dominating the overall average. 
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Consider a genomic section with genomic length s that is part of an extruded loop with genomic 

length l. The section’s mean square size is < 𝑟𝑙
2(𝑠) > and is given by Eq. (8) in the main text. 

We define the section’s self-volume fraction as 

 

𝜙𝑠𝑒𝑙𝑓(𝑠) ≈

𝑠
𝑧
𝑣

4
3
𝜋 [
< 𝑟𝑙

2(𝑠) >
1
2

2 ]

3 , 
(S11) 

where 𝑣 is the volume of one locus given by Eq. (S1). The numerator is the physical volume of 

chromatin in a genomic section of length s, and the denominator is the approximately spherical 

volume with diameter < 𝑟2(𝑠) >1/2 spanned by the section. The self-volume fraction of one 

locus is 𝜙𝑠𝑒𝑙𝑓(𝑠 = 2kbp) = 𝜙𝑧, as described in Section I. The self-volume fraction at 𝑠 = 𝑙/2 

(half the loop length) is approximately 𝜙𝑠𝑒𝑙𝑓(𝑠 = 𝑙/2) ≈ 𝜙𝑧[𝑙𝑧
2𝑔(𝑙)−3/2]1/4 for loops longer 

than 𝑔𝑚𝑖𝑛. The self-volume fraction of the entire loop is then approximately two times 𝜙𝑠𝑒𝑙𝑓(𝑠 =

𝑙/2) because the spatial size of the entire loop is the same as a section with length 𝑠 = 𝑙/2 but 

with twice the volume of chromatin. 

 

 
Figure S1: Internal structure of a single loop formed by active loop extrusion. All schematic plots are on log-log 

scales. a) Schematic of a chromatin loop (blue curve) actively extruded by cohesin (orange rings). Locus j is the 

cohesin binding site. Loci i and m were extruded by the same cohesin domain. b) Schematic plot on a log-log scale 

of the mean square distance between cohesin and i separated by genomic distance 𝑠𝑐𝑖. Numbers next to lines indicate 

slopes on a log-log scale. c) Genomic length of the largest relaxed section around a locus i that is a genomic distance 

𝑠𝑐𝑖 away from cohesin. d) Mean square distance between i and m that were extruded by the same cohesin domain 

and are separated by a genomic distance 𝑠𝑚𝑖. The average is taken over all such pairs of loci in the loop. e) Mean 

square distance between i and the cohesin binding site j located a genomic distance 𝑠𝑖𝑗 away. 

 

Simulations 

As described in the main text and in the “Extended methods” (Section III), to test our theory we 

run hybrid molecular dynamics – Monte Carlo (MD—MC) simulations of single extrusion 
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cycles, where one cohesin extrudes one chromatin section once. Specifically, we examine the 

mean square distances between different loci within an extruded loop to validate Equations (S4), 

(S9), and (S10) as sketched in Figures S1b, d, and e, respectively. We also validate Equation (8) 

in the main text, sketched in Figure 5D in the main text. Instead of the sharp, clear power law 

scaling regimes in our theory, we expect broad crossovers over several decades in simulation and 

experimental data. The data in this section is averaged over 100 simulations of a single cohesin 

extruding a relaxed chromatin section with 𝐷 ≈ 2 using 𝑣𝑒𝑥 ≈ 0.6 kbp per 𝜏0 (𝜅 ≈ 0.3).  

 

Figure S2 shows the mean square distances between cohesin and a locus 𝑖 within an extruded 

loop as a function of their genomic separation 𝑠𝑐𝑖 (see Fig. S1a) from simulations with cohesins 

that are tethered to their initial points in space (immobile, purple curves) or free to move in space 

(mobile, blue curves). The black curve represents the mean square size of a section with length 

𝑠𝑐𝑖 without extrusion, while the red lines are the power laws predicted by our scaling theory. For 

small genomic separations 𝑠𝑐𝑖, the curves with extrusion behave the same as without extrusion 

(black curve). The crossover between the unperturbed mean square distances and a power law ∼

𝑠𝑐𝑖
1/2

 for the immobile cohesin case is consistent with Eq. (S4) and Fig. S1b. The curves 

representing mobile cohesins have broader crossovers than their immobile counterparts. 

 
Figure S2: Mean square distance between cohesin and a locus 𝑖 within the loop as a function of their genomic 

separation 𝑠𝑐𝑖, corresponding to Figure S1b. Each curve is a different loop length 𝑙 =40, 80, 120, …, 600 kbp.  
 

Figure S3a shows the mean square distance < 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) > between two loci 𝑚 and 𝑖 within the 

same extruded loop as a function of the genomic separation between the two loci 𝑠𝑚𝑖 (see Fig. 

S1a). Both loci were extruded by the same cohesin domain and locus 𝑖 was extruded before locus 

𝑚. Each curve represents a different reference locus 𝑖, each with a different genomic distance to 

cohesin 𝑠𝑐𝑖. The mean square distances for small separation 𝑠𝑚𝑖 is approximately the same as the 

mean square size without extrusion (black curve). < 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) > then becomes smaller than the 

mean square size without extrusion. The crossover occurs at longer genomic lengths for longer 

𝑠𝑐𝑖, and corresponds to the largest relaxed section around each locus 𝑖 (green circles in Fig. 5C in 

the main text) with predicted genomic length 𝑔𝑖 (Eq. (S5)) and mean square size 𝜉𝑖
2 (Eq. (S6)).  

 

To obtain 𝑔𝑖 and 𝜉𝑖
2 from simulation, we compare 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒, the mean square displacement of 

beads in a simulated polymer without extrusion, to internal sizes < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑠) > without 

extrusion. < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2(𝑠) > is the mean square size of a section with s beads averaged over 

different sections within the polymer chain. For each 𝑠𝑐𝑖, we obtain 𝑔𝑖 from simulation as the 
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largest section with 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑠𝑐𝑖/𝑣𝑒𝑥) ≥ < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑠) >. This is the largest section that 

relaxes during time 𝑠𝑐𝑖/𝑣𝑒𝑥, or the time since locus 𝑖 was extruded. The mean square size 𝜉𝑖
2 was 

obtained as < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑔𝑖) >, the relaxed, unextruded sizes of sections with genomic length 𝑔𝑖. 

𝑔𝑖 and 𝜉𝑖
2 were fitted to power laws such that 𝑔𝑖 ≈ (2.8 ± 0.3)𝑠𝑐𝑖

(0.50±0.02)
 and 𝜉𝑖

2 ≈

(4.52 ± 0.02)𝑠𝑐𝑖
(0.53±0.01)

, close to the predicted scaling behavior of ∼ 𝑠𝑐𝑖
1/2

 (see Eqs. (S5) and 

(S6)). Errors represent 95% confidence intervals.  

 

Figure S3b shows the same data as Figure S3a, but with the abscissa and ordinate normalized by  

𝑔𝑖 and 𝜉𝑖
2 from simulation, respectively, which collapses the data onto a universal curve. To find 

the crossover location, we fit the normalized data to two power laws: < 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) >/𝜉𝑖

2 ≈
(0.994 ± 0.005) ∗ (𝑠𝑚𝑖/𝑔𝑖)

(1.02±0.02) for 0.5 ≤ 𝑠𝑚𝑖/𝑔𝑖 ≤ 0.9 and < 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) >/𝜉𝑖

2 ≈
(1.17 ± 0.01) ∗ (𝑠𝑚𝑖/𝑔𝑖)

(0.55±0.01) for 2 ≤ 𝑠𝑚𝑖/𝑔𝑖 ≤ 7. The errors represent 95% confidence 

intervals. The intersection of the two curves is at 𝑠𝑚𝑖/𝑔𝑖 ≈ 1.4 ± 0.1 and < 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) >/𝜉𝑖

2 ≈
1.43 ± 0.06, where the errors represent the range of intersection between the simultaneous, 

functional bounds of the fitted power laws at 95% confidence levels.  

 

The mean square distance between loci 𝑚 and 𝑖 in our simulations is consistent with a crossover 

between scaling regimes ∼ 𝑠𝑚𝑖
1  and ∼ 𝑠𝑚𝑖

1/2
 at genomic length on the order of 1.4𝑔𝑖 and mean 

square size on the order of 1.4𝜉𝑖
2, in agreement with Eq. (S9). Figure S3c shows the crossover 

genomic lengths 1.4𝑔𝑖 (solid red curve) and mean square sizes 1.4𝜉𝑖
2 (solid blue curve), where 𝑔𝑖 

and 𝜉𝑖
2 are obtained from simulation as described in the previous paragraph. We note that the 

fitted power law in the second regime for  2 ≤ 𝑠𝑚𝑖/𝑔𝑖 ≤ 7 has a stronger dependence on 𝑠𝑚𝑖 

than the theoretical scaling behavior of ∼ 𝑠𝑚𝑖
1/2

. This could be due to a broad crossover between 

two scaling regimes and the relatively narrow range of fitting (less than a decade). 

 

An alternative method to collapse the data in Figure S3a is to individually fit each blue curve to 

find where they deviate from the relaxed, unperturbed mean squared sizes (the black curve). We 

demonstrate that this method agrees with the method described in the previous paragraph for 

several of the blue curves in Figure S3a. For each curve, we fit the large 𝑠𝑚𝑖 regime to a power 

law and find the intersection with the relaxed, unperturbed data. The red and blue circles in 

Figure S3c show the genomic lengths and mean square sizes of the intersection, respectively. 

The individually fitted crossover points are consistent with 1.4𝑔𝑖 (solid red curve in Fig. S3c) 

and 1.4𝜉𝑖
2 (solid blue curve in Fig. S3c) as described in the previous paragraph. 
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Figure S3: Mean square distance < 𝑟𝑚𝑖

2 (𝑠𝑚𝑖) > between two loci 𝑖 and 𝑚 that were extruded by the same cohesin 

domain from hybrid MD—MC simulations (related to Fig. S1d). a) Comparison of < 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) > as a function of 

genomic separation 𝑠𝑚𝑖 from simulations with and without extrusion. Each blue curve is for a different reference 

locus 𝑖 separated from cohesin by 𝑠𝑐𝑖 =40, 80, 120, …, 400 kbp. b) The same data as a) with the abscissa and 

ordinate scaled by 𝑔𝑖 and 𝜉𝑖
2, respectively, obtained from simulation. The red lines are power laws ∼ (𝑠𝑚𝑖/𝑔𝑖)

1 and 

∼ (𝑠𝑚𝑖/𝑔𝑖)
1/2. C) Crossover locations of < 𝑟𝑚𝑖

2 (𝑠𝑚𝑖) > as a function of 𝑠𝑐𝑖, the genomic distance between cohesin 

and locus 𝑖. The solid curves are the crossovers obtained by first collapsing all data via normalizing by 𝑔𝑖 and 𝜉𝑖
2 as 

determined from simulation. The circles are the crossovers obtained by individually fitting the blue curves in a). The 

error bars are the ranges of the intersections between the black curve in a) (data without extrusion) and the 

simultaneous, observational bounds of the fitted power laws for the large 𝑠𝑚𝑖 regimes of the blue curves at 95% 

confidence levels. The dashed black line is a power law ∼ 𝑠𝑐𝑖
1/2

. 

 

Figure S4a shows < 𝑟𝑖𝑗
2(𝑠𝑖𝑗) >, the mean square distance between locus 𝑖 and the cohesin 

binding site at locus 𝑗 as a function of the genomic separation between them 𝑠𝑖𝑗 (see Fig. S1a). 

Each blue curve represents a different loop length 𝑙. Each blue curve initially follows the relaxed, 

unperturbed mean square size of 𝑠𝑖𝑗 (the black curve), then crosses over to a weaker dependence 

on 𝑠𝑖𝑗. The crossover occurs at longer genomic lengths for longer loop lengths. The crossover is 

predicted to occur at genomic length on the order of 𝑔(𝑙) (Eq. (S7)) and mean square size on the 

order of 𝜉2(𝑙) (Eq. (S8)). These are the genomic length and mean square size, respectively, of 

the largest relaxed chromatin section within an extruded loop of length 𝑙 (see Fig. 5C in the main 

text).  

 

We determine 𝑔(𝑙) and 𝜉2(𝑙) from simulation in a similar manner to how we obtained 𝑔𝑖 and 𝜉𝑖
2 

described above: we compare 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒, the mean square displacement of beads in a simulated 

polymer without extrusion, to internal sizes < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑠) > without extrusion. 𝑔(𝑙) is the largest 
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section with 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑙/2𝑣𝑒𝑥) ≥ < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑠) >, where 𝑙/2𝑣𝑒𝑥 is how long it takes to 

extrude a loop with length 𝑙. The mean square size 𝜉2(𝑙) is < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑔(𝑙)) >, the relaxed, 

unextruded sizes of sections with genomic length 𝑔(𝑙). 𝑔(𝑙) and 𝜉2(𝑙) were fitted to power laws 

such that 𝑔(𝑙) ≈ (2.0 ± 0.1)𝑙(0.49±0.01) and 𝜉2(𝑙) ≈ (3.04 ± 0.04)𝑙(0.53±0.01), consistent with 

the predicted scaling behavior of ∼ 𝑙1/2 (see Eqs. (S7) and (S8)). Errors represent 95% 

confidence intervals.  

