
Supporting Information:
EspalomaCharge: Machine
learning-enabled ultra-fast partial
charge assignment
Yuanqing Wang∗ 1, 2, Iván Pulido 1, Kenichiro Takaba 1, 3, Benjamin Kaminow 1, 4, Jenke Scheen 1, Lily Wang 1, 5,
John D. Chodera∗ 1

1Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NewYork, NY 10065; 2Simons Center for Computational Chemistry and Center for Data Science, New York University, NewYork, NY 10004; 3Pharmaceutical Research Center, Advanced Drug Discovery, Asahi Kasei Pharma Corporation,Shizuoka 410-2321, Japan; 4Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell MedicalCollege, Cornell University, New York, NY 10065; 5Open Molecular Sciences Foundation, Davis, CA 95618
*For correspondence:
yuanqing.wang@choderalab.org (YW); john.chodera@choderalab.org (JDC)

Detailed methods
Code availability.
The Python code used to produce the results discussed in this paper is distributed open source under MIT
license https://github.com/choderalab/espaloma_charge. Core dependencies include PyTorch 1.12.1 [22], Deep
Graph Library 0.6.0 [29], and the Open Force Field Toolkit 0.11.2 [20].
Training dataset curation.
The SPICE [5] dataset is used as the training and in-distribution validation and test set for the model due to
its thorough coverage of chemical space relevant to biomolecular simulations. It consists of druglike small
molecules selected from PubChem, short peptides, and fragments of biomolecules and biopolymers, and
covers 15 elements (H, Li, C, N, O, F, Na, Mg, P, S, Cl, K, Ca, Br, I). Protonation and tautomeric states have been
enumerated for each molecule using the OpenEye toolkit. After random shuffling (over the chemical space,
protomeric and tautomeric states are kept in the same partition), 80% of the dataset is used for training,
10% used for validation (and model selection via early stopping), and 10% for reporting out-of-sample test
performance.
Out-of-distribution test dataset selection.
To test the generalizability of EspalomaCharge, we select a series of out-of-distribution test datasets on
which the discrepancy between charge methods are assessed.

• FDA approved dataset1 contains FDA approved small molecules, filtered by size and element compo-
sition.

• ZINC250K dataset is a popular machine learning dataset first published in Gómez-Bombarelli et al.
[11], which randomly subsamples the original ZINC dataset [14].

• FreeSolv dataset [14] contains small molecules whose hydration free energies have been experimen-
tally measured.

1Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2019-09-08-fda-optimization-dataset-1
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Neural network architecture and training
Following the protocol specified in Wang et al. [30], we use GraphSAGE [13] as the GNN backbone and opti-
mize the learning rate (1𝑒−2 to 1𝑒−5), batch size (16 to 512), and neural network width (16 to 512) and depth
(2 to 6) via grid search on the validation set. The input features of the atoms include the one-hot encoded
element, as well as the hybridization, aromaticity, and (various sized-) ring membership, assigned using
RDKit. Note that the formal charges are not included as part of the features to avoid the time-consuming
enumeration of resonance structure as in Gilson et al. [9]. The hyperparameter search resulted in an op-
timal learning rate of 10−3 and L2 regularization with rate 10−4 with Adam optimizer [16] and batch size of
512; the neural networks are 4 layers and 128-unit wide. All models were trained for 5000 epochs, and the
model with optimal performance on the validation set was selected for characterization here.
Electrostatic potential (ESP) errors
To calculate deviations between electrostatic potentials (ESP) on a surface, we first generated conformers
using the OpenFF Toolkit 0.11.2. Conformer generation followed the Electrostatically Least-interacting Func-
tional groups (ELF) approach. Initially, a maximum of 500 conformers was generated using RDKit with an
RMS threshold of 0.05 Å. A cis conformation was enforced for carboxylic acid groups by rotating the protons
in trans carboxylic acids 180◦ around the C-O bond. The electrostatic energy of each conformer was calcu-
lated usingMMFF94 charges [12]. The 98% conformers with the highest electrostatic energy were discarded.
From the remaining 2% conformers, we greedily selected up to 10 conformers that were most distinct from
each other by RMS. Each conformer geometry was distinct by at least a heavy-atom RMS of 0.05 Å from
each other.

