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Supplementary Figure 1. Network scores and mutational tolerance correlate with relative 

solvent accessibility. (A) Network scores and (B) in vitro saturation mutagenesis functional 

scores (corresponding to mutational tolerance) correlate with RSA. Spearman correlation 

coefficients and p-values are displayed for each plot. 
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Supplementary Figure 2. Structure-based network analysis highlights pathogenic 

variants in individual inherited retinal disease proteins. Select individual comparisons 

between network scores for variants with available clinical phenotype data for inherited retinal 

disease proteins. 
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Supplementary Figure 3. Logistic regression-based modelling using SBNA is superior to 

modelling using RSA alone. Application of univariate and multivariable logistic regression to 

the inherited retinal disease protein datasets. All regressions were performed using a 70%/30% 

train/test data split with 500 iterations, and a representative ROC curve with AUC closest to the 

mean is shown for each regression model. AUC values are displayed as the mean followed by a 

95% confidence interval.  
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Supplementary Figure 4. Logistic regression-based modelling using SBNA and 

BLOSUM62 is superior to univariate models for some individual proteins. Application of 

univariate and multivariable logistic regression models to the 32 inherited retinal disease 
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proteins for which there was sufficient data to facilitate individual analysis. All regressions were 

trained on all proteins except the protein of interest and then tested on that protein. ROC curves 

and AUC values are shown. 
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Supplementary Figure 5. EVE score correlates with mutational intolerance. (A) Pooled 

comparison between EVE scores for variants with available clinical phenotype data. (B) 

Comparison between functional data from saturation mutagenesis experiments and EVE 

scores, with Spearman correlation coefficients and p-values displayed for each plot. Points are 

colored based on available clinical phenotype data. EVE score data was not available for ERK2, 

so it was excluded from this analysis. 
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Supplementary Figure 6. Metrics incorporating SBNA scores show similar trends to 

estimates from PolyPhen2 and EVE within the dataset of all rare variants from patients 

with IRD at MEE. PolyPhen21, EVE2, and SBNA scores were generated for the full set of all 

rare variants across patients with IRD at MEE. For each model, the subset of variants for which 

scores could be calcuated were considered for downstream analysis. (A) Comparison between 

pathogenicity probability estimates generated by PolyPhen2 trained on either the HumDiv or 

HumVar training data, EVE, and BLOSUM62 scores subtracted from raw SBNA scores with 

Spearman correlation coefficients displayed for each plot. (B) Comparison between 

pathogenicity probability estimates grouped by benign, VUS, and pathogenic variants as 

determined by ClinVar and gnomAD. (ns = not significant; * = p<0.05; ** = p<0.01; *** = 
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p<0.001; **** = p<0.0001) (C) ROC curves and AUC values for application of each model. 

Benign and pathogenic variants were determined based on ClinVar and gnomAD. 
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Supplementary Figure 7. Pathogenicity estimates incorporating orthogonal metrics show 

superior performance. AlphaMissense3 scores and scores combining the difference between 

SBNA scores and BLOSUM62 scores as well as EVE2 scores were generated for the full set of 

all rare variants across patients with IRD at MEE. The subset of variants for which each score 

could be calcuated were considered for downstream analysis. (A) Comparison between 

pathogenicity estimates generated by AlphaMissense and BLOSUM62 scores subtracted from 

raw SBNA scores with Spearman correlation coefficients displayed for each plot. (B, D) 

Comparison between model estimates grouped by benign, VUS, and pathogenic variants as 

determined by ClinVar and gnomAD. (ns = not significant; * = p<0.05; ** = p<0.01; *** = 

p<0.001; **** = p<0.0001) (C, E) ROC curves and AUC values for application of models. Benign 

and pathogenic variants were determined based on ClinVar and gnomAD. 
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Supplementary Figure 8. Pathogenic variants and VUS from MEE patients span 52 IRD 

genes. Distribution of total pathogenic variants and VUS (as categorized by ClinVar) from MEE 

patients across the 52 IRD genes considered in this analysis. 
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Supplementary Figure 9. SBNA helps identify pathogenic variants in a patient with RPGR-

related inherited retinal disease. Representation of network scores for a sample structure with 

putative solving genetic variants. Sphere radius corresponds to network score magnitude at a 

particular position. A patient with clinical evidence of RPGR-related disease (A) but with no 

complete genetic explanation was fully solved using SBNA which highlighted a hemizygous 

variant (Cys302Tyr) that score highly in the RPGR protein structure (B).  
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Protein PDB 
AHI1 4ESR 
ARL6 2H57 

CNGA1 7LFT 
CNNM4 6G52 
CNNM4 6RS2 
COL2A1 5NIR 

GRK1 3C4Z 
GUCA1A 2R2I 
IMPDH1 7RER 
INPP5E 2XSW 
JAG1 4CC0 
KIF11 1Q0B 
KLHL7 3II7 
MERTK 7AB0 

NMNAT1 1KKU 
OAT 1OAT 

OFD1 6E0T 
PRPF8 3ENB 
RLBP1 3HY5 

RP2 2BX6 
RS1 3JD6 

SNRNP200 4KIT 
TUB 1S31 

TULP1 3C5N 
PTEN 1D5R 
HRAS 4NIF 

ABCA4 7LKZ 
ABCC6 6BZS 
ABCC6 6BZR 
AIPL1 6PX0 

CDH23 5TFM 
CDH23 5WJ8 
CDH23 5VVM 
RPGR 4QAM 

RPGRIP1 4QAM 
CTNNA1 4IGG 

CHM 1VG9 
CHM 1VG0 
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CNGA3 7RHS 
CNGB1 7RH9 
CNGB3 7RHS 
DFNB31 6KZ1 
DFNB31 6FDD 
DFNB31 6FDE 
ERCC6 7OO3 
GNAT1 1TND 
GNAT1 1TAD 
GNAT1 1TAG 
IDH3B 6KDF 

MYO7A 5MV9 
MYO7A 3PVL 
PCDH15 5ULY 
PCDH15 6E8F 
PCDH15 5T4M 
PCDH15 4XHZ 
PDE6A 6MZB 
PDE6B 6MZB 
PRPF3 6QW6 

PRPF31 2OZB 
RBP3 1J7X 
RBP3 4LUR 

TIMP3 3CKI 
USH1C 3K1R 
USH1G 3K1R 
BRCA1 1JM7 
BRCA1 1T29 
ERK2 4FMQ 
ERK2 4NIF 

RPE65 3FSN 
RPE65 3KVC 
RPE65 4F2Z 
RHO 1GZM 
RHO 3CAP 

PRPH2 7ZW1 
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Supplementary Table 1. Protein Data Bank accession numbers for well-studied human 

proteins and IRD genes. Protein Data Bank4 accession numbers listed here were used to 

access structural data for well-studied human proteins and IRD proteins. 

 
 
  



 18 

Supplementary References 
 

1 Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of 
human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 
7, Unit7 20, doi:10.1002/0471142905.hg0720s76 (2013). 

2 Frazer, J. et al. Disease variant prediction with deep generative models of 
evolutionary data. Nature 599, 91-95, doi:10.1038/s41586-021-04043-8 (2021). 

3 Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with 
AlphaMissense. Science 381, eadg7492, doi:10.1126/science.adg7492 (2023). 

4 Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235-242, 
doi:10.1093/nar/28.1.235 (2000). 

 