 

We employ the same methods described for < 𝑟𝑚𝑖
2 (𝑠𝑚𝑖) > to collapse the data for < 𝑟𝑖𝑗

2(𝑠𝑖𝑗) > 

in Figure S4a onto a universal curve. Figure S4b shows the data in Figure S4a collapsed by 

scaling the abscissa and ordinate by 𝑔(𝑙) and 𝜉2(𝑙), respectively. The power laws fitted to the 

two regimes of the collapsed data were < 𝑟𝑖𝑗
2(𝑠𝑖𝑗) >/𝜉

2(𝑙) ≈ (0.94 ± 0.01) ∗ [𝑠𝑖𝑗/

𝑔(𝑙)]
(1.01±0.05)

 for 0.5 ≤ 𝑠𝑖𝑗/𝑔(𝑙) ≤ 0.9 and < 𝑟𝑖𝑗
2(𝑠𝑖𝑗) >/𝜉

2(𝑙) ≈ (1.03 ± 0.01) ∗

[𝑠𝑖𝑗/𝑔(𝑙)]
(0.57±0.01)

 for 2 ≤ 𝑠𝑖𝑗/𝑔𝑖 ≤ 7. The intersection of the two curves is at 𝑠𝑖𝑗/𝑔𝑖 ≈ 1.2 ±

0.1 and < 𝑟𝑖𝑗
2(𝑠𝑖𝑗) >/𝜉

2(𝑙) ≈ 1.2 ± 0.1. The mean square distance between locus 𝑖 and the 

cohesin binding site 𝑗 in our simulations is consistent with a crossover between scaling regimes 

∼ 𝑠𝑖𝑗
1  and ∼ 𝑠𝑖𝑗

1/2
 at genomic length on the order of 1.2𝑔(𝑙) and mean square size on the order of 

1.2𝜉2(𝑙), in agreement with Equation (S10). Although the fitted exponent for the second regime 

with 2 ≤ 𝑠𝑖𝑗/𝑔𝑖 ≤ 7 is larger than the predicted value of 1/2, this could once again be attributed 

to a wide crossover between two scaling regimes that does not reach the asymptotic behavior. 

Figure S4c shows the crossover genomic lengths 1.2𝑔(𝑙) (solid red curve) and mean square sizes 

1.2𝜉2(𝑙) (solid blue curve), where 𝑔(𝑙) and 𝜉2(𝑙) are obtained from simulation. The circles in 

Figure S4c show the crossover points found by individually fitting the large 𝑠𝑖𝑗 regimes of 

individual blue curves in Figure S4a. These individually fitted crossover points are consistent 

with 1.2𝑔(𝑙) and  1.2𝜉2(𝑙). 
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Figure S4: Mean square distance < 𝑟𝑖𝑗

2(𝑠𝑖𝑗) > between locus 𝑖 and the cohesin binding site 𝑗 from hybrid MD—MC 

simulations (related to Fig. S1e). a) Comparison of < 𝑟𝑖𝑗
2(𝑠𝑖𝑗) > as a function of genomic separation 𝑠𝑖𝑗, with the 

relaxed, unperturbed mean square size of a section with genomic length 𝑠𝑖𝑗 without extrusion. Each blue curve 

represents a different loop length 𝑙 =40, 80, 120, …, 800 kbp. b) The same data as a) with the abscissa and ordinate 

scaled by 𝑔(𝑙) and 𝜉2(𝑙), respectively, determined from simulation. The red lines are power laws ∼ [𝑠𝑖𝑗/𝑔(𝑙)]
1
 and 

∼ [𝑠𝑖𝑗/𝑔(𝑙)]
1/2

. C) Crossover locations of < 𝑟𝑖𝑗
2(𝑠𝑖𝑗) > as a function of loop length 𝑙. The solid curves are the 

crossovers found by collapsing all data by normalizing by 𝑔(𝑙) and 𝜉2(𝑙). The circles are the crossovers determined 

by individually fitting the blue curves in a). The error bars are the ranges of the intersections between the black 

curve in a) (data without extrusion) and the simultaneous, observational bounds of the fitted power laws for the large 

𝑠𝑖𝑗 regimes of the blue curves at 95% confidence levels. The dashed black line is a power law ∼ 𝑙1/2. 

 

Figure S5a shows the mean square distance between two loci extruded by the same cohesin 

domain separated by genomic distance 𝑠 within a loop of length 𝑙, averaged over all such loci 

pairs within the loop. Each blue curve corresponds to a different loop length. In Figure S5b, we 

collapse the data in Figure S5a onto a universal curve by scaling the abscissa and ordinate by 

𝑔(𝑙) and 𝜉2(𝑙), respectively, determined from simulation. 𝑔(𝑙) and 𝜉2(𝑙) are the same as used in 

Figure S4b. The power laws fitted to the two regimes of the collapsed data were < 𝑟𝑙
2(𝑠) >

/𝜉2(𝑙) ≈ (0.94 ± 0.01) ∗ [𝑠/𝑔(𝑙)](1.05±0.01) for 0.5 ≤ 𝑠/𝑔(𝑙) ≤ 0.9 and < 𝑟𝑙
2(𝑠) >/𝜉2(𝑙) ≈

(0.99 ± 0.01) ∗ [𝑠/𝑔(𝑙)](0.57±0.01) for 2 ≤ 𝑠/𝑔(𝑙) ≤ 6. The intersection of the two curves is at 

𝑠/𝑔(𝑙) ≈ 1.11 ± 0.05 and < 𝑟𝑙
2(𝑠) >/𝜉2(𝑙) ≈ 1.12 ± 0.08. The mean square distance between 

two loci extruded by the same cohesin domain separated by 𝑠 in our simulations is consistent 

with a crossover between scaling regimes ∼ 𝑠1 and ∼ 𝑠1/2 at genomic length on the order of 

1.1𝑔(𝑙) and mean square size on the order of 1.1𝜉2(𝑙), in agreement with Equation (8) in the 

main text. Similar to the effect described in the preceding paragraphs, the higher exponent in the 

fitted power law for the regime with 2 ≤ 𝑠/𝑔(𝑙) ≤ 6 compared to the theoretical value of 1/2 

could be a result of the narrow range of 𝑠/𝑔(𝑙) available for fitting and a weak crossover 

between scaling regimes. Figure S5c shows the crossover genomic lengths 1.1𝑔(𝑙) (solid red 

curve) and mean square sizes 1.1𝜉2(𝑙) (solid blue curve). The circles in Figure S5c show the 

crossover points found by individually fitting the large 𝑠 regimes of individual blue curves in 

Figure S5a, consistent with 1.1𝑔(𝑙) and  1.1𝜉2(𝑙). 
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Figure S5: Mean square distance < 𝑟𝑙

2(𝑠) > between two loci extruded by the same cohesin domain separated by 

genomic distance 𝑠 within a loop of length 𝑙 from hybrid MD—MC simulations (related to Figs. 5D and 6A in the 

main text). a) Comparison of < 𝑟𝑙
2(𝑠) > with the relaxed, unperturbed mean square size of a section with genomic 

length 𝑠 without extrusion. Each blue curve represents a different loop length 𝑙 =40, 80, 120, …, 600 kbp. b) The 

same data as a) with the abscissa and ordinate scaled by 𝑔(𝑙) and 𝜉2(𝑙), respectively, determined from simulation. 

The red lines are power laws ∼ [𝑠/𝑔(𝑙)]1 and ∼ [𝑠/𝑔(𝑙)]1/2. c) Crossover locations of < 𝑟𝑙
2(𝑠) > as a function of 

loop length 𝑙. The solid curves are the crossovers found by collapsing all data by normalizing by 𝑔(𝑙) and 𝜉2(𝑙). The 

circles are the crossovers determined by individually fitting the blue curves in a). The error bars are the ranges of the 

intersections between the black curve in a) (data without extrusion) and the simultaneous, observational bounds of 

the fitted power laws for the large 𝑠 regimes of the blue curves at 95% confidence levels. The dashed black line is a 

power law ∼ 𝑙1/2. 
 

b. Steady-state extrusion regimes 

In steady-state extrusion, many cohesins bind to and unbind from a chromatin section. We base 

our steady-state model on our previous work in ref. (19), outlined here. We consider passive 

cohesin binding for definiteness, though we expect the results of our model to be consistent with 

other mechanisms of cohesin binding as well.  

 

The separation 𝑑 is the average genomic length between two cohesins, and the processivity 𝜆 is 

the average loop length extruded by an unobstructed cohesin. We define 𝜇 𝑘𝐵𝑇 as the chemical 

potential per locus associated with cohesin binding. The average cohesin separation is 𝑑 ≈ 𝑧𝑒𝜇. 

Bound cohesins have an energetic barrier of ℎ 𝑘𝐵𝑇 for unbinding during a time interval with 

duration 𝜏𝑐. During an interval with duration 𝜏𝑐, each locus is bound by a cohesin with 

probability 𝑒−(𝜇+ℎ), and each bound cohesin unbinds with probability 𝑒−ℎ. Both the residence 

time and processivity are exponentially distributed with averages 𝜏𝑟𝑒𝑠 ≈ 𝜏𝑐𝑒
ℎ and 𝜆 ≈

2𝑣𝑒𝑥𝜏𝑟𝑒𝑠 ≈ 2𝑣𝑒𝑥𝜏𝑐𝑒
ℎ respectively. The average time between cohesins binding the same locus is 
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approximately 𝜏𝐵 ≈ 𝜏𝑐𝑒
𝜇+ℎ. The average time between cohesins binding the same genomic 

section with length 𝑠 is approximately 𝜏𝐵,𝑠 ≈ 𝜏𝐵𝑧/𝑠 ≈ 𝑧𝜏𝑐𝑒
𝜇+ℎ/𝑠. 

 

The average time between two cohesins binding within a chromatin section of length 𝜆 is 𝜏𝐵,𝜆 ≈

𝑑/(2𝑣𝑒𝑥), the time it takes to extrude the separation d. As shown in Figure 7 of the main text and 

related discussion, four regimes of processivity and separation dictate chromatin compaction and 

loop nesting on genomic length scales shorter than the genomic entanglement length 𝑁𝑒. In 

Regime I with 𝜆 ≤ 2𝑔𝑚𝑖𝑛 ≈ 2𝑧/𝜅, loops can fully relax during the time it takes to extrude them. 

Recall that 𝑔𝑚𝑖𝑛 is the smallest relaxed section next to a cohesin in an extruded loop. Loops do 

not significantly impact average contact probabilities.  

 

In Regime II, loops can relax in the time between two cohesins binding the same genomic 

section with length 𝜆. This means 𝜏𝐵,𝜆 > 𝜏𝑟𝑒𝑠 + 𝜏0(𝜆/𝑧)
2, where the right-hand side is the 

average cohesin residence time plus the relaxation time of 𝜆. Rewriting in terms of 𝜆 and 𝑑 

yields 𝑑 > 𝜆(1 + 2𝜅𝜆/𝑧). Each loop is compact while a cohesin extrudes them but have enough 

time to relax such that the average conformation of the section is relaxed. In Regime III, loops do 

not have time to relax between two cohesin binding events. The chromatin section is compact, 

but loops are still unnested. Regime III with compact but unnested chromatin corresponds to 

separation 𝑑 between two boundaries 𝜆 < 𝑑 < 𝜆(1 + 2𝜅𝜆/𝑧). In Regime IV, loops are nested 

with 𝜆 ≥ 𝑑 and the chromatin section is compact. 

 

c. Entanglement suppression 

We define the overlap parameter as the number of chromatin sections with the same genomic 

length s occupying the same approximately spherical volume with diameter ≈< 𝑟2(𝑠) >1/2, the 

root-mean-square size of s: 

 

𝑂(𝑠) =
𝜙

𝜙𝑠𝑒𝑙𝑓(𝑠)
≈

𝜙
4
3𝜋 (

< 𝑟2(𝑠) >
1
2

2 )

3

𝑣 (
𝑠
𝑧
)

. 
(S12) 

The numerator is the volume of chromatin within the sphere assuming an average chromatin 

volume fraction in the nucleus 𝜙. The denominator is the physical volume of chromatin in 𝑠/𝑧 

loci, where 𝑣 is the volume of a locus (see Eq. (S1)). Eq. (S12) simplifies to 

 
𝑂(𝑠) ≈ 𝜙

𝜋𝑧

6𝑠𝑣
< 𝑟2(𝑠) >

3
2. (S13) 

Entanglements occur when the overlap parameter is on the order of 𝑂𝐾𝑁 ≈ 10 − 20 (23). If 

chromatin has a fractal dimension of 𝐷 on length scales between b and < 𝑟2(𝑠) >1/2≈
𝑏(𝑠/𝑧)1/𝐷, the overlap parameter is 

 
𝑂(𝑠) ≈ 𝜙

𝜋𝑧

6𝑠𝑣
𝑏3 (

𝑠

𝑧
)

3
𝐷
≈ 𝜙

𝜋𝑏3

6𝑣
(
𝑠

𝑧
)

3
𝐷−1

. (S14) 

In the passive case without loop extrusion, chromatin has fractal dimension 𝐷 ≈ 2 on scales 

below entanglements, so Eq. (S14) becomes 

 
𝑂𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑠) ≈ 𝜙

𝜋𝑏3

6𝑣
(
𝑠

𝑧
)

1
2
. (S15) 
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The passive entanglement genomic length is the genomic length s that makes Eq. (S15) equal to 

𝑂𝐾𝑁: 

 
𝑁𝑒,𝑝𝑎𝑠𝑠𝑖𝑣𝑒 ≈ 𝑧 (

𝑂𝐾𝑁6𝑣

𝜙𝜋𝑏3
)
2

 (S16) 

which for 𝑂𝐾𝑁 = 10, 𝜙 = 0.15, 𝑏 = 50 nm, and 𝑣 ≈ 7.5x103 nm3 yields 𝑁𝑒,𝑝𝑎𝑠𝑠𝑖𝑣𝑒 ≈ 100 kbp. 