For each conformer, weusedOpenFFRecharge 0.4.0 to generate standardMerz-Singh-Kollman grids [25]
around the molecule at a density of 1 point per Å2. We then calculate the root mean squared error (RMSE)
between ESPs generated by each set of partial charges on the conformer grid. To compare the overall effect
of different partial charges on the ESP, we average the RMSE between ESPs for each conformer.
Induced solvent potential from Poisson-Boltzmann model (ZAP)
As a fast measure of how small differences in partial charges might impact interaction free energies, we
computed the induced solvent potential on each atom using a fast Poisson-Boltzmann implicit solvation
model implemented in OpenEye ZAP [10]. The induced solvent potential reflects the potential induced by
the polarization of the solvent, and was computed following recommended standard usage [https://docs.
eyesopen.com/toolkits/python/zaptk/thewayofzap.html].
Hydration free energies in explicit solvent (Δ𝐺hyd)To compute hydration free energies for the FreeSolv dataset [20] to quantify the impact of small differ-
ences in charges on experimentally-measurable free energies, we used a modified version of the protocol
described in [21]. Neutral molecules were solvated with TIP3P water [15] in rectangular boxes with 14Å of
padding, and assigned GAFF-2.11 parameters [27, 28] using openmmforcefields [3]. Hydration free energy
calculations were computed by performing replica-exchange alchemical free energy calculations using a
two-stage alchemical protocol in which charges were annihilated by linear scaling and Lennard-Jones in-
teractions, and then subsequently annihilated using the Buetler softcore potential [1, 23]. Simulations em-
ployed particle mesh Ewald (PME) [7] to treat long-range electrostatics and used mixed precision to ensure
accuracy in energies and integration. Integration was performed with the BAOAB Langevin integrator [17–
19] using hydrogen masses of 3.8 amu to enable 4 fs timesteps to be taken while introducing minimal
configuration space sampling error [8]. Calculations were carried out in gas phase at 298 K and in solvent
at 1 atm using OpenMM 8 [6] and openmmtools 0.21.5 [2], and free energies were estimated with the mul-
tistate Bennett acceptance ration (MBAR) [24] after automatic equilibration detection [4] and decorrelation.
Simulations were run for 1 ns/replica in each phase. Code for reproducing these calculations can be found
in https://github.com/choderalab/espaloma_charge/tree/main/scripts/hydration-free-energies.

2 of 6

https://docs.eyesopen.com/toolkits/python/zaptk/thewayofzap.html
https://docs.eyesopen.com/toolkits/python/zaptk/thewayofzap.html
https://github.com/choderalab/espaloma_charge/tree/main/scripts/hydration-free-energies


Figure S 1. EspalomaCharge provides interpretable intermediate representations. Kernel density estimate (KDE)plot of intermediate atomic electronegativity (𝑒) and hardness (𝑠) parameters used by the charge equilibration stage togenerate charges, stratified by element. While physical instances of these parameters are limited to being positive, inthis model they are unconstrained in sign.
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FreeSolv dataset

FDA-approved dataset

Figure S 2. Comparison of discrepancies the EspalomaCharge and AmberTools sqm produce in computing vari-
ous charge-dependent properties, with high-qualityOpenEyeAM1-BCC ELF10 conformation-independent charges
taken here as ground truth. The top row of each panel shows cumulative distribution functions (CDFs) of the deviationsfor each method, along with average (and 95% bootstrapped confidence intervals) for EsplomaCharge (grapefruit) andAmberTools (amber). The bottom row of each panel shows the joint probability density functions (PDFs) of the devia-tions for each method in various properties along with the charge RMSE. Here, Charge RMSE (e) denotes the root-meansquared (RMS) deviation of atomic charges for the molecule from OpenEye reference charges; ESP RMSE (kcal/mol/e)denotes the RMS deviation of electrostatic potential on surface shells fromOpenEye reference charges; ZAP RMSE (kcal/-
mol) denotes the RMS deviation in the induced solvent potential computed via the OpenEye ZAP fast Poisson-Boltzmannimplicit solvent model solver [10] between the query charge model and the OpenEye reference charges; 𝚫𝚫𝐆hyd (kcal/-mol) denotes the error in hydration free energies between the query charge model and the OpenEye reference charges.
Top panel: The FreeSolv dataset [20] consists of 641 neutral small molecules with experimentally characterized hydrationfree energies. Bottom panel: A subset of 1615 FDA-approved inhibitors (retrieved from ZINC [26], originally sourced fromDrugBank [31]) with elements compatible with EspalomaCharge.
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Figure S 3. EspalomaCharge introduces little error to explicit hydration free energy prediction. Hydration freeenergy with EspalomaCharge- and AmberTools-calculated partial charges plotted against that generated with OpenEye-computed charge.
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