 

For steady-state active extrusion in interphase, the transition in fractal dimension from 𝐷 ≈ 2 to 

𝐷 ≈ 4 and back to 𝐷 ≈ 2 changes < 𝑟2(𝑠) > in Eq. (S13) such that 

 

< 𝑟2(𝑠) >≈

{
 
 
 

 
 
 𝑏2

𝑠

𝑧
  , 𝑠 ≤ 𝑔(𝑑)

𝑏2
[𝑔(𝑑)𝑠]

1
2

𝑧
 , 𝑔(𝑑) < 𝑠 ≤   𝐶2𝑁𝑇𝐴𝐷

𝑏2 [
𝑔(𝑑)

𝐶2𝑁𝑇𝐴𝐷
]

1
2 𝑠

𝑧
 , 𝐶2𝑁𝑇𝐴𝐷 < 𝑠 ≤ 𝑁𝑒

   , 
(S17) 

where 𝑔(𝑑) is the genomic length of the longest relaxed chromatin section in steady-state 

extrusion (see Eq. (10) in the main text), 𝑁𝑇𝐴𝐷 is the average TAD length of the genomic section 

of interest, and 𝐶2 is a constant on the order of unity. The overlap parameter is approximately 

 

𝑂𝑎𝑐𝑡𝑖𝑣𝑒(𝑠) ≈

{
 
 
 
 

 
 
 
 𝜙

𝜋𝑏3

6𝑣
(
𝑠

𝑧
)

1
2
  , 𝑠 ≤ 𝑔(𝑑)

𝜙
𝜋𝑏3

6𝑣
[
𝑔(𝑑)3

𝑠𝑧2
]

1
4

 , 𝑔(𝑑) < 𝑠 ≤  𝐶2𝑁𝑇𝐴𝐷

𝜙
𝜋𝑏3

6𝑣
[
𝑔(𝑑)

𝐶2𝑁𝑇𝐴𝐷
]

3
4

(
𝑠

𝑧
)

1
2
 , 𝐶2𝑁𝑇𝐴𝐷 < 𝑠 ≤ 𝑁𝑒

   , (S18) 

see Figure 9A in the main text. The overlap parameter does not reach 𝑂𝐾𝑁 because the longest 

relaxed chromatin section length 𝑔(𝑑) is shorter than the entanglement length 𝑁𝑒,𝑝𝑎𝑠𝑠𝑖𝑣𝑒 ≈ 100 

kbp of chromatin in the passive state without extrusion. In the second regime with fractal 

dimension four, the overlap parameter 𝑂𝑎𝑐𝑡𝑖𝑣𝑒(𝑠) decreases toward unity. 𝑂𝑎𝑐𝑡𝑖𝑣𝑒(𝑠) starts 

increasing in the third regime with 𝑠 > 𝐶2𝑁𝑇𝐴𝐷.  

 

The active entanglement genomic length is determined by the condition of the overlap parameter 

𝑂𝑎𝑐𝑡𝑖𝑣𝑒(𝑠) in this third regime (the last line of Eq. (S18)) reaching 𝑂𝐾𝑁: 

 

𝑁𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 ≈ 𝑧 (
𝑂𝐾𝑁6𝑣

𝜙𝜋𝑏3
)
2

[
𝐶2𝑁𝑇𝐴𝐷
𝑔(𝑑)

]

3
2

≈ 𝑁𝑒,𝑝𝑎𝑠𝑠𝑖𝑣𝑒 [
𝐶2𝑁𝑇𝐴𝐷
𝑔(𝑑)

]

3
2

, (S19) 

which for 𝑁𝑒,𝑝𝑎𝑠𝑠𝑖𝑣𝑒 ≈  100 kbp, 𝐶2𝑁𝑇𝐴𝐷 ≈ 400 kbp, and 𝑔(𝑑) ≈ 30 kbp gives 𝑁𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 ≈ 5 

Mbp. Overlap suppression 𝑂𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑠)/𝑂𝑎𝑐𝑡𝑖𝑣𝑒(𝑠) is maximized at 𝑠 ≈ 𝐶2𝑁𝑇𝐴𝐷, which is the 

genomic length scale at which chromatin fractal dimension crosses over from 𝐷 ≈ 4 back to 𝐷 ≈
2 with active loop extrusion. The maximum overlap suppression is 
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𝑂𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝐶2𝑁𝑇𝐴𝐷)

𝑂𝑎𝑐𝑡𝑖𝑣𝑒(𝐶2𝑁𝑇𝐴𝐷)
≈ [

𝐶2𝑁𝑇𝐴𝐷
𝑔(𝑑)

]

3
4

, (S20) 

which for 𝐶2𝑁𝑇𝐴𝐷 ≈ 400 kbp and 𝑔(𝑑) ≈ 30 kbp is approximately equal to 7.  

 

d. “Legs” and cohesin trajectories 

As described in the main text, the conformation of extended sections of chromatin adjacent to 

cohesins outside of extruded loops (“legs”) are determined by cohesin translocation, not polymer 

relaxation. Legs are extended such that  

 𝑔𝑙𝑒𝑔(𝑡) ∼< 𝑟𝑙𝑒𝑔
2 (𝑡) >1/2∼ (𝑣𝑒𝑥𝑡)

1/𝐷 ,  (S21) 

where < 𝑟𝑙𝑒𝑔
2 (𝑡) >1/2 is the root-mean-square size of a leg and 𝑡 is time since the beginning of 

extrusion. In Figure S6a, we plot the genomic length of legs 𝑔𝑙𝑒𝑔(𝑡) as a function of the length of 

chromatin extruded by the cohesin 𝑣𝑒𝑥𝑡 for 𝑣𝑒𝑥 ≈ 0.15 kbp/𝜏0, 0.3 kbp/𝜏0, and 0.6 kbp/𝜏0 from 

simulations of a single extrusion cycle starting from 𝐷 ≈ 2. We fit the data to a power law  

 𝑔𝑙𝑒𝑔(𝑡) ≈ 𝐴 ∗ (𝑣𝑒𝑥𝑡)
𝐵 (S22) 

and find 𝐴 ≈ 2.1 ±  0.5 and 𝐵 ≈ 0.54 ±  0.05, consistent with the prediction 𝑔𝑙𝑒𝑔(𝑡) ∼

(𝑣𝑒𝑥𝑡)
1/2 (Eq. (S21)). 

 

Cohesin trajectories follow the midpoints of the tension fronts produced by extrusion (see Fig. 

11A in the main text). The location of the tension fronts at time t can be approximated from the 

initial chromatin conformation on which cohesin binds. As such, the initial chromatin 

conformation can be used to approximate the cohesin trajectory (see Fig. 11B in the main text 

and section IIIa in the SI). The fluctuations in the cohesin trajectory compared to tension front 

midpoints are on the order of ≈ 𝑏2(𝑡/𝜏0)
1/2, which is the mean square distance a locus moves in 

time t. The mean square distance between cohesin trajectories and tension front midpoints from 

simulations < Δ𝑐𝑜ℎ,𝑡𝑒𝑛𝑠
2 (𝑡) > is consistent with this scaling (see Fig. S6b). 

 

Consider two un-nested, neighboring cohesins actively extruding the same genomic section (see 

Fig. S6c). Initially, the two cohesins travel independently in space before their tension fronts 

meet in the intervening genomic section. As described in the main text, once the tension fronts 

meet, the cohesins continue pulling and move towards each other. After the cohesins meet, they 

travel together in space; this effect is more pronounced if the cohesins cannot traverse one 

another (see Fig. S6d), where the two cohesins will follow the midpoint between the outermost 

tension fronts.  
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Figure S6: Extended legs and cohesin trajectories formed by active loop extrusion. a) Genomic length of extended 

legs at t after extrusion starts from simulations of a single cohesin extruding an initially relaxed chromatin section 

with 𝐷 ≈ 2 using three different extrusion velocities. The black line is a power law fit (Eq. (S22)) to all points such 

that 𝑔𝑙𝑒𝑔(𝑡) ≈ 𝐴 ∗ (𝑣𝑒𝑥𝑡)
𝐵 with 𝐴 = 2.1 ±  0.5 and 𝐵 = 0.54 ±  0.05. See section IIIa for leg length measurement 

method. b) Mean square distance between cohesin trajectories and tension front midpoints at time t after extrusion 

starts from simulations of a single cohesin extruding an initially relaxed chromatin section with 𝐷 ≈ 2 and 𝑣𝑒𝑥 ≈
0.3 kbp/𝜏0. The blue curve is the data, and the black curve is (3𝑡)1/2. c) Schematic of two un-nested, neighboring 

cohesins extruding the same genomic section. Purple and green dashed lines indicate tension fronts produced by the 

two cohesins. d) Average cohesin trajectories of two un-nested cohesins extruding a single polymer chain from 200 

simulations with the same initial conformations with 𝐷 ≈ 2 in which the cohesins cannot traverse one another. 

Black circles indicate the approximate time and locations when tension fronts meet; black triangles indicate 

approximate time and locations when cohesins meet. 

 

e. Mean square displacement of cohesins and chromatin loci 

Cohesin MSD 

Cohesin dynamics are tied to the genomic section on which it is extruding. During short lag 

times, cohesin motion couples to the relaxation modes of a section with genomic length 𝑔𝑚𝑖𝑛. Its 

mean square displacement 𝑀𝑆𝐷𝑐𝑜ℎ is the same as if the cohesin were not actively extruding and 

instead acted like a crosslink. For these short lag times, the cohesin MSD is on the order of  

 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡) ≈ 𝐷𝑐𝑜ℎ𝑏
2 (
𝑡

𝜏0
)

1
2
. (S23) 

𝐷𝑐𝑜ℎ accounts for effective friction experienced by cohesin (for example, due to size or 

temporary associations with other proteins), and is approximately the ratio 𝑀𝑆𝐷𝑐𝑜ℎ(𝜏0)/
𝑀𝑆𝐷𝑐ℎ𝑟(𝜏0), where 𝑀𝑆𝐷𝑐ℎ𝑟(𝜏0) is the mean square displacement of a chromatin locus during 

lag time 𝜏0. This regime ends at the relaxation time of 𝑔𝑚𝑖𝑛 corresponding to lag time 

 Δ𝑡𝑐𝑜ℎ
+ ≈ 𝜏0𝜅

−2 . (S24) 

 

During longer lag times, cohesin trajectories follow the tension fronts that are determined by the 

chromatin conformation at the time of cohesin binding (see previous section and main text). In 

Figure S7a, we sketch examples of the predicted cohesin MSD for different initial chromatin 

conformations: 

i) Relaxed with 𝐷 ≈ 2, and 

ii) Confined to a radius of gyration 𝑅𝑔. 
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In general, we expect 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡
2/𝐷 for Δ𝑡 ≥ Δ𝑡𝑐𝑜ℎ

+ . For case i), cohesins perform effective 

diffusion with 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡
1. For case ii), cohesin MSD is diffusive before plateauing when 

𝑀𝑆𝐷𝑐𝑜ℎ ≈ 𝑅𝑔
2. In Figure S7b, we plot cohesin MSDs from hybrid MD—MC simulations of 

single extrusion cycles corresponding to case i) (purple curve) and case ii) (green curve) with 

𝜅 ≈ 0.3 (see “Extended methods”, section III below). We compare them to the MSD of a 

cohesin that acts as a crosslink and does not extrude (black curve). As expected, 𝑀𝑆𝐷𝑐𝑜ℎ for 

both extrusion cases are approximately equal to the crosslink MSD during short lag times. For 

our simulations, 𝑀𝑆𝐷𝑐𝑜ℎ(𝜏0)/𝑀𝑆𝐷𝑐ℎ𝑟(𝜏0) ≈ 0.5 ≈ 𝐷𝑐𝑜ℎ because the simulated cohesin bond 

effectively acts as the junction point of a star polymer when not extruding. After lag times 

Δ𝑡𝑐𝑜ℎ
+ ≈ 12𝜏0 shown with the dashed black line in Figure S7b, both the purple and green curves 

are consistent with 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡
1. Δ𝑡𝑐𝑜ℎ

+ ≈ 12𝜏0 is the relaxation time of 𝑔𝑚𝑖𝑛 determined from 

simulation (see “Extended methods”). Lastly, the green curve plateaus when the cohesin MSD 

approximately equals the twice the mean squared radius of gyration of confinement (dashed 

green line), which is consistent with the scaling prediction of a plateau on the order of 𝑀𝑆𝐷𝑐𝑜ℎ ≈
𝑅𝑔
2. 

 

For the case of steady-state extrusion, chromatin conformation crosses over from fractal 

dimensions 𝐷 ≈ 2 to 𝐷 ≈ 4 at genomic lengths on the order of 𝑔(𝑑) ≈ [𝑑𝑧2/(2𝑣𝑒𝑥𝜏0)]
1/2 ≈

[𝑑𝑧/(2𝜅)]1/2 with mean square size 𝜉2(𝑑) ≈ 𝑏2[𝑑/(2𝜅𝑧)]1/2 (see Eq. (10) in the main text and 

related discussion). So, the mean square displacement of cohesin 𝑀𝑆𝐷𝑐𝑜ℎ crosses over between 

scaling behaviors of 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡
1 and 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡

1/2 at lag time 

 Δ𝑡𝑐𝑜ℎ
++ ≈ 𝐷𝑐𝑜ℎ

−1 (
𝑑𝑧

2𝜅𝑣𝑒𝑥
2
)

1
2
≈ 𝐷𝑐𝑜ℎ

−1 𝑔(𝑑)/𝑣𝑒𝑥 , 
(S25) 

(see Fig. S7c). This lag time is how long it takes 𝑀𝑆𝐷𝑐𝑜ℎ to reach 𝜉2(𝑑). It is also approximately 

the time it takes one cohesin domain to extrude a genomic length of 𝐷𝑐𝑜ℎ
−1 𝑔(𝑑). 𝑀𝑆𝐷𝑐𝑜ℎ for lag 

times between Δ𝑡𝑐𝑜ℎ
+  and Δ𝑡𝑐𝑜ℎ

++  is approximately 

 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡) ≈ 𝐷𝑐𝑜ℎ𝑏
2𝜅

Δ𝑡

𝜏0
 , for Δ𝑡𝑐𝑜ℎ

+ < Δ𝑡 ≤ Δ𝑡𝑐𝑜ℎ
++  . (S26) 

Note that 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡𝑐𝑜ℎ
+ ) ≈ 𝐷𝑐𝑜ℎ𝑏

2𝜅−1 ≈ 𝐷𝑐𝑜ℎ𝜉𝑚𝑖𝑛
2 , where 𝜉𝑚𝑖𝑛

2 ≈ 𝑏2𝜅−1 is the mean square 

size of the smallest relaxed section in a loop with genomic length 𝑔𝑚𝑖𝑛 (see Fig. 5B and related 

discussion in the main text). 𝑀𝑆𝐷𝑐𝑜ℎ for lag times longer than Δ𝑡𝑐𝑜ℎ
++  is approximately 

 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡) ≈ 𝑏
2 [

𝑔(𝑑)𝐷𝑐𝑜ℎ𝜅Δ𝑡

𝑧𝜏0
]

1

2
 , for Δ𝑡 > Δ𝑡𝑐𝑜ℎ

++  . (S27) 

 

The crossover times Δ𝑡𝑐𝑜ℎ
+  and Δ𝑡𝑐𝑜ℎ

++  both depend on 𝜏0, which in turn depends on the 𝐷1/2 of 

the chromatin section of interest (see Eq. (S2)). Note that Δ𝑡𝑐𝑜ℎ
+  and Δ𝑡𝑐𝑜ℎ

++  are meaningless for 

𝜅 ≤ 2𝑧/𝜆. This condition corresponds to Regime I in Figure 7A in the main text, in which entire 

loops have time to fully relax in the time cohesin extrudes them. In this case, there is no regime 

with 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡
1. 

 

Figure S7d shows the cohesin MSD from a steady-state extrusion simulation with 𝜅 ≈ 0.15 

(solid blue curve) compared to the MSD of a cohesin that acts as a crosslink (solid black curve). 

We expect the cohesin MSD with extrusion to crossover between scaling behaviors 𝑀𝑆𝐷𝑐𝑜ℎ ∼
Δ𝑡1/2 (see Eq. (S23)) and 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡

1 (see Eq. (S26)) at a lag time of approximately Δ𝑡𝑐𝑜ℎ
+ ≈
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50𝜏0, the relaxation time of 𝑔𝑚𝑖𝑛 obtained from simulation (see “Extended methods”). We then 

expect a second crossover back to 𝑀𝑆𝐷𝑐𝑜ℎ ∼ Δ𝑡
1/2 (see Eq. (S27)) at a lag time of 

approximately Δ𝑡𝑐𝑜ℎ
++ ≈ 250𝜏0. This value of Δ𝑡𝑐𝑜ℎ

++  was calculated from Eq. (S25), using 𝐷𝑐𝑜ℎ ≈
0.5 and 𝑔(𝑑) ≈ 37 kbp, as determined from simulation without extrusion (see “Extended 

methods”). In Figure S7d we also plot a theoretical crossover function (solid green curve) 

following this expected scaling behavior: 

 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡) ≈ Δ𝑡
1
2 [1 + (

Δ𝑡

50𝜏0
)

1
3
]

3
2

[1 + (
Δ𝑡

250𝜏0
)
2

]

−
1
4

 . (S28) 

The cohesin MSD from steady-state extrusion simulation (solid blue curve) is qualitatively 

consistent with Eq. (S28) (solid green curve). 

 

To further characterize the data, we fit the cohesin MSD from the steady-state extrusion 

simulation to two power laws for lag times longer than Δ𝑡𝑐𝑜ℎ
+ . The fits yielded 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡) ≈

(0.73 ± 0.01) ∗ (Δ𝑡/𝜏0)
(0.802±0.003) for 50 ≤ Δ𝑡/𝜏0 ≤ 150 and 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡) ≈ (5.25 ± 0.06) ∗

(Δ𝑡/𝜏0)
(0.442±0.002) for 300 ≤ Δt/𝜏0 ≤ 1000. We also fit the crosslink MSD (black curve) to 

𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡) ≈ (1.40 ± 0.01) ∗ (Δ𝑡/𝜏0)
(0.570±0.001) for 20 ≤ Δ𝑡/𝜏0 ≤ 300. The errors are 95% 

confidence intervals. We find the intersections between the fitted power laws to fit the crossover 

locations between scaling regimes, indicated by dashed black and blue lines in Figure S7d. Note 

that the three fitted power laws do not exactly match the theoretically predicted behaviors of ∼
Δ𝑡1 for 50 ≤ Δ𝑡/𝜏0 ≤ 150 and ∼ Δ𝑡1/2 for the interval 300 ≤ Δt/𝜏0 ≤ 1000 and the crosslink 

MSD for 20 ≤ Δ𝑡/𝜏0 ≤ 300. We attribute this discrepancy to a broad crossover between narrow 

intervals of scaling regimes. Note that the simulation data (solid blue curve in Fig. S7d) is 

consistent with the theoretical crossover function (solid green curve, Eq. (S28)) that was 

constructed with the theoretical power laws. 

 

The first crossover was found at lag times of ≈ (0.3 ± 0.1)Δ𝑡𝑐𝑜ℎ
+  corresponding to mean square 

displacements of ≈ (0.26 ± 0.07)𝜉𝑚𝑖𝑛
2 , where Δ𝑡𝑐𝑜ℎ

+ ≈ 50𝜏0 and 𝜉𝑚𝑖𝑛
2 ≈ 27𝜎𝐿𝐽

2  were determined 

from simulation without extrusion (see “Extended methods”). The errors represent the range of 

the intersection between the simultaneous, observational bounds of the fitted power laws at 95% 

confidence intervals. The second crossover was found at lag times of ≈ (0.9 ± 0.2)Δ𝑡𝑐𝑜ℎ
++  

corresponding to mean square displacements of ≈ (0.8 ± 0.1)𝜉2(𝑑), where Δ𝑡𝑐𝑜ℎ
++ ≈ 250𝜏0 was 

calculated using Eq. (S25) (see previous paragraph) and 𝜉2(𝑑) ≈ 73𝜎𝐿𝐽
2  was determined from 

simulation (see “Extended methods”). This fitted crossover agrees with the theoretical 

prediction.  
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Figure S7: MSD of cohesins and chromatin loci during active extrusion, neglecting entanglement effects at long lag 

times. a) Schematic plot on a log-log scale of the predicted MSD of actively extruding, chromatin-bound cohesins 

during a single extrusion cycle on an initially relaxed chromatin section with 𝐷 ≈ 2 (purple) or a chromatin section 

initially confined to a radius of gyration 𝑅𝑔 (green). The black line shows the MSD of a cohesin that does not 

extrude, but rather acts as a crosslink on a relaxed chromatin section with 𝐷 = 2. b) Cohesin MSD from simulations 

of a single extrusion cycle corresponding to a) with 𝑣𝑒𝑥 ≈ 0.6 kbp/𝜏0 (𝜅 ≈ 0.3). The dashed green line is 2𝑅𝑔
2, 

where 𝑅𝑔
2 is the mean square radius of gyration of confinement. The dashed vertical line corresponding to Δ𝑡𝑐𝑜ℎ

+  was 

obtained from simulation as the relaxation time of 𝑔𝑚𝑖𝑛 (see “Extended methods”). c) Schematic plot on a log-log 

scale of unobstructed cohesin predicted MSD in steady-state extrusion without TADs. d) Cohesin MSD from a 

steady-state active extrusion simulation with 𝑣𝑒𝑥 ≈ 0.3 kbp/𝜏0 (solid blue curve) compared with the MSD of a 

cohesin that acts as a crosslink which does not extrude (solid black curve) and a theoretical crossover function (solid 

green curve, see Eq. (S28)). The dashed red lines show the theoretical scaling predictions ∼ Δ𝑡1 and ∼ Δ𝑡1/2. The 

black dashed vertical lines are the lag times corresponding to the intersections of power laws fitted to the cohesin 

MSD and crosslink MSD. The blue dashed horizontal lines are the corresponding cohesin MSDs. The first crossover 

point is at lag times of ≈ (0.3 ± 0.1)Δ𝑡𝑐𝑜ℎ
+  and 𝑀𝑆𝐷𝑐𝑜ℎ of ≈ (0.26 ± 0.07)𝜉𝑚𝑖𝑛

2 . The second crossover point is at 

lag times of ≈ (0.9 ± 0.2)Δ𝑡𝑐𝑜ℎ
++  and 𝑀𝑆𝐷𝑐𝑜ℎ of ≈ (0.8 ± 0.1)𝜉2(𝑑). 

 

Chromatin loci MSD 

Monomers in a polymer with fractal dimension 𝐷 are predicted to follow Rouse-like MSDs that 

scale as ∼ Δ𝑡2/(𝐷+2) (24). With steady-state active loop extrusion in interphase, the fractal 

dimension of chromatin crosses over between 𝐷 ≈ 2 and 𝐷 ≈ 4 and back to 𝐷 ≈ 2. The scaling 

behavior of chromatin MSD thus crosses over between ∼ Δ𝑡1/2 and ∼ Δ𝑡1/3 and back to ∼ Δ𝑡1/2 

at lag times of Δ𝑡𝑐ℎ𝑟
+  and Δ𝑡𝑐ℎ𝑟

++  respectively (see Fig. S8a). On short length scales, chromatin has 

fractal dimension 𝐷 ≈ 2, so chromatin loci have MSD 

 
𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) ≈ 𝑏

2 (
Δ𝑡

𝜏0
)

1

2
≈ 𝐷1/2𝛥𝑡

1

2   for Δ𝑡 ≤ Δ𝑡𝑐ℎ𝑟
+  . (S29) 
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The fractal dimension crosses over to 𝐷 ≈ 4 on genomic length scales on the order of 𝑔(𝑑) ≈
[𝑑𝑧/(2𝜅)]1/2. The lag time Δ𝑡𝑐ℎ𝑟

+  at which chromatin locus MSD crosses over to a scaling of ∼
Δ𝑡1/3 is when Eq. (S29) is approximately equal to 𝜉2(𝑑) ≈ 𝑏2(𝑔(𝑑)/𝑧) ≈ 𝑏2[𝑑/(2𝜅𝑧)]1/2, 

which is the mean square spatial size of 𝑔(𝑑). This yields 

 
Δ𝑡𝑐ℎ𝑟

+ ≈
𝑑

2𝑣𝑒𝑥
  (S30) 

corresponding to MSDs on the order of  

 

𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡𝑐ℎ𝑟
+ ) ≈ 𝑏2 (

𝑑

2𝜅𝑧
)

1
2
≈ 𝐷1/2 (

𝑑

2𝑣𝑒𝑥
)

1
2
 . (S31) 

The magnitudes of 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡𝑐ℎ𝑟
+ ) and 𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡𝑐𝑜ℎ

++ ) are approximately equal: 

𝑀𝑆𝐷𝑐𝑜ℎ(Δ𝑡𝑐𝑜ℎ
++ ) ≈ 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡𝑐ℎ𝑟

+ ) ≈ 𝑏2[𝑑/(2𝜅𝑧)]1/2. 

 

Using 𝑑 ≈ 200 kbp, 𝑣𝑒𝑥 ≈ 0.1 kbp/s, and 𝐷1/2 ≈ 1.3x10-3 μm2 s-1/2 gives Δ𝑡𝑐ℎ𝑟
+ ≈  15 minutes 

and 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡𝑐ℎ𝑟
+ ) ≈ 0.04 μm2. The chromatin locus MSD is then approximately 

 
𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) ≈ 𝐷1/2 (

𝑑

2𝑣𝑒𝑥
)

1

6
Δ𝑡

1

3  for Δ𝑡𝑐ℎ𝑟
+ < Δ𝑡 ≤ Δ𝑡𝑐ℎ𝑟

++  . (S32) 

Note that the two-point MSD of the relative position of two loci (2pMSD) would have 

approximately twice the magnitude of the single-point MSD that we describe here. That is, the 

two-point MSD at Δ𝑡𝑐ℎ𝑟
+  would be approximately 0.08 μm2. 

 

After  Δ𝑡𝑐ℎ𝑟
++ , the MSD returns to a scaling of 𝑀𝑆𝐷𝑐ℎ𝑟 ∼ Δ𝑡

1/2, reflecting the crossover in 

chromatin fractal dimension back to 𝐷 ≈ 2 on genomic length scales longer than ≈ 𝐶2𝑁𝑇𝐴𝐷 (or 

≈ 𝐶1𝜆 without TAD anchors) with mean square size (with active loop extrusion)  

 

< 𝑟2(𝐶2𝑁𝑇𝐴𝐷) >≈ 𝑏
2 [
𝑔(𝑑)

𝑧
] [ 
𝐶2𝑁𝑇𝐴𝐷
𝑔(𝑑)

 ]

1
2

≈ 𝑏2 [
𝑔(𝑑)𝐶2𝑁𝑇𝐴𝐷

𝑧2
]

1
2

. (S33) 

The crossover time Δ𝑡𝑐ℎ𝑟
++  is found by equating Eqs. (S32) and (S33). This crossover may not be 

present for 2pMSDs if the plateau at approximately twice the mean square distance between the 

two tracked loci is less than < 𝑟2(𝐶2𝑁𝑇𝐴𝐷) > – see Eq. (S33). For even longer lag times Δ𝑡 ≥

Δ𝑡𝑒,𝑎𝑐𝑡𝑖𝑣𝑒, chromatin entanglements cause the MSD to exhibit a scaling of 𝑀𝑆𝐷𝑐ℎ𝑟 ∼ Δ𝑡
1/4 since 

𝐷 ≈ 3 on genomic length scales longer than 𝑁𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 and mean square distances longer than <

𝑟2(𝑁𝑒,𝑎𝑐𝑡𝑖𝑣𝑒) > with extrusion. For simplicity, in Figure S8a we do not plot this last regime (for 

neither the active nor passive case).  

 

Figure S8b shows the MSD of the central chromatin locus from a hybrid MD—MC simulation of 

steady-state extrusion without TAD anchors using 𝑣𝑒𝑥 ≈ 0.3 kbp/𝜏0 (𝜅 ≈ 0.15). This MSD is 

found by tracking the position of the center of mass of the middle two beads of the simulated 

polymer chain. We fit the data to three power laws. The fitted functions were 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) ≈ 
(2.98 ± 0.04) ∗ (Δ𝑡/𝜏0)

(0.56±0.01) for 1.5x102𝜏0 ≤ Δ𝑡 ≤ 3.5x102𝜏0, 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) ≈
(11.8 ± 0.2) ∗ (Δ𝑡/𝜏0)

(0.348±0.002) for 1.3x103𝜏0 ≤ Δ𝑡 ≤ 3x10
3𝜏0, and 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) ≈

(2.0 ± 0.1) ∗ (Δ𝑡/𝜏0)
(0.545±0.005) for 4.4x103𝜏0 ≤ Δ𝑡 ≤ 1.4x10

4𝜏0. The errors represent 95% 

confidence intervals. While the fitted power laws are close to the theoretical scaling regimes 

crossing over between 𝑀𝑆𝐷𝑐ℎ𝑟 ∼ Δ𝑡
1/2 to 𝑀𝑆𝐷𝑐ℎ𝑟 ∼ Δ𝑡

1/3 and back to 𝑀𝑆𝐷𝑐ℎ𝑟 ∼ Δ𝑡
1/2, all of 
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the fitted exponents are larger in magnitude than predicted. In the first regime, this could be due 

to a broad crossover between ballistic MSD at short lag times to subdiffusive behavior. For 

intermediate lag times, the fitted exponent of ≈ 0.348 ± 0.002 is larger than 1/3, possibly 

because there is a narrow range (on the order of a decade) of this regime between two other 

regimes with higher exponents. In the last regime, the discrepancy between the fitted exponent 

and theoretical value of 1/2 could be because in our simulation, the MSD at the upper end of 

this narrow fitting interval 𝑀𝑆𝐷𝑐ℎ𝑟(1.4x10
4𝜏0) ≈ 420𝜎𝐿𝐽

2  approaches the overall mean square 

end-to-end distance of the polymer chain of ≈ 450𝜎𝐿𝐽
2 . As such, our simulated MSD has a 

crossover to diffusive behavior. This would not be present in biological chromatin, as instead the 

effect of entanglements would appear. 

 

The crossovers between the three scaling regimes were determined by finding the intersection 

between the fitted power laws. The first crossover between the fitted power laws ∼ Δ𝑡0.56 and ∼
Δ𝑡0.348 occurs at a lag time of Δ𝑡𝑐ℎ𝑟,𝑓𝑖𝑡

+ ≈ (640 ± 40)𝜏0 corresponding to MSD of ≈

(1.6 ± 0.1)𝜉2(𝑑), where 𝜉2(𝑑) ≈ 73𝜎𝐿𝐽
2  is obtained from simulation (see “Extended methods”). 

The error represents the range of the intersection between the simultaneous, observational 

bounds of the fitted power laws at 95% confidence levels. The second crossover between the 

fitted power laws ∼ Δ𝑡0.348 and ∼ Δ𝑡0.545 occurs at a lag time of Δ𝑡𝑐ℎ𝑟,𝑓𝑖𝑡
++ ≈ (4.6 ± 0.9)x103𝜏0 

with MSD of ≈ (1.0 ± 0.1) < 𝑟2(2𝜆) >, where < 𝑟2(2𝜆) > is the mean square size of a 

chromatin section with genomic length 2𝜆 with active loop extrusion determined from 

simulation. As discussed in the main text (see Fig. 8B and related discussion), this simulation 

causes a change in fractal dimension from 𝐷 ≈ 4 to 𝐷 ≈ 2 at genomic length scales of ≈ 2𝜆 

(i.e., the constant 𝐶1 ≈ 2) as evidenced by the change in contact probability scaling from 𝑃(𝑠) ∼
𝑠−3/4 to 𝑃(𝑠) ∼ 𝑠−3/2. Recall that this is because extruding proteins rarely extrude loops longer 

than processivity 𝜆. Our simulations did not exhibit the crossover to 𝑀𝑆𝐷𝑐ℎ𝑟 ∼ Δ𝑡
1/4 at the 

longest time scales because our system is not entangled. 

 
Figure S8: Mean square displacement 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) of chromatin loci undergoing active loop extrusion in a steady 

state. a) Schematic plot on a log-log scale of 𝑀𝑆𝐷𝑐ℎ𝑟(Δ𝑡) with and without extrusion, without considering 

entanglements for simplicity. The MSD of the second crossover is ≈< 𝑟2(𝐶1𝜆) > without TAD anchors, or ≈<

𝑟2(𝐶2𝑁𝑇𝐴𝐷) > with TAD anchors. b) Chromatin locus MSD during steady-state active loop extrusion without 

TADs from simulation with 𝑣𝑒𝑥 ≈ 0.3 kbp/𝜏0 (𝜅 ≈ 0.15). Dashed red lines show the theoretical scaling behaviors of 

∼ Δ𝑡1/2 and ∼ Δ𝑡1/3. The dashed vertical lines are the lag times corresponding to the intersections of power laws 

fitted to the chromatin locus MSD. The dashed horizontal lines are the corresponding chromatin locus MSDs. The 

first crossover is at Δ𝑡𝑐ℎ𝑟,𝑓𝑖𝑡
+ ≈ (640 ± 40)𝜏0 and MSD of ≈ (1.6 ± 0.1)𝜉2(𝑑), where 𝜉2(𝑑) is measured from 

simulation. The second crossover is at Δ𝑡𝑐ℎ𝑟,𝑓𝑖𝑡
++ ≈ (4.6 ± 0.9)x103𝜏0 with MSD of ≈ (1.1 ± 0.1) < 𝑟2(2𝜆) >, 
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where < 𝑟2(2𝜆) > is the mean square size of a genomic length 2𝜆 with active loop extrusion obtained from 

simulation. 

 

III. Extended methods 

a. Hybrid molecular dynamics – Monte Carlo (MD—MC) simulations  

We use the Kremer-Grest bead-spring model (25) to simulate linear polymer chains with 

𝑁𝑏𝑒𝑎𝑑𝑠 = 1000 beads, each with diameter 𝜎𝐿𝐽 and each representing 1 kbp of chromatin. We use 

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package (26). Non-

bonded beads interact via a truncated and shifted Lennard-Jones (LJ) potential 

 

𝑈𝐿𝐽(𝑟; 𝜖, 𝑟𝑐) = {
4𝜖 [(

𝜎𝐿𝐽
𝑟
)
12

− (
𝜎𝐿𝐽
𝑟
)
6

− (
𝜎𝐿𝐽
𝑟𝑐
)
12

+ (
𝜎𝐿𝐽
𝑟𝑐
)
6

]  ,  𝑟 ≤ 𝑟𝑐

0                                                                             ,  𝑟 > 𝑟𝑐

 (S34) 

with 𝑟𝑐 = 2.5𝜎𝐿𝐽 and 𝜖 = 0.298𝜖𝐿𝐽. 𝜖𝐿𝐽 is the LJ energy scale. 𝜏𝐿𝐽 = (𝑚𝜎𝐿𝐽/𝜖𝐿𝐽)
1/2

 is the LJ 

time scale, where 𝑚 is the mass of a bead. This choice of parameters simulates a theta-like 

implicit solvent (27). We use a finite extensible nonlinear elastic (FENE) potential to model 

bonded interactions along the backbone: 

 
𝑈𝐵(𝑟) = −0.5𝐾𝑅0

2𝑙𝑛 [1 − (
𝑟

𝑅0
)
2

] + 𝑈𝐿𝐽 (𝑟; 1𝜖𝐿𝐽, 2
1
6𝜎𝐿𝐽) , (S35) 

where 𝐾 = 30𝜖𝐿𝐽𝜎𝐿𝐽
−2, 𝑅0 = 1.5𝜎𝐿𝐽, and 𝑈𝐿𝐽(𝑟; 𝜖, 𝑟𝑐) is given by Eq. (S34). We use a Langevin 

thermostat to maintain a temperature 𝑇 = 1𝜖𝐿𝐽/𝑘𝐵𝑇 with a damping constant 𝛤 = 1𝜏𝐿𝐽
−1. The 

integration time step was Δ𝑡 = 0.01𝜏𝐿𝐽. The Kuhn length for this chain is ≈ 2𝜎𝐿𝐽 corresponding 

to approximately two beads (2 kbp or one locus). The center of mass of the two central beads in 

the chain moved a mean square displacement on the order of the mean square size of a dimer in 

≈ 3𝜏𝐿𝐽, so the diffusion time of a Kuhn segment is approximately 𝜏0 ≈ 3𝜏𝐿𝐽. 

 

Chains were initialized in one of three ways: 

1) Random walks in a cubic box with length 500 𝜎𝐿𝐽 and then equilibrated for 107𝜏𝐿𝐽, 

2) Hairpin with two parallel straight lines of 500 beads each, or 

3) Random walks in a cubic box, confined with a potential 𝑈𝑐𝑜𝑛𝑓(𝑅𝑔) = 15𝜖𝐿𝐽𝜎𝐿𝐽
−2(𝑅𝑔 −

5𝜎𝐿𝐽)
2
 and equilibrated for 2x106 𝜏𝐿𝐽. 

Conditions 1) and 3) were used for simulations with a single extrusion cycle (when only one 

cohesin extrudes the chain one time). Conditions 1) and 2) were used for steady-state 

simulations. The initial box sizes were chosen to be much larger than the initial polymer size. 

Simulations used non-periodic, shrink-wrapped boundaries such that the box adjusts during the 

simulations to ensure beads do not cross the boundaries. The confining potential for condition 3) 

caused an average radius of gyration 𝑅𝑔 ≈ (6.6 ± 0.1)𝜎𝐿𝐽 before extrusion, which is 

approximately three times smaller than the unconfined radius of gyration. The confining 

potential was maintained throughout extrusion.  

 

We then used hybrid MD—MC to simulate loop extrusion implemented in LAMMPS and C 

(MD in LAMMPS followed bead trajectories; MC in C decided cohesin binding, unbinding, and 

translocation). One MC step was performed every 𝜏𝑀𝐶 = 2𝜏𝐿𝐽, 5𝜏𝐿𝐽, or 10𝜏𝐿𝐽. Single extrusion 

cycle simulations were run with all three 𝜏𝑀𝐶, while steady-state extrusion simulations were run 

with 𝜏𝑀𝐶 = 5𝜏𝐿𝐽. Cohesins were modeled by additional bonds with the potential 
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𝑈𝑐(𝑟) = −0.5𝐾𝑐𝑅0𝑐

2 𝑙𝑛 [1 − (
𝑟

𝑅0𝑐
)

2

] + 𝑈𝐿𝐽 (𝑟; 1𝜖𝐿𝐽, 2
1
6𝜎𝐿𝐽) , (S36) 

where 𝐾𝑐 = 1𝜖𝐿𝐽𝜎𝐿𝐽
−2  and 𝑅0𝑐 = 4𝜎𝐿𝐽. To simulate extrusion, this bond can form, break, and 

change binding partners during MC steps. We randomize the order of cohesin binding, unbinding, 

and translocation during each MC step. We denote one side of the cohesin bond the (-) domain, 

and the other the (+) domain. Steady-state simulations were run for 107𝜏𝐿𝐽, which is more than 

103 times the end-to-end vector autocorrelation decay time (see Fig. S9a). We compared three 

different initial chromatin conformations (two different relaxed conformations, and a hairpin) to 

ensure that the initial conformation did not affect the contact probabilities in the simulation. The 

average contact probabilities across all three initial conformations were consistent (see Fig. S9b). 

Two beads were considered to be in contact if the distance between their centers was shorter than 

or equal to 1.5𝜎𝐿𝐽. 

 
Figure S9: Equilibration of hybrid MD—MC simulations. a) Autocorrelation of the end-to-end vector of a steady-

state extrusion simulation with 𝜏𝑀𝐶 = 5𝜏𝐿𝐽. The dashed red line is a fit in the range Δ𝑡 = 5000𝜏𝐿𝐽 − 25000𝜏𝐿𝐽. The 

decay time is approximately (9340 ± 20)𝜏𝐿𝐽. b) Average contact probabilities of steady-state extrusion simulations 

for three initial conformations, all using 𝜏𝑀𝐶 = 5𝜏𝐿𝐽.The dashed black lines indicate our scaling prediction shifted 

vertically. The blue, red, and yellow curves mostly overlap one another. 

 

Translocation 

Let the (-) and (+) cohesin domains be located at beads a and b respectively such that 1 ≤ 𝑎 <
𝑏 ≤ 𝑁𝑏𝑒𝑎𝑑𝑠. The two domains move independently and cannot move past TAD anchors in the 

correct orientations. During each MC step, the (-) domain attempts a move to bead a-1 with 

probability 𝑝 = 0.5. The (+) domain attempts a move to bead b+1 with probability 𝑝 = 0.5. 

Moves are accepted if the domains are not at TAD anchors and the attempted bond length is 

shorter than 𝑅0𝑐 − 0.005 = 3.995𝜎𝐿𝐽 (to prevent over-stretched FENE bonds). If the (-) domain 

is at bead index 1 and attempts to move, the cohesin unbinds. Similarly, if the (+) domain is at 

bead index 𝑁𝑏𝑒𝑎𝑑𝑠 = 1000 and attempts to move, the cohesin unbinds. For almost all 

simulations, multiple cohesin domains are allowed to bind the same bead (i.e., unimpeded 

cohesin traversal is allowed). Using these parameters, the average extrusion velocity per domain 

with 𝜏𝑀𝐶 = 5𝜏𝐿𝐽, 2𝜏𝐿𝐽, and 10𝜏𝐿𝐽 were 𝑣𝑒𝑥 ≈ 0.2 kbp/𝜏𝐿𝐽 ≈ 0.6 kbp/𝜏0, 𝑣𝑒𝑥 ≈ 0.1 kbp/𝜏𝐿𝐽 ≈

0.3 kbp/𝜏0, and 𝑣𝑒𝑥 ≈ 0.05 kbp/𝜏𝐿𝐽 ≈ 0.15 kbp/𝜏0 respectively, where 𝜏0 is the diffusion time of 

a Kuhn segment. 
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Cohesin binding and unbinding 

For simulations of a single extrusion cycle, we place a single cohesin bond halfway along the 

polymer chain with the (-) and (+) domains at bead indices 500 and 501, respectively. Recall that 

we represent cohesin by a single bond between two beads (see Eq. (S36) and related discussion). 

The cohesin translocates until reaching the ends of the polymer chain. Only one cohesin is 

allowed on the chain. For steady-state simulations, we place no limit on the number of cohesins 

on the chain. We randomly choose a pair of beads with indices x and x+1 such that 1 ≤ 𝑥 <
𝑁𝑏𝑒𝑎𝑑𝑠. A cohesin bond is formed with probability 𝑝𝑏𝑖𝑛𝑑, which we set to 𝑝𝑏𝑖𝑛𝑑 =2.8x10-5. 

During a single MC step, we cycle through all possible bead pairs x and x+1 in random order. 

Also, during each MC step, all bound cohesins attempt to unbind with probability 𝑝𝑢𝑛𝑏𝑖𝑛𝑑, which 

we set to 𝑝𝑢𝑛𝑏𝑖𝑛𝑑 = 0.004. These parameters with 𝜏𝑀𝐶 = 5𝜏𝐿𝐽 without TAD anchors yielded a 

mean residence time of 𝜏𝑟𝑒𝑠 ≈ (960 ± 10)𝜏𝐿𝐽, processivity of 𝜆 ≈ (190 ± 2) kbp, and 

separation of 𝑑 ≈ (190 ± 20) kbp. 

 

Simulations with immobile cohesins 

For Figure S2a and Figure 10b in the main text, we ran simulations with cohesins that do not 

move in space. To do this, we include a harmonic potential to the beads held together by the 

cohesin bond. This potential tethers the beads’ center of mass (COM) to the initial COM of the 

cohesin binding site. This potential is given by 𝑈𝑡𝑒𝑡ℎ𝑒𝑟(𝑟𝐶𝑂𝑀) = 𝐾𝑡𝑟𝐶𝑂𝑀
2, where 𝐾𝑡 = 1𝜖𝐿𝐽𝜎𝐿𝐽

−2 

and 𝑟𝐶𝑂𝑀 is the distance between the COM of the cohesin beads and the tether point. During each 

integration time step, the tethering potential is only applied to beads held together by cohesin. 

 

Simulations with two cohesins 

For Figure S3d, we simulate two unnested cohesins actively extruding the same polymer. These 

simulations are performed like the single extrusion cycle simulations, except we initially place 

one cohesin at bead indices 332 and 333, and the other at indices 666 and 667. In these 

simulations, we only allow one cohesin domain per bead at a time, meaning cohesin traversal is 

not allowed. 

 

Determining 𝑔𝑚𝑖𝑛 and 𝑔(𝑑) from simulation 

To measure 𝑔𝑚𝑖𝑛 and 𝑔(𝑑), we compared the mean square displacements of beads 

𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒(Δ𝑡) without extrusion to internal sizes < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑠) > without extrusion. <

𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2(𝑠) > is the mean square size of a section with s beads averaged over different sections 

within the polymer chain. The MSD at lag time Δ𝑡 is the mean square distance a bead moves in 

the time it takes a cohesin domain to extrude 𝑣𝑒𝑥Δ𝑡 beads. < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑣𝑒𝑥Δ𝑡) > is the relaxed 

size of a section with 𝑣𝑒𝑥Δ𝑡 beads. 𝑔𝑚𝑖𝑛 is the largest section such that 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑣𝑒𝑥Δ𝑡) ≥ <

𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑣𝑒𝑥Δ𝑡) >. The mean square size of 𝑔𝑚𝑖𝑛 is 𝜉𝑚𝑖𝑛

2 ≈< 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑔𝑚𝑖𝑛) >. The lag time at 

which this occurs is the relaxation time of a section with genomic length 𝑔𝑚𝑖𝑛 which is also 

Δ𝑡𝑐𝑜ℎ
+  (see Eq. (S24) and related discussion). Figure S10 shows an example for 𝑣𝑒𝑥 ≈ 0.3 kbp 

per 𝜏0 where 𝑔𝑚𝑖𝑛 ≈ (15 ± 1) kbp, 𝜉𝑚𝑖𝑛
2 ≈ (27 ± 2)𝜎𝐿𝐽

2 , and Δ𝑡𝑐𝑜ℎ
+ ≈ (50 ± 3)𝜏0 obtained from 

simulation (the intersection of the red and blue curves in Figure S10). Errors represent the range 

of the intersection found by using the simultaneous, observational bounds at 95% confidence 

intervals of power law fits to the red and blue curves. For 𝑣𝑒𝑥 ≈ 0.6 kbp per 𝜏0 (used in Fig. 

S7b), 𝑔𝑚𝑖𝑛 ≈ (7 ± 1) kbp, 𝜉𝑚𝑖𝑛
2 ≈ (12 ± 2)𝜎𝐿𝐽, and Δ𝑡𝑐𝑜ℎ

+ ≈ (12 ± 1)𝜏0. 
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Figure S10: Bead MSD and mean square internal sizes of a simulation without extrusion, used to obtain 𝑔𝑚𝑖𝑛. This 

example uses 𝑣𝑒𝑥 = 0.3 kbp/𝜏0. The dashed black lines indicate the intersection of the red and blue curves and 

represent 𝑔𝑚𝑖𝑛 and the relaxed, mean square size of 𝑔𝑚𝑖𝑛 from simulation. 

 

𝑔(𝑑) is the largest chromatin section that relaxes during time 𝜏𝐵,𝜆 ≈ 𝑑/(2𝑣𝑒𝑥) (see section IIb). 

𝜏𝐵,𝜆 is the time between cohesin binding events within a chromatin section of genomic length 𝜆. 

In our steady-state simulations, 𝜏𝐵,𝜆 ≈ (940 ± 10)𝜏𝐿𝐽. We obtain 𝑔(𝑑) from simulation as the 

largest section such that 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒(940𝜏𝐿𝐽) ≥ < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒
2 (𝑠) >. 𝜉2(𝑑) is < 𝑟𝑝𝑎𝑠𝑠𝑖𝑣𝑒

2 (𝑔(𝑑)) >, 

the relaxed, unextruded mean square size of a section with genomic length 𝑔(𝑑). We find 

𝑔(𝑑) ≈ (37 ± 1) kbp and 𝜉2(𝑑) ≈ (73 ± 2)𝜎𝐿𝐽
2 . 

 

Approximating 𝑔𝑙𝑒𝑔 and tension fronts from simulation 

To approximate the number of beads in a leg produced by extrusion, we simulate a single 

extrusion cycle using three extrusion velocities. Each simulation started from a relaxed polymer 

conformation with 𝐷 ≈ 2. We track < 𝑑0
2(𝑡; 𝑖) >, the mean square distance between the initial 

position of bead i and at time 𝑡 after extrusion begins (see Fig. S11a). Before the tension front 

reaches bead i, < 𝑑0
2(𝑡; 𝑖) > follows the bead MSD from a passive chain without extrusion 

𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒 ∼ 𝑡
1/2. After the tension front reaches bead i at time 𝑡𝑓𝑒𝑒𝑙, < 𝑑0

2(𝑡; 𝑖) > deviates 

from 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒 and grows faster than 𝑡1/2 (see Fig. S11b). To find 𝑡𝑓𝑒𝑒𝑙, we fit the second 

regime of < 𝑑0
2(𝑡; 𝑖) > averaged over 100 simulations per extrusion velocity to a power law and 

find the time at which < 𝑑0
2(𝑡; 𝑖) > intersects 𝑀𝑆𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒 from a simulation without extrusion. 

Each bead i thus has an associated 𝑡𝑓𝑒𝑒𝑙. From each simulation, we calculate 𝑔𝑙𝑒𝑔(𝑡𝑓𝑒𝑒𝑙), the 

number of beads in a leg at time 𝑡𝑓𝑒𝑒𝑙, by finding the number of beads between i and the bead 

being extruded at 𝑡𝑓𝑒𝑒𝑙 (see Fig. S11a). On average we expect 𝑔𝑙𝑒𝑔(𝑡𝑓𝑒𝑒𝑙) ≈ 𝑠𝑏𝑖𝑛𝑑,𝑖 − 𝑣𝑒𝑥𝑡𝑓𝑒𝑒𝑙, 

where 𝑠𝑏𝑖𝑛𝑑,𝑖 is the number of beads between the cohesin binding site and the bead i at the end of 

the tension front at time 𝑡𝑓𝑒𝑒𝑙.  



25 

 

 
Figure S11: Approximating the length of extended chromatin legs from simulations. a) Schematic showing bead i 

moving in space from its initial position (open purple circle) to its position at time 𝑡𝑓𝑒𝑒𝑙 (filled purple circle) 

corresponding to a mean square distance of < 𝑑0
2(𝑡𝑓𝑒𝑒𝑙; 𝑖) >. The green and blue curves represent the chromatin 

conformation at 𝑡 = 0 when cohesin starts and at 𝑡 = 𝑡𝑓𝑒𝑒𝑙 respectively. 𝑔𝑙𝑒𝑔(𝑡𝑓𝑒𝑒𝑙) is the number of beads between 

cohesin (orange rings) and i at time 𝑡𝑓𝑒𝑒𝑙. b) Mean square distance < 𝑑0
2(𝑡; 𝑖) > between a bead’s position at time t 

and its initial position from simulations of a single extrusion cycle on an initially relaxed chain (𝐷 ≈ 2) using 𝑣𝑒𝑥 ≈
0.6 kbp/𝜏0. The blue, red, and purple curves correspond to beads that are 50 kbp, 100 kbp, and 200 kbp away from 

the cohesin binding site, respectively. The thick black dashed lines are fits to the second regimes of the < 𝑑0
2(𝑡; 𝑖) > 

curves. The vertical dashed lines are the intersections between the estimated 𝑡𝑓𝑒𝑒𝑙 for the different beads. 

 

Cohesin trajectories and tension fronts from simulations 

Each cohesin produces two tension fronts. As described in the main text and section IId above, 

cohesin trajectories are determined by the midpoint between the two tension fronts. The tension 

front midpoint is determined by the initial conformation of the chromatin section of interest. To 

test this, we simulate a single extrusion cycle on an initially relaxed polymer chain. We run 200 

simulations, all with the same initial chain conformation and cohesin binding site, but with 

different random number generator seeds. The cohesin trajectory is averaged over the 200 

simulations.  

 

From the initial chain conformation, we estimate the positions of the tension fronts at time t as 

the positions of the beads 𝑔𝑙𝑒𝑔(𝑡) ≈ [2.1(𝑣𝑒𝑥𝑡)
0.54] (see Eq. (S22)) past the cohesin binding site 

on either side, where […] denotes the integer part (see Fig. S12a). As described in the previous 

section and the discussion related to Eq. (S22), we found the expression for 𝑔𝑙𝑒𝑔(𝑡) by fitting the 

calculated genomic lengths of legs at time t to a power law 𝑔𝑙𝑒𝑔(𝑡) ≈ 𝐴 ∗ (𝑣𝑒𝑥𝑡)
𝐵 resulting in 

𝐴 = 2.1 ± 0.5 and 𝐵 = 0.54 ± 0.05. The fit was performed simultaneously on data from 100 

simulations per extrusion velocity. Our objective is to approximate the average path of the 

tension front midpoints produced by any cohesin that extrudes a given chromatin section with a 

given initial conformation and a given binding site (see Fig. 11B in the main text). One initial 

chain conformation has one set of tension front midpoints.  

 

To smooth the tension front midpoints, we average the positions of all beads 𝑖 that satisfy 

max[0, 𝑔𝑙𝑒𝑔(𝑡) − 2𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡)] ≤ 𝑠𝑖𝑗 ≤ min[𝑔𝑙𝑒𝑔(𝑡) + 2𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡), 𝑁𝑏𝑒𝑎𝑑𝑠 − 𝑗], (S37) 

where 𝑠𝑖𝑗 is the genomic distance between 𝑖 and the cohesin binding site at 𝑗 and 𝑁𝑏𝑒𝑎𝑑𝑠 − 𝑗 is 

the maximum genomic distance between the polymer chain end and the cohesin binding site (see 
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Fig. S12a). 𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) is the number of beads in a section of a relaxed, unperturbed chain with 

mean square size approximately equal to the mean square displacement of a single bead in the 

relaxed, unperturbed chain during time Δ𝑡. For each time 𝑡, we measure 𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) from a 

simulation of a relaxed polymer chain without extrusion and fit a power law 𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) ≈
(2.10 ± 0.01) ∗ (𝑡/𝜏0)

(0.504±0.001) as shown in Figure S12b. Errors represent 95% confidence 

intervals. Smoothing over 2𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) effectively averages the locations of two tension fronts 

over thermal fluctuations of several polymer sections that relax during time t. The max[…] and 

min[…] functions in Eq. (S37) ensure that the smoothing does not extend past the polymer chain 

ends nor the cohesin binding site. 

 

Figure S12c and S12d show the unsmoothed and smoothed tension front midpoints from the 

same initial chain conformation, respectively. The smoothed midpoints are used for Figure 11B 

in the main text. Figure S12e plots the mean square distance between cohesin trajectories and the 

tension front midpoint trajectory < Δ𝑐𝑜ℎ,𝑡𝑒𝑛𝑠
2 (𝑡) > (see Fig. S6b) for both the smoothed (blue 

curve) and unsmoothed (red curve) tension front midpoint. Smoothing the tension front midpoint 

trajectory suppresses fluctuations in < Δ𝑐𝑜ℎ,𝑡𝑒𝑛𝑠
2 (𝑡) > but maintains the same scaling of ∼ 𝑡1/2. 

 

 
Figure S12: Trajectories of tension front midpoints from initial chain conformations. a) The tension front positions 

are approximated from the initial chain conformation before extrusion begins as the positions of the beads 𝑔𝑙𝑒𝑔(𝑡) 

past the cohesin binding site (purple circles) when extrusion begins. To smooth the tension fronts, we take the 

average position of all beads that satisfy Eq. (S37) (green curves) when extrusion begins. b) The number of beads 

𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) in a section of a relaxed polymer chain that has approximately the same mean square size as the mean 

square displacement of a single bead during time Δ𝑡. The red line is a power law fit to the data yielding 

𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) ≈ (2.10 ± 0.01) ∗ (𝑡/τ0)
(0.504±0.001). c) Unsmoothed tension front midpoint trajectories taken from a 

single initial chain conformation. d) Smoothed tension front midpoint trajectories taken from the same initial chain 

conformation as in c). e) Mean square distance between cohesin trajectories and tension front midpoints at time t 

after extrusion starts from simulations of a single cohesin extruding an initially relaxed chromatin section with 𝐷 ≈
2 and 𝑣𝑒𝑥 ≈ 0.3 kbp/𝜏0. The blue and red curves use the smoothed and unsmoothed tension front midpoints, 

respectively. The black curve is (3𝑡)1/2. 
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b. Contact probability plots from Micro-C data 

We used publicly available Micro-C data from HFF and mESC cells. HFF data was from Ref. 

(28), accessed in the 4D Nucleome Data Portal with accession number 4DNFI9FVHJZQ. mESC 

data was from Ref. (29), accessed in the Gene Expression Omnibus with accession number 

GSE178982, file GSE178982_CTCF-UT_pool.mcool. cooltools (30) was used to calculate 

smoothed contact probabilities 𝑃(𝑠) averaged over all chromosomes.  

 

c. Fitting Micro-C data 

We use the following crossover function to describe Micro-C 𝑃(𝑠) curves: 

 

𝑃𝑐𝑟𝑜𝑠𝑠(𝑠) =
𝑠−3/2 [1 + (

𝑠
𝐴
)
𝛼1
]

3
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 . (S38) 

This function describes smooth crossovers between scaling behaviors of 𝑃(𝑠) ∼ 𝑠−3/2 and 

𝑃(𝑠) ∼ 𝑠−3/4 at genomic separations of 𝑠 = 𝐴 (kbp) and between 𝑃(𝑠) ∼ 𝑠−3/4 and 𝑃(𝑠) ∼
𝑠−3/2 at 𝑠 =  𝐵 (kbp) normalized to 𝑃(5 kbp) = 1. We fit the natural logarithm of experimental 

Micro-C 𝑃(𝑠) to the natural logarithm of Eq. (S38) for genomic separations between 5 kbp and 1 

Mbp at 1 kbp resolution using nonlinear least squares in MATLAB. We perform three fits: 

experimental HFF to Eq. (S38), experimental mESC to Eq. (S38), and both experimental datasets 

to Eq. (S38) simultaneously (see Fig. S13). Table S4 of section IV shows the fitting parameters 

with 95% confidence intervals and errors associated with each fit. Table S4 also shows the 

deviations between the HFF and mESC datasets, and between each dataset and the asymptotic 

scaling curve (solid black lines in Fig. S13 and Fig. 8C of the main text). As described in the 

main text, we quantify error between 𝑃(𝑠) curves as the root mean square deviation between 

their natural logarithms for genomic separations between 5 kbp and 1 Mbp and 1 kbp resolution. 

The deviations between each experimental dataset and the theoretical crossover functions are 

smaller than the deviation between the two experimental datasets, suggesting that our theory is 

consistent with experimental data and within variations between experiments and cell type. 

 

 
Figure S13: Simultaneous fits of genome-averaged 𝑃(𝑠) curves. a) Genome-averaged 𝑃(𝑠) from Micro-C in HFF 

(blue open circles, (28)) and mESC (green open circles, (29)) cells, a simultaneous fit of the two datasets to Eq. 

(S38) (solid red curve), and the predicted asymptotic scaling (solid black lines). b) Slopes on a log-log scale of 

curves in a). 
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d. Fitting 2pMSD data 

We fit the natural logarithm of 2pMSD in mESC cells from ref. (8) to two functions representing 

power laws: ln(2𝑝𝑀𝑆𝐷) = ln(2𝐷1/2) + ln(Δt)/2 and ln(2𝑝𝑀𝑆𝐷) = ln(2𝐷1/3) + ln(Δ𝑡)/3, 

where 𝐷1/2 and 𝐷1/3 are the subdiffusive mobility coefficients. Table S5 shows the fitted 

subdiffusive mobility coefficients and lag time ranges used for each fit. The crossover was found 

as the intersection of the two fitted power laws for each dataset. For wild-type cells, the 

crossover occurred at 2𝑝𝑀𝑆𝐷 ≈ (0.066 ± 0.004) μm2 and Δ𝑡𝑐ℎ𝑟
+ ≈ (200 ± 20) seconds. For 

ΔCTCFsites cells, the crossover occurred at 2𝑝𝑀𝑆𝐷 ≈ (0.11 ± 0.01) μm2 and Δ𝑡𝑐ℎ𝑟
+ ≈

(280 ± 80) seconds. The errors represent the range of intersection between the simultaneous, 

functional bounds of the fitted power laws at 95% confidence levels. 

 

In the main text, we use the wild-type 2pMSD fit to estimate parameters related to active loop 

extrusion. The extrusion velocity 𝑣𝑒𝑥 ≈ 0.5 kbp/s was calculated from the fitted Δ𝑡𝑐ℎ𝑟
+  using Eq. 

(S30) assuming a cohesin separation of 𝑑 = 200 kbp. The fitted value of 𝐷1/2 ≈ 2.3x10
−3 μm2s-

1/2 and Eq. (S2) were used to calculate 𝜏0 ≈ 1.2 seconds for a 50 nm locus, giving a crossover lag 

time of Δ𝑡𝑐ℎ𝑟
+ ≈ 170𝜏0 and an extrusion ratio of 𝜅 = 𝑣𝑒𝑥𝜏0/𝑧 ≈ 0.3 for 𝑧 = 2 kbp. 𝑔(𝑑) was 

calculated by combining Eq. (S30) and Eq. (10) in the main text, giving 𝑔(𝑑) ≈ (Δ𝑡𝑐ℎ𝑟
+ 𝑧2/

𝜏0)
1/2 ≈ 26 kbp. 

 

e. Inter-TAD and intra-TAD contacts 

TADs in HFF cells were identified with the Arrowhead algorithm in Juicer tools version 1.22.01 

(31) with 5 kbp resolution. TADs in mESC cells were taken from Supplemental Table 3 in (29), 

which were also identified using Arrowhead. Contacts were accessed from .mcool files at 1 kbp 

resolution using the matrix selector in cooler (32) with the balance=True option. Consider a TAD 

as depicted by the dark red square in the center of the contact map schematic in Figure S14. 

 
Figure S14: Schematic contact map with a TAD in the center, represented with the dark red square. Purple and blue 

rectangles represent inter-TAD and intra-TAD contacts, respectively. 

 

The inter-TAD contacts 𝐶𝑖𝑛𝑡𝑒𝑟 are calculated as the sum of all contacts outlined by the purple 

rectangles, extending to the chromosome ends. These are all contacts between loci in the TAD 

with loci outside of the TAD but within the same chromosome. The intra-TAD contacts 𝐶𝑖𝑛𝑡𝑟𝑎 

are calculated as the sum of all contacts outlined by the blue square, not including the main 

diagonal entries. These are the contacts between loci in the TAD with other loci in the TAD. 

𝐶𝑡𝑜𝑡 = 𝐶𝑖𝑛𝑡𝑒𝑟 + 𝐶𝑖𝑛𝑡𝑟𝑎 is the total number of contacts made by loci within the TAD. We bin the 

TADs in the analyzed datasets by genomic length 𝑁𝑇𝐴𝐷 into 100 log-spaced bins. The bin-

averaged fraction of inter-TAD and intra-TAD contacts (𝐹𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) and 𝐹𝑖𝑛𝑡𝑟𝑎(𝑁𝑇𝐴𝐷), 
respectively) are plotted in Figure 9 of the main text. 

 



29 

 

Given an average contact probability function 𝑃(𝑠), the number of inter-TAD contacts should be 

approximately proportional to 

 
𝐼𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) ≈ ∫ 𝑠𝑃(𝑠)𝑑𝑠

𝑁𝑇𝐴𝐷

1

+∫ 𝑁𝑇𝐴𝐷

𝐿𝑐ℎ𝑟−𝑁𝑇𝐴𝐷

𝑁𝑇𝐴𝐷+1

𝑃(𝑠)𝑑𝑠 , (S39) 

where 𝐿𝑐ℎ𝑟 is the average genomic length of a chromosome which we take to be approximately 

100 Mbp. We calculate 𝐼𝑖𝑛𝑡𝑒𝑟 using a smoothed crossover function for contact probabilities: 

𝑃1(𝑠) = 𝑠
−
3
2 [1 + (
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30
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2

]

3
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]
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3
8
. (S40) 

We recognize that Eq. (S40) does not capture the scaling behavior past the entanglement 

genomic length, after which the contact probabilities may be proportional to 𝑠−1, but assume that 

large genomic distances s contribute minimally to the integrals in Eq. (S39). An example of a 

crossover function that has contact probabilities ∼ 𝑠−1 for 𝑠 ≥ 𝑁𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 ≈ 5000 kbp is 

𝑃2(𝑠) = 𝑠
−
3
2 [1 + (

𝑠

30
)
2

]

3
8
[1 + (

𝑠

400
)
2

]
−
3
8
[1 + (

𝑠

5000
)
2

]

1
8
. (S41) 

The values of 𝐼𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) using Eq. (S40) and Eq. (S41) differ by ≤ 10% for TADs shorter than 

1 Mbp, and ≤ 15% for TADs between 1 Mbp and 4 Mbp. Numerical integration was performed 

using the trapz() function in MATLAB. Figure S15a shows the calculated 𝐼𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) scaled to 

match 𝐶𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) at 𝑁𝑇𝐴𝐷 = 200 kbp ≈ 𝜆 from Micro-C data in HFF and mESC cells. We 

call this scaled integral 𝐼𝑖𝑛𝑡𝑒𝑟̃(𝑁𝑇𝐴𝐷). 
 

Ideally, 𝐶𝑙𝑜𝑐 ≈ 𝐶𝑡𝑜𝑡(𝑁𝑇𝐴𝐷)/𝑁𝑇𝐴𝐷 or the average number of contacts made per locus, should be 

independent of TAD length. However, as shown in Figure S15b, the Micro-C data shows a weak 

dependence of  𝐶𝑙𝑜𝑐 on 𝑁𝑇𝐴𝐷. This discrepancy could be attributed to inefficient cross-linking 

during the Micro-C experiments, minor sequencing errors, artifacts of the downstream 

processing to produce contact matrices, or unexplored biological phenomena. To correct for this 

effect, we fit separate power laws to the data in HFF and mESC cells (see Fig. S15b). We call the 

fitted power laws 𝐶𝑙𝑜𝑐,𝑓𝑖𝑡(𝑁𝑇𝐴𝐷). Our predicted inter-TAD and intra-TAD fractions are then 

calculated as 

 
𝐹𝑖𝑛𝑡𝑒𝑟,𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑁𝑇𝐴𝐷) ≈

𝐼𝑖𝑛𝑡𝑒𝑟̃(𝑁𝑇𝐴𝐷)

𝑁𝑇𝐴𝐷𝐶𝑙𝑜𝑐,𝑓𝑖𝑡(𝑁𝑇𝐴𝐷)
 (S42) 

and 

 
𝐹𝑖𝑛𝑡𝑟𝑎,𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑁𝑇𝐴𝐷) ≈ 1 − 𝐹𝑖𝑛𝑡𝑒𝑟,𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑁𝑇𝐴𝐷) , (S43) 

respectively. Figures S15c and S15d show 𝐹𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) and 𝐹𝑖𝑛𝑡𝑟𝑎(𝑁𝑇𝐴𝐷), respectively, from 

Micro-C data (circles) as well as from Eqs. (S42) and (S43) (blue and green curves). The purple 

curves show the inter- and intra-TAD fractions predicted without scaling the integral 

𝐼𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) and without correcting for the 𝑁𝑇𝐴𝐷 dependence of 𝐶𝑙𝑜𝑐. The scaling and correcting 

steps are necessary to match the magnitudes and shapes of the data more accurately. 
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Figure S15: Inter-TAD and intra-TAD contacts. a) Sum of inter-TAD contacts for a given TAD length 

𝐶𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) from Micro-C experiments compared to the predicted number 𝐼𝑖𝑛𝑡𝑒𝑟(𝑁𝑇𝐴𝐷) (Eq. (S39)) scaled to be 

equal to 𝐶𝑖𝑛𝑡𝑒𝑟 at 𝑁𝑇𝐴𝐷 = 200 kbp. b) Total number of intra-chromosomal contacts made by a TAD 𝐶𝑡𝑜𝑡(𝑁𝑇𝐴𝐷) 
normalized by TAD length 𝑁𝑇𝐴𝐷. The data for HFF and mESC cells were fit to separate power laws (solid lines). c) 

Inter-TAD fraction of intra-chromosomal contacts made by a TAD with length 𝑁𝑇𝐴𝐷 from experimental data 

(circles) compared to predicted values (blue and green curves, Eq. (S42)) and unscaled predictions (purple curve). d) 

Same as c) but for the intra-TAD fraction of intra-chromosomal contacts, where the blue and green curves use Eq. 

(S43). 
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IV. Supplementary tables 

Table S1: Description of notations used in the main text. 

Parameter Description 

𝑏 Locus size 

𝑧 Genomic length per locus 

𝑣𝑒𝑥 Extrusion speed (in units of genomic length/time) 

𝜏0 Diffusion time of a locus 

𝜅 = 𝑣𝑒𝑥𝜏0𝑧
−1 Extrusion ratio 

𝑙 = 2𝑣𝑒𝑥𝑡 Genomic length of an extruded loop 

𝑠 Genomic length 

𝑠𝑐,𝑖 Genomic distance between cohesin and locus i within a loop 

𝑠𝑐,𝑜𝑢𝑡 Genomic distance between cohesin and locus of interest outside a loop 

𝑔𝑚𝑖𝑛 Shortest genomic length of a relaxed chromatin section within an extruded loop 

𝑔(𝑙) Longest genomic length of a relaxed chromatin section within a loop of length l, predicted to be 

Eq. (S7) 

𝑔(𝑑) Longest genomic length of a relaxed chromatin section in steady state extrusion, predicted to be 

Eq. (10) in the main text 

𝜉(𝑙) Size of the longest relaxed chromatin section within a loop of length l 

< 𝑅2(𝑙) > Mean square size of a loop with length l 

< 𝑟𝑙
2(𝑠) > Mean square size of a section with genomic length s within a loop of length l 

𝜆 Processivity (genomic length) 

𝑑 Separation (genomic length) 

𝑁𝑇𝐴𝐷 Average genomic length of a TAD 

𝜏𝑟𝑒𝑠 Residence time of cohesin 

𝑃(𝑠) Contact probability 

𝜙𝑠𝑒𝑙𝑓(𝑠) Volume fraction of a section with length s within its pervaded volume where the section is part 

of a genomic section of length l 

𝜙𝑧 Volume fraction of chromatin (histones and DNA) within the pervaded volume of a locus with z 

base pairs 

𝜙 Average volume fraction of chromatin in nucleus 

𝑁𝑒,𝑝𝑎𝑠𝑠𝑖𝑣𝑒  Entanglement genomic length in the absence of activity 

𝑁𝑒,𝑎𝑐𝑡𝑖𝑣𝑒  Entanglement genomic length with active loop extrusion 

𝑂(𝑠) Overlap parameter 

𝐷 (Apparent) fractal dimension 

𝑔𝑙𝑒𝑔 Genomic length of leg outside of loop 

< 𝑟𝑙𝑒𝑔
2 > Mean square size of leg 
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Table S2: Range of parameter estimates given an extrusion ratio range of 𝜅 ≈ 0.003 − 0.3. All 

estimates use a locus discretization of 𝑧 = 2 kbp, locus size 𝑏 = 50 nm, extrusion velocity 𝑣𝑒𝑥 =
0.1 kbp per second, and cohesin processivity and separation 𝜆 = 𝑑 = 200 kbp. 

Parameter 𝜅 ≈ 0.003 𝜅 ≈ 0.2 

(used in main text) 

𝜅 ≈ 0.3 

𝑔𝑚𝑖𝑛 700 kbp 10 kbp 7 kbp 

𝑔(𝜆) in a loop with 

processivity 𝜆 

200 kbp1 30 kbp 26 kbp 

𝑔(𝑑) N/A2 30 kbp 26 kbp 
1 Using 𝜅 ≈ 0.003, entire loops are relaxed up to loop lengths 𝑔𝑚𝑖𝑛 ≈ 700 kbp. Loops with 𝜆 =
200 kbp are fully relaxed. 

 
2 Since entire loops are relaxed with these parameters, 𝑔(𝑑) does not exist as the system would 

be in the “relaxed” Regime I in Figure 7a of the main text. 

 

 

 

 

Table S3: Range of the passive and active entanglement genomic lengths for 𝑂𝐾𝑁 = 10 − 20 

and average chromatin volume fraction 𝜙 = 0.06 − 0.4. All estimates use a locus discretization 

of 𝑧 = 2 kbp, locus size 𝑏 = 50 nm, physical volume of a locus 𝑣 ≈ 7.5x103 nm3, average TAD 

length 𝑁𝑇𝐴𝐷 ≈ 200 kbp and 𝑔(𝑑) = 30 kbp. 

 Lower bound Main text estimate Upper bound 

𝑁𝑒,𝑝𝑎𝑠𝑠𝑖𝑣𝑒 16 kbp 100 kbp 3 Mbp 

𝑁𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 800 kbp 5 Mbp 150 Mbp 
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Table S4: Parameters for fitting experimental Micro-C data to Eq. (S38) and errors or deviations 

between fits, experimental data, and 𝑃(𝑠) asymptotic scaling. Fitting parameters are given with 

95% confidence intervals. 

 𝛂𝟏 𝛂𝟐 𝑨 (kbp) 𝑩 (kbp) Error/Deviation 

Fit to HFF 
1.88 

(1.86, 1.90) 

1.85 

(1.84, 1.87) 

29.9 

(29.7, 30.0) 

360 

(359, 361) 
0.004 

Fit to mESC 
1.76 

(1.73, 1.78) 

3.79 

(3.73, 3.85) 

21.82 

(21.77, 21.87) 

345 

(344, 346) 
0.009 

Fit to HFF and 

mESC 

simultaneously 

1.7 

(1.4, 2.1) 

2.7 

(2.2, 3.1) 

26 

(25, 27) 

350 

(340, 370) 

0.1 (with HFF) 

0.2 (with mESC) 

Between HFF 

and mESC 
N/A N/A N/A N/A 0.3 

Between scaling 

and HFF 
N/A N/A 

30 (used for 

scaling) 

400 (used 

for scaling) 
0.2 

Between scaling 

and mESC 
N/A N/A 

30 (used for 

scaling) 

400 (used 

for scaling) 
0.1 

 

 

 

Table S5: Lag time ranges and subdiffusive mobility coefficients 𝐷1/2 and 𝐷1/3 used to fit 

2pMSD data to two power law regimes (see Section IIId). Subdiffusive mobility coefficients are 

given with 95% confidence intervals. 

Cell type 𝚫𝒕 (s) range used 

to fit ∼ 𝚫𝒕𝟏/𝟐 

𝚫𝒕 (s) range used 

to fit ∼ 𝚫𝒕𝟏/𝟑 

𝑫𝟏/𝟐 (10-3μm2s-1/2) 𝑫𝟏/𝟑 (10-3μm2s-1/3) 

WT 20 – 200 600 – 6000 2.32 ± 0.01 5.62 ± 0.08 

∆CTCFsites 20 – 200 900 – 6000 3.3 ± 0.1 8.5 ± 0.2 
